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ABSTRACT OF THE DISSERTATION

Constructive recognition of finite classical groups
with stingray elements

Daniel Rademacher

In 1988 Joachim Neubüser posed a matrix group related question in Oberwolfach which was

answered by Peter Neumann and Cheryl E. Praeger in 1992. This initiated an international research

effort, the matrix group recognition project, within the area of computational group theory with the

aim of answering fundamental questions about arbitrary matrix groups over finite fields.

One possible method is a data structure called composition tree. In this approach, computations of a

large matrix group are decomposed into computations for smaller matrix groups until this process

cannot be repeated anymore. The remaining leaf groups are the finite (quasi-)simple groups, which

include the classical groups.

Therefore, efficient algorithms to deal with classical groups are essential for the overall performance

of the composition tree. One elementary aim is to develop an efficient algorithm for the constructive

recognition of these groups.

This thesis presents a novel algorithm for constructively recognising classical groups within their

natural representations, building upon preliminary concepts from Ákos Seress and Max Neunhöffer

for special linear groups.

The algorithm consists of three subalgorithms:
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1) GoingDown algorithm: Recursively descends from the input group G to a subgroup U

isomorphic to a “base case group” using stingray duos and reaching such a group in significantly

fewer steps than traditional methods.

2) BaseCase algorithm: Utilises an efficient method for constructively recognising the base case

group U forming a starting point for the computation of standard generators of G.

3) GoingUp Algorithm: Extends standard generators from the subgroup U to the original

group G, employing an original approach to compute generators for intermediate subgroups.

This research contributes to the broader goal of enhancing computational methods for matrix group

recognition, with a particular focus on classical groups. It presents efficient algorithms that improve

the performance of the composition tree method.

ii



Acknowledgements

I am profoundly grateful for the invaluable guidance, support and expertise provided by my first

supervisor, Prof. Dr. Alice C. Niemeyer. Her insightful feedback, encouragement and dedication to

excellence have been instrumental in shaping my growth as a researcher in the field of mathematics.

Additionally, I am very grateful to Prof. Dr. Alice C.Niemeyer for providingmewith the opportunity

for a research stay in New Zealand, which has significantly enriched my academic experience. I also

express my sincere appreciation to my second supervisor, Prof. Dr. Max Horn, for his scholarly

mentorship, technical insights and unwavering support throughout this research journey. His

expertise in classical groups has broadened my perspective and enriched the quality of my work.

I extend my gratitude and heartfelt appreciation to Prof. Dr. Eamonn O’Brien for his invaluable

mentorship, enlightening discussions and unwavering guidance throughout my enriching five-month

research visit at the University of Auckland. Additionally I express my gratitude to the Department

of Mathematics at the University of Auckland for fostering a warm and welcoming atmosphere.

I also express my sincere appreciation to Prof. Dr. Cheryl E. Praeger for her invaluable support,

especially during my visit at the University of Western Australia. Her mentorship has left a profound

impact on my academic journey, and I am deeply grateful for her guidance. Additionally, I express

my gratitude to Prof. Dr. Csaba Schneider for our insightful discussions on matrix groups and coding

aspects.

Ákos Seress and Max Neunhöffer had preliminary ideas for special linear groups leading to the

approach for constructive recognition presented in this thesis and I would like to thank Max

Neunhöffer for sharing a draft of their project ideas with me.

I am deeply grateful for the opportunity to undertake this dissertation and complete this significant

milestone in my academic journey. I would like to extend my sincere thanks to the RWTH Aachen

University for providing a conducive environment for research and learning and for the financial

support through the SFB-TRR 195 ‘Symbolic Tools in Mathematics and their Application’ of the

German Research Foundation (DFG) [Program ID 286237555] that made this work possible.

iii



Furthermore, I extend my gratitude to Sergio Siccha for introducing me to the field of computational

group theory, starting from our initial meeting at a pub during the first semester. I appreciate his

guidance and the insightful discussions we have had on mathematical topics. I extend my heartfelt

thanks to Dominik Bernhardt for his mentorship throughout my time as a Bachelor’s and Master’s

student. His warm welcome to the department and inclusion of me in various conferences as a

student have been invaluable experiences. I also express my gratitude to my colleagues and friends at

the Chair of ART for the wonderful and enjoyable times we shared, especially during our board

game and karaoke nights. I extend many thanks to Giulia Iezzi for the enriching discussions we

shared during breaks and to Tom Görtzen for the insightful bouldering instructions. I also extend

my thanks to Wolfgang Krass, who not-so-secretly runs our department from behind the scenes.

His welcoming atmosphere and enjoyable conversations have made my time at the department truly

wonderful. I extend special thanks to Friedrich Rober for being an exceptional office partner and

friend, sharing humorous moments during conferences and in Australia and, of course, engaging in

insightful mathematical discussions withme. Moreover, I express my gratitude to VerityMackscheidt,

affectionately known as Pikachu, for our many enjoyable and insightful discussions on a variety of

(non-mathematical) topics.

I express my gratitude to the many people who shared the journey of studying mathematics with

me. First, I extend my heartfelt thanks to Anna Katharina Dora and Lucas Fabian Wollenhaupt,

who remained steadfast companions throughout our algebra lectures. You have been the best friends

one could wish for and I treasure every experience we shared during our time in Aachen. I wish

you both and Ada, all the best in your future endeavours. Secondly, I thank Alena Meyer, Astrid

Hagemeyer, Marius Graumann, Duc Khuat and Linh An Vu for their exceptional teamwork in

tackling algebra lectures and exercises with me. Moreover, I express my gratitude to Paul Geuchen,

Miriam Chlumsky-Harttmann, Mona Kuntz, Katharina Felderhoff, Theresa Victoria Hausen, Luca

Polzius and Felix Pennig, who were my steadfast companions throughout my time studying in

Aachen.

I wish to thank my friends for their companionship and for sharing such wonderful times together.

Many, many thanks also to my exceptional and wonderful friends Sven Argo, Simon Berger and

Niko Molke, who have been my closest friends since we met in school. Thank you very much for

iv



all the wonderful memories we share together and for your unwavering support.

Furthermore, I express my heartfelt thanks tomywonderful parents, Gudrun andHelge Rademacher,

who have supported and encouraged me since the day I was born. Their unwavering support has

made my academic journey possible and I am endlessly grateful. I extend my gratitude to my

grandparents and all other members of my family for their support and encouragement.

I express my sincere gratitude to my wonderful brother, Tobias Rademacher, for his incredible

encouragement throughout my time as a PhD student. The memories we’ve created together are

unforgettable, filled with laughter and joy. I hope to be as good a brother to you as you are to me.

Lastly, I would like to extend my deepest gratitude to my girlfriend, Julia Schmitz, whose kindness

and warmth have added balance to my life. Her love and belief in me have made even the most

challenging moments bearable and I am forever grateful for her presence in my life.

v



vi



Eidesstattliche Erklärung

Ich, Daniel Rademacher, erkläre hiermit, dass diese Dissertation und die darin dargelegten Inhalte

die eigenen sind und selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser Fakultät

und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Abschluss oder

eine andere Qualifikation an dieser oder einer anderen Institution verwendet wurde, wurde

dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden, wurden

diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde stets die

Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene Arbeit, mit der

Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen basiert, wurde

von mir klar gekennzeichnet, was von anderen und was von mir selbst erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in [49] Max Horn and

Alice C. Niemeyer and Cheryl E. Praeger and Daniel Rademacher. Constructive Recognition

of Special Linear Groups. 2024. arXiv: 2404.18860 [math.GR].

October 17, 2024

vii

https://arxiv.org/abs/2404.18860


viii



Authorship Declaration

This thesis contains work that has been submitted to a journal.

Details of the work: [49] Max Horn and Alice C. Niemeyer and Cheryl E. Praeger and Daniel

Rademacher. Constructive Recognition of Special Linear Groups. 2024. arXiv: 2404.18860 [math.GR].

Student contribution to work: The author of this thesis contributed fully to all mathematical ideas.

The author of this thesis was responsible for the writing of [49, Section 2 - 8] and the mathematical

ideas of these sections. The sections [49, Section 2 - 8] are a condensed version of Chapter 2,

Chapter 3, Chapter 5 and Chapter 11 of this thesis and were written by the author of this thesis.

The author of this thesis implemented the theory developed in [49]. His implementation can be

found in the GAP-package [82].

ix

https://arxiv.org/abs/2404.18860


x



Dedication

For my family and friends.

xi





Contents

Abstract i

Acknowledgements iii

Eidesstattliche Erklärung vii

Authorship Declaration ix

Dedication xi

Contents xiii

1 Introduction 1
1.1 Background and literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Randomised algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Composition trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Classification of finite simple groups . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Black-box groups and black-box algorithms . . . . . . . . . . . . . . . . . . . . . . 12
1.1.7 Naming algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.8 Constructive recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.9 MSLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.10 Rewriting procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.11 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Preliminaries 25
2.1 Basics and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Forms and classical groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Classical groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Transvections and Siegel transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Transvections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Siegel transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Complexity and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 MSLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



3 Outline of the Algorithm 55
3.1 GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 StandardGenerators algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Stingray elements 71
4.1 Definition of stingray elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Proportion results about stingray elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Algorithms for stingray elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Special linear group 89
5.1 GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 GoingDown basic step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2 Combining GoingDown basic steps . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3 Final step of the GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.4 GoingDown basic step with lower-dimensional matrices . . . . . . . . . . . . . 111
5.1.5 Complete GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Overview of the GoingUp step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.2 Construction of a dimension doubling element . . . . . . . . . . . . . . . . . . . 125
5.3.3 Construction of a new base change matrix . . . . . . . . . . . . . . . . . . . . . . 132
5.3.4 Construction of transvections and standard generators . . . . . . . . . . . . . . 135
5.3.5 GoingUp step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.6 Combining GoingUp steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.7 GoingUp with lower-dimensional matrices . . . . . . . . . . . . . . . . . . . . . . 156

6 Symplectic group 159
6.1 GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.1 GoingDown basic step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.1.2 Combining GoingDown basic steps . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1.3 Final step of the GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3 GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.1 GoingUp step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.2 Combining GoingUp steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 Special unitary group 189
7.1 GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.2 BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.3 GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8 Orthogonal group 209
8.1 GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.2 BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3 GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9 GoingUp using involutions 225
9.1 Overview of the GoingUp step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.2 Construction of a dimension doubling element . . . . . . . . . . . . . . . . . . . . . . . . 231

xiv



9.3 Construction of a new base change matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.4 Construction of a swapping element and standard generators . . . . . . . . . . . . . . . 236
9.5 GoingUp step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9.6 Combining GoingUp steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10 Complexity analysis of algorithms 245
10.1 Complexity of the GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.1.1 Probability to find a stingray element . . . . . . . . . . . . . . . . . . . . . . . . . 247
10.1.2 Conditional probability that a stingray pair forms a stingray duo . . . . . . . 256
10.1.3 Conditional probability that a stingray duo generates a classical group . . . . 261
10.1.4 Probability of the GoingDown basic step . . . . . . . . . . . . . . . . . . . . . . 261
10.1.5 Probability of the GoingDown algorithm . . . . . . . . . . . . . . . . . . . . . . 262
10.1.6 Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

10.2 Complexity of the BaseCase algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.3 Complexity of the GoingUp algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
10.4 Complexity results of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

11 Implementation 277
11.1 Recog package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.2 Run-time results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

12 Outlook 283
12.1 Complexity of the StandardGenerators algorithm . . . . . . . . . . . . . . . . . . . . 283
12.2 Gray-box algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
12.3 Black-box algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
12.4 Further improvements of the composition tree . . . . . . . . . . . . . . . . . . . . . . . . 285

List of symbols 287

Index 293

References 295





Chapter 1

Introduction

“The essence of math is not to make simple things complicated, but to make complicated things

simple”1, a principle mirrored in algorithms since they serve as the computational backbone of

mathematics, translating abstract concepts into precise, step-by-step instructions for problem-solving.

Fundamentally, algorithms encode the instructions of how we think mathematically, expressing the

art of simplifying complex mathematical processes into manageable computational steps.

Algorithmic group theory is the intersection of abstract algebra and computational mathematics,

aiming to develop tools for studying the properties, structures, and representations of groups. The

roots of group theory can be traced back to the late 18th and early 19th centuries when famous

mathematicians such as Carl Friedrich Gauss, Évariste Galois and Augustin-Louis Cauchy established

foundational work. They introduced formal notations for abstract algebra which is the starting

point of more formalised studies.

During the progression of group theory, the study and classification of finite groups, in particular

finite simple groups, gained prominence as finite simple groups are the building blocks of finite

groups. In the mid-20th century, fundamental work by mathematicians such as Camille Jordan,

Émile Mathieu, Wilhelm Killing and many others advanced the subject. However, as more and more

complex groups had to be investigated, the need for computer assisted approaches instead of pen and

paper-based calculations increased.
1Stanley P. Gudder

1



2 CHAPTER 1. INTRODUCTION

In the 20th century significant advancements in computational mathematics, such as Schreier-Sims

and Johnson’s algorithms, were the starting point for computational group theory as a distinct field.

Nowadays mathematicians and computer scientists are developing algorithms and techniques to

study groups and their properties and representations on the computer. The use of computations

instead of theoretical proofs marked a central moment in the history of algorithmic group theory.

Classifying finite simple groups through their matrix representations proved to be an enormous

effort. The aim of classifying finite simple groups profited from algorithmic group theory in two

ways. Firstly, computational tools were developed to prove the existence of theoretical groups, such

as those developed by Charles Sims [87]. Secondly, by providing computational tools that facilitate

the exploration of simple groups. Many mathematicians played crucial roles as they developed

important algorithms and computational tools for recognising and analysing groups [48].

Accomplishments in computational group theory and the improvement of computational power,

contributed to the eventual completion of the classification of finite simple groups (CFSG) in

1980s. The CFSG marks a tremendous achievement in mathematics, yielding beneficial impacts on

algorithmic group theory. The proof of the CFSG is highly complex as many results are distributed

across hundreds of journal articles and books which additionally rely on deep mathematical insights.

Gorenstein, Lyons, Solomon and others are currently working on a series of books on the proof of

the CFSG [44]. Nowadays, computational tools continue to play a vital role for exploring properties

and representations of these groups.

One exceptional achievement in algorithmic group theory is the work “Atlas of Finite Group” in

1985 [29] containing detailed information on various finite simple groups, their properties, and

matrix representations. The Atlas is a significant source of information for researchers, offering

crucial data for further investigations. This project started as a collaborative effort by John Conway,

Robert Curtis, Simon Norton, Richard Parker and Robert Wilson and has involved contributions by

many others since then. Advancements from this project have also lead to the creation of a modular

Atlas [54].

As algorithmic group theory advanced with crucial results such as the CFSG and the Atlas, along

with the development of efficient algorithms for handling permutation groups [85] and polycyclic



3

groups [86] in the mid-1980s, algorithms specifically designed for matrix groups were missing.

Joachim Neubüser (1932-2021) was a professor at RWTH Aachen University and the founder

of the computational algebra system GAP [37] in 1986. The first algorithms implemented in GAP

included algorithms for permutation groups, finitely-presented groups, polycyclic groups, as well as

algorithms for character tables of finite groups. However, working with matrix groups was only

possible for very small groups as even algorithms for fundamental tasks, such as computing the order

of a matrix, were exponential in the degree of the matrix group. At the time, algorithms for finite

matrix groups, i.e. subgroups of the general linear group GL(d , q) over the finite field Fq , relied on

algorithms for permutation groups by letting the matrix group act on the 1-dimensional subspaces

of Fd
q . Clearly, even small dimensional matrix groups thus yielded permutation groups of large

degree, as the number of 1-dimensional subspaces of a d -dimensional space is

�
d
1

�
q

=
(qd − 1)
(q − 1)

.

As working even with small dimensional matrix groups seemed out of reach, Joachmin Neubüser

posed the following question at a meeting on computer algebra in Oberwolfach in 1988. Let G be a

subgroup of the general linear group GL(d , q) over the finite field Fq . Is there an efficient algorithm

to decide whether the special linear group, SL(d , q), is contained in G, i.e. SL(d , q)≤G? In 1992

this question was answered by Neumann and Praeger [69]. Their algorithm was randomised and

required O (d )matrix multiplications. The novel and randomised approach of Neumann and Praeger

sparked the interest in designing efficient randomised algorithms for working in matrix groups.

Let X := {a1, . . . ,ak} ⊆ GL(d , q) and let G = 〈X 〉 ≤ GL(d , q). We would like to have efficient

algorithms to answer fundamental problems about G including:

• Determine the order of G.

• Given g ∈ GL(d , q), decide whether g ∈ G. This problem is henceforth referred to as the

membership problem.

• If g ∈ G, then write g as a word in X . This problem is henceforth referred to as the word

problem.

• Determine representatives of the conjugacy classes of the maximal subgroups of G.
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• Given subgroups H ,K ≤G, compute generators for the group H ∩K .

• Determine a generating set for the automorphism group of G.

These problems led to an international research effort in the area of computational group theory,

namely the matrix group recognition project [5]. The aim of the matrix group recognition project

is to acquire information about a matrix group. Since Neumann and Praeger’s algorithm [69],

many algorithms as well as GAP and Magma code has been published, see [76] for an overview. A first

theoretical solution to solve the problems given above, the black-box group approach, was presented

by Babai and Beals [9, 10] which aims to determine the abstract group-theoretic structure of a

group. Another solution, the geometric approach, investigates the action of a group on its underlying

vector space. In particular, the goal of the geometric approach is to construct a data structure,

called composition tree for G, that facilitates computations with G. From this data structure one can

immediately determine the order of G or answer more difficult questions about G. This PhD thesis

forms part in the geometric approach of the matrix group recognition project.

Many mathematicians collaborated within the matrix group recognition project and one highlight

of the geometric approach is the following theorem from 2019.

Theorem 1.1: Holt, Leedham-Green and O’Brien, 2019 [47]

Subject to the existence of a discrete logarithm oracle and an integer factorisation oracle, there is a

polynomial-time Las Vegas algorithm in q and d that takes as input G = 〈X 〉 ≤GL(d , q) and returns

as output a composition tree for G.

Section 1.1 provides an overview of the matrix group recognition project in which the topic of this

thesis is located. Various concepts are described, including randomised algorithms, composition

trees, black-box groups, and naming algorithms, along with their basic features. The results of

this thesis contribute to constructive recognition of classical groups explained in Section 1.1.8. In

Section 1.2 we motivate the objective and in Section 1.3 we illustrate a top-down description of

the algorithms for constructive recognition and state the main results. Section 1.4 describes the

structure of this thesis.
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1.1 Background and literature

Before we embark on discussing the composition tree data structure in detail and important partial

results leading to Theorem 1.1, we start by introducing some basic concepts and fixing notations.

Note that many people have contributed to the matrix group recognition project. However, we only

cite and refer to results which are relevant to this thesis and the treatment presented is based on [76].

This section is not an overview of the matrix group recognition project and instead we refer to [76].

1.1.1 Randomised algorithms

The order of the linear group GL(d , q) is exponential in d , that is |GL(d , q)| ∈ O (qd 2), which makes

it tricky to deal with these groups in practice. Hence, most of the algorithms for linear groups are

randomised, i.e. the algorithms use uniformly distributed and independent random elements. Since

groups are given by generating sets, which in practice are often very small, we require algorithms to

produce these uniformly distributed and independent elements of a group as words in the generators.

Algorithms to compute random elements are discussed further in Section 2.5. We follow the

treatment of Seress [85, Section 1.3].

Definition 1.2: [85, p. 13]

Given a set of inputs X and a set of outputs Y , a computational task is a relation R ⊆ X ×Y . If

R(x, y) holds for a pair (x, y) ∈X ×Y , then y is the correct output for input x.

Definition 1.3: [85, p. 13]

Let X be a set of inputs and Y a set of outputs. Let R be a computational task as in Definition 1.2. A

deterministic algorithm defines a function f : X → Y and is correct if R(x, f (x)) holds for all x ∈X .

A randomised algorithm is a function f : X × S → Y for a set S of random seeds. A randomised

algorithm uses a string r ∈ S of random bits (“coin flippings”) and returns the output f (x, r ). The

output may not be correct for every sequence r ∈ S and f (x, r1)may differ from f (x, r2) for different

random strings r1, r2 ∈ S.

We distinguish between two types of randomised algorithms, Monte Carlo algorithms and Las Vegas

algorithms, which play an important role in this thesis.
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Definition 1.4: Monte Carlo algorithm [85, p. 13]

Let (Ω,Σ, P ) be a probability space and let R⊂ X ×Y be a computational task. For ε ∈ (0, 1
2 ) we

call a randomised algorithm f : X ×Ω→ Y a Monte Carlo algorithm, if for all inputs x ∈X ,

Pr∈Ω(R(x, f (x, r )) holds)≥ 1− ε.
The probability of an incorrect answer can be bounded from above by ε.

Moreover, for decision problems a Monte Carlo algorithm is one-sided if at least one return value is

guaranteed to be correct.

A particular type of Monte Carlo algorithms, the Las Vegas algorithms was introduced by Babai in

1997.

Definition 1.5: Las Vegas algorithm [85, p. 13]

A Las Vegas algorithm is a Monte Carlo algorithm whose output is either correct (with the prescribed

probability at least 1− ε) or the algorithm reports failure. Here, ε may be any given constant less

than 1, since the probability of an (always correct) output can be increased to at least 1− εt by

running the algorithm t times.

The algorithms of this thesis are one-sided Monte Carlo algorithms. For more information about

randomised algorithms see [8] and [85].

1.1.2 Oracles

The running time of algorithms to solve computational problems is usually expressed as a function

ϕ in the input size and reflects the complexity of an algorithm. If the function ϕ can be bounded by a

polynomial expression, then an algorithm is a polynomial time algorithm. We discuss complexity of

algorithms in more detail in Section 2.5.

Some computational problems are assumed to be difficult to solve. Two of these problems are integer

factorisation and the discrete logarithm.
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Definition 1.6

1) Suppose n ∈N is not a prime. The computational problem to find a, b ∈N with n = a · b and

a, b ̸= 1 is the integer factorisation problem.

2) Let q be a prime power, let Fq be a finite field with q elements and let ω ∈ Fq be a primitive

root, i.e. ω generates the multiplicative group F∗q . Given ı ∈ F∗q the computational problem

to find k ∈N with ωk = ı is the discrete logarithm problem.

A famous unanswered questions in computer science is “P versus NP” where P describes the class of

problems which can be solved in polynomial time and NP describes the class of problems for which

answers can be verified in polynomial time. The question “P versus NP” asks whether the class NP

of problems whose answers can be verified in polynomial time equals the class P of problems which

can be solved in polynomial time. The question whether P = NP is listed as a Millennium problem

and a solution is rewarded with 1,000,000 US dollars. NP-hard problems are at least as difficult as

the hardest problems in NP. At this point, NP-hard problems are considered to be difficult, which

means that they cannot be solved in reasonable time if the parameters of an NP-hard problem are

large enough. Even though it is an open problem whether the two problems described in Definition

1.6 are NP-hard, they are widely used in cryptography, e.g. in ciphers such as RSA and ElGamal,

as factorisation and computation of discrete logarithms becomes computationally infeasible for

growing n and q using the state-of-the-art algorithms. Therefore, we introduce the concept of an

oracle.

Definition 1.7

An oracle is a machine capable of producing solutions for instances of a specific computational

problem in a single operation.

Definition 1.8

1) An integer factorisation oracle is an oracle which, given n ∈ N such that n is not a prime,

produces a, b ∈N such that n = a · b and a, b ̸= 1.

2) Let q be a prime power, let Fq be a finite field of size q and let ω ∈ Fq be a primitive root.

Given ı ∈ F∗q a discrete logarithm oracle is an oracle which produces k ∈N with ωk = ı.

Even though these oracles are not directly required in the algorithms of this thesis, the discrete
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logarithm oracle and factorisation oracle are currently needed for constructive recognition of SL(2, q).

Constructive recognition is later described in Section 1.1.8 and a solution for constructive recognition

of SL(2, q) is discussed in more detail in Section 5.2.

1.1.3 Composition trees

Results about computational group theory are given in e.g. [48] and results on computing with

matrix groups and their complexity can be found in e.g. [12, 56]. In the introduction of this chapter

we suggested that composition trees can be used to facilitate computations with matrix groups. In

this section we define composition trees and provide a rough description how this data structure can

be computed. For more information about the composition tree see [61, 72].

Definition 1.9

Let G be a group.

1) A subgroup N ≤G is a normal subgroup if n g := g−1n g ∈ N for all n ∈ N , g ∈G. If N is a

normal subgroup of G, then this is denoted by N ⊴G.

2) If G is not the trivial group {1} and if {1} and G are the only normal subgroups of G, then G

is a simple group.

3) If the quotient group of G by its center Z(G) := {z ∈G | z g = g z for all g ∈G} is a simple

group, then G is a quasi-simple group.

Definition 1.10: [76, Section 11]

Let G be a group. A composition tree of G is a labelled and strict binary tree, where the nodes are

tuples of groups and homomorphisms with the following properties:

1) (G,ϕG) is the root node.

2) If a node (K ,ϕK) is a leaf node, then K is either simple or quasi-simple and ϕK = Id.

3) If a node (K ,ϕK) is not a leaf node, then the group of the left child corresponds to a proper

normal subgroup Kernel(ϕK) =: N ⊴K and the group of the right child is ϕK(K) isomorphic

to K/N .
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Remark 1.11
Given a group K , which corresponds to a node in the composition tree, and a group U , any

homomorphism ϕ : K→U with non-trivial kernel, i.e. Kernel(ϕ) /∈ {{1},K}, yields a left and right

child as N :=Kernel(ϕ)⊴K with N ̸=K and H := im(ϕ)∼=K/Kernel(ϕ) ̸=K . ◀

Composition trees are data structures which can be computed in polynomial time using specific

oracles for any matrix group G ≤ GL(d , q) as stated in Theorem 1.1. Most of the algorithms

for computing this data structure are randomised and an overview article by Eamonn O’Brien

summarises many algorithms involved in more detail [76].

G

(a) Root node G

G
φ1

N1 = ker(φ1) H1 = im(φ1)

(b) “Splitting” G into two groups of smaller size

G
φ1

N1 = ker(φ1) H1 = im(φ1)
φ2

N2 = ker(φ2) H2 = im(φ2)

(c) Complete composition tree of G

G
φ1

N1 = ker(φ1) H1 = im(φ1)
φ2

N2 = ker(φ2) H2 = im(φ2)

(d) Leaf nodes are (quasi-)simple groups

Figure 1.1: Sequence of a computation of a composition tree

Figure 1.1 illustrates the computation of a composition tree for a group G. In Figure 1.1a we

initialise a binary tree with root node G. Then we compute H ≤GL(d ′, q ′) and φ1 : G→H with

non-trivial kernel, i.e. ker(φ1) ̸=G and ker(φ1) ̸= {1G}. Usually we require that computing images

and preimages of a homomorphism φ1 is efficient, that is, we can compute generating sets for

im(φ1) = H1 and ker(φ1) = N1. Moreover, 1 < |N1|, |H1| < |G| since φ1 has a non-trivial kernel.

The “splitting” of G is displayed in Figure 1.1b. We can repeat the same process for the groups N1

and H1. If it is not possible to compute a homomorphism with a non-trivial, proper kernel for a

group, then this node becomes a leaf group. Figure 1.1c illustrates how the full composition tree

of a group G might look like. In Figure 1.1d the leaf groups are highlighted. These are groups for

which every homomorphism has a trivial kernel, i.e. simple groups. In many practical applications
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the algorithm also accepts quasi-simple groups as leaf groups.

An important tool in determining the composition tree for a matrix group G is Aschbacher’s

Theorem [2] which defines nine families of subgroups of the general linear group G such that every

maximal subgroup of G lies in one of these classes and gives structural information about each

family. That means G is either a classical group or else lies in one of these families. In order to

find a composition tree for a matrix group G ≤GL(d , q), this theorem is employed to compute a

homomorphism with non-trivial kernel from G using structural information of the Aschbacher

families.

The problem of determining information about G is then reduced to determining information about

the two child groups in the composition tree. This process can be repeated with the two new groups

and terminates with the leaf node groups, i.e. usually groups closely related to the finite simple

groups. Hence, the efficiency of the composition tree algorithm relies heavily on the efficiency of

the algorithms for the leaf groups.

Remark 1.12
Given a composition tree for a group 〈X 〉=G ≤GL(d , q) we can solve the word problem for G.

More precisely, let H ≤GL(d ′, q ′),φ : G→H with non-trivial kernel, N1 = ker(φ) and H1 = im(φ).

By induction suppose we can solve the word problem efficiently for N1 and H1. Suppose we want to

write g ∈G as a word in X . Since we can solve the word problem in H1 we can write φ(g ) ∈ H1

as a word in φ(X ). Evaluating this word in X outputs g̃ ∈ G with φ( g̃ ) = φ(g ). If g̃ = g , then

we are finished. Otherwise φ(g g̃−1) = 1H and, hence, g g̃−1 ∈ ker(φ). Since we can solve the word

problem in N1, we can write g g̃−1 as a word in a generating set for N1. But now we can write g g̃−1

and g̃ as a word in X and, therefore, also g . ◀

1.1.4 Classification of finite simple groups

Algorithms to handle the leaf groups in a composition tree rely on the classification of the finite

simple groups (CFSG). This classification, concluded in 2004 through the research on quasithin

groups by Aschbacher and Smith [3, 4], states that a finite simple group is one of the following:

1) a cyclic group of prime order,
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2) a finite alternating group of degree at least 5,

3) a finite simple group of Lie type, which includes the classical groups, or

4) one of 26 sporadic simple groups.

While efficient algorithms exist to solve the questions posed in Chapter 1 for finite (quasi-)simple

groups in their natural representations, it is not easy to transfer these results to the leaves of a

composition tree, since a leaf group can arise in a wide variety of different representations. Hence

we need efficient algorithms to answer the following fundamental problems.

Remark 1.13
1) Given a finite simple group, to which finite simple group in the list of all finite simple groups,

is it isomorphic? An algorithm, which takes as input a group G and an isomorphism type of

finite simple groups and returns true if G is isomorphic to a group of this type, is known as a

naming algorithm.

2) Suppose it is known that a group G is isomorphic to a finite simple group T . Determine an

explicit isomorphism from G to T , thereby transferring various tasks to the natural repre-

sentations e.g. the membership and word problem. This is known as constructive recognition.

◀

1.1.5 Representations

Section 2.4 deals with the basics of representation theory and for now we only state one definition

of this section.

Definition 1.14: [68, Definition 1.1.1]

A linear representation of a group G on a vector space V over a field Fq is a group homomorphism

X : G→GL(V ),

i.e. (g1 g2)
X = gX1 gX2 for all g1, g2 ∈G. Amatrix representation of G of degree d is a homomorphism

X : G→GL(d , q).

Groups can be given in a variety of irreducible representations, e.g. special linear groups as in the

next example.
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Example 1.15

Let G := SL(4,5) be the special linear group of 4×4 matrices over F5. A generating set of G is given

by the Steinberg generators [88, Theorem 3.14], i.e.

G =
®

a1 :=




2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1


 , a2 :=




4 0 0 1
4 0 0 0
0 4 0 0
0 0 4 0



¸

.

Therefore, we have matrix representation of G of degree 4 which is in fact irreducible. In Section 2.4

we define this representation as the natural representation. We consider a second group given by a

generating set which is

H =
®

c1 :=




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 1


 , c2 :=




0 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0




¸
≤GL(6,5).

Then H ∼= SL(4,5) =G and there exists an isomorphismX : G→H which is a matrix representation

of G of degree 6. This irreducible representation of SL(4,5) given by X is the exterior square

representation. ◀

In Example 1.15 we have seen that a group can be given by different irreducible representations.

Leaf groups of the composition tree can arise in any irreducible representation of an (almost) simple

group, i.e. if one leaf group of a composition tree is isomorphic to SL(4, q), then the leaf group can,

for example, be given as G or H of Example 1.15. Therefore, it is important to be able to handle

each of these irreducible representations.

1.1.6 Black-box groups and black-box algorithms

It is well-known that groups can be given in a wide variety of different representations. In order to

design algorithms which are applicable to all representations of a specific group, Babai and Szemerédi

[12] introduced the concept of black-box groups. In this thesis we use the definition of black-box

groups given by Seress in [85].
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Definition 1.16: [85, Chapter 2]

A black-box group G is a group whose elements are encoded as strings of length at most N over an

alphabet Q, for some positive integer N and finite set Q. We do not require that group elements

have a unique representation as a string and not all strings need to correspond to group elements.

Group operations are performed by an oracle (the black box). Given strings representing g , h ∈G,

we can

1) compute a string representing g h,

2) compute a string representing g−1 and

3) decide whether g = 1G.

We do not know anything about the elements of black-box groups and cannot make any assumptions

as we have to use oracles for basic group operations. For example computing the order of an element

g ∈G of a black-box group can only be computed by seeking the smallest k ∈N for which g k = 1G.

In contrast, provided a factorisation oracle, computing the order of a matrix is quite efficient using

the pseudo-order algorithm by Celler and Leedham-Green [24]. Nevertheless, algorithms which

can deal with black-box groups are very useful as they are applicable to every representation of a

group even though this comes often at the price of a worse complexity as it is not possible to exploit

properties of a specific representation.

Definition 1.17: [85, Chapter 2]

A black-box group algorithm is an algorithm that does not use specific features of the group repre-

sentation or particulars of how the group operations are performed. It can use only the operations

described in Definition 1.16.

Black-box algorithms are studied in more detail by Seress [85].

1.1.7 Naming algorithms

In Section 1.1.3 we introduced the data structure composition tree and noted in Remark 1.13 the

following two problems for leaf groups:

1) To which finite simple group is a leaf group isomorphic? This is known as naming.
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2) Determine an explicit isomorphism of a leaf group onto its natural representation, thereby

transferring e.g. the membership and word problems to the natural representations. This is

known as constructive recognition.

In general, naming algorithms have better run-times than constructive recognition algorithms. There-

fore, we first apply naming algorithms to leaf groups to obtain the name of the leaf group as in the

classification of finite simple groups, see Section 1.1.4. Afterwards, we call a constructive recognition

algorithm which is specifically designed to handle leaf groups of that name, see Section 1.1.8. In this

section we deal with naming algorithms which are defined as follows.

Definition 1.18: Naming algorithm

Let G ≤GL(d , q) and H a simple group. An algorithm is a naming algorithm for H if it answers for

an input group G the question if G ∼=H .

After a question posed by Neubüser, a first algorithm to decide whether a subgroup of GL(d , q)

contains SL(d , q) was presented by Neumann and Praeger [69]. Note that this algorithm can be

regarded as a naming algorithm since if G ≤GL(d , q) with SL(d , q)≤G and the generators of G

have determinant 1, then G = SL(d , q). In 1998, Niemeyer and Praeger [74] developed algorithms

to answer corresponding questions for the remaining classical groups in their natural representation.

Many naming algorithms of the composition tree are randomised and one-sided Monte Carlo

algorithms.

In Section 1.1.5 we noted that leaf groups can be given in a variety of representations and, therefore,

introduced the concept of black-box groups in Section 1.1.6. The concept of black-box groups was

used by Babai et al. [11] to present an important black-box algorithm for naming.

Theorem 1.19: Black-box naming [11]

Given a black-box group isomorphic to a simple group of Lie type of known characteristic, then the

standard name can be computed using a polynomial-time Monte Carlo algorithm.

Note that Theorem 1.19 requires that the characteristic is known. Liebeck and O’Brien [63]

developed an algorithm to determine the characteristic of a black-box group.



1.1. BACKGROUND AND LITERATURE 15

1.1.8 Constructive recognition

In this section we assume that a leaf group G of the composition tree is given and the name of G

is known, see Section 1.1.7. In this section we deal with 2) of Remark 1.13 which is constructive

recognition and defined as follows.

Definition 1.20: [76, Section 3]

A constructive recognition algorithm takes as input a generating set X of a group G. We assume G

is known to be an irreducible representation and isomorphic to a “golden copy” H of a target group,

usually a simple or quasi-simple group, using naming algorithms, see Section 1.1.7. The “golden

copy” H is a specific irreducible representation. The aim of constructive recognition is to compute

an epimorphism

ϕ : G→H

which allows efficient computations of images and preimages under ϕ.

The problem of constructive recognition has to be solved for all possible leaf groups and, therefore,

for all groups in the classification of finite simple groups, see Section 1.1.4. A constructive recognition

algorithm for alternating groups as black-box groups is given by Beals et al. in [14] and a constructive

recognition algorithm for alternating groups in unknown degree by Leuner et al. in [53]. In [93]

Wilson introduces standard generators for sporadic groups. Wilson and others solve the constructive

membership problem for the Monster group given as a black-box group in [92] and for each

sporadic group O’Brien and Wilson provide a black-box constructive-membership algorithm in [46].

Constructive recognition for exceptional groups has been solved by Liebeck and O’Brien [64].

In this thesis we consider the important family of classical groups which plays a crucial role within

the classification of finite simple groups. The first constructive recognition algorithm for SL(d , q)

in its natural representation was published by Celler and Leedham-Green [23] in 1988 and has

complexity O (d 4q). In 2001 Kantor and Seress [55] published a black-box constructive recognition

algorithm for classical groups, though that algorithm is more theoretical than practical. In [19]

Brooksbank gives another constructive recognition algorithm for classical groups in their natural

representation having complexity O (d 5 log2(q)). This algorithm uses an SL(2, q) oracle. Leedham-

Green and O’Brien [59] introduced a randomised constructive recognition algorithm for classical
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groups in odd characteristic in 2009 and Dietrich, Leedham-Green, Lübeck and O’Brien (DLLO)

[32] for even characteristic in 2013. Their algorithms were also adapted to classical groups given as

black-box groups in [33]. The DLLO algorithm is currently used in application for the composition

tree in Magma [16].

Remark 1.21
Note that constructive recognition is extremely helpful and important for transferring information

from “golden copies” into non-natural irreducible representations. For example the computation of

maximal subgroups of simple groups is extremely challenging. Computing all maximal subgroups

of the monster group in a “golden copy” was only finished with the work of Dietrich, Lee and

Popiel [31] in 2023. Using constructive recognition the maximal subgroups of a non-“golden

copy” irreducible representation of a simple group can be computed by setting up an isomorphism

between a “golden copy” and a given irreducible representation of a simple group. We then write

the generators of the maximal subgroup as words in the “golden copy” and evaluate these words

in the given irreducible representation. The same procedure can be used for computing conjugacy

classes. ◀

1.1.9 MSLP

In the introduction of this chapter we presented the word problem which, given G = 〈X 〉 and g ∈G,

asks to write g as a word in X . An important tool for this problem are straight line programs (SLP)

which can be used to encode a word in X and additionally to write words as products of precomputed

subwords resulting in an expression which is less computationally intensive to evaluate. Babai and

Szemeredi [12] prove that every element of G can be encoded in an SLP for any generating set X of

G of length at most O (log2(|G|)). An extended version of SLPs are memory straight line programs

(MSLP) which are described in Section 2.6.

1.1.10 Rewriting procedures

In Section 1.1.8 we described the problem of constructive recognition for a groupG in Definition 1.20.

Let G be isomorphic to the “golden copy” H . The problem of computing an efficient isomorphism

ϕ : G→H is often solved based on the following three steps:
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1) Specify a computationally useful set S ⊆H of generators, called standard generators.

2) Express S ′ := ϕ−1(S)⊆G as words in X (without the knowledge of ϕ).

3) Set up an isomorphism ϕ : G→H by mapping S ′ to S.

After these three steps, we have only constructed a partial isomorphism from G to H which is

given by the images and preimages of the standard generators S and S ′. To finalise this map, efficient

algorithms for the following two tasks are required:

a) Given h ∈H , write h as a word in S.

b) Given g ∈G, write g as a word in S ′.

Thus we have to solve the word problem both in G and in H . In Section 1.1.9 we introduced

SLPs and MSLPs to encode words in generating sets. Given h ∈H , we write h as a word in S, i.e.

h = h1h2 . . . hℓ with hi ∈ S ∪ S−1, and encode this word in an SLP S. If we evaluate S in S this

outputs h. Moreover,

ϕ−1(h) = ϕ−1(h1h2 . . . hℓ) = ϕ
−1(h1)ϕ

−1(h2) . . .ϕ
−1(hℓ)

and ϕ−1(hi ) ∈ S ′ ∪ (S ′)−1. This means by knowing the preimage S ′ of S and having an efficient

algorithm for writing h as a word in S , we can compute ϕ−1(h) by evaluating the same SLP S in S ′.

Analogously, for g ∈G we can compute ϕ(g ) by writing g as a word in S ′.

The word problem for classical groups in their natural representation, i.e. a), has been solved by

Elliot Costi [30] and by the author in his Bachelor’s and Master’s thesis [83, 84]. The word problem

for classical groups given by b) has been solved by Csaba Schneider and a publication is in progress.

1.1.11 Presentations

Since many of the algorithms for the composition tree are randomised, it is important to have tools

to check whether results of randomised algorithms are correct. The verification process, i.e. the

process of checking whether the output of a randomised algorithm is correct, for groups of the

composition tree is often done using presentations which can be defined as follows.
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Definition 1.22: [48]

1) Let G be a group and let R⊆G. Then 〈R〉G = 〈r g | r ∈ R, g ∈G〉 is the normal subgroup of

G generated by R.

2) Let X be a set, F a free group over X and R⊆ F . Then let

G = 〈X | R〉 := F /〈R〉F .

Then we say G is generated by X subject to the defining relations R. More generally, an

arbitrary group G is called finitely presented if there are finite sets X and R ⊆ F such that

G = 〈X | R〉. In that case {X | R} is a finite presentation for G.

Example 1.23

The cyclic group Cn of order n can be finitely represented as Cn = 〈a | an〉. Suppose two groups

G1 = 〈(1,2,3)〉 and G2 = 〈(1,2)〉 are given and we want to use the presentation to check whether one

of the given groups is isomorphic to a cyclic group of order 3 and given by a cyclic generator. The

presentation 〈a | an〉 indicates that we require a generating set of size 1 as C3 is only described by

a. This is the case for G1 and G2 as G1 is generated by (1,2,3) and G2 is generated by (1,2). The

second task is to verify the relations given by the presentation which is a3 = 1 for the presentation

of C3. For G1 we identify a with (1,2,3) and compute 1 = a3 = (1,2,3)3 = ( ) and, therefore, we

know that there exists a unique epimorphism from C3 to G1, i.e. G1 is isomorphic to a quotient of

C3. Moreover, G1 is isomorphic to C3 since G1 and C3 have size 3 and G1 is generated by one cyclic

generator. For G2 we identify a with (1,2) and compute 1= a3 = (1,2)3 = (1,2) and, therefore, we

know that G2 is not a cyclic group of order 3 or that (1,2) is not a cyclic generator of G2. ◀

Now, if 〈X | R〉 is simple, then verifying presentations is enough to prove that groups are isomorphic

as Kernel(ϕ) = 〈1〉 for any non-trivial epimorphism ϕ. Therefore, we can use a presentation

G = 〈X | R〉 of a simple group to verify that a group H is isomorphic to G and that H is given with

a specific generating set which satisfies the relations R.

In order to verify presentations of the leaf groups, we are not interested in any presentation but rather

short presentations. Short means that the length of the presentation is in O (log2(|G|)). Presentations
for leaf groups are given by Babai et al. [6], Hulpke and Seress [50] and Suzuki [90] which can be
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summarised in the next theorem.

Theorem 1.24: [76, Theorem 10.3]

For every finite simple group except 2G2(q) there is a known short presentation.

Another important result for presentations of permutation groups is given Conder, Leedham-Green

and O’Brien in [17].

1.2 Motivation

The availability of efficient constructive recognition algorithms for the leaf groups of the composition

tree has an enormous impact on the complexity of computations involving composition trees. Since

classical groups appear frequently as leaf groups, constructive recognition of classical groups has a

huge impact on the performance of the composition tree. Let G be a classical group and let H be

the natural representation of G. As described in Section 1.1.8 the aim of constructive recognition is

to compute an epimorphism

ϕ : G→H

which allows efficient computations of images and preimages under ϕ. In this thesis we are dealing

with classical groups 〈X 〉=G =CL(d , q) in their natural representation and, hence, the problem

of constructive recognition reduces to the task of computing a base change matrixL ∈GL(d , q)

and writing a specific set S ⊂ G as words in X such that SL are standard generators of GL as in

Section 1.1.8.

The current state-of-the-art solution for randomised constructive recognition of classical groups

in their natural representation by Leedham-Green and O’Brien in odd characteristic [59] and by

Dietrich, Leedham-Green, Lübeck and O’Brien in even characteristic [32] relies on centralisers of

involutions and it is difficult to analyse its complexity. Let ζ denote an upper bound on the number

of field operations for computing a random element and let X(q) denote an upper bound on the

number of field operations for solving the discrete logarithm. In [59] it is shown that the complexity

measured in field operations of their algorithm for constructive recognition of a classical group
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CL(d , q) for q odd is at least

O (d (ζ + d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+X(q)))

if CL(d , q) is not an orthogonal group of minus type and

O (d (ζ + d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+X(q))+X(q2))

if CL(d , q) is an orthogonal group of minus type. Based on new publications for special linear

groups [35] and for unitary groups [41] the complexity can be improved in these cases and is at least

O (log(d )(ζ + d 3 log(d )+ d 2 log(d ) log(log(d )) log(q))+ dX(q)).

In this thesis we consider a new approach for a randomised constructive recognition algorithm for

classical groups based on some preliminary ideas by Ákos Seress and Max Neunhöffer for the special

linear group. As the efficiency of the composition tree relies heavily on efficient algorithms for leaf

groups and classical groups appear repeatedly, the goal is to design an algorithm for constructive

recognition of classical groups in their natural representation and prove that the complexity of the

algorithm is even better than the assumed complexity of the current state-of-the-art algorithms in

[32, 59].

1.3 Summary of the main results

Here, we describe the subalgorithms of the constructive algorithm of this thesis only for special linear

groups 〈X 〉 = SL(d , q) and a detailed version for the other classical groups is given in Chapter 3.

We start by specifying a computationally useful set S of generators for SL(d , q) in its natural

representation, called standard generators. Their careful choice ensures that the number of required

group operations during the algorithm is small. Subsequently, we express S as words in X .

The constructive recognition algorithm consists of different subalgorithms.

(1) GoingDown algorithm: The aim of this step is to find a subgroup U ≤G with U ∼= SL(2, q).

In order to do this, a chain of subgroups is constructed
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SL(2, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G

where di ≤ 4⌈log(di−1)⌉. To descend from Ui to Ui+1 the algorithm seeks a random duo of

elements of Ui having a large common 1-eigenspace (called stingray duos) and takes Ui+1 as the

group generated by the duo. To analyse such an algorithm, we must determine the probability

of finding a stingray duo and the probability that a stingray duo generates a group isomorphic

to SL(di+1, q). Significant results for these questions have already been published [39, 42, 75].

Note that this GoingDown algorithm takes significantly fewer than log(d ) steps to reach a

base case group.

(2) BaseCase algorithm: An efficient algorithm for constructive recognition of SL(2, q) is given by

Conder, Leedham-Green and O’Brien in [27] with outstanding performance. This algorithm

computes standard generators for a group isomorphic to SL(2, q).

(3) GoingUp algorithm: Once the standard generators for U ∼= SL(2, q) have been found, they

must be extended to a standard generating set for the original group G. For this another basic

step is applied. Let H1 ≤G with H1
∼= SL(n, q) for n < d and assume that standard generators

of H1 are known. The basic step computes standard generators of a subgroup H2 ≤G with

H2
∼= SL(min{2n− 1, d}, q). The algorithm we use for this step is original and has not been

published previously.

The standard generators of G are expressed as words in X by MSLPs throughout the algorithm.

Since some words in the standard generators are not evaluated directly during the constructive

recognition algorithms, it is important to perform a precise complexity analysis of the resulting

MSLPs and prove that their length is bounded by O (d log(q)).

The main result of this thesis is given in the following theorem.

Theorem 1.25

Let 〈X 〉=G ∈ {SL(d , q), Sp(d , q), SU(d , q),Ω(d , q)}, except Sp(d , q) for q and d even, be a classical

group in its natural representation and ε ∈ (0,1). There is a one-sided Monte Carlo algorithm which,

given input G = 〈X 〉 and ε, outputs with probability at least 1− ε an MSLP S and base change

matrixL such that S evaluates from XL to the standard generators of GL .
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Theorem 1.26

Suppose Conjecture 10.33 is true. The complexity of the algorithm stated in Theorem 1.25 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q))

where ζ denotes an upper bound on the number of field operations required for computing a

random element,Y(q) denotes an upper bound on the number of field operations for constructively

recognising a base case group as in Definition 3.2 and Z(q) denotes an upper bound on the required

number of field operations for the final step as in Remark 3.7. For a unitary or orthogonal group

the complexity of Algorithm StandardGenerators [Alg. 3] as stated in Theorem 3.10 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q)+ log(d )V(q))

where V(q) is an upper bound on the number of field operations for computing a square root.

All algorithms of this thesis have been implemented in GAP [37] and are available at [82].

1.4 Outline of thesis

This thesis is structured as follows: In Chapter 2 we introduce many notations used for the remainder

of this thesis and summarise well-known preliminary results about classical groups, representation

theory, complexity theory and MSLPs. In the section about complexity we also restate some

important complexity results of algorithms used in this thesis.

In Chapter 3 we describe the fundamental ideas of the constructive recognition algorithm of this

thesis for all classical groups except Sp(d , q) for q and d even. The chapter is divided into four

sections where Section 3.1 deals with the GoingDown algorithm, Section 3.2 with the BaseCase

algorithm and Section 3.3 with the GoingUp algorithm as outlined in Section 1.3. In Section 3.4

the GoingDown, BaseCase and GoingUp algorithm are combined into one single algorithm

StandardGenerators which is the constructive recognition algorithm of this thesis.

In Chapter 4 important elements for the GoingDown algorithm are introduced. Moreover, we
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design algorithms for computing theses elements and summarise important results regarding their

proportion.

In Chapter 5 the constructive recognition algorithm is discussed in detail for special linear groups. In

this chapter we also state some small interesting variants of the presented algorithms. Moreover, using

a running example the functionality of the algorithms is illustrated. The constructive recognition

algorithm is discussed for symplectic groups in odd characteristic in Chapter 6, for unitary groups in

Chapter 7 and for orthogonal groups in Chapter 8. We mostly focus on the differences between the

special linear group and the other classical groups in these chapters and do not restate every detail.

In Chapter 9 an alternative GoingUp algorithm is presented for all classical groups in odd character-

istic. This GoingUp algorithm is based on involutions and the output MSLPs are shorter than the

output MSLPs of the GoingUp algorithms presented in Chapter 5 to Chapter 8. Even though we

do not perform a full complexity analysis in this thesis, we suspect that the shorter MSLPs of the

GoingUp algorithm in Chapter 9 come at the price of a worse runtime complexity.

In Chapter 10 complexity results about the algorithms of this thesis are proven. We prove the

complexity of the GoingDown algorithm and discuss complexity results of the base case algorithms

from the literature. For the GoingUp algorithm we propose a conjecture based on practical results

and prove further complexity results based on this conjecture.

The algorithms of this thesis have been implemented by the author and are available at [82]. In

Chapter 11 we discuss details of this implementation and present run-time comparisons of the

constructive recognition of this thesis and the state-of-the-art algorithm [32, 59].

Lastly, further interesting projects based on the results of this thesis are presented in Chapter 12.
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Chapter 2

Preliminaries

This chapter introduces basic concepts and defines notation. The first section focuses on well-

known fundamentals of algebra, especially linear algebra. In the second section we define the

classical groups over finite fields with bilinear forms. For this we first treat bilinear forms and

their properties. The third section deals with particular elements in the classical groups, namely

transvections and Siegel transformations. They play a major role in the generation of classical groups,

solving the word problem and the algorithms of this thesis. The fourth section introduces basics of

representation theory which are used to define the natural representation of classical groups. The

last two sections focus less on mathematical concepts and rather on technical implementation. In

the fifth section concepts of complexity analysis, e.g. Landau symbols, are defined and well-known

important algorithms and their complexity results are summarised. The last section explains an

efficient approach to encode words in terms of generators. This method is used in this thesis and

results about properties, e.g. the length of words, are proven in Chapter 10.

All concepts discussed in this chapter are well-known and can be found in sources such as [48, 52,

68, 91]. The treatment presented here is based on these references.

2.1 Basics and notation

We start this section by introducing notations for well-known concepts.

25



26 CHAPTER 2. PRELIMINARIES

Definition 2.1

Let V be a d -dimensional F-vector space.

1) End(V ) := {ϕ | ϕ : V →V , ϕ is a vector space homomorphism},
2) GL(V ) := {ϕ | ϕ ∈ End(V ) and bijective},
3) SL(V ) := {ϕ | ϕ ∈GL(V ) and det(ϕ) = 1},
4) GL(d , q) := {a ∈ Fd×d

q | a is invertible},
5) SL(d , q) := {a ∈ Fd×d

q | a is invertible and det(a) = 1}.

Remark 2.2
1) Notice that GL(d , q) is well-defined since all finite fields of order q = p f are isomorphic.

2) GL(V ) and SL(V ) are groups with respect to the composition of maps. GL(d , q) and SL(d , q)

are groups with respect to matrix multiplication.

3) Note that in this thesis all groups act from the right which means that we use row vectors

v ∈ Fd
q and thus have v g ∈ Fd

q for g ∈GL(d , q). Representing elements of Fd
q as row vectors

and acting from the right aligns with the convention commonly used in software programs

e.g. Magma [16] and GAP [37]. ◀

There is an important well-known connection between these groups.

Theorem 2.3

Let V be a d -dimensional F-vector space. LetB ∈V d be a basis of V . The map

End(V )→ Fd×d , ϕ 7→ BϕB

is an algebra isomorphism where BϕB is the matrix representation of ϕ with respect to the basisB .

Corollary 2.4

Let V be a d -dimensional F-vector space. LetB ∈V d be a basis of V . Then

GL(V )→GL(d , q), ϕ 7→ BϕB

is an isomorphism.

We continue this section by fixing some basic notations for the remainder of this thesis.

• Groups are denoted by G, H , U where U is generally a subgroup of G or H . Correspondingly,
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we use g , h, u as group elements and in general g ∈G, h ∈H and u ∈U but occasionally also

g , h, u ∈G.

• The set of all natural numbers is denoted by N= {1,2,3, . . .}, the set of all primes by P and

variables i , j , k , r denote natural numbers.

• F (or Fq) is a finite field of characteristic p ∈P and size q = p f for f ∈N. We will frequently

assume char(F) ̸= 2. We denote by Fp the sub-field of size p and by (ω1, . . . ,ω f ) a basis of Fq

as an Fp -vector space. If F admits a unique automorphism of order 2, then it is denoted by

: F→ F, λ 7→ λ. We use ı, ȷ,λ to denote elements of F. The algebraic closure of F is denoted

by F.

• Both V and W are finite dimensional F-vector spaces and often W ≤ V . In general, V

denotes a d -dimensional vector space. A vector space homomorphism is denoted by ϕ and

ϕ
W

is the restriction of ϕ on W ≤ V . We use v, w, ν , b , e ∈ V to denote vectors, while

B = (b1, . . . , bd ) denotes a basis of V and (e1, . . . , ed ) is the standard basis of Fd
q . A base change

matrix is denoted by L ∈ GL(d , q) and BL =B ′ for bases B and B ′ of Fd
q . Moreover,

V ∗ = {ϑ : V → F | ϑ is a homomorphism} is the dual space of V .

• By SX(d , q) we denote the special linear group SL(d , q), the symplectic group Sp(d , q), the

special unitary group SU(d , q) or the special orthogonal group SO(d , q). We use CL(d , q) for

a classical group, i.e. SL(d , q), Sp(d , q), SU(d , q) or the omega group Ω(d , q). In general, G =

CL(d , q) and U ≤G with U ∼=CL(n, q) for n < d . The transpose of a ∈GL(d , q) is denoted

by aTr and the identity matrix by Id ∈ GL(d , q). Matrices are denoted by a, c ∈ GL(d , q)

where c is used as a conjugating element in many cases. Finite generating sets of a matrix group

G are usually denoted by X ,Y , so 〈X 〉=G ≤GL(d , q). Let Ii , j be the matrix which satisfies

in the basisB that (Ii , j )i j = 1 and all other entries of Ii , j are equal to 0. For i , j ∈ {1, . . . , d}
with i ̸= j and λ ∈ F let Ei , j (λ) ∈GL(V ) be the group element Id + Ii , j (λ) with respect to the

basisB . If a matrix group G is given with respect to a basisB andL is a base change matrix,

then GL denotes G with respect to the basisBL .

• x denotes an indeterminate, P ∈ F[x] a polynomial and χa the characteristic polynomial of

a ∈GL(d , q).

Typically, G is a subgroup of GL(d , q). In the following we assume that a finite generating set



28 CHAPTER 2. PRELIMINARIES

X ⊆ GL(d , q) of G is known, i.e. G = 〈X 〉, and that V = Fd
q . Clearly G acts on V by right

multiplication.

The following lemma is well-known as a dimension formula for subspaces of vector spaces.

Lemma 2.5

Let W1,W2 be two subspaces of a finite-dimensional vector space V . Then

dim(W1)+ dim(W2) = dim(W1+W2)+ dim(W1 ∩W2).

Proof. [91, p. 13]

Definition 2.6

Let G ≤GL(d , q) and V = Fd
q . For g ∈G let Fix(g ) := {v ∈V | v g = v} denote its fixed space and

for a subgroup U of G we write Fix(U ) for the subspace of vectors which are fixed by all elements

of U , i.e. Fix(U ) := {v ∈V | v u = v for all u ∈U }.

Definition 2.7

Let (b1, . . . , bd ) be a basis of V and 1≤ n ≤ d . Then we define

1) Vn := 〈b1, b2, . . . , bn〉 and
2) Fd−n := 〈bn+1, . . . , bd 〉.

2.2 Forms and classical groups

This section introduces basic definitions and notations that are important in all subsequent chapters.

The main objects we consider in this thesis are the finite classical groups which can be defined using

forms on vector spaces. The definitions and results of this chapter are well-known, for example in

[45, 91], and the treatment presented here is based on these references.

2.2.1 Forms

First, we give some definitions that are needed later to define and describe the classical groups. For

the remainder of this chapter, F denotes a finite field.
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Definition 2.8

Let V be an F-vector space.

1) A map Φ : V ×V → F, (v, w) 7→ Φ(v, w) is a bilinear form on V if Φ is linear in each compo-

nent, that is,

(i) Φ(ıv1+ ȷv2, w) = ı ·Φ(v1, w)+ ȷ ·Φ(v2, w) for all ı, ȷ ∈ F and v1, v2, w ∈V and

(i i) Φ(v, ıw1+ ȷw2) = ı ·Φ(v, w1)+ ȷ ·Φ(v, w2) for all ı, ȷ ∈ F and v, w1, w2 ∈V .

2) A map Q : V → F is a quadratic form if there is an associated bilinear form ΦQ , called the

polar form of Q, such that

(i) Q(λv) = λ2Q(v) for all λ ∈ F, v ∈V and

(i i) ΦQ(v, w) =Q(v +w)−Q(v)−Q(w) for all v, w ∈V .

Remark 2.9
From now on, we refer to a bilinear form or a quadratic form only as a form. ◀

We consider some connections between quadratic forms and the corresponding polar form.

Remark 2.10
Let Q be a quadratic form on an F-vector space V and ΦQ the polar form of Q.

1) ΦQ is uniquely determined by condition (i i) of Definition 2.8. Moreover, ΦQ is symmetric

since for all v, w ∈V we have

ΦQ(v, w) =Q(v +w)−Q(v)−Q(w) =Q(w + v)−Q(w)−Q(v) = ΦQ(w, v).

2) Let char(F) ̸= 2 and let Φ be a symmetric form on V . Define QΦ : V → F, v 7→ 2−1Φ(v, v).

We verify that QΦ is a quadratic form with polar form Φ.

(i) QΦ(λv) = 2−1Φ(λv,λv) = λ22−1Φ(v, v) = λ2QΦ(v) for all λ ∈ F, v ∈V .

(i i) Let v, w ∈V , then

QΦ(v +w)−QΦ(v)−QΦ(w)

= 2−1(Φ(v +w, v +w)−Φ(v, v)−Φ(w, w))

= 2−1(Φ(v, v)+Φ(w, w)+ 2Φ(v, w)−Φ(v, v)−Φ(w, w))

= 2−12Φ(v, w) = Φ(v, w).



30 CHAPTER 2. PRELIMINARIES

Hence, QΦ defines a quadratic form.

Note that division by 2 occurs in the definition of QΦ and, therefore, QΦ is undefined in

characteristic 2. Hence, we cannot recover Q from ΦQ this way in characteristic 2. ◀

To define orthogonal groups in arbitrary characteristic one needs quadratic forms. But due to Remark

2.10, we can instead use bilinear forms in odd characteristic, which is what we do in Section 2.2.2.

However, defining classical groups requires forms with additional properties.

Definition 2.11

Let V be an F-vector space equipped with a bilinear form Φ or a quadratic form Q.

1) Φ is non-singular or non-degenerate if for each v ∈V \{0} there is a w ∈V with Φ(v, w) ̸= 0.

Otherwise, it is degenerate.

Q is non-degenerate if the polar form of Q is non-degenerate. Otherwise, Q is degenerate.

2) Φ is symmetric if Φ(v, w) = Φ(w, v) for all v, w ∈V .

3) Φ is skew-symmetric if Φ(v, w) =−Φ(w, v) for all v, w ∈V .

4) Φ is alternating if Φ(v, v) = 0 for all v ∈V .

5) A non-singular and alternating bilinear form is symplectic.

6) Let F be a field admitting a field automorphism of order 2.

A map Φ : V ×V → F, (v, w) 7→ Φ(v, w) is a Hermitian form on V with respect to if

(i) Φ(ıv1+ ȷv2, w) = ı ·Φ(v1, w)+ ȷ ·Φ(v2, w) for all ı, ȷ ∈ F and v1, v2, w ∈V and

(i i) Φ(v, w) = Φ(w, v) for all v, w ∈V .

Analogous to 1) a Hermitian form Φ is non-singular if for each v ∈V \{0} there is a w ∈V

with Φ(v, w) ̸= 0. A non-singular and Hermitian form is a unitary form.

7) If char(F) ̸= 2, then a non-singular and symmetric bilinear form is orthogonal.

Remark 2.12
1) An alternating form is skew-symmetric.

2) If char(F) is odd or zero, then a skew-symmetric form is also alternating. This is not generally

true if char(F) is even. ◀

To work with classical groups, we need to introduce a few additional definitions that extend those in
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Definition 2.11.

Definition 2.13

Let V be an F-vector space equipped with a symmetric, skew-symmetric or unitary form Φ or

equipped with a polar form Φ of a quadratic form Q on V .

1) v, w ∈V are orthogonal with respect to Φ if Φ(v, w) = 0. We denote this case by v ⊥ w.

2) Let A⊆V . Then

A⊥ := {v ∈V | Φ(v, w) = 0 for all w ∈A}
is the orthogonal complement of A. We call rad(Φ) =V ⊥ the radical of V and for a quadratic

form rad(Q) = {v ∈ rad(Φ) |Q(v) = 0} the radical of Q.

3) v ∈V \{0} is isotropic if Φ(v, v) = 0.

4) v ∈V \{0} is singular if Q(v) = 0.

5) W ≤V is non-singular if Φ
W

is non-singular.

6) W ≤V is totally isotropic if Φ
W
= 0.

7) W ≤V is totally singular if Q(w) = 0 for all w ∈W .

8) W ≤ V is a maximally totally isotropic (respectively maximally totally singular) subspace of

V if W is totally isotropic (totally singular) and there is no proper totally isotropic (totally

singular) subspace W ′ of V containing W .

9) W ≤V is anisotropic if Φ(w, w) ̸= 0 for all w ∈W \{0}.
10) W ≤V is non-degenerate if W ∩W ⊥ = {0}.

Lemma 2.14

Let V be a finite-dimensional F-vector space and let Φ be a non-singular symmetric, skew-symmetric

or unitary form on V . Let W ≤V .

1) (W ⊥)⊥ =W .

2) dim(W )+ dim(W ⊥) = dim(V ).

3) If W ∩W ⊥ = {0}, then V =W ⊕W ⊥.

Remark 2.15
Let W1,W2 ≤ V . If W1 ⊕W2 = V and Φ(w1, w2) = 0 for all w1 ∈ W1, w2 ∈ W2, then we write

W1 ⊥W2. ◀
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2.2.2 Classical groups

In this chapter classical groups are defined based on forms. There are special endomorphisms on an

F-vector space equipped with a bilinear or quadratic form, namely isometries, which are used to

define the classical groups.

Definition 2.16

Let V be an F-vector space equipped with a form Φ or equipped with a quadratic form Q. A map

ϕ ∈ End(V ) is an isometry from V to V if Φ(vϕ, wϕ) = Φ(v, w) for all v, w ∈V or Q(vϕ) =Q(v)

for all v ∈V .

At this point it is possible to define the classical groups.

Definition 2.17

Let V be a d -dimensional Fq -vector space equipped with a non-singular form Φ or non-degenerate

quadratic form Q.

1) If Φ is symplectic, then the group of all bijective isometries of (V ,Φ) is the symplectic group

and denoted by Sp(V ,Φ).

2) If Φ is unitary, then the group of all bijective isometries of (V ,Φ) is the unitary group and

denoted by U(V ,Φ). The subgroup U(V ,Φ)∩ SL(V ) is the special unitary group and denoted

by SU(V ,Φ).

3) The group of all bijective isometries of (V ,Q) is the orthogonal group and denoted by O(V ,Φ).

The subgroup O(V ,Φ)∩ SL(V ) is the special orthogonal group, denoted by SO(V ,Φ).

The derived subgroup of SO(V ,Φ) is denoted by Ω(V ,Φ) := SO(V ,Φ)′.

If it is clear from the context which form is intended, then we use Sp(V ), U(V ), SU(V ), O(V ),

SO(V ) and Ω(V ) instead of Sp(V ,Φ), U(V ,Φ), SU(V ,Φ), O(V ,Φ), SO(V ,Φ) and Ω(V ,Φ).

Remark 2.18
1) For symplectic groups it is shown that Sp(V )⊆ SL(V ) and, thus, Sp(V ) = Sp(V )∩ SL(V ) in

[91, Corollary 8.6].

2) Note that if char(F) ̸= 2, then the orthogonal group is the group of isometries of the non-

singular symmetric bilinear form ΦQ . Therefore, we can also consider an orthogonal form,

see Remark 2.10.
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3) Note that the symplectic, unitary and orthogonal groups are independent of the chosen

bilinear or quadratic form [91, p. 138f.].

4) In the following CL(V ) denotes one of the classical groups SL(V ), Sp(V ), SU(V ) or Ω(V ).

There are three types of orthogonal groups which are defined in more detail in this chapter.

Nevertheless, if a result is independent of the type of the underlying orthogonal form, then

Ω(V ) and CL(V ) are used. ◀

We consider three cases for the orthogonal group with the Witt index being an important distin-

guishing feature.

Definition 2.19

Let V be an F-vector space with a non-degenerate symplectic or unitary form Φ or a non-degenerate

quadratic form Q in which case Φ denotes the polar form of Q. A pair of vectors (v, w) ∈V 2 is

a hyperbolic pair if dim(〈v, w〉) = 2, Φ(v, w) = 1 and Φ(v, v) = Φ(w, w) = 0. The subspace 〈v, w〉
spanned by a hyperbolic pair (v, w) is a hyperbolic plane.

Definition 2.20

Let V be an F-vector space with a non-singular symplectic or unitary form Φ or a quadratic form Q,

in which case Φ is the polar form of Q. The dimension of a maximally totally isotropic subspace of

V or, in case of a quadratic form, of a maximally totally singular subspace of V , is the Witt index of

(V ,Φ) or (V ,Q).

Theorem 2.21

Let Φ be a symplectic bilinear form on an F-vector space V with dim(V ) ≥ 2. Then V admits a

basisB = (e1, . . . , em, fm, . . . , f1) where 〈ei , fi〉 are hyperbolic planes for all i ∈ {1, . . . , m} such that

V = 〈e1, f1〉 ⊥ . . .⊥ 〈em, fm〉

and V has Witt index m.

Proof. [91, p. 69].



34 CHAPTER 2. PRELIMINARIES

Theorem 2.22

Let Φ be a unitary form on an F-vector space V with dim(V ) ≥ 2. There exist vectors

e1, . . . , em, f1, . . . , fm ∈V such that

V = 〈e1, f1〉 ⊥ . . .⊥ 〈em, fm〉 ⊥V0

where 〈ei , fi〉 are hyperbolic planes for all 1 ≤ i ≤ m and V0 ≤V is anisotropic, such that V has

Witt index m. If V has Witt index m, then one of the following two cases holds:

1) dim(V0) = 0 and dim(V ) = 2m or

2) dim(V0) = 1 and dim(V ) = 2m+ 1. For V0 = 〈w〉 we can assume Φ(w, w) = 1.

Proof. [91, p. 116].

Remark 2.23
Even though Theorem 2.22 proves that there are two different cases for unitary groups, the type of

a unitary group is uniquely determined by the dimension of V . If the dimension is even, then only

case 1) is possible and if the dimension is odd, then only case 2) is possible. Therefore, we do not

need to distinguish them by different notations. Nevertheless, in Chapter 7 we have to distinguish

between both cases from an algorithmic point-of-view. ◀

Theorem 2.24

Let char(F) be odd and let Φ be an orthogonal form on an F-vector space V . Then there exist vectors

e1, . . . , em, f1, . . . , fm ∈V such that

V = 〈e1, f1〉 ⊥ . . .⊥ 〈em, fm〉 ⊥V0

where 〈ei , fi〉 is a hyperbolic plane and V0 ≤V is anisotropic, such that V has Witt index m and

exactly one of the following holds:

1) dim(V0) = 0 and dim(V ) = 2m.

2) dim(V0) = 1 and dim(V ) = 2m+ 1. For V0 = 〈w〉 we can assume that Φ(w, w) =−2−1.

3) dim(V0) = 2 and dim(V ) = 2m+ 2. For V0 = 〈w1, w2〉 we can assume that Φ(w1, w1) = −2,
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Φ(w1, w2) = 0 and Φ(w2, w2) = 2ω where ω is a primitive element of F.

Proof. [91, pp. 138–139].

We introduce names for the different cases.

Definition 2.25

Let Φ be an orthogonal form on an F-vector space V . Let

V = 〈v1, w1〉 ⊥ . . .⊥ 〈vm, wm〉 ⊥V0

as in Theorem 2.24. We define the following types of orthogonal groups:

1) If dim(V0) = 0, then we denote the group of all bijective isometries of (V ,Φ) by O+(V ,Φ) and

say that the group is an orthogonal group of plus type and the form Φ is hyperbolic. Moreover,

we denote S(V ,F,Φ) by SO+(V ,Φ) and say that the group is a special orthogonal group of plus

type. With respect to the basis introduced in Theorem 2.24, the group O+(V ,Φ) is denoted by

O+(2m, q) and SO+(V ,Φ) by SO+(2m, q).

2) If dim(V0) = 1, then we denote the group of all bijective isometries of (V ,Φ) by O◦(V ,Φ) and

say that the group is an orthogonal group of circle type and the form Φ is parabolic. Moreover,

we denote S(V ,F,Φ) by SO◦(V ,Φ) and say that the group is a special orthogonal group of circle

type. With respect to the basis introduced in Theorem 2.24, the group O◦(V ,Φ) is denoted by

O◦(2m+ 1, q) and SO◦(V ,Φ) by SO◦(2m+ 1, q).

3) If dim(V0) = 2, then we denote the group of all bijective isometries of (V ,Φ) by O−(V ,Φ) and

say that the group is an orthogonal group of minus type and the form Φ is elliptic. Moreover, we

denote S(V ,F,Φ) by SO−(V ,Φ) and say that the group is a special orthogonal group of minus

type. With respect to the basis introduced in Theorem 2.24, the group O−(V ,Φ) is denoted by

O−(2m+ 2, q) and SO−(V ,Φ) by SO−(2m+ 2, q).

Remark 2.26
Based on Definition 2.17 and 2.25 we define Ω+(d , q) := SO+(d , q)′, Ω◦(d , q) := SO◦(d , q)′ and

Ω−(d , q) := SO−(d , q)′. ◀
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Definition 2.27

Let V be a d -dimensional Fq -vector space equipped with a non-singular form Φ or non-degenerate

quadratic form Q with polar form Φ. Moreover, letB = (b1, . . . , bd ) be a basis of V . Then

b := (Φ(bi , b j ))i , j=1,...,d

is the Gram-matrix of Φ with respect toB .

Remark 2.28
The classical groups except orthogonal groups in characteristic 2 can be defined in terms of a Gram-

matrix b of the form as in Definition 2.17 with respect to the corresponding basis of Theorem

2.21, 2.22 and 2.24. These groups can be written as SX(d , q) = {a ∈ SL(d , q) | abaTr = b} if
X ∈ {p,O+,O◦,O−} and SU(d , q) = {a ∈ SL(d , q2) | aba∗ = b} where a∗ = (aTr) = (a)Tr and

• if X= p, then Sp(d , q) SU(d , q) SO(d , q)

b :=




1
. . .

1

−1
. . .

−1




with respect to a basis (e1, . . . , em, fm, . . . , f1) as in Theorem 2.21.

• if X=U, then

b :=




1
. . .

1

[1]
1

. . .

1




with respect to a basis (e1, . . . , em, [w, ] fm, . . . , f1) as in Theorem 2.22 where [1] and [w, ] are

omitted if d is even.
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• if X=O+ or X=O◦, then

b :=




1
. . .

1

[−2−1]
1

. . .

1




with respect to a basis (e1, . . . , em, [w, ] fm, . . . , f1) as in Theorem 2.24 where [−2−1] and [w, ]

are omitted if d is even.

• if X=O−, then

b :=




1
. . .

1

−2 0
0 2ω

1
. . .

1




with respect to a basis (e1, . . . , em, w1, w2, fm, . . . , f1) as in Theorem 2.24 where ω is a primitive

element of Fq . ◀

2.3 Transvections and Siegel transformations

Transvections and Siegel transformations are certain elements in classical groups which play a major

role in solving different problems algorithmically. These elements have a simple structure in the

natural representation, so operations with them are easy to follow. Moreover, it is well known that

these elements generate classical groups. Here we observe why transvections are used in SL, Sp and

SU and Siegel transformations in SO. The definitions and results of this chapter are also well-known

and can be found in [45, 91].
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2.3.1 Transvections

We now define transvections in a matrix group G. In classical groups transvections play a role

similar to the role played by elementary matrices in Gaussian elimination. Moreover, some of these

elements occur among the standard generators defined in this thesis and play an important role in

the GoingUp algorithm.

Definition 2.29

Let V be a d -dimensional F-vector space. Let W ≤V such that dim(W ) = d − 1. A non-identity

matrix T ∈GL(V ) is a transvection with respect to the hyperplane W if

1) wT = w for all w ∈W and

2) vT − v ∈W for all v ∈V .

Transvections play an important role as they generate SL(d , q), SU(d , q) and Sp(d , q), see Lemma

2.35. Since matrices for elementary row and column operations of the Gaussian algorithm are not

contained in SU(d , q) and Sp(d , q), transvections in these groups can be seen as a substitute for

them.

Transvections can be completely characterised by the following lemma.

Lemma 2.30

Let V be a d -dimensional F-vector space. Let T ∈ GL(V ) be a transvection with respect to a

hyperplane W ≤V . Let ϑ : V → F ∈V ∗ with W = ker(ϑ).

1) There is a vector w ∈W such that vT = v − vϑ ·w for all v ∈V .

2) If w ∈V \{0} with w ∈ ker(ϑ), then V →V , v 7→ v − vϑ ·w is a transvection.

Proof. [91, p. 20].

Definition 2.31

Let V be a d -dimensional F-vector space with basisB = {v1, . . . , vd}.
1) We denote by 〈· | ·〉 the standard scalar product on V with respect to the basis B , that is,

〈vi | v j 〉= δi , j .

2) For linearly independent w1, w2 ∈V , we denote the transvection v 7→ v+〈v | w1〉w2 by Tw1,w2
.
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Note that B (Tλvi ,v j
)B = Ei , j (λ).

Lemma 2.32

Let v, w ∈ V and let c ∈ GL(V ) be arbitrary. Then T c
v,w = Tvc−Tr,wc , where c−Tr is the inverse

transposed matrix of c , written with respect to the basisB .

Proof. If ṽ ∈V then

ṽT c
v,w = ṽ c−1Tv,w c = (ṽ c−1+ 〈ṽ c−1 | v〉w)c = ṽ c−1c + 〈ṽ c−1 | v〉wc

= ṽ + 〈ṽ | vc−Tr〉wc = ṽTvc−Tr,wc .

Lemma 2.33

Let q = p f and let V be an Fq -vector space. Let v, w ∈V with 〈w | v〉= 0 and let 0≤ k ≤ p − 1.

Then T k
v,w = Tv,kw .

Proof. If ṽ ∈V then

ṽT 2
v,w = ṽTv,wTv,w = (ṽ + 〈ṽ | v〉w)Tv,w

= (ṽ + 〈ṽ | v〉w)+ 〈(ṽ + 〈ṽ | v〉w) | v〉w
= ṽ + 〈ṽ | v〉w + 〈ṽ | v〉w
= ṽ + 〈ṽ | v〉2w = ṽTv,2w

since 〈(ṽ + 〈ṽ | v〉w) | v〉 = 〈ṽ | v〉+ 〈ṽ | v〉〈w | v〉 = 〈ṽ | v〉. By induction on k the claim

follows.

Lemma 2.34

Let w1, w2, . . . , wk , v ∈V with 〈v | wi〉 = 0. Then the transvections Twi ,v
for 1 ≤ i ≤ k commute

pairwise and their product is the transvection T∑k
i=1 wi ,v

.
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Proof. Let i ̸= j . For all ṽ ∈V

ṽTwi ,v
Tw j ,v

= (ṽ + 〈ṽ | wi〉v)Tw j ,v
= ṽ + 〈ṽ | wi〉v + 〈ṽ + 〈ṽ | wi〉v | w j 〉v
= ṽ + 〈ṽ | wi〉v + 〈ṽ | w j 〉v
= ṽ + 〈ṽ | wi +w j 〉v = ṽTwi+w j ,v

since 〈ṽ + 〈ṽ | wi〉v | w j 〉 = 〈ṽ | w j 〉+ 〈ṽ | wi〉〈v | w j 〉 = 〈ṽ | w j 〉. This proves the commutativity

and the claim about the product follows by induction.

Lemma 2.35

Let d ∈N with d > 1 and q a prime power.

1) SL(d , q) is generated by transvections.

2) Sp(d , q) is generated by transvections.

3) SU(d , q) is generated by transvections.

Proof. [51, Theorem 1.2 and Remark]

The following result shows that we cannot work with orthogonal transvections.

Lemma 2.36

Let q be odd. Then O(d , q) contains no transvections. If F has characteristic 2 then a transvection

for a quadratic form Q has the form

v 7→ v −Q(w)−1ΦQ(v, w)w

where Q(w) ̸= 0 and ΦQ is the polar form of Q.

Proof. [91, p. 137 and p. 145].

Corollary 2.37

Let q be odd. Then O(d , q) is not generated by transvections.
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2.3.2 Siegel transformations

In orthogonal groups Siegel transformations are used to carry out row and column operations. Since

they are more complex than transvections, many proofs and algorithms for orthogonal groups are

more complicated.

Definition 2.38

Let V be an F-vector space with quadratic form Q and polar form ΦQ . Let v ∈V \{0} be isotropic,
i.e. Q(v) = 0, and w ∈ 〈v〉⊥. Then the map

ρv,w : V →V , ṽ 7→ ṽ +ΦQ(ṽ, w)v −ΦQ(ṽ, v)w −Q(w)ΦQ(ṽ, v)v

is a Siegel transformation.

Remark 2.39
That a Siegel transformation ρv,w is a well-defined element of SO(V ) for fields of all characteristics

is shown in [91, p. 148]. ◀

Example 2.40

Let f ∈N and q = p f a prime power. Then

ρe1,e3
=




1 0 0 0

1 1 0 0

0 0 1 0

0 0 −1 1



∈ F4×4

q

is a Siegel transformation in SO+(4, q). ◀

Lemma 2.41

Let V be an F-vector space with quadratic form Q. Let v ∈V be isotropic, let w, w1, w2 ∈ 〈v〉⊥, let
ϕ ∈O(V ) and let ȷ ∈ F∗. Then we have:

1) ρ ȷv,w = ρv, ȷw ,

2) ρv,w1
ρv,w2

= ρv,w1+w2
,

3) ϕρv,wϕ
−1 = ρvϕ ,wϕ .
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Proof. [91, Theorem 11.19].

The following result states that orthogonal groups are generated by Siegel transformations.

Theorem 2.42

Let V be an F-vector space with quadratic form Q. If dim(V )≥ 3, the Witt index of V is at least 1

and Ω(V ) ̸=Ω+(4,2), then Ω(V ) is generated by the Siegel transformations of (V ,Q).

Proof. [91, Theorem 11.46].

2.4 Representation theory

The goal of this chapter is the definition of the natural representation of classical groups which

corresponds to the definition of classical groups in Section 2.2. This chapter follows [68] for the

introduction of basic concepts of representation theory. In this section we assume all groups to be

finite.

Definition 2.43: [68, Definition 1.1.1]

A linear representation of a group G on a vector space V over a field F is a group homomorphism

X : G→GL(V ),

i.e. (g1 g2)
X = gX1 gX2 for all g1, g2 ∈G. The degree of the representation is given by dim(V ) and V

is a G-module with respect to the action (v, g ) 7→ v gX . A matrix representation of G of degree d is

a homomorphism

X : G→GL(d , q).

Remark 2.44: [68, p. 1]

Linear representations and matrix representations describe the same concept. Let V be an Fq -vector

space of dimension d . By choosing a basis of V we obtain a group isomorphism GL(V )→GL(d , q)

as stated in Corollary 2.4. ◀
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Example 2.45: [68, Example 1.1.17 and 1.1.19]

1) The map G→GL(1, q), g 7→ 1 is the trivial representation.

2) Let G be a finite group and V be a vector space over a field Fq of dimension |G| with basis

(eg )g∈G. We define

X : G→GL(V ), g 7→ (V →V , eh 7→ eh g−1)

which is the regular representation of G. ◀

Representation theory can also be viewed from another perspective. For this we need group algebras.

Definition 2.46: [68, Definition 1.1.6]

Let F be a field and G a group. We put FG := FG, the set of all maps from G to F which is an

F-module. For g ∈G we define g ∈ FG by

h g :=




0, for h ∈G\{g},

1, for h = g .

The map

ð: G→ FG, g 7→ g

defines an embedding of G into FG. In particular, the elements of FG are of the form
∑

g∈G λg g

for λg ∈ F.
Then FG becomes an F-algebra with the multiplication

�∑
g∈G

ıg g
� · �∑

h∈G

ȷh h
�

:=
∑
k∈G

� ∑
g ,h∈G,g h=k

ıg ȷh
�

k

for ıg , ȷh ∈ F for all g , h ∈G and FG is the group algebra of G over F.

Remark 2.47: [68, Remark 1.1.7]

The group algebra FG is an F-vector space with basis {g}g∈G. ◀

Definition 2.48: [68, p. 4]

Let G be a group and F be a field. An F-algebra homomorphism FG→ EndF(V ) is a representation

of FG on V .
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Lemma 2.49: [68, pp. 4/5]

Let V be a finite dimensional vector space over F and let G be a group.

1) LetX : G→GL(V ) be a representation. Then V is an FG-module under the action

vϱ := vϱX̂ , for ϱ ∈ FG, v ∈V

where X̂ : FG→ EndF(V ) defines the extension ofX to FG.

2) Let V be an FG-module. There exists a representation X̂ : FG→ EndF(V ). The restriction

of X̂ to G ⊆ (FG)∗ yields a representation X : G → GL(V ), g 7→ g X̂ . Then X is the

representation of G afforded by V .

Remark 2.50: [68, p. 4]

The set of G-modules over F can be canonically identified with the set of FG-modules. ◀

The next definition defines how representations can be compared.

Definition 2.51: [68, Definition 1.1.2]

LetX andY be representations of G on F-vector spacesV andW , respectively. The representations

X and Y are equivalent if there exists an F-isomorphism ϕ : V →W such that

gX = ϕ gY ϕ−1

for all g ∈G.

One main goal of representation theory is the study of irreducible representations which are defined

as follows.

Definition 2.52: [68, Definition 1.1.16]

Let R be a ring. An R-module is simple if it has exactly two R-submodules.

Definition 2.53: [68, Definition 1.1.16]

LetX : G→GL(V ) be a representation of a group G on an F-vector space V . The representation

X is irreducible if V ̸= {0} and V is simple as an FG-module. If X is not irreducible, then X is

reducible.

We introduce another important property of representations and the connection to irreducibility.
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Definition 2.54: [68, Definition 1.1.16]

Let X : G → GL(V ) be a representation of a group G on an F-vector space V . Then V is

decomposable if it is a direct sum of non-trivial G-invariant subspaces. Otherwise, it is indecomposable.

Remark 2.55: [68, pp. 6/7]

A decomposable representation is reducible. The converse is not generally true. ◀

We are finally in a position to define the natural representation of classical groups.

Definition 2.56

Let V be an F-vector space admitting a non-degenerate bilinear form Φ and let G be the

group preserving Φ. Then G ≤ GL(V ) and the canonical embedding ϕ : G → GL(V ) is the

natural representation of G. In this case, V is the natural G-module.

Theorem 2.57

The natural representations of SL(d , q), Sp(d , q), SU(d , q) and Ω(d , q) are irreducible.

Proof. [57].

2.5 Complexity and algorithms

In order to analyse the algorithms of this thesis we first define which operations are counted. It

is sometimes quite tedious to perform precise inquiries which is why the Landau notation O is

introduced. Some algorithms of this thesis rely on well-known methods and procedures. The most

important ones are presented in this section and complexity results are summarised from literature.

The treatment presented here is based on [48].

We start by specifying which operations are counted in this thesis.

Remark 2.58
In this thesis we count elementary finite field operations, i.e. addition, subtraction, multiplication

and inverting over Fq . Note that we do not differentiate between “additive” and “multiplicative”

operations. ◀
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When performing a complexity analysis of an algorithm the goal is to compute the worst case

number of finite field operations in comparison to the input size. In most algorithms of this thesis

the input size depends on the degree d of the input matrices and log(q) where q is the size of the

finite field Fq . The worst-case number of finite field operations is helpful to assess the run-time of

an instance depending on the input.

In order to express complexity more accessible the well-known Landau notation O is introduced.

Definition 2.59: Landau notation O
Let ϕ1,ϕ2 : R+→R be functions whereR+ denotes the set of positive real numbers. Then ϕ1 ∈ O (ϕ2)

if there are constants k1, k2 ∈R+ such that |ϕ1(x)| ≤ k1|ϕ2(x)| for all x ≥ k2.

Example 2.60

In the standard algorithm to multiply g1, g2 ∈GL(d , q), we must compute d 2 entries and for each

entry perform d multiplications and d − 1 additions. This yields an overall result of (2d − 1)d 2

elementary field operations. Hence, this algorithm has complexity O (d 3). ◀

Remark 2.61
Note that there are algorithms to multiply matrices which need less than (2d−1)d 2 elementary finite

field operations. For example Strassen’s algorithm [89] for multiplying two d×d matrices from 1969

has complexity O (d log2(7)) = O (d 2.8074) which is one of the best known algorithms and which has

only been beaten recently by an AI for some small d . Therefore, we say that matrix multiplication

has complexity O (d ξ ) with ξ ≤ log2(7). In comparison, multiplying two permutations of Sym(d )

has complexity O (d ) which makes efficient computations much more important. ◀

Additionally to the logarithm function log we are sometimes referring to the iterated logarithm log∗

which is defined as follows.

Definition 2.62

Let k ∈R with k > 0. The iterated logarithm log∗(k) is defined recursively as follows

log∗(k) :=




0, if k ≤ 1 and

1+ log∗(log(k)), if k > 1.
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Remark 2.63
The iterated logarithm counts the number of times the logarithm functionmust be applied recursively

until a non-negative real number is equal or less than 1. For the remainder of this thesis the iterated

logarithm log∗(k) is used to base 2. ◀

One important tool for this thesis is the characteristic polynomial χa(x) = det(a− xId ) of a matrix

a ∈ GL(d , q). See for example [36, 71] for an algorithm of complexity O (d 3) to compute the

characteristic polynomial. There could be more efficient algorithms but an upper bound of O (d 3)

for the complexity of computing characteristic polynomials is sufficient for this thesis.

Since many algorithms of this thesis are randomised it is crucial to have algorithms for computing

uniformly distributed and independent random elements of a group 〈X 〉=G. Note that we also

require that the uniformly distributed and independent random elements of G can be written as a

word in X . The theoretically best algorithm for computing ε-uniformly distributed and independent

random elements is given by Babai [7]. The complexity of Babai’s algorithm is in O (log5(|G|))
which is too high for practical applications.

Another well-known algorithm for computing random elements is ProductReplacement [25]. There

have been some improvements of the ProductReplacement algorithm in the last years, see e.g. [58,

67], but we restrict ourselves to the basic version given in [25] which is presented in pseudo-code as

Algorithm ProductReplacement [Alg. 1].

The Algorithm ProductReplacement [Alg. 1] uses a list S of n group elements of G as an internal

state denoted by S = [ ĝ1, . . . , ĝn] ∈ Gn. If the list S is not bound at the first call of Algorithm

ProductReplacement [Alg. 1], then S is set to be the list of length n containing the generators

X of G multiple times until the list is full. In each call Algorithm ProductReplacement [Alg.

1] updates one element of S by multiplying two elements at random positions i and j of S and

storing the product in position i . Additionally, we use a coin flip to decide whether the element

at position j is inverted and whether to multiply the element at position i with the element at

position j or vice versa. After calling Algorithm ProductReplacement [Alg. 1] repeatedly the list

S contains elements very close to being uniformly distributed and independent. Note that in an

implementation we would remember how each element of S was computed as a word in X which is
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possible as the list was originally initialised as a list only containing the generators X . Therefore,

we assume in the remainder of the thesis, that we can write uniformly distributed and independent

random elements of a group in a given generating set.

Algorithm 1: ProductReplacement

Input: ▶ A group G = 〈g1, . . . , gk〉
▶ A natural number n ≥max({k , 2})

Output: ▶ g ∈G

function ProductReplacement(G, n)

// Internal state: S = [ ĝ1, . . . , ĝn] ∈Gn

1 if not IsBound(S ) then // i.e. S is not assigned a value

2 S← [g1, . . . , gk , g1, g2, . . . ]

3 i , j←Random({1, . . . , n})
4 r←Random({0,1}) AND t←Random({−1,1})
5 if r = 0 then

6 S[i]← S[i] · S[ j ]t

7 else

8 S[i]← S[ j ]t · S[i]
9 return S[i]

Note that each call to ProductReplacement performs only one group multiplication. However, the

algorithmmust be called a certain number of times to mix the initial state S . We call this initial period

the convergence time. After the convergence time, the cost of each call to ProductReplacement is

one group operation.

Practical applications observed that n should be at least 2k and that the convergence time can be

taken to be 50 - 70 steps. After this ProductReplacement appears to return elements that are very

close to being uniformly distributed and independent for most groups and particularly for classical

groups [25]. To get an overview of the ProductReplacement algorithm, we refer to [77]. Since

the theoretical results do not support such a strong statement so far, we introduce a variable for

the complexity of computing a random element instead and refer to [34] for more details about

generating random elements in finite groups.



2.6. MSLP 49

Remark 2.64
For the remainder of this thesis the complexity of computing a uniformly distributed and independent

random element of a group is denoted ζ . ◀

The computation of the centraliser and projective centraliser of involutions is another important

aspect. John Bray developed an efficient algorithm for this purpose in [18]. The algorithm of Bray

was analysed in [46, 78] leading to the following result.

Theorem 2.65

Let G be a simple group of Lie rank r defined over a field of odd characteristic. The centraliser in G

of an involution can be computed in time O (r (ℸ+ ζ ) log(1/ε)+℘r 2) with probability of success at

least 1−ε for ε > 0, where ℘ denotes the cost of a group operation and ℸ denotes the cost of solving

the order oracle.

Remark 2.66
We summarise the complexity results of this section in the following table.

Algorithm Complexity

Matrix multiplication O (d ξ )
Characteristic polynomial O (d 3)

Random element ζ

Algorithm of Bray O (r (ℸ+ ζ ) log(1/ε)+℘r 2)
◀

2.6 MSLP

In this section, we present an efficient way to express a group element as a word in specified generators

using basic group operations. Therefore, it is possible to encode group elements as words over a given

generating set. Rather than storing the word as a string, we write it as a word in other subwords.

This allows us to evaluate the encoded word efficiently under a group homomorphism.

We start by defining which operations can be used. The way we describe the word can be viewed as

a program in some programming language. The program has no loops, no conditional statements,

no comparisons or other special techniques from programming languages. We restrict ourselves to
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multiplying and inverting. Therefore, we call the resulting description of the word a straight-line

program or SLP for short. The treatment presented here is based on [73].

Remark 2.67
MSLPs play an important role in the matrix group recognition project (MGRP) which is presented

in more detail in Chapter 1 and even more information about the MGRP can be found in [5]. For

the introduction of MSLPs we describe a basic but important subtask of the MGRP in the following.

In the MGRP some matrices a1, . . . ,ak ∈GL(d , q) over a finite field Fq are given and we consider the

group G = 〈a1, . . . ,ak〉. We could ask whether a ∈GL(d , q) is an element of G and if this is the case,

how a can be expressed in terms of the generators a1, . . . ,ak . The expression of writing a in terms of

the generators a1, . . . ,ak is a word and in order to store and evaluate words efficiently MSLPs are

used. ◀

Definition 2.68: [73, Section 2.1]

Let G be a group, b ∈ N0 andM = [m1, . . . ,mb] an ordered list, i.e. a list in which the order of

the items matter, of b elements of G. A modification I ofM is an instruction if it has one of the

following forms:

(i) mk ←mi with i , k ∈ {1, . . . ,b}. This instruction stores mi in the listM in slot k.

(i i) mk ←mi ·m j with i , j , k ∈ {1, . . . ,b}. This instruction stores mi ·m j in the listM in slot k.

(i i i) mk ←m−1
i with i , k ∈ {1, . . . ,b}. This instruction stores m−1

i in the listM in slot k.

(i v) Show(A) where A⊆ {1, . . . ,b}. The slots specified by A are displayed.

Remark 2.69
Some programming languages, e.g. GAP [37], allow additional instructions which can be derived

from the instructions (i) to (i i i) as short cut. One additional type of instruction introduced by GAP

is to set up the initial memory which we use with the following notation

mi ← g

in this thesis. This means that the element g is stored in the memory slot mi . ◀

We introduce a version of an SLP which also records its memory usage.
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Definition 2.70: [73, Section 2.1]

Let G be a group, let b ∈N0, letM = [m1, . . . ,mb] be an ordered list of b elements of G and Υ ∈N0.

A straight-line program with memory (MSLP) is a sequenceS= [I1, . . . ,IΥ ] of instructions Ir with

1≤ r ≤ Υ .
The number b ∈N0 is the memory quota ofS andS is a b-MSLP. The number Υ is the length ofS.

The empty sequence is permitted with length 0.

Remark 2.71
Υ is the Greek capital upsilon and S is S in the fraktur font. ◀

Let X be a set and FX the free group on X . An obvious way to record a word in FX is to simply

store the sequence of elements of X in the word. This, however, is often not very efficient if we

evaluate the image of the word under a group homomorphism ϕ : FX →G. For example, if G is a

matrix group and the word has length k, then this would entail k−1 multiplications. The aim of an

SLP is to give an algorithm how to evaluate homomorphisms on this word efficiently, for example

by computing and storing subwords that occur repeatedly only once.

Example 2.72: [73, Section 2.2(ii)]

In most computations with groups, elements need to be raised to some powers. To shorten this,

fast exponentiation can be used.

Let G be a group, g ∈G and k ∈N. Suppose we want to write an MSLP that raises a group element

to its k-th power. We can express k in binary form as k =
r∑

i=0
ai ·2i with ai ∈ {0,1} for 0≤ i ≤ r and

r ∈N. Then
g k = g

(
r∑

i=0
ai ·2i )
=

r∏
i=0

(g 2i
)ai .

A way to construct an MSLP for fast exponentiation with memory quota 2 is given in Algorithm 2

in pseudo-code. ◀

Definition 2.73: [73, Section 2.1]

Suppose thatM ∈Gb and we have given an b-MSLP S= [I1, . . . ,IΥ ]. The evaluation of an MSLP

consists of the following recursive steps. First, for j ≤ Υ we denote the sequence obtained by

truncating S after j instructions by S j = [I1, . . . ,I j ]. Then we define the evaluation map EvalM
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on S by:

EvalM (S) =




M , if S= [],

[a′1, . . . ,a′k−1,a′i ,a′k+1, . . . ,a′b], where [a′1, . . . ,a′b] = EvalM (SΥ−1)

and if IΥ =mk ←mi ,

[a′1, . . . ,a′k−1,a′i a
′
j ,a′k+1, . . . ,a′b], where [a′1, . . . ,a′b] = EvalM (SΥ−1)

and if IΥ =mk ←mi ·m j ,

[a′1, . . . ,a′k−1, (a
′
i )
−1,a′k+1, . . . ,a′b], where [a′1, . . . ,a′b] = EvalM (SΥ−1)

and if IΥ =mk ←m−1
i ,

[a′1, . . . ,a′b] A
, where [a′1, . . . ,a′b] = EvalM (SΥ−1)

and if IΥ = Show(A).

Thus evaluating the MSLP S amounts to executing its instructions.

In the evaluation process,M is used as memory for the elements that are needed. The instruction

(i) of Definition 2.68 can be used to overwrite a slot and minimise the memory quota. The idea of

an MSLP is to reduce the memory required for evaluating a particular word in a group by repeatedly

overwriting memory slots which are no longer used. The length Υ of an MSLP describes the number

of operations during the entire evaluation.

Remark 2.74
The instructions of Definition 2.68 use elements of {1, . . . ,b}. The memoryM is secondary in the

description. This implies that an MSLP is independent of the group, i.e. EvalM (S) can be computed

for everyM ∈Gb and every group G. Hence, it is possible to encode an element as a word in one

group and to evaluate the constructed SLP in another group. ◀
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Algorithm 2: Power

Input: ▶ k ∈N0 a natural number

Output: ▶ An MSLP S which computes g k using fast exponentiation for g ∈G

function Power(k)

1 i←1

2 while k > 0 do

3 if k odd then

4 Ii← (m1←m1 ·m2) // The factor in the binary representation is not 0

5 i← i + 1

6 if k > 1 then

7 Ii← (m2←m2 ·m2) // Square the element in slot 2

8 i← i + 1

9 k←Floor( k
2 )

10 Ii← Show(1)

11 return [I1, . . . ,Ii ]

Example 2.75

Recall the additional instruction introduced in Remark 2.69 for initialising the memory. For example,

Algorithm 2 produces the following MSLP for k = 8:

S= [[m2← g ], [m1← 1G], [m2←m2 ·m2], [m2←m2 ·m2],

[m2←m2 ·m2], [m1←m1 ·m2], [Show(1)]]

In this case, we need 7 instructions which nearly is as much as k. However, for increasing k, the

length of the SLPs converges to 2 log2(k) which is in O (log2(k)).

Now, let G1 := (F5)
∗ andM1 := [1,2] ∈G2

1 . If we evaluate theMSLPSwithM1, then the evaluation

function returns EvalM1
(S) = [28] = [1]. But we can also choose G2 :=C9 the cyclic group with 9

elements andM2 := [(), (1, . . . , 9)] ∈G2
2 . If we evaluate the MSLP S withM2, then the evaluation

function returns EvalM2
(S) = [(1, . . . , 9)8] = [(1, . . . , 9)−1]. ◀

For more details on MSLPs, see [73].
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Chapter 3

Outline of the Algorithm

All algorithms presented in this thesis for constructively recognising special linear groups, symplectic

groups, unitary groups and orthogonal groups are based on the same overall concept with relatively

small differences resulting from the underlying structure of the classical groups. A group G is a

classical group if G ∈ {SL(d , q), Sp(d , q), SU(d , q),Ω(d , q)} as in Section 2.2 and we denote all of

these by CL(d , q) where CL stands for SL, Sp, SU or Ω and represents the respective type. The goal

of this chapter is to describe and explain the overall concept and structure of the algorithms for

constructive recognition of classical groups of this thesis. We start by giving a detailed description

of all subalgorithms. Afterwards, these subalgorithms are combined into a single algorithm, namely

StandardGenerators, presented as pseudo code in Section 3.4, which is the foundation for the

constructive recognition algorithms of classical groups presented in this thesis.

The input of the algorithm StandardGenerators is a set X of invertible d × d matrices over Fq

such that the group G = 〈X 〉 is a classical group in its natural representation. That a given group

G is indeed a classical group in its natural representation can be verified using naming algorithms

which are explained in Section 1.1.7.

The output of the algorithm StandardGenerators is a base change matrixL ∈GL(d , q) and an

MSLP S such that if S is evaluated in XL , then the output of S is a specific generating set, namely

the standard generators, of CL(d , q)L , which are defined as follows.

55
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Definition 3.1

Let S ⊂CL(d , q). Then S is a set of standard generators of CL(d , q) if there is a base change matrix

L ∈GL(d , q) such that SL = {gL | g ∈ S} is equal to a specific subset of CL(d , q) as defined in

• Definition 5.1 for CL(d , q) being a special linear group,

• Definition 6.3 for CL(d , q) being a symplectic group,

• Definition 7.3 for CL(d , q) being a special unitary group or

• Definition 8.3 for CL(d , q) being an orthogonal group.

We are interested in these generating sets because they yield a variety of advantages compared to

arbitrary generating sets of classical groups. Firstly, these generating sets contain the DLLO standard

generators defined in [32, 59] which can be used to verify relations of a finite presentation of a

classical group, see [60], and, therefore, the correctness of the output of a randomised constructive

recognition algorithm. Secondly, it is possible to perform efficient rewriting procedures as in

Section 1.1.10 starting with standard generators while it is unclear how to perform rewriting with

arbitrary generators.

The algorithms of this thesis are designed to deal with large classical groups defined as follows.

Definition 3.2

Let CL(d , q) be a classical group in its natural representation. Then CL(d , q) is a base case group if

• CL(d , q) is a special linear group and d ≤ 2,

• CL(d , q) is a symplectic group and d ≤ 4,

• CL(d , q) is a special unitary group and d ≤ 4 or

• CL(d , q) is an orthogonal group and d ≤ 6.

Moreover, CL(d , q) is a large group if it is not a base case group.

In this thesis we do not deal directly with base case groups, but instead refer the reader to results

and algorithms already existing in the literature, see Table 3.4. An exception are the special linear

groups where we give a detailed description of a constructive recognition algorithm for SL(2, q) in

Section 5.2 in order to gain an understanding of how constructive recognition algorithms for base

case groups work and outline their underlying mathematical problems.
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In summary, base case groups are classical groups in small dimension for which specialised and

efficient constructive recognition algorithms exist. If the input group G is a base case group, then

we call an algorithm specifically designed for constructive recognition of the base case group G. If

G is not a base case group, then we apply the corresponding constructive recognition algorithm

for CL(d , q) described in this thesis. The algorithm StandardGenerators, which is given in

Section 3.4, relies for all classical groups on the same three basic subalgorithms, namely

(1) a GoingDown algorithm which is explained in Section 3.1,

(2) a BaseCase algorithm which is explained in Section 3.2 and

(3) a GoingUp algorithm which is explained in Section 3.3.

After dealing with all subalgorithms in the following sections the structure of the combined algorithm

StandardGenerators is outlined in Section 3.4.

Another notation we use frequently throughout this thesis is given in the following definition.

As usual, we denote a conjugate of a group G by a a base change matrix L ∈GL(d , q) by GL =

{L −1 gL | g ∈G}.

Definition 3.3

Let G ≤GL(d , q) and U ≤G. Then U is stingray embedded of degree n in G for n ≤ d if there exists

a group H ≤GL(n, q), a base change matrixL ∈GL(d , q) and an isomorphism σL from H to UL

such that

σL : H →UL , a 7→ diag(a, Id−n) =


a 0

0 Id−n


 .

We denote a stingray embedding by

UL =


H 0

0 Id−n


≤GL .
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3.1 GoingDown algorithm

The GoingDown algorithm is the first subalgorithm which is called by the StandardGenerators

algorithm. The input of the GoingDown algorithm is a generating set X such that 〈X 〉 = G =

CL(d , q)which is also the input of the StandardGenerators algorithm. In this section, we exclude

Sp(d , q) for q even from CL(d , q) which is further elaborated in Remark 6.1. The GoingDown

algorithm is a randomised algorithm and relies on finding stingray elements with a random procedure

of elements of G. Therefore, there is an additional input N ∈N which is used as an upper bound for

the maximal number of chosen random elements. If the limit N is exceeded, then the GoingDown

algorithm returns fail. The GoingDown algorithm of this thesis is a one-sided Monte-Carlo

algorithm, therefore we also discuss how to choose N ∈ N for a given 0 < ε < 1 such that the

GoingDown algorithm succeeds with probability 1− ε. Stingray elements, which are used by

the GoingDown algorithm, are discussed in detail in Chapter 4. The output of the GoingDown

algorithm is a base change matrixL , an MSLPS and a subgroup 〈XU 〉=U ≤G with U ∼=CL(n, q)

a base case group such that

UL =


CL(n, q) 0

0 Id−n


 .

Moreover, evaluating the MSLP S in X yields the generators XU of U .

The GoingDown algorithm repeatedly applies a subroutine, which is the GoingDown basic step.

The input of the GoingDown basic step subroutine is a stingray embedded subgroup U of G

(initially G itself), and it returns a subgroup H of U which is stingray embedded of smaller degree

in G than its predecessor U . This is used as input for the next GoingDown basic step invocation,

and so on, until eventually a terminal group is reached which is defined below in Definition 3.6. We

denote by Ui−1 the input and by Ui the output of the i -th iteration of the basic step. Before the

first iteration U0 is defined to be G. After each iteration of the basic step, the subgroup Ui satisfies

Ui ≤Ui−1 and Ui is the input for the next iteration of the basic step that is

Ui :=GoingDownBasicStep(Ui−1,N ), where Ui ≤Ui−1.

The input N is as for the GoingDown algorithm used to control the maximal number of chosen

random elements. The basic step is applied until Ui is isomorphic to a terminal group. In this case
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we set k := i and the GoingDown basic step returns a descending chain

Uk ≤Uk−1 ≤ . . .≤U1 ≤U0 =G, (3.1.1)

where Uk is a terminal group and k is roughly log∗(d ) which is the iterated logarithm as in Defi-

nition 2.62. To be more precise, each of the groups Ui of the descending chain is isomorphic to a

classical group Ui
∼=CL(di , q) of the same type as G and is stingray embedded in G for di ≤ d and

dk < dk−1 < . . .< d1 < d0 = d . Thus there isLi ∈GL(d , q) such that

Ui =


CL(di , q) 0

0 Id−di



Li

≤G.

The base change matrixLi can also be computed by the GoingDown basic step by taking the base

change matrix Li−1 of Ui−1 and modifying it to a base change matrix Li of Ui . Moreover, the

GoingDown basic step also returns an MSLP Si such that when Si is evaluated in the generators

of Ui−1 it returns generators of Ui that is

(Ui ,Li ,Si ) :=GoingDownBasicStep(Ui−1,Li−1,N ), where Ui ≤Ui−1.

Lastly, we add di−1 with Ui−1
∼= CL(di−1, q) as input parameter for optimisation to control the

length of the descending chain that is

(Ui ,Li , di ,Si ) :=GoingDownBasicStep(Ui−1,Li−1, di−1,N ), where Ui ≤Ui−1.

We additionally require that di ≤ 4⌈log(di−1)⌉ holds. This restriction ensures that the length k of the

descending chain is in O (log∗(d )). The descending chain given in (3.1.1) is the descending recognition

chain and a sub-chain of the full descending recognition chain given in Definition 3.4.

The GoingDown basic step is based on stingray elements which are defined and treated in detail

in Chapter 4. The basic step uses stingray elements as follows: In Ui−1 we seek two stingray

elements s1, s2 ∈ Ui−1, using the Algorithms 5 and 7 of Chapter 4. In Chapter 10 we discuss that

〈s1, s2〉 ∼=CL(di , q) holds with high probability. One reason why the algorithm uses stingray elements
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is that 〈s1, s2〉 is automatically stingray embedded in CL(d , q), i.e.

Ui = 〈s1, s2〉=

CL(di , q) 0

0 Id−di+1



Li

≤G.

The base change matrix to achieve this block structure can be computed using the algorithms of

Section 4.3. Since the basic step relies on finding stingray elements by a random procedure and

on generating classical groups using stingray elements, the GoingDown algorithm is a randomised

algorithm. Therefore, the GoingDown algorithm returns fail after selecting at most N random

elements. The probability that the GoingDown algorithm succeeds completely relies on N and we

analyse in Chapter 10 how to choose N in order to have a success rate of at least 1− ε for a given
ε ∈ (0,1).

We introduce a notion for a descending recognition chain in the next definition.

Definition 3.4

Let CL(d , q) be a classical group in its natural representation. Then a descending chain of subgroups

of CL(d , q) is a full descending recognition chain with

Uk ≤Uk−1 ≤ . . .≤U1 ≤U0 =CL(d , q),

if Ui
∼= CL(di , q) of the same type as CL(d , q) is stingray embedded in CL(d , q), di < di−1 and

di ≤ 4⌈log(di−1)⌉ for all 1≤ i ≤ k, the subgroup Uk of CL(d , q) is isomorphic to a base case group

and the subgroup Uk−1 is isomorphic to a terminal group. The sub-chain

Uk−1 ≤ . . .≤U1 ≤U0 =CL(d , q),

is the descending recognition chain.

Remark 3.5
Note that a descending recognition chain can be computed using the GoingDown basic step repeat-

edly. ◀

A terminal group is similar to a base case group and defined as follows.



3.1. GOINGDOWN ALGORITHM 61

Definition 3.6

Let CL(d , q) be a classical group in its natural representation. Then CL(d , q) is a terminal group if

• CL(d , q) is a special linear group and d = 4,

• CL(d , q) is a symplectic group and d = 8,

• CL(d , q) is a special unitary group, d = 6 and q is odd,

• CL(d , q) is a special unitary group, d = 10 and q is even or

• CL(d , q) is an orthogonal group and d = 8.

Remark 3.7
It is not possible to reach a base case group using the GoingDown basic step because their degrees

di of Ui
∼=CL(di , q) are too small to find stingray elements or generating classical groups with these

elements. Therefore, we stop the GoingDown basic step at a terminal group and the GoingDown

algorithm relies on alternative algorithms to identify a stingray embedded base case group which

is the final step of the GoingDown algorithm and the last step for computing a full descending

recognition chain from the descending recognition chain of the GoingDown basic step such that

︸ ︷︷ ︸
Final step

Uk ≤
GoingDown basic step︷ ︸︸ ︷

Uk−1 ≤ . . .≤U1 ≤U0 =G

where Uk is a base case group and Uk−1 a terminal group. The degrees of the terminal groups of

the GoingDown basic step are summarised in Table 3.1. For terminal groups there are no direct

constructive recognition algorithms without computing base case groups so far but theGoingDown

algorithm can identify base case groups in terminal groups efficiently using the algorithms of the

sections given as in Table 3.2. ◀

Type q even q odd

SL 4 4
Sp − 8
SU 10 6
Ω 8 8

Table 3.1: Dimensions of the terminal groups of the GoingDown basic step, i.e. a terminal group as
in Definition 3.6 has been reached in the descending chain (3.1.1) of the GoingDown basic step.
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Type Section

SL Section 5.1.3
Sp Section 5.1.3 and Section 6.1.3
SU Section 5.1.3 and Section 7.1
Ω Section 5.1.3 and Section 8.1

Table 3.2: Sections for the algorithms of the final step of the GoingDown algorithm to compute a
base case group from a terminal group of the descending recognition chain.

Remark 3.8
Note that there are some classical groups in their natural representation whose degree lies between

the one of a base case group and the one of a terminal group, see Table 3.3. These exceptional

classical groups are either not covered by the constructive recognition algorithms of this thesis or

additional algorithms to deal with these groups are discussed in the sections about the final step, see

Table 3.2. If a group is not covered in this thesis, then this is mentioned at the beginning of each

chapter and we refer to algorithms already existing in the literature. ◀

Type Ranges for d which are not covered Algorithms in the literature

SL 3 [65]
Sp 6 [20]
SU 5 if q is odd and 5-9 if q is even [21, 32]
Ω 7 [32, 59]

Table 3.3: Groups whose degree lies between base and terminal groups.

3.2 BaseCase algorithm

The BaseCase algorithm is the second subalgorithm of the StandardGenerators algorithm. Let

G :=CL(d , q) be the input of StandardGenerators. Then the input of the BaseCase algorithm

is a generating set X of a base case group CL(dk , q)≤G as in Definition 3.2 of the same type as G,

e.g. if G is a special linear group, then the base case group is also a special linear group. Moreover, a

base change matrixL ∈GL(d , q) is known such that 〈X 〉L is stingray embedded with degree dk in

GL . Since the BaseCase algorithm is also randomised we again use N as additional input to restrict

the maximal number of selecting random elements to N . The output of the BaseCase algorithm is

an MSLP S and a base change matrixL ′ ∈GL(d , q) such that if S is evaluated in XL ′ , the output

are the standard generators of CL(dk , q)L ′ as in Definition 3.1.
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For base case groups efficient constructive recognition algorithms are known which do not rely

on constructive recognition of subgroups. Therefore, the BaseCase algorithm calls an efficient

constructive recognition algorithm for CL(dk , q) which is possible as CL(dk , q) is a base case group.

As mentioned earlier efficient algorithms for constructive recognition of base case groups already

exist in the literature, see Table 3.4, and are not treated in this thesis except for special linear groups

in Section 5.2.

Group Reference

SL(2, q) [27]
Sp(4, q) [20]
SU(4, q) [21]
Ω±(6, q) [22]

Table 3.4: Constructive recognition algorithms for base case groups

Properties of the BaseCase algorithms e.g. if a given algorithm is randomised (see Section 1.1.1) or if

it requires the discrete logarithm oracle (see Section 1.1.2) depend on the choice of the constructive

recognition algorithm for the base case group. Note that the constructive recognition algorithms

used for base case groups can readily be exchanged when more efficient constructive recognition

algorithms become available. The current state-of-the-art algorithms often call other base case

algorithms as displayed in Figure 3.1.

SL(2, q)

SU(3, q)Sp(4, q) Ω+(6, q)

SU(4, q)

Ω−(6, q)

Figure 3.1: Relation of algorithms for constructive recognition of base case groups. We use B→A
to denote that B calls the function A.

The state-of-the-art algorithm for constructive recognition of SL(2, q) is given in [27]. This algorithm

is randomised and uses the discrete logarithm oracle. Since a constructive recognition algorithm to

recognise SL(2, q) is used by all the other constructive recognition algorithms for base case groups,

these base case algorithms are also randomised and involve a discrete logarithm oracle. So far, it is

unknown whether it is possible to recognise SL(2, q) constructively without the discrete logarithm

oracle.
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As for the GoingDown algorithm the success of the BaseCase algorithm depends on the choice

of N and for a given ε ∈ (0,1) we can select N such that the BaseCase algorithm succeeds with

probability at least 1− ε. The choice of N of the BaseCase algorithm is not discussed in this thesis,

instead we refer to the literature, see Table 3.4.

3.3 GoingUp algorithm

The last subalgorithm of StandardGenerators is the GoingUp algorithm. The input of this

algorithm is X with 〈X 〉=G =CL(d , q) in its natural representation and the standard generating

set S of a stingray embedded subgroup 〈S〉= H ≤GL , where H is a base case group of the same

type as G for a known base change matrixL ∈GL(d , q). Moreover, the standard generators S of

H can be written as words in XL , i.e. a constructive recognition algorithm has been used on H .

The GoingUp algorithm is also randomised and, therefore, we use N as input to allow at most N

selections of random elements. The output of the GoingUp algorithm is an MSLP S and a base

change matrixL ′ such that if S is evaluated in (S ∪XL )L ′ the output are the standard generators

of GLL ′ =CL(d , q).

Similar to the GoingDown algorithm, the GoingUp algorithm uses a step repeatedly until the

standard generators of G have been constructed. The input of the GoingUp step are X and eS with

〈eS〉= eH ≤G fL where eH ∼=CL(n, q) is stingray embedded and of the same type as G for a known

base change matrix fL ∈GL(d , q). The standard generators eS of eH can be written as words in X fL

and are encoded in an MSLP eS. Moreover, the base change matrix fL as well as N to control the

maximal number of random element selections are additional inputs of the GoingUp step. The

output of the GoingUp step is a base change matrixL ∈GL(d , q) and an MSLP which evaluates in

eS ∪X fL to the standard generators of another stingray embedded classical subgroup K of G fL . Since

the output of the GoingUp step is an MSLP evaluating to the standard generators of a subgroup of

G we denote this by saying that the input of the i -th step is given by X , Si−1,Li−1 and N and the

output group is given by Si andLi with 〈Si〉=H(i) resulting in

(Si ,Li ) :=GoingUpStep(X , Si−1,Li−1,N ).

Note that this is not completely accurate as the output is not directly Si but rather only an MSLP
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which evaluates to the standard generators Si of H(i). We ignore this small inaccuracy since we know

that the MSLP evaluates to Si . So far we only noted that H(i) ≤GLi holds but we know more about

the output of the GoingUp step which is H
L−1

i−1

(i−1) ≤ H
L−1

i
(i) ≤G and H(i) ∼= CL(ni , q) is of the same

type as G. By setting H(0) =H this yields a chain of subgroups called an ascending recognition chain

H =HL−1
0

(0) ≤HL−1
1

(1) ≤ . . .≤H
L−1
ℓ−1

(ℓ−1) ≤H
L−1
ℓ

(ℓ) =GL
−1
ℓ .

In most cases the length of an ascending recognition chain is greater than the length of the descending

recognition chain. Since the standard generators of each H(i) are known and H(ℓ) =G, the standard

generators of G are constructed by the GoingUp algorithm.

The GoingUp step is more complicated than the GoingDown basic step and consists of seven

phases. Therefore, we are not discussing the details of the GoingUp step in this chapter and refer to

a detailed description accompanied by an example in Section 5.3. Instead we continue this chapter

by displaying the input and output of the GoingUp step in matrix form.

Each of the H(i) is a stingray embedded classical group of the same type as G, i.e.

H(i) =


CL(ni , q) 0

0 Id−n


≤GLi

and the standard generators of H(i) are known. The GoingUp step then roughly proceeds as follows.

We identify an element c ∈GLi−1 such that

〈H(i−1), H c
(i−1)〉 :=

CL(N (d , ni−1), q) 0

0 Id−N (d ,ni−1)


≤GLi

for a base change matrixLi ∈GL(d , q) such that 〈H(i−1), H c
(i−1)〉 is stingray embedded as displayed

above. The functionN (d , n) depends on the type of the classical group CL(d , q) and is given in

Table 3.5. The reason whyN (d , n) differs for the classical groups is discussed in the corresponding

GoingUp chapters of each type of classical group.

Clearly, H ≤ 〈H , H c〉 and the standard generators for H are known. Using this knowledge and c

we can very carefully construct standard generators for 〈H , H c〉 ∼= CL(N (d , n), q). Then we set
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Group N (d , n)

SL(d , q) min{2n− 1, d}
Sp(d , q) min{2n− 2, d}
SU(d , q) min{2n− 2, d}
Ω(d , q) min{2n− 4, d}

Table 3.5: Values ofN (d , n) for the classical group CL(d , q).

H(i) := 〈H , H c〉 and the standard generators for H(i) can be derived. Since we want to avoid as many

matrix operations as possible the standard generators of H(i) are only encoded in an MSLP instead

of performing the actual matrix computations. As for the GoingDown algorithm we introduce a

notion for an ascending recognition chain in the next definition.

Definition 3.9

Let 〈X 〉=G ∈ {SL(d , q), Sp(d , q), SU(d , q),Ω(d , q)}. Then an ascending chain of subgroups of G

with

H =H(0) ≤H(1) . . .≤H(ℓ−1) ≤H(ℓ) =G,

where H(i) ∼=CL(ni , q) of the same type as G is stingray embedded in G and H is a base case group,

is an ascending recognition chain.

3.4 StandardGenerators algorithm

In this chapter we describe the fundamental structure of all constructive recognition algorithms of

this thesis in a single algorithm StandardGenerators. The StandardGenerators algorithm uses

the three subalgorithms GoingDown, BaseCase and GoingUp outlined in the previous sections.

The input and output of the StandardGenerators algorithm are as described in the introduction

of Chapter 3.

The StandardGenerators algorithm deals with the input 〈X 〉=G :=CL(d , q) as follows:

1) If G is a base case group, then call the BaseCase algorithm on G and return the output.

2) Call the GoingDown algorithm with input G to construct a base case group U with U ≤G.

3) Call the BaseCase algorithm with input U to recognise U constructively.



3.4. STANDARDGENERATORS ALGORITHM 67

4) Call the GoingUp algorithm with input U to express the standard generators of G as words

in X in an MSLP.

The StandardGenerators algorithm can be displayed in pseudo code as follows.

Algorithm 3: StandardGenerators

Input: ▶ 〈X 〉=G :=CL(d , q) be a classical group except, Sp(d , q) for d and q even,

in its natural representation

▶ ε ∈ (0,1) such that the algorithm succeeds with probability 1− ε
Output: fail OR (L ,S) where

▶ L ∈GL(d , q) is a base change matrix and

▶ S is an MSLP such that if S is evaluated on XL , then the standard generators

of GL are computed

function StandardGenerators(G,ε)

1 if G is a base case group then

2 return BaseCase(G)

3 N1,N2,N3←MaximalRandomSelectionsCL(d , q ,ε)

4 U ,L1,S1 :=GoingDown(G,N1)

5 S2,L2 := BaseCase(U ,N2)

6 S3,L3 :=GoingUp(GL1L2 , UL2 ,N3)

7 Concatenate S1, S2 and S3 into a single MSLP S ANDL :=L1L2L3

8 return (S,L )

Algorithm StandardGenerators yields the structure for the constructive recognition algorithms

of this thesis. In the next four chapters we present the details for the subalgorithms GoingDown,

BaseCase and GoingUp for each of the classical groups. While the GoingDown algorithm is very

similar across the various classical groups we have to deal with different algebraic problems to design

efficientGoingUp algorithms in all cases. Moreover, we describe two differentGoingUp procedures,

one of which is based on linear algebra and the other one is based on involutions. The GoingUp

algorithm based on involutions can be proven for all classical groups simultaneously which is done

separately in Chapter 9. The big advantage of the linear algebra approach is the efficiency of writing

an MSLP from X to the standard generators of CL(d , q). But this comes at the price of having longer

MSLPs than the MSLPs of the approach using involutions. More details about both approaches are
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given in Chapter 9. The complexity of the algorithm StandardGenerators in discussed partially

in Chapter 10.

We finish this chapter by stating the main theorem for all classical groups of this thesis.

Theorem 3.10

Let 〈X 〉=G ∈ {SL(d , q), Sp(d , q), SU(d , q),Ω(d , q)}, except Sp(d , q) for q and d even, and ε ∈ (0,1).

Algorithm StandardGenerators [Alg. 3] is a one-sided Monte Carlo algorithm which given input

G and ε outputs with probability at least 1− ε an MSLP S and base change matrixL such that S

evaluates from XL to the standard generators of GL .

Proof. The correctness is proven as displayed in Table 3.6.

GoingDown BaseCase GoingUp

SL(d , q) 5.13 5.27 5.35 and 9.3
Sp(d , q) 6.9 6.10 6.13
SU(d , q) 7.7 7.9 7.11
Ω(d , q) 8.8 8.10 8.12

Table 3.6: Theorems which prove the correctness of the subalgorithms GoingDown, BaseCase and
GoingUp used in Algorithm StandardGenerators [Alg. 3].

The function MaximalRandomSelectionsCL(d , q ,ε) defines three integers N1,N2,N3 for the maxi-

mal number of random selections of the GoingDown, BaseCase and GoingUp algorithm and is

used in Line 3 of Algorithm StandardGenerators [Alg. 3]. How N1,N2,N3 are computed is given

and justified in Corollary 10.21 for N1, Remark 10.32 for N2 and Corollary 10.37 for N3. Note that

we only perform a complexity analysis of the GoingUp algorithm based on a conjecture which is

not proven in this thesis. Therefore, we only provide a conjecture about how to choose N3 based on

practical results.

Theorem 3.11

Suppose Conjecture 10.33 is true. The complexity of Algorithm StandardGenerators [Alg. 3] as

stated in Theorem 3.10 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q))
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where ζ denotes an upper bound on the number of field operations required for computing a

random element,Y(q) denotes an upper bound on the number of field operations for constructively

recognising a base case group and Z(q) denotes an upper bound on the required number of field

operations for the final step. For a unitary or orthogonal group the complexity of Algorithm

StandardGenerators [Alg. 3] as stated in Theorem 3.10 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q)+ log(d )V(q))

where V(q) is an upper bound on the number of field operations for computing a square root.

Proof. Theorem 10.38.
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Chapter 4

Stingray elements

In this chapter we introduce important elements of classical groups which play a critical role in the

GoingDown algorithm presented in this thesis as outlined in Chapter 3. Stingray elements have

been studied in numerous publications, see [38, 39, 40, 42, 43, 75, 81], and the treatment presented

here is based on these references.

In Section 4.1 stingray elements are defined and properties of these elements are summarised. Moreover,

we introduce randomised methods for computing stingray elements in matrix groups using pre-

stingray candidates. In Section 4.2 we summarise results from [75] about the proportion of pre-

stingray candidates and, therefore, the probability of computing stingray elements by random

procedure. In Section 4.3 additional algorithms designed for computing properties of stingray

elements are introduced for later use.

4.1 Definition of stingray elements

In this section stingray elements are defined and general properties of stingray elements are sum-

marised. We start with the definition of stingray elements.

Definition 4.1: Definition 2.53

Let G ≤GL(d , q) and let W be a G-invariant subspace of Fd
q , i.e. w g ∈W for all w ∈W and g ∈G.

Then G acts irreducibly on W if there is no G-invariant subspace of W other than {0} and W .

71



72 CHAPTER 4. STINGRAY ELEMENTS

Definition 4.2: [42, Section 3.2]

A matrix s ∈GL(d , q) is a stingray element or more precisely a stingray element of degree m if s has a

(d −m)-dimensional 1-eigenspace Es and s acts irreducibly on a complementary invariant subspace

Ws ≤ Fd
q of dimension m. The space Ws is the stingray body and Es is the stingray tail.

Example 4.3

Consider the following matrix:



4 1 3 3 2 1 2 4 0 4

3 3 4 4 3 4 1 0 3 2

2 1 0 4 3 1 1 2 0 3

3 1 3 4 4 0 2 0 1 3

3 4 1 1 0 3 4 4 1 1

1 0 4 4 2 2 1 1 4 2

2 4 2 2 0 3 4 2 1 0

0 2 2 2 4 0 3 4 2 0

3 4 1 1 4 3 4 4 2 1

0 2 2 2 2 1 3 2 1 2




change of basis−→




0 0 0 4 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 3 0 0 0 0 0 0

0 0 1 4 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1




This element acts irreducibly on a 4-dimensional subspace and fixes a 6-dimensional subspace point-

wise. 1 ◀

For an algorithm that uses stingray elements it is important to have an efficient way to find these

special elements in a given group. Because the properties of stingray elements are quite rare, a

random search cannot be justified and is very unlikely to succeed. Therefore, we introduce two

cumulative definitions stingray candidates and pre-stingray candidates to relax the properties we are

looking for such that a random search is much more promising in classical groups. The probability

of computing pre-stingray candidates by random selection is summarised in Section 4.2.

Definition 4.4

A matrix s̃ ∈GL(d , q) is a stingray candidate if s̃ has a (d −m)-dimensional 1-eigenspace and s acts

on a complementary invariant subspace.

1MediaProduction. *Manta Ray Image*. iStock.com/MediaProduction, Stock ID: 1173588191. Used under standard
license. Accessed August 26, 2022.
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This raises two relevant questions:

a) How can one find stingray candidates?

b) How can we check if a stingray candidate is a stingray element?

We present a randomised algorithm to compute stingray candidates and determine the probability of

successfully finding one. Since stingray candidates still are rare, we relax the properties even further

and search for pre-stingray candidates from which we can easily construct stingray candidates. The

probability of finding pre-stingray candidates is high and has already been studied by Niemeyer and

Praeger [75].

The definition of pre-stingray candidates is quite different compared to stingray elements and stingray

candidates. The idea is to have a computable property which is useful to construct stingray candidates.

The connection is shown in Theorem 4.6.

Definition 4.5: [75, Remark 3.2]

A matrix s ∈ GL(d , q) is a pre-stingray candidate if the characteristic polynomial χs(x) has an

irreducible factor P (x) ∈ Fq[x] of degree m over Fq and no other irreducible factors of degree

divisible by m. The irreducible factor P (x) is a stingray factor.

The following theorem is the key for Algorithm FindStingrayCandidate [Alg. 4].

Theorem 4.6: [75, Remark 3.2]

Let G ≤GL(d , q) and let s ∈G be a pre-stingray candidate, i.e. we can write the characteristic poly-

nomial as χs(x) = P1(x)P
c2
2 (x) . . . P ck

k (x) where P1, . . . , Pk are irreducible polynomials, and deg(P1)

does not divide deg(Pi ) for i ≥ 2. Then sB is a stingray candidate where B = pβ
∏k

i=1(q
deg(Pi )− 1)

and β= ⌈logp(max{c2, . . . , ck})⌉.

Proof. [75, Remark 3.2].

The following algorithm implements the ideas of Theorem 4.6.
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Algorithm 4: FindStingrayCandidate

Input: ▶ 〈X 〉=H ≤GL(d , q)

▶ A natural number 4< n ≤ d

▶ N ∈N
Output: fail OR (g ,S,N ′) where

▶ g ∈H is a stingray candidate,

▶ S is an MSLP from X to g and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function FindStingrayCandidate(H , n,N )

1 while N > 0 do

2 N←N − 1

3 (h,S)← PseudoRandom(H ) // S evaluates on X to h

4 χh← characteristic polynomial of h

5 {Pi}← irreducible factors of χh

6 K←{Pi | 2≤ deg(Pi )≤min{2⌈log(n)⌉, ⌈ n
2 ⌉− 1}}

7 if exists Pi ∈K , m← deg(Pi ) does not divide deg(P j ), j ̸= i then

8 B← as in Theorem 4.6 AND S′← MSLP to hB using S

9 return (hB ,S′,N )

10 return fail

Remark 4.7
Note that the degree of a stingray factor of a pre-stingray candidate is equal to the dimension of the

stingray body of a corresponding stingray element. ◀

Thus question a) is solved. For question b) we need to decide efficiently whether a stingray candidate

acts irreducibly on the m-dimensional subspace. To examine this, we consider ppd-elements.

Definition 4.8: [80]

Let a,b ∈N with a,b> 1. A prime r which divides (ab− 1) is a primitive prime divisor (or ppd for

short) of ab− 1 if r ∤ ai − 1 for all i ∈N with i < b.

Let q = p f be a prime power and d , m ∈N. A matrix g ∈GL(d , q) is a ppd(d , q ; m)-element if there

is a primitive prime divisor r of q m − 1 such that r divides the order of g .
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Definition 4.9

Let s ∈GL(d , q) be a pre-stingray candidate, i.e. the characteristic polynomialχs(x) has an irreducible

factor of degree m over Fq and no other irreducible factors of degree divisible by m. Then s has the

ppd-stingray property if s is a ppd(d , q ; m)-element. In that case sB is a ppd-stingray element where B

is chosen as in Theorem 4.6.

The advantage of a pre-stingray candidate s with ppd-stingray property is that the element sB

automatically acts irreducibly on the m-dimensional invariant subspace. That means that sB is not

only a stingray candidate but rather a stingray element.

Lemma 4.10: [75, Remark 3.2]

Let G ≤GL(d , q) and let s ∈G be a pre-stingray candidate with ppd-stingray property. Choose B as

in Theorem 4.6. Then sB is a stingray element, i.e. it acts irreducibly on an m-dimensional invariant

subspace and fixes a complementary (d −m)-dimensional subspace point-wise where m = deg(P (x))

and P (x) is the stingray factor of s. Moreover, sB is a ppd(d , q ; m)-element.

Proof. [75, Remark 3.2].

Remark 4.11
Clearly every ppd-stingray element is a stingray element but there are stingray elements which are

not ppd-stingray elements. ◀

In order to use ppd-stingray elements in an algorithm, we need an efficient algorithm to check for

the ppd-stingray property.

Lemma 4.12

Let G ≤GL(d , q) and s ∈G be a pre-stingray candidate, i.e. the characteristic polynomial χs(x) has

an irreducible factor of degree m over Fq and no other irreducible factors of degree divisible by m.

Let W ≤ Fd
q be the sB -invariant m-dimensional subspace. Then s has the ppd-stingray property if

and only if (s
W
)(q m−1)/Ψ ̸= 1, where Ψ = Ψ(m, q) denotes the product of all primitive prime divisor

of q m − 1 with multiplicity.
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Proof. The linear transformation s
W

induced by s on W has order dividing q m − 1. If there is a

primitive prime divisor of q m − 1 which also divides |s
W
|, then s has the ppd-stingray property.

Since the order of s
W

divides q m − 1 and (s
W
)(q m−1)/Ψ ̸= 1, the natural number Ψ must contain a

prime divisor of |s
W
|. Hence, there exists r ∈N prime with r | Ψ and r divides |s

W
|. Thus, there is

a primitive prime divisor of q m − 1 which divides |s
W
|.

The opposite direction also holds using [75]: Remark 3.2 of [75] states that if s ∈G ≤GL(d , q) has

the ppd-stingray property, then there exists r ∈N prime with r | q m − 1 and r divides |sB |. Hence,

r divides |(s
W
)B |= |sB | and r divides |s

W
|. Since r is a primitive prime divisor of q m − 1, r does

not divide (q m − 1)/Ψ and, therefore, (s
W
)(q m−1)/Ψ ̸= 1.

Remark 4.13
(s

W
)(q m−1)/Ψ ̸= 1 is a non-identity matrix if and only if x (q m−1)/Ψ ̸= 1 within the polynomial ring

Fq[x]/〈P1(x)〉 which can be checked efficiently, see [75, Remark 3.2]. ◀

Algorithm FindStingrayCandidate [Alg. 4] and Remark 4.13 can be combined in a single algorithm

as Algorithm FindStingrayElement [Alg. 5].

Theorem 4.14 states the correctness of Algorithm FindStingrayElement [Alg. 5] and its termination

using at most N random elements. In Chapter 10 we determine how to choose N to control the

probability that the algorithm returns an output that is not fail.

Theorem 4.14

Algorithm FindStingrayElement [Alg. 5] terminates using at most N random selections and works

correctly.

Proof. Clear.

Algorithm FindStingrayElement [Alg. 5] would require a large amount of tries to reach a high

success probability in symplectic and orthogonal groups since pre-stingray candidates with the

ppd-stingray property as in Definition 4.9 are quite rare. In order to adapt the stingray elements

approach for symplectic and orthogonal groups, the pre-stingray candidates must have an additional

property. This is used in Chapter 6 and Chapter 8.
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Algorithm 5: FindStingrayElement

Input: ▶ 〈X 〉=H ≤GL(d , q)

▶ A natural number 4< n ≤ d

▶ N ∈N
Output: fail OR (g ,S,N ′) where

▶ g ∈H is a ppd-stingray element,

▶ S is an MSLP from X to g and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function FindStingrayElement(H , n,N )

1 while N > 0 do

2 N←N − 1

3 (h,S)← PseudoRandom(H ) // S evaluates on X to h

4 χh← characteristic polynomial of h

5 {Pi}← irreducible factors of χh

6 K←{Pi | 2≤ deg(Pi )≤min{2⌈log(n)⌉, ⌈ n
2 ⌉− 1}}

7 if exists Pi ∈K , m← deg(Pi ) does not divide deg(P j ), j ̸= i then

8 if x (q
m−1)/Ψ(m,d ) ̸= 1 within Fq[x]/〈Pi (x)〉 then // Remark 4.13

9 B← as in Theorem 4.6 AND S′← MSLP to hB using S

10 return (hB ,S′,N )

11 return fail

Definition 4.15: [75, Section 3]

For F let F denote the algebraic closure. Two polynomials P1(x), P2(x) ∈ Fq[x] are conjugate if for

each root λ ∈ Fq of P1(x) the element λ−1 is a root of P2(x). A polynomial P (x) is self-conjugate if

P (x) ∈ Fq[x] is conjugate to itself.

Definition 4.16

Let P (x) :=
∑d

i=0λi x i ∈ Fq[x] be a polynomial of degree d . Then the reciprocal or reflection of P (x)

is P R(x) :=
∑d

i=0λd−i x i . We call P (x) self-reciprocal or palindromic if P (x) = P R(x) holds.

The connection between self-conjugate and self-reciprocal polynomials shown in the next lemma is
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widely-known.

Lemma 4.17

Let P (x) :=
∑d

i=0λi x i ∈ Fq[x] be a polynomial of degree d . Then all of the following hold:

1) P R(x) = xd P (x−1).

2) If P (x) is self-reciprocal, then P (x) is self-conjugate.

3) If P (x) is irreducible, monic, self-conjugate and d > 1, then P (x) is self-reciprocal.

Proof.

1) Follows from xd P (x−1) =
∑d

i=0λi xd−i = P R(x).

2) By 1) we have P (x) = xd P (x−1) which implies the claim.

3) Let ı1, . . . , ıd ∈ Fq be the roots of P (x), i.e. P (x) =
∏d

i=1(x − ıi ). Since P (x) is irreducible,

the ıi are pairwise distinct. Since P (x) is self-conjugate, for every 1≤ i ≤ d there is a unique

1≤ j ≤ d such that ıi ı j = 1. Moreover i ̸= j as ı2
i = 1 would imply ıi =±1, hence P (x) = x±1,

but deg(P (x))> 1. Hence, the roots come in pairs and d is even. Thus the constant term of

P (x) is equal to P (0) = (−1)d
∏d

i=1 ıi =
∏d

i=1 ıi = 1.

Hence, P R(x) is monic. Moreover, by 1) every root of P (x) is a root of P R(x). This implies

P (x) and P R(x) have the same roots and the same degree and P (x) divides P R(x), hence

P = P R(x).

Algorithm 6: SelfReciprocalCheck

Input: ▶ P (x) ∈ Fq[x] with
∑d

i=0λi x i = P (x)

Output: ▶ true if P (x) is self-reciprocal and otherwise false

function SelfReciprocalCheck(P )

1 if λi = λd−i for all i ∈ {0, . . . , ⌊ d
2 ⌋} then

2 return true

3 else

4 return false

Lemma 4.17 presents an efficient way to check whether a polynomial of Fq[X ] is self-reciprocal and
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Algorithm SelfReciprocalCheck [Alg. 6] is used as a self-reciprocal test in the following.

Remark 4.18
In the following we are interested in self-conjugate, irreducible factors of degree at least 2 of the

characteristic polynomial of matrices in SL(d , q). That means that we are computing monic,

irreducible polynomials of degree at least 2 and by Lemma 4.17 being self-conjugate and self-reciprocal

is equivalent in these cases. Therefore, we use self-reciprocal instead of self-conjugate in the following.

Note that verifying the statement P (x) = P (x) = xd P (x−1) is more costly than comparing equality

of λi and λd−i for all i ∈ {0, . . . , ⌊ d
2 ⌋}. ◀

Definition 4.19

Let G ≤ GL(d , q). An element s ∈ G is a self-reciprocal pre-stingray candidate if the characteristic

polynomial χs(x) has a self-reciprocal irreducible factor P (x) ∈ Fq[x] of degree 2m over Fq , no other

self-reciprocal irreducible factor of degree divisible by 2m and no non-self-reciprocal irreducible

factor of degree divisible by m. The irreducible factor P (x) is a self-reciprocal stingray factor.

If s ∈ G is a self-reciprocal pre-stingray candidate with the ppd-stingray property, then sB is a

self-reciprocal ppd-stingray element where B is chosen as in Theorem 4.6.

Self-reciprocal ppd-stingray elements are important for theGoingDown algorithm of the symplectic

and orthogonal groups. Since self-reciprocal pre-stingray candidates form a subset of the pre-stingray

elements, Algorithm FindStingrayElement [Alg. 5] can be used for self-reciprocal pre-stingray

elements while additionally applying Algorithm SelfReciprocalCheck [Alg. 6] to the irreducible

factors.

Algorithm 7: FindSelfReciprocalStingrayElement

Input: ▶ 〈X 〉=H ≤GL(d , q)

▶ A natural number 4< n ≤ d

▶ N ∈N
Output: fail OR (g ,S,N ′) where

▶ g ∈H is a self-reciprocal ppd-stingray element,

▶ S is an MSLP from X to g and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used



80 CHAPTER 4. STINGRAY ELEMENTS

function FindSelfReciprocalStingrayElement(H , n,N )

1 while N > 0 do

2 N←N − 1

3 (h,S)← PseudoRandom(H ) // S evaluates on X to h

4 χh← characteristic polynomial of h

5 {Pi}← irreducible factors of χh

6 K←{Pi | 2≤ deg(Pi )≤min{2⌈log(n)⌉, ⌈ n
2 ⌉− 1}, deg(Pi ) is even, SelfReciprocalCheck(Pi )}

7 if exists Pi ∈K , 2m← deg(Pi ) does not divide deg(P j ), j ̸= i if SelfReciprocalCheck(P j )

AND m does not divide deg(P j ), j ̸= i if not(SelfReciprocalCheck(P j )) then

8 if x (q
m−1)/Ψ(m,d ) ̸= 1 within Fq[x]/〈Pi (x)〉 then

9 B← as in Theorem 4.6 AND S′← MSLP to hB using S

10 return (hB ,S′,N )

11 return fail

Theorem 4.20

Algorithm FindSelfReciprocalStingrayElement [Alg. 7] terminates using at most N random

selections and works correctly.

Proof. Clear.

Lastly, we need one final lemma about the stingray body of stingray elements in this thesis.

Lemma 4.21: [42, Lemma 3.9(a)]

Let s ∈CL(d , q) be a stingray element with stingray body Ws and stingray tail Es . Then we have

Fd
q =Ws⊕Es . Moreover, Ws and Es are non-degenerate if CL(d , q) preserves a non-degenerate form.

Proof. The decomposition Fd
q =Ws ⊕ Es is clear since Ws is a complementary subspace of Es . It is

left to show that Ws and Es are non-degenerate if CL(d , q) preserves a non-degenerate form Φ. For

the proof of that we follow [42, Lemma 3.9(a)]. Let w ∈Ws and v ∈ Es . Then

Φ(w, v) = Φ(w g , v g ) = Φ(w g , v)
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which is equivalent to Φ(w − w g , v) = 0. Since s − 1 is non-singular on Ws , we can conclude

that {w g − w | w ∈ Ws} = Ws . Therefore, Φ(w, v) = 0 for all w ∈ Ws and hence v ∈ (Ws )
⊥.

Since v ∈ Es was arbitrary, Es ≤ (Ws )
⊥. Using 2) of Lemma 2.14 we can also conclude that

dim((Ws )
⊥) = dim(Fd

q )− dim(Ws ) = d − dim(Ws ) = dim(Es ) since Fd
q =Ws ⊕ Es and, hence, it

follows that (Ws )
⊥ = Es . Thus, Ws ∩ (Ws )

⊥ =Ws ∩ Es = {0} and, therefore, Ws is non-degenerate.

Similarly, it can be shown that Es is non-degenerate.

In the algorithms of this thesis we are not dealing with single stingray elements but instead with

pairs of stingray elements as given in the next definition.

Definition 4.22

If s1, s2 ∈GL(d , q) are stingray elements, then (s1, s2) is a stingray pair. Moreover, in special linear

groups a stingray pair (s1, s2) is a stingray duo if Ws1
∩Ws2

= {0} where Wsi
is the stingray body of si

for i ∈ {1,2}. In symplectic, unitary and orthogonal groups a stingray pair (s1, s2) is a stingray duo if

Wsi
is non-degenerate for i ∈ {1,2} and Ws1

∩Ws2
= {0} and Ws1

⊕Ws2
is non-degenerate where Wsi

is the stingray body of si for i ∈ {1,2}.

Remark 4.23
Note that in symplectic, unitary and orthogonal groups if s1, s2 ∈GL(d , q) are ppd-stingray elements,

then Wsi
is non-degenerate for i ∈ {1,2} using Lemma 4.21 where Wsi

is the stingray body of si .

Hence, we only need to verify that Ws1
∩Ws2

= {0} and Ws1
⊕Ws2

is non-degenerate. ◀

4.2 Proportion results about stingray elements

In order to comment on the efficiency of the algorithms designed in this thesis, it is important

to know the proportion of pre-stingray candidates in G, i.e. the probability that a pre-stingray

candidate of G is chosen by one random selection in G. Niemeyer and Praeger [75] have already

dealt with this question and we summarise the most important results below.

Let H =CL(d , q). In the GoingDown basic step we select random elements until we find a (self-

reciprocal) pre-stingray candidate as outlined in Chapter 3. The self-reciprocal property is omitted

in the case of special linear groups and special unitary groups. In this section we summarise results
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about the probability that a random element is a (self-reciprocal) pre-stingray candidate based on the

results by Niemeyer and Praeger [75]. In Section 10.1 we extend some of the results of this section

to be more fitting to the algorithms designed in this thesis.

Since H is finite it is sufficient to compute the size of the set of all (self-reciprocal) pre-stingray

candidates in order to compute the probability that a random element of H is a (self-reciprocal)

pre-stingray candidate. The sets are defined as follows.

Definition 4.24: [75, Definition 3.1]

Let H be a d -dimensional classical group defined over a finite field with q elements, as in one of the

rows of Table 4.1. Let k be an integer such that 1≤ k ≤ d .

(i) Let ⨿k denote the set of all elements h ∈H with characteristic polynomial χh(x) for which

one of the following conditions holds:

(a) H = SL(r, q) or SU(r, q) and h is a pre-stingray candidate with stingray factor of degree

k where k is odd in case SU(r, q).

(b ) H = Sp(2r, q), SO±(2r, q) or SO◦(2r + 1, q) and h is a self-reciprocal pre-stingray candi-

date with self-reciprocal stingray factor of degree k.

(i i) Let⨿ppd
k denote the subset of⨿k consisting of those elements h which also have the ppd-stingray

property.

The integer r of Definition 4.24 depends on the entry in Table 4.1.

H d α δ

SL(r, q) r 1 1
SU(r, q) r 1 2
Sp(2r, q) 2r 2 1
SO◦(2r + 1, q) 2r + 1 2 1
SO±(2r, q) 2r 2 1

Table 4.1: Groups and constants in Theorem 4.25 and 4.26 [75, Table 1].

⨿ ⨿k ⨿ppd
k

ℓk ,⨿ 1− 2
qk/2 1− 1

αk

mr,⨿ 1− 2
q log(r )/2 1− 1

α log(r )

Table 4.2: Definitions of ℓk ,⨿ and mr,⨿ in Theorem 4.25 [75, Table 2].
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Theorem 4.25: [75, Theorem 3.3]

Let q be a prime power and Fq a finite field with q elements. Let H , d ,α and δ be as in one of the

rows of Table 4.1. Let k be a positive integer with max{3, log(r )} ≤ k ≤ r/2 and such that k is odd

when H = SU(r, q). Let ⨿ be one of ⨿k or ⨿ppd
k such that ⨿ ̸= ;, and let ℓk ,⨿ and mr,⨿ be as in

Table 4.2. Then

1) ℓk ,⨿
3eαk ≤ |⨿|

|H | ≤ 5
3αk and

2) if log(r )< k ≤ 2 log(r ), then mr,⨿
6eα log(r ) ≤ |⨿|

|H | ≤ 5
3α log(r ) .

Proof. [75, Theorem 3.3].

Theorem 4.26: [75, Theorem 1.1]

Let H be a d -dimensional classical group defined over a finite field with q elements, as in one of the

rows of Table 4.1. Let r,α be as in Table 4.1, and let k ∈N such that max{3, log(r )} ≤ k ≤ r/2 and

k odd if H = SU(r, q). Let ⨿ be the set ⨿ppd
k . Each element of ⨿ powers up to an element which has

a (d −αk)-dimensional 1-eigenspace and acts irreducibly on a complementary invariant subspace of

dimension αk. Moreover,
2

9eαk ≤ |⨿|
|H | ≤ 5

3αk .

Proof. [75, Theorem 1.1].

The two theorems above prove that the probability of finding a pre-stingray candidate with ppd-

stingray property by random search is promising in classical groups.

Remark 4.27
Notice that there is a slight error in [75, Theorem 1.1] as not all elements of ⨿k power up to an

element that acts irreducibly on a complementary invariant subspace of dimension αk but this has

no effect on the results of this thesis as we are only using elements of ⨿ppd
k . ◀

Remark 4.28
Note that the proportion results of Theorem 4.26 are given for special linear groups and unitary

groups based on stingray elements and for symplectic groups and orthogonal groups based on
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self-reciprocal stingray elements as outlined in Definition 4.24. Therefore, we design algorithms

using stingray elements in special linear groups and unitary groups and self-reciprocal stingray

elements in symplectic groups and orthogonal groups in this thesis. ◀

4.3 Algorithms for stingray elements

In this section more important algorithms are introduced and analysed, e.g. for computing the

stingray body and stingray tail of stingray elements. Moreover, since stingray elements act irre-

ducibly and invariantly on a subspace while fixing a complementary subspace, these elements are

stingray embedded and we design an algorithm for extracting the stingray embedded group such

that further computations can be performed using matrices of smaller degree and are thus more

efficient.

First, given a stingray element, we require an algorithm to compute the stingray body (see Algorithm

ComputeStingrayBody [Alg. 9]) and the stingray tail (see ComputeStingrayTail [Alg. 8]). These

algorithms rely solely on basic linear algebra.

Algorithm 8: ComputeStingrayTail

Input: ▶ s ∈GL(d , q) a stingray element

Output: ▶ Es ≤ Fd
q the stingray tail, i.e. the 1-eigenspace, of s

function ComputeStingrayTail(s)

1 Es← Kernel( s − Id )

2 return Es

Algorithm 9: ComputeStingrayBody

Input: ▶ s ∈GL(d , q) a stingray element

Output: ▶Ws ≤ Fd
q the stingray body of s , i.e. s acts irreducibly and invariantly on Ws

function ComputeStingrayBody(s)

1 Ws← Image( s − Id )

2 return Ws
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Lemma 4.29

Algorithm ComputeStingrayTail [Alg. 8] and ComputeStingrayBody [Alg. 9] work correctly

and terminate.

Proof. Clearly the two algorithms terminate. Since s is a stingray element, Fd
q decomposes into

Fd
q =Ws ⊕ Es where Es is the stingray tail of s and Ws is the stingray body. Note that s − Id is the

unique 〈s〉-invariant submodule of Fd
q on which s acts non-trivially and irreducible, see [42, Lemma

3.7(c)]. This is exactly what the algorithms compute.

Using Algorithm ComputeStingrayBody [Alg. 9] it is, therefore, easy to verify whether the

stingray bodies of (ppd-)stingray elements intersect trivially and, thus, whether a pair of (ppd-

)stingray elements forms a stingray duo. An algorithm to check whether a pair of ppd-stingray

elements is a stingray duo is given by Algorithm IsStingrayDuo [Alg. 10].

Algorithm 10: IsStingrayDuo

Input: ▶ (s1, s2) ∈CL(d , q) a stingray pair of ppd-stingray elements

▶ Φ a preserved form by CL(d , q) (omitted if CL(d , q) = SL(d , q))

Output: ▶ true if (s1, s2) is a stingray duo as in Definition 4.22 and otherwise false

function IsStingrayDuo((s1, s2),Φ)

1 Ws1
←ComputeStingrayBody(s1)

2 Ws2
←ComputeStingrayBody(s2)

3 W ← write basis of Ws1
and Ws2

into one matrix

4 if Kernel(W ) = {0} then
5 if IsNonDegenerate(W ,Φ) then // Note that this check is omitted in special linear groups

6 return true

7 return false

The performance of the constructive recognition algorithms of this thesis can be improved by using

lower-dimensional matrices. This can be achieved by observing the action of stingray elements on

their stingray bodies. This corresponds to extracting the non-trivial block of a stingray element after

applying a suitable base change, e.g. extracting the non-trivial block of the right matrix of Example

4.3. An algorithm to compute the action of a (ppd-)stingray element on its stingray body is given
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by Algorithm InducedActionRepresentation [Alg. 11].

Algorithm 11: InducedActionRepresentation

Input: ▶ s ∈GL(d , q) a (ppd-)stingray element

Output: ▶ s ′ ∈GL(m, q) which corresponds to the linear action of s on its stingray body

function InducedActionRepresentation(s)

1 Ws←ComputeStingrayBody(s)

2 B← Basis(Ws )

3 s ′← Apply(B , b → Coefficients(B , b · s ))
4 return s ′

Remark 4.30
Line 3 of Algorithm InducedActionRepresentation [Alg. 11] is executed as follows: Since the

stingray body Ws of a (ppd-)stingray element s ∈GL(d , q) is invariant under the action of s , we can

choose a basis (b1, . . . , bm) of Ws and bi s ∈Ws for 1≤ i ≤ m. Hence, for 1≤ i ≤ m we can express

bi s as a linear combination of (b1, . . . , bm) and write the coefficients of this linear combination as a

row in a matrix which results in an m×m matrix describing the action of s on the stingray body

Ws . ◀

Lastly, we represent a groupwhich is generated by stingray elements ofGL(d , q) as lower-dimensional

matrices by observing the action of the group on an irreducible and invariant subspace of Fd
q . As a

group generated by stingray elements is also stingray embedded in GL(d , q), computing this new

representation corresponds to extracting H of Definition 3.3. We cannot call Algorithm InducedAc-

tionRepresentation [Alg. 11] on both stingray elements because we assume that the stingray bodies

of stingray elements intersect trivially and, therefore, Algorithm InducedActionRepresentation

[Alg. 11] uses different base change matrices for extracting the non-trivial block of the stingray

elements. We solve this problem by observing the action of the stingray elements on the sum of

their stingray bodies which is achieved by Algorithm InducedActionRepresentationGroup [Alg.

12].
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Algorithm 12: InducedActionRepresentationGroup

Input: ▶ U ≤GL(d , q) generated by (ppd-)stingray elements

Output: ▶ Ũ ≤GL(d̃ , q) which is generated by the linear action of the generators of U on

the sum of their stingray bodies

function InducedActionRepresentationGroup(U )

1 A← [ ]

2 for s ∈ Generators(U ) do

3 Ws←ComputeStingrayBody(s)

4 Append(A, Ws )

5 B← Basis(〈A〉)
6 Ũ← [ ]

7 for s ∈ Generators(U ) do

8 Append(Ũ , Apply(B , b → Coefficients(B , b · s )))

9 return 〈Ũ 〉
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Chapter 5

Special linear group

This chapter details an efficient realisation of the strategy outlined in Chapter 3 for the special linear

group SL(d , q) in its natural representation for d ≥ 4. If d = 2, then we refer to [27], and if d = 3,

then we refer to [65]. This chapter builds upon preliminary concepts and ideas from Ákos Seress

and Max Neunhöffer who had the idea of using stingray elements for a constructive recognition

algorithm.

We start this chapter by introducing standard generators for special linear groups and proving how

arbitrary transvections can be computed as words in this generating set. Afterwards we describe the

subalgorithms as outlined in Section 3.1.

Section 5.1 deals with the GoingDown algorithm and is divided into four subsections. Given the

matrix group 〈X 〉 = G = SL(d , q), the aim is to compute a subgroup U of G with U ∼= SL(2, q).

Section 5.1.1 introduces the GoingDown basic step, while Section 5.1.2 applies the GoingDown

basic step iteratively in the main GoingDown algorithm. Given Ui ≤ G with Ui
∼= SL(di , q) the

goal of the GoingDown basic step is to compute a subgroup Ui+1 of Ui with Ui+1
∼= SL(di+1, q)

and di+1 ≤ 4⌈log(di )⌉. Stingray elements play a major role in this process. In Section 5.1.2 the

GoingDown basic step is employed to design an algorithm for computing a descending recognition

chain of subgroups of G as in Definition 3.4 terminating in a subgroup isomorphic to SL(4, q),

i.e. a terminal group as in Definition 3.6. The correctness of this algorithm is also proven. In

Section 5.1.3 we discuss why the GoingDown basic step in Section 5.1.1 cannot be used to compute

89
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a subgroup isomorphic to SL(2, q). Therefore, we introduce another approach by Leedham-Green

and O’Brien and explain why their methods are applicable. The approach by Leedham-Green and

O’Brien is used as the final step and for computing the full descending recognition chain as outlined

in Chapter 3. In Section 5.1.4 a variation of the GoingDown basic step is discussed which yields a

faster practical run-time and incurs no additional costs regarding the MSLPs. Additionally, another

idea is illustrated to improve the run-time even further at the cost of longer MSLPs. Lastly, in

Section 5.1.5 we combine the GoingDown basic step of Section 5.1.2 and final step of Section 5.1.3

into a single GoingDown algorithm for special linear groups.

Section 5.2 deals with the BaseCase algorithm, i.e. given 〈XU 〉=U = SL(2, q) the standard genera-

tors of U are expressed as words in XU . For this we rely on an algorithm for constructive recognition

of SL(2, q), see [27]. We do not discuss the details of [27] but justify it is applicable in our situation.

Section 5.3 introduces theGoingUp algorithm. We prove the correctness of two different approaches

forGoingUp basic steps. The first one is based on linear algebra and uses ideas which are completely

new and have not been published previously. The second approach produces shorter MSLPs and is

based on involutions and ideas from [59] but in contrast to our first approach is only applicable

when the characteristic is odd and has worse run-time in practice.

We start this chapter by introducing the standard generators of special linear groups. As in Chapter 2,

q = p f denotes a prime power, (ω1, . . . ,ω f ) an Fp -basis of Fq and d , n are natural numbers with

n ≤ d . Let V = Fd
q with basis {b1, . . . , bd}. The matrices Ei , j (ı) are as defined in Section 2.1.

Definition 5.1

Let d ≥ 2 and let S ⊆ SL(d , q). Then S is a set of standard generators for SL(d , q) if S is conjugate to

the following set consisting of 2 f + 2 elements:

• E1,2(ωi ) for 1≤ i ≤ f , z1,z2

• E2,1(ωi ) for 1≤ i ≤ f ,

• a permutation matrix z1 corresponding to the permutation (1, d , d − 1, . . . , 2) with the entry

(z1)1,d changed to −1 if d is even and

• a permutation matrix z2 corresponding to the permutation (2, d , d − 1, . . . , 3) with the entry

(z2)2,d changed to −1 if d is odd.
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Remark 5.2
The negative entries are introduced to ensure that the elements are contained in SL(d , q). ◀

The following lemma shows how arbitrary transvections can be expressed in terms of the standard

generators and computes upper bounds for the length of these words.

Lemma 5.3

Let S ⊆ SL(d , q) be the set of standard generators with respect to the basis (b1, . . . , bd ) and let

M = [S, Id , Id , Id ].

1) Let ı ∈ Fq and ı =
∑ f

j=1λ jω j for λ j ∈ Fp . By identifying the finite field element λ j ∈ Fp with

an integer in {0, . . . , p − 1}, this yields

E1,2(ı) =
f∏

j=1

E1,2(ω j )
λ j and E2,1(ı) =

f∏
j=1

E2,1(ω j )
λ j .

Moreover, there exists a (2 f + 5)-MSLP S of length at most f − 1 + 2 log2(q) such that

EvalM (S) = [E1,2(ı)] or EvalM (S) = [E2,1(ı)].

2) Moreover,

E1,i (ı)
z−1

2 = E1,i+1(ı) for 2≤ i ≤ d − 1,

Ei ,1(ı)
z−1

2 = Ei+1,1(ı) for 2≤ i ≤ d − 1 and

Ei , j (ı)
z−1

1 = Ei+1, j+1(ı) for 2≤ j ≤ d − 1 and 1≤ i ≤ d − 2.

Proof. 1) If k ∈ {0, . . . , p − 1}, then E1,2(ω j )
k = E1,2(kω j ) and hence

E1,2(ı) = E1,2

� f∑
j=1

λ jω j

�
=

f∏
j=1

E1,2(λ jω j ) =
f∏

j=1

E1,2(ω j )
λ j .

Using repeated squaring the computation of E1,2(ω j )
λ j needs at most 2 log2(p) operations.

Since computing each of the f matrices E1,2(ω j )
λ j thus requires at most 2 log2(p) operations

and multiplying the resulting f matrices requires further f − 1 operations, we need at most

f − 1+ f 2 log2(p) = f − 1+ 2 log2(q) operations. This can be done analogously for E2,1(ı).

2) First, we prove that E1,i (ı)
z−1

2 = E1,i+1(ı) by showing bk E1,i (ı)
z−1

2 = bk E1,i+1(ı) for 1≤ k ≤ d .
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Note that b1z2 = b1. Hence,

b1E1,i (ı)
z−1

2 = b1z2E1,i (ı)z
−1
2 = b1E1,i (ı)z

−1
2 = (b1+ ı bi )z

−1
2 = b1z−1

2 + ı bi z−1
2 = b1+ ı bi+1,

b2z2E1,i (ı)z
−1
2 = bd E1,i (ı)z

−1
2 = bd z−1

2 = b2 and

bk z2E1,i (ı)z
−1
2 = bk−1E1,i (ı)z

−1
2 = bk for k ∈ {3, . . . , d}.

Hence, E1,i (ı)
z−1

2 = E1,i+1(ı) and analogously it can be shown that Ei ,1(ı)
z−1

2 = Ei+1,1(ı). Second,

we show that Ei , j (ı)
z−1

1 = Ei+1, j+1(ı). We have

bi+1Ei , j (ı)
z−1

1 = bi+1z1Ei , j (ı)z
−1
1 = (bi + ı b j )z

−1
1 = bi+1+ ı b j+1,

b1z1Ei , j (ı)z
−1
1 = bd Ei , j (ı)z

−1
1 = b1 and

bk z1Ei , j (ı)z
−1
1 = bk−1Ei , j (ı)z

−1
1 = bk for k ∈ {2, . . . , d} \ {i + 1}.

Hence, Ei , j (ı)
z−1

1 = Ei+1, j+1(ı).

Example 5.4

We visualise the algorithms of this chapter using the following example matrices of F16×16
5 :




3 2 1 3 4 0 3 1 2 1 4 2 4 0 1 0
2 2 0 4 2 2 4 1 3 2 4 4 1 4 2 3
3 4 1 1 3 3 1 4 2 3 1 1 4 1 3 2
4 1 4 0 2 1 4 2 2 0 3 0 4 2 0 4
0 4 4 1 4 2 1 0 1 1 0 2 2 4 1 3
1 2 4 3 4 4 3 3 0 2 2 4 0 1 2 2
4 3 1 2 1 2 3 2 0 3 3 1 0 4 3 3
2 4 3 1 3 1 1 2 0 4 4 3 0 2 4 4
3 1 2 4 2 4 4 4 1 1 1 2 0 3 1 1
0 1 1 4 2 3 4 0 4 0 0 3 3 1 4 2
4 4 2 1 3 0 1 2 4 2 4 4 3 0 2 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 2 2 3 4 1 3 0 3 3 0 1 2 2 3 4
4 3 1 2 1 2 2 2 0 3 3 1 0 0 3 3
0 1 1 4 2 3 4 0 4 4 0 3 3 1 0 2
2 0 4 0 0 4 0 1 4 3 4 1 3 3 3 2




︸ ︷︷ ︸
:= aΞ1

,




1 0 3 2 0 4 4 3 3 1 2 1 4 4 2 1
2 1 2 3 2 4 1 2 3 1 2 2 0 0 0 0
1 2 1 1 1 1 1 4 3 2 1 4 2 0 0 3
4 1 0 0 1 2 3 0 3 4 1 2 3 0 2 0
1 0 3 0 0 3 3 0 4 1 3 0 0 1 1 1
0 2 3 3 3 2 4 3 0 3 1 3 4 0 1 2
0 1 3 1 0 1 4 0 4 2 1 4 3 0 3 0
3 4 4 0 2 0 0 4 4 0 2 2 1 1 2 4
1 0 2 3 0 4 4 4 0 0 0 3 2 1 0 1
4 1 1 0 1 1 3 1 4 2 4 3 2 0 1 2
0 4 0 3 4 2 3 1 2 0 4 4 4 3 3 3
4 3 2 1 3 0 0 0 1 3 4 3 0 3 1 4
1 2 1 3 1 4 2 2 3 2 1 2 3 0 1 0
3 4 0 0 4 1 0 4 3 2 2 1 2 3 4 2
0 3 1 3 3 1 0 3 3 0 3 0 4 1 1 4
1 1 1 3 3 4 3 3 4 3 3 4 4 3 0 0




︸ ︷︷ ︸
:= aΞ2

and GΞ := 〈aΞ1 ,aΞ2〉. The symbol Ξ, which is the Greek capital letter xi, is used in this chapter

to refer to groups and group elements mentioned in previous examples. The symbol itself has no

meaning except for recalling these previous examples. ◀
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5.1 GoingDown algorithm

Stingray elements are key to the GoingDown algorithm as they are used in the GoingDown basic

step to find a subgroup of SL(d , q) isomorphic to SL(d ′, q) quickly, where d ′ ≤ 4⌈log(d )⌉. Later in
this section we study how the GoingDown basic step can be implemented while the idea of the

basic step is illustrated in Figure 5.1. Repeated calls to theGoingDown basic step yield a descending

recognition chain as in Definition 3.4, that is

SL(4, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G,

where di ≤ 4⌈log(di−1)⌉ for 2≤ i ≤ k. In Section 5.1.2 Algorithm GoingDownToDim4 [Alg. 14]

implements this strategy and we prove its correctness and analyse its complexity. Unfortunately,

the GoingDown basic step is not applicable to find a subgroup U of G isomorphic to the base case

group SL(2, q). The reason for this is explained in more detail in Remark 5.16. In Section 5.1.3

we introduce a method of Leedham-Green and O’Brien [59] to construct a subgroup of SL(4, q)

isomorphic to SL(2, q) which is our final step as outlined in Chapter 3.

Lastly, a variation of theGoingDown basic step is introduced in Section 5.1.4 which yields a practical

run-time improvement while having no effect on the length and memory quota of the produced

MSLPs. In Section 5.1.4 we also discuss an approach for improving the run-time at the cost of longer

MSLPs.

5.1.1 GoingDown basic step

Let G = SL(d , q). In this section we describe and prove the correctness of one GoingDown basic

step. Given a stingray embedded subgroup H of G with H ∼= SL(d ′, q) for d ′ ≤ d as in Definition

3.3, the aim of the basic step is to compute a stingray embedded subgroup U of H , and thus U is

also a stingray embedded subgroup of G, with U ∼= SL(d ′′, q) and d ′′ ≤ 4⌈log(d ′)⌉. The algorithm
to compute the subgroup U is a randomised algorithm using stingray elements. Therefore, this

section heavily relies on Chapter 4 and the algorithms presented there.

We start with a sketch of the idea. Let s1, s2 ∈GL(d , q) be two stingray elements, let Wsi
≤ Fd

q be

their respective stingray bodies, dim(Wsi
) = ni and Esi

their respective stingray tails for i ∈ {1,2},
where n1 + n2 ≤ 4⌈log(d )⌉. As in Example 4.3, there are base change matrices Li such that the
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stingray element sLi
i is a matrix with a non-trivial ni ×ni block in the upper left hand corner and 1s

on the remaining diagonal. The base change matrixLi can be computed by appending a basis for

the stingray tail Esi
to a basis for the stingray body Wsi

for i ∈ {1,2}. This is illustrated by the upper

left gray block in Figure 5.1. With high probability the base change matricesL1 andL2 are different.

However, since n1 and n2 are relatively small compared to d , the elements s1 and s2 must have a large

common 1-eigenspace, namely Es1
∩ Es2

. We consider a base change matrix Ls1,s2
∈GL(d , q) that

arises if we choose a basis for Ws1
+Ws2

and append a basis for the large common 1-eigenspace Es1
∩Es2

of s1 and s2. Let n := dim(Ws1
+Ws2

) = d − dim(Es1
∩ Es2

). The actions of the stingray elements

s
Ls1,s2
1 and s

Ls1,s2
2 on Ws1

+Ws2
are represented with orange blocks in Figure 5.1. It is important that

the base change matrix is identical for s1 and s2. With high probability Ws1
∩Ws2

= {0}, 〈s1, s2〉 acts
irreducibly on Ws1

+Ws2
and 〈s1, s2〉 ∼= SL(n, q) as illustrated in Figure 5.1. The probability results

are summarised in Chapter 10 and the action of the stingray pair (s1, s2) is discussed in more detail

in Remark 5.5.

s1 =


 ∗


 ∈GL(d , q) s2 =


 ∗


 ∈GL(d , q)

↓ Base change matrixL1 ↓ Base change matrixL2

sL1
1 =




∗
∗ 0

0

1 . . . 0
... . . . ...

0 . . . 1




= s
Ls1,s2
1 s

Ls1,s2
2 =




∗

∗
0

0

1 . . . 0
... . . . ...

0 . . . 1




= sL1
2

︸ ︷︷ ︸


SL(n, q) 0

0

1 . . . 0
... . . . ...

0 . . . 1




Figure 5.1: Visualisation of generating special linear groups using stingray duos.1

1MediaProduction. *Manta Ray Image*. iStock.com/MediaProduction, Stock ID: 1173588191. Used under standard
license. Accessed August 26, 2022.
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Two interesting questions are why the matrices in the orange block “interact” with each other and

how the stingray elements can be displayed under the described base change of Figure 5.1. The next

remark deals with this and the following example illustrates it.

Remark 5.5
Let s1, s2 ∈ SL(d , q) be two stingray elements and Ws1

,Ws2
≤ Fd

q with Ws1
∩Ws2

= {0} where Wsi

is the stingray body of si . First, note that every element of the intersection of the stingray tails

Es1
∩ Es2

is fixed by s1 and s2 and that Es1
∩ Es2

is a complementary subspace of Ws1
+Ws2

. Second,

let w1 ∈Ws1
and w2 ∈Ws2

. Then

w1 s1 ∈Ws1

as s1 leaves Ws1
invariant. Before we compute w2 s1 notice that w2 = w̃1+ ṽ where w̃1 ∈Ws1

and

ṽ ∈ Es1
and

w2(s1− Id ) = (w̃1+ ṽ)(s1− Id )

= w̃1(s1− Id )+ ṽ(s1− Id )

= w̃1(s1− Id )

= w̃1 s1− w̃1Id ∈Ws1
.

Thus, w2 s1 = w̃1 s1− w̃1+w2 = w ′+w2 where w ′ = w̃1 s1− w̃1 ∈Ws1
. ◀

Example 5.6

Let G = SL(6,5). Then

s1 :=




1 1 2 4 2 3

2 4 0 4 4 1

3 3 3 0 3 2

4 3 4 2 2 3

1 4 0 2 3 3

1 0 2 1 4 2




, s2 :=




3 2 1 1 3 3

3 3 0 4 0 3

0 3 3 0 1 2

3 1 1 0 3 4

0 2 3 0 0 3

1 0 4 3 2 1




are two stingray elements with s1, s2 ∈G = SL(6,5) and additionally 〈s1, s2〉 ∼= SL(4,5). Here Ws1
=

〈(2,1,1,1,0,0), (4,4,1,0,4,1)〉 and Ws2
= 〈(3,0,2,4,1,0), (1,4,0,3,0,1)〉 such that the dimension

ni := dim(Wsi
) = 2. Moreover, Ws1

∩Ws2
= {0} and thus dim(Ws1

+Ws2
) = 4. Since Ws1

∩Ws2
= {0}
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and dim(Wsi
) = 2 we know that dim(Esi

) = dim(F6
5)− dim(Wsi

) = 6− 2 = 4 and dim(Es1
∩ Es2

) =

dim(F6
5)− dim(Ws1

)− dim(Ws1
) = 6− 2− 2 = 2. We can also compute a basis for the common

1-eigenspace of s1 and s2 which is given by Es1
∩ Es2

= 〈(1,4,0,2,4,0), (0,1,3,0,2,2)〉. This yields
a basisB := ((2,1,1,1,0,0), (4,4,1,0,4,1), (3,0,2,4,1,0), (1,4,0,3,0,1), (1,4,0,2,4,0), (0,1,3,0,2,2))

for F6
5. With respect to this basisB , the elements s1 and s2 are represented as the following matrices

B sB1 =




4 2 0 0 0 0

1 2 0 0 0 0

3 3 1 0 0 0

4 2 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, B sB2 =




1 0 0 0 0 0

0 1 1 3 0 0

0 0 3 2 0 0

0 0 4 3 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

In order to improve the run-time, it is reasonable to represent the matrices s1 and s2 as elements of an

(n1+ n2)-dimensional special linear group which is described in more detail in Section 5.1.4. Note

that in this example SL(4, q)∼= 〈s1, s2〉 and that 〈s1, s2〉 is stingray embedded of degree 4 in SL(6,5).◀

The next algorithm implements the GoingDown basic step, i.e. computes the next subgroup of a

descending recognition chain

SL(4, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G

where di ≤ 4⌈log(di−1)⌉ for 1≤ i ≤ k.

Remark 5.7
Some randomised algorithms described in this thesis call other randomised algorithms. In order

to bound the overall number of computed random elements, we use a “global” variable N . That

means if a randomised algorithm A uses the variable N and calls a randomised algorithm B with

input N , then A and B “share” the identical N , i.e. if N is decreased by B and B returns N , then the

N of A is “updated” and thus also decreased. The variable N is very useful in this context to bound

the maximal number of random elements computed by the input N . ◀
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Remark 5.8
Some algorithms of this thesis call other randomised algorithms which can either return a valid

output or fail. Whether an algorithm returns valid output or fail needs to be checked before the

output is given as an argument to the next function. If a randomised algorithm A calls a randomised

algorithm B and B returns fail, then A also terminates and returns fail. The check whether

B returns fail requires an if statement in an implementation. To provide better readability of

algorithms we sometimes omit this if-statement and refer to this remark instead. ◀

Algorithm 13: GoingDownBasicStepSL

Input: ▶ d1 ∈N with d1 > 4

▶ 〈X 〉=G ≤GL(d , q) with G ∼= SL(d1, q)

▶ N ∈N
Output: fail OR (d2, U ,S,N ′) where

▶ d2 ∈N with 4≤ d2 ≤ 4⌈log(d1)⌉,
▶ U ≤G with U ∼= SL(d2, q),

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownBasicStepSL(d1,G,N )

1 while N > 0 do // Remark 5.7

2 (s1,S1,N )← FindStingrayElement(G, d1, N ) // Remark 5.8

3 Ws1
← ComputeStingrayBody( s1)

4 repeat

5 (s2,S2,N )← FindStingrayElement(G, d1, N ) // Remark 5.8

6 Ws2
← ComputeStingrayBody( s2)

7 until IsStingrayDuo((s1, s2))

8 d2← dim(Ws1
)+ dim(Ws2

)

9 if 〈s1, s2〉 ∼= SL(d2, q) then // Using a naming algorithm, see Section 1.1.7

10 S← an MSLP from X to (s1, s2) using S1 and S2

11 return (d2, 〈s1, s2〉,S,N )

12 return fail
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Remark 5.9
1) The input parameter N of Algorithm GoingDownBasicStepSL [Alg. 13] is used to control

the maximal number of random elements chosen. Even though AlgorithmGoingDownBasic-

StepSL [Alg. 13] does not compute random elements itself, Algorithm FindStingrayElement

[Alg. 5] is used which is a randomised algorithm to compute stingray elements, see Chapter 4.

The Algorithm GoingDownBasicStepSL [Alg. 13] is a one-sided Monte Carlo algorithm and

its success depends on the control parameter N . Thus if N is too small, then the algorithm

can fail. How N has to be chosen in order to obtain a success probability of at least 1− ε for
ε ∈ (0,1) is discussed in Chapter 10.

2) The condition of the if statement in Line 9 of Algorithm GoingDownBasicStepSL [Alg. 13],

which is 〈s1, s2〉 ∼= SL(d2, q), can be verified using a naming algorithm as in Section 1.1.7. ◀

We now establish the correctness of Algorithm GoingDownBasicStepSL [Alg. 13] and its termina-

tion using at most N random elements.

Theorem 5.10

Algorithm GoingDownBasicStepSL [Alg. 13] terminates using at most N random selections and is

correct.

Proof. We start by proving that the algorithm terminates. Algorithm GoingDownBasicStepSL

[Alg. 13] contains two loops which start in Line 1 and in Line 4. The loop of Line 1 terminates if

N ≤ 0. For every computation of a random element N is decreased and every call of Algorithm

FindStingrayElement [Alg. 5] requires at least one computation of a random element. Therefore,

the statement N ≤ 0 becomes true after at most N executions of FindStingrayElement [Alg. 5].

In this case Algorithm GoingDownBasicStepSL [Alg. 13] returns fail. The loop of Line 4 also

returns fail if N ≤ 0 by Algorithm FindStingrayElement [Alg. 5] in Line 5.

The correctness is clear since the algorithm either returns fail or a subgroup which is isomorphic to

SL(d2, q) as this is verified in Line 9. We only have to prove that 4≤ d2 ≤ 4⌈log(d1)⌉. The non-trivial
and irreducible subspace of the stingray element returned by Algorithm GoingDownBasicStepSL

[Alg. 13] has dimension bounded by 2 and 2⌈log(d1)⌉. Since d2 is the sum of two such integers it lies

between 4 and 4⌈log(d1)⌉.
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Example 5.11

We apply Algorithm GoingDownBasicStepSL [Alg. 13] to the group GΞ already known from

Example 5.4. Using Algorithm FindStingrayElement [Alg. 5] we can identify the following two

stingray elements of GΞ:




4 1 0 0 3 0 0 3 2 2 3 0 1 1 2 3
1 2 2 1 2 0 3 1 4 4 4 1 2 2 3 4
2 2 2 0 0 2 4 2 1 1 1 4 0 1 0 2
0 3 4 3 2 0 1 0 0 0 1 2 0 0 3 1
4 2 0 3 0 3 0 4 3 3 4 4 2 1 1 3
1 4 1 3 4 1 4 1 4 4 0 3 2 2 1 0
2 3 0 3 2 3 1 2 0 0 2 4 3 2 3 1
4 4 1 1 2 3 4 0 3 3 3 2 2 1 3 2
2 4 3 2 1 3 2 2 1 0 4 3 3 2 4 3
3 2 4 3 0 1 1 3 1 2 4 0 4 2 0 2
1 1 1 2 4 4 4 1 0 0 1 0 4 1 1 2
0 0 4 1 2 4 1 0 1 1 1 0 2 4 3 3
3 1 2 3 4 2 3 3 0 0 1 2 3 3 1 2
1 4 4 0 3 3 1 1 1 1 2 1 1 1 2 1
2 3 0 3 2 3 0 2 0 0 2 4 3 2 4 1
4 4 4 3 1 1 1 4 0 0 0 0 1 4 4 4




︸ ︷︷ ︸
:= s1

and




1 1 4 1 4 2 3 0 4 0 3 1 1 2 2 3
0 2 4 1 4 2 3 0 4 0 3 1 1 2 2 3
2 1 0 4 1 0 3 2 0 3 2 1 0 2 0 0
1 4 1 4 2 2 2 1 4 4 4 4 1 3 2 3
2 4 0 0 2 0 2 0 0 4 2 1 2 4 3 2
2 2 2 3 3 2 1 0 2 4 1 4 0 0 4 1
1 3 2 2 3 0 0 1 0 4 1 3 0 1 0 0
1 1 0 2 2 2 3 4 4 3 4 4 4 1 4 1
0 1 0 3 1 3 3 2 2 4 2 4 2 1 0 0
3 4 1 1 4 0 2 3 0 3 3 4 0 3 0 0
0 1 1 0 3 4 3 4 3 3 2 2 3 0 3 2
0 3 4 2 1 3 4 4 1 3 2 0 0 4 2 3
1 1 0 2 2 2 3 3 4 3 4 4 0 1 4 1
2 2 3 0 0 2 1 2 4 3 0 2 1 0 2 3
1 2 0 0 3 0 1 0 0 2 1 3 1 2 0 1
0 1 0 3 1 3 3 2 1 4 2 4 2 1 0 1




︸ ︷︷ ︸
:= s2

.

For i ∈ {1,2} the element si acts irreducibly on a 3-dimensional subspace Wsi
and fixes a comple-

mentary 13-dimensional subspace Esi
, i.e. dim(Wsi

) = 3 and dim(Esi
) = 13. For each of s1 and s2 we

compute a matrixLi where the first 3 row vectors form a basis for Wsi
and the last 13 row vectors

form a basis for Esi
.




1 0 3 3 0 4 2 1 0 0 3 1 4 1 0 0
4 4 0 2 4 2 0 4 4 4 4 1 4 0 1 0
3 1 4 1 0 4 1 3 3 3 4 4 3 0 0 1
4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 4 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 3 1 0 0 0 0 0 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 1 0 0 0 0 0 0
0 3 3 0 0 0 0 0 0 0 1 0 0 0 0 0
0 4 3 0 0 0 0 0 0 0 0 1 0 0 0 0
4 2 4 0 0 0 0 0 0 0 0 0 1 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1




︸ ︷︷ ︸
:=L1

and




2 4 4 3 4 4 2 3 3 0 3 3 1 0 0 0
1 3 2 2 3 0 4 1 0 4 1 3 0 1 0 0
2 2 2 3 3 1 1 0 2 4 1 4 0 0 4 1
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 4 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
3 0 3 0 2 0 0 0 0 0 1 0 0 0 0 0
1 0 3 0 2 0 0 0 0 0 0 1 0 0 0 0
4 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0
4 0 4 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0
1 0 4 0 1 0 0 0 0 0 0 0 0 0 0 1




︸ ︷︷ ︸
:=L2

.
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The matricesL1 andL2 can be used as base change matrices, that is

sL
−1
1

1 =




2 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




=




2 1 4 0
2 0 0 0
2 3 4 0

0 0 0 I13




and

sL
−1
2

2 =




4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




=




4 1 3 0
0 4 4 0
1 3 2 0

0 0 0 I13


 .

Note thatWs1
∩Ws2

= {0}. Hence, we can construct a base change matrixL3 which maps the original

basis to a basis which consists of a basis for Ws1
+Ws2

followed by a basis for the 10-dimensional
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common fixed space Es1
∩ Es2

. We obtain

L3 =




1 0 3 3 0 4 2 1 0 0 3 1 4 1 0 0
4 4 0 2 4 2 0 4 4 4 4 1 4 0 1 0
3 1 4 1 0 4 1 3 3 3 4 4 3 0 0 1
2 4 4 3 4 4 2 3 3 0 3 3 1 0 0 0
1 3 2 2 3 0 4 1 0 4 1 3 0 1 0 0
2 2 2 3 3 1 1 0 2 4 1 4 0 0 4 1
1 1 0 1 1 4 4 0 0 0 0 0 0 0 0 0
0 1 3 3 0 4 4 4 0 0 0 0 0 0 0 0
0 0 1 0 4 1 2 1 4 0 0 0 0 0 0 0
0 0 0 1 0 2 4 0 2 2 0 0 0 0 0 0
0 0 0 0 1 4 3 2 1 0 1 0 0 0 0 0
0 0 0 0 0 1 2 3 3 1 4 1 0 0 0 0
0 0 0 0 0 0 1 4 2 1 4 2 2 0 0 0
0 0 0 0 0 0 0 1 0 4 2 0 2 3 4 0
0 0 0 0 0 0 0 0 1 2 0 4 1 4 0 0
0 0 0 0 0 0 0 0 0 1 1 1 3 3 3 2




.

Then

sL
−1
3

1 =




2 1 4 0 0 0 0
2 0 0 0 0 0 0
2 3 4 0 0 0 0
2 3 4 1 0 0 0
2 2 1 0 1 0 0
1 3 1 0 0 1 0

0 0 0 0 0 0 I10




and

sL
−1
3

2 =




1 0 0 4 2 3 0
0 1 0 1 3 0 0
0 0 1 4 0 0 0
0 0 0 4 1 3 0
0 0 0 0 4 4 0
0 0 0 1 3 2 0

0 0 0 0 0 0 I10




.

Moreover

®




2 1 4 0 0 0
2 0 0 0 0 0
2 3 4 0 0 0
2 3 4 1 0 0
2 2 1 0 1 0
1 3 1 0 0 1




,




1 0 0 4 2 3
0 1 0 1 3 0
0 0 1 4 0 0
0 0 0 4 1 3
0 0 0 0 4 4
0 0 0 1 3 2




¸
= SL(6,5)

and, hence, GΞ1 := 〈s1, s2〉 ∼= SL(6,5). We record the base change matrixL3 by settingL Ξ
1 :=L −1

3 .◀

5.1.2 Combining GoingDown basic steps

Let G = SL(d , q). By repeatedly calling the GoingDown basic step, we now have all the methods

needed to construct a descending recognition chain as in Definition 3.4 of special linear groups as
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SL(4, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G

where di ≤ 4⌈log(di−1)⌉ for 1 ≤ i ≤ k. Observe that the chain reaches a group isomorphic to

SL(4, q) rapidly as the basic step is reducing the dimension logarithmically. The overall number of

GoingDown basic steps required is given by the iterated logarithm log∗(d ).

Remark 5.12
Note that all state-of-the-art algorithms require a lot more steps. The currently best algorithm is an

algorithm by Dietrich, Leedham-Green, Lübeck and O’Brien [32, 59], in the following referred to as

DLLO algorithm. The DLLO algorithm has two variations from which one is based on a “splitting”

step (called “One” in [59]) and the other on a “conjugating” step (called “Two” in [59]). In practice

the variation of the DLLO algorithm with the “splitting” step is used. In each call to the “splitting”

step of the DLLO algorithm two subgroups of half of the input dimension are computed in best case.

Moreover, the DLLO algorithm has to be applied to both computed subgroups. The GoingDown

algorithm in this thesis avoids “splitting” by constructing only one subgroup which is isomorphic

to SL(2, q). It should be mentioned that the DLLO algorithm is also applicable for non-natural

irreducible matrix representations and for black box settings and, hence, does not exploit properties

of the natural representation as we do in our GoingUp algorithms which in turn has an enormous

impact on the design of the overall algorithm. ◀

Finally, the following algorithm computes a descending recognition chain by iteratively applying

Algorithm GoingDownBasicStepSL [Alg. 13].

Algorithm 14: GoingDownToDim4

Input: ▶ d ∈N with d ≥ 4

▶ 〈X 〉=G = SL(d , q)

▶ N ∈N
Output: fail OR (U ,S,N ′) where

▶ U ≤G with U ∼= SL(4, q),

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingDownToDim4(d ,G,N )

1 U←G AND dim ←d AND S← an MSLP from X to X

2 while dim > 4 do

3 (dim, U ,S′,N )← GoingDownBasicStepSL(U , dim, N ) // Remark 5.7 and 5.8

4 S← Composition of S and S′

5 return (U ,S,N )

Theorem 5.13

Algorithm GoingDownToDim4 [Alg. 14] terminates using at most N random selections and is

correct.

Proof. The algorithm only contains one loop. The return value of Algorithm GoingDownBasic-

StepSL [Alg. 13] is either a subgroup which is isomorphic to SL(dim, q) or fail. If the return value

is fail, then the function terminates immediately. Let d1 be equal to dim and let d2 be equal to the

first return value in Line 3. Then d2 < d1 since 4 ≤ d2 ≤min{4⌈log(d1)⌉, ⌈ d1
2 ⌉} and, therefore, the

algorithm terminates.

If d = 4, then G = SL(4, q). Otherwise we have after every execution of the while loop in Line 2

that U ∼= SL(dim, q). Since dim strictly decreases in each iteration the claim follows.

Remark 5.14
Recall the descending recognition chain

SL(4, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G,

which is computed by Algorithm GoingDownToDim4 [Alg. 14]. Algorithm GoingDownToDim4

[Alg. 14] uses Algorithm GoingDownBasicStepSL [Alg. 13] which verifies that a group generated

by two stingray elements is isomorphic to a special linear group using naming algorithms. Note

that the number of calls to naming algorithms can be reduced by slight variations of the algorithms.

Different alternatives for these variations are, e.g.

• always use a naming algorithm, i.e. verify that Ui
∼= SL(di , q) for all i ∈ {1, . . . , k},

• only use a naming algorithm until the first subgroup is computed, i.e. only verify that U1
∼=

SL(d1, q),
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• never use a naming algorithm and restart from the input group if a maximal number of random

selection is reached, i.e. restart from U0 =G,

• never use a naming algorithm but instead of restarting from the input group backtrack one

step, i.e. if a maximal number of tries is reached in the process of computing Ui+1 as a subgroup

of Ui , then restart from Ui−1 and compute another subgroup Ui .

Practical tests of implementations could be used to compare the impact on the running time which

is not done in this thesis. ◀

Example 5.15

In Example 5.11 we computed a subgroup GΞ1 ≤GΞ with GΞ1
∼= SL(6,5). As we have not found a

subgroup of GΞ which is isomorphic to SL(4,5) we repeat the GoingDown basic step with input

GΞ1 . Note that all matrices in the following are given as elements of (GΞ1 )
L Ξ1 of Example 5.11 if not

mentioned otherwise.

Again we identify two stingray elements in GΞ1 using Algorithm FindStingrayElement [Alg. 5]:

s3 :=




3 0 1 1 1 4 0
4 4 2 1 0 2 0
0 2 1 1 2 1 0
3 4 4 2 3 3 0
4 2 2 3 0 4 0
0 4 0 2 4 3 0

0 0 0 0 0 0 I10




, s4 :=




3 1 1 3 3 0 0
1 4 3 4 4 0 0
4 3 0 2 0 2 0
4 3 4 3 0 2 0
1 3 3 4 0 0 0
2 2 3 4 2 3 0

0 0 0 0 0 0 I10




∈ (GΞ1 )L
Ξ
1

The dimension of the stingray tails Es3
and Es4

is 14 and both elements have 2-dimensional

stingray bodies Ws3
and Ws4

. The following base change matrices

L4 :=




4 4 2 4 1 0 0
2 4 1 3 0 1 0
3 1 1 0 0 0 0
2 2 0 1 0 0 0
1 1 0 0 1 0 0
1 2 0 0 0 1 0

0 0 0 0 0 0 I10




and L5 :=




4 2 2 1 1 0 0
2 4 2 1 0 1 0
2 1 0 0 0 0 0
0 0 4 1 0 0 0
2 0 0 0 1 0 0
1 0 4 0 0 1 0

0 0 0 0 0 0 I10




satisfy

sL
−1
4

3 =



0 2 0
2 4 0

0 0 I14


 and sL

−1
5

4 =



0 1 0
4 4 0

0 0 I14


 .

The next base change matrix maps the given basis to a basis consisting of a basis of Ws3
+Ws4

and a
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basis for Es3
∩ Es4

L6 =




4 4 2 4 1 0 0
2 4 1 3 0 1 0
4 2 2 1 1 0 0
2 4 2 1 0 1 0
1 0 3 2 3 0 0
0 1 0 4 1 1 0

0 0 0 0 0 0 I10




.

Then

sL
−1
6

3 =




0 2 0 0 0
2 4 0 0 0
0 4 1 0 0
3 3 0 1 0

0 0 0 0 I12




and sL
−1
6

4 =




1 0 2 2 0
0 1 4 0 0
0 0 0 1 0
0 0 4 4 0

0 0 0 0 I12




.

Moreover
®



0 2 0 0
2 4 0 0
0 4 1 0
3 3 0 1


 ,




1 0 2 2
0 1 4 0
0 0 0 1
0 0 4 4



¸
= SL(4,5)

and, hence, GΞ2 := 〈s (L Ξ1 )−1

3 , s (L
Ξ
1 )
−1

4 〉 ∼= SL(4,5). Note that GΞ2 ≤GΞ. We denote the new base change

matrix byL Ξ
2 :=L Ξ

1 L −1
6 . ◀

5.1.3 Final step of the GoingDown algorithm

At this point we assume that we have found U ≤G with U ∼= SL(4, q) which is a terminal group.

To obtain a base case group, however, we need H ≤G with H ∼= SL(2, q). Unfortunately, the idea

from Section 5.1.2 is not applicable as the next remark shows.

Remark 5.16
Note that stingray elements of special linear groups with a 1-dimensional stingray body are equal to

the identity matrix. To see this, apply a base change to obtain a block matrix structure as in Example

4.3 where one block visualises the stingray tail which is an identity matrix of size (d − 1)× (d − 1)

and the other block visualises the stingray body which has to be (1) ∈ F1×1
q since the stingray element

is contained in SL(d , q).

Let G = SL(4, q) and suppose we search for two stingray elements s1, s2 ∈ G with H = 〈s1, s2〉 ∼=
SL(2, q). One idea could be to use theGoingDown basic step, i.e. to search for two stingray elements

with 1-dimensional stingray bodies which also intersect trivially and verify 〈s1, s2〉 ∼= SL(2, q). As we

have noted, stingray elements with 1-dimensional stingray body are equal to the identity matrix.
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Therefore, it is not possible that 〈s1, s2〉 ∼= SL(2, q).

Another idea is to compute two stingray elements s1, s2 ∈ G which have the same 2-dimensional

stingray body. Note that there are

�
4
2

�
q

=
(q4− 1)(q4− q)
(q2− 1)(q2− q)

different 2-dimensional subspaces of F4
q . Therefore, the probability that s1 and s2 have the same

2-dimensional stingray body is given by

1�4
2

�
q

=
(q2− 1)(q2− q)
(q4− 1)(q4− q)

=
1

(q2+ 1)(q2+ q + 1)
<

1
q4

which decreases as q increases. For example, if q = 121, then the probability that s1 and s2 have the

same 2-dimensional stingray body is 0.0000000046. ◀

Instead we use a method from the DLLO algorithm [32, 59]. In the following we only sketch the

method for q odd.

Definition 5.17: [59, Definition 4.1]

Let G ≤GL(d , q).

1) g ∈G is an involution if g ̸= 1G and g 2 = 1G.

2) g ∈G is a strong involution if g is an involution and dim(E1(g )) ∈ {⌈ d
3 ⌉, . . . , ⌊ 2d

3 ⌋}.
3) g ∈G is a strong pre-involution if |g | is even and g |g |/2 is a strong involution.

The probability to find a strong pre-involution by selecting independent uniformly distributed

random elements is promising as the next lemma shows.

Lemma 5.18: [66, Theorem 1.1]

Let q be odd and d ≥ 3. Define A(d , q) := {g ∈ SL(d , q) | g is a strong pre-involution}. Then

|A(d , q)|
|SL(d , q))| ≥

1
5000 log2(d )

.
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Proof. [66, Theorem 1.1].

Algorithm 15: GoingDownFinalStepSL

Input: ▶ 〈X 〉=G = SL(4, q) with q odd

▶ N ∈N
Output: fail OR (L , U ,S,N ′) where

▶ U ≤G with U ∼= SL(2, q),

▶ L ∈GL(4, q) is a base change matrix such that UL is stingray embedded in GL ,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownFinalStepSL(G,N )

1 repeat // First find a strong pre-involution

2 g←PseudoRandom(G) AND N←N − 1

3 until g is not a strong pre-involution with dim(E1(g )) = 2 AND N > 0

4 if N ≤ 0 then

5 return fail

6 g← g |g |/2 ANDL ←E1(g )∪ E−1(g )

7 (C ,N )←CentraliserOfInvolution(G, g , N ) // Remark 5.7 and 5.8

8 gens← [] // Extract a SL(2, q).

9 while N > 0 do

10 g←PseudoRandom(CL ) AND N←N − 1

11 if exists ℓ ∈N such that the 2× 2 bottom right block of g ℓ is trivial but the 2× 2 top left

block is not then

12 gens← gens ∪{g ℓ}
13 if 〈gens〉 ∼= SL(2, q) then // Using a naming algorithm, see Section 1.1.7

14 return (〈gens〉,L ,S,N )

15 return fail

Let g ∈G = SL(d , q) be a strong involution. We seek a strong involution since the derived group of

its centraliser satisfies

CG(g )
′ = SL(E1(g ))× SL(E−1(g ))
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which is proven in [59]. In our case, G is a natural SL(4, q) and we seek an involution g ∈G with

dim(SL(E1(g ))) = 2 such that a SL(2, q) can be extracted. We give the algorithm in pseudo-code as

Algorithm GoingDownFinalStepSL [Alg. 15].

Theorem 5.19

Algorithm GoingDownFinalStepSL [Alg. 15] is correct and terminates.

Proof. [59, Chapter 11].

Example 5.20

We continue Example 5.15. Remember that we computed GΞ2 ≤ GΞ with GΞ2
∼= SL(4, q) and

GΞ2 = 〈s3, s4〉 where

sL
Ξ
2

3 =




0 2 0 0 0
2 4 0 0 0
0 4 1 0 0
3 3 0 1 0

0 0 0 0 I12




and sL
Ξ
2

4 =




1 0 2 2 0
0 1 4 0 0
0 0 0 1 0
0 0 4 4 0

0 0 0 0 I12




.

Nowwe are using AlgorithmGoingDownFinalStepSL [Alg. 15] to compute a subgroup isomorphic

to SL(2, q). If not stated otherwise, then the matrices are given as elements of (GΞ2 )
L Ξ2 . By randomly

choosing elements of (GΞ2 )
L Ξ2 we identify

a5 =




1 2 0 2 0
3 3 3 0 0
2 4 3 1 0
3 3 0 4 0

0 0 0 0 I12




.

Using the characteristic polynomial and a pseudo-order algorithm [76, Section 2.5] this yields that

the order of a5 divides 120. By setting

a6 := a60
5 =




0 1 2 3 0
3 1 3 3 0
4 3 4 1 0
0 1 3 0 0

0 0 0 0 I12




we observe that a6 is not the identity and, since the pseudo-order of a5 is known, that a2
6 is the

identity. Hence, a6 is an involution. Further, basic computations show that the (−1)-eigenspace of

a6 is 2-dimensional. Hence, we compute a base change matrixL7 into a basis consisting of a basis of
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the (−1)-eigenspace and the 1-eigenspace

L7 :=




1 0 1 1 0
0 1 3 4 0
1 0 4 2 0
0 1 3 1 0

0 0 0 0 I12




.

Note that

a6 =




4 0 0 0 0
0 4 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 I12




L7

.

Using Bray’s algorithm [18] we can compute CGΞ2
(a(L

Ξ
2 )
−1

6 ) efficiently. Under the base change matrix

L Ξ
2 L −1

7 an element of CGΞ2
(a(L

Ξ
2 )
−1

6 ) is a block-diagonal matrix, e.g. the following element is in

CGΞ2
(a(L

Ξ
2 )
−1

6 )



2 3 0 0 0
4 3 0 0 0
0 0 1 2 0
0 0 0 4 0

0 0 0 0 I12




.

By random search of elements in CGΞ2
(a(L

Ξ
2 )
−1

6 ) we find the following two elements which can be

displayed as follows using the base change matrixL Ξ
2 L −1

7 , namely

a7 :=




3 4 0 0 0
0 3 0 0 0
0 0 3 4 0
0 0 2 4 0

0 0 0 0 I12




, a8 :=




1 4 0 0 0
1 0 0 0 0
0 0 3 0 0
0 0 2 2 0

0 0 0 0 I12




.

The order of
�

3 4
2 4

�
divides 12 and the order of

�
3 0
2 2

�
divides 4 using again a pseudo-order algorithm

[76, Section 2.5]. Hence, we raise a7 and a8 to these integers, respectively, yielding

a9 := a12
7 =




1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 I12



=



1 1 0
0 1 0

0 0 I14


 and a10 := a4

8 =




4 1 0 0 0
4 0 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 I12



=



4 1 0
4 0 0

0 0 I14


 .

Since SL(2, q)∼= 〈a(L Ξ2 L−1
7 )

−1

9 ,a(L
Ξ
2 L−1

7 )
−1

10 〉=: GΞ3 ≤GΞ, the algorithm was successful. Again the new

base change matrix is stored by settingL Ξ
3 :=L Ξ

2 L −1
7 . ◀
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Using an algorithm for constructive recognition of SL(2, q), we can encode the standard generators

from Definition 5.1 as words in the generators form Algorithm GoingDownFinalStepSL [Alg. 15].

A description of a constructive recognition algorithm for SL(2, q) is given in Section 5.2.

Remark 5.21
In Algorithm GoingDownFinalStepSL [Alg. 15] we compute the 1- and (−1)-eigenspace of an

involution which requires that 1 ̸= −1, i.e. char(F) ̸= 2. If char(F) = 2, then the computation of

usable involutions becomes more difficult. Nevertheless, there are constructive algorithms based on

involutions in characteristic 2 which are described in [32] but not further discussed in this thesis.◀

We use similar algorithms for the final step in the other classical groups for which we provide a

generalised algorithm in pseudo-code as Algorithm GoingDownFinalStepCL [Alg. 16].

Theorem 5.22

Algorithm GoingDownFinalStepCL [Alg. 16] is correct and terminates.

Proof. [59, Chapter 11].

Remark 5.23
A modified version of Algorithm GoingDownFinalStepCL [Alg. 16] can be used as the final step

algorithm for CL(d , q) with q even. This is not discussed in this thesis and we refer to [32, Chapter

5]. ◀

Algorithm 16: GoingDownFinalStepCL

Input: ▶ 〈X 〉=G =CL(d , q) a terminal group as in Definition 3.6 with q odd

▶ d ′ ∈N with 2≤ d ′ < d

▶ N ∈N
Output: fail OR (L , U ,S,N ′) where

▶ U ≤G with U ∼=CL(d ′, q) of the same type as G,

▶ L ∈GL(d , q) is a base change matrix such that UL is stingray embedded in GL ,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingDownFinalStepCL(G, d ′,N )

1 repeat // First find a strong pre-involution

2 g←PseudoRandom(G) AND N←N − 1

3 until g is not a strong pre-involution with dim(E1(g )) = d ′ AND N > 0

4 if N ≤ 0 then

5 return fail

6 g← g |g |/2 ANDL ←E1(g )∪ E−1(g )

7 (C ,N )←CentraliserOfInvolution(G, g , N ) // Remark 5.7 and 5.8

8 gens← [] // Extract a SL(2, q).

9 while N > 0 do

10 g←PseudoRandom(CL ) AND N←N − 1

11 if exists ℓ ∈N such that the (d − d ′)× (d − d ′) bottom right block of g ℓ is trivial but the

d ′× d ′ top left block is not then

12 gens← gens ∪{g ℓ}
13 if 〈gens〉 ∼=CL(d ′, q) then // Using a naming algorithm, see Section 1.1.7

14 return (〈gens〉,L ,S,N )

15 return fail

5.1.4 GoingDown basic step with lower-dimensional matrices

In this chapter an extended version of the GoingDown algorithm is introduced and proved to be

correct. This method improves the running time asymptotically while the length and memory of

the output MSLPs remain the same.

The general idea is to extract the non-trivial blocks of stingray elements, which is possible using a

respective base change matrix as displayed in Example 5.6, after each GoingDown step such that all

subsequent computations can be performed with smaller-dimensional matrices and, therefore, more

efficiently. Algorithm InducedActionRepresentationGroup [Alg. 12] plays a key role for the

methods of this chapter.

Recall that Algorithm InducedActionRepresentationGroup [Alg. 12] introduced in Chapter 4

takes as input a subgroup U ≤GL(d , q)which is generated by a stingray duo (s1, s2)with dim(Ws1
) =
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ni and outputs a group Ũ ≤GL(n1+n2, q) generated by the actions of s1 and s2 onWs1
+Ws2

. This can

be done as all relevant information about 〈s1, s2〉 is already present in the action of 〈s1, s2〉 onWs1
+Ws2

.

Instead of calling the next GoingDown basic step with input group 〈s1, s2〉 we call it with input

Ũ ≤GL(n1+ n2, q) where Ũ is the output of Algorithm InducedActionRepresentationGroup

[Alg. 12]. Continuing with Ũ is more efficient since we are only dealing with (n1+ n2)× (n1+ n2)

matrices instead of d × d matrices. By using this trick repeatedly this refines the descending

recognition chain

SL(4, q)∼=Uk ≤Uk−1
∼= SL(dk−1, q)≤ . . .≤U1

∼= SL(d1, q)≤U0 =G = SL(d , q),

where di ≤ 4⌈log(di−1)⌉ for 2≤ i ≤ k into

SL(4, q) =Uk ≲Uk−1 = SL(dk−1, q)≲ . . .≲U1 = SL(d1, q)≲U0 =G = SL(d , q).

Here H ≲ U denotes that H is isomorphic to a stingray embedded subgroup of U . Note that we

cannot say that Ui is a subgroup of Ui−1 any more as the elements of Ui are di × di matrices and the

elements of Ui+1 are di+1× di+1 matrices.

Using these ideas Algorithm GoingDownToDim4 [Alg. 14] can be improved as follows.

Algorithm 17: GoingDownToDim4LDVersion1

Input: ▶ d ∈N with d ≥ 4

▶ 〈X1〉=G = SL(d , q)

▶ N ∈N
Output: fail OR (X2,N ′) where

▶ 〈X2〉=U = SL(4, q) and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownToDim4LDVersion1(d ,G,N )

1 U←G AND dim ←d

2 while dim > 4 do

3 (dim, U ,S,N )← GoingDownBasicStepSL(U , dim, N ) // Remark 5.7 and 5.8

4 U← InducedActionRepresentationGroup(U )

5 return (U ,N )
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One crucial difference compared to Algorithm GoingDownToDim4 [Alg. 14] is that the out-

put of Algorithm GoingDownToDim4LDVersion1 [Alg. 17] is no longer a subgroup of G. Let

〈g1, g2〉=U be the output of Algorithm GoingDownToDim4LDVersion1 [Alg. 17]. Then U can

be stingray embedded into G by defining g̃i = diag(gi , Id−4) and U is isomorphic to Ũ = 〈 g̃1, g̃2〉 ∼=
SL(4, q). Note, that the stingray embedding is not sufficient to replace GoingDownToDim4 [Alg.

14] by Algorithm GoingDownToDim4LDVersion1 [Alg. 17] yet. By using Algorithm InducedAc-

tionRepresentationGroup [Alg. 12] we apply implicitly a base change matrix to naturally embed

U ≤GL(d , q) into GL(d , q). Hence, we need to keep track of these base change matrices after each

GoingDown basic step in course of Algorithm GoingDownToDim4LDVersion1 [Alg. 17]. This

corresponds to basic linear algebra through linear combinations of basis vectors of the stingray bodies

of stingray elements and results in the following final algorithm.

Theorem 5.24

Algorithm GoingDownToDim4LD [Alg. 18] is correct and terminates.

Proof. The algorithm does the same as Algorithm GoingDownToDim4 [Alg. 14] except the ad-

ditional computation of a basis of the sum of the stingray bodies of the generators of U at the

end of the while loop in Line 7. Since the computation of such a basis has no impact on the

GoingDown algorithm the output group is a subgroup isomorphic to SL(4, q) as for Algorithm

GoingDownToDim4 [Alg. 14]. The construction of a suitable base change matrix corresponds to

linear combinations of basis vectors after the computation of the stingray bodies of the generators

of U as it is done in the Line 5 to 7.

Algorithm 18: GoingDownToDim4LD

Input: ▶ d ∈N with d ≥ 4

▶ 〈X 〉=G = SL(d , q)

▶ N ∈N
Output: fail OR (U ,L ,S,N ′) where

▶ U ≤G with U ∼= SL(4, q),

▶ L ∈GL(d , q) is a base change matrix such that UL is stingray embedded in GL ,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingDownToDim4LD(d ,G,N )

1 U←G AND dim ←d ANDB← Id AND S← an MSLP from X to X

2 while dim > 4 do

3 (dim, U ,S′,N )← GoingDownBasicStepSL(U , dim, N ) // Remark 5.7 and 5.8

4 S← Composition of S and S′

5 Ws1
← ComputeStingrayBody( s1) // We assume U = 〈s1, s2〉

6 Ws2
← ComputeStingrayBody( s2)

7 W ←〈Ws1
+Ws2

〉 ANDB←W ·B
8 U← InducedActionRepresentationGroup(U )

9 L ←B with a basis for the common 1-eigenspace

10 return (〈diag(g1, Id−4), diag(g2, Id−4)〉,L ,S,N ) // Let 〈g1, g2〉=U

Remark 5.25
The output of Algorithm GoingDownToDim4LD [Alg. 18] is U ≤G with U ∼= SL(4, q) and UL

is stingray embedded in GL . Since U is a terminal group we want to use the algorithm presented

in Section 5.1.3 to compute a base case group in G and the algorithms of Section 5.2 to recognise

the base case group constructively. We also use Algorithm InducedActionRepresentationGroup

[Alg. 12] to continue these computations with 4× 4 matrices instead of d × d matrices. ◀

5.1.5 Complete GoingDown algorithm

We finish this chapter by giving the overall GoingDown algorithm which uses as sub-algorithms

Algorithm GoingDownToDim4LD [Alg. 18] and Algorithm GoingDownFinalStepSL [Alg. 15].

Algorithm 19: GoingDown

Input: ▶ 〈X 〉=G = SL(d , q) with d ≥ 4

▶ N ∈N
Output: fail OR (U ,L ,S) where

▶ U ≤G with U ∼= SL(2, q),

▶ L is a base change matrix such that UL is stingray embedded in GL and

▶ S is an MSLP from X to generators of U
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function GoingDown(G,N )

1 (U ,L1,S1,N )←GoingDownToDim4LD(d ,G,N ) // Remark 5.7 and 5.8

2 U← InducedActionRepresentationGroup(U )

3 (U ,L2,S2,N )←GoingDownFinalStepSL(U ,N ) // Remark 5.7 and 5.8

4 S← Composition of S1 and S2 ANDL ←L1 diag(L2, Id−4)

5 return (〈diag(g1, Id−2), diag(g2, Id−2)〉,L ,S) // Let 〈g1, g2〉=U

Theorem 5.26

Algorithm GoingDown [Alg. 19] is correct and terminates.

Proof. Clear.

5.2 BaseCase algorithm

Let 〈X 〉=H = SL(2, q). Our goal is to express the standard generators of SL(2, q) given in Definition

5.1 as MSLPs in X . For this we use an algorithm by Conder and Leedham-Green [28].

We briefly outline the idea and present pseudo-code for the constructive recognition algorithm of

SL(2, q) given in [28]. All results, concepts and algorithms of this section are well-known.

Algorithm 20: ConstructiveRecognitionSL2

Input: ▶ 〈X 〉=G = SL(2, q)

▶ N ∈N
Output: fail OR (L , S,S,N ′) where

▶ L ∈GL(2, q) is a base change matrix,

▶ S are standard generators of 〈X 〉L ,

▶ S is an MSLP from XL to the standard generators S and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function ConstructiveRecognitionSL2(G,N )

1 repeat

2 a←PseudoRandom(G) AND N←N − 1 // Step 1

3 until a has order q − 1 OR N ≤ 0

4 (v, w)← eigenvectors of a in F2
q AND (ı, ı−1)← the corresponding eigenvalues in Fq // Step 2

5 c←PseudoRandom(G) AND b←ac // Step 3

6 repeat // Explained in Remark 5.28

7 c1←PseudoRandom(G) AND i← for loop condition if possible // Step 4

8 N←N − 1

9 until b i c1 fixes 〈v〉 OR N ≤ 0

10 a2← [a, b i c1] // Step 5

11 repeat

12 c2←PseudoRandom(G) AND j← for loop condition if possible // Step 6

13 N←N − 1

14 until w is an eigenvector for b j c2 and a2← [a, b j c2] is not the identity OR N ≤ 0

15 L ← (v, w) AND a,a1,a2←aL−1
,aL−1

1 ,aL−1

2 // Step 7

16 if N ≤ 0 then

17 return fail

18 return (L , (a,a1,a2),S an MSLP for these steps,N )

Theorem 5.27

Algorithm ConstructiveRecognitionSL2 [Alg. 20] terminates using at most N random selections

and works correctly.

Proof. [28].

Remark 5.28
1) Algorithm ConstructiveRecognitionSL2 [Alg. 20] requires the availability of a discrete

logarithm oracle in Fq and, hence, the constructive recognition algorithms of this thesis require

this oracle as well. The algorithms used for constructive recognition of base case groups as

outlined in Table 3.4 can be replaced by other constructive recognition algorithms for base
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case groups. That means if an algorithm to solve constructive recognition of SL(2, q) without

the discrete logarithm becomes available, then that algorithm can be replaced.

2) The complexity of Algorithm ConstructiveRecognitionSL2 [Alg. 20] is polynomial in

log(q) given a discrete logarithm oracle and a prime factorisation of q − 1.

3) For further discussions about constructive recognition of SL(2, q) and the use of the discrete

logarithm, see [59]. ◀

Example 5.29

We continue Example 5.20. As explained and proven in Section 5.1.4 we can describe stingray

elements by their action on their stingray bodies and, therefore, as lower-dimensional matrices.

Hence, we extract the non-trivial blocks of the matrices a9 and a10 of Example 5.20 and continue

with the matrices

g1 :=


1 1

0 1


 and g2 :=


4 1

4 0




and apply Algorithm ConstructiveRecognitionSL2 [Alg. 20] to 〈g1, g2〉. By random search we

identify

a :=


4 4

2 1


 ∈ 〈g1, g2〉

which has order 4= 5− 1= q − 1. In the second step we compute the eigenvalues 3 and 2 as well as

the eigenvectors (3,1) and (4,1) of a, respectively. Using the base change matrixL4 := ((3,1), (4,1))

we obtain

a =


3 0

0 2



L4

.

Again by random search we compute

b :=


4 1

3 1


 and c1 :=


4 2

4 1




and, hence,

b 0c1 :=


2 0

1 3



L4

.

The product b 0c1 fixes 〈(3,1)〉 and, therefore, already has a form similar to a transvection. In general
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we can use the discrete logarithm to compute a suitable i in step 4. By taking the commutator

[a, b 0c1] the vector (3,1) lies in the 1-eigenspace and, thus,

[a, b 0c1] :=


1 0

4 1



L4

which is a transvection. Analogously we can compute j = 1 and

c2 :=


4 1

0 4



L4

such that

b c2 :=


4 2

0 4



L4

.

Overall, the following matrices are written as words in g1, g2, namely

a =


3 0

0 2



L4

, a1 := [a, b 0c1] =


1 0

4 1



L4

and a2 := [a, b 1c2] =


1 1

0 1



L4

.

◀

Remark 5.30
Algorithm ConstructiveRecognitionSL2 [Alg. 20] returns three matrices (a,a1,a2) and a base

change matrixL . The three matrices (a,a1,a2) are given as elements of GL−1 where a is a diagonal

matrix with a primitive element at position (1,1) while a1 is a transvection with a non-zero entry at

position (2,1) and a2 is a transvection with a non-zero entry at position (1,2).

This generating set is not the same as the one described in Definition 5.1. Therefore, we must

perform some additional computations. ◀

The generating set of Definition 5.1 can be computed using the output of Algorithm Construc-

tiveRecognitionSL2 [Alg. 20] by using Algorithm StandardGeneratingSetSL2 [Alg. 21]. Algo-

rithm StandardGeneratingSetSL2 [Alg. 21] is a slight variation of Algorithm CompleteSL2Basis
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implemented by O’Brien in Magma [16] at Magma/package/Group/GrpMat/CompTree/GrpMat/sl2q/

natural.m in version Magma V2.27-5 and proceeds as follows.

We start by choosing a primitive element ω ∈ Fq and compute the diagonal matrix diag(ω,ω−1)

as a word in (a,a1,a2). This is done by computing k ∈ N such that ak = diag(ω,ω−1). This

process can be seen as normalising the primitive element of a at position (1,1) to a desired primitive

element. This is an optional step which also involves the discrete logarithm. Since Algorithm

ConstructiveRecognitionSL2 [Alg. 20] already utilises the discrete logarithm, a second application

of the discrete logarithm does not affect the asymptotic complexity. In practice and for large fields

the run-time can be improved by skipping the normalisation process of the primitive element at

position (1,1) of a.

From now on, we say that ω ∈ Fq is the primitive element at position (1,1) of a independent

of whether the normalisation step has been carried out or not. We continue by writing the

inverse of the entry (2,1) of a1 and the inverse of the entry (1,2) of a2 as an Fp linear com-

bination of {ω0,ω2, . . . ,ω2 f −2}. Afterwards we compute a specific product of a and a1 using

this linear combination respectively of a and a2 to write the transvections E2,1(1) respectively

E1,2(1) as words in (a,a1,a2). Then we compute lists A′D and A′U containing the transvections

A′D = {E2,1(ω
0), E2,1(ω

2), . . . , E2,1(ω
2 f −2} and A′U = {E1,2(ω

0), E1,2(ω
2), . . . , E1,2(ω

2 f −2}. The set

{ω0,ω2, . . . ,ω2 f −2} is an Fp basis of Fq but for the standard generators of SL(2, q) of Defini-

tion 5.1 we use the Fp basis {ω0,ω1, . . . ,ω f −1}. Therefore, we write ωk for 0 ≤ k ≤ f − 1 as

a linear combination in {ω0,ω2, . . . ,ω2 f −2}. Afterwards we evaluate this linear combination in

{E2,1(ω
0), E2,1(ω

2), . . . , E2,1(ω
2 f −2} to obtain the transvection E2,1(ω

k) and evaluate this linear com-

bination in {E1,2(ω
0), E1,2(ω

2), . . . , E1,2(ω
2 f −2)} to obtain the transvection E1,2(ω

k). Lastly, we use

the transvections E1,2(1) and E2,1(1) to write the permutation matrix z1 ∈ SL(2, q) as a word in

(a,a1,a2).

These computations are summarised in Algorithm StandardGeneratingSetSL2 [Alg. 21].
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Algorithm 21: StandardGeneratingSetSL2

Input: ▶ (a,a1,a2) the output of Algorithm ConstructiveRecognitionSL2 [Alg. 20]

Output: ▶ An MSLP S from (a,a1,a2) to standard generators of Definition 5.1

function StandardGeneratingSetSL2((a,a1,a2))

1 Choose ω a primitive element of Fq

2 Find k such that a[1,1]k =ω (Note that this involves the discrete logarithm)

3 a0←ak AND a4← I2 AND a5← I2

4 Write (a1[2,1])−1 = ı0ω
0+ ı1ω

2+ ı2ω
4+ . . .+ ı f −1ω

2 f −2 for ı0, . . . , ı f −1 ∈ Fp

5 Write (a2[1,2])−1 = ȷ0ω
0+ ȷ1ω

2+ ȷ2ω
4+ . . .+ ȷf −1ω

2 f −2 for ȷ0, . . . , ȷf −1 ∈ Fp

6 for i ∈ [0, . . . , f − 1] do

7 c←a−i
0 AND a4←a4((a1)

c )ıi AND a5←a5((a2)
c ) ȷi

8 A′u← [a5] AND A′d← [a4]

9 for i ∈ [0, . . . , f − 1] do

10 Append(A′u , a(a
i
0)

5 )

11 Append(A′d , a(a
i
0)

4 )

12 Au← [ ] AND Ad← [ ]
13 for i ∈ [1, . . . , f ] do

14 Write ωi = ı0ω
0+ ı1ω

2+ ı2ω
4+ . . .+ ı f −1ω

2 f −2 for ı0, . . . , ı f −1 ∈ Fp

15 Append(Au , A′u[1]ı0A′u[2]ı1 . . .A′u[ f ]
ı f −1 )

16 Append(Ad , A′d [1]
ı0A′d [2]

ı1 . . .A′d [ f ]
ı f −1 )

17 S← MSLP from (a,a1,a2) to (Au ,Ad , (Au[1])
−1Ad [1](Au[1])

−1) using the steps above

18 return S

Theorem 5.31

Algorithm StandardGeneratingSetSL2 [Alg. 21] terminates using at most N random selections

and works correctly.

Proof. The algorithm terminates clearly. The correctness follows by easy computations.
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Remark 5.32
The output of Algorithm StandardGeneratingSetSL2 [Alg. 21] can be interpreted as follows.

The set Au corresponds to upper transvections, namely the transvections E1,2(ωi ) for 1≤ i ≤ f of

Definition 5.1, the set Ad corresponds to lower transvections, namely the transvections E2,1(ωi ) for

1≤ i ≤ d of Definition 5.1, and (Au[1])
−1Ad [1](Au[1])

−1 corresponds to z1 of Definition 5.1. Note

that z2 is trivial if d = 2. ◀

Example 5.33

In Example 5.29 we computed matrices a,a1 and a2 as words in g (L4)
−1

1 and g (L4)
−1

2 where

a =


3 0

0 2


 , a1 =


1 0

4 1


 and a2 =


1 1

0 1


 .

In the following all matrices are given as elements of 〈g1, g2〉(L4)
−1 as we do not require an additional

base change matrix. Applying Algorithm StandardGeneratingSetSL2 [Alg. 21] to (a,a1,a2)

returns the standard generators of Definition 5.1 as follows. We choose 2 as the primitive element of

F5. Solving the discrete logarithm, i.e. computing k such that 3k = 2, returns k = 3 and

a0 := a3 =


3

3 0

0 23


=

2 0

0 3


.

For the upper transvections nothing is to do as ã2 := a2 = E12(2
0). For the lower transvections we set

(a1[2,1])−1 = (−1)−1 =−1=−1 · 1=−1 · 20, i.e. ı0 =−1. Then

c = a−0
0 = I2 and ã1 := I2(a

c
1)

ı0 = a ı0
1 = a−1

1 =


1 0

1 1


.

This concludes the computation of the transvections of Definition 5.1. Lastly we compute z1 by

(Au[1])
−1Ad [1](Au[1])

−1 = ã−1
2 ã1ã−1

2 =


0 −1

1 0


.

◀
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5.3 GoingUp algorithm

In this section we assume that we have found a stingray embedded subgroup H of GL for a known

base change matrixL ∈GL(d , q), i.e. H ≤ 〈XL 〉=GL = SL(d , q), with H ∼= SL(2, q) and anMSLP

from X to the standard generators of H . Starting from this setting, we describe an algorithm to

compute standard generators of G. Similarly to the GoingDown algorithm we present a GoingUp

step which is being used repeatedly. In this thesis we present two versions of a GoingUp step, both

of which are randomised algorithms. The GoingUp algorithm presented in this section builds upon

a strategy proposed in a draft by Ákos Seress and Max Neunhöffer.

The GoingUp step of this section uses linear algebra and relies on completely original ideas. On

the one hand, every computation of this solution can be performed extremely fast in the natural

representation of classical groups which results in a very efficient GoingUp step. On the other

hand, the computations require that the given representation of a classical group is the natural

representation and the GoingUp step of this section cannot easily be modified for non-natural

representations. Using the GoingUp step repeatedly yields an ascending recognition chain

H =H(0) ≤H(1) . . .≤H(ℓ−1) ≤H(ℓ) =G.

as described in Definition 3.9.

The second solution for a GoingUp step of this thesis is based on ideas of [59]. Since this solution is

applicable with minor modifications to all classical groups, the concepts and algorithms are presented

in a separate chapter, see Chapter 9.

Comparing the GoingUp step of this section, in the following called the solution based on linear

algebra, and the GoingUp step in Chapter 9, in the following called the solution based on involutions,

we can observe that, practically speaking, the solution based on linear algebra performs much faster

than the solution based on involutions when applied to a classical group in its natural representation.

However, this comes at the price that the MSLPs for the standard generators of G are longer using

the solution based on linear algebra instead of the solution based on involutions and that the solution

based on linear algebra cannot be used in non-natural settings.
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For the remainder of this thesis, we denote the GoingUp step of the solution based on linear algebra

as GoingUp step, while the GoingUp step of the solution based on involutions is discussed in

Chapter 9.

5.3.1 Overview of the GoingUp step

We start this section by stating the main theorem and giving a description of the GoingUp step in

detail. The theorem is proved by the correctness of the presented GoingUp step of this section.

The algorithm consists of seven phases. One of these phases is randomised while the others are

deterministic. Since one phase is randomised, the GoingUp step overall is also randomised. The

GoingUp step algorithm is presented as Algorithm GoingUpStep [Alg. 27] in Section 5.3.5. In

Section 5.3.6 we call the GoingUp step repeatedly to construct standard generators of the input

group G which results in the final Algorithm GoingUp [Alg. 28].

We start with our hypothesis on the setting of this section and then state the main theorem. After-

wards, the theorem is divided into seven phases which we investigate in more detail and prove their

correctness in the course of this section.

Hypothesis 5.34

For the remainder of this section we assume 〈X 〉=G = SL(d , q) containing a stingray embedded

subgroup H ≤ 〈XL 〉 = GL with H ∼= SL(n, q) for n < d and for a known base change matrix

L ∈GL(d , q). Moreover, standard generators Yn of H are given as words in X . Let V = Fd
q and

suppose thatB = (v1, . . . , vd ) is a basis for V and let Vn = 〈v1, . . . , vn〉 and Fd−n = 〈vn+1, . . . , vd 〉 (cf.
Definition 2.7). We assume that H acts on Vn as SL(n, q) and that H fixes Fd−n point-wise. Recall

that (ω1, . . . ,ω f ) is an Fp -basis for Fq .

The main theorem summarising GoingUp step is the following.

Theorem 5.35

Let X ⊆ SL(d , q) such that 〈X 〉 = G = SL(d , q), let 2 ≤ n < d with n = 2 or n odd and let

L ∈GL(d , q) be a base change matrix. Let YLn be a set of standard generators for the subgroup

SL(n, q) stingray embedded into GL . Furthermore, let S be an SLP from X to Yn and let n′ :=

min{2n− 1, d}.
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Then there is an algorithm that computes a base change matrix L ′ ∈ GL(d , q) together with

an SLP S′ from X to a set Yn′ , which is a set of standard generators for SL(n′, q) and 〈YL ′n′ 〉 is
stingray embedded in GL ′ .

We prove Theorem 5.35 by stating an algorithm. The algorithm consists of seven phases, called SL1)

to SL7), which are discussed and proven in the remainder of this section.

Remark 5.36
The general idea of the algorithm is the following. Let H = SL(Vn)∼= SL(n, q) be stingray embedded

in GL and G = SL(d , q). Given standard generators Yn for H , we construct an element g ∈GL

with the following properties:

(C 1) dim(Vn +Vn g ) = n′,

(C 2) if n′ < d , then dim(Fix(H )+Fix(g )) = dim(Fd−n +Fix(g )) = d .

Note that H acts on Vn as SL(Vn)∼= SL(n, q) and similarly H g acts on Vn g as SL(Vn g )∼= SL(n, q).

By Lemma 2.5 dim(Vn∩Vn g ) = dim(Vn)+dim(Vn g )−dim(Vn+Vn g ) = 2n−n′ =max{1,2n−d}.
In Section 5.3.3 we formulate an additional property (C 3) which cannot be defined at this point. If

g does not satisfy (C 3), then we construct a new element g ∈GL . In the remainder of this section

we prove that this setup allows us to choose a basis for the n′-dimensional subspace Vn′ =Vn +Vn g

of V in such a way that we can use g -conjugates of certain transvections in H to assemble standard

generators for SL(n′, q) with respect to the new basis. Consequently, we conclude that 〈H , H g 〉 is
indeed isomorphic to SL(n′, q). If n′ ≤ d , then we have roughly doubled the degree from n to 2n−1

using g . ◀

Definition 5.37

Assume the setting as described in Hypothesis 5.34 and let g ∈GL .

1) If g satisfies (C 1) and (C 2) of Remark 5.36, then g is a weak doubling element with respect to

H .

2) If g is a weak doubling element with respect to H and additionally fixes vn, then g is a

doubling element with respect to H .

If the context is clear, then a weak doubling element and doubling element with respect to H are

only denoted by a weak doubling element and doubling element.
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Remark 5.38
The next sections can be summarised as follows.

1) Contruction of a doubling element: Construct an element g ∈GL satisfying the properties

(C 1) and (C 2) and fixing vn, i.e. a doubling element as in Definition 5.37. This is achieved by

random selection of elements of GL and discussed in Section 5.3.2.

2) Contruction of a new base change matrix: Construct a new base change matrixL ′ such
that 〈H , H g 〉L ′ is stingray embedded in GLL ′ which is possible because of the properties

(C 1) and (C 2). The computation of L ′ is deterministic and discussed in Section 5.3.3. In

that section we also formulate an additional property (C 3) which can only be given after

constructingL ′. If g does not satisfy (C 3), then we start over from 1).

3) Contruction of transvections and standard generators: If 2) is successful, then we can con-

clude that 〈H , H g 〉L ′ ∼= SL(n′, q). Hence, we construct transvections and standard generators

for 〈H , H g 〉L ′ . Note that we only need to compute permutation matrices corresponding to

the n′- and (n′− 1)-cycles of Definition 5.1 as the transvections of the standard generators

of H are also the transvections of the standard generators of 〈H , H g 〉L ′ . The computations

performed in 3) are deterministic and discussed in Section 5.3.4. ◀

In each section the task described in Remark 5.38 is divided into more phases which are discussed in

detail in the corresponding section and labelled as SL1) to SL7). Lastly, in Section 5.3.5 the phases

SL1) to SL7) are combined into a single algorithm for the GoingUp step. Proving its correctness

yields the proof for Theorem 5.35. In Section 5.3.5 we also discuss two examples of the GoingUp

step. When first reading through the GoingUp step some parts may not be clear directly, but one

can always return to these two examples to compare the theoretical results with their applications.

5.3.2 Construction of a dimension doubling element

The goal in this section is the construction of a doubling element, i.e. an element g ∈GL satisfying

the properties (C 1) and (C 2) and fixing vn, leading to Algorithm ComputeDoublingElement [Alg.

23]. Recall from Hypothesis 5.34 the setting for this section. We give a condensed version of what is

achieved.
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Remark 5.39
SL1) Construct an element t ∈H which has a fixed space of dimension d −n+1. This can be done

easily as we have standard generators Yn for H .

SL2) Compute random elements a ∈GL until g̃ := t a satisfies the two conditions (C 1) and (C 2)

of Remark 5.36, i.e. until g̃ is a weak doubling element.

SL3) Find a conjugate g ∈ GL of g̃ which also satisfies the two conditions (C 1) and (C 2) and

additionally fixes vn, i.e. a doubling element. ◀

Note that the GoingUp algorithm is randomised as in SL2) we search for random a ∈GL such that

g̃ := t a satisfies the two properties (C 1) and (C 2) of Remark 5.36. We do not analyse the proportion

of usable elements in this chapter and only prove the correctness. Complexity results are given in

Chapter 10.

The following lemma shows how SL1) is carried out in the solution of this thesis. Note that there are

multiple other choices for t ∈H having a fixed space of dimension d−n+1. Recall the permutation

matrices z1 and z2 from Definition 5.1 which are permutation matrices corresponding to n and n−1

cycles, respectively.

Lemma 5.40

An element t ∈H ≤GL which has a fixed space of dimension d − n+ 1 is given by

t :=




E1,2(1), if n = 2,

z1, if n > 2 and p is even,

z2, if n > 2 and p is odd.

Proof. If n = 2, then we take t = E1,2(1). Its fixed space is 〈v2, . . . , vd 〉 and thus has dimension d−1=

d − 2+ 1= d − n+ 1. If n > 2, then n is odd by assumption in Theorem 5.35. If the characteristic

p is odd, then we take for t an (n− 1)-cycle z2 which has fixed space is 〈v1, vn+1, vn+2, . . . , vd 〉. If
p = 2, then we select an n-cycle z1 which has fixed space 〈v1+ v2+ . . .+ vn, vn+1, . . . , vd 〉.

The element t is constructed as an MSLP in the given standard generators Yn of H ∼= SL(n, q), but
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can also be written explicitly as a matrix of 〈X 〉L at a cost of O (d 2).

Now that t has a fixed space of dimension d − n + 1, we compute a random a ∈ GL and check

whether g̃ = t a satisfies the properties (C 1) and (C 2) of Remark 5.36. We repeat this until g̃ has

the required properties.

Remark 5.41
Verifying (C 1) and (C 2) of Remark 5.36 is one of the few places in GoingUp step where we must

multiply (d × d )-matrices, since a is created as a matrix in the same input basis as X , and we must

construct the matrix of a and g̃ as an element of 〈X 〉L . This is necessary to check (C 1) and (C 2).◀

Lemma 5.42

Let t be as in Lemma 5.40 and let g̃ := t a be a weak doubling element.

1) dim(Vn ∩Fix( g̃ ))≥ 1 and if n′ < d , then dim(Vn ∩Fix( g̃ )) = 1.

2) Vn′ is invariant under the action of g̃ .

3) If n′ < d , then dim(Fd−n ∩Fix( g̃ )) = d − n′.

Proof. In the following we use Lemma 2.5.

1) Since g̃ and t are conjugate we know that dim(Fix( g̃ )) = dim(Fix(t )) = d − n+ 1. Note that

dim(Vn +Fix( g̃ ))≤ dim(V ) = d . Hence,

dim(Vn ∩Fix( g̃ )) = dim(Vn)+ dim(Fix( g̃ ))− dim(Vn +Fix( g̃ ))

= n+(d − n+ 1)− dim(Vn +Fix( g̃ ))

= d + 1− dim(Vn +Fix( g̃ ))≥ 1.

Now let n′ < d , i.e. n′ = 2n− 1. Then using (C 1) of Remark 5.36 it follows that

dim(Vn ∩Vn g̃ ) = dim(Vn)+ dim(Vn g̃ )− dim(Vn +Vn g̃ )

= n+ n− n′

= n+ n− (2n− 1) = 1.

Notice that Vn ∩Fix( g̃ )⊆Vn g̃ and thus
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dim(Vn ∩Fix( g̃ ))≤ dim(Vn ∩Vn g̃ ) = 1.

Since dim(Vn ∩Fix( g̃ ))≥ 1, the result follows.

2) If n′ = d , then the statement is clear. Let us assume that n′ = 2n−1< d . We construct a basis

of Vn′ which shows that Vn′ is invariant under the action of g̃ . A basis of Vn′ consists of n′

elements since dim(Vn′) = n′ by (C 1). Notice that using 1) it follows that

dim(Vn +Fix( g̃ )) = dim(Vn)+ dim(Fix( g̃ ))− dim(Vn ∩Fix( g̃ ))

= n+(d − n+ 1)− 1= d .

Therefore, Vn +Fix( g̃ ) =V . Since Vn ≤Vn′ , it follows that Vn′ +Fix( g̃ ) =V which implies

that

dim(Vn′ ∩Fix( g̃ )) = dim(Vn′)+ dim(Fix( g̃ ))− dim(Vn′ +Fix( g̃ ))

= (2n− 1)+ (d − n+ 1)− d = n.

Since dim(Vn ∩ (Vn′ ∩Fix( g̃ ))) = dim(Vn ∩Fix( g̃ )) = 1, it follows that

dim(Vn +(Vn′ ∩Fix( g̃ ))) = dim(Vn)+ dim(Vn′ ∩Fix( g̃ ))− dim(Vn ∩ (Vn′ ∩Fix( g̃ )))

= n+ n− 1= 2n− 1= n′.

Since Vn +(Vn′ ∩Fix( g̃ ))≤Vn′ , it follows that Vn +(Vn′ ∩Fix( g̃ )) =Vn′ . Therefore, we can

choose a basis of Vn′ as follows:

• Choose a non-zero vector v1 ∈Vn ∩Fix( g̃ ).

• Select n− 1 vectors v2, . . . , vn ∈Vn to extend this to a basis of Vn.

• Choose n− 1 vectors from Vn′ ∩Fix( g̃ ) to extend this to a basis of Vn′ .

Clearly this basis is invariant under the action of g̃ as either vi g̃ = vi or vi g̃ ∈Vn g̃ ≤Vn′ .
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3) If n′ < d , then dim(Fd−n +Fix( g̃ )) = d by (C 2). Hence, as claimed, we obtain

dim(Fd−n ∩Fix( g̃ )) = dim(Fd−n)+ dim(Fix( g̃ ))− dim(Fd−n +Fix( g̃ ))

= (d − n)+ (d − n+ 1)− d

= d − 2n+ 1= d − n′.

Remark 5.43
If n′ = d < 2n− 1, then it is possible that dim(Vn ∩Fix( g̃ ))> 1 which is important in Remark 5.51.

◀

Corollary 5.44

Let g̃ be a weak doubling element and Vn as in Hypothesis 5.34. Then Vn +Vn g̃ =Vn +Vn g̃−1.

Proof. Note that Vn +Vn g̃ =Vn′
3) of 5.42
= Vn′ g̃

−1 = (Vn +Vn g̃ ) g̃−1 =Vn g̃−1+Vn.

Remark 5.45
Note that there is one more condition (C 3) which can only be formulated in Section 5.3.3. If that

condition is not satisfied, then we restart from SL2) and try another element a. ◀

Algorithm 22: ComputeWeakDoublingElement

Input: ▶ 〈X 〉=G ≤ SL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ SL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (c ,S′,N ′) where

▶ g̃ ∈GL is a weak doubling element,

▶ S is an MSLP from X ∪Yn to g̃ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function ComputeWeakDoublingElement(G,L , H ,N )

1 Choose t ∈H as described in Lemma 5.40 // SL1)

2 repeat // Start of SL2)

3 N←N − 1

4 if N < 0 then

5 return fail

6 g̃← t a for random a ∈GL

7 until g̃ satisfies (C 1) and (C 2)

8 S← MSLP from X ∪Yn to g̃

9 return ( g̃ ,S,N )

Our next goal is to construct a conjugate g of g̃ such that g is a doubling element. We seek an

element L ∈ H with vn L = v, where 0 ̸= v ∈ Vn ∩Fix( g̃ ), and write L as a word in the standard

generators Yn and finally compute g := Lg̃ L−1. Lemma 5.46 proves the existence of an element

L ∈H with the described properties, Lemma 5.47 shows that g is a doubling element and lastly we

describe how L can be found. We start by proving that L ∈H ∼= SL(n, q) exists.

Lemma 5.46

SL(d , q) acts doubly transitive on the 1-dimensional subspaces of Fd
q .

Proof. [91, Theorem 4.1]

Next we show that g := Lg̃ L−1 is a doubling element.

Lemma 5.47

Let t , G and H be as in Lemma 5.40 and g̃ := t a a weak doubling element for a random element

a ∈GL . Let L ∈H such that vn L= v where 0 ̸= v ∈Vn ∩Fix( g̃ ). Then

1) Lg̃ L−1 satisfies (C 1) and (C 2).

2) vn ∈Vn ∩Fix(Lg̃ L−1).

Proof. 1) Since L ∈H , it follows that VnL=Vn and so
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dim(Vn +Vn Lg̃ L−1) = dim(VnL+VnLg̃ ) = dim(Vn +Vn g̃ ) = n′

and (C 1) holds. Moreover, LFd−nL−1 = Fd−n (notice L ∈H ) and so

dim(Fix(Lg̃ L−1)+ Fd−n) = dim(Fix(Lg̃ L−1)+ LFd−nL−1) = dim(Fix( g̃ )+ Fd−n) = d

and (C 2) holds.

2) We have vn ∈Vn and vn Lg̃ L−1 = v g̃ L−1 = vL−1 = vn since 0 ̸= v ∈Vn ∩Fix( g̃ ).

Remark 5.48
We proceed as follows to find L satisfying the hypothesis of Lemma 5.47:

1) Let 0 ̸= v ∈ Vn ∩ Fix( g̃ ) and v =
∑n

j=1λ j v j for λ j ∈ F. This is possible since v ∈ Vn and

(v1, . . . , vn) is a basis of Vn.

2) If λn ̸= 0, then we normalise the first entry of v by multiplying it by λ−1
n , allowing us, without

loss of generality, to assume λn = 1. Through this normalisation L can be written as a product

of the elements En, j (ωi ) for 1≤ i ≤ f and 1≤ j ≤ n−1. The elements En, j (ωi ) are expressed

in the standard generators Yn of H ∼= SL(n, q), as shown in Lemma 5.3.

3) If λn = 0, then we select a non-zero λ j and find a L′ ∈H such that vnL′ = vE j ,n(1), following

the same procedure outlined in 2). Finally, we define L := L′E j ,n(1)
−1. ◀

Algorithm 23: ComputeDoublingElement

Input: ▶ 〈X 〉=G ≤ SL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ SL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (g ,S,N ′) where

▶ g ∈GL is a doubling element,

▶ S is an MSLP from X ∪Yn to g and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function ComputeDoublingElement(G,L , H ,N )

1 ( g̃ ,S1,N )←ComputeWeakDoublingElement(G,L , H ,N )

2 if g̃ = fail then

3 return fail

4 L← as described in Remark 5.48 AND S2← MSLP from Yn to L // SL3)

5 g←Lg̃ L−1 AND S← Compose S1 and S2

6 return (g ,S,N )

Remark 5.49
Notice that the matrices E1,2(ωi ) and E2,1(ωi ) are given as elements of 〈X 〉L which contains the

stingray embedded subgroup H isomorphic to SL(n, q) and standard generators Yn can be written

as words in XL as described in Hypothesis 5.34. ◀

5.3.3 Construction of a new base change matrix

The goal of this section is the construction of a new base change matrix L ′ such that 〈H , H g 〉L ′

is stingray embedded in GLL ′ . All computations in this section are deterministic. Recall from

Hypothesis 5.34 the setting for this section and that g ∈GL is a doubling element, i.e. satisfies (C 1)

and (C 2) and fixes vn as described in Section 5.3.2. This section only covers one phase as described

in the next remark.

Remark 5.50

SL4) Compute a base change matrixL ′ such that 〈H , H g 〉L ′ is stingray embedded in GLL ′ . ◀

The goal of SL4) is to compute a base change matrix L ′ ∈ GL(d , q) such that 〈H , H g 〉L ′ is
stingray embedded in GLL ′ and if 〈H , H g 〉 ∼= SL(n′, q), then standard generators of 〈H , H g 〉L ′

can be constructed using the steps SL5) to SL7) described in Section 5.3.4. Note that we formulate

an additional condition (C 3) in this section which can only be defined after the construction ofL ′.
If g does not satisfy (C 3), then we must choose a new random element a ∈GL and restart from

phase SL2). If g satisfies (C 3), then we can conclude in Section 5.3.4 that 〈H , H g 〉 ∼= SL(n′, q) and

construct standard generators of 〈H , H g 〉.
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Remark 5.51
The base change matrixL ′ is computed by constructing a specific basis of Fd

q . Let π : V → Fd−n be

the projection map to Fd−n of the decomposition V =Vn ⊕ Fd−n.

1) The first n vectors of the new basis are equal to the vectors in the old basis, i.e. v ′i := vi for

1≤ i ≤ n.

2) Notice that the vectors π(v1 g ), . . . ,π(vn−1 g ) are linear independent if n′ < d using the

following argument: Let ai ∈ Fq such that 0 =
∑n−1

i=1 aiπ(vi g ) = π(
∑n−1

i=1 ai vi g ). Thus,
∑n−1

i=1 ai vi g ∈Vn and
∑n−1

i=1 ai vi g = (
∑n−1

i=1 ai vi )g ∈Vn g . Note that Vn∩Vn g = 〈vn〉 and that

(
∑n−1

i=1 ai vi )g ∈Vn ∩Vn g . Hence, λvn is a linear combination of (v1 g , . . . , vn−1 g ) such that

λvn =
∑n−1

i=1 ai vi g which is equivalent to λvn = λvn g−1 =
∑n−1

i=1 ai vi . This is only possible if

λ= a1 = . . .= an−1 = 0 as (v1, . . . , vn) is a basis. With a similar argument it can be shown that

π(v1 g ), . . . ,π(vn−1 g ) contains a linear independent subset of size d − n if d = n′.

The vectors v ′n+1, . . . , v ′n′ of the new basis are chosen as a linearly independent subset of the

vectors π(v1 g ), . . . ,π(vn−1 g ). If n′ < d , then we take all the vectors π(v1 g ), . . . ,π(vn−1 g ) and

otherwise we choose a linearly independent subset.

3) In the case n′ < d we extend (v ′1, . . . , v ′n′) to a basisB ′ = (v ′1, . . . , v ′d ) of V by choosing a basis

of Fd−n ∩Fix(g ) which is possible by condition (C 2). ◀

The matrixL ′ ∈GL(d , q) is now chosen to be the base change matrix betweenB andB ′. Note

that (C 1) and (C 2) ensure that 〈H , H g 〉 can be stingray embedded in GL using Remark 5.51.

Remark 5.52
With respect to the new basisB ′ we can observe the following.

1) Vn = 〈v ′1, . . . , v ′n〉.
2) Vn +Vn g = 〈v ′1, . . . , v ′n′〉.
3) 〈v ′n+1, . . . , v ′d 〉 ⊆ Fix(H ).

4) Note that 1) and 3) ensure that for our stingray embedded subgroup H ∼= SL(n, q) in GL also

HL ′ is a stingray embedded subgroup in GLL ′ . ◀

From this point on, we consider all of our matrices as elements of GLL ′ . For the standard generators

Yn of H ∼= SL(n, q), no changes are necessary, see 3) of Remark 5.52. However, the matrix g must

be conjugated by the base change matrixL ′ and we denote the resulting matrix by c , i.e. c := gL ′ .
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At this point we formulate the last condition (C 3). If (C 3) is satisfied by c , then we can conclude

that 〈H , H g 〉 ∼= SL(n′, q) in Section 5.3.4. The necessity for condition (C 3) is discussed in more

detail in Section 5.3.4.

Remark 5.53
The final condition on c is the following.

(C 3) The vectors v ′j and v ′j c
−Tr for 1 ≤ j ≤ n − 1 span as an Fq -subspace the Fq -subspace

〈v ′1, . . . , v ′n−1, v ′n+1, . . . , v ′n′〉. ◀

Definition 5.54

Assume the setting as described in Hypothesis 5.34. Let g ∈ GL be a doubling element and

c := gL ′ , where L ′ is chosen as in Remark 5.51. If c additionally satisfies (C 3), then c is a

strong doubling element.

Note that (C 3) can only be verified after computing the base change matrix L ′ which is also

the reason why this condition is introduced at this point. If (C 3) is not satisfied by c , then we

return to SL2) and try another random element a ∈ GL . Note that 〈H , H g 〉L ′ = 〈H , H c〉. We

give an algorithm to compute a strong doubling element c ∈GLL ′ satisfying (C 1), (C 2) and (C 3)

in pseudo-code called Algorithm ComputeStrongDoublingElement [Alg. 24] using Algorithm

ComputeDoublingElement [Alg. 23] of Section 5.3.4.

Algorithm 24: ComputeStrongDoublingElement

Input: ▶ 〈X 〉=G ≤ SL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ SL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (c ,L ′,S,N ′) where

▶ c ∈GLL ′ is a strong doubling element,

▶ L ′ ∈GL(d , q) is a base change matrix as in Remark 5.51,

▶ S is an MSLP from X ∪Yn to c and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function ComputeStrongDoublingElement(G,L , H ,N )

1 while N > 0 do

2 (g ,S,N )←ComputeDoublingElement(G,L , H ,N ) // Remark 5.7 and 5.8

3 L ′← as described in Remark 5.51 AND c← gL ′ // SL4)

4 if the submatrix (c−1)i , j for n+ 1≤ i ≤ n′ and 1≤ j ≤ n− 1 has full rank then

5 return (c ,L ′,S,N )

6 return fail

5.3.4 Construction of transvections and standard generators

Given a strong doubling element c ∈GLL ′ as described in Section 5.3.3 the goal of this section is to

conclude that 〈H , H c〉 ∼= SL(n′, q) and the construction of transvections and standard generators for

〈H , H c〉. All computations in this section are deterministic. Recall from Hypothesis 5.34 the setting

of this section and that c ∈ GLL ′ satisfies (C 1), (C 2) and (C 3). Moreover, note that 〈H , H c〉 is
stingray embedded in GLL ′ by the construction ofL ′ ∈GL(d , q) in Section 5.3.3. In this section

the last phases SL5) to SL7) are described in the next remark.

Remark 5.55
SL5) Using c , construct transvections E j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SL(n′, q).

SL6) Using c , construct transvections En, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SL(n′, q).

SL7) Using the transvections of phases SL5) and SL6) construct standard generators for 〈H , H c〉 ∼=
SL(n′, q) by assembling permutation matrices corresponding to n′- and (n′− 1)-cycles as in

Definition 5.1. ◀

In SL5) and SL6), the transvections E j ,n(ωi ) and En, j (ωi ) are conjugated by c and transformed by

matrix multiplications into transvections of SL(n′, q)∼= 〈H , H c〉 as stingray embedded elements of

GLL ′ . This is necessary to subsequently compute permutation matrices of SL(n′, q) in SL7). For

SL6) we need the transvections computed in SL5). Recall from Definition 2.29 the notation Tv,w for

transvections.

The purpose of SL5) is to construct the elements E j ,n(ωi ) for 1 ≤ i ≤ f and n + 1 ≤ j ≤ n′ as

elements of GLL ′ . For this consider the transvections T c
ωi v ′j ,v

′
n
for 1≤ i ≤ f and 1≤ j ≤ n− 1 and
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the lemmas from Section 2.3.

For any 1≤ i ≤ f , Lemma 2.32 states that the conjugate T c
ωi v ′j ,v

′
n
corresponds to the transvection

Tωi v ′j c−Tr,v ′n , given that v ′n c = v ′n. Note that all the transvections T c
ωi v ′j ,v

′
n
fix v ′n, as this is the case for

c and the transvections Tωi v ′j ,v
′
n
. Consequently, 〈v ′n | v ′j c−Tr〉= 0 for 1≤ j ≤ n− 1.

Thus, for 1≤ i ≤ f and 1≤ j ≤ n−1, the vectorsωi v
′
j andωi v

′
j c
−Tr are all orthogonal to vn under

the standard scalar product, see Definition 2.31. Moreover, we have MSLPs for Tw,v ′n for all vectors

w ∈ A := {ωi v
′
j | 1≤ i ≤ f , 1≤ j ≤ n− 1} ∪ {ωi v

′
j c
−Tr | 1≤ i ≤ f , 1≤ j ≤ n− 1}. From (C 3), it

follows that the vectors in A span the subspace 〈v ′1, . . . , v ′n−1, v ′n+1, . . . , v ′n′〉. Hence, utilising Lemmas

2.33 and 2.34, we express all Tωi v ′j ,v
′
n
for 1≤ i ≤ f and n+ 1≤ j ≤ n′ as words of the elements Tw,v ′n

for w ∈A. This results in the successful construction of the elements E j ,n(ωi ) in GLL ′ .

Remark 5.56
1.) Note that we must perform linear algebra computations over the prime field GF(p) here,

but once again we use the results of the computations only to write an MSLP for these

transvections.

2.) In our implementation we check the property (C 3) of c of Remark 5.36 already in Algorithm

ComputeStrongDoublingElement [Alg. 24] to avoid unnecessary computations at this

point. ◀

The idea of SL5) is to compute E j ,n(ωi )
c for 1≤ i ≤ f and 1≤ j ≤ n−1 and somehow to construct

E j ,n(ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′ using the elements {E j ,n(ωi )
c | 1≤ i ≤ f , 1≤ j ≤ n− 1}.

To obtain a usable algorithm we start by computing T c
ωi v ′j ,v

′
n
as elements of GLL ′ , i.e. E j ,n(ωi )

c ,

which is given in Lemma 5.57.
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Lemma 5.57

Let n′ =min{2n− 1, d}, let 1≤ j ≤ n− 1 and let c ∈GLL ′ be a strong doubling element. Let

y :=




1 0 . . . 0 ωi (c
−1)1, j 0 . . . 0

0 1 . . . 0 ωi (c
−1)2, j 0 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 1 ωi (c
−1)n−1, j 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




∈ SL(n′, q).

Then E j ,n(ωi )
c = diag(y, Id−n′) ∈GLL ′ .

Proof. If k ∈ {n′+ 1, . . . , d}, then

ek E j ,n(ωi )
c = ek c−1E j ,n(ωi )c = ek E j ,n(ωi )c = ek c = ek .

Moreover for k ∈ {1, . . . , n′}− {n} we have

ek c−1E j ,n(ωi )c = (c
−1)k ,−E j ,n(ωi )c

= ((c−1)k ,−+ωi (c
−1)k , j en)c

= ek c−1c +ωi (c
−1)k , j enc = ek +ωi (c

−1)k , j en

and

en c−1E j ,n(ωi )c = enE j ,n(ωi )c = enc = en.

Remark 5.58
Using the standard generators of H ∼= SL(n, q), the matrix E j ,n(ωi )

c can be multiplied by transvec-

tions of H resulting in row and column operations. Using row and column operations another

element of 〈H , H c〉 can be constructed where the entries in the n-th column of E j ,n(ωi )
c above the
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(n, n) entry are zero such that matrices of the form diag(y j ,n,ωi
, Id−n′) are constructed where

y j ,n,ωi
:=




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

In the following we denote the process of using row and column operations to construct another

matrix with zeros at specific positions as “eliminating” these entries. Using (C 3) the column vectors

((c−1)n+1,i , . . . , (c
−1)n′,i ) for 1≤ i ≤ n− 1 of length (n′− n) below the n-row entry of c−1 generate

the full f (n′− n)-dimensional Fp -vector space. Observe that the group Gn′ := 〈{y j ,n,ωi
| 1 ≤ j ≤

n− 1,1≤ i ≤ f }〉 is abelian and in fact isomorphic to Fn′−n
q via the isomorphism given by

ϕ : Fn−1
q →Gn′ , (λn+1, . . . ,λn′) 7→




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 λn+1 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 λn′ 0 . . . 1




.
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That means that for elements

y1 :=




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 (y1)n+1 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 (y1)n′ 0 . . . 1




, y2 :=




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 (y2)n+1 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 (y2)n′ 0 . . . 1




the isomorphism ϕ yields

y ı1
1 y ı2

2 =




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ı1(y1)n+1+ ı2(y2)n+1 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 ı1(y1)n′ + ı2(y2)n′ 0 . . . 1




where ı1, ı2 ∈ Fp represented as elements of {0, . . . , p − 1}, i.e. linear combinations of the columns

are computed. Note that our goal is the computation of the transvections E j ,n(ωi ) for 1≤ i ≤ f
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and n+ 1≤ j ≤ n′, e.g.

En+1,n(ωi ) =




1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi 1 . . . 0

0 0 . . . 0 0 1 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 0 0 0 . . . 1




.

By multiplying the matrices y j ,n,ωi
appropriately, the standard basis of Fn−1

q as an Fp -vector space,

i.e. ω1e1, . . . ,ω f e1, . . . ,ω1en−1, . . . ,ω f en−1, can be computed and thus the transvections E j ,n(ωi ) for

1≤ i ≤ f and n+ 1≤ j ≤ n′. ◀

We combine Lemma 5.57 and Remark 5.58 and obtain AlgorithmComputeVerticalTransvections

[Alg. 25].

In SL6), the transvections En, j (ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′ as elements of GLL ′ should be

computed. This is more complicated than computing the transvections E j ,n(ωi ) for 1≤ i ≤ f and

n+ 1 ≤ j ≤ n′ in phase SL5) because c−Tr does not necessarily fix the n-th basis vector anymore.

The next lemma therefore carries out a computation similar to the one described in Lemma 5.57

and has the desired consequences. Recall that for a matrix a ∈GL(d , q) the i -th row of a is denoted

by ai ,− and the i -th column of a is denoted by a−,i .

Algorithm 25: ComputeVerticalTransvections

Input: ▶ SL(n, q)∼= 〈Yn〉=H ≤ SL(d , q) stingray embedded and constructively recognised

▶ c ∈ SL(d , q) a strong doubling element

Output: ▶ TV := {E j ,n(ωi ) | 1≤ i ≤ f , n+ 1≤ j ≤ n′} ⊂ 〈H , H c 〉 transvections of SL(n′, q)

▶ An MSLP S from Yn ∪{c} to TV
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function ComputeVerticalTransvections(H , c)

// Function implements SL5) based on Lemma 5.57 and Remark 5.58

1 T̃V ← [ ]
2 for λ ∈ {ω1, . . . ,ω f } and j ∈ {2, . . . , n− 1} do
3 T ←E j ,n(λ)

c

4 for k ∈ [1, . . . , n− 1] do

5 T ←Ek ,n(−λ(c−1)k , j )T // Note that Ek ,n(−λ(c−1)k , j ) ∈H

6 Add(T̃V ,T )

7 TV ← [ ]
8 for λ ∈ {ω1, . . . ,ω f } and j ∈ {n+ 1, . . . , n′} do
9 E j ,n(λ)← Multiply the matrices of T̃V suitably

10 Add(TV , E j ,n(λ))

11 S← MSLP for the computations of TV

12 return (TV ,S)

Lemma 5.59

Let n′ = min{2n − 1, d}, let 1 ≤ j ≤ n − 1 and let c ∈ GLL ′ be a strong doubling element. Let

y ∈ SL(n′, q) with

y := In′ + diag(ωi (c
−1)1,n, . . . ,ωi (c

−1)n−1,n,ωi ,ωi (c
−1)n+1,n, . . . ,ωi (c

−1)n′,n) · (c j ,−, . . . , c j ,−)
Tr.

Then En, j (ωi )
c = diag(y, Id−n′) ∈GLL ′ .

Proof. If k ∈ {n′+ 1, . . . , d}, then

ek En, j (ωi )
c = ek c−1En, j (ωi )c = ek En, j (ωi )c = ek c = ek .

For k ∈ {1, . . . , n′}− {n} we have

ek c−1En, j (ωi )c = (c
−1)k ,−En, j (ωi )c

= ((c−1)k ,−+ωi (c
−1)k ,ne j )c

= ek c−1c +ωi (c
−1)k ,ne j c = ek +ωi (c

−1)k ,nc j ,−
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and

en c−1En, j (ωi )c = en En, j (ωi )c = (ωi e j + en)c =ωi e j c + enc =ωi c j ,−+ en.

After conjugating En, j (ωi ) by c the result becomes slightly more complicated than the conjugation

of E j ,n(ωi ) by c . Remark 5.60 displays how the transvections En, j (1) for n+ 1≤ j ≤ n′ can still be

computed starting from En, j (ωi )
c .

Remark 5.60
Let 1≤ j ≤ n−1, let n′ =min{2n−1, d} and let c andL ′ be as constructed in the previous phases.

Moreover, we assume that SL5) has already been performed, i.e. that MSLPs for the transvections

E j ,n(ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′ have been computed.

By Lemma 5.59 En, j (1)
c = diag(y, Id−n′)where y ∈ SL(n′, q) and 1≤ j ≤ n−1. As in SL5) the n′×n′

top left block y of En, j (1)
c should be transformed into the transvection En,n+ j (1). To illustrate the

operations we are performing, we represent the n′× n′ top left block y of En, j (1)
c as in (5.3.1).

△ . . . △ ⋄ ▽ . . . ▽
... . . . ...

...
... . . . ...

△ . . . △ ⋄ ▽ . . . ▽
⋆ . . . ⋆ * ⋆ . . . ⋆

◁ . . . ◁ ⋄ ▷ . . . ▷

... . . . ...
...

... . . . ...

◁ . . . ◁ ⋄ ▷ . . . ▷







n− 1

1

n′− n

n− 1 1 n′− n

=




△ . . . △ ⋄ ▽ . . . ▽
... . . . ...

...
... . . . ...

△ . . . △ ⋄ ▽ . . . ▽
⋆ . . . ⋆ * ⋆ . . . ⋆

◁ . . . ◁ ⋄ ▷ . . . ▷
... . . . ...

...
... . . . ...

◁ . . . ◁ ⋄ ▷ . . . ▷




= y. (5.3.1)

We are using n′ − n to deal with both cases for n′, i.e. n′ = 2n − 1 ≤ d and n′ = d ̸= 2n − 1

simultaneously. If n′ = 2n− 1≤ d , then n′− n = 2n− 1− n = n− 1 and if n′ = d ̸= 2n− 1, then

n′− n < n − 1. Remember that we have standard generators and, therefore, all transvections of

SL(n, q) for the top left n× n block (consisting of red upper triangles, green diamonds, blue stars

and black flower). We start by eliminating the red (upper-) and orange (lower-) triangle blocks by
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adding the n-th row using row operations. Let k ∈ {1, . . . , n− 1} and i as in Lemma 5.59. Then

(ek +ωi (c
−1)k ,n c j ,−)+ (−(c−1)k ,n)(ωi c j ,−+ en) = ek +ωi (c

−1)k ,nc j ,−− (c−1)k ,nωi c j ,−− (c−1)k ,n en

= ek − (c−1)k ,nen

where ek+ωi (c
−1)k ,n c j ,− is the k-th row of En, j (1)

c andωi c j ,−+en is the n-th row of En, j (1)
c . Hence,

the addition of these rows can be achieved by multiplying with Ek ,n(−(c−1)k ,n) from the left. Note

that Ek ,n(−(c−1)k ,n) ∈ SL(n, q) and, therefore, we can write Ek ,n(−(c−1)k ,n) as a word in Yn. After

these n− 1 row operations, the matrix of (5.3.1) is transformed into the matrix of (5.3.2):




⋄
In−1

... 0

⋄
⋆ . . . ⋆ * ⋆ . . . ⋆

◁ . . . ◁ ⋄ ▷ . . . ▷
... . . . ...

...
... . . . ...

◁ . . . ◁ ⋄ ▷ . . . ▷




. (5.3.2)

We proceed analogously with the rows below the n-th row using the same argument for k ∈
{n+ 1, . . . , n′}. Notice that this is only possible since we have already computed the transvections

E j ,n(ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′ in SL5). After these additional n− 1 row operations we

transform (5.3.2) into 


⋄
In−1

... 0

⋄
⋆ . . . ⋆ * ⋆ . . . ⋆

⋄
0

... In−1

⋄




. (5.3.3)

Notice that the green diamond entries are known, i.e. the entry at position (k , n) is −(c−1)k ,n, since
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(ek +ωi (c
−1)k ,n c j ,−)+ (−(c−1)k ,n)(ωi c j ,−+ en) = ek − (c−1)k ,nen. By adding the columns 1 to n− 1

multiplying by the corresponding scalars to the n-th column, the green diamond entries in the

n-th column above the n-th entry can be eliminated. This can be performed by multiplying the

matrices Ek ,n((c
−1)k ,n) ∈H from the right. The entry in position (n, n) is changed to 1 during these

operations if this was not the case which is shown at the end of this remark. After these column

operations (5.3.3) is transformed into




0

In−1
... 0

0

⋆ . . . ⋆ * ⋆ . . . ⋆

⋄
0

... In−1

⋄




. (5.3.4)

The rest is now clear. The rows 1 to n−1 are added to the n-th row in order to eliminate the entries

to the left of the n-th entry in the n-th row. Moreover, the columns n+ 1 to n′ are added to the

n-th column to eliminate the entries below the n-th entry, resulting in the final matrix




0

In−1
... 0

0

0 . . . 0 1 ⋆ . . . ⋆

0

0
... In−1

0




. (5.3.5)

The entry in Position (n, n) of (5.3.5) must be 1 since this is an upper triangular matrix which is

also contained in SL. Note that the entries in position (n, n) in this matrix and matrix in (5.3.4) are

the same which is why it already was 1 before these final row and column operations. Moreover,
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the rows in blue are equal to (c j ,−)n+1,...,n′ which are equal to e1, . . . , en−1 by choosing the basisB ′ of

phase SL4) proactively. Overall, En, j (1)
c is transformed into En,n+ j (1) using only transvections for

which an MSLP is known. Therefore, an MSLP evaluating to En,n+ j (1) is constructed. ◀

We also give a pseudo-code performing SL6) in Algorithm ComputeHorizontalTransvections

[Alg. 26] for computing the “horizontal” transvections En, j (ωi ) for n < j ≤ n′ and 1≤ i ≤ f .

Algorithm 26: ComputeHorizontalTransvections

Input: ▶ SL(n, q)∼= 〈Yn〉=H ≤ SL(d , q) stingray embedded and constructively recognised

▶ c ∈ SL(d , q) a strong doubling element

Output: ▶ TH := {En, j (1) | n+ 1≤ j ≤ n′} ⊂ 〈H , H c 〉 transvections of SL(n′, q)

▶ An MSLP S from Yn ∪{c} ∪TV to TH

function ComputeHorizontalTransvections(H , c)

// Function implements SL6) based on Lemma 5.59 and Remark 5.60

1 TH← [ ]
2 for j ∈ {2, . . . , n− 1} do
3 T ←En, j (1)

c

4 for k ∈ [1, . . . , n− 1] do

5 T ←Ek ,n(−(c−1)k ,n)T // As in (5.3.2) of Remark 5.60

6 for k ∈ [n+ 1, . . . , n′] do

7 T ←Ek ,n(−(c−1)k ,n)T // As in (5.3.3) of Remark 5.60

8 for k ∈ [1, . . . , n− 1] do

9 T ←T Ek ,n((c
−1)k ,n) // As in (5.3.4) of Remark 5.60

10 for k ∈ [1, . . . , n− 1] do

11 T ←En,k (−(c−1) j ,k )T // As in (5.3.5) of Remark 5.60

12 for k ∈ [n+ 1, . . . , n′] do

13 T ←T Ek ,n((c
−1)k ,n) // As in (5.3.5) of Remark 5.60

14 Add(TH , E)

15 S← MSLP for the computations of TH

16 return (TH ,S)
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In the last and final phase, the n′- and (n′− 1)-cycles are now assembled. This can easily be realised

with the transvections from SL5) and SL6) as described in Lemma 5.61.

Lemma 5.61

Let n = 2 or n be odd. The permutation matrices z ′1, z ′2 as in Definition 5.1 for SL(n′, q) can be

computed using the matrices of the set X = {z1, z2, Ei ,n(1), En,i (1)} for n+ 1≤ i ≤ n′.

Proof. Let n be odd. Transpositions can be easily computed as E−1
i ,n (1)En,i (1)E

−1
i ,n (1) is the permutation

matrix which corresponds to (n, i) ∈ Sn′ for n < i ≤ n′, where the entry in position (i , n) is equal

to −1 and Ei ,n(1)E
−1
n,i (1)Ei ,n(1) is the permutation matrix which corresponds to (n, i) ∈ Sn′ for

n < i ≤ n′, where the entry in position (n, i) is equal to −1. Moreover

(n, n′) · (n, n′− 1) · (n, n′− 2) · . . . · (n, n+ 1)

=(n, n′, n′− 1) · (n, n′− 2) · . . . · (n, n+ 1)

=(n, n′, n′− 1, . . . , n+ 1).

and

(n, n− 1, . . . , 1) · (n, n′, n′− 1, . . . , n+ 1) = (n, n− 1, . . . , 1, n′, n′− 1, . . . , n+ 1) = (n′, n′− 1, . . . , 1),

(n, n− 1, . . . , 2) · (n, n′, n′− 1, . . . , n+ 1) = (n, n− 1, . . . , 2, n′, n′− 1, . . . , n+ 1) = (n′, n′− 1, . . . , 2).

Due to the position of −1 in the transpositions, the matrices correspond to the standard generators

of Definition 5.1. Now let n = 2. Then E3,2(1)E
−1
2,3 (1)E3,2(1) is a word for z2 of SL(3, q) and

E1,2(1)E
−1
2,1 (1)E1,2(1)(E3,2(1)E

−1
2,3 (1)E3,2(1)) is a word for z1 of SL(3, q).

5.3.5 GoingUp step

Finally all phases and subalgorithms of this section are combined into a single algorithm which

can be used for a single GoingUp step as stated in Theorem 5.35. The seven phases of the previous

sections are summarised in Remark 5.62. Recall that phases SL1) to SL3) are formulated in Remark

5.39 of Section 5.3.2, that phase SL4) is formulated in Remark 5.50 of Section 5.3.3 and that phases

SL5) to SL7) are formulated in Remark 5.55 of Section 5.3.4.
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Remark 5.62
Let 〈X 〉=G = SL(d , q) contain a stingray embedded subgroup H ≤ 〈XL 〉=GL with H ∼= SL(n, q)

for n < d and for a known base change matrixL ∈GL(d , q). Moreover, standard generators Yn of

H are given as words in X . The following seven phases must be performed for Theorem 5.35 and,

therefore, for one GoingUp step:

SL1) Construct an element t ∈H which has a fixed space of dimension d − n+ 1.

SL2) Compute random elements a ∈GL until g̃ := t a is a weak doubling element.

SL3) Find a conjugate g ∈GL of g̃ which is a doubling element.

SL4) Compute a base change matrix L ′ such that 〈H , H g 〉L ′ is stingray embedded in GLL ′ .

Set c := gL ′ and verify whether c is a strong doubling element. Proceed if c is a

strong doubling element.

SL5) Using c , construct transvections E j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SL(n′, q).

SL6) Using c , construct transvections En, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SL(n′, q).

SL7) Using the transvections of SL5) and SL6) construct standard generators for 〈H , H c〉 ∼= SL(n′, q)

by assembling permutation matrices corresponding to n′- and (n′− 1)-cycles as in Definition

5.1. ◀

Note that the condition (C 3) is tested by Algorithm ComputeStrongDoublingElement [Alg.

24] in SL4) and if c does not satisfy (C 3), then we return to SL2). An overall algorithm for one

GoingUp step is given in pseudo-code in Algorithm GoingUpStep [Alg. 27].

Algorithm 27: GoingUpStep

Input: ▶ 〈X 〉=G ≤ SL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ SL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (Yn′ ,L ′,S,N ′) where

▶ SL(min{2n− 1, d}, q)∼= 〈Yn′〉= H̃ ,

▶ L ′ ∈GL(d , q) is a base change matrix such that H̃ is stingray embedded in GLL ′ ,

▶ S is an MSLP from X ∪Yn to the standard generators Yn′ of H̃ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingUpStep(G,L , H ,N )

1 (c ,L ′,S1,N )←ComputeStrongDoublingElement(G,L , H ,N )

2 if c = fail then

3 return fail

4 TV ,S2←ComputeVerticalTransvections(H , c)

5 TH ,S3←ComputeHorizontalTransvections(H , c)

6 Use TV and TH to construct z1 and z2 of SL(n′, q) as an MSLP S4 using Lemma 5.61 // SL7)

7 Compose S1,S2,S3,S4 into one MSLP S

8 return (〈H , H c 〉,L ′,S,N )

Theorem 5.63

Algorithm GoingUpStep [Alg. 27] terminates using at most N random selections and is correct.

Proof. The correctness is clear since the correctness of each phase has been proven in the preceding

sections. Therefore, it is left to show that Algorithm GoingUpStep [Alg. 27] terminates. Note that

most lines are deterministic and can be performed in finite time. The only critical line is Line 1, i.e.

finding a suitable c , which is controlled by N to have only a finite number of tries.

We provide two examples to illustrate the algorithm and its underlying ideas. We recommend

revisiting these examples while delving into the detailed algorithm description to gain a deeper

understanding of its workings and overall structure.

Example 5.64

We again continue Example 5.4. In the course of this chapter we computed a base change matrixL4

and a subgroup GΞ3 ≤GΞ = 〈aΞ1 ,aΞ2〉with GΞ3
∼= SL(2, q) and (GΞ3 )

L4 is stingray embedded in (GΞ)L4

such that we can express the standard generators of GΞ3 as words in aΞ1 ,aΞ2 . Using the GoingUp

step of this section we compute standard generators of a subgroup of GΞ isomorphic to SL(3, q).

Note that in our setting, d = 16, n = 2, q = p = 5, n′ = 3 and until we have computed a new base

change matrix, every matrix is given as an element of (GΞ)L4 . Moreover, we set HΞ
(0) := (G

Ξ
3 )
L4 . We

now work through the seven phases given in Remark 5.62.

SL1) We need an element t which has a fixed space of dimension d − n+ 1= 16− 2+ 1= 15. We
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may choose t to be a transvection of HΞ
(0), namely

t :=




1 1 0

0 1 0

0 0 I14


 .

SL2) We compute random elements a ∈ (GΞ)L4 until g̃ := t a satisfies the properties (C 1) and (C 2).

In this example we choose the following two elements of GL(16,5):




1 4 4 4 4 4 1 2 0 1 1 0 1 3 2 0
3 2 0 1 0 4 0 0 4 4 4 2 1 1 4 1
3 2 1 2 3 0 4 1 1 0 2 4 2 3 3 0
2 2 3 3 0 0 1 0 2 2 0 2 4 2 1 1
2 0 4 2 1 3 4 0 0 4 3 0 0 4 1 2
4 4 4 1 4 1 1 4 2 2 0 0 1 3 4 1
2 2 4 3 1 0 3 0 1 0 3 1 2 4 0 0
1 1 0 0 2 4 4 0 4 4 4 3 0 2 1 0
0 4 2 2 3 2 3 4 2 3 1 3 1 2 4 3
0 0 0 3 2 0 3 3 3 0 1 1 3 1 4 4
1 2 2 1 1 2 4 4 0 3 1 2 2 4 0 4
3 4 3 1 2 3 3 1 3 1 3 0 4 1 4 4
2 3 2 1 1 2 4 4 2 2 3 2 3 1 0 0
2 0 3 4 0 4 1 4 3 4 4 1 1 1 1 0
1 0 3 3 1 4 0 1 4 0 1 2 1 0 4 2
3 3 4 0 1 4 2 3 2 3 1 1 1 0 3 4




︸ ︷︷ ︸
:= a

,




0 1 1 3 1 1 2 2 0 3 2 3 1 3 3 1
1 0 4 2 4 4 3 3 0 2 3 2 4 2 2 4
3 2 3 1 2 2 4 4 0 1 4 1 2 1 1 2
2 3 3 0 3 3 1 1 0 4 1 4 3 4 4 3
3 2 2 1 3 2 4 4 0 1 4 1 2 1 1 2
3 2 2 1 2 3 4 4 0 1 4 1 2 1 1 2
1 4 4 2 4 4 4 3 0 2 3 2 4 2 2 4
2 3 3 4 3 3 1 2 0 4 1 4 3 4 4 3
1 4 4 2 4 4 3 3 1 2 3 2 4 2 2 4
3 2 2 1 2 2 4 4 0 2 4 1 2 1 1 2
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3 2 2 1 2 2 4 4 0 1 4 2 2 1 1 2
2 3 3 4 3 3 1 1 0 4 1 4 4 4 4 3
4 1 1 3 1 1 2 2 0 3 2 3 1 4 3 1
4 1 1 3 1 1 2 2 0 3 2 3 1 3 4 1
3 2 2 1 2 2 4 4 0 1 4 1 2 1 1 3




︸ ︷︷ ︸
:= g̃

.

Even though g̃ appears to be a random element of F16×16
5 , this is not a case. We discussed in Lemma

5.42 that elements in SL(d , q) satisfying property (C 1) and (C 2) are rare. Checking that g̃ satisfies

(C 1) and (C 2) can be done with just three applications of the Gaussian algorithm. In our example

V2 = 〈e1, e2〉 and V2 g̃ = 〈 g̃1,−, g̃2,−〉 where g̃i ,− denotes the i -th row of g̃ . Therefore, dim(V2+V2 g̃ )

can be computed by applying the Gaussian algorithm to the matrix containing e1, e2, g̃1,− and g̃2,− as

rows. To verify condition (C 2), note that F14 = 〈e3, . . . , e16〉 and that Fix( g̃ ) is just the null space of

g̃ − I16. Then we can use the same computation as we did for (C 1).

SL3) We want a conjugate g of g̃ such that g satisfies (C 1) and (C 2) and fixes v2 = e2. First, we
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compute V2 ∩V2 g̃ = 〈e1+ e2〉 and note that e2 is not contained in the fixed space of g̃ . We write

L :=




1 0 0

1 1 0

0 0 I14


 ∈HΞ

(0)

as a word in the standard generators of HΞ
(0). Note that in this case L is one of the standard generators

we already computed. Moreover, e2L= e1+ e2. By setting g := Lg̃ L−1 we have V2 ∩V2 g = 〈e2〉. We

proved in Lemma 5.47 that our new element g still satisfies (C 1) and (C 2) and that V2∩V2 g = 〈e2〉.
SL4)We compute a new base changematrixL8. This is straightforward and explained in Section 5.3.3

and, thus, we only state the base change matrixL8

L8 :=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 3 1 1 2 2 0 3 2 3 1 3 3 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2




.

From now on every matrix is given as an element of (GΞ)L4L−1
8 . We have

gL
−1
8 =: c =




4 1 1 0

0 1 0 0

1 2 3 0

0 0 0 I13




.

SL5) We need to construct E3,2(1) and write it as a word in X and the standard generators of HΞ
(0).
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For this we conjugate transvections of (HΞ
(0))
L−1

8 =HΞ
(0)
∼= SL(2,5) with c . We have

E1,2(1)
c =




1 3 0 0

0 1 0 0

0 4 1 0

0 0 0 I13




.

Since we have standard generators for HΞ
(0) we can write E1,2(1)

2 ∈ HΞ
(0) as a word in the standard

generators and obtain

E1,2(1)
c E1,2(1)

2 =




1 0 0 0

0 1 0 0

0 4 1 0

0 0 0 I13




.

Moreover, we can normalise the entry at position (3,1) such that

(E1,2(1)
c E1,2(2))

4 = (E1,2(1)
c E1,2(2))

−1 =




1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 I13



= E3,2(1)

which completes SL5). In general, we must perform further computations in SL5) which we see in

Example 5.65.

SL6) To obtain E2,1(1) we start by conjugating E2,1(1) by c such that

E2,1(1)
c =




2 4 4 0

4 2 1 0

2 3 4 0

0 0 0 I13




.

As for E1,2(1)
c , we aim to replace this element by a transvection in 〈HΞ

(0), (H
Ξ
(0))

c〉 ≤ (GΞ3 )L4L−1
8 by

multiplying group elements which can be written as words in X . For this we note that we can
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multiply the given element by transvections. Since all transvections Ei , j (λ) for 1 ≤ i , j ≤ 2 with

i ̸= j and λ ∈ F∗q lie in HΞ
(0), these elements can be written as words in X . Moreover, we wrote E3,2(1)

as a word in X in SL5). We can view multiplying E2,1(1)
c by transvections as effecting elementary

row and column operations. We start by adding the second row to the first such that

E1,2(1)E2,1(1)
c =




1 1 0 0

4 2 1 0

2 3 4 0

0 0 0 I13




.

Since we already have computed the transvection E3,2(1) we can use this element to add the second

row to the third row such that

E3,2(1)
2E1,2(1)E2,1(1)

c =




1 1 0 0

4 2 1 0

0 2 1 0

0 0 0 I13




.

Now we can clear the top left 2× 2 block using transvections of HΞ
(0)
∼= SL(2,5) to obtain

E2,1(1)E3,2(1)
2E1,2(1)E2,1(1)

c E1,2(1)
−1 =




1 0 0 0

0 3 1 0

0 2 1 0

0 0 0 I13




.

Now the only thing left is to use the transvection E3,2(1) to clear the entry at position (3,2)

E2,1(1)E3,2(1)
2E1,2(1)E2,1(1)

c E1,2(1)
−1E3,2(1)

3 =




1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 I13



= E2,3(1).
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Similarly to SL1) we must do more computations in SL6) in general.

SL7) We finish this example by computing the permutation matrices of SL(3,5). We have

E3,2(1)E2,3(1)
−1E3,2(1) =




1 0 0 0

0 0 4 0

0 1 0 0

0 0 0 I13




which corresponds to the permutation matrix z2 of SL(3,5) and




0 4 0 0

1 0 0 0

0 0 1 0

0 0 0 I13







1 0 0 0

0 0 4 0

0 1 0 0

0 0 0 I13



=




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 I13




which corresponds to the permutation matrix z1 of SL(3,5). Now we have standard generators for a

SL(3,5) stingray embedded subgroup of (GΞ)L4L−1
8 which we call HΞ

(1)
∼= SL(3,5) in the following.◀

As a few important details are not visible in the first application of theGoingUp step, we also review

a quick version of the second application. Here, we do not go into as much details as in Example

5.64 but instead focus on the differences.

Example 5.65

Up to this point we have computed words for standard generators of HΞ
(1)
∼= SL(3,5) as a

stingray embedded subgroup of (GΞ)L4L−1
8 . By applying the GoingUp step a second time, we

compute standard generators for SL(n′, 5) where n′ = 2n−1= 5. First, we need an element t which

has a fixed space of dimension d − n+ 1= 16− 3+ 1= 14. Instead of a transvection as in Example

5.64 we chose t := z2. Trying random elements until we find a g̃ which satisfies (C 1) and (C 2),
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replacing g̃ by a conjugate g such that it fixes v3 = e3 and performing a base change using

L9 :=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 1 0 1 0 1 4 1 4 2 3 1
0 0 0 0 2 0 2 0 4 0 3 1 4 3 3 0
0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 4 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 4 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0




yields the element

c =




3 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 1 0 4 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.

From now on every matrix is given as an element of (GΞ)L4L−1
8 L−1

9 . In SL5) we again conjugate

transvections of SL(3,5) with c such that

E1,3(1)
c =




1 0 0 0 0 0

0 1 2 0 0 0

0 0 1 0 0 0

0 0 4 1 0 0

0 0 3 0 1 0

0 0 0 0 0 I11




and E2,3(1)
c =




1 0 2 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 4 1 0 0

0 0 0 0 1 0

0 0 0 0 0 I11




.
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Using suitable h1, h2 ∈HΞ
(1) we compute

g1 := E1,3(1)
c h1 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 4 1 0 0

0 0 3 0 1 0

0 0 0 0 0 I11




and g2 := E2,3(1)
c h2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 4 1 0 0

0 0 0 0 1 0

0 0 0 0 0 I11




.

Note that we do not compute the transvections E4,3(1) and E5,3(1) directly as it was the case in

Example 5.64. We use an additional trick here by extracting parts of a column in each matrix, namely

those marked in orange to obtain w1 = (4,3) ∈ F2
5 and w2 = (4,0) ∈ F2

5. Since 〈w1, w2〉= F2
5 we can

express the standard basis of F2
5 as a linear combination in the basis (w1, w2) which is e1 = 4w2 and

e2 = 2w1+ 2w2. Hence,

E4,3(1) = g 4
2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 I11




and E5,3(1) = g 2
1 g 2

2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 1 0

0 0 0 0 0 I11




.

SL6) and SL7) are similar as in Example 5.64 except that we must perform more computations. ◀

5.3.6 Combining GoingUp steps

We have demonstrated how we can compute standard generators for a stingray embedded special

linear group of dimension nearly twice that of a given stingray embedded special linear group

with standard generators. In this section Algorithm GoingUpStep [Alg. 27] is used to develop an

algorithm which can be used to compute standard generators for G ≤ SL(d , q) with G ∼= SL(d , q),

where H ≤G with H ∼= SL(2, q) are given and standard generators of H are known.
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Algorithm 28: GoingUp

Input: ▶ 〈X 〉=G = SL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ SL(2, q)∼= 〈Y2〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (L ′,S,N ′) where

▶ L ′ ∈GL(d , q) is a base change matrix,

▶ S is an MSLP from X ∪Y2 to the standard generators of GLL ′ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingUp(G,L , H ,N )

1 n←2 AND S← an MSLP from X ∪Y2 to X ∪Y2

2 while n < d do

3 n←min{2 · n− 1, d} // Nearly double the dimension.

4 (H ,L ,S′,N )←GoingUpStep(G,L , H ,N ) // Remark 5.7 and 5.8

5 S← Compose S and S′

6 return (L ,S,N )

Theorem 5.66

Algorithm GoingUp [Alg. 28] terminates using at most N random selections and is correct.

Proof. Follows immediately from Theorem 5.63.

5.3.7 GoingUp with lower-dimensional matrices

Similar to the results in Section 5.1.4 we aim to improve the performance of theGoingUp algorithm

using linear algebra. The key idea is to reuse the descending recognition chain of special linear

groups

SL(2, q) =H =Uk ≤Uk−1
∼= SL(4, q)≤Uk−2

∼= SL(dk−2, q)≤ . . .≤U1
∼= SL(d1, q)≤U0 =G

where di ≤ 4 · log(di−1) of the GoingDown algorithm. Instead of representing the elements of H as

elements of G, i.e. d ×d matrices we can represent them as 4×4 matrices and as a subgroup of Uk−1.
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In this setting we can also use Algorithm GoingUpStep [Alg. 27] to construct standard generators

of a subgroup of Uk−1 isomorphic to SL(3, q). In the next step we can represent the generators of the

subgroup of Uk−1 isomorphic to SL(3, q) as elements of Uk−2 and again call AlgorithmGoingUpStep

[Alg. 27] on SL(3, q) and Uk−2.

Using this idea we can work with lower-dimensional matrices.



158 CHAPTER 5. SPECIAL LINEAR GROUP



Chapter 6

Symplectic group

This chapter details an efficient realisation of the strategy outlined in Chapter 3 for the symplectic

group Sp(d , q) in its natural representation for d ≥ 8 and q odd. If d = 2, then Sp(2, q) = SL(2, q)

and we refer to Section 5.2 which provides a detailed description of [27]. If d = 4, then Sp(4, q) is a

base case group and we refer to [20], and if d = 6, then we also refer to [20].

This chapter is structured identically as the chapter for the special linear groups, see Chapter 5. Since

the main ideas for constructive recognition of classical groups are as outlined in Chapter 3 and we

discussed a detailed description of the algorithms in Chapter 5 for special linear groups we focus

mostly on the differences between the algorithms for special linear groups and symplectic groups

and do not provide a complete explanation of the GoingUp step for symplectic groups.

Remark 6.1
In symplectic groups we have to deal with two different cases depending on the characteristic of

the underlying field Fq . If q is odd, then we can proceed in a similar way as we do for special linear

groups. The differences and additional steps between the GoingDown and GoingUp algorithm for

symplectic groups in odd characteristic and the GoingDown and GoingUp algorithm for special

linear groups are described and explained in Section 6.1 and Section 6.3. If q is even, then we

encounter the following situation. The goal of the GoingDown algorithm is to compute a full

159
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descending recognition chain

CL(dk+1, q)∼=Uk+1 ≤CL(dk , q)∼=Uk ≤CL(dk−1, q)∼=Uk−1 ≤ . . .≤CL(d1, q)∼=U1 ≤U0 =G

where CL(dk+1, q) is a base case group and CL(dk , q) is a terminal group. It is important that

each group of this chain has the same type as the input group G. For example if we are dealing

with symplectic groups in odd characteristic, then repeated calls to the GoingDown basic step for

symplectic groups yield a descending recognition chain

Sp(dk , q)∼=Uk ≤ Sp(dk−1, q)∼=Uk−1 ≤ . . .≤ Sp(d1, q)∼=U1 ≤U0 =G = Sp(d , q).

Note that self-reciprocal ppd-stingray elements, which we compute in the GoingDown basic step of

symplectic and orthogonal groups, always have even degree by Definition 4.19. Thus, di is even for

all 1≤ i ≤ k which we also conclude in Section 6.1.

For q even there exists an isomorphism between Sp(d , q) andO◦(d+1, q) [91, Theorem 11.9]. Hence,

we are indirectly dealing with two different types of classical groups as input group. This has the

effect that for q even the groups of the descending recognition chain computed by the GoingDown

basic step for symplectic groups have a different type than the input group G = Sp(d , q) leading to

the following chain

Ω±(dk , q)∼=Uk ≤Ω±(dk−1, q)∼=Uk−1 ≤ . . .≤Ω±(d1, q)∼=U1 ≤U0 =G = Sp(d , q).

That Ui is isomorphic to Ω±(di , q) follows from the fact that di is even and that Ui is contained in

an orthogonal group which is unavoidable using stingray elements and proven in [40] or can be

generalised from [81, Lemma 3.3]. That Ui is isomorphic to Ω±(di , q) is a problem for the overall

constructive recognition algorithm for symplectic groups in even characteristic since the GoingUp

algorithm assumes that the base case group has the same type as the input group. If this is not the

case, as for symplectic groups in even characteristic, then the GoingUp step conjugates a group

Ω(n, q) ∼= H ≤ Sp(d , q) with an element g ∈ Sp(d , q). But, unfortunately, the group 〈H , H g 〉 is
not isomorphic to a classical group and the GoingUp step fails. Therefore, Sp(d , q) for q even is
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not considered in this thesis. Recall that Sp(d , q) and O◦(d + 1, q) are isomorphic for q even [91,

Theorem 11.9]. Since O◦(d+1, q) is reducible O◦(d+1, q) is identified as Sp(d , q) and a constructive

recognition algorithms for Sp(d , q) is used for O◦(d + 1, q). As we exclude Sp(d , q) for q even in

this thesis we also exclude O◦(d + 1, q) for q even. ◀

Nevertheless, the GoingUp algorithm for symplectic groups which is presented and proven in this

chapter is applicable for even and odd characteristic but as we cannot compute a stingray embedded

symplectic base case group in even characteristic the requirements for the GoingUp step are not

satisfied.

From this point on we are only dealing with symplectic groups in odd characteristic if not mentioned

otherwise. This chapter is structured as Chapter 5 for special linear groups. After the introduction,

we define a set of standard generators for symplectic groups, prove that the elements of this set

indeed generate symplectic groups and provide rules to write specific transvections as words in these

generators. In Section 6.1 we describe a GoingDown algorithm for symplectic groups and prove its

correctness. The GoingDown basic step differs only in one aspect compared to the GoingDown

basic step for special linear groups which is that we compute two self-reciprocal stingray elements

instead of two stingray elements, see Definition 4.19 for the definition of self-reciprocal stingray

elements. In Section 6.2 we briefly discuss the constructive recognition algorithms for the symplectic

base case groups. We do not dive as deep into the details of the presented algorithms as for the special

linear group and instead only provide a reference and a reasoning why the methods are applicable. In

Section 6.3 we present an algorithm for the GoingUp step which requires only a few modifications

compared to the GoingUp step for special linear groups, see Section 5.3.

The notations for the remainder of this Chapter are as follows. The input group is denoted by G

and G is a symplectic group in its natural representation. We use U and H as subgroups of G where

U is used in the GoingDown algorithm and H is used in the GoingUp algorithm. Depending on

the characteristic p of the underlying field, U and H are either symplectic groups, if p is odd, or

orthogonal groups if p is even.

Before we introduce standard generators of symplectic groups a notation for specific elements of
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symplectic groups is given in the next definition. As in Chapter 2 q = p f denotes a prime power,

(ω1, . . . ,ω f ) an Fp -basis of Fq and d , n are natural numbers with n ≤ d . Let V = Fd
q with basis

{b1, . . . , bd}. The matrices Ii , j (ı) satisfy (Ii , j )i j = 1 and all other entries of Ii , j are equal to 0 as defined

in Section 2.1.

Definition 6.2

Let d be even. For i , j ∈ {1, . . . , d}, with j ̸= i and λ ∈ Fq −{0} we set

ESp
i , j (λ) :=




Id + Ii , j (λ), if i + j = d + 1,

Id + Ii , j (λ)− Id− j+1,d−i+1(λ), if i ∈ {2, . . . , d
2 }, j < i or j ∈ { d

2 + 1, . . . , d − 1}, j < i

or j ∈ {2, . . . , d
2 }, i < j or i ∈ { d

2 + 1, . . . , d − 1}, i < j ,

Id + Ii , j (λ)+ Id− j+1,d−i+1(λ), otherwise.

Definition 6.3

Let d be even and q an odd prime power. Let SSp ⊂ SL(d , q). Then SSp is a set of standard generators

for Sp(d , q) if SSp is conjugate to the following set consisting of 3 f + 3 elements:

• ESp
1,2(ωi ) for 1≤ i ≤ f ,

• ESp
2,1(ωi ) for 1≤ i ≤ f ,

• ESp
1,n(ωi ) for 1≤ i ≤ f ,

• a permutation matrix zSp
1 corresponding to the permutation (1,2, . . . , d

2 )(
d
2 +1, d , d−1, . . . , d

2 +

2),

• a permutation matrix zSp
2 corresponding to the permutation (1,2)(d − 1, d ) and zSp

1 , zSp
2 , zSp

3

• a permutation matrix zSp
3 corresponding to the permutation (1, d ) with the entry (zSp

3 )d ,1

changed to −1.

Lemma 6.4

Let d be even and q an odd prime power. Every element ESp
i , j (λ) can be written in terms of the

standard generators of Definition 6.3 as follows:

ESp
1,2(ı) =

f∏
j=1

ESp
1,2(ω j )

λ j , ESp
2,1(ı) =

f∏
j=1

ESp
2,1(ω j )

λ j and ESp
1,n(ı) =

f∏
j=1

ESp
1,n(ω j )

λ j
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where ı =
∑ f

j=1λ jω j for λ j ∈ Fp . Moreover,

ESp
1,i (ı)

zSp1 zSp2 = ESp
1,i+1(ı) for 2≤ i ≤ d

2
− 1,

ESp
i , j (ı)

zSp1 = ESp
i+1, j+1(ı) for 2≤ j ≤ d

2
− 1 and 1≤ i ≤ d

2
− 2,

ESp

1, d
2

(ı)z
Sp
3 = ESp

d
2+1,1
(ı)

ESp
i ,1(ı)

(zSp1 zSp2 )
−1
= ESp

i+1,1(ı) for
d
2
+ 1≤ i ≤ d − 2,

ESp
i , j (ı)

zSp1 = ESp
i−1, j+1(ı) for 1≤ j ≤ d

2
− 2 and 1≤ i ≤ d

2
− 1,

ESp
n−i+1,i (ı)

zSp1 = ESp
n−i+2,i−1(ı) for

d
2
+ 2≤ i ≤ n

and analogously starting with ESp
2,1(ı).

Proof. The proof is similar to the proof of Lemma 5.3.

Lemma 6.5

Let d be even and q an odd prime power. Then Sp(d , q) is generated by the standard generators of

Definition 6.3.

Proof. This follows immediately as the standard generators of Definition 6.3 contain the DLLO

standard generators [59] for symplectic groups.

For the remainder of this chapter let d be even, q an odd prime power and G := Sp(d , q) in its

natural representation.

6.1 GoingDown algorithm

In this chapter we discuss the GoingDown algorithm for symplectic groups. As for special linear

groups and as outlined in Chapter 3 the GoingDown algorithm for symplectic groups uses a

GoingDown basic step which is discussed in Section 6.1.1 and a final step which is discussed in

Section 6.1.3. In Section 6.1.2 the GoingDown basic step is used repeatedly for the computation of
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a descending recognition chain and afterwards the final step is used for the computation of the full

descending recognition chain.

Overall the GoingDown basic step for symplectic groups is similar to the GoingDown basic step

for special linear groups in Section 5.1. The goal of theGoingDown basic step for symplectic groups

is the same, which is to compute a descending recognition chain as in Definition 3.4, i.e.

Sp(8, q)∼=Uk ≤ Sp(dk−1, q)∼=Uk−1 ≤ . . .≤ Sp(d1, q)∼=U1 ≤U0 =G

where di ≤ 4⌈log(di−1)⌉. Recall from Definition 3.6 that a terminal group is a subgroup of G of the

same type and of smallest degree such that it can be reached in the descending recognition chain

using stingray elements. For special linear groups the terminal group is given by SL(4, q) while

Sp(8, q) is the terminal group in symplectic groups as described in Table 3.2 in Chapter 3.

There is only one slight difference between the GoingDown basic step for special linear groups and

symplectic groups which is the stingray element itself. Recall from Section 4.1 the definition of

self-reciprocal stingray elements given in Definition 4.19. While we use stingray elements for special

linear groups, we choose self-reciprocal stingray elements for symplectic and orthogonal groups as

described in [75]. Note that we discussed Algorithm FindSelfReciprocalStingrayElement [Alg.

7] for randomised computations of self-reciprocal stingray elements which is a slight variation of

Algorithm FindStingrayElement [Alg. 5].

In the final step we briefly discuss two algorithms from the literature to compute a stingray embedded

Sp(4, q) in Sp(8, q). One of these two algorithms is the constructive recognition fromLeedham-Green

and O’Brien [59] and the other algorithm is for black box constructive recognition of symplectic

groups by Brooksbank [20].

6.1.1 GoingDown basic step

In this section we present an algorithm for the GoingDown basic step in symplectic and orthogonal

groups. As outlined in Section 6.1 the main idea of theGoingDown basic step for symplectic groups

is similar to Algorithm GoingDownBasicStepSL [Alg. 13] which is discussed in Section 5.1.1.

Instead of general stingray elements we compute self-reciprocal stingray elements by random proce-

dures in the GoingDown basic step for symplectic groups. A definition of self-reciprocal stingray
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elements and how these elements can be computed, has been discussed in Chapter 4. An algorithm

for a randomised computation of self-reciprocal stingray elements is given by Algorithm FindSel-

fReciprocalStingrayElement [Alg. 7].

An algorithm for the GoingDown basic step for symplectic groups is given by Algorithm Going-

DownBasicStepReciprocal [Alg. 29].

Remark 6.6
Recall from Remark 4.28 that we use self-reciprocal stingray elements for theGoingDown basic step

in symplectic and orthogonal groups. Therefore, Algorithm GoingDownBasicStepReciprocal

[Alg. 29] presented below is designed to be a GoingDown basic step algorithm for both symplectic

and orthogonal groups. Note that we call a naming algorithm in Line 9 of Algorithm GoingDown-

BasicStepReciprocal [Alg. 29]. If the input group G is isomorphic to a symplectic group, then we

check 〈s1, s2〉 ∼= Sp(d2, q) and if the input group G is isomorphic to an orthogonal group, then we

check 〈s1, s2〉 ∼=Ω(d2, q). Note that the function body of Algorithm GoingDownBasicStepRecipro-

cal [Alg. 29] is otherwise identical to the function body of Algorithm GoingDownBasicStepSL

[Alg. 13] except that we use Algorithm FindSelfReciprocalStingrayElement [Alg. 7] instead of

Algorithm FindStingrayElement [Alg. 5]. ◀

Algorithm 29: GoingDownBasicStepReciprocal

Input: ▶ d1 ∈N with d1 > 8

▶ 〈X 〉=G ≤GL(d , q) with G ∼= Sp(d1, q) and q odd or G ∼=Ω(d1, q)

▶ Φ a form preserved by G

▶ N ∈N
Output: fail OR (d2, U ,S,N ′) where

▶ d2 ∈N with 8≤ d2 ≤ 4⌈log(d1)⌉,
▶ U ≤G with U ∼= Sp(d2, q) if G ∼= Sp(d1, q) and U ∼=Ω(d2, q) otherwise,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingDownBasicStepReciprocal(d1,G,Φ,N )

1 while N > 0 do // Remark 5.7

2 (s1,S1,N )← FindSelfReciprocalStingrayElement(G, d1, N ) // Remark 5.8

3 Ws1
← ComputeStingrayBody( s1)

4 repeat

5 (s2,S2,N )← FindSelfReciprocalStingrayElement(G, d1, N ) // Remark 5.8

6 Ws2
← ComputeStingrayBody( s2)

7 until IsStingrayDuo((s1, s2),Φ)

8 d2← dim(Ws1
)+ dim(Ws2

)

9 if 〈s1, s2〉 ∼= Sp(d2, q) (resp. 〈s1, s2〉 ∼=Ω(d2, q)) then // Using a naming algorithm, see Section 1.1.7

10 S← an MSLP from X to (s1, s2) using S1 and S2

11 return (d2, 〈s1, s2〉,S,N )

12 return fail

Theorem 6.7

Algorithm GoingDownBasicStepReciprocal [Alg. 29] terminates using at most N random selec-

tions and works correctly.

Proof. The proof is similar to the proof of Algorithm GoingDownBasicStepSL [Alg. 13]. It is

clear that the algorithm terminates. If the algorithm does not return fail, then the output must be

isomorphic to Sp(d2, q) and 8≤ d2 ≤ 4⌈log(d1)⌉.

Remark 6.8
Since symplectic groups are defined by forms defined on the underlying vector space, we must verify

an additional property of the stingray pairs to ensure that the (classical) group generated by stingray

pairs is non-degenerate as in Definition 4.22. By our assumption G is a symplectic group in its

natural representation and, thus, we can compute the underlying symplectic form and represent the

form by its Gram-matrix. Recall from Lemma 4.21 that if s ∈ Sp(d , q) is a ppd-stingray element,

then Ws is non-degenerate, where Ws is the stingray body of s . Therefore, given a stingray pair

(s1, s2) of ppd-stingray elements Algorithm IsStingrayDuo [Alg. 10] verifies that Ws1
∩Ws2

= {0}
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and that Ws1
⊕Ws2

is non-degenerate to ensure that (s1, s2) is a stingray duo. Note that we use the

underlying form Φ of the input group G to verify that Ws1
⊕Ws2

is non-degenerate by restricting Φ

to Ws1
⊕Ws2

and verifying that the restriction has full rank. ◀

6.1.2 Combining GoingDown basic steps

Similarly to the GoingDown algorithm for special linear groups the GoingDown basic step for

symplectic groups is repeatedly called until a terminal group as in Definition 3.6 is computed. An

algorithm implementing this is given by Algorithm GoingDownToDim8Symplectic [Alg. 30].

Algorithm 30: GoingDownToDim8Symplectic

Input: ▶ d ∈N with d ≥ 8

▶ 〈X 〉=G = Sp(d , q) with q odd

▶ Φ a form preserved by G

▶ N ∈N
Output: fail OR (U ,S,N ′) where

▶ U ≤G with U ∼= Sp(8, q),

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownToDim8Symplectic(d ,G,Φ,N )

1 U←G AND dim ←d AND S← an MSLP from X to X

2 while dim > 8 do

3 (dim, U ,S′,N )← GoingDownBasicStepReciprocal(dim, U , Φ, N ) // Remark 5.7 and 5.8

4 S← Composition of S and S′

5 return (U ,S,N )

Theorem 6.9

AlgorithmGoingDownToDim8Symplectic [Alg. 30] terminates using at most N random selections

and works correctly.

Proof. Analogously to the proof of Theorem 5.13.
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6.1.3 Final step of the GoingDown algorithm

In this chapter we assume that a stingray embedded subgroup U ≤G = Sp(d , q) with U ∼= Sp(8, q)

is computed and that standard generators of U can be written as words in the generators X of G.

Note that U is a terminal group as U ∼= Sp(8, q) and that U can be computed using Algorithm

GoingDownToDim8Symplectic [Alg. 30]. The goal of this chapter is to identify a subgroup U0 ≤U

with U0
∼= Sp(4, q) and U0 is stingray embedded in U .

As for special linear groups it is not possible to find a symplectic base case group, i.e. Sp(d , q) for

d ≤ 4, using the GoingDown basic step of symplectic groups. Therefore, we rely on alternative

algorithms and use methods from the DLLO constructive recognition algorithm [59] as well as a

method from Brooksbank [20]. This is done in two steps as follows:

1) Call AlgorithmGoingDownFinalStepCL [Alg. 16] from the DLLO constructive recognition

algorithm on U to compute Ũ ≤ U with Ũ ∼= Sp(6, q) and Ũ is stingray embedded in

U . The algorithm involves involutions as in Definition 5.17 and is similar to Algorithm

GoingDownFinalStepSL [Alg. 15].

2) Apply a method from Brooksbank [20, Section 5.1] to Ũ to compute U0 ≤ Ũ with U0
∼=

Sp(4, q) and U0 is stingray embedded in Ũ .

As Ũ is stingray embedded in U and U0 is stingray embedded in Ũ it is clear that U0 must also be

stingray embedded in U . Note that there are more possibilities to identify U0, e.g. by applying

the DLLO constructive recognition algorithm [59] on U and afterwards writing down generators

for U0. For this thesis no comparisons between different approaches have been performed as the

running time is negligible in contrast to the running time of the entire GoingDown and GoingUp

algorithm.

We are not dealing with the details of 1) and 2) in this thesis as both methods are well-known but

instead give an overview of the used methods. Algorithm GoingDownFinalStepCL [Alg. 16] is

used for 1) by calling GoingDownFinalStepCL(G, 4,N ). For 2) we use a method from [20, Section

5.1] which is based on ppd-elements, see Definition 4.8, and given in AlgorithmGoingDownSp6To4

[Alg. 31].
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Algorithm 31: GoingDownSp6To4

Input: ▶ 〈X 〉=G = Sp(6, q) with q odd

▶ N ∈N
Output: fail OR (L , U ,S,N ′) where

▶ U ≤G with U ∼= Sp(4, q),

▶ L ∈GL(d , q) is a base change matrix such that UL is stingray embedded in GL ,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownSp6To4(G,N )

1 repeat

2 g̃←PseudoRandom(G) AND N←N − 1

3 until g̃ is a ppd-element of a specified order given in [20, Section 5.1] or N ≤ 0

4 if N ≤ 0 then

5 return fail

6 g← g̃ q (d−2)/2+1

7 repeat

8 if q ≤ 5 then

9 g1, g2, g3←PseudoRandom(G) AND N←N − 1

10 U←〈g , g g1 , g g2 , g g3〉
11 else

12 g1←PseudoRandom(G) AND N←N − 1

13 U←〈g , g g1〉
14 until Sp(4, q)∼=U OR N ≤ 0

15 if N ≤ 0 then

16 return fail

17 L ← base change matrix to embed U standard AND S← MSLP to the generators of U

18 return (U ,L ,S,N )

We are not discussing details or correctness of these algorithms and refer to the publications

[20] and [59]. Using these algorithms we know that there are efficient methods to construct

a stingray embedded Sp(4, q) in Sp(8, q).
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6.2 BaseCase algorithm

In this section we assume that H ≤G := Sp(d , q) has been computed successfully, where H ∼= Sp(4, q)

and H is stingray embedded in G. This can be done using the algorithms described in 6.1. Since

H ∼= Sp(4, q) we have found a symplectic base case group as in Definition 3.2 for which efficient

constructive recognition algorithms are known, see e.g. [20]. For the implementation of the

BaseCase algorithm for symplectic groups, we utilise the constructive recognition algorithm for

H ∼= Sp(4, q) given in [20]. We are not discussing the details of the algorithm in [20] but instead

state the main theorem about its complexity.

Theorem 6.10: [20]

Let H = 〈X 〉 = Sp(4, q). Then there is a Las Vegas algorithm to recognise H constructively.

The complexity of the algorithm is O (E + ζ log(q)) where ζ is the complexity to construct a

(nearly) uniformly distributed random element of H as an MSLP in X and E is the complexity of

constructively recognising (a homomorphic image of) SL(2, q).

Remark 6.11
Since the constructive recognition algorithm for Sp(4, q) given in Theorem 6.10 uses a constructive

recognition algorithm for SL(2, q) which currently needs a discrete logarithm oracle as in Definition

1.7, the BaseCase algorithm for symplectic groups also requires a discrete logarithm oracle. ◀

6.3 GoingUp algorithm

This section describes the GoingUp algorithm for symplectic groups. Let 〈X 〉=G = Sp(d , q) for q

even or odd. Recall the definition of an ascending recognition chain of G outlined in Chapter 3

HL−1
0

(0) ≤HL−1
1

(1) ≤ . . .≤H
L−1
ℓ−1

(ℓ−1) ≤H
L−1
ℓ

(ℓ) =GL
−1
ℓ

where H(i) ∼= Sp(di , q) stingray embedded in G and d0 = 4 < d1 < . . . < dℓ = d . The group H(0)

of the ascending recognition chain with H(0) ∼= Sp(4, q) can be computed for q odd using the

GoingDown and BaseCase algorithm for symplectic groups of Section 6.1 and Section 6.2 such that

Sp(4, q) ∼= H ≤ G stingray embedded is computed. Moreover, standard generators of H(0) can be
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written as words in X . As for special linear groups, we apply aGoingUp step on H(0) to compute the

next group of the ascending recognition chain H(1). Additionally, by theGoingUp step we can write

standard generators of H(1) as words in X . By applying the GoingUp step repeatedly this yields an

ascending recognition chain. Therefore, we assume in this section that H ≤G is stingray embedded

with H ∼= Sp(n, q) is given and that standard generators of H can be written as words in X , i.e.

H =H(i) for some i .

Section 6.3.1 introduces a GoingUp step for symplectic groups and Section 6.3.2 uses the GoingUp

step for symplectic groups repeatedly to compute standard generators of G.

6.3.1 GoingUp step

In this section we describe the GoingUp step for symplectic groups. The solution and key ideas are

similar as to the GoingUp step of special linear groups, see Section 5.3. Therefore, we mainly focus

on the differences between the GoingUp steps for symplectic groups and special linear groups. The

details of the GoingUp step for special linear groups are not discussed and repeated in this section

and instead we refer to Section 5.3. The results of this section are valid for q even and odd. Our

hypothesis for the remainder of this section is the following.

Hypothesis 6.12

Let q be even or odd and d ∈N be even and 〈X 〉=G = Sp(d , q) containing a stingray embedded

subgroup H ≤ 〈XL 〉 = GL with H ∼= Sp(n, q) for n < d and for a known base change matrix

L ∈ GL(d , q). Note, that n must be even. Moreover, standard generators Yn of H are given as

words in X . Let V = Fd
q and suppose thatB = (v1, . . . , vd ) is a basis for V and let Vn = 〈v1, . . . , vn〉

and Fd−n = 〈vn+1, . . . , vd 〉 (cf. Definition 2.7). We assume that H acts naturally on Vn as Sp(n, q)

and that H fixes Fd−n point-wise. Recall that (ω1, . . . ,ω f ) is an Fp -basis for Fq .

We start this section by stating the main theorem which is similar to Theorem 5.35 for special linear

groups.
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Theorem 6.13

Let q be even or odd. Let X ⊆ SL(d , q) such that 〈X 〉 = G = Sp(d , q) with 4 ≤ n < d and n, d

even and letL ∈GL(d , q) be a base change matrix. Let YLn be a set of standard generators for the

subgroup Sp(n, q) stingray embedded into GL . Furthermore, let S be an SLP from X to Yn and

let n′ :=min{2n− 2, d}.
Then there is an algorithm that computes a base change matrix L ′ ∈ GL(d , q) together with

an SLP S′ from X to a set Yn′ , which is a set of standard generators for Sp(n′, q) and 〈YL ′n′ 〉 is
stingray embedded in GL ′ .

Recall that the definition of a weak doubling element in special linear groups requires the element

to satisfy two properties (C 1) and (C 2) of Remark 5.36 which are repeated in the next remark.

Remark 6.14
Let g ∈GL . Then g is a weak doubling element with respect to H if

(C 1) dim(Vn +Vn g ) = n′ and

(C 2) if n′ < d , then dim(Fd−n +Fix(g )) = d . ◀

Note that we defined n′ :=min{2n−2, d} for symplectic groups while n′ :=min{2n−1, d} for special
linear groups as indicated in Table 3.5 of Chapter 3. One reason for this is that 2n− 1 is odd. The

other reason for this is as follows: The main aim of oneGoingUp step is to compute the permutation

matrices for SL(n′, q) or Sp(n′, q). The standard generators of special linear groups, see Definition

5.1, contain permutation matrices corresponding to an n- and an (n−1)-cycle. Therefore, computing

a permutation matrix of larger degree can be achieved by multiplying two permutation matrices of

two copies of SL intersecting in a subspace of dimension 1. The standard generators of symplectic

groups, see Definition 6.3, contain a permutation matrix zSp
1 corresponding to a permutation of

cycle type ( n
2 )

2. Therefore, multiplying two permutation matrices which correspond to the standard

generator zSp
1 in two different copies of Sp(n, q) will only yield the required permutation matrix, if

the subspaces on which the two copies of Sp(n, q) act intersect in a space of dimension at least 2.

As for special linear group we start by computing a weak doubling element but are actually inter-

ested in finding a strong doubling element. In special linear groups this is achieved by replacing a

weak doubling element g̃ ∈GL by a conjugate g ∈GL yielding a doubling element element and
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after applying a base change matrix L ′ ∈ GL(d , q) to c := gL ′ we verify the last condition (C 3)

given in Remark 5.53. Recall that 〈v ′1, . . . , v ′d 〉=BL ′ . We repeat the last condition (C 3) in the next

remark.

Remark 6.15
(C 3) The vectors v ′j and v ′j c

−Tr for 1 ≤ j ≤ n − 1 span as an Fq -subspace the Fq -subspace

〈v ′1, . . . , v ′n−1, v ′n+1, . . . , v ′n′〉. ◀

Similar to the special linear group we prove the correctness of Theorem 6.13 by stating an algorithm

and proving the correctness of this algorithm. Moreover, the algorithm also consists of seven phases

as for special linear groups, see Remark 5.62.

Remark 6.16
Let 〈X 〉=G = Sp(d , q) contain a stingray embedded subgroup H ≤ 〈XL 〉=GL with H ∼= Sp(n, q)

for n < d , n even and for a known base change matrixL ∈GL(d , q). Moreover, standard generators

Yn of H are given as words in X . The following seven phases must be performed for Theorem 6.13

and, therefore, for one GoingUp step of symplectic groups:

Sp1) Construct an element t ∈H which has a fixed space of dimension d − n+ 2.

Sp2) Choose random elements a ∈GL until g̃ := t a satisfies (C 1) and (C 2).

Sp3) Find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

Sp4) Compute base change matrices L ′ and L ′′ such that 〈H , H g 〉L ′L ′′ is stingray embedded in

GLL ′ and preserves the standard form. Set c := gL ′L ′′ and verify whether c satisfies (C 3) of

Remark 6.15. Proceed if c satisfies (C 3).

Sp5) Using c , construct transvections ESp
j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp6) Using c , construct transvections ESp
n, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp7) Using the transvections of Sp5) and Sp6) construct standard generators for 〈H , H c〉 ∼= Sp(n′, q)

by assembling a permutation matrix zSp
1 corresponding to a permutation of cycle type ( n′

2 )
2 as

in Definition 6.3. ◀

In the following we discuss the phases in more detail which shows that many results of theGoingUp

step for special linear groups also hold for symplectic group even though if n′ < d , then Vn ∩Vn c is

2-dimensional for symplectic groups and Vn ∩Vnc is 1-dimensional for special linear groups.



174 CHAPTER 6. SYMPLECTIC GROUP

In Sp1) we construct an element t ∈H which has a fixed space of dimension d − n+ 2. This can be

achieved without further computations for symplectic groups as such an element is contained in the

standard generators Yn of H .

Lemma 6.17

Recall from our Hypothesis 6.12 that H ≤ 〈XL 〉 = GL with H ∼= Sp(n, q) for n < d and for a

known base change matrixL ∈GL(d , q). An element of t ∈H ≤GL which has a fixed space of

dimension d − n+ 2 is given by t := zSp
1 .

Proof. The fixed space of zSp
1 is given by 〈v1+ v2+ . . .+ v n

2
, v n

2+1+ . . .+ vn, vn+1, . . . , vd 〉.

In Sp2) we choose random elements a ∈GL and check whether g̃ := t a satisfies (C 1) and (C 2) of

Remark 6.14. If g̃ satisfies (C 1) and (C 2), then g̃ has similar properties as in special linear groups

summarised in Lemma 5.42. Here we state a version of this result for symplectic groups.

Lemma 6.18

Recall from our Hypothesis 6.12 that H ≤ 〈XL 〉 = GL with H ∼= Sp(n, q) for n < d and for a

known base change matrixL ∈GL(d , q). Let t ∈H ≤GL be as in Lemma 6.17 and for random

a ∈G let g̃ = t a be a weak doubling element, i.e. an element which satisfies (C 1) and (C 2).

1) dim(Vn ∩Fix( g̃ ))≥ 2 and dim(Vn ∩Fix( g̃ )) = 2 if n′ < d .

2) Vn′ :=Vn +Vn g̃ is invariant under the action of g̃ .

3) If n′ < d , then dim(Fd−n ∩Fix( g̃ )) = d − n′.

Proof. Analogously to the proof of Lemma 5.42.

If n′ < d , then Vn and Vn g̃ intersect in a 2-dimensional subspace instead of an 1-dimensional

subspace as in the case of special linear groups. This is necessary for the success of the GoingUp

step of symplectic groups as our goal is to construct a double cycle zSp
1 of H c which multiplied with

the double cycle zSp
1 of H results in the double cycle zSp

1 of a stingray embedded subgroup of G

isomorphic to Sp(n′, q). Note that the product of the double cycle zSp
1 of H c and the double cycle

zSp
1 of H can only result in a standard generator of Sp(n′, q) if Vn and Vn g̃ intersect in a subspace of

dimension at least 2.
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The aim of Sp3) is to find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally

fixes v1 and vn. As dim(Vn ∩ Fix( g̃ )) ≥ 2 using 1) of Lemma 6.18 we can assume that we find

two linearly independent vectors w1, w2 such that 〈w1, w2〉 < Vn ∩ Fix( g̃ ). We can find elements

L1, L2 ∈ H with v1L1 = w1, vn L2 = w2L−1
1 and v1L2 = v1, express L1L2 in terms of the standard

generators Yn and then compute the conjugate g := L2L1 g̃ (L2L1)
−1. The following lemma shows

that g is an element satisfying (C 1) and (C 2) and additionally fixes v1 and vn. Afterwards we

describe how L1 and L2 can be found and written as words in Yn.

Lemma 6.19

Recall from our Hypothesis 6.12 that H ≤ 〈XL 〉 = GL with H ∼= Sp(n, q) for n < d and for

a known base change matrix L ∈ GL(d , q). Moreover, B = (v1, . . . , vd ) is a basis for V . Let

t ∈ H be as in Lemma 6.17. For a ∈ GL assume that g̃ = t a is a weak doubling element, i.e. a

satisfies (C 1) and (C 2). Let L1, L2 ∈ H such that v1L1 = w1, vnL2 = w2L−1
1 and v1L2 = v1 where

〈w1, w2〉<Vn ∩Fix( g̃ ) and dim(〈w1, w2〉) = 2. Then

1) L2L1 g̃ (L2L1)
−1 satisfies (C 1) and (C 2) and

2) v1, vn ∈Vn ∩Fix(L2L1 g̃ (L2L1)
−1).

Proof. Note that if Li v = v, then also L−1
i v = v for i = 1,2.

1) We have L2L1 ∈H . Hence, the claim follows with the same proof as for Lemma 5.47 1).

2) As v1, vn ∈Vn and since 0 ̸= w1 ∈Vn ∩Fix( g̃ )

v1L2L1 g̃ (L2L1)
−1 = v1L1 g̃ (L2L1)

−1 = w1 g̃ (L2L1)
−1 = w1L−1

1 L−1
2 = v1L−1

2 = v1

shows that v1 ∈Vn ∩Fix(L2L1 g̃ (L2L1)
−1). Moreover, since 0 ̸= w2 ∈Vn ∩Fix( g̃ )

vn L2L1 g̃ (L2L1)
−1 = w2L−1

1 L1 g̃ (L2L1)
−1 = w2 g̃ (L2L1)

−1 = (w2L−1
1 )L

−1
2 = vn

shows that vn ∈Vn ∩Fix(L2L1 g̃ (L2L1)
−1).

We proceed as follows to compute L1 and L2.
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Remark 6.20
If (w1)1 ̸= 0 and (w2L−1

1 )n ̸= 0, then we assume w.l.o.g. that w1 = (1, w1,2, w1,3, . . . , w1,n−1, 0) and

w2L−1
1 = (0, w2,2, w2,3, . . . , w2,n−1, 1). If this is not the case, we simply go back to Sp2). We can now

directly write down L1 and L2 for the vectors w1, w2 as in Lemma 6.19 as follows:

L1 :=




1 w1,2 w1,3 . . . w1,n−1 0

0 1 0 . . . 0 w1,n−1

0 0 1 . . . 0 w1,n−2

...
...

... . . . ...
...

0 0 0 . . . 1 −w1,2

0 0 0 . . . 0 1




, L2 :=




1 0 0 . . . 0 0

−w2,n−1 1 0 . . . 0 0

−w2,n−2 0 1 . . . 0 0
...

...
... . . . ...

...

w2,2 0 0 . . . 1 0

0 w2,2 w2,3 . . . w2,n−1 1




◀

Remark 6.21
1) Note that Sp(n, q) acts on the 2-dimensional subspaces of Fn

q and has two orbits namely the

hyperbolic pairs, i.e. w1, w2 ∈ Fn
q linear independent with 〈w1 | w2〉 ̸= 0, and pairs which are

orthogonal, i.e. w1, w2 ∈ Fn
q linear independent with 〈w1 | w2〉 = 0, see [91, Theorem 8.2].

The Sp(n, q) orbit of hyperbolic pairs is larger than the orbit of orthogonal pairs and, hence,

with high probability a basis of a 2-dimensional subspace of Vn ∩Fix(c) is a hyperbolic pair.

Since Sp(n, q) acts transitively on the hyperbolic pairs and since v1 and vn are a hyperbolic

pair L1 and L2 of Lemma 6.19 are contained in Sp(n, q) with a high probability.

2) Clearly L1 and L2 satisfy the requirements of Lemma 6.19. ◀

The goal of Sp4) is to compute a new base change matrixL ′ ∈GL(d , q) fromB to a basisB ′ such

that 〈H , H g 〉L ′ is stingray embedded in GLL ′ .

Remark 6.22
This can be achieved similarly to the corresponding goal in Remark 5.51 except that we choose fewer

vectors of Vn g as dim(Vn ∩Fix(g )) = 2. Recall that π : V → Fd−n is the projection map to Fd−n of

the decomposition V =Vn ⊕ Fd−n. We define the basisB ′ as follows:

• The first n vectors of the new basis are equal to the vectors in the old basis, i.e. v ′i := vi for

1≤ i ≤ n.
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• The basis vectors v ′n+1, . . . , v ′n′ are chosen as a linearly independent subset of the vectors

π(v2 g ), . . . ,π(vn−1 g ). If n′ < d , then we take all the vectors π(v2 g ), . . . ,π(vn−1 g ) and other-

wise we choose a linearly independent subset.

• In the case n′ < d , that is, n′ = 2n− 2, we extend (v ′1, . . . , v ′n′) to a basisB ′ = (v ′1, . . . , v ′d ) of

V by choosing a basis of Fd−n ∩Fix(g ), which is possible by condition (C 2). ◀

LetL ′ ∈GL(d , q) be the base change matrix fromB toB ′ and from this point on, we assume that

all of our matrices are given as elements of GLL ′ . For the standard generators Yn of Sp(n, q), there

is nothing to do, while the matrix of g must be conjugated by the base changeL ′.

Now we must deal with an additional problem which does not occur in special linear groups. One

advantageous property of special linear groups is that we can ignore underlying forms but this is not

the case for the other classical groups as for the symplectic group. Hence, we perform an additional

base change before we continue as for special linear groups.

Remark 6.23

Let HB := 〈H , H gL′ 〉. Note that HB acts on 〈v ′1, . . . , v ′n′〉 and fixes 〈v ′n′+1, . . . , v ′d 〉. We compute the

underlying form of HB on 〈v ′1, . . . , v ′n′〉 and perform a base changeL ′′ such that HL ′′
B respects the

standard form on 〈v ′1, . . . , v ′n′〉L
′′ . If this is not possible, then we know that HB is not isomorphic to

Sp(n′, q) and we return to Sp2). From this point on, we assume that all of our matrices are expressed

as elements of GLL ′L ′′ . Note, that the base change has no effect on the standard generators of H as

the underlying form of H on Vn is already the standard form. ◀

Remark 6.24
Let d ∈N and define Jd := (Jd )i , j∈{1,...,d} ∈GL(d , q) with

(Jd )i , j =




1, if i + j = d + 1,

0, otherwise.
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Jn is the back-diagonal matrix. Moreover, for d ∈N even we define

Pd :=


 0 J d

2

−J d
2

0


 .

Note that Pd is the standard form preserved by Sp(d , q) as in Remark 2.28. By Remark 6.23 HL ′′
B

preserves the form diag(Pn′ , Id−n′). In the implementation of the GoingUp step in GAP [37], see

Chapter 11, a base change matrix L ′′′ ∈ GL(d , q) is chosen such that HL ′′′
B preserves a different

form. Let

b :=


Pn 0

0 Pn′−n


 ∈GL(n′, q).

Given that HL ′′
B preserves the form diag(Pn′ , Id−n′) it follows that there exists a base change matrix

L ′′′ ∈GL(d , q) such that HL ′′′
B preserves the form diag(b , Id−n′). For consistency with the imple-

mentation we assume for the remainder of this section that the form diag(b , Id−n′) is preserved by

HL ′′
B . Note that this assumption does not alter the results, but rather affects how the matrices are

presented in the following. ◀

As for special linear groups, we denote c by gL ′L ′′ . Moreover, we can now verify the last condition:

(C 3) The vectors ωi v
′′
j and ωi v

′′
j c−Tr for 1 ≤ i ≤ f and 2 ≤ j ≤ n − 1 span the subspace

〈v ′′2 , . . . , v ′′n−1, v ′′n+1, . . . , v ′′n′〉.

If (C 3) is not satisfied by c , then we return to Sp2) and try another random element a ∈GL .

We give an algorithm to compute c ∈GLL ′L ′′ in pseudo-code by Algorithm ComputeCSp [Alg.

32].



6.3. GOINGUP ALGORITHM 179

Algorithm 32: ComputeCSp

Input: ▶ 〈X 〉=G ≤ Sp(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ Sp(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (c ,L ′,S,N ′) where

▶ c ∈GLL ′ is an element satisfying (C 1), (C 2) and (C 3),

▶ L ′ ∈GL(d , q) is a base change matrix,

▶ S is an MSLP from X ∪Yn to c and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function ComputeCSp(G,L , H ,N )

1 t ∈H as described in Lemma 6.17 // Sp1)

2 g̃← t a for random a ∈GL // Start of Sp2)

3 while N > 0 do

4 while g̃ does not satisfy (C 1) and (C 2) and (w1, w2) is not a hyperbolic pair for

〈w1, w2〉<Vn ∩Fix(g ) do

5 N←N − 1

6 if N ≤ 0 then

7 return fail

8 g̃← t a for random a ∈GL

9 S1← MSLP from X ∪Yn to g̃

10 L1← as described in Remark 6.20 AND S2← MSLP from Yn to L1 // Sp3)

11 L2← as described in Remark 6.20 AND S3← MSLP from Yn to L2 // Sp3)

12 g←L2L1 g̃ L−1
1 L−1

2 ANDL ′← as described in Remark 6.22 // Sp4)

13 L ′′← base change matrix to standard form of 〈H , H gL′ 〉 AND c← gL ′L ′′

14 if the submatrix (c−1)i , j for n+ 1≤ i ≤ n′ and 2≤ j ≤ n− 1 has full rank then

15 S← Compose S1, S2 and S3 into one MSLP

16 return (c ,L ′L ′′,S,N )

17 else

18 g̃← Id // Element of H which does not satisfy (C 1) and (C 2)

19 return fail
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Remark 6.25
Computing the preserved form of a group and a base change matrix to the standard form involves

an application of the meataxe [79] which has complexity O ((n′)3) measured in field operations of

Fq . For more information see [13]. ◀

Lemma 6.26

Recall from our Hypothesis 6.12 that H ≤ 〈XL 〉 = GL with H ∼= Sp(n, q) for n < d and for a

known base change matrix L ∈ GL(d , q). Let L ′,L ′′ ∈ GL(d , q) be base change matrices as in

Remark 6.22, 6.23 and 6.24. Let c be as constructed in ComputeCSp [Alg. 32] and

y :=




1 0 . . . 0 0 0 . . . 0

0 ∗ . . . ∗ 0 ∗ . . . ∗
...

... . . . ...
...

... . . . ...

0 ∗ . . . ∗ 0 ∗ . . . ∗
0 0 . . . 0 1 0 . . . 0

0 ∗ . . . ∗ 0 ∗ . . . ∗
...

... . . . ...
...

... . . . ...

0 ∗ . . . ∗ 0 ∗ . . . ∗




∈ Sp(n′, q).

Then c = diag(y, Id−n′) ∈GLL ′L ′′ .

Proof. It is clear that v1c = v1 and vn c = vn. So it remains to show that v1cTr = v1 and that

vn cTr = vn. Note that (v1, vn) is a hyperbolic pair. Let b be the Gram-matrix of the underlying

form. Since c ∈G = Sp(d , q) we have for all v, w ∈V that

〈wc | vc〉= wc b (vc)Tr = wc b cTrvTr = w b vTr = 〈w | v〉

Hence, using that b vTr
1 = vTr

n ,

vn wTr = v1b wTr = 〈v1 | w〉= 〈v1c | wc〉= 〈v1 | wc〉= v1b cTrwTr = vncTrwTr.

Therefore, vn cTr = vn. With the same argumentation it follows that v1cTr = v1.
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Remark 6.27

With the computations so far we know that HL ′′
B is stingray embedded in GLL ′L ′′ , that HL ′′

B is

isomorphic to Sp(n′, q) in its natural representation and that HL ′′
B respects the standard form. ◀

Now we can continue as for special linear groups and conjugate transvections of H with c .

Lemma 6.28

Let n′ = min{2n − 2, d}, and let c and L ′L ′′ be as constructed in the previous phases. Let

2≤ j ≤ n− 1, let ı = 1 if j ≤ n
2 and ı =−1 if j > n

2 and

y :=




1 ıωi cn− j+1,2 . . . ıωi cn− j+1,n−1 0 ıωi cn− j+1,n+1 . . . ıωi cn− j+1,n′

0 1 . . . 0 ωi (c
−1)2, j 0 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 1 ωi (c
−1)n−1, j 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

Then y ∈ Sp(n′, q) and ESp
j ,n(ωi )

c = diag(y, Id−n′).

Proof. Recall that ESp
j ,n(ωi ) = Id + I j ,n(ωi )+ ı I1,n− j+1(ωi ). If k ∈ {n′+ 1, . . . , d}, then

ek ESp
j ,n(ωi )

c = ek c−1ESp
j ,n(ωi )c = ek ESp

j ,n(ωi )c = ek c = ek .

Moreover for k ∈ {1, . . . , n′} \ {1, n}

ek c−1ESp
j ,n(ωi )c = (c

−1)k ,−ESp
j ,n(ωi )c = (c

−1)k ,−(Id + I j ,n(ωi )+ ı I1,n− j+1(ωi ))c

= ((c−1)k ,−+ωi (c
−1)k , j en + ıωi (c

−1)k ,1en− j+1)c

6.26= ((c−1)k ,−+ωi (c
−1)k , j en)c

= ek c−1c +ωi (c
−1)k , j enc = ek +ωi (c

−1)k , j en
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and

e1c−1ESp
j ,n(ωi )c = e1ESp

j ,n(ωi )c = e1(Id + I j ,n(ωi )+ ı I1,n− j+1(ωi ))c

= (e1+ e1I j ,n(ωi )+ ı e1I1,n− j+1(ωi ))c

= (e1+ ıωi en− j+1)c = e1c + ıωi en− j+1c = e1+ ıωi cn− j+1,−

as well as

enc−1ESp
j ,n(ωi )c = enESp

j ,n(ωi )c = enc = en.

Remark 6.29

Similarly to Remark 5.58 for special linear groups, the top left n× n block of ESp
j ,n(ωi )

c is contained

in H ∼= Sp(n, q), hence we can express an element h ∈H as a word in the standard generators Yn of

H such that

hESp
j ,n(ωi )

c =




1 0 . . . 0 0 ωi (c
−1)n+1, j . . . −ωi (c

−1)n′, j

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

By (C 3) the column vectors of length (n − 2) below the (n, n) entry generate the full f (n′ − n)

dimensional Fp -vector space Fn′−n
q , i.e. by multiplication the transvections ESp

j ,n(ωi ) for 1≤ i ≤ f

and n+ 1≤ j ≤ n′ can be computed as in Remark 5.58. ◀

We combine Lemma 5.57 and Remark 6.29 into Algorithm ComputeVerticalTransvections [Alg.

25] for computing the vertical transvections ESp
j ,n(ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′.
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Algorithm 33: ComputeVerticalTransvectionsSp

Input: ▶ Sp(n, q)∼= 〈Yn〉=H ≤ Sp(d , q) stingray embedded and constructively recognised

▶ c ∈ Sp(d , q) satisfying (C 1), (C 2) and (C 3)

Output: ▶ TV := {ESp
j ,n(ωi ) | 1≤ i ≤ f , n+ 1≤ j ≤ n′} ⊂ 〈H , H c 〉 transvections of Sp(n′, q)

▶ An MSLP S from Yn ∪{c} to TV

function ComputeVerticalTransvectionsSp(H , c)

// Sp5)

1 T̃V ← [ ]
2 for λ ∈ {ω1, . . . ,ω f } and j ∈ {2, . . . , n− 1} do
3 T ←ESp

j ,n(λ)
c

// Do row operations

4 for k ∈ [2, . . . , n− 1] do

5 T ←ESp
k ,n
(−λ(c−1)k , j )T // Note that ESp

k ,n
(−λ(c−1)k , j ) ∈H

6 ı←T1,n AND T ←ESp
1,n(−ı)T // Note that ESp

1,n(−ı) ∈H

7 Add(T̃V ,T )

8 TV ← [ ]
9 for λ ∈ {ω1, . . . ,ω f } and j ∈ {n+ 1, . . . , n′} do
10 ESp

j ,n(λ)← Multiply the matrices of T̃V suitably

11 ı←ESp
j ,n(λ)1,n AND ESp

j ,n(λ)←ESp
1,n(−ı)ESp

j ,n(λ)

12 Add(TV , E j ,n(λ))

13 S← MSLP for the computations of TV

14 return (TV ,S)

In Sp6), the transvections ESp
n, j (ωi ) for 1≤ i ≤ f and n+ 1≤ j ≤ n′ are computed. In contrast to

special linear groups, this is easier for symplectic groups as cTr also fixes v1 and vn.

Lemma 6.30

Let n′ = min{2n − 2, d}, and let c and L ′L ′′ be as constructed in the previous phases. Let

2≤ j ≤ n− 1, let ı = 1 if j ≤ n
2 and ı =−1 if j > n

2 and
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y :=




1 0 . . . 0 0 0 . . . 0

ıωi (c
−1)2,n− j+1 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

ıωi (c
−1)n−1,n− j+1 0 . . . 1 0 0 . . . 0

0 ωi c j ,2 . . . ωi c j ,n−1 1 ωi c j ,n+1 . . . ωi c j ,n′

ıωi (c
−1)n+1,n− j+1 0 . . . 0 0 1 . . . 0

...
... . . . ...

...
... . . . ...

ıωi (c
−1)n′,n− j+1 0 . . . 0 0 0 . . . 1




.

Then y ∈ Sp(n′, q) and ESp
n, j (ωi )

c = diag(y, Id−n′).

Proof. We have that ESp
n, j (ωi ) = Id + In, j (ωi ) + ı In− j+1,1(ωi ). If k ∈ {n′+ 1, . . . , d}, then it is clear

that ek ESp
j ,n(ωi )

c = ek . For k ∈ {1, . . . , n′} \ {1, n} we have

ek c−1ESp
n, j (ωi )c = (c

−1)k ,−ESp
n, j (ωi )c = (c

−1
k ,−)(Id + In, j (ωi )+ ı In− j+1,1(ωi ))c

= ((c−1)k ,−+ωi (c
−1)k ,ne j + ıωi (c

−1)k ,n− j+1e1)c

6.26= ((c−1)k ,−+ ıωi (c
−1)k ,n− j+1e1)c

= ek c−1c + ıωi (c
−1)k ,n− j+1e1c = ek + ıωi (c

−1)k ,n− j+1e1

and

en c−1ESp
n, j (ωi )c = en ESp

j ,n(ωi )c = en(Id + In, j (ωi )+ ı In− j+1,1(ωi ))c

= (en + en In, j (ωi )+ ı en In− j+1,1(ωi ))c

= (en +ωi e j )c = e1c +ωi e j c = e1+ωi c j ,−

as well as

e1c−1ESp
n, j (ωi )c = e1ESp

n, j (ωi )c = e1c = e1.

Now we continue analogously as for Sp5) in Remark 6.29.
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Remark 6.31
In contrast to the special linear group we do not need the transvections of Sp5) to compute the

desired transvections of Sp6). Therefore, one could also swap Sp5) and Sp6) for symplectic groups

but to minimise the differences between the special linear group and the other classical groups we

retain the order. ◀

We also provide pseudo-code for performing Sp6) using Algorithm ComputeHorizontalTransvec-

tionsSp [Alg. 34].

Algorithm 34: ComputeHorizontalTransvectionsSp

Input: ▶ Sp(n, q)∼= 〈Yn〉=H ≤ Sp(d , q) stingray embedded and constructively recognised

▶ c ∈ Sp(d , q) satisfying (C 1), (C 2) and (C 3)

Output: ▶ TH := {ESp
n, j (1) | n+ 1≤ j ≤ n′} ⊂ 〈H , H c 〉 transvections of Sp(n′, q)

▶ An MSLP S from Yn ∪{c} to TH

function ComputeHorizontalTransvectionsSp(H , c)

// Sp6)

1 T̃H← [ ]
2 for λ ∈ {ω1, . . . ,ω f } and j ∈ {2, . . . , n− 1} do
3 T ←ESp

n, j (λ)
c

// Do row operations

4 for k ∈ [2, . . . , n− 1] do

5 T ←T ESp
n,k
(−λc j ,k ) // Note that ESp

n,k
(−λc j ,k ) ∈H

6 ı←Tn,1 AND T ←T ESp
n,1(−ı) // Note that ESp

n,1(−ı) ∈H

7 Add(T̃H ,T )

8 TH← [ ]
9 for λ ∈ {ω1, . . . ,ω f } and j ∈ {n+ 1, . . . , n′} do
10 ESp

n, j (λ)← Multiply the matrices of T̃H suitably

11 ı←ESp
n, j (λ)n,1 AND ESp

j ,n(λ)←ESp
n, j (λ)E

Sp
n,1(−ı)

12 Add(TV , En, j (λ))

13 S← MSLP for the computations of TH

14 return (TH ,S)
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Finally, we have enough symplectic transvections to compute the element zSp
1 ∈ Sp(n′, q) in 〈H , H c〉

which automatically proves that 〈H , H c〉 ∼= Sp(n′, q).

Lemma 6.32

Let n be even. The permutation matrix (zSp
1 )
′ of Sp(n′, q) can be computed using the matrices of

the set X = {zSp
1 , ESp

i ,n(1), ESp
n,i (1)} for n+ 1≤ i ≤ n′.

Proof. Double transpositions can be computed via (ESp
i ,n(1))

−1ESp
n,i (1)(E

Sp
i ,n(1))

−1 which is the permu-

tation matrix corresponding to (1, i)(n, n′ − i + n + 1) ∈ Sn′ for n < i ≤ n′
2 where the entries in

position (i , 1) and (n′− i + n+1, n) are equal to −1 and ESp
i ,n(1)(E

Sp
n,i )
−1(1)ESp

i ,n(1) is the permutation

matrix which corresponds to (1, i)(n, n′− i+n+1) ∈ Sn′ for n < i ≤ n′
2 where the entries in position

(1, i) and (n, n′− i + n) is equal to −1. Moreover,

�
1, n+ 1
��

n, n′
� · �1, n+ 2
��

n, n′− 1
� · . . . · �1, n+

n′

2

��
n, n′− n′

2

�

=
�
1, n+ 1, n+ 2
��

n, n′, n′− 1
� · . . . · �1, n+

n′

2

��
n, n′− n′

2

�

=
�
1, n+ 1, . . . ,

n′

2

��
n, n′ . . . , n′− n′

2

�

and

�
1, . . . ,

n
2

��n
2
+ 1, n, . . . ,

n
2
+ 2
� · �1, n+ 1, . . . ,

n′

2

��
n, n′ . . . , n′− n′

2

�

=
�
1, . . . ,

n
2

, n+ 1, . . . ,
n′

2

��n
2
+ 1, n′ . . . , n′− n′

2
, n, . . . ,

n
2
+ 2
�
.

Because of the position of−1 in the transpositions, thematrices correspond to the standard generators

of Definition 5.1 after a final base change.

The GoingUp step of this section is given in pseudo-code using Algorithm GoingUpStepSp [Alg.

35].
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Algorithm 35: GoingUpStepSp

Input: ▶ 〈X 〉=G ≤ Sp(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ Sp(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (Yn′ ,L ′,S,N ′) where

▶ Sp(min{2n− 2, d}, q)∼= 〈Yn′〉= H̃ ,

▶ L ′ ∈GL(d , q) is a base change matrix such that H̃ is stingray embedded in GLL ′ ,

▶ S is an MSLP from X ∪Yn to the standard generators Yn′ of H̃ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingUpStepSp(G,L , H ,N )

1 (c ,L ′,S1,N )←ComputeCSp(G,L , H ,N )

2 if c = fail then

3 return fail

4 TV ,S2←ComputeVerticalTransvectionsSp(H , c)

5 TH ,S3←ComputeHorizontalTransvectionsSp(H , c)

6 Use TV and TH to construct zSp1 of Sp(n′, q) as an MSLP S4 using Lemma 6.32 // Sp7)

7 Compose S1,S2,S3,S4 into one MSLP S

8 return (〈H , H c 〉,L ′,S,N )

Theorem 6.33

Algorithm GoingUpStepSp [Alg. 35] terminates using at most N random selections and works

correctly.

Proof. Follows with the same argumentation as in Theorem 5.63.

6.3.2 Combining GoingUp steps

As for special linear groups, the GoingUp step for symplectic groups is called repeatedly until

standard generators of the input group G = Sp(d , q) are constructed.
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Algorithm 36: GoingUpSp

Input: ▶ 〈X 〉=G = Sp(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ Sp(4, q)∼= 〈Y4〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (L ′,S,N ′) where

▶ L ′ ∈GL(d , q) is a base change matrix,

▶ S is an MSLP from X ∪Y4 to the standard generators of GLL ′ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingUpSp(G,L , H ,N )

1 n←4 AND S← an MSLP from X ∪Y4 to X ∪Y4

2 while n < d do

3 n←min{2 · n− 2, d} // Nearly double the dimension.

4 (H ,L ,S′,N )←GoingUpStepSp(G,L , H ,N ) // Remark 5.7 and 5.8

5 S← Compose S and S′

6 return (L ,S,N )

Theorem 6.34

Algorithm GoingUpSp [Alg. 36] terminates using at most N random selections and works correctly.

Proof. Follows immediately from Theorem 6.33.



Chapter 7

Special unitary group

In this chapter we describe an efficient constructive recognition algorithm for special unitary groups

SU(d , q) in their natural representation for d ≥ 6 if q is odd and d ≥ 10 if q is even as outlined in

Chapter 3. If q is odd and d = 5, then we refer to [21] and if q is even and d ∈ {5, . . . , 9}, then we

refer to [32]. If d ≤ 4, then we also refer to [21].

The ideas of this chapter are similar to the ones introduced for special linear groups, see Chapter 5,

and symplectic groups, see Chapter 6, which is why we do not repeat the whole underlying theory

in this chapter but instead highlight the differences. The results are valid for all characteristics, i.e.

for q even and odd. Recall that in unitary groups if g ∈ SU(d , q), then g ∈GL(d , q2), and that Fq2

admits a field automorphism of order 2.

This chapter is structured similarly to Chapter 5 for special linear groups and Chapter 6 for symplectic

groups. Section 7.1 deals with the GoingDown algorithm for unitary groups. The GoingDown

basic step for unitary groups is identical to theGoingDown basic step for special linear groups. The

final step also relies on algorithms from the DLLO algorithm [32, 59], see Section 5.1.3. Recall from

Chapter 3 that the terminal group for unitary groups differs depending on whether q is odd or q

is even as displayed in Table 3.1. If q is even, then we compute a stingray embedded SU(10, q) as a

terminal group using the GoingDown basic step while we compute a stingray embedded SU(6, q)

if q is odd. How we handle this distinction of q is discussed in more detail in Section 7.1.

In Section 7.2 we cite an algorithm which can be used for constructive recognition of SU(4, q), i.e.

189
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an algorithm for handling unitary base case groups. We do not discuss the details of the constructive

recognition algorithm for SU(4, q) and instead refer to the publication [21].

In Section 7.3 the GoingUp step for unitary groups is presented. The main approach is very similar

to the GoingUp algorithm for symplectic groups and we discuss the differences in Section 7.3.

Before we introduce our standard generators of unitary groups a notation for specific elements of

unitary groups is given in the next definition.

Definition 7.1

Let d ∈N be even. For i , j ∈ {1, . . . , d}, λ ∈ Fq2\{0} and j ̸= i we set

ESU
i , j (λ) :=




Id + Ii , j (λ), if i + j = d + 1,

Id + Ii , j (λ)− Id− j+1,d−i+1(λ), otherwise.

Let d ∈N be odd. For i , j ∈ {1, . . . , d}, λ ∈ Fq2\{0} and j ̸= i we set

ESU
i , j (λ) :=




Id + Ii , j (λ), if i + j = d + 1,

Id + Ii , j (λ)− Id− j+1,d−i+1(λ), if i + j ̸= d + 1 and i , j ̸= d+1
2

Id + Ii , j (λ)− Id− j+1,d−i+1(λ)+ In− j+1, j (λ2), if i = d+1
2

Id + Ii , j (λ)− Id− j+1,d−i+1(λ)+ Ii ,n−i+1(λ2), otherwise.

For d odd λ2 ∈ Fq2 −{0} has to be chosen such that λλ+λ2+λ2 = 0.

Remark 7.2

1) There always exists λ2 ∈ Fq2 −{0} such that λλ+λ2+λ2 = 0 as required in Definition 7.1.

2) The matrix Id + Ei , j (λ) for i + j = d + 1 is an element of SU(d , q) if and only if λ+ λ = 0.

Therefore, we have to be careful during computations to not accidentally use elements which

are not contained in SU(d , q). ◀
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Definition 7.3

Let SSU ⊆ SL(d , q). If q is odd, then let ω ∈ Fq2 be a primitive element and let α :=ω(q+1)/2. Then

SSU is a set of standard generators for SU(d , q) if SSU is conjugate to the following set consisting of

5 f + 5 elements if d is even and 5 f + 6 elements if d is odd:

• ESU
1,2 (ωi ) for 1≤ i ≤ 2 f , zSU

1 , zSU
2 , zSU

3 , zSU
4 , zSU

5

• ESU
2,1 (ωi ) for 1≤ i ≤ 2 f ,

• ESU
1,n (α

−q(ωq+1)i ) for 0≤ i ≤ f − 1,

• a permutation matrix zSU
1 corresponding to the permutation (1,2, . . . , d

2 )(
d
2 +1, d , d−1, . . . , d

2 +

2) if d is even and (1,2, . . . , d−1
2 )(

d+1
2 + 1, d , d − 1, . . . , d+1

2 + 2) if d is odd,

• a permutation matrix zSU
2 corresponding to the permutation (1,2)(d − 1, d ),

• a permutation matrix zSU
3 corresponding to the permutation (1, d ) with the entry (zSU

3 )1,d

changed to α and entry (zSU
3 )d ,1 changed to α−q ,

• a diagonal matrix zSU
4 corresponding to diag(ωq+1, 1, . . . , 1,ω−(q+1)),

• a diagonal matrix zSU
5 corresponding to diag(ω,ω−1, 1, . . . , 1,ωq ,ω−q) if d is even and

diag(ω−q , 1, . . . , 1,ωq)+ (ωq−1− 1)I n+1
2 , n+1

2
if d is odd and

• ESU
1, n+1

2

(1) if d is odd.

Lemma 7.4

Every element ESU
i , j (λ) can be written in terms of the standard generators of Definition 7.3.

Proof. The standard generators of Definition 7.3 contain the DLLO standard generators [32, 59] and,

therefore, generate SU(n, q). Hence, the elements ESU
i , j (λ) can be written in terms of the standard

generators of Definition 7.3.

Lemma 7.5

SU(d , q) is generated by the standard generators from Definition 7.3.

Proof. This follows immediately as the DLLO standard generators [32, 59] are contained in the set

of standard generators from Definition 7.3.
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7.1 GoingDown algorithm

In this section we describe the GoingDown algorithm for unitary groups 〈X 〉 = G = SU(d , q)

in their natural representation. The algorithms of this chapter are valid for all characteristics but

require that d ≥ 6 if q is odd and d ≥ 10 if q is even. Note that if d = 4, then the input group G is a

base case group, which is handled by a separate base case algorithm by the StandardGenerators

algorithm as outlined in Chapter 3. The output of the GoingDown algorithm for unitary groups is

a base change matrix L ∈GL(d , q2), a stingray embedded subgroup SU(4, q) ∼= U of GL and an

MSLP S from XL to generators of U .

The GoingDown algorithm consists of two subalgorithms as presented in Chapter 3. First, a

GoingDown basic step is repeatedly used to compute a stingray embedded terminal group of G.

Second, an additional algorithm is called on the terminal group to construct a stingray embedded

base case group. The process of computing a stingray embedded base case group in a terminal group

is the final step.

For unitary groups we can use the same methods as for the GoingDown basic step for special linear

groups described in Section 5.1.1. The modifications of the GoingDown basic step for special linear

groups to unitary groups are outlined in Remark 7.6.

Remark 7.6
Recall the GoingDown basic step for special linear groups given in pseudo-code as Algorithm

GoingDownBasicStepSL [Alg. 13] in Section 5.1.1. For readability of Chapter 5 the Algorithm

GoingDownBasicStepSL [Alg. 13] is only provided for special linear groups but can easily be

modified to be applicable for special linear groups and special unitary groups as it is done in

Algorithm GoingDownBasicStepReciprocal [Alg. 29] for symplectic and orthogonal groups. By

changing the input and output of Algorithm GoingDownBasicStepSL [Alg. 13] we introduce a

new algorithm GoingDownBasicStep [Alg. 37] which is usable in special linear groups and unitary

groups. Note that the function body of Algorithm GoingDownBasicStep [Alg. 37] is the same as

of Algorithm GoingDownBasicStepSL [Alg. 13] except that we call a naming algorithm for special

linear group on 〈s1, s2〉 if the input group G is isomorphic to a special linear group and a naming

algorithm for unitary group if the input group G is isomorphic to a unitary group in Line 9. ◀
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Algorithm 37: GoingDownBasicStep

Input: ▶ d1 ∈N with d1 > 4

▶ 〈X 〉=G ≤GL(d , q2) with G ∼= SL(d1, q) or G ∼= SU(d1, q) and d1 > 6

▶ Φ a form preserved by G (omitted if G ∼= SL(d1, q))

▶ N ∈N
Output: fail OR (d2, U ,S,N ′) where

▶ d2 ∈N with 4≤ d2 ≤ 4⌈log(d1)⌉,
▶ U ≤G with U ∼= SL(d2, q) if G ∼= SL(d1, q) and U ∼= SU(d2, q) otherwise,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownBasicStep(d1,G,Φ,N )

1 while N > 0 do // Remark 5.7

2 (s1,S1,N )← FindStingrayElement(G, d1, N ) // Remark 5.8

3 Ws1
← ComputeStingrayBody( s1)

4 repeat

5 (s2,S2,N )← FindStingrayElement(G, d1, N ) // Remark 5.8

6 Ws2
← ComputeStingrayBody( s2)

7 until IsStingrayDuo((s1, s2),Φ)

8 d2← dim(Ws1
)+ dim(Ws2

)

9 if 〈s1, s2〉 ∼= SL(d2, q) (resp. 〈s1, s2〉 ∼= SU(d2, q)) then // Using a naming algorithm, see Section 1.1.7

10 S← an MSLP from X to (s1, s2) using S1 and S2

11 return (d2, 〈s1, s2〉,S,N )

12 return fail

Using Algorithm GoingDownBasicStep [Alg. 37] we introduce an algorithm in pseudo-code

which uses the GoingDown basic step for unitary groups repeatedly until a terminal group is

computed as Algorithm GoingDownToDim6Or10SU [Alg. 38]. Note that Algorithm Going-

DownToDim6Or10SU [Alg. 38] computes a stingray embedded SU(6, q) if q is odd and SU(10, q)

if q is even.
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Algorithm 38: GoingDownToDim6Or10SU

Input: ▶ d ∈N with d ≥ 6 if q odd and d ≥ 10 if q is even

▶ 〈X 〉=G = SU(d , q)

▶ Φ a unitary form preserved by G

▶ N ∈N
Output: fail OR (U ,S,N ′) where

▶ U ≤G with U ∼= SU(6, q) if q is odd and U ∼= SU(10, q) if q is even,

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingDownToDim6Or10SU(d ,G,Φ,N )

1 if q is even then

2 e←10

3 else

4 e←6

5 U←G AND dim ←d AND S← an MSLP from X to X

6 while dim > e do

7 (dim, U ,S′,N )← GoingDownBasicStep(dim, U , Φ, N ) // Remark 5.7 and 5.8

8 S← Composition of S and S′

9 return (U ,S,N )

Theorem 7.7

Algorithm GoingDownToDim6Or10SU [Alg. 38] terminates and works correctly.

Proof. Analogously to the proof of Theorem 5.13.

Lastly we deal with the final step of the GoingDown algorithm for unitary groups which aims

to compute a stingray embedded base case group in the terminal group. Note that the terminal

group for unitary groups depends on q , i.e. Algorithm GoingDownToDim6Or10SU [Alg. 38]

outputs a subgroup U of G with U ∼= SU(6, q) if q is odd and U ∼= SU(10, q) if q is even. In the final

step for unitary groups we use methods from the DLLO algorithm [32, 59] by calling Algorithm

GoingDownFinalStepCL [Alg. 16] which is described in Section 5.1.3. Note that Algorithm
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GoingDownFinalStepCL [Alg. 16] can be used for both settings, i.e. U ∼= SU(6, q) for q odd and

U ∼= SU(10, q) for q even, by calling GoingDownFinalStepCL(U , 4,N ), see Remark 5.21. Using these

methods a stingray embedded SU(4, q) in U can be computed.

An overall GoingDown algorithm for unitary groups is not discussed but can easily be derived

from the GoingDown algorithm for special linear groups in Section 5.1.5 using the subalgorithms

introduced in this section.

7.2 BaseCase algorithm

In this section we assume that a stingray embedded subgroup 〈X 〉 = H ≤ G = SU(d , q) has been

computed and that H ∼= SU(4, q)which can be achieved using the results andGoingDown algorithm

for unitary groups of Section 7.1. Since H ∼= SU(4, q) we have a unitary base case group as in

Definition 3.2. Therefore, there is an efficient constructive recognition algorithm for H . The

algorithm presented in [21] is used in the implementation of the algorithms of this thesis. As

displayed in Figure 3.1 constructive recognition of SU(4, q) is based on constructive recognition of

SU(3, q) which relies on constructive recognition of SL(2, q). Therefore, constructive recognition of

SU(4, q) also involves the usage of a discrete logarithm oracle as in Definition 1.6. As for symplectic

and orthogonal groups we are not diving into the details of [21] and only state the main theorem

about the complexity.

Theorem 7.8: [21]

Assume the availability of oracles which constructively recognise SL(2, q) and compute discrete

logarithms in cyclic groups of order q ± 1. There is an

O (d 2 log(d )(d log4(q)+E log q + ζ ))

time Las Vegas black-box algorithm which constructively recognises any SU(d , q) where d ≥ 3.

Here, ζ is the complexity to construct a (nearly) uniformly distributed random element of H as

an MSLP in X and E is the complexity of constructively recognising (a homomorphic image of)

SL(2, q).
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Proof. [21].

Corollary 7.9

Assume the availability of oracles which constructively recognise SL(2, q) and compute discrete

logarithms in cyclic groups of order q ± 1. There is an

O (ζ +E log q + log4(q))

time Las Vegas black-box algorithm which constructively recognises SU(4, q). Here, ζ is the

complexity to construct a (nearly) uniformly distributed random element of H as an MSLP in X

and E is the complexity of constructively recognising (a homomorphic image of) SL(2, q).

7.3 GoingUp algorithm

In this section we describe the GoingUp algorithm for unitary groups. The algorithm is similar to

the GoingUp algorithm for symplectic groups, see Section 6.3. Thus, we only highlight and discuss

the differences between the GoingUp algorithm for symplectic and unitary groups. Our hypothesis

for the remainder of this section is the following.

Hypothesis 7.10

Let d ∈ N and 〈X 〉 = G = SU(d , q) containing a stingray embedded subgroup H ≤ 〈XL 〉 = GL

with H ∼= SU(n, q) for n < d , n even and for a known base change matrixL ∈GL(d , q2). Moreover,

standard generators Yn of H are given as words in X . Let V = Fd
q and suppose thatB = (v1, . . . , vd )

is a basis for V and let Vn = 〈v1, . . . , vn〉 and Fd−n = 〈vn+1, . . . , vd 〉 (cf. Definition 2.7). We assume

that H acts onVn as SU(n, q) and that H fixes Fd−n point-wise. Recall that (ω1, . . . ,ω f ) is an Fp -basis

for Fq .

Theorem 7.11

Let X ⊆ SU(d , q) such that 〈X 〉 = G = SU(d , q) with 4 ≤ n < d and n even and let

L ∈ GL(d , q2) be a base change matrix. Let YLn be a set of standard generators for the sub-

group SU(n, q) stingray embedded into GL . Furthermore, let S be an SLP from X to Yn and let

n′ :=min{2n− 2, d}.
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Then there is an algorithm that computes a base change matrix L ′ ∈ GL(d , q2) together with

an SLP S′ from X to a set Yn′ , which is a set of standard generators for SU(n′, q) and 〈YL ′n′ 〉 is
stingray embedded in GL ′ .

Recall that the definition of a strong doubling element in special linear and symplectic groups

requires the element to satisfy three conditions (C 1), (C 2) and (C 3) of Remark 5.36 and 5.53. Let

g̃ ∈GL . Then g̃ is a strong doubling element with respect to H if

(C 1) dim(Vn +Vn g̃ ) = n′.

(C 2) If n′ < d , then dim(Fd−n +Fix( g̃ )) = d .

(C 3) g̃ fixes v1 and vn. Let (v ′′1 , . . . , v ′′n′) :=BL ′L ′′ and c := g̃L ′L ′′ for base change matricesL ′,L ′′

as computed in Remark 6.22 and Remark 6.23. The vectors ωi v
′′
j and ωi v

′′
j c−Tr for 1≤ i ≤ f

and 2≤ j ≤ n− 1 span the subspace 〈v ′′2 , . . . , v ′′n−1, v ′′n+1, . . . , v ′′n′〉.

Moreover, recall the seven phases of the GoingUp step for symplectic groups:

Sp1) Construct an element t ∈H which has a fixed space of dimension d − n+ 2.

Sp2) Choose random elements a ∈GL until g̃ := t a satisfies (C 1) and (C 2).

Sp3) Find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

Sp4) Compute base change matrices L ′ and L ′′ such that 〈H , H g 〉L ′L ′′ is stingray embedded in

GLL ′ and preserves the standard form. Set c := gL ′L ′′ and verify whether c satisfies (C 3) of

Remark 6.15.

Sp5) Using c , construct transvections ESp
j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp6) Using c , construct transvections ESp
n, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp7) Using the transvections of Sp5) and Sp6) construct standard generators for 〈H , H c〉 ∼= Sp(n′, q)

by assembling a permutation matrix zSp
1 corresponding to a permutation of cycle type ( n′

2 )
2 as

in Definition 6.3.

The phases applied to the unitary group are denoted by SU1) to SU7). A summary of the seven

phases for unitary groups is given in Remark 7.16 and the complete GoingUp algorithm for unitary
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groups is given by Algorithm GoingUpSU [Alg. 39].

The phases SU1), SU2) and SU4) can be performed the same way as the phases Sp1), Sp2) and Sp4).

For the phases SU5), SU6) and SU7) there are minor differences compared to the phases Sp5), Sp6)

and Sp7), while phase SU3) has to be redesigned from scratch. We start by discussing how phase

SU3) can be achieved, which we do in Remark 7.13, and afterwards discuss the slight differences

in the phases SU5), SU6) and SU7) compared to the phases Sp5), Sp6) and Sp7). A solution of the

phases SU5), SU6) is given in Remark 7.14 and a solution of the phase SU7) in Lemma 7.15.

In phase Sp3) a weak doubling element g̃ is given and we aim to compute a conjugate of g̃ which is

a doubling element, i.e. an element which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

In phase Sp3) we constructed matrices L1, L2 ∈ Sp(n, q) of the form

L1 :=




1 w1,2 w1,3 . . . w1,n−1 0

0 1 0 . . . 0 w1,n−1

0 0 1 . . . 0 w1,n−2

...
...

... . . . ...
...

0 0 0 . . . 1 −w1,2

0 0 0 . . . 0 1




, L2 :=




1 0 0 . . . 0 0

−w2,n−1 1 0 . . . 0 0

−w2,n−2 0 1 . . . 0 0
...

...
... . . . ...

...

w2,2 0 0 . . . 1 0

0 w2,2 w2,3 . . . w2,n−1 1




for two vectors w1 = (1, w1,2, w1,3, . . . , w1,n−1, 0) and w2 = (0, w2,2, w2,3, . . . , w2,n−1, 1) such that the

element (L1L2)
−1 g̃ (L1L2) is a doubling element. Note that in symplectic groups L1, L2 ∈ H ∼=

Sp(n, q) for all vectors w1 = (1, w1,2, w1,3, . . . , w1,n−1, 0) and w2 = (0, w2,2, w2,3, . . . , w2,n−1, 1). Recall

that in unitary groups ESU
1,n (λ) and ESU

n,1(λ) is an element of SU(n, q) if and only if λ+ λ = 0, see

Remark 7.2. Thus, for (1, ν2, . . . , νn−1, 0) ∈ Fn
q2 the matrix




1 ν2 ν3 . . . νn−1 0

0 1 0 . . . 0 −νn−1

0 0 1 . . . 0 −νn−2

...
...

... . . . ...
...

0 0 0 . . . 1 −ν2
0 0 0 . . . 0 1




∈ SL(n, q2)
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is not always contained in SU(n, q). Hence, we cannot proceed for unitary groups as for symplectic

groups. For phase SU3) we start by observing the action of unitary groups on 1-dimensional

subspaces.

Lemma 7.12: [91, Theorem 10.12]

If V is an F-vector space with Witt index 1, then PSU(V ) is a faithful doubly transitive group on

the isotropic points of V . If V is an F-vector space with Witt index at least 2, then PSU(V ) is

transitively on the hyperbolic pairs of V .

Proof. [91, Theorem 10.12].

Based on Lemma 7.12 we proceed as in the next remark to compute L1, L2 ∈H ∼= SU(n, q) such that

(L1L2)
−1 g̃ (L1L2) satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

Remark 7.13: SU3)

We assume that 〈w1, w2〉 ≤Vn ∩Fix(c) where (w1, w2) is a hyperbolic pair, w1 has a non-zero entry

at position 1 and w2 has a non-zero entry at position n. If this is not satisfied, then we return to

choosing random elements c1 ∈GL . We normalise the entry at position 1 of w1 and the entry at

position n of wn. Moreover, by linear combinations of w1 and w2 we may assume that

w1 = (1,λ2, . . . ,λn−1, 0) and w2 = (0, ı2, . . . , ın−1, 1)

as elements of Fn
q2 . Note that this process can fail if w1 and w2 both have the same entry in position

1 and n but in this case we also restart with choosing another random element c1 ∈GL . Next we

introduce for (1, ν1, . . . , νn−1) = ν ∈ Fn
q2 the notation

Tν :=




1 ν1 ν2 . . . νn−2 νn−1

0 1 0 . . . 0 −νn−2

0 0 1 . . . 0 −νn−3

...
...

... . . . ...
...

0 0 0 . . . 1 −ν1
0 0 0 . . . 0 1




∈ SL(n, q2).
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Note that in contrast to symplectic groups Tν is not contained in SU(n, q) for all (1, ν1, . . . , νn−1) ∈ Fn
q2

which is why the construction of L1, L2 ∈H requires more effort. For β ∈ Fq2 we now compute

ν := w1+βw2 = (1,λ2+βı2, . . . ,λn−1+βın−1,β).

We aim to prove two things. Firstly, that there always exists an element β ∈ Fq2 such that Tw1+βw2
∈

SU(n, q). Secondly, we seek to develop an efficient method for computing β ∈ Fq2 such that

Tw1+βw2
∈ SU(n, q). Since we describe a constructive and efficient method for computing β ∈ Fq2

with Tw1+βw2
∈ SU(n, q), this also proves the existence. Note that n is even and recall from Remark

2.28 that for

b :=




0 1

. . .

1 0


 ∈GL(n, q2)

follows SU(n, q) = {a ∈ SL(n, q2) | aba∗ = b} where a∗ = (aTr) = (a)Tr. Hence, we aim to compute

β ∈ Fq2 such that

b =Tw1+βw2
bT ∗w1+βw2

⇔ 0=β+(λn−1+βın−1)(λ2+βı2)+ . . .+(λ2+βı2)(λn−1+βın−1)+β

⇔ 0=β+β+(λn−1+βın−1)(λ2+βı2)+ (λ2+βı2)(λn−1+βın−1)

⇔ 0=ββ (ın−1ı2+ . . .+ ı2ın−1)︸ ︷︷ ︸
=:γ1

+β (1+ ın−1λ2+ . . .+ ı2λn−1)︸ ︷︷ ︸
=:γ2

+β (1+λn−1ı2+ . . .+λ2ın−1)︸ ︷︷ ︸
=:γ3

+

(λn−1λ2+ . . .+λ2λn−1)︸ ︷︷ ︸
=:γ4

⇔ 0=ββγ1+βγ2+βγ3+ γ4.

Note that γ1 ∈ F0 := Fix(Fq2) since

γ1 = ın−1ı2+ . . .+ ı2ın−1 = ın−1ı2+ . . .+ ı2ın−1 = γ1.

Therefore, we solve the equation γ0γ0 = γ1 for some γ0 ∈ Fq2 which can be done efficiently using
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Hilbert 90 [62, Theorem 3 and 4]. We set β0 :=βγ0 yielding

0=ββγ1+βγ2+βγ3+ γ4

⇔ 0=ββγ0γ0+βγ0γ
−1
0 γ2+βγ0γ

−1
0 γ3+ γ4

⇔ 0=β0β0+β0
γ2

γ0

+β0
γ3

γ0

+ γ4.

Observe that

γ2 = 1+ ın−1λ2+ . . .+ ı2λn−1 = 1+ ın−1λ2+ . . .+ ı2λn−1 = γ3

yielding

0=β0β0+β0
γ2

γ0

+β0
γ3

γ0

+ γ4

⇔ 0=β0β0+β0
γ2

γ0

+β0
γ2

γ0

+ γ4

⇔ 0=β0β0+β0
γ2

γ0

+β0

�γ2

γ0

�
+ γ4.

We set γ̃ := γ2
γ0
such that

0=β0β0+β0
γ2

γ0

+β0

�γ2

γ0

�
+ γ4

⇔ 0=β0β0+β0γ̃ +β0γ̃ + γ4

⇔ 0=β0β0+β0γ̃ +β0γ̃ + γ̃ γ̃ − γ̃ γ̃ + γ4

⇔ 0=(β0+ γ̃ )(β0+ γ̃ )− γ̃ γ̃ + γ4

⇔ 0=(β0+ γ̃ )(β0+ γ̃ )− γ̃ γ̃ + γ4.

Hence, we have to solve (β0+ γ̃ )(β0+ γ̃ ) = γ̃ γ̃ − γ4. Note that γ̃ γ̃ ∈ F0 as γ̃ γ̃ = γ̃ γ̃ and γ4 ∈ F0 as

γ4 = γ4 and, therefore, γ̃ γ̃−γ4 ∈ F0. Again using Hilbert 90 [62, Theorem 3 and 4] we can efficiently

compute x ∈ Fq2 such that x x = γ̃ γ̃ − γ4. Finally, we can substitute the solution to compute a

suitable β as

x =β0+ γ̃⇔β0 = x − γ̃⇔βγ0 = x − γ̃⇔β=
x − γ̃
γ0

.

Overall, we proceed as follows to compute β ∈ Fq2 such that Tw1+βw2
∈ SU(n, q) starting from

w1 = (1,λ2, . . . ,λn−1, 0) and w2 = (0, ı2, . . . , ın−1, 1):
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1) Compute γ1,γ2,γ3,γ4 based on w1 and w2.

2) Solve γ0 with γ0γ0 = γ1 using Hilbert 90.

3) Set γ̃ := γ2
γ0
.

4) Solve x x = γ̃ γ̃ − γ4 using Hilbert 90.

5) A solution is now given by β= x−γ̃
γ0

.

Using these computations, we compute β ∈ Fq2 such that Tw1+βw2
∈ SU(n, q) and set L1 := Tw1+βw2

.

This concludes the computation of L1.

For the computation of L2 we first replace w2 by w3 := w2(L1)
−1. Note that all the entries of w2 and

w3 are the same except the entry at position n. If w3 has a zero at position n, then we return to

computing c1 ∈GL . Without loss of generality we assume that 〈w1, w2〉 ≤Vn ∩Fix(c) where

w1 = (1,0, . . . , 0) and w2 = (0, ı2, . . . , ın−1, 1).

Similarly to the computation of L1 we define for (ν1, . . . , νn−1, 1) = ν ∈ Fn
q2 the notation

νT :=




1 0 0 . . . 0 0

−νn−1 1 0 . . . 0 0

−νn−2 0 1 . . . 0 0
...

...
... . . . ...

...

−ν2 0 0 . . . 1 0

ν1 ν2 ν3 . . . νn−1 1




∈ SL(n, q2).

Note that νT is not contained in SU(n, q) for all (ν1, . . . , νn−1, 1) = ν ∈ Fn
q2 which is why we have to

perform a few more computations again. As for L1 we aim to compute β ∈ Fq2 such that for

ν :=βw1+w2 = (β, ı2, . . . , ın−1, 1)
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holds βw1+w2
T ∈ SU(n, q). Using the Gram-matrix b yields

b = βw1+w2
T bβw1+w2

T ∗⇔ 0=β+β+ ı1ın−1︸ ︷︷ ︸
∈F0

+ ı2ın−2︸ ︷︷ ︸
∈F0

+ . . .+ ın−1ı1︸ ︷︷ ︸
∈F0︸ ︷︷ ︸

=:γ0∈F0

.

Since γ0 ∈ F0 we compute γ ∈ Fq2 with γγ = γ0 using Hilbert 90 [62, Theorem 3 and 4] resulting in

0=β+β+ γγ . A solution of 0=β+β+ γγ is given by β := −γγ
2 if char(F) ̸= 2 and otherwise

a solution is given by the entry at position (n, 1) of ESU
n, n+1

2

(γ ) ∈ SU(n, q) which can be computed

efficiently and concludes the computation of L2. ◀

We continue this section by discussing the minor differences between the phases SU5), SU6) and

SU7) and the phases Sp5), Sp6) and Sp7).

Remark 7.14: SU5) and SU6) [a minor modification of Sp5) and Sp6)]

Recall from Lemma 6.28 that the conjugation of symplectic transvections ESp
j ,n(ωi ) for 2≤ j ≤ n− 1

with a strong doubling element c yields an element of the form diag(a, Id−n′) with

a :=




1 ıωi cn− j+1,2 . . . ıωi cn− j+1,n−1 0 ıωi cn− j+1,n+1 . . . ıωi cn− j+1,n′

0 1 . . . 0 ωi (c
−1)2, j 0 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 1 ωi (c
−1)n−1, j 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.
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Afterwards we compute an element h ∈H ∼= Sp(n, q) such that

hESp
j ,n(ωi )

c =




1 0 . . . 0 0 ωi (c
−1)n+1, j . . . −ωi (c

−1)n′, j

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

The conjugation of unitary transvections ESU
j ,n (ωi ) ∈ H ∼= SU(n, q) for 2 ≤ j ≤ n − 1 with a

strong doubling element c also yields an element of the form diag(a, Id−n′) with

a :=




1 −ωi (c−1)n−1, j . . . −ωi (c−1)2, j 0 −ωi (c−1)n+1, j . . . −ωi (c−1)n′, j

0 1 . . . 0 ωi (c
−1)2, j 0 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 1 ωi (c
−1)n−1, j 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

Recall that ESU
1,n (λ) is an element of SU(n, q) if and only if λ+λ= 0, see Remark 7.2. Thus, we can
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only ensure to compute h ∈H ∼= SU(n, q) such that

hESU
j ,n (ωi )

c =




1 0 . . . 0 ∗ −ωi (c−1)n+1, j . . . −ωi (c−1)n′, j

0 1 . . . 0 0 0 . . . 0
...

... . . . ...
...

... . . . ...

0 0 . . . 1 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 ωi (c
−1)n+1, j 1 . . . 0

...
... . . . ...

...
... . . . ...

0 0 . . . 0 ωi (c
−1)n′, j 0 . . . 1




.

The non-zero entry (hESU
j ,n (ωi )

c )1,n has no impact on further computations and we simply have to

eliminate this entry lastly. The same minor modification holds for Sp6). ◀

The last minor difference between the algorithm for unitary and symplectic groups can be identified

in phase SU7). Note that in symplectic groups Sp(d , q) the degree d has to be even while for unitary

groups SU(d , q) the degree d can also be odd. Thus, in unitary groups we additionally have to

consider the case that d is odd which requires additional computations for all standard generators

given in Definition 7.3.

Lemma 7.15: SU7)

Let n be even and n′ be odd, i.e. n′ = d . Then the standard generators of Definition 7.3 for Sp(n′, q)

can be computed using the elements of the set A := Yn ∪{ESU
j ,n (ωi ), ESU

n, j (ωi ) | n+1≤ j ≤ n′, 1≤ i ≤
f }.

Proof. All standard generators except zSU
1 and zSU

5 are already contained in A. Note that ESU
1, n+1

2

(1) ∈
{ESU

j ,n (ωi ), ESU
n, j (ωi ) | for n+ 1 ≤ j ≤ n′, 1 ≤ i ≤ f }. The standard generator zSU

1 can be computed

as for symplectic groups in Lemma 6.32. Thus, it is only left to compute zSU
5 which can easily be

done since we have all unitary transvections including ESU
1, n+1

2

(1) ∈ {ESU
j ,n (ωi ), ESU

n, j (ωi ) | for n+ 1≤
j ≤ n′, 1≤ i ≤ f }.
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We finish this chapter by summarising the seven phases and the GoingUp algorithm for unitary

groups.

Remark 7.16
Recall from our Hypothesis 7.10 that H ≤ 〈XL 〉=GL is stingray embedded with H ∼= SU(n, q)

for n < d and for a known base change matrixL ∈GL(d , q2).

SU1) Construct an element t ∈H which has a fixed space of dimension d − n+ 2. This phase can

be done as Sp1) for symplectic groups, see Lemma 6.17.

SU2) Choose random elements a ∈ GL until g̃ := t a satisfies (C 1) and (C 2). This phase can be

done as Sp2) for symplectic groups.

SU3) Find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

A solution for unitary groups is given in Remark 7.13.

SU4) Compute base change matrices L ′ and L ′′ such that 〈H , H g 〉L ′L ′′ is stingray embedded in

GLL ′ and preserves the standard form. Set c := gL ′L ′′ and verify whether c satisfies (C 3).

This phase can be done as Sp4) for symplectic groups, see Remark 6.22, 6.23 and 6.24. Proceed

if c satisfies (C 3).

SU5) Using c , construct transvections ESU
j ,n (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SU(n′, q). This phase

can be done as Sp5) for symplectic groups with a minor modification, see Remark 7.14.

SU6) Using c , construct transvections ESU
n, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= SU(n′, q). This phase

can be done as Sp6) for symplectic groups with a minor modification, see Remark 7.14.

SU7) Using the transvections of SU5) and SU6) construct standard generators for 〈H , H c〉 ∼=
SU(n′, q) by assembling a permutation matrix zSU

1 corresponding to a permutation of cy-

cle type ( n′
2 )

2 as in Definition 7.3. A solution for unitary groups is given in Lemma 7.15.

Note that we do not present an algorithm in pseudo-code for the GoingUp step for unitary groups

but such an algorithm can easily be derived from this remark and Section 6.3. ◀

Theorem 7.17

AlgorithmGoingUpSU [Alg. 39] terminates using at most N random selections and works correctly.

Proof. This can be proven as for symplectic groups, see Theorem 6.34.
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Algorithm 39: GoingUpSU

Input: ▶ 〈X 〉=G = SU(d , q)

▶ A base change matrixL ∈GL(d , q2)

▶ SU(4, q)∼= 〈Y4〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (L ′,S,N ′) where

▶ L ′ ∈GL(d , q2) is a base change matrix,

▶ S is an MSLP from X ∪Y4 to the standard generators of GLL ′ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingUpSU(G,L , H ,N )

1 n←4 AND S← an MSLP from X ∪Y4 to X ∪Y4

2 while n < d do

3 n←min{2 · n− 2, d} // Nearly double the dimension.

4 (H ,L ,S′,N )←GoingUpStepSU(G,L , H ,N ) // Remark 5.7 and 5.8 and 7.16

5 S← Compose S and S′

6 return (L ,S,N )
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Chapter 8

Orthogonal group

This chapter details an efficient realisation of the strategy outlined in Chapter 3 for orthogonal

groups Ω(d , q) in their natural representation for d ≥ 8 and all characteristics except Ω◦(d , q) for d

odd and q even. If d ≤ 6, then we refer to [22], and if d = 7, then we refer to [32, 59].

Recall that there are three types of (quasi-)simple orthogonal groups namely Ω+(d , q), Ω◦(d , q) and

Ω−(d , q). The fact that there are three different types influences the success of the GoingDown and

GoingUp algorithm for orthogonal groups which is explained in more detail in Section 8.1 and

Section 8.3.

Section 8.1 describes theGoingDown algorithm for orthogonal groups. TheGoingDown algorithm

uses a GoingDown basic step and a final step as outlined in Chapter 3. The GoingDown basic step

for orthogonal groups is identical to the GoingDown basic step for symplectic groups which is

described in Section 6.1.1. Note that Section 6.1 only deals with the GoingDown algorithm for

symplectic groups in odd characteristic but the algorithms described in Section 6.1 are also applicable

for orthogonal groups in even characteristic. For the GoingDown final step of orthogonal groups

we use methods from the DLLO algorithm [32, 59] to compute a stingray embedded base case group

Ω(6, q). For the GoingUp algorithm we additionally require that the base case group Ω(6, q) is of

plus type. Therefore, if the base case group Ω(6, q) is of minus type, then we repeat the final step.

In Section 8.2 we cite an algorithm which can be used for constructive recognition of Ω+(6, q), i.e.

the orthogonal base case group. As for symplectic and unitary groups we do not dive into the details

209
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of the constructive recognition algorithm for Ω+(6, q) and instead refer to the publication [22].

In Section 8.3 theGoingUp basic step for orthogonal groups is presented. There are a few differences

and special situations compared to the other classical groups which we address in Section 8.3 but the

overall solution is similar to the algorithm for symplectic groups, see Section 6.3, and for unitary

groups, see Section 7.3.

As for the other classical groups we introduce a notation for specific elements of orthogonal groups.

Note that we avoid orthogonal groups of minus type in all algorithms as much as possible which is

why we only need to define specific elements for orthogonal groups of plus and circle type.

Definition 8.1

Let d be even. For i , j ∈ {1, . . . , d}, λ ∈ Fq\{0} and j ̸= i with i + j ̸= d + 1 we set

EO
i , j (λ) := Id + Ii , j (λ)− Id− j+1,d−i+1(λ).

For d and q odd, λ ∈ Fq −{0} and i , j ∈ {1, . . . , d} with i + j ̸= d + 1 and j ̸= i we set

EO
i , j (λ) :=




Id + Ii , j (λ)− Id− j+1,d−i+1(λ), if i , j ̸= d+1
2 ,

Id + Ii , j (λ)+ Ed− j+1,d−i+1(2λ)+ En− j+1, j (λ
2), if i = d+1

2 and

Id + Ii , j (λ)+ Id− j+1,d−i+1(
λ
2 )+ Ei ,n−i+1((

λ
2 )

2), otherwise.

Remark 8.2

Note that for q even and d odd EO
i , j (λ) is not defined if i = d+1

2 or j = d+1
2 . ◀

Based on the matrices of Definition 8.1 we present standard generators for orthogonal groups in

odd characteristic.

Definition 8.3

Let SO ⊆Ω(d , q). If q is odd, then let γ ∈ Fq2 be a primitive element, let α := γ (q+1)/2 and ω := α2.

Then SO is a set of standard generators for Ω(d , q) if SO is conjugate to the following set consisting

of 2 f + 6 elements if Ω(d , q) is of plus type, 2 f + 5 elements if Ω(d , q) is of circle type and 2 f + 5

elements if Ω(d , q) is of minus type:

• EO
1,2(ωi ) for 1≤ i ≤ f , zO

1 , zO
2 , zO

3 , zO
4 , zO

5 , zO
6

• EO
2,1(ωi ) for 1≤ i ≤ f ,
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• a permutation matrix zO
1 . If Ω(d , q) is of plus type, then zO

1 corresponds to the permutation

(1, d−1)(2, d ) with entries (zO
1 )1,d−1 = (z

O
1 )d ,2 =−1. If Ω(d , q) is of circle or minus type, then

zO
1 corresponds to the permutation (1, d ) with the entries (zO

1 )1,d = (z
O
1 )d ,1 =−1.

• a transvection zO
2 with zO

2 := EO
2,d (1) if Ω(d , q) is of plus type, zO

2 := EO
1, d+1

2

(1) if Ω(d , q) is of

circle type and zO
2 := Id + I1, d

2
(1)+ I1,d (1)+ I d

2 ,1(2) if Ω(d , q) is of minus type.

• a diagonal matrix zO
3 with zO

3 := diag(ω,ω, 1, . . . , 1,ω−1,ω−1) if Ω(d , q) is of plus type and

zO
3 := diag(ω2, 1, . . . , 1,ω−2) if Ω(d , q) is of circle type. If Ω(d , q) is of minus type, then

let A := 1
2 (γ

q−1 + γ−q+1), B := 1
2α(γ

q−1 − γ−q+1) and C := 1
2α
−1(γ q−1 − γ−q+1) and set

zO
3 := diag(ω, 1, . . . , 1,A,A, 1, . . . , 1,ω−1)+ I d

2 , d
2+1(C )+ I d

2+1, d
2
(B).

• a permutation matrix zO
4 . If Ω(d , q) is of plus type, then zO

4 corresponds to the permutation

(1,2, . . . , d
2 )(

d
2 + 1, d , d − 1, . . . , d

2 + 2) and if d
2 is even, then (zO

4 ) d
2 ,1 = (z

O
4 ) d

2+1,d = −1. If

Ω(d , q) is of circle type, then zO
4 corresponds to the permutation (1,2, . . . , d−1

2 )(
d+1

2 +1, d , d −
1, . . . , d+1

2 + 2) and if d−1
2 is even, then (zO

4 ) d+1
2 −1,1 = (z

O
4 ) d+1

2 +1,d = −1. If Ω(d , q) is of minus

type, then zO
4 corresponds to the permutation (1,2, . . . , d

2 − 1)( d
2 + 2, d , d − 1, . . . , d

2 + 3) and if
d
2 − 1 is even, then (zO

4 ) d
2−1,1 = (z

O
4 ) d

2+2,d =−1.

• a permutation matrix zO
5 which corresponds to the permutation (1,2)(d − 1, d ) with

(zO
5 )2,1 = (z

O
5 )d−1,d =−1.

• If Ω(d , q) is of plus type, then we additionally require the diagonal matrix zO
6 with

zO
6 := diag(ω,ω−1, 1, . . . , 1,ω,ω−1).

Remark 8.4
If q is even, then we have to replace some of the standard generators of Definition 8.3 as follows.

For orthogonal groups of plus type there is nothing to do. For orthogonal groups of minus type

we have to replace the generators zO
2 and zO

3 . As in Definition 8.3 let γ ∈ Fq2 be a primitive

element and η = γ + γ q . Then we set zO
2 := Id + I1, d

2
(1) + I1,d (1) + I d

2 ,1(η). Moreover, we set

zO
3 := diag(ω, 1, . . . , 1, 1,C , 1, . . . , 1,ω−1)+ I d

2 , d
2+1(A)+ I d

2+1, d
2
(B) where A := γ−1+ γ−q , B := γ + γ q

and C := γ−q+1+ γ q−1+ 1. ◀

Note that the standard generators of Definition 8.3 for orthogonal groups contain the DLLO

standard generators. For more details about the DLLO standard generators see [32, 59].
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Lemma 8.5

Let Ω(d , q) be of plus or minus type. Then every element EO
i , j (λ) can be written in terms of the

standard generators of Definition 8.3.

Proof. The standard generators of Definition 8.3 contain the DLLO standard generators [32, 59]

and, therefore, generate Ω(d , q). Hence, the elements EO
i , j (λ) can be written in terms of the standard

generators of Definition 8.3.

Lemma 8.6

Ω(d , q) is generated by the standard generators of Definition 8.3.

Proof. This follows immediately as the DLLO standard generators [32, 59] are contained in the set

of standard generators from Definition 8.3.

Remark 8.7
In this chapter we present algorithms for constructive recognition of Ω(d , q) for d ≥ 8 in its natural

representation except Ω◦(d , q) for d odd and q even. Note that the algorithms are also valid for

the orthogonal groups O(d , q) and SO(d , q) in their natural representation except that a few more

standard generators must be computed in the BaseCase algorithm. The GoingDown and GoingUp

algorithm can be applied analogously for O(d , q) and SO(d , q). ◀

8.1 GoingDown algorithm

In this section let d ∈Nwith d ≥ 8 and 〈X 〉=G =Ω(d , q), except for d odd and q even. Recall from

Remark 2.18 that we use Ω(d , q) if a result is independent of the type of the underlying orthogonal

form. The goal of this section is the description of a GoingDown algorithm for the computation of

the full descending recognition chain for orthogonal groups, i.e.

Ω±(6, q)∼=Uk ≤Uk−1
∼=Ω±(8, q)≤ . . .≤U1

∼=Ω(d1, q)≤U0 =G =Ω(d , q),
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where di ≤ 4⌈log(di−1)⌉ for 2 ≤ i ≤ k − 2. As outlined in Chapter 3 a GoingDown basic step is

repeatedly used to compute the descending recognition chain

Uk−1
∼=Ω±(8, q)≤ . . .≤U1

∼=Ω(d1, q)≤U0 =G =Ω(d , q),

and afterwards a final step algorithm is used to compute the last subgroup Ω(6, q)± ∼=Uk ≤Uk−1. For

orthogonal groups we use the same GoingDown basic step algorithm as for symplectic groups, i.e.

Algorithm GoingDownBasicStepReciprocal [Alg. 29]. Note that we only described algorithms

for symplectic groups in odd characteristic in Chapter 6 but Algorithm GoingDownBasicStepRe-

ciprocal [Alg. 29] is also applicable in even characteristics and, therefore, for orthogonal groups

Ω(d , q) with q even and q odd.

For orthogonal groups we set an additional condition on the full descending recognition chain

which is that the base case group is an orthogonal group of plus type which means Ω+(6, q)∼=Uk .

Applying the final step algorithm to the terminal group Uk−1
∼=Ω±(8, q) yields a stingray embedded

subgroup Uk ≤Uk−1 with either Uk
∼=Ω+(6, q) or Uk

∼=Ω−(6, q). If Uk
∼=Ω−(6, q), then we call the

final step algorithm with input Uk−1
∼=Ω±(8, q) again.

As we use the same GoingDown basic step for orthogonal groups as for symplectic groups, we

waive to recall a description of the GoingDown basic step and refer to Section 6.1.1. Nevertheless,

we use Algorithm GoingDownBasicStepReciprocal [Alg. 29] to provide a pseudo-code algorithm

for the computation of the descending recognition chain for orthogonal groups.

Algorithm 40: GoingDownToDim8Orthogonal

Input: ▶ d ∈N with d ≥ 8

▶ 〈X 〉=G =Ω(d , q)

▶ Q a quadratic form preserved by G and the polar form Φ of Q

▶ N ∈N
Output: fail OR (U ,S,N ′) where

▶ U ≤G with U ∼=Ω±(8, q),

▶ S is an MSLP from X to generators of U and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingDownToDim8Orthogonal(d ,G, (Q,Φ),N )

1 U←G AND dim ←d AND S← an MSLP from X to X

2 while dim > 8 do

3 (dim, U ,S′,N )← GoingDownBasicStepReciprocal(dim, U , Φ, N ) // Remark 5.7 and 5.8

4 S← Composition of S and S′

5 return (U ,S,N )

Theorem 8.8

Algorithm GoingDownToDim8Orthogonal [Alg. 40] terminates and works correctly.

Proof. Analogously to the proof of Theorem 5.13.

Algorithm 41: GoingDownOrthogonal

Input: ▶ 〈X 〉=G =Ω(d , q)

▶ Q a quadratic form preserved by G and the polar form Φ of Q

▶ N ∈N
Output: fail OR (U ,L ,S) where

▶ U ≤G with U ∼=Ω+(6, q),

▶ L ∈GL(d , q) is a base change matrix such that UL is stingray embedded in GL and

▶ S is an MSLP from X to generators of U

function GoingDownOrthogonal(G, (Q,Φ),N )

1 (U ,S1,N )←GoingDownToDim8Orthogonal(d ,G, (Q,Φ),N ) // Remark 5.7 and 5.8

2 L1←ComputeBaseChangeMatrixForStingrayEmbedding(U ,G)

3 U← InducedActionRepresentationGroup(U )

4 repeat

5 (U ′,L2,S2,N )←GoingDownFinalStepCL(U , 6,N ) // Remark 5.7 and 5.8

6 until U ′ ∼=Ω+(6, q)

7 S← Composition of S1 and S2 ANDL ←L1 diag(L2, Id−8)

8 return (〈diag(g1, Id−8), diag(g2, Id−8)〉,L ,S) // Let 〈g1, g2〉=U ′

For the final step in orthogonal groups we use algorithms from the DLLO algorithm [32, 59] as
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we did for special linear groups, symplectic groups and unitary groups. Again we do not provide a

pseudo-code algorithm for the final step and refer to Section 5.1.3 and Section 6.1.3. We state the

complete GoingDown algorithm for orthogonal groups by Algorithm GoingDownOrthogonal

[Alg. 41] in pseudo-code.

Theorem 8.9

Algorithm GoingDownOrthogonal [Alg. 41] terminates and works correctly.

Proof. Analogously to the proof of Theorem 5.26.

8.2 BaseCase algorithm

This chapter deals with constructive recognition of H ∼= Ω(6, q) where H is a stingray embedded

subgroup of G =Ω(d , q). Even though H could be an orthogonal group of plus or minus type we

only focus on the plus type as the GoingDown algorithm of Section 8.1 only outputs a subgroup of

G isomorphic to Ω+(6, q). Since H ∼=Ω(6, q), the group H is a base case group as in Definition 3.2

and, therefore, efficient constructive recognition algorithms for H are known. In the implementation

of the algorithms of this thesis the algorithm used is presented in [22]. As for symplectic and unitary

base case groups constructive recognition of H is based on constructive recognition of SL(2, q)

which is why the algorithm of [22] is randomised and involves the discrete logarithm oracle. We are

not discussing details of [22] and only state the main theorem about the complexity.

Theorem 8.10: [22]

There is an O (log(q)(log2(q)+E log(q)+ ζ ))-time Las Vegas algorithm which constructively recog-

nises H , with probability greater than 3/4, when given 〈X 〉=H ∼=Ω+(6, q) and having available an

constructive recognition algorithm for SL(2, q) and a discrete log oracle. Here, ζ is the complexity

to construct a (nearly) uniformly distributed random element of H as an MSLP in X and E is the

complexity of constructively recognising (a homomorphic image of) SL(2, q).

Proof. [22].
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8.3 GoingUp algorithm

In this section we discuss the GoingUp algorithm for orthogonal groups. As for the other classical

groups a GoingUp step is repeatedly applied. Thus, the GoingUp algorithm can be implemented

with minor modifications as the GoingUp algorithm for symplectic groups, see Algorithm Goin-

gUpSp [Alg. 36] and Algorithm GoingUpOmega [Alg. 42]. The GoingUp step for orthogonal

groups is similar to the GoingUp step for symplectic and unitary groups and outlined in Chapter 3.

Hence, we focus on the differences between the GoingUp step for orthogonal groups and the

GoingUp step for symplectic and unitary groups in this section. Our hypothesis for the remainder

of this section is the following.

Hypothesis 8.11

Let d ∈ N and 〈X 〉 = G = Ω(d , q), except for d odd and q even, containing a stingray embedded

subgroup H ≤ 〈XL 〉 = GL with H ∼= Ω+(n, q) for n < d and for a known base change matrix

L ∈GL(d , q). Note that n must be even. Moreover, standard generators Yn of H are given as words

in X . Let V = Fd
q and suppose thatB = (v1, . . . , vd ) is a basis for V and let Vn = 〈v1, . . . , vn〉 and

Fd−n = 〈vn+1, . . . , vd 〉 (cf. Definition 2.7). We assume that H acts on Vn as Ω+(n, q) and that H fixes

Fd−n point-wise. Recall that (ω1, . . . ,ω f ) is an Fp -basis for Fq .

We start this section by stating the main theorem for orthogonal groups.

Theorem 8.12

Let X ⊆ SL(d , q) such that 〈X 〉=G =Ω(d , q), except for d odd and q even, with 6≤ n < d and n

even and letL ∈GL(d , q) be a base change matrix. Let YLn be a set of standard generators for the

subgroup Ω+(n, q) stingray embedded into GL . Furthermore, let S be an SLP from X to Yn and

let n′ :=min{2n− 4, d}.
Then there is an algorithm that computes a base change matrixL ′ ∈GL(d , q) together with an SLP

S′ from X to a set Yn′ . If n′ < d , then Yn′ is a set of standard generators for Ω+(n′, q) and 〈YL ′n′ 〉 is
stingray embedded in GL ′ . If n′ = d , then Yn′ is a set of standard generators for GL ′ .

As in Section 7.3 we restate the conditions for strong doubling element and the phases of aGoingUp

step. Afterwards, we discuss which phases require further discussion for orthogonal groups. Recall
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that the definition of a strong doubling element in special linear, symplectic and unitary groups

requires the element to satisfy three conditions (C 1), (C 2) and (C 3) of Remark 5.36 and 5.53.

Let g̃ ∈ GL . Then g̃ is a strong doubling element with respect to H if g̃ fixes v1 and vn and the

following three conditions hold

(C 1) dim(Vn +Vn g̃ ) = n′.

(C 2) If n′ < d , then dim(Fd−n +Fix( g̃ )) = d .

(C 3) Let (v ′′1 , . . . , v ′′n′) :=BL ′L ′′ and c := g̃L ′L ′′ for base change matricesL ′,L ′′ as computed in

Remark 6.22 and Remark 6.23. The vectorsωi v
′′
j andωi v

′′
j c−Tr for 1≤ i ≤ f and 2≤ j ≤ n−1

span the subspace 〈v ′′2 , . . . , v ′′n−1, v ′′n+1, . . . , v ′′n′〉.

Moreover, recall the seven phases of the GoingUp step for symplectic groups:

Sp1) Construct an element t ∈H which has a fixed space of dimension d − n+ 2.

Sp2) Choose random elements a ∈GL until g̃ := t a satisfies (C 1) and (C 2).

Sp3) Find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

Sp4) Compute base change matrices L ′ and L ′′ such that 〈H , H g 〉L ′L ′′ is stingray embedded in

GLL ′ and preserves the standard form. Set c := gL ′L ′′ and verify whether c satisfies (C 3) of

Remark 6.15.

Sp5) Using c , construct transvections ESp
j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp6) Using c , construct transvections ESp
n, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Sp(n′, q).

Sp7) Using the transvections of Sp5) and Sp6) construct standard generators for 〈H , H c〉 ∼= Sp(n′, q)

by assembling a permutation matrix zSp
1 corresponding to a permutation of cycle type ( n′

2 )
2 as

in Definition 6.3.

The phases applied to the orthogonal group are denoted by O1) to O7). A summary of the seven

phases for orthogonal groups is given in Remark 8.21 and the complete GoingUp algorithm for

orthogonal groups is given by Algorithm GoingUpOmega [Alg. 42].

The phases O1), O2) can be performed the same way as the phases Sp1), Sp2). Note that for phase

O1) we have to write t ∈ H as a word in Yn which has a fixed space of dimension d − n+ 4, e.g.
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zO
4 zO

5 . For the phases O4), O5), O6) and O7) there are minor differences compared to the phases

Sp4), Sp5), Sp6) and Sp7) while phase O3) requires more changes and a different approach. We

continue this section by discussing how phase O3) can be solved which is done in Remark 8.17.

Afterwards we describe how the phases O4), O5), O6) and O7) can be carried out. A solution for

phase O4) is given in Remark 8.18, a solution for the phases O5), O6) is given in Remark 8.19 and

a solution for phase O7) is given in Lemma 8.20.

For orthogonal groups Theorem 8.12 states that dim(Vn + Vn g ) = min{2n − 4, d} instead of

min{2n− 2, d} as it is the case for symplectic and unitary groups. Equivalent to dim(Vn +Vn g ) =

min{2n− 4, d} is that dim(Vn ∩Fix g )≥ 4, see Lemma 5.42 1) with a slightly modified proof. For

O3) we require that dim(Vn ∩Fix g )≥ 4 which is discussed in detail in the following.

We start by observing the action of orthogonal groups on 1-dimensional subspaces. Recall that a

non-zero vector v ∈V is singular if Q(v) = 0.

Lemma 8.13: [91, Lemma 11.29]

Suppose the dimension of an F-vector space V is at least 5 and the Witt index of V is at least 2. Then

for all singular points w1, w2 and w3 such that w1, w2 ∈ 〈w3〉⊥\{w3} there is an element g ∈ Ω(V )
which fixes w3 and takes w1 to w2.

Proof. [91, Lemma 11.29].

Now we have to ensure, that we can find singular points satisfying the requirements of Lemma 8.13.

By our assumption dim(Vn) ≥ 6, dim(Vn ∩Vn g̃ ) ≥ 4 and v1 and vn are singular vectors, see [91,

Lemma 7.3]. Moreover, v1 ∈ 〈vn〉⊥ and vn ∈ 〈v1〉⊥.

Lemma 8.14: [91, Lemma 11.2]

If F is finite and dim(V )≥ 3, then V \{0} contains a singular vector.

Proof. [91, Lemma 11.2].

Lemma 8.15

Vn ∩Vn g̃ contains at least two linear independent and singular vectors.
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Proof. Using Lemma 8.14 we know that Vn∩Vn g̃ contains at least one singular vector w1 ̸= 0. Since,

dim((Vn ∩Vn g̃ )\〈w1〉) = 3, we can use Lemma 8.14 again to identify a second singular element

w2 ∈ (Vn ∩Vn g̃ )\〈w1〉. Clearly, w1 and w2 are linear independent.

Remark 8.16
Note that the proofs of Lemma 8.14 and 8.15 are constructive, i.e. they provide an algorithm for

computing two linear independent singular vectors w1, w2 ∈Vn ∩Vn g̃ . ◀

Our next aim is to show how we can use Lemma 8.13 to map two linear independent singular vectors

w1, w2 ∈Vn ∩Vn g̃ to v1 and vn.

Remark 8.17: O3)

By our assumption given in Theorem 8.12, dim(Vn)≥ 6 and by the computations so far we know

dim(Vn ∩Vn g̃ )≥ 4. Moreover, v1 and vn are singular vectors, v1 ∈ 〈vn〉⊥ and vn ∈ 〈v1〉⊥. Our aim

is to compute two singular vectors w1, w2 ∈Vn ∩Vn g̃ with w1 ∈ 〈vn〉⊥\{vn} and w2 ∈ 〈v1〉⊥\{v1}. If
v1 ∈Vn ∩Vn g̃ and vn ∈Vn ∩Vn g̃ , then there is nothing to do. If v1 ∈Vn ∩Vn g̃ and vn /∈Vn ∩Vn g̃

or vice verse, then we can proceed as in the case that v1, vn /∈Vn ∩Vn g̃ . Thus, we assume in the

following that v1, vn /∈Vn ∩Vn g̃ .

The orthogonal complement of 〈vn〉⊥ in Vn can be computed in O (n3). Moreover, by Lemma 2.14

dim(〈vn〉⊥)≥ n−1 and, thus, dim(〈vn〉⊥∩(Vn∩Vn g̃ ))≥ 3. By Lemma 8.14W := 〈vn〉⊥∩(Vn∩Vn g̃ )

contains a singular vector. The proof of Lemma 8.14 is constructive and, hence, we continue as in

the proof of [91, Lemma 11.2]. Suppose first that char(Fq) = 2. We choose 0 ̸= u1 ∈W , compute

the orthogonal complement 〈u1〉⊥ and choose u2 ∈ W ∩ 〈u1〉⊥\{u1}. Since char(Fq) = 2, every

element of Fq is a square and, thus, there are x, y ∈ Fq such that x u1+ y u2 ̸= 0 and Q(x u1+ y u2) =

x2Q(u1)+ y2Q(u2) = 0. Suppose now that the characteristic of Fq is odd. Then we choose non-zero

vectors u1, u2, u3 ∈W with u2 ∈ 〈u1〉⊥ and u3 ∈ 〈u1, u2〉⊥. We suppose that u1, u2, u3 are non-singular.

Using [91, Lemma 11.1] we can find x, y ∈ Fq such that x2Q(u1) + y2Q(u2) = −Q(u3) and, thus,

x u1+ y u2+ u3 is singular.

Hence, we can identify a singular vector w1 ∈ W . Moreover, we assume that the first entry

of w1 is non-zero such that we can rescale the entry in the first position to 1 and, thus, w1 =

(1, w1,2, w1,3, . . . , w1,n). Overall, v1, w1 ∈ 〈vn〉⊥\{vn} and the vectors v1, w1, vn are singular. By
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Lemma 8.13 there is an element L1 ∈H which maps v1 to w1 and fixes vn such as

L1 :=




1 w1,2 w1,3 . . . w1,n−1 w1,n

0 1 0 . . . 0 −w1,n−1

0 0 1 . . . 0 −w1,n−2

...
...

... . . . ...
...

0 0 0 . . . 1 −w1,2

0 0 0 . . . 0 1




∈Ω+(n, q).

Again we continue as in the proof of [91, Lemma 11.2] to identify a singular vector w2 ∈ Vn ∩
Vn(L1 g̃ L−1

1 ) such that w2 ∈ 〈v1〉⊥\{v1}. Note that dim(〈v1〉⊥∩(Vn∩Vn(L1 g̃ L−1
1 )))≥ 3. Analogously

to w1, we assume that the last entry of w2 is non-zero such that we rescale the entry in the last

position to 1 and, thus, w2 = (w2,1, w2,2, . . . , w2,n−1, 1). Overall, vn, w2 ∈ 〈v1〉⊥\{v1} and the vectors

v1, w2, vn are singular. By Lemma 8.13 there is an element L2 ∈H which maps vn to w2 and fixes v1

such as

L2 :=




1 0 0 . . . 0 0

−w2,n−1 1 0 . . . 0 0

−w2,n−2 0 1 . . . 0 0
...

...
... . . . ...

...

−w2,2 0 0 . . . 1 0

w2,1 w2,2 w2,3 . . . w2,n−1 1




∈Ω+(n, q).

◀

Remark 8.18: O4) [a minor modification of Sp4)]

Sp4) aims to compute a base change matrixL ′ ∈GL(d , q) such that 〈H , H g 〉L ′ is stingray embedded

in GLL ′ and, if it is possible, then a second base change matrix L ′′ ∈GL(d , q) such that the top

left (n′× n′)-block of 〈H , H g 〉L ′L ′′ preserves the standard form. Note that if the computation of

L ′′ fails, then we can already conclude that 〈H , H g 〉L ′ is not isomorphic to Sp(n′, q) and, thus, we

return to phase Sp2).

In orthogonal groups we proceed as described above and as in Remark 6.22 and 6.23 except that
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for the computation of the second base change matrix L ′′ ∈GL(d , q) we compute the preserved

quadratic form of 〈H , H g 〉L ′ and a base change matrix L ′′ ∈ GL(d , q) such that the standard

quadratic form is preserved. This also ensures the correctness of this phase for even characteristic.

Moreover, if n′ < d , then we only proceed if 〈H , H g 〉L ′L ′′ preserves the standard quadratic form

of an orthogonal group of plus type. If 〈H , H g 〉L ′L ′′ preserves the standard quadratic form of an

orthogonal group of minus type, then we also return to phase O2). ◀

Remark 8.19: O5) and O6) [a minor modification of Sp5) and Sp6)]

The phases O5) and O6) can be performed in a similar way as the steps Sp5) and Sp6). The results

of Lemma 6.28 and Lemma 6.30 are also valid for orthogonal groups with ı = 1 in all cases and

the proof can be done analogously. We also continue as in Remark 6.29 except that we never try

to eliminate the entry at position (1, n) as matrices of the form In + I1,n(λ) are not contained in

Ω+(n, q). Note that this has no consequences on the further computations of phases O5) and O6) as

〈H , H g 〉L ′L ′′ preserves the standard quadratic form by Remark 8.18 and, thus, the entry at position

(1, n) automatically becomes zero. ◀

Lemma 8.20: O7)

Let n be even. Then the standard generators of Definition 8.3 for Ω(n′, q) can be computed using

the elements of the set A := Yn ∪{EO
j ,n(ωi ), EO

n, j (ωi ) | n+ 1≤ j ≤ n′, 1≤ i ≤ f }.

Proof. If n′ < d , then 〈H , H g 〉L ′L ′′ ∼=Ω+(n′, q) and we only need to assemble the standard generator

zO
4 which can be done as in Lemma 6.32. If n′ = d and G =Ω+(d , q), then we can also proceed as

in Lemma 6.32. If n′ = d and G is of circle or minus type, then we can proceed as in Lemma 6.32 to

assemble the standard generator zO
4 . Afterwards, we can compute all Siegel transformations and,

thus, the remaining standard generators.

We finish this chapter by summarising the seven phases and the GoingUp algorithm for orthogonal

groups.
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Remark 8.21
Recall from our Hypothesis 8.11 that H ≤ 〈XL 〉 =GL is stingray embedded with H ∼= Ω+(n, q)

for n < d and for a known base change matrixL ∈GL(d , q).

O1) Construct an element t ∈H which has a fixed space of dimension d − n+ 4.

O2) Choose random elements a ∈ GL until g̃ := t a satisfies (C 1) and (C 2). This phase can be

done as Sp2) for symplectic groups.

O3) Find a conjugate g ∈GL of g̃ which satisfies (C 1) and (C 2) and additionally fixes v1 and vn.

A solution for orthogonal groups is given in Remark 8.17.

O4) Compute a base change matrix L ′ such that 〈H , H g 〉L ′ is stingray embedded in GLL ′ . Set

c := gL ′ and verify whether c satisfies (C 3). This phase can be done as Sp4) for symplectic

groups, see Remark 6.22, 6.23 and 6.24 except that we use quadratic forms and if n′ < d , then

additionally 〈H , H g 〉L ′ ∼=Ω+(n′, q), see Remark 8.18. Proceed if c satisfies (C 3).

O5) Using c , construct transvections EO
j ,n(ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Ω(n′, q). This phase

can be done as Sp5) for symplectic groups with a minor modification, see Remark 8.19.

O6) Using c , construct transvections EO
n, j (ωi ) for n < j ≤ n′ for 〈H , H c〉 ∼= Ω(n′, q). This phase

can be done as Sp6) for symplectic groups with a minor modification, see Remark 8.19.

O7) Using the transvections of O5) and O6) construct standard generators for 〈H , H c〉 ∼=Ω(n′, q)

by assembling standard generators as in Definition 7.3. A solution for orthogonal groups is

given in Lemma 8.20.

Note that we do not present an algorithm in pseudo-code for the GoingUp step for orthogonal

groups but such an algorithm can easily be derived from this remark and Section 6.3. ◀

Algorithm 42: GoingUpOmega

Input: ▶ 〈X 〉=G =Ω(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ Ω+(6, q)∼= 〈Y6〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (L ′,S,N ′) where

▶ L ′ ∈GL(d , q) is a base change matrix,

▶ S is an MSLP from X ∪Y6 to the standard generators of GLL ′ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingUpOmega(G,L , H ,N )

1 n←6 AND S← an MSLP from X ∪Y6 to X ∪Y6

2 while n < d do

3 n←min{2 · n− 4, d} // Nearly double the dimension.

4 (H ,L ,S′,N )←GoingUpStepOmega(G,L , H ,N ) // Remark 5.7 and 5.8 and 8.21

5 S← Compose S and S′

6 return (L ,S,N )

Theorem 8.22

Algorithm GoingUpOmega [Alg. 42] terminates using at most N random selections and works

correctly.

Proof. This can be proven as for symplectic groups, see Theorem 6.34.
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Chapter 9

GoingUp using involutions

Even though the GoingUp step presented in this thesis is very fast and efficient in practice for

all classical groups, the fact that the algorithm is only applicable to such groups in their natural

representations is a disadvantage. Therefore, we introduce and prove the correctness of an alternative

GoingUp step based on involutions for all classical groups in odd characteristic in this chapter which

in practice appears to be usable in gray box settings. In this chapter we prove that the alternative

GoingUp step is also correct in all classical groups of odd characteristic in their natural representation

but we do not show the correctness in gray box situations. In the following the GoingUp step

introduced in Chapter 5 to Chapter 8 is called GoingUp algorithm based on linear algebra and the

algorithm of this chapter is called GoingUp algorithm based on involutions. Involutions can be

used for constructive recognition of classical groups in gray and black box situations as shown in

[33]. Moreover, the length of the output MSLPs produced by the GoingUp algorithm based on

linear algebra is larger than the length of the MSLPs produced by the GoingUp algorithm based on

involutions. Note that the GoingUp algorithm based on involutions requires q to be odd which we

assume for the remainder of this chapter.

We start this chapter by describing the framework used in the Leedham-Green and O’Brien (LGO)

algorithm [59] and discuss how this setting differs from the framework after using the GoingDown

and BaseCase algorithm of this thesis. Let G =CL(d , q). The main idea of the LGO constructive

recognition algorithm consists of the computation of an involution i ∈G and the centraliser of the

225
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involution in CG(i) which has the following form after a suitable base change.

CG(i) =


U1 0

0 U2


≤G,

where U1 =CL(d1, q) and U2 =CL(d2, q) are classical groups of the same type as G and d1+ d2 = d .

Afterwards, the LGO algorithm is applied to U1 and U2 recursively, resulting in a binary tree

structure as in Figure 9.1.

CL(d , q)

CL(d1, q) CL(d2, q)

CL(d11, q) CL(d12, q) CL(d22, q)CL(d21, q)

...
...

...
...

...
...

...
...

CL(n1, q) CL(n2, q) CL(n3, q) CL(n4, q) . . . CL(nk−2, q) CL(nk−1, q) CL(nk , q)

Figure 9.1: Simplified graphical visualisation of the LGO algorithm.

In Figure 9.1 a constructive recognition algorithm is applied on the groups CL(n1, q), . . . ,CL(nk , q)

as these groups are base case groups as described in 3.2. Except at leaf groups of Figure 9.1 we can

assume that we have the setting 
U1 0

0 U2


≤G

where U1 =CL(d1, q), U2 =CL(d2, q) and d1+d2 = d and by recursion we can assume that standard

generators of U1 and U2 are known. In this situation a glueing algorithm is applied to G, U1 and U2

to compute standard generators of G. The solution of the LGO constructive recognition algorithm

is reminiscent of a paradigm known as “divide-and-conquer” in the area of computer science.

Remark 9.1
After describing the main idea of the LGO algorithm we summarise the details of the framework

for the glueing algorithm. We require

• a group G =CL(d , q),

• U1, U2 ≤G with U1
∼=CL(d1, q), U2

∼=CL(d2, q) all of the same type as G and d1+ d2 = d ,
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• U1 and U2 are constructively recognised and

• U1 and U2 commute, i.e. there is a base change such that


U1 0

0 U2


≤G.

◀

After summarising some details of the LGO algorithm we now deal with the setting using the

GoingDown and BaseCase algorithm of this thesis. The GoingDown algorithm constructs a

descending recognition chain which is visualised in Figure 9.2 similar to Figure 9.1 for the LGO

algorithm.

CL(d , q)

CL(d1, q)

...

CL(dk−2, q)

CL(dk−1, q)

CL(dk , q)

Figure 9.2: Simplified graphical visualisation of the GoingDown algorithm.

In Figure 9.2 a vertical version of a full descending recognition chain is given. Comparing Figure

9.1 and Figure 9.2 we notice that after having applied the GoingDown algorithm of this thesis, a

less useful structure compared to the LGO algorithm is obtained. However, the trade-off is that

we reach a base case group much quicker and that we only need to recognise one base case group

constructively.

The goal of this chapter is to use the glueing algorithm of the LGO algorithm as an GoingUp

step. Since the setting after the GoingDown algorithm is different compared to the setting of the

LGO algorithm we must perform additional computations such that the LGO glueing algorithm

becomes applicable. From the setting of the LGO algorithm as described in Remark 9.1 we have
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U1
∼=CL(d1, q) as we only constructed the standard generators of one subgroup of G. Hence, we

are missing

• U2 with U2
∼=CL(d2, q) such that U1 and U2 commute,

• an MSLP which evaluates from the generators of G to the standard generators of U2 and

• a stingray embedded group G̃ ≤G such that U1×U2 ≤ G̃ and G̃ ∼=CL(d1+ d2, q).

We proceed as follows to find the missing groups and MSLPs evaluating to generators of these groups.

We assume that CL(n, q) ∼= H ≤ 〈X 〉 = G = CL(d , q) and that standard generators of H can be

written as words in X . The group H takes on the role of U1. First, we compute a group HB ≤G

with HB
∼=CL(2n, q) and H ≤HB . Secondly, we compute an element u ∈HB such that H and H u

commute. The group H u takes on the role of U2. Moreover, standard generators of H u can be

written as words in X as H u is conjugate to H . We summarise this in Table 9.1.

Requirements of LGO glueing algorithm Computed in this chapter

CL(d1, q)∼=U1 ≤G CL(n, q)∼=H ≤HB
U1 is constructively recognised H is constructively recognised
CL(d2, q)∼=U2 ≤G CL(n, q)∼=H u ≤HB
U2 is constructively recognised H u is constructively recognised
G ∼=CL(d1+ d2, q) HB

∼=CL(2n, q)
U1 and U2 commute H and H u commute

Table 9.1: Comparison between the requirements of the LGO glueing algorithm and the computations
of this chapter.

The first section of this chapter deals with the computations of HB and u ∈HB which are needed for

the LGO glueing algorithm. These computations and the LGO glueing algorithm are then combined

in a single algorithm which is used as the GoingUp step based on involutions. The second section

uses the GoingUp step based on involutions iteratively to construct standard generators of the input

group similarly to Algorithm GoingUp [Alg. 28] based on linear algebra in Section 5.3.6. The

GoingUp step of this chapter uses methods from [32] and [59].

9.1 Overview of the GoingUp step

In this section we present a GoingUp step based on involutions and the glueing algorithm of the

LGO algorithm. For the remainder of this section let char(F) ̸= 2. We start this section by stating
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the setting and the main theorem. Similarly to the GoingUp algorithm based on linear algebra

we prove the correctness of the GoingUp step based on involutions by describing and proving the

correctness of an algorithm. The hypothesis of this section is similar to Hypothesis 5.34 of the

GoingUp step based on linear algebra except that we deal with all classical groups at the same time

by using CL(d , q) instead of SL(d , q), Sp(d , q), SU(d , q) or Ω(d , q).

Hypothesis 9.2

Let H ≤ 〈XL 〉 = GL where G = CL(d , q) and H ∼= CL(n, q) for n even, 2n ≤ d and H is

stingray embedded in GL for a known base change matrix L ∈ GL(d , q). Moreover, standard

generators Yn of H are given as words in X and let V = Fd
q . Let B = (v1, . . . , vd ) be a basis

of V , let Vn = 〈v1, . . . , vn〉 and Fd−n = 〈vn+1, . . . , vd 〉. We assume that H acts on Vn as CL(n, q)

and that H fixes Fd−n point-wise. Additionally, if CL is an orthogonal group, then we assume

CL(n, q) =Ω+(n, q).

The main theorem for the GoingUp step based on involutions is the following.

Theorem 9.3

Let G = CL(d , q) and X ⊆ G such that 〈X 〉 = G. Let 2 ≤ n < d with n even and 2n ≤ d and let

L ∈GL(d , q) be a base change matrix. Let YLn be a set of standard generators for H ∼= CL(n, q)

stingray embedded into GL of the same type as G. Furthermore, let S be an SLP from X to Yn.

Then there is an algorithm that computes a base change matrixL ′ ∈GL(d , q) together with an SLP

S′ from X to a set Y2n, which is a set of standard generators for HB
∼=CL(2n, q) of the same type as

G and 〈YL ′2n 〉 is stingray embedded in GL ′ .

Similarly to the GoingUp step based on linear algebra, the algorithm we describe for proving

Theorem 9.3 consists of seven phases called I1) to I7). Before stating the phases we discuss the idea

of GoingUp step based on involutions in the next remark.

Remark 9.4
Let 〈X 〉=G =CL(d , q) be a classical group in its natural representation such that d is greater or

equal to the value given in Table 3.1 for each classical group. For the GoingUp algorithm based

on involutions, we assume that standard generators of a stingray embedded subgroup H ≤G with
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H ∼=CL(n, q) of the same type as G can be written as words in X . Using the standard generators of

H we construct an element g ∈GL with the following three properties:

(C 1) dim(Vn +Vn g ) = 2n,

(C 2) dim(Fd−n +Fix(g )) = d and

(C 3) HB := 〈H , H g 〉 ∼=CL(2n, q) is of the same type as G.

Using (C 1) and (C 2) we prove that HB
∼= CL(2n, q) is stingray embedded in G using a suitable

base change matrix. In this setting we compute an element u ∈HB and the element u can be used

to compute H2 := H u ≤ HB . In the course of this chapter we prove that H and H u commute.

Therefore, we can call a glueing algorithm of [59] on H , H2 and HB to construct standard generators

for HB . Starting from a subgroup of G isomorphic to a base case group this yields an ascending

chain. Note that we are doubling the degree from n to 2n using g and u. ◀

Definition 9.5

Assume the setting as described in Hypothesis 9.2.

1) An element g ∈GL satisfying (C 1), (C 2) and (C 3) is an honest doubling element.

2) Let HB ≤GL with HB
∼=CL(2n, q) and HB is stingray embedded in GL ′ for some base change

matrix L ′ ∈GL(d , q). Let i ∈ HB be an involution, i.e. i 2 = Id . Moreover, we assume that

the (−1)-eigenspace of i is Vn. An element u ∈HB is a swapping element if there is a subspace

W of the 1-eigenspace of i such that W u =Vn and V u
n =W . Note that W ∩Vn = {0} since

W is a subspace of the 1-eigenspace of i .

Remark 9.6
The next sections can roughly be summarised as follows.

1) Construct an element g ∈ GL satisfying the properties (C 1), (C 2) and (C 3), i.e. an

honest doubling element as in Definition 9.5. This is achieved by random selection of el-

ements of GL and discussed in Section 9.2.

2) Construct a new base change matrixL ′ such that 〈H , H g 〉L ′ is stingray embedded in GLL ′

which is possible because of the properties (C 1) and (C 2). The computation ofL ′ is deter-
ministic and discussed in Section 9.3.

3) Construct a swapping element u ∈ 〈H , H g 〉. This step involves Bray’s algorithm [18] and is,
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therefore, randomised. The computation of u is discussed in Section 9.4.

4) After 3) we use the LGO glueing algorithm from [59] to construct standard generators for

〈H , H g 〉. Since the LGO glueing algorithm is randomised, this step is also randomised. Note

that we do not discuss the glueing algorithm from the LGO algorithm in this thesis and instead

refer to [59]. ◀

In each of the following sections the task described in Remark 9.6 is divided into more phases which

are discussed in detail leading to the seven phases I1) to I7). Finally, in Section 9.5 the phases I1) to

I7) are combined into a single algorithm for the GoingUp step based on involutions which proves

Theorem 9.3.

9.2 Construction of a dimension doubling element

In this section we compute an honest doubling element, i.e. an element g ∈GL satisfying (C 1), (C 2)

and (C 3). The results of this section finally lead to Algorithm ComputeHonestDoublingElement

[Alg. 43]. Recall our setting from Hypothesis 9.2. We start with a brief summary of the phases of

this section.

Remark 9.7
I1) Construct an element t ∈H which has a fixed space of dimension d − n. This can be easily

achieved as we have standard generators Yn for H .

I2) Choose random elements a ∈ GL until g := t a satisfies the three conditions (C 1),

(C 2) and (C 3) of Remark 9.4, i.e. until g is an honest doubling element. If g is an

honest doubling element, then set HB := 〈H , H g 〉. ◀

Note that the computation of g is a randomised process as we compute random elements a ∈GL

and test whether t a satisfies (C 1), (C 2) and (C 3) of Remark 9.4. We do not analyse the probability

that t a is an honest doubling element in this thesis and refer to future publications.

We start with the computation of an element t ∈H which has a fixed space of dimension d − n, i.e.

how phase I1) can be carried out. This is easily done with the standard generators Yn of H already

found. The construction of an element t ∈ H with fixed space of dimension d − n is displayed
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exemplarily for the special linear groups in the next lemma. Note that the construction of such

an element can easily be done in special linear groups and symplectic groups since these groups

contain ppd(d , q ; n)-elements which have a fixed space of dimension d − n [74, 80]. For unitary

and orthogonal groups we choose ppd(d , q ; e1)- and ppd(d , q ; e2)-elements such that e1+ e2 = n and

continue with both these elements. Note that we can find such elements, see [74, 80].

Lemma 9.8

Set

t :=




(E1,2(1)
−1)z1 E1,2(1), if n = 2,

E1,2(1)z1, if n > 2 and p is even,

z1, if n > 2 and p is odd.

Then t has a fixed space of dimension d − n.

Proof. The fixed space is in all cases 〈en+1, . . . , ed 〉 and, therefore, has dimension d − n.

As in the GoingUp approach based on linear algebra, the element t ∈H is constructed as an MSLP

in the given standard generators Yn of H ∼= CL(n, q), but can at the same time be written down

explicitly as an element of GL at a cost of O (d 2).

Now that we have an element t ∈H with fixed space of dimension d−n, we select random elements

a ∈GL and test whether g := t a satisfies the three conditions (C 1), (C 2) and (C 3) of Remark 9.4.

We repeat this until g has the required properties. If g is an honest doubling element, then we set

HB := 〈H , H g 〉 and V2n =Vn +Vn g . The next lemma summarises some properties of g .

Lemma 9.9

Let t be as in Lemma 9.8 and for random a ∈GL let g := t a be an honest doubling element. Then

1) dim(Vn ∩Vn g ) = 0,

2) dim(Vn ∩Fix(g )) = 0,

3) V2n is invariant under the action of g and

4) dim(Fd−n ∩Fix(g )) = d − 2n.
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Proof. The proof is similar to the proof of Lemma 5.42 but added for completeness of this chapter.

1) dim(Vn ∩Vn g ) = dim(Vn)+ dim(Vn g )− dim(Vn +Vn g ) = n+ n− 2n = 0.

2) Let v ∈Vn∩Fix(g ). Then v ∈Vn g and v ∈Vn g∩Fix(g )which impliesVn∩Fix(g )⊆Vn∩Vn g .

Since dim(Vn ∩Vn g ) = 0, the claim follows.

3) We construct a basis of V2n which shows clearly that V2n is invariant under the action of g . A

basis of V2n consists of 2n elements since dim(V2n) = 2n by (C 1). First notice that

dim(Vn +Fix(g )) = dim(Vn)+ dim(Fix(g ))− dim(Vn ∩Fix(g ))

= n+(d − n) = d

by 2) and, therefore, Vn+Fix(g ) =V . Since Vn ≤V2n, it follows that V2n+Fix(c) =V which

implies that

dim(V2n ∩Fix(g )) = dim(V2n)+ dim(Fix(g ))− dim(V2n +Fix(g ))

= 2n+ d − n− d = n.

Since dim(Vn ∩ (V2n ∩Fix(g )) = dim(Vn ∩Fix(g )) = 0,

dim(Vn +(V2n ∩Fix(g ))) = dim(Vn)+ dim(V2n ∩Fix(g ))− dim(Vn ∩ (V2n ∩Fix(g )))

= n+ n− 0= 2n

and, since Vn+(V2n ∩Fix(g ))≤V2n, it follows that Vn+(V2n ∩Fix(g )) =V2n. Therefore, we

can choose a basis of V2n as follows:

• Select n vectors (v1, . . . , vn) ∈V n
n as a basis of Vn.

• Choose n vectors from V2n ∩Fix(g ) to extend this to a basis of V2n.

Clearly this basis is invariant under the action of g .

4) Lastly,

dim(Fd−n ∩Fix(g )) = dim(Fd−n)+ dim(Fix(g ))− dim(Fd−n +Fix(g ))

= (d − n)+ (d − n)− d = 2d − 2n− d = d − 2n.
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Remark 9.10
We proceed as follows to test whether g := t a is an honest doubling element:

1) Using Gaussian elimination, verify that dim(Vn +Vn g ) = 2n and dim(Fd−n +Fix(g )) = d as

outlined in Example 5.64.

2) Compute the induced actions of the generators Yn ∪ Y g
n of HB on V2n = Vn +Vn g using

Algorithm InducedActionRepresentationGroup [Alg. 12] which generate a subgroup of

SL(2n, q) denoted byÝHB ≤ SL(2n, q). Afterwards, we call a naming algorithm onÝHB to verify

thatÝHB =CL(2n, q) and, therefore, that HB
∼=CL(2n, q).

Note that a naming algorithm only has to be called if 1) is satisfied. ◀

We finish this section by stating a pseudo-code algorithm for computing honest doubling elements.

Algorithm 43: ComputeHonestDoublingElement

Input: ▶ 〈X 〉=G ≤CL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ CL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised

▶ N ∈N
Output: fail OR (g ,S′,N ′) where

▶ g ∈G is an element satisfying (C 1), (C 2) and (C 3), i.e. an honest doubling element,

▶ S′ is an MSLP from X ∪Yn to g and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function ComputeHonestDoublingElement(G,L , H ,N )

1 Choose t ∈H as described in Lemma 9.8 // I1)

2 repeat // Start of I2)

3 N←N − 1

4 if N < 0 then

5 return fail

6 g← t a for random a ∈GL

7 until g does not satisfy (C 1) and (C 2) and (C 3)

8 S′← MSLP from X ∪Yn to g

9 return (g ,S′,N )
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9.3 Construction of a new base change matrix

Let g ∈ GL be an honest doubling element, let HB := 〈H , H g 〉 and V2n =Vn +Vn g . The aim of

this section is to compute a stingray embedded HB in GL . This is carried out by the next phase I3)

which computes a new base change matrixL ′ ∈GL(d , q) such that HL ′
B is stingray embedded in

GLL ′ which is also summarised in the next remark.

Remark 9.11

I3) Compute a base change matrixL ′ ∈GL(d , q) such that HL ′
B is stingray embedded in GLL ′ .◀

Similarly to SL4) of the GoingUp step based on linear algebra for special linear groups, we compute

L ′ ∈ GL(d , q) as a base change matrix from the basis B to another basis B ′ given in the next

remark. Note that (C 1) and (C 2) ensure thatB ′ can be constructed as in Remark 9.12.

Remark 9.12
Recall π : V → Fd−n the projection map to the second summand of V =Vn ⊕ Fd−n of Remark 5.51.

The basis can be computed as follows:

1) Add v1, . . . , vn toB ′ as a basis of Vn.

2) Add π(v1 g ), . . . ,π(vn g ) toB ′ as a basis of Vn g . Note that π(v1 g ), . . . ,π(vn g ) are linearly

independent. Let ı1, . . . , ın ∈ Fq such that
∑n

i=1 ıiπ(vi g ) = 0. Then π(
∑n

i=1 ıi vi g ) = 0 and

hence
∑n

i=1 ıi vi g = 0 or
∑n

i=1 ıi vi g ∈Vn. Since Vn∩Vn g = {0} it is clear that∑n
i=1 ıi vi g = 0.

This implies ı1 = . . .= ın = 0 as v1c , . . . , vnc are linearly independent.

3) ExtendB ′ to a basis of V by taking d − 2n basis vectors of dim(Fd−n ∩Fix(g )). ◀

The matrix L ′ ∈ GL(d , q) is now chosen to be the base change matrix between B and B ′ of

Remark 9.12.

Remark 9.13

A generating set of HL ′
B is given by {h1, h2, . . . , hk , h g

1 , h g
2 , . . . , h g

k }L
′ where H = 〈h1, . . . hk〉. The

elements {h1, h2, . . . , hk , h g
1 , h g

2 , . . . , h g
k }L

′ have the following form

hL
′

i =




CL(n, q) 0

0 1
0

0 Id−2n


 and (h g

i )
L ′ =




∗ ∗
0 CL(n, q)

0

0 Id−2n


 .

◀
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The elements of HL ′
B are, therefore, block-diagonal matrices or, to be more precise, stingray elements

where the bottom right (d − 2n)× (d − 2n)-matrix is the identity. We can extract the top left

non-trivial 2n× 2n blocks of the stingray embedded group HL ′
B in GL ′ using InducedActionRep-

resentationGroup [Alg. 12] yielding a subgroupÝHB ≤ SL(2n, q) withÝHB =CL(2n, q) of the same

type as G.

9.4 Construction of a swapping element and standard generators

The goal of this section is to compute a swapping element as in Definition 9.5. Recall our setting from

Hypothesis 9.2 and that we have a stingray embedded subgroup HL ′
B in GLL ′ , where HB := 〈H , H g 〉

for an honest doubling element g ∈ GL . The honest doubling element g can be computed using

the results of Section 9.2 and the base change matrixL ′ ∈GL(d , q) using the results of Section 9.3.

We start this section by introducing new notations.

Hypothesis 9.14

Since HL ′
B is stingray embedded in GLL ′ we know that the elements of h ∈ HL

B have a block

structure, namely 
h 0

0 Id−2n


 ∈HL

B ≤GLL
′

which is also described in Remark 9.13. We now extract the top left 2n× 2n blocks of the elements

of HL
B as elements of SL(2n, q) and define thereby subgroups of SL(2n, q). For this, we define the

isomorphism x : HL ′
B → SL(2n, q), a 7→ â where â is the top left 2n× 2n block of a. Using x we set

Ĥ := x(H ) and ĤB := x(HB).

We continue this section by stating the remaining phases.

Remark 9.15

I4) Let m = diag(−1, . . . ,−1) ∈CL(n, q) and î = diag(m,−1m) ∈ SL(2n, q). Write i := x−1(î) =

diag(î , Id−2n) ∈HL ′
B as a word in Yn. Note that this is possible since the standard generators

Yn of H are known and that m is an element of CL(n, q) as n is even by assumption.

I5) Compute the projective centraliser PCĤB
(î) using Bray’s algorithm [18] and identify in PCĤB

(î)

a swapping element û which interchanges the 1- and (−1)-eigenspaces of î . Afterwards, we set
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u := x−1(û).

I6) Compute the conjugate H2 := H u and a new base change matrix L ′′ ∈ GL(d , q) such that

HL ′′ and HL ′′
2 are disjoint blocks in HL ′L ′′

B .

I7) Call the LGO glueing algorithm on H , H2 and HB to assemble standard generators for HB .◀

We start with I4) and show how this phase can be carried out.

Remark 9.16

Note that i = diag(m, Id−n) ∈HL ′
B has the following form

i =




−1 · In 0

0 1 · In

0

0 Id−2n


 .

◀

Lemma 9.17

We have i ∈ HL ′
B where i = diag(m, Id−n). Moreover, i can be written as a word in terms of the

generators of HB .

Proof. Clearly i ∈ HL ′ ≤ HL ′
B = 〈H , H g 〉L and since the standard generators of H = HL ′ are

known we can use a rewriting procedure as in Section 1.1.10 to construct a word which evaluates to

diag(i , Id−n).

Note that one important advantage of the solution of this chapter compared to the LGO algorithm

is that we do not have to search for a suitable involution by random selection of elements of HB but

rather construct the involution i as a word in H .

The goal of I5) is to compute the projective centraliser PCĤB
(î) which is defined as follows.
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Definition 9.18: [59, p. 837]

Let g ∈ G ≤GL(d , q), let G denote G/G ∩Z where Z denotes the centre of GL(d , q), and let g

denote the image of g in G. The projective centraliser PCG(g ) of g ∈ G is the preimage in G of

CG(g ).

The next lemma summaries important properties of PCĤB
(î)

Lemma 9.19

Let n be even and Ĥ ∼= CL(n, q) a stingray embedded subgroup of ĤB with ĤB = CL(2n, q). Let

î = diag(m,−1m) ∈ Ĥ .

1) The projective centraliser PCĤB
(î) can be computed using Bray’s algorithm [18] which requires

O (n(ζ + n3 log(n)+ n2 log(n) log(log(n)) log(q))) finite field operations.

2) PCĤB
(î) contains an element û which swaps the 1- and (−1)-eigenspace of î .

Proof. 1) [59, Theorem 12.3].

2) First note that the (−1)-eigenspace of î is given by the first n basis vectors of B ′ and the

1-eigenspace of î is given by the n + 1, . . . , 2n basis vectors ofB ′. Moreover, note that the

(−1)-eigenspace and the 1-eigenspace of î have the same dimension. The permutation matrix

corresponding to (1,2n)(2,2n− 1) . . . (n, n+ 1) is contained in CL(2n, q) and swaps the first

n with the last n basis vectors. Therefore, there exists an element which swaps the 1- and

(−1)-eigenspaces. Moreover, this permutation matrix is also contained in PCĤB
(î).

Remark 9.20
Note that computing the projective centraliser is a known method for computing swapping elements

and is used e.g. in the LGO algorithm [59]. Moreover, the method of constructing an involution in

a stingray embedded subgroup and computing a second commutating subgroup using the centraliser

of the involution is presented in [32]. Note that an element swapping the 1- and (−1)-eigenspaces of

an involution is only contained in the projective centraliser of the involution if and only if the 1- and

(−1)-eigenspaces have the same dimension. This is also the reason why we compute PCĤB
(î) instead

of PCHB
(i) since i has an n-dimensional (−1)-eigenspace and an (d −n)-dimensional 1-eigenspace.◀
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Note that û ∈ ĤB and, therefore, we can compute u := x−1(û) as an element of HL ′
B ≤GLL ′ . For

phase I6) we now set

• H2 =H u and

• B ′′ = (v1, . . . , vn, v1u, . . . , vn u) and extendB ′′ to a basis of V by taking d − 2n basis vectors

of dim(Fd−n ∩Fix(g )) as in 3) of Remark 9.12 forB ′.

LetL ′′ ∈GL(d , q) be the base change matrix fromB toB ′′.

Lemma 9.21

Let n be even and H , H2 andL ′′ as described above. Then all of the following hold.

1) H2
∼=CL(n, q),

2) the standard generators of H and H2 are known,

3) 〈H , H2〉 ∼=CL(n, q)×CL(n, q) and

4) 〈H , H2〉L ′′ is stingray embedded in GLL ′′ as CL(n, q)×CL(n, q).

Proof. Most of the statements are clear or follow immediately by construction. Note that H2 is

a conjugate of H and, therefore, isomorphic to CL(n, q). Moreover, the standard generators of

H2 are the conjugates of the standard generators of H . The fact that H and H2 commute follows

by construction as H acts on the first n basis vectors of B ′′ and fixes the rest while H2 acts on

the (n + 1)-th up to 2n-th basis vector of B ′′ and fixes the remaining basis vectors since for any

h ′ ∈H2 =H u and i ∈ {1, . . . , n}

vi u h ′ = vi u u−1h u = vi h u ∈Vn u.

In the last phase I7) we assemble standard generators for HB as our setting is now identical to the

setting from [59] before applying the LGO glueing algorithm. The LGO glueing algorithm is not

discussed in this thesis and instead we refer to [59].
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9.5 GoingUp step

Finally, we summarise all the phases introduced in Remark 9.7, 9.11 and 9.15 in Remark 9.22.

Moreover, we provide a pseudo-code algorithm implementing theGoingUp step based on involutions

of this chapter by AlgorithmGoingUpWithInvolutionsStep [Alg. 44]. The proof of correctness of

Algorithm GoingUpWithInvolutionsStep [Alg. 44] is given by Theorem 9.23 which thereby also

proves Theorem 9.3. Recall Hypothesis 9.2 and the additional notation introduced in Hypothesis

9.14.

Remark 9.22
Let G = CL(d , q) and X ⊆ G such that 〈X 〉 = G. Let 2 ≤ n < d with n even and 2n ≤ d and let

L ∈GL(d , q) be a base change matrix. Let YLn be a set of standard generators for H ∼= CL(n, q)

stingray embedded into GL of the same type as G. Furthermore, let S be an SLP from X to Yn.

Overall, the following phases must be performed for Theorem 9.3:

I1) Construct an element t ∈H which has a fixed space of dimension d −n. This can be achieved

easily as we have standard generators Yn for H .

I2) Choose random elements a ∈ GL until g := t a satisfies the three conditions (C 1),

(C 2) and (C 3) of Remark 9.4, i.e. until g is an honest doubling element. If g is an

honest doubling element, then set HB := 〈H , H g 〉.
I3) Compute a new base change matrix L ′ ∈ GL(d , q) such that HL ′

B is stingray embedded in

GLL ′ .

I4) Let m = diag(−1, . . . ,−1) ∈CL(n, q) and î = diag(m,−1m) ∈ SL(2n, q). Write i := x−1(î) =

diag(î , Id−2n) ∈HL ′
B as a word in Yn. Note that this is possible since the standard generators

Yn of H are known and that m is an element of CL(n, q) as n is even by assumption.

I5) Compute the projective centraliser PCĤB
(î) using Bray’s algorithm [18] and identify in PCĤB

(î)

a swapping element û which interchanges the 1- and (−1)-eigenspaces of î . Then set u :=

x−1(û).

I6) Compute the conjugate H2 := H u and a new base change matrix L ′′ ∈ GL(d , q) such that

HL ′′ and HL ′′
2 are disjoint blocks in HL ′L ′′

B .

I7) Call the LGO glueing algorithm on H , H2 and HB to assemble standard generators for HB .◀

The GoingUp step based on involutions described in this chapter is given in pseudo code with
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Algorithm GoingUpWithInvolutionsStep [Alg. 44].

Theorem 9.23

AlgorithmGoingUpWithInvolutionsStep [Alg. 44] terminates using at most N random selections

and works correctly.

Proof. The correctness follows immediately from the correctness of each phase. Therefore, it is

left to prove that Algorithm GoingUpWithInvolutionsStep [Alg. 44] terminates. Every line is

deterministic except the computation of g in Line 1, the computation of the projective centraliser in

Line 7 and the LGO glueing algorithm in Line 11 which are randomised. Since each of these algorithm

returns fail when N ≤ 0 the claim follows and we perform at most N random selections.

Remark 9.24
Note that the computation of g in Line 1 as well as two other phases of Algorithm GoingUpWith-

InvolutionsStep [Alg. 44] are randomised. The computation of the projective centraliser in Line 7

is randomised and the LGO glueing algorithm in Line 11 since the LGO glueing algorithm involves

a call to the constructive recognition algorithm of CL(2, q). Since both Bray’s algorithm (see [18])

and the LGO constructive recognition algorithm (see [59]) are well-known, we omitted additional

details of proving that they terminate using a parameter N . ◀

Algorithm 44: GoingUpWithInvolutionsStep

Input: ▶ 〈X 〉=G ≤CL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ CL(n, q)∼= 〈Yn〉=H ≤GL stingray embedded and constructively recognised,

n ≤ d
2 even

▶ An MSLP S from X to the standard generators Yn of H

▶ N ∈N
Output: fail OR (L ′′,Y2n ,S′,N ′) where

▶ L ′′ ∈GL(d , q) is a base change matrix,

▶ CL(2n, q)∼= 〈Y2n〉=HB ≤GLL ′′ where HB is stingray embedded in GLL ′′ ,

▶ S′ is an MSLP from X ∪Yn to the standard generators Y2n of HB and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used
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function GoingUpWithInvolutionsStep(G,L , H ,S,N )

1 (g ,S1,N )←ComputeHonestDoublingElement(G,L , H ,N ) // I1), I2), Remark 5.7

2 if g = fail then

3 return fail

4 L ′← as described in Remark 9.12 // I3)

5 HB←〈H , H g 〉L ′

6 S2← an MSLP for i = diag(m, Id−n) ∈HB where m = diag(−1, . . . ,−1) ∈CL(n, q) // I4)

7 (û,N ,S3)←ProjectiveCentraliserOfInvolution(ĤB , î ,N ) // I5), 5.8

8 u← x−1(û) a swapping element

9 H2←H u AND S4← an MSLP for H2 // I6)

10 L ′′← a base change matrix from (v1, . . . , vn) to (v1, . . . , vn , v1u, . . . , vn u)

11 (S5,N )← MSLP to stand. gens. of HB using GlueingLGO(HB , H , H2,N ) // I7), 5.8

12 Compose S,S1,S2,S3,S4,S5 into one MSLP S′

13 return (〈H , H g 〉L ′′ ,L ′′,S′,N )

9.6 Combining GoingUp steps

In Section 9.5 we have proven how we can compute standard generators for a stingray embedded

classical group doubling the dimension of a given stingray embedded classical group of the same

type for which standard generators can be written as words. In this section Algorithm GoingUp-

WithInvolutionsStep [Alg. 44] is used repeatedly to design an algorithm which can be used to

compute standard generators for 〈X 〉 = G = CL(d , q) when H ≤ G is a stingray embedded base

case group of the same type and standard generators of H can be written as words in X .

Remark 9.25
In Algorithm GoingUpWithInvolutions [Alg. 45] k is chosen such that k is maximal with

k ≤ d − 2 and k ≡ 0 (mod 4). We require that k is even such that k/2 is an integer. We also require

that k/2 is even because this is a requirement of Algorithm GoingUpWithInvolutionsStep [Alg.

44]. Moreover, k ≤ d − 2 because we cannot assemble standard generators for CL(d , q) using the

LGO glueing algorithm on CL(d − 1, q)×CL(1, q). Thus, we require H2 to be isomorphic to

CL(r, q) for r ≥ 2 as the second factor. ◀
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Algorithm 45: GoingUpWithInvolutions

Input: ▶ 〈X 〉=G =CL(d , q)

▶ A base change matrixL ∈GL(d , q)

▶ CL(n′, q)∼= 〈Yn′〉=H ≤GL a base case group and stingray embedded in GL

▶ MSLP S from X to the standard generators Yn′ of H

▶ N ∈N
Output: fail OR (L ′,S′,N ′) where

▶ L ′ ∈GL(d , q) is a base change matrix,

▶ S′ is an MSLP from X ∪Yn′ to the standard generators of GLL ′ and

▶ N ′ ∈N where N −N ′ is the number of random selections that were used

function GoingUpWithInvolutions(G,L , H ,S,N )

1 n←n′

2 while n ≤ ⌊d/2⌋ do
3 n←2 · n // Double the dimension.

4 (H ,L ,S,N )←GoingUpWithInvolutionsStep(G,L , H ,S,N ) // Remark 5.8 and 5.7

5 if n = d then

6 return (L ,S,N )

7 k← maximal with k ≤ d − 2 and k ≡ 0 (mod 4) // Note d − 5≤ k ≤ d − 2

8 eH ≤H← stingray embedded with eH ∼=CL(k/2, q)

9 S← MSLP to standard generators of eH
10 (H1,L ,S1,N )←GoingUpWithInvolutionsStep(G,L , eH ,S,N ) // 5.8

11 i← diag(−1 · Ik , Id−k ) AND S2← an MSLP to i

12 (C ,N )←C (GL , i ,N )′ AND CL(d − k , q)∼=H2 ≤GL←AlgorithmLGO(C ,N ) // 5.8

13 S3← MSLP to standard generators of H2 // Note H2
∼=CL(r, q) for some 2≤ r ≤ 5

14 (S4,N )← MSLP to stand. gens. of G using GlueingLGO(G, H1, H2,N ) // I7), 5.8

15 Compose S,S1,S2,S3,S4 into one MSLP S′

16 return (L ,S′,N )

Theorem 9.26

Algorithm GoingUpWithInvolutions [Alg. 45] terminates using at most N random selections

and works correctly.
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Proof. That the algorithm terminates is clear since we prove in Theorem 9.23 that Algorithm

GoingUpWithInvolutionsStep [Alg. 44] terminates and every other computation of Algorithm

GoingUpWithInvolutions [Alg. 45] is either deterministic or a well-known algorithm which is

proven to terminate using a probabilistic parameter.

For the correctness we start by assuming that d is a power of 2. In this case we can use Algorithm

GoingUpWithInvolutionsStep [Alg. 44] until standard generators of G are computed and correct-

ness immediately follows. From here on, we assume that d is not a power of 2 and that we can write

standard generators of H ≤G stingray embedded as words in X with H ∼=CL(n, q) and n > ⌊d/2⌋.
Since it is not possible to use AlgorithmGoingUpWithInvolutionsStep [Alg. 44] again, we switch

to the following strategy. The standard generators of H can be written as words in X and using

this knowledge we can compute standard generators of eH ≤ H with eH ∼= CL(k , q) for arbitrary

2 ≤ k ≤ n by reducing the length of the permutation matrices z1 and z2. We choose k in such a

way that we can double the dimension again using Algorithm GoingUpWithInvolutionsStep

[Alg. 44] on eH ∼=CL(k/2, q) and that d − k ∈ {2, . . . , 5}. Therefore, by using Algorithm GoingUp-

WithInvolutionsStep [Alg. 44] on eH we compute standard generators of a subgroup H1 ≤ G

with H1
∼= CL(k , q). Since standard generators of H1 are known we can write down an explicit

involution i of G such that CG(i)
′ =CL(k , q)×CL(d − k , q) =H1×CL(d − k , q) =H1×H2. As

d − k ∈ {2, . . . , 5} is small we can easily compute standard generators of H2
∼=CL(d − 2k , q) and use

the LGO glueing algorithm to compute standard generators for G.



Chapter 10

Complexity analysis of algorithms

In this chapter we analyse the complexity of the StandardGenerators algorithm of Section 3.4.

As proven in Chapter 5 for special linear groups, in Chapter 6 for symplectic groups, in Chap-

ter 7 for unitary groups and in Chapter 8 for orthogonal groups, the StandardGenerators algo-

rithm is a one-sided Monte Carlo algorithm using the subalgorithms GoingDown, BaseCase and

GoingUp. All these three subalgorithms are randomised and, thus, a complexity analysis of the

StandardGenerators algorithm requires a complexity analysis of these subalgorithms.

In Section 10.1 we compute the complexity of theGoingDown algorithm. This includes a probability

analysis of computing a ppd-stingray element whose degree lies in a specific range by random

procedure in Section 10.1.1, a probability analysis that a stingray pair is a stingray duo in Section 10.1.2

and a probability analysis that a stingray duo generates a classical group in Section 10.1.3. In

Section 10.1.5 the probability results are used to compute an integer N ∈N for a given ε ∈ (0,1) such

that if the GoingDown algorithm computes at most N random elements, then the GoingDown

algorithm succeeds with probability at least 1− ε. Finally, in Section 10.1.6 the complexity of the

GoingDown algorithm is determined and proven.

In Section 10.2 we summarise complexity results of algorithms for constructive recognition of

base case groups from the literature yielding an upper bound on the complexity of the BaseCase

algorithm.

In Section 10.3 we state a conjecture on a probability aspect of the GoingUp algorithm which is not

245
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analysed in this thesis. Assuming this conjecture holds, we compute the complexity of the GoingUp

algorithm.

Lastly, in Section 10.4 a conjecture on the complexity of the StandardGenerators algorithm is

proven, based on the results of Section 10.1, Section 10.2 and Section 10.3.

In the following let CL(d , q) ∈ {SL(d , q), Sp(d , q), SU(d , q),Ω(d , q)} denote one of the classical

groups.

10.1 Complexity of the GoingDown algorithm

The GoingDown algorithm calls the randomised algorithm GoingDown basic step repeatedly.

Therefore, the probability that the GoingDown algorithm succeeds depends on the probability that

the GoingDown basic step succeeds.

Recall from Definition 4.22 that (s1, s2) is a stingray pair if s1, s2 ∈GL(d , q) are stingray elements

and that a stingray pair (s1, s2) is a stingray duo if Ws1
∩Ws2

= {0}, where Wsi
is the stingray body of

si for i ∈ {1,2}.

We start to analyse theGoingDown basic step which involves the study of the following probabilities:

1) The probability to find a pre-stingray candidate with ppd-stingray property by random

selection of elements in CL(d , q).

2) The conditional probability that a stingray pair in CL(d , q) forms a stingray duo, i.e. the

probability that their stingray bodies intersect trivially and, if CL(d , q) ̸= SL(d , q), then the

sum of their stingray bodies is a non-degenerate subspace.

3) The probability that a stingray duo in CL(d , q) generates CL(d , q).

To increase the readability of this chapter we give a glossary of all probabilities and their notation

used.
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Symbol Variables Description

Ps(k) ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉ Probability to find a pre-stingray candidate
with ppd-stingray property and stingray
factor of degree k

Pstingray(d , q) q arbitrary, d ≥ as in Table 3.1 Probability to compute a ppd-stingray element
of degree m with ⌈log(d )⌉ ≤ m ≤ 2⌈log(d )⌉

Ppair(d , q) q arbitrary, d ≥ as in Table 3.1 Probability to compute two ppd-stingray
elements of degree m1, m2 with
⌈log(d )⌉ ≤ m1, m2 ≤ 2⌈log(d )⌉
in exactly two random processes

Pduo(d , q) q arbitrary, d ≥ as in Table 3.1 Conditional probability that a stingray pair
forms a stingray duo

Pgen(d , q) q arbitrary, d ≥ as in Table 3.1 Conditional probability that a stingray duo
generates a classical group of the same type

Pstep(d , q) q arbitrary, d ≥ as in Table 3.1 Probability that a GoingDown basic step with
exactly two random selections is successful

Table 10.1: Glossary of all probabilities and their notation used in this chapter

10.1.1 Probability to find a stingray element

Recall Table 4.1 from Section 4.2 which is given again as Table 10.2. In Section 4.2 we summarised

results from [75] on the proportion of pre-stingray candidates which power up to ppd-stingray

elements s ∈CL(d , q) where max{3, log(r )} ≤ k ≤ r for k := dim(Ws ) and r as in Table 4.1. In this

section we extend these results to obtain better lower bounds for the probability to find a pre-stingray

candidate with ppd-stingray property by random selection in a classical group with bounds on the

dimension of the stingray body as required by the GoingDown algorithm.

H d α δ

SL(r, q) r 1 1
SU(r, q) r 1 2
Sp(2r, q) 2r 2 1
SO◦(2r + 1, q) 2r + 1 2 1
SO±(2r, q) 2r 2 1

Table 10.2: Groups and constants in Theorem 4.25 and 4.26 [75, Table 1].

In the following we define Ps(k) to be the probability of finding in exactly one random selection

in a classical group G =CL(d , q) an element that powers up to an element which has a (d −αk)-

dimensional 1-eigenspace and acts irreducibly on a complementary invariant subspace of dimension

αk where α is as given in Table 4.1. Our first goal is to improve the lower bound for Ps(k) given in

Theorem 4.26 for k in the range ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉. Afterwards we prove lower bounds on
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the success probability of one GoingDown basic step by summing the lower bounds for Ps(k) for

k in the range of ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉.

The results presented in this section are based on [75] and improved further. Note that Table 4.1

defines an integer r . In the proof of [75, Theorem 3.3] it is shown that for k ≥ log(r )

Ps(k)≥
�
1− 1
αk

� bk(r )
α

(10.1.1)

where bk(r ) denotes the proportion of elements in the symmetric group Sr with exactly one cycle

of length k and all other cycle lengths not divisible by k. Note that [75, Theorem 3.3] requires

k ≥ log(d ) but Inequality (10.1.1) remains valid for any k ≥ 2. Moreover, it is shown in [75, Lemma

4.5] that if k ≥ 3 and log(r )≤ k ≤ r − k, then

1
3ek
≤ bk(r )≤

5
3k

.

For the GoingDown basic step we prove a sharper lower bound for bk(r ).

Lemma 10.1

Let m, r ∈ N with log(r ) ≤ m ≤ r − m or equivalently log(r ) ≤ m ≤ r
2 . Let bm(r ) denote the

proportion of elements in the symmetric group Sr with exactly one cycle of length m and all other

cycle lengths not divisible by m. Then bm(r )≥ 1
2e m

�
1− 1

r−m

�
.

Proof. We adapt the proof of [75, Lemma 4.5]. Applying the inequality from the proof of [66,

Lemma 4.2], which is derived from [15, Theorem 2.3(b)], yields

bm(r )≥
1

2m

� m
r −m

�1/m�
1− 1

r −m

�

and we only have to prove that � m
r −m

�1/m ≥ 1
e

.

This inequality is equivalent to showing that

e m ≥ r −m
m

.
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Since e m ≥ e log(r ) = r for m ≥ log(r ) and since r ≥ r−m
m the claim follows.

Corollary 10.2

Let CL(d , q) be a classical group and let k ∈Nwith ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉. If CL(d , q) = SL(d , q)

or CL(d , q) = SU(d , q), then for d ≥ 12

Ps(k)≥
1
2e

�
1− 1

k

��
1− 1

d − k

� 1
k
≥C1

�
1− 1

d − k

� 1
k

for a constant C1 and if CL(d , q) = Sp(d , q) or CL(d , q) =Ω(d , q), then for d ≥ 20

Ps(k)≥
1
4e

�
1− 1

2k

��
1− 2

d − 2k − 1

� 1
k
≥C2

�
1− 2

d − 2k − 1

� 1
k

for a constant C2. In particular C1 ≥ 0.123 and C2 ≥ 0.077.

Proof. By equation (10.1.1)

Ps(k)≥
�
1− 1
αk

� bk(r )
α

.

If CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q), then r = d and α= 1. Note that log(d )≤ k ≤ d − k

is satisfied for all ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉ if d ≥ 12. Thus, by Lemma 10.1 it follows that

Ps(k)≥
�
1− 1
αk

� 1
2eαk

�
1− 1

r − k

�
=

1
2e

�
1− 1

k

��
1− 1

d − k

� 1
k
≥ 1

2e

�
1− 1
⌈log(d )⌉
��

1− 1
d − k

� 1
k

.

If d is even and CL(d , q) = Sp(d , q) or CL(d , q) =Ω(d , q), then r = d
2 and α= 2. Note that log( d

2 )≤
k ≤ d

2 − k is satisfied for all ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉ if d ≥ 20. If d is odd and CL(d , q) =Ω(d , q),

then r = d−1
2 and α= 2. Note that log( d−1

2 )≤ k ≤ d−1
2 −k is satisfied for all ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉

if d ≥ 21. Thus, by Lemma 10.1

Ps(k)≥
�
1− 1
αk

� 1
2eαk

�
1− 1

r − k

�
=
�
1− 1

2k

� 1
4ek

�
1− 2

d − 2k − 1

�

≥
�
1− 1

2⌈log(d )⌉
� 1

4ek

�
1− 2

d − 2k − 1

�
.

Clearly 1
2e and 1

4e are constant and
�
1− 1

k

�
as well as
�
1− 1

2k

�
are increasing for ascending k. We set

C1(d ) := 1
2e

�
1− 1

⌈log(d )⌉
�
and C2(d ) := 1

4e

�
1− 1

2⌈log(d )⌉
�
. By noting that C1(d ) ≥ C1(12) ≥ 0.123 and
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C2(d )≥C2(20)≥ 0.077 we chose C1 :=C1(12) and C2 :=C2(20) and the claim follows.

Since we are interested in computing a stingray element s ∈ CL(d , q) with stingray body Ws of

dimension k for any k ≤ 2⌈log(d )⌉, we require a lower bound for the sum of the probabilities Ps(k)

for ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉. Note that in practice we would also use a stingray element s ∈CL(d , q)

with stingray body of dimension k with k < ⌈log(d )⌉ but so far we do not have good lower bounds

for Ps(k) if k < ⌈log(d )⌉.

Definition 10.3

Let CL(d , q) be a classical group. We define

Pstingray(d , q) :=
∑

⌈log(d )⌉≤k≤2⌈log(d )⌉
Ps(k).

Then Pstingray(d , q) denotes the probability of finding a pre-stingray candidate with stingray factor of

degree k in CL(d , q) in one random selection with ⌈log(d )⌉ ≤ k ≤ 2⌈log(d )⌉.

Theorem 10.4

Let CL(d , q) be a classical group. If CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q) and d ≥ 12, then

there is a constant C1 such that

Pstingray(d , q)≥ log(2)
e
− 1.32

d
− 1

4e⌈log(d )⌉ ≥C1

�d − 1
d

log(2)+
1
d

log(1− ⌈log(d )⌉
d −⌈log(d )⌉)
�

≥ C1

d
((d − 1) log(2)− 1)

and if CL(d , q) = Sp(d , q) or CL(d , q) =Ω(d , q) and d ≥ 20, then there is a constant C2 such that

Pstingray(d , q)≥C2

�d − 3
d − 1

log(2)+
2

d − 1
log
�
1− 2⌈log(d )⌉

d − 2⌈log(d )⌉− 1

��
.

If CL(d , q) = Sp(d , q) or CL(d , q) =Ω(d , q) and d ≥ 33, then there is a constant C2 such that

Pstingray(d , q)≥ log(2)
4e
− 2 log(2)

4e(d − 1)
− d − 2

4e(d − 1)2
− 1

16e⌈log(d )⌉
�d − 2

d − 1

�2

≥ C2

d − 1
((d − 3) log(2)− 1).
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Proof. We start with CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q) and d ≥ 12. Using Corollary 10.2

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
∑

⌈log(d )⌉≤k≤2⌈log(d )⌉
C1

�
1− 1

d − k

� 1
k

=C1

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

d − k

� 1
k

.

Note that a decreasing function satisfies
∑r2

i=r1
f (i)≥ ∫ r2+1

r1
f (x)dx ≥ ∫ r2

r1
f (x)dx. Therefore,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥C1

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

d − k

� 1
k

≥C1

∫ 2⌈log(d )⌉

⌈log(d )⌉

�
1− 1

d − x

� 1
x
dx

=C1

h(d − 1) log(x)+ log(d − x)
d

i2⌈log(d )⌉

⌈log(d )⌉
.

Moreover,

h(d − 1) log(x)+ log(d − x)
d

i2⌈log(d )⌉

⌈log(d )⌉

=
d − 1

d

�
log(2⌈log(d )⌉)− log(⌈log(d )⌉)

�
+

1
d

�
log(d − 2⌈log(d )⌉)− log(d −⌈log(d )⌉)

�

=
d − 1

d
log
�2⌈log(d )⌉
⌈log(d )⌉
�
+

1
d

log
�d − 2⌈log(d )⌉

d −⌈log(d )⌉
�

=
d − 1

d
log(2)+

1
d

log
�d − 2⌈log(d )⌉

d −⌈log(d )⌉
�

=
d − 1

d
log(2)+

1
d

log
�
1− ⌈log(d )⌉

d −⌈log(d )⌉
�

and, thus, ∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥C1

h(d − 1) log(x)+ log(x − d )
d

i2⌈log(d )⌉

⌈log(d )⌉

=C1

�d − 1
d

log(2)+
1
d

log
�

1− ⌈log(d )⌉
d −⌈log(d )⌉
��

.

For −1 < x with x ̸= 0 the logarithm satisfies log(1+ x) > x
1+x . By setting u := ⌈log(d )⌉ and

x :=− u
d−u this yields

1
d

log(1− u
d − u

)≥ 1
d
· −u/(d − u)
1− u/(d − u)

=− u
d (d − 2u)

.
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Moreover,

− u
d (d − 2u)

≥− 1
d
⇔− u

(d − 2u)
≥−1

⇔− u ≥ 2u − d

⇔d ≥ 3u = 3⌈log(d )⌉
which holds for d ≥ 5. Therefore,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
C1

d
((d − 1) log(2)− 1).

This yields the last inequality if CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q). For the sharper bound

in the first inequality we have to deal with a more complicated integral as follows.

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
∑

⌈log(d )⌉≤k≤2⌈log(d )⌉

1
2e

�
1− 1

k

��
1− 1

d − k

� 1
k

=
1
2e

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

k

��
1− 1

d − k

� 1
k

.

Note that each term is a decreasing function in k and, therefore,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
1
2e

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

k

��
1− 1

d − k

� 1
k

≥ 1
2e

∫ 2⌈log(d )⌉

⌈log(d )⌉

�
1− 1

x

��
1− 1

d − x

� 1
x
dx

=
1
2e

h(d 2− d + 1)x log(x)+ (d − 1)(x log(d − x)+ d )
d 2x

i2⌈log(d )⌉

⌈log(d )⌉

=
(d 2− d + 1) log(2)

ed 2
− d − 1

4ed
(
2
d
+

1
⌈log(d )⌉)

≥ log(2)
e
− 2 log(2)

ed
− 1

4e⌈log(d )⌉

which yields the claim if CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q) and d ≥ 12. Now let

CL(d , q) = Sp(d , q) or CL(d , q) =Ω(d , q) and d ≥ 20. Using Corollary 10.2

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
∑

⌈log(d )⌉≤k≤2⌈log(d )⌉
C2

�
1− 2

d − 2k − 1

� 1
k

=C2

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 2

d − 2k − 1

� 1
k

.
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We continue similarly as for CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q). Then

C2

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 2

d − 2k − 1

� 1
k
≥C2

∫ 2⌈log(d )⌉

⌈log(d )⌉

�
1− 2

d − 2x − 1

� 1
x

d x

=C2

h(d − 3) log(x)+ 2 log(d − 2x − 1)
d − 1

i2⌈log(d )⌉

⌈log(d )⌉

and

h(d − 3) log(x)+ 2 log(d − 2x − 1)
d − 1

i2⌈log(d )⌉

⌈log(d )⌉

=
d − 3
d − 1

�
log(2⌈log(d )⌉)− log(⌈log(d )⌉)

�
+

2
d − 1

�
log(d − 4⌈log(d )⌉− 1)− log(d − 2⌈log(d )⌉− 1)

�

=
d − 3
d − 1

log
�2⌈log(d )⌉
⌈log(d )⌉
�
+

2
d − 1

log
�d − 4⌈log(d )⌉− 1

d − 2⌈log(d )⌉− 1

�

=
d − 3
d − 1

log(2)+
2

d − 1
log
�d − 4⌈log(d )⌉− 1

d − 2⌈log(d )⌉− 1

�

=
d − 3
d − 1

log(2)+
2

d − 1
log
�
1− 2⌈log(d )⌉

d − 2⌈log(d )⌉− 1

�
.

By setting x :=− 2⌈log(d )⌉
d−2⌈log(d )⌉−1 >−1 the logarithm satisfies log(1+x)> x

1+x and by setting u := ⌈log(d )⌉
this yields

2
d − 1

log(1− 2u
d − 2u − 1

)≥ 2
(d − 1)

· −2u/(d − 2u − 1)
1− 2u/(d − 2u − 1)

=− 4u
(d − 1)(d − 4u − 1)

.

Lastly,

− 4u
(d − 1)(d − 4u − 1)

≥− 1
d − 1

⇔− 4u
(d − 4u − 1)

≥−1⇔−4u ≥ 4u + 1− d

⇔ d ≥ 8u + 1= 8⌈log(d )⌉+ 1

which holds for d ≥ 33. Therefore,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
C2

d − 1
((d − 3) log(2)− 1),

which yields the first inequality if CL(d , q) = Sp(d , q) or CL(d , q) = Ω(d , q) and d ≥ 33. Using
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Corollary 10.2 we observe the following for the sharper bounds

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
∑

⌈log(d )⌉≤k≤2⌈log(d )⌉

1
4e

�
1− 1

2k

��
1− 2

d − 2k − 1

� 1
k

=
1
4e

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

2k

��
1− 2

d − 2k − 1

� 1
k

and, therefore,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)

≥ 1
4e

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

�
1− 1

2k

��
1− 2

d − 2k − 1

� 1
k

≥ 1
4e

∫ 2⌈log(d )⌉

⌈log(d )⌉

�
1− 1

2x

��
1− 2

d − 2x − 1

� 1
x
dx

=
1
4e

h2(d 2− 4d + 5)x log(x)+ d 2− 4d + 3+ 4(d − 2)x log(d − 2x − 1)
2(d − 1)2x

i2⌈log(d )⌉

⌈log(d )⌉
.

Further computations result in

Pstingray(d , q)≥ 1
4e

h2(d 2− 4d + 5)x log(x)+ d 2− 4d + 3+ 4(d − 2)x log(d − 2x − 1)
2(d − 1)2x

i2⌈log(d )⌉

⌈log(d )⌉

≥ 1
4e

�(d 2− 4d + 5) log(2)− d + 2
(d − 1)2

− d 2− 4d + 3
4(d − 1)2⌈log(d )⌉

�

≥ log(2)
4e
− 2 log(2)

4e(d − 1)
− d − 2

4e(d − 1)2
− 1

16e⌈log(d )⌉
�d − 2

d − 1

�2

which proves Theorem 10.4.

Example 10.5

For d ≥ 100 we have log(d )≥ log(100)≈ 4.6 and ⌈log(100)⌉= 5. Hence,

∑
⌈log(d )⌉≤k≤2⌈log(d )⌉

Ps(k)≥
log(2)

e
− 1.32

100
− 1

20e
≈ 0.2234

which implies that in SL(d , q) for d ≥ 100 at least one in five elements powers up to ppd-stingray

element with stingray body of dimension k and k ≤ 2⌈log(d )⌉. ◀
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Corollary 10.6

Let ε≥ 0, N ∈N and d ≥ 33. Then the probability of failing to find a stingray pair (s1, s2) of degrees

m1 and m2 with ⌈log(d )⌉ ≤ m1, m2 ≤ 2⌈log(d )⌉ in CL(d , q) in maximal N random selections is at

most ε if N ≥max{log(ε−1)+ 2,1+ 1
1−x } where x denotes the probability of finding a pre-stingray

candidate in one random selection.

Proof. In the following let x denote the probability of finding a pre-stingray candidate in one random

selection. We are interested in the probability of failing to find two stingray elements in at most

N random selection, i.e. the computation fails if we only compute one or zero stingray elements.

Therefore,

P [failing to find two stingray elements in N tries]

=P [{no stingray element found in N tries} ·∪ {one stingray element found in N tries}]
=P [no stingray element found in N tries]+ P [one stingray element found in N tries]

=(1− x)N +
�

N
1

�
x(1− x)N−1

=(1− x)N +N x(1− x)N−1.

Our next goal is to choose N such that (1− x)N +N x(1− x)N−1 < ε leading to

(1− x)N +N x(1− x)N−1 = (1− x)N−1(1− x +N x)≤ (1− x)N−1(N − 1)≤ ε

as 1− x +N x ≤N − 1⇔ 1+ 1
1−x ≤N which is satisfied for N large enough. Now set M :=N − 1

and y := (1− x) such that (1− x)N−1(N − 1) = yM M and note that yM M is closely related to the

product logarithm function as follows

yM M = e log(yM )M = eM log(y)M = ε⇔ eM log(y)M log(y) = ε log(y).

As 0> ε log(y)≥− 1
e for ε ∈ (0,1) small enough, a solution for eM log(y)M log(y) = ε log(y) is given by

the Lambert W function M log(y) =W−1(ε log(y)). As y = (1− x) ∈ (0,1) we can write y = 1
a and,

thus, ε log(y) =−ε log(a) =−e−(− log(ε log(a))−1)−1 =−e−u−1 where u :=− log(ε log(a))−1. Using [26,
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Theorem 1]

W−1(ε log(y))≤−1−p2u − 2
3

u.

Overall,

M log(y) =W−1(ε log(y))⇔M =
W−1(ε log(y))

log(y)

and, therefore, we choose M ≥ 1+
p

2u+ 2
3 u

log(a) . Moreover,
p

2u ≤ u
3 for u ≥ 16 and, thus, choose M ≥ 1+u

log(a)

yielding M ≥ log(ε−1 log( 1
1−x ))

log( 1
1−x )

. Now the claim follows as

log(ε−1 log( 1
1−x ))

log( 1
1−x )

=
log(ε−1)+ log(log( 1

1−x ))

log( 1
1−x )

=
log(ε−1)

log
� 1

1− x︸ ︷︷ ︸
>1

� +
log(log( 1

1−x ))

log( 1
1−x )︸ ︷︷ ︸
<1

≤ log(ε−1)+ 1≤M

and log(ε−1)+ 1≤M =N − 1⇔N ≥ log(ε−1)+ 2.

Definition 10.7

Let CL(d , q) be a classical group. Let Ppair(d , q) denote the probability that we obtain two ppd-

stingray elements s1, s2 ∈ CL(d , q) with stingray bodies Wsi
, dim(Wsi

) = ni and ⌈log(d )⌉ ≤ ni ≤
2⌈log(d )⌉ in two independent selections of random elements in CL(d , q).

Corollary 10.8

Let CL(d , q) be a classical group. If CL(d , q) is a special linear or unitary group, then

Ppair(d , q) = Pstingray(d , q)2 ≥
� log(2)

e
− 1.32

d
− 1

4e⌈log(d )⌉
�2

and if CL(d , q) is a symplectic or orthogonal group, then

Ppair(d , q) = Pstingray(d , q)2 ≥
� log(2)

4e
− 2 log(2)

4e(d − 1)
− d − 2

4e(d − 1)2
− 1

16e⌈log(d )⌉
�d − 2

d − 1

�2�2
.

10.1.2 Conditional probability that a stingray pair forms a stingray duo

In this section we compute lower bounds for the probability, that two ppd-stingray elements

s1, s2 ∈ G = CL(d , q) form a stingray duo. Therefore, we assume in the entire section, that s1, s2
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are ppd-stingray elements which are computed using the algorithms of Chapter 4. Moreover, let

Ws1
and Ws2

be the stingray bodies of s1 and s2 and dim(Wsi
) = ni . The treatment presented in this

section is based on [42].

Definition 10.9

Let CL(d , q) be a classical group and s1, s2 ∈ CL(d , q) ppd-stingray elements. Then (s1, s2) is a

ppd-stingray pair. Moreover, (s1, s2) is a ppd-stingray duo if (s1, s2) is a stingray duo.

Our aim is to find a lower bound for the conditional probability that a ppd-stingray pair (s1, s2) of

elements in G×G is a ppd-stingray duo namely to prove that

P ((s1, s2) stingray duo | (s1, s2) stingray pair)≥ 1− C3

q
(10.1.2)

where C3 is a positive constant.

Let Ci be the G-conjugacy class of si . Note that

P ((s1, s2) stingray duo | (s1, s2) stingray pair) =
|{(s1, s2) ∈C1×C2 | (s1, s2) is a stingray duo}|

|C1×C2|
.

First, we observe the following connection.

Lemma 10.10

Let G =CL(d , q) be a classical group in its natural representation and let s ∈G be a stingray element

with stingray body Ws and stingray tail Es . Then Ws is the unique 〈s〉-invariant submodule of Fd
q

on which s acts non-trivially and irreducibly.

Proof. [42, Lemma 3.7 (c)]. Note that [42, Lemma 3.7 (c)] is only proven for symplectic, unitary and

orthogonal groups but the claim also holds for special linear groups with the same argument.

The previous lemma suggests that it might be possible to count pairs of subspaces instead of

pairs of elements. Note that we search for a stingray pair by seeking a pair (s1,s2) of pre-stingray

candidates with ppd-stingray property and raising each to some power. This yields a ppd-stingray pair

(s1, s2) ∈G×G. Suppose that s1 and s2 lie in G-conjugacy classesC1 andC2, respectively. By Lemma



258 CHAPTER 10. COMPLEXITY ANALYSIS OF ALGORITHMS

10.10 Wsi
is the unique 〈si〉-invariant subspace of Fd

q on which si acts non-trivially and irreducibly.

First, assume CL = SL. Then Ui := {Wg | g ∈ Ci} is a G-orbit of subspaces of dimension ni of

Fd
q , see [42, p. 3.2.1], and the G-conjugacy class Ci is in one-to-one correspondence to the G-orbit

Ui . Second, let CL ̸= SL. Since si is a ppd-stingray element Wsi
is non-degenerate by Lemma 4.21.

Hence,Ui := {Wg | g ∈Ci} is a G-orbit of non-degenerate subspaces of dimension ni of Fd
q and the

G-conjugacy class Ci is in one-to-one correspondence to the G-orbitUi . Next we show how |Ci |
and |Ui | relate.

We follow [42, Section 3] but show the results for all classical groups. We start with [42, Lemma

3.11] which provides a formula for |Ci |.

Lemma 10.11: [42, Lemma 3.11]

Let 〈X 〉 = G = CL(d , q) be a classical group and let s ∈ G be a stingray element. Let C be the

G-conjugacy class of s and U := {Wg | g ∈ C }. Let Ws be the stingray body and let W :=Ws .

Then

|C |= |U | · |GW : CG(s)|,

where GW is the stabiliser of W and CG(s) the centraliser of s . Moreover, there are precisely |C |
|U |

stingray elements s ′ ∈C such that Ws ′ =W .

Proof. [42, Lemma 3.11]. Note that [42, Lemma 3.11] is only proven for symplectic, unitary and

orthogonal groups but the claim also holds for special linear groups with the same argument.

In the followingwe prove that using the one-to-one correspondence between theG-orbits of subspaces

and G-conjugacy classes, the conditional probability given in equation (10.1.2) can be expressed

using subspaces of Fd
q instead of stingray elements and their conjugacy classes. Therefore, this

section is structured as follows. First, we show that the probability given in equation (10.1.2) can

be formulated as a subspace problem of Fd
q . Second, we compute lower bounds for the subspace

proportions.
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Definition 10.12: [42, Section 2.1]

Let 〈X 〉=G =CL(d , q) be a classical group and let (s1, s2) ∈G be a ppd-stingray pair. Let Ci be the

G-conjugacy class of si andUi := {Wg | g ∈Ci}.
1) Let U1 ∈U1 and U2 ∈U2. In SL(d , q) the pair (U1, U2) is a subspace-duo if U1 ∩U2 = {0}. In

Sp(d , q), SU(d , q) and Ω(d , q) the pair (U1, U2) is a subspace-duo if U1 ∩U2 = {0} and U1, U2

and U1⊕U2 are non-degenerate.

2) We define

P (U1,U2) :=
|subspace-duos inU1×U2|

|U1| · |U2|
.

Lemma 10.13

Let 〈X 〉 = G = CL(d , q) be a classical group and let (s1, s2) ∈ G be a stingray pair. Let Ci be the

G-conjugacy class of si andUi := {Wg | g ∈Ci}. Then

|{(s1, s2) ∈C1×C2 | (s1, s2) is a stingray duo}|
|C1×C2|

= P (U1,U2).

Proof. [42, Lemma 3.12]. Note that [42, Lemma 3.12] is only proven for symplectic, unitary and

orthogonal groups but the claim also holds for special linear groups with the same argument.

Lemma 10.13 proves that instead of computing the proportion of ppd-stingray duos among the

ppd-stingray pairs, we can compute the proportion of subspace-duos among the subspace conjugacy

classes. Therefore, our next aim is to compute lower bounds for P (U1,U2).

Lemma 10.14

Let V = Fd be a vector space over a finite field F and let Ui := {Wg | g ∈ Ci} be a G-orbit of

subspaces of dimension ni of Fd
q for i = 1,2 such that n1+ n2 ≤ d . Then

P (U1,U2) =
n2∏

i=1

1− q−i

1− q−n−i
≥ 1− 3

2q
.

Proof. [39, Lemma 2.1].
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Lemma 10.14 only yields a lower bound for P (U1,U2) of special linear groups. For symplectic,

unitary and orthogonal group we additionally have to include that the subspaces and their sum are

non-degenerate as in Definition 10.12 2). A lower bound is given in the next lemma.

Lemma 10.15

Let V = Fd be a vector space over a finite field F equipped with a non-degenerate symplectic,

unitary or quadratic form and letUi := {Wg | g ∈Ci} be a G-orbit of non-degenerate subspaces of

dimension ni of Fd
q for i = 1,2 such that n1+ n2 ≤ d . Let c = 3.125. Then

P (U1,U2)≥ 1− c
q
≥ 0.

Proof. [42, Theorem 1.1].

In the following we use Pduo(d , q) as the conditional probability that a ppd-stingray pair forms a

ppd-stingray duo, i.e. Pduo(d , q) = P ((s1, s2) stingray duo | (s1, s2) stingray pair).

Theorem 10.16

Let 〈X 〉=G = CL(d , q) be a classical group and let (s1, s2) ∈G×G be a ppd-stingray pair. Then

there exists a positive constant C3 such that

Pduo(d , q) = P ((s1, s2) stingray duo | (s1, s2) stingray pair)≥ 1− C3

q
.

Proof. Suppose that s1 and s2 lie in G-conjugacy classesC1 andC2, respectively. By Lemma 10.10 Wsi

is the unique 〈si〉 invariant subspace of Fd
q on which si acts non-trivially and irreducibly. Therefore,

there is a one-to-one correspondence between ppd-stingray elements and subspaces of Fd
q . Let

Ui := {Wg | g ∈Ci}. By Lemma 10.13

|{(s1, s2) ∈C1×C2 | (s1, s2) is a stingray duo}|
|C1×C2|

= P (U1,U2).

If CL= SL, then by Lemma 10.14

P (U1,U2)≥ 1− 3
2q
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and if CL ̸= SL, then by Lemma 10.15

P (U1,U2)≥ 1− 3.125
q
≥ 0.

Thus,

P ((s1, s2) stingray duo | (s1, s2) stingray pair) =
|{(s1, s2) ∈C1×C2 | (s1, s2) is a stingray duo}|

|C1×C2|
= P (U1,U2)

≥ 1− C3

q

for C3 := 3
2 .

10.1.3 Conditional probability that a stingray duo generates a classical group

For an analysis of the GoingDown algorithms of this thesis it is essential to estimate the probability

that a stingray duo generates a classical group. Let s1, s2 ∈ G = CL(d , q) with stingray bodies

Ws1
,Ws2

and ni = dim(Wsi
) for i ∈ {1,2} such that (s1, s2) is a stingray duo as in Definition 4.22.

Then we denote by Pgen(d , q) the conditional probability that a stingray duo of G generates G, i.e.

Pgen(d , q) = P (〈s1, s2〉=G | (s1, s2) stingray duo of G).

We summarise the results from [40].

Theorem 10.17: [40]

Let d = n1+ n2 with 1≤ n1 ≤ n2. Let q > 1 be a prime power. Then there exists a positive constant

C4 such that

1− q−1−C4q−2 < Pgen(d , q)< 1− q−1− q−2+ 2q−3− 2q−5.

10.1.4 Probability of the GoingDown basic step

In this section we compute the probability that a GoingDown basic step of a classical group

G =CL(d , q) is successful in at most N random selection. For this we combine the probability to

find a stingray pair as discussed in Section 10.1.1, the conditional probability to have a stingray duo

given a stingray pair as discussed in Section 10.1.2 and the conditional probability that a stingray
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duo of G generates G. Let Pstep(d , q) be the probability that one GoingDown basic step succeeds

with two random selections. Then we have

Pstep(d , q) = Ppair(d , q)Pduo(d , q)Pgen(d , q)

Using the results of the previous sections we can give the following lower bounds for Pstep(d , q).

Theorem 10.18

Let CL(d , q) be a classical group. Then there exists positive constants C3 and C4 such that if

CL(d , q) = SL(d , q) or CL(d , q) = SU(d , q) and d ≥ 12, then one GoingDown basic step succeeds

with two random selections with probability at least

Pstep(d , q)≥
� log(2)

e
− 1.32

d
− 1

4e⌈log(d )⌉
�2�

1− C3

q

��
1− 1

q
− C4

q2

�
.

If CL(d , q) = Sp(d , q) or Ω(d , q) = SU(d , q) and d ≥ 33, then one GoingDown basic step succeeds

with two random selections with probability at least

Pstep(d , q)≥
� log(2)

4e
− 2 log(2)

4e(d − 1)
− d − 2

4e(d − 1)2
− 1

16e⌈log(d )⌉
�d − 2

d − 1

�2�2�
1− C3

q

��
1− 1

q
− C4

q2

�
.

10.1.5 Probability of the GoingDown algorithm

In Theorem 10.18 of Section 10.1.4 we computed the probability that a GoingDown basic step with

exactly two selections of random elements is successful. Using these results we compute an upper

bound for the required number of random selections to guarantee that the GoingDown algorithm

without the GoingDown final step is successful with probability at least 1− ε for a given ε ∈ (0,1).

Definition 10.19

Let k be a non-negative integer. We define

logi (k) :=




k , if i = 0,

log(k), if i = 1 and

log(logi−1(k)), if i > 1.
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Recall that the iterated logarithm log∗ counts the number of times the logarithm function must be

applied recursively until a non-negative real number is equal or less than 1, see Definition 2.62.

Theorem 10.20

Let CL(d , q) be a classical group and let ε ∈ (0,1). Let

N :=
2 log∗(d ) log(ε)

log
�
1−∏log∗(d )

i=1 Pstep(logi (d ), q)
� .

If theGoingDown algorithm without theGoingDown final step selects at least N random elements,

then the GoingDown algorithm without the GoingDown final step succeeds with probability at

least 1− ε.

Proof. Using Definition 10.19

P [success after N random selections]≥ P [success after
j N

2 log∗(d )

k
runs]

= 1− P [run not successful]
�

N
2 log∗(d )
�

= 1−
�
1−

log∗(d )∏
i=1

Pstep(logi (d ), q)
�� N

2 log∗(d )
�

≥ 1− ε.

This is now equivalent to

1−
�
1−

log∗(d )∏
i=1

Pstep(logi (d ), q)
�� N

2 log∗(d )
�
≥ 1− ε

⇔ε >
�
1−

log∗(d )∏
i=1

Pstep(logi (d ), q)
�� N

2 log∗(d )
�

⇔ log(ε)>
j N

2 log∗(d )

k
log
�
1−

log∗(d )∏
i=1

Pstep(logi (d ), q)
�

⇔ log(ε)

log
�
1−∏log∗(d )

i=1 Pstep(logi (d ), q)
� <
j N

2 log∗(d )

k
≤ N

2 log∗(d )

which proves the claim.
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Corollary 10.21

In the StandardGenerators algorithm a function MaximalRandomSelectionsCL(d , q ,ε) is used

to compute for a given ε > 0 three positive integers N1,N2,N3 ∈ N such that if the GoingDown

algorithm selects at most N1 random elements, the BaseCase algorithm selects at most N2

random elements and the GoingUp algorithm selects at most N3 random elements, then the

StandardGenerators algorithm succeeds with probability at least 1− ε. Using Theorem 10.20 we

can set

N1 :=
2 log∗(d ) log(ε)

log
�
1−∏log∗(d )

i=1 Pstep(logi (d ), q)
� .

Lemma 10.22

Let CL(d , q) be a classical group. If we use a naming algorithm for every GoingDown basic step to

verify its success, then the expected number N of selected random elements for all GoingDown

basic steps is

E[N ] :=
⌈log∗(d )⌉−1∑

i=0

2
Pstep(logi (d ), q)

.

Proof. The proof is based on a well-known principle in probability theory. In the following let

Ni be the number of random selections until the i -th GoingDown basic step is successful and let

Pi = Pstep(logi (d ), q). Then

E[N ] =E[N1+ . . .+N⌈log∗(d )⌉−1] =
⌈log∗(d )⌉−1∑

i=0

E[Ni]

=
⌈log∗(d )⌉−1∑

i=0

∞∑
k=1

kP [success after exactly k selections]

=
⌈log∗(d )⌉−1∑

i=0

∞∑
k=1

2kP [success after exactly 2k selections]

=
⌈log∗(d )⌉−1∑

i=0

∞∑
k=1

2kPi (1− Pi )
k−1

=
⌈log∗(d )⌉−1∑

i=0

2Pi

∞∑
k=1

k(1− Pi )
k−1
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and
⌈log∗(d )⌉−1∑

i=0

2Pi

∞∑
k=1

k(1− Pi )
k−1

=
⌈log∗(d )⌉−1∑

i=0

2Pi

∞∑
k=1

d
dPi

�− (1− Pi )
k�

=
⌈log∗(d )⌉−1∑

i=0

(−2)Pi
d
dPi

� ∞∑
k=1

(1− Pi )
k�

=
⌈log∗(d )⌉−1∑

i=0

(−2)Pi
d
dPi

1
Pi

=
⌈log∗(d )⌉−1∑

i=0

(−2)Pi (−1)
1

P 2
i

=
⌈log∗(d )⌉−1∑

i=0

2
Pi

.

Example 10.23

For SL(100,121) Lemma 10.22 yields an expected value on the selected random elements of 303.◀

10.1.6 Complexity results

In this section we compute the complexity of the GoingDown algorithm. Recall that the Going-

Down algorithm is a one-sided Monte Carlo algorithm and, therefore, a randomised algorithm.

Thus, probability results about successfully computing suitable elements by random procedure

are required which was accomplished in the previous sections. Thus, these results are used for the

complexity analysis of the GoingDown algorithm in this section.

The GoingDown algorithm calls the GoingDown basic step repeatedly until a terminal group is

reached and afterwards a final step algorithm to compute a stingray embedded base case group in

the terminal group. Thus, a complexity analysis of the GoingDown algorithm depends on the

complexity of the GoingDown basic step and the complexity of the GoingDown final step.

We start with a complexity analysis of the final step. Note that for the final step we are dealing with

a classical group CL(d , q) for a specific d as given in Table 3.1.

Lemma 10.24

Let CL(d , q) be a terminal group in its natural representation. The complexity of the GoingDown

final step is at most

O (ζ log2(q)+ log4(q)+X(q) log(q))
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if q is even and at most

O (ζ + log(q)+X(q)+X(q2))

if q is odd where ζ denotes an upper bound on the number of field operations for computing

a random element in CL(d , q) and X denotes an upper bound on the required number of field

operations for solving the discrete logarithm in Fq .

Proof. We recall well-known results from the literature in Table 10.3. Note that we refer to results

for constructive recognition of classical groups for a specific d from which we can derive (standard)

generators for a stingray embedded base case group. Note that constructive recognition of terminal

groups has worse complexity than the actual GoingDown final step.

Group O Reference

SL(4, q) O (ζ log(log(q))+ log(q)) [59, Theorem 13.1]
Sp(6, q) and q odd O (ζ + log(q)+X(q)) [59, Theorem 1.1]
SU(6, q) and q odd O (ζ + log(q)+X(q)) [59, Theorem 1.1]
SU(10, q) and q even O (ζ log2(q)+ log4(q)+X(q) log(q)) [32, Theorem 1.2]
Ω(8, q) and q even O (ζ log2(q)+ log4(q)+X(q) log(q)) [32, Theorem 1.2]
Ω(8, q) and q odd O (ζ + log(q)+X(q)+X(q2)) [59, Theorem 1.1]

Table 10.3: Complexity results for constructive recognition of terminal groups and corresponding
references.

Remark 10.25
In the proof of Lemma 10.24 we refer to results from the literature which form an upper bound

for the actual complexity of the GoingDown final step. Note that the GoingDown final step relies

on results from the literature, see Table 3.2, and can be replaced by an algorithm designed for the

actual aim of the GoingDown final step. Therefore, we do not perform a complexity analysis of

the GoingDown final step in this thesis and use the upper bounds of the GoingDown final step

given in Lemma 10.24. Moreover, we denote the complexity of the GoingDown final step for all

classical groups in the following by Z(q). ◀

We continue this section by computing the complexity of the GoingDown basic step. The
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GoingDown basic step calls Algorithm FindStingrayElement [Alg. 5] or FindSelfRecipro-

calStingrayElement [Alg. 7] depending on the classical group which is why we start by analysing

these two algorithms.

Lemma 10.26

Let CL(d , q) be a classical group in its natural representation. The complexity of one iteration of

Algorithm FindStingrayElement [Alg. 5] and Algorithm FindSelfReciprocalStingrayElement

[Alg. 7] is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ ζ )

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q).

Proof. The computation of a random element is bounded by ζ and the computation of the charac-

teristic polynomial by O (d 3) see Remark 2.66. The computation of sB has complexity O (d 3 log(d )+

d 2 log(d ) log(log(d )) log(q)) by [59, Lemma 10.1] which proves the claim.

Using the complexity analysis of Algorithm FindStingrayElement [Alg. 5] and Algorithm FindSel-

fReciprocalStingrayElement [Alg. 7] we can now compute the complexity of one GoingDown

basic step. Note that the analysis of one GoingDown basic step involves the probability results of

the previous sections.

Lemma 10.27

Let CL(d , q) be a classical group in its natural representation. The complexity of one GoingDown

basic step is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ log(d )4 log(q)2+ log(d )ζ ′+ ζ )

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q) and ζ ′ denotes an upper bound on the number of field operations for computing a

random element in CL(O (log(d )), q).

Proof. Note that by the results in Section 10.1 theGoingDown basic step succeeds with at most O (1)
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random selections. Thus, Algorithm FindStingrayElement [Alg. 5], respectively FindSelfRecip-

rocalStingrayElement [Alg. 7], is called a constant amount of times in theGoingDown basic step.

Algorithm FindSelfReciprocalStingrayElement [Alg. 7] and FindSelfReciprocalStingrayEle-

ment [Alg. 7] have complexity given in Lemma 10.26. Algorithm ComputeStingrayBody [Alg.

9] and IsStingrayDuo [Alg. 10] have complexity O (d 3) since these algorithms are applications

of the Gaussian elimination algorithm. Lastly, verifying that 〈s1, s2〉 is isomorphic to a classical

group corresponds to two calls of Algorithm InducedActionRepresentation [Alg. 11], which has

complexity O (d 3), and using a naming algorithm on O (log(d ))×O (log(d ))matrices has complexity

O (log(log(log(d )))(ζ ′+ log(d )3 log(q)2)), see [76, Section 6.1], which proves the claim.

Corollary 10.28

Let CL(d , q) be a classical group in its natural representation. The complexity of one GoingDown

basic step without calling a naming algorithm is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ ζ )

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q).

Using Lemma 10.24 and 10.27 we compute the complexity of the GoingDown algorithm.

Theorem 10.29

Let CL(d , q) be a classical group in its natural representation. The complexity of the GoingDown

algorithm is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ log(d )4 log(q)2+ log(d )ζ ′+ ζ +Z(q))

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q), ζ ′ denotes an upper bound on the number of field operations for computing a random

element in CL(O (log(d )), q) and Z(q) denotes an upper bound on the complexity for the final step.

Proof. Using Lemma 10.27 we know the complexity of oneGoingDown basic step and the algorithm
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has to be called O (log∗(d )) times. Using the results from Section 5.1.4 the matrices can be represented

as O (log(d )) × O (log(d )) matrices after the first successful GoingDown basic step. Thus, the

complexity of the GoingDown algorithm is given by

O
�

d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ log(d )4 log(q)2+ log(d )ζ ′+ ζ+

log∗(d )
�
log(d )3 log(log(d ))+ log(d )2 log(log(d )) log(log(log(d ))) log(q)+ log(log(d ))4 log(q)2

log(log(d ))ζ ′′+ ζ ′
�
+Z(q)
�

which proves the claim.

Corollary 10.30

Let CL(d , q) be a classical group in its natural representation. The complexity of the GoingDown

algorithm without calling a naming algorithm is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ log∗(d )ζ ′+ ζ +Z(q))

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q), ζ ′ denotes an upper bound on the number of field operations for computing a random

element in CL(O (log(d )), q) and Z(q) denotes an upper bound on the complexity for the final step.

10.2 Complexity of the BaseCase algorithm

In this section we state a theorem which summarises the complexity of the BaseCase algorithm

for all classical groups. The complexity of the BaseCase algorithm depends on whether the given

classical group is an orthogonal group. Note that we do not deal with base case groups in this thesis

and, therefore, the theorem is proven by results from the literature.

Theorem 10.31

Subject to the availability of a discrete logarithm oracle for Fq , SLPs for standard generators and other

elements of 〈X 〉=CL(d , q) for d ≤ 4 and CL ̸=Ω can be constructed in O (ζ log(log(q))+ log(q)).

Moreover, there is an O (log(q)(log2(q)+E log(q)+ ζ ))-time Las Vegas algorithm which construc-

tively recognises H , with probability greater than 3/4, when given 〈X 〉=H ∼=Ω+(6, q) and having
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available a constructive recognition algorithm for SL(2, q) and a discrete log oracle. Here, ζ is the

complexity to construct a (nearly) uniformly distributed random element of H as an MSLP in X

and E is the complexity of constructively recognising (a homomorphic image of) SL(2, q).

Proof. For CL ̸=Ω, see [59, Theorem 13.1] and for Ω+(6, q), see Theorem 8.10.

In the following we denote the complexity for constructively recognising a base case group by

Y(q). Thus, we do not have to distinguish between the complexity results for base case groups of

orthogonal groups and the remaining classical groups.

Remark 10.32
In the StandardGenerators algorithm a function MaximalRandomSelectionsCL(d , q ,ε) is used

to compute for a given ε > 0 three positive integers N1,N2,N3 ∈ N such that if the GoingDown

algorithm selects at most N1 random elements, the BaseCase algorithm selects at most N2

random elements and the GoingUp algorithm selects at most N3 random elements, then the

StandardGenerators algorithm succeeds with probability at least 1− ε. As we are not deal-

ing with base case groups in this thesis, we refer to the literature on how to choose N2 for the

BaseCase algorithm, see Table 3.4. ◀

10.3 Complexity of the GoingUp algorithm

In this section we compute the complexity of the GoingUp algorithm. Recall that both the

GoingDown and GoingUp algorithm are randomised. Hence, a complexity analysis requires

an analysis of successfully finding a prescribed element by selecting random elements. In contrast

to the GoingDown algorithm we do not perform such a probability analysis in this thesis. Even

though we are not proving any probability results of the GoingUp algorithm, we state a conjecture

and practical tests show that this conjecture is realistic.

Conjecture 10.33

A conjugate of a strong doubling element in a classical group CL(d , q) in its natural representation

can be found in O (1) selections of random elements.
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A probability analysis of successfully finding a required element for a GoingUp step by selecting

random elements is already in process but not discussed in this thesis.

Based on Conjecture 10.33 we continue analysing the complexity of the GoingUp algorithm. As

for the GoingDown algorithm we start with a complexity analysis of the GoingUp step.

Theorem 10.34

Suppose Conjecture 10.33 is true. Let G =CL(d , q) be a classical group in its natural representation

and let 〈Yn〉=H ∈GL(d , q) be a stingray embedded subgroup with H ∼=CL(n, q) of the same type

as G. If G is a special linear or symplectic group, then the complexity of one GoingUp step is

O (d 3+ ζ )

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q). If G is a unitary or orthogonal group, then the complexity of one GoingUp step is

O (d 3+ ζ +V(q))

where V(q) is an upper bound on the number of field operations for computing a square root.

Proof. Recall the seven phases we are performing during one GoingUp step for each classical group.

Note that the phases slightly differ for each classical group but for a complexity analysis we can focus

on the phases described in Remark 5.62 for special linear groups. We are discussing the complexity

of each phase.

1) In the first phase we are constructing an MSLP for an element t ∈CL(d , q) as a word in Yn

which can be done in O (1) for all classical groups. Note that t can also be written down as a

matrix at a cost of O (d 2).

2) In the second phase we conjugate t by an element a ∈CL(d , q) which has complexity O (d 3).

Checking the conditions (C 1) and (C 2) for g̃ := t a corresponds to applications of the Gaussian

elimination algorithm which has complexity O (d 3). By Conjecture 10.33 we find a conjugate

of a strong doubling element in O (1) selections of random elements. Hence, the second phase
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has a complexity of O (d 3+ ζ ).

3) In the third phase we compute a conjugate g := L−1 g̃ L for a specific element L ∈ H which

has complexity O (d 3). Moreover, writing L as a word in the standard generators Yn has

complexity O (n3). For unitary and orthogonal groups the computation of L ∈H requires a

constant number of computations of square roots for which we use the upper bound V(q).

4) In the fourth phase we compute a new base change matrix and conjugate g with the new base

change matrix which has complexity O (d 3) resulting in a strong doubling element c . Writing

down the new base change matrix involves an application of the Gaussian algorithm which

also has complexity O (d 3).

5) In the fifth phase we write the standard basis vectors in a given basis which can be done in

O (n3) using the Gaussian elimination algorithm. Expressing all the coefficients in an Fp -basis

for Fq can be done in O (1).

6) The complexity of the sixth phase is at most the same as the one of the fifth phase.

7) In the seventh phase we compute an MSLP for the new permutation matrices of each classical

groups using the elements computed in the fifth and sixth phase. This involves no computations

which is why the seventh phase has complexity O (1).

Overall, the GoingUp step for special linear and symplectic groups has a complexity of

O (1+ d 3+ ζ + d 3+ d 3+ n3+ n3+ 1)⊆O (d 3+ ζ )

and for unitary and orthogonal groups has a complexity of

O (1+ d 3+ ζ + d 3+V(q)+ d 3+ n2+ n3+ 1)⊆O (d 3+ ζ +V(q))

which proves the claim.
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Remark 10.35
A square root in a finite field Fq can be computed in polynomial time using a discrete logarithm

oracle but depending on q there are many cases where the square root can be computed with more

efficient algorithms, see [1]. ◀

Using Theorem 10.34 we compute the complexity of the GoingUp algorithm.

Theorem 10.36

Suppose Conjecture 10.33 is true. Let CL(d , q) be a classical group in its natural representation. If

G is a special linear or symplectic group, then the complexity of the GoingUp algorithm is

O (d 3 log(d )
log(log(d ))

+
log(d )

log(log(d ))
ζ )

where ζ denotes an upper bound on the number of field operations for computing a random element

in CL(d , q). If G is a unitary or orthogonal group, then the complexity of the GoingUp algorithm

is

O (d 3 log(d )
log(log(d ))

+
log(d )

log(log(d ))
ζ + log(d )V(q))

where V(q) is an upper bound on the number of field operations for computing a square root.

Proof. Recall that we are doubling the dimension n from a stingray embedded subgroup H in

CL(d , q) in each GoingUp step, see Section 3.3. Using the results from Section 5.3.7 we are dealing

with at most O (log(d ))×O (log(d )) matrices until n is roughly log(d ). Thus, using Theorem 10.34

the complexity of the first GoingUp steps is

O (log(log(d ))(log(d )3+ ζ ′))⊆O (d 3+ log(log(d ))ζ ′+ ζ )

where ζ ′ denotes an upper bound on the number of field operations for computing a random element

in CL(log(d ), q). From that point on computations are performed with d × d matrices. Hence, we

have to use d × d matrices for log(d − log(d )) = log(d )
log(log(d )) GoingUp steps. Using the complexity for

one GoingUp step given in Theorem 10.34 this yields the following complexity of the GoingUp
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algorithm which is

O ( log(d )
log(log(d ))

(d 3+ ζ )) = O (d 3 log(d )
log(log(d ))

+
log(d )

log(log(d ))
ζ ).

Since O (d 3+ log(log(d ))ζ ′+ ζ )⊆O (d 3 log(d )
log(log(d )) +

log(d )
log(log(d ))ζ ) this proves the claim.

Corollary 10.37

Suppose Conjecture 10.33 is true. For a given ε > 0 in the StandardGenerators algorithm

a function MaximalRandomSelectionsCL(d , q ,ε) is used to compute three positive integers

N1,N2,N3 ∈ N such that if the GoingDown algorithm selects at most N1 random elements, the

BaseCase algorithm selects at most N2 random elements and the GoingUp algorithm selects at

most N3 random elements, then the StandardGenerators algorithm succeeds with probabil-

ity at least 1− ε. As we are not performing a probability analysis on the success of finding a

strong doubling element element by selection of random elements in this thesis, we cannot discuss

on how to choose N3 for a given ε. In practice, N3 := 100 is sufficient for all tests so far.

10.4 Complexity results of algorithms

In this section we compute the complexity of the StandardGenerators algorithm described in Sec-

tion 3.4. Recall that the StandardGenerators algorithm is randomised and uses the subalgorithms

GoingDown, BaseCase and GoingUp which have been analysed in Section 10.1, Section 10.2 and

Section 10.3 respectively. Note that the complexity of the GoingUp algorithm is given in Theorem

10.36 based on Conjecture 10.33. Thus, the complexity of the StandardGenerators algorithm can

also only be formulated based on Conjecture 10.33.

Theorem 10.38

Suppose Conjecture 10.33 is true. For a special linear or symplectic group the complexity of

Algorithm StandardGenerators [Alg. 3] as stated in Theorem 3.10 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q))
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where ζ denotes an upper bound on the number of field operations required for computing a

random element,Y(q) denotes an upper bound on the number of field operations for constructively

recognising a base case group and Z(q) denotes an upper bound on the required number of field

operations for the final step. For a unitary or orthogonal group the complexity of Algorithm

StandardGenerators [Alg. 3] as stated in Theorem 3.10 is

O (d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q)+ log(d )V(q))

where V(q) is an upper bound on the number of field operations for computing a square root.

Proof. Algorithm StandardGenerators [Alg. 3] calls the GoingDown, BaseCase and GoingUp

algorithm in this order. In Corollary 10.30 we computed the complexity of the GoingDown

algorithm, in Theorem 10.31 the complexity of the BaseCase algorithm and in Conjecture 10.36

the complexity of theGoingUp algorithm. Thus, this yields the following complexity of Algorithm

StandardGenerators [Alg. 3]

O
�

d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+ log∗(d )ζ ′+ ζ +Z(q)+

Y(q)+ d 3 log(d )
log(log(d ))

+
log(d )

log(log(d ))
ζ
�

= O
�

d 3 log(d )+ d 2 log(d ) log(log(d )) log(q)+
log(d )

log(log(d ))
ζ +Y(q)+Z(q)

�
.



276 CHAPTER 10. COMPLEXITY ANALYSIS OF ALGORITHMS



Chapter 11

Implementation

The algorithms GoingDown, BaseCase, GoingUp and StandardGenerators for all classical

groups in this thesis have been implemented in GAP [37] by the author. However, the GoingUp

algorithm based on involutions, see Chapter 9, has not been implemented in GAP due to numerous

missing functionalities. Nevertheless, an implementation of this algorithm has been tested in Magma

[16]. The location of the GAP implementation is described in Section 11.1.

In this chapter we also compare the run-time of the constructive recognition algorithms from this

thesis with the DLLO constructive recognition algorithm [59, 32]. The constructive recognition

algorithms of this thesis and the DLLO constructive recognition algorithms are implemented in

different software as the algorithms of this thesis are in GAP, while the DLLO algorithms are in

Magma. Therefore, a direct run-time comparison is challenging, but more on that topic is discussed

in Section 11.2.

The GAP code for the algorithms in this thesis spans more than 15,000 lines, which is why the code is

not included in an appendix but is available on GitHub [82].

11.1 Recog package

The recog package [70], initiated by Max Neunhöffer and Ákos Seress, is available for GAP [37]

and offers algorithms for efficient matrix group computations, with the main goal of implementing
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an algorithm for computing the composition tree of matrix groups, see Section 1.1.3. The recog

package already includes a variety of useful algorithms, such as basic computations and applications

using a composition tree, constructive recognition (see Section 1.1.8) of permutation groups and

naming algorithms (see Section 1.1.7) for simple groups. Since the recog package offers many

useful algorithms for the constructive recognition algorithms in this thesis and because efficient

constructive recognition algorithms for classical groups are essential for computations involving

composition trees, the algorithms GoingDown, BaseCase, GoingUp and StandardGenerators

from this thesis have been integrated into the recog package by the author. The recog package is

still under development, so function names and paths may change. Thus, a snapshot of the recog

package at the time of this thesis submission is available on GitHub [82] which is the recog version

“recog 1.4.2DEV”.

We now present a table listing the locations of the algorithms from this thesis in the recog package

[70] version “recog 1.4.2DEV”. All algorithms from this thesis are located in the folder with the path

recog/gap/projective/constructive_recognition. In this folder, there is one GAP file and five

sub-folders. The GAP file named main.gi contains a function, which can be applied to a matrix group

G, called ConstructiveRecognitionClassicalGroupsNaturalRepresentation. This function uses

naming algorithms, see Section 1.1.7, to determine if G is a classical group in its natural representation.

If this is the case, then the function calls the corresponding constructive recognition algorithm from

this thesis. The five sub-folders are named SL, Sp, SU, O and utils. Within each of the four folders

SL, Sp, SU and O, there are four files named main.gi, GoingDown.gi, BaseCase.gi, GoingUp.gi,

which implement the algorithms from this thesis. The file main.gi in each folder contains the

StandardGenerators algorithm of Chapter 3, which combines the GoingDown, BaseCase and

GoingUp algorithms into a single algorithm for each group. Details about which algorithm is found

in which file are also summarised in Table 11.1.

GoingDown BaseCase GoingUp StandardGenerators

SL(d , q) SL/GoingDown.gi SL/BaseCase.gi SL/GoingUp.gi SL/main.gi
Sp(d , q) Sp/GoingDown.gi Sp/BaseCase.gi Sp/GoingUp.gi Sp/main.gi
SU(d , q) SU/GoingDown.gi SU/BaseCase.gi SU/GoingUp.gi SU/main.gi
Ω(d , q) O/GoingDown.gi O/BaseCase.gi O/GoingUp.gi O/main.gi

Table 11.1: The algorithms of this thesis are contained in recog package [70] under the path
recog/gap/projective/constructive_recognition.
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The GoingDown algorithm, utilising stingray elements, has many similarities across all classical

groups. Consequently, the algorithm is implemented only once as constructppdTwoStingray

in recog/gap/projective/constructive_recognition/utils/utils.gi. An additional input, a

string type, is required for distinguishing the type of the classical groups. The type parameter

can be assigned values "SL", "Sp", "SU" and "O" which sets variables within the implementation

of constructppdTwoStingray such that the GoingDown algorithm is executed as described in this

thesis. This configuration is automated in the file GoingDown.gi for each classical group.

11.2 Run-time results

In this section, we compare the run-time of the constructive recognition algorithm from this thesis

implemented in GAP with the constructive recognition algorithm by Dietrich, Leedham-Green,

Lübeck and O’Brien [32, 59] implemented in Magma.

Due to the implementation of these algorithms in different computer algebra systems, which

have distinct performance profiles, a direct and fair comparison is challenging. Generally, the

underpinning support functions for working with matrices and polynomials over finite fields in

Magma outperform those in GAP. Despite these influencing factors, we present the run-time results in

Table 11.2, detailing the performance of the constructive recognition algorithm from this thesis in

GAP compared to the DLLO constructive recognition algorithm in Magma.

q = 4 q = 5 q = 121

d GAP Magma GAP Magma GAP Magma

100 < 1 7 < 1 3 < 1 86
200 6 20 1 8 2 436
300 11 39 4 16 7 12595a

500 62 104 16 62 31 timeout
700 168 257 40 249 79 −
1000 337 515 81 16047b 176 −
2000 2671 4014 532 timeout 2220 −
3000 9626 14780 2028 timeout 11637 −
aFour runs completed, six exceeded the time limit
bTwo runs completed, eight exceeded the time limit

Table 11.2: Time in seconds comparing our GAP implementation against Magma. An entry with a
dash means we did not measure this computation. Entries with “timeout” indicate that no run
completed within 20 000 seconds.
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All computations for both implementations were performed on a Linux server with two AMD

EPYC 9554 64-core processors and 1.5 TB RAM, running Gentoo 2.14 with kernel version 6.1.69.

For Magma version 2.28-8 was used and for GAP version 4.13.0 together with its default set of packages

loaded plus the cvec package version 2.8.1 (for faster characteristic polynomials) with a modified

version of recog 1.4.2, where the modification is that we inserted our new algorithms. These

modifications will be part of a future release of the recog package.

For Magma we used ClassicalConstructiveRecognition(SL(d,q),"SL",d,q) as test command

while for GAP RECOG.FindStdGensSmallerMatrices_SL(SL(d,q)) was used. For each used param-

eter pair (d , q) we ran the command ten times in each system. Table 11.2 reports the average of

these runs. Note that computations that exceeded 20 000 seconds (about 5.5 hours) were aborted. In

some cases only a subset of the runs for a given pair (d , q) terminated within that time limit. In this

case we treated the aborted computations as if they had completed within 20 000 seconds (which is

generous as in some cases we actually waited for 15 hours before aborting).
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Figure 11.1: The graph visualises the data from Table 11.2 that compares the performance of the GAP
implementation of this thesis against Magma.

Table 11.2 indicates that for special linear groups the constructive recognition algorithm of this

thesis outperforms the constructive recognition algorithm by Dietrich, Leedham-Green, Lübeck
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and O’Brien [32, 59]. Especially as q grows Table 11.2 highlights that the algorithms in this thesis

have better complexity by a factor such as O (log(q)). This observation is supported by the claimed

complexity result for the algorithms from this thesis given in Theorem 10.38 and the current results

for the complexity of the constructive recognition algorithm by Dietrich, Leedham-Green, Lübeck

and O’Brien [32, 59] presented in Section 1.2.
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Chapter 12

Outlook

In Chapter 11, we observed a significant improvement in the run-time of the constructive recognition

algorithms for classical groups from this thesis compared to the DLLO algorithm [32, 59]. However,

there are several open questions which are not addressed in this thesis. Those questions can be

roughly categorised as follows:

1) What is the complexity of the StandardGenerators algorithm from this thesis?

2) Can the algorithm StandardGenerators be adapted for non-natural irreducible matrix

representations of classical groups?

3) If modifying the StandardGenerators algorithm for non-natural irreducible representations

of classical groups is possible, is it possible to design a version for black-box groups?

4) Can stingray elements be utilised in additional ways within the composition tree?

In the following sections we delve deeper into each of these questions.

12.1 Complexity of the StandardGenerators algorithm

A complexity analysis of the StandardGenerators algorithm, as outlined in Chapter 3, involves

examining the complexity of the GoingDown, BaseCase and GoingUp algorithm. Complexity

results for the StandardGenerators algorithm are provided in Theorem 10.38. While we analyse

the complexity of the GoingDown algorithm and refer to results of the BaseCase algorithm from
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existing literature in Chapter 10, we do not conduct a complexity analysis of the randomised

algorithm GoingUp. Practical tests suggest that selecting O (1) random elements in one GoingUp

step suffices, a presumption utilised in the proof of Theorem 10.38. Nonetheless, an analysis of

the complexity of the GoingUp algorithm is absent and would yield theoretical insight into the

complexity of the StandardGenerators algorithm.

12.2 Gray-box algorithm

In Section 1.1.6, we introduced black-box groups and black-box algorithms. While black-box

algorithms are applicable in every representation of a group, a slightly weaker variant exists known as

gray-box algorithms. Gray-box algorithms assume that the input group is a matrix group, eliminating

the need for oracle calls during multiplication, inversion and equality checks. This setting allows for

more efficient operations, which are costly in black-box algorithms, such as computing orders of

invertible matrices using algorithms like the pseudo-order algorithm by Celler and Leedham-Green

[24].

An important question arising from the algorithms in this thesis is whether they can be adapted for

gray-box algorithms. In gray-box algorithms, classical groups are not necessarily given in their natural

representation but in any irreducible matrix representation. However, many computations that

are efficient in natural representations become less efficient in other representations. For example,

computing stingray embedded subgroups becomes more costly as it involves restricting the action

of a group element on a subspace, which is less efficient in non-natural irreducible representations.

Moreover, the “natural” action of group elements of non-natural irreducible representation cannot

be computed efficiently and this limitation affects the efficiency of several phases of the GoingUp

step which are based on linear algebra, introduced in the Chapters 5, 6, 7 and 8. Thus, the GoingUp

algorithm based on linear algebra is not directly usable as a gray-box algorithm.

In Chapter 9 we presented a second GoingUp algorithm based on involutions. Involutions are

already used in gray-box and black-box constructive recognition algorithms for classical groups [33].

Therefore, the GoingUp algorithm based on involutions seems to be promising in gray-box settings

and initial tests conducted in Magma were successful. However, a thorough proof of correctness and

analysis requires additional effort and an extension of the results presented in this thesis.
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12.3 Black-box algorithm

In Section 12.2, we explored the utilisation of the Algorithm StandardGenerators in gray-box

settings. While gray-box algorithms suffice for practical use so far, as the leaf groups of a composition

tree, see Section 1.1.3, are either provided as permutation or matrix groups, adapting the algorithms

from this thesis for black-box groups could be interesting in the future.

As highlighted in Section 12.2, the GoingUp algorithm based on linear algebra, presented in the

Chapters 5, 6, 7 and 8, heavily relies on the natural action of the input group. However, as black-box

algorithms do not accommodate actions, the GoingUp algorithm based on linear algebra is not

applicable. Nevertheless, preliminary tests for the GoingUp algorithm based on involutions for

gray-box classical groups, conducted in Magma, were successful. Therefore, similar tests should be

performed for black-box classical groups. As of now, the author has not conducted tests of the

GoingUp algorithm based on involutions for black-box classical groups.

Unlike the GoingUp algorithm, the GoingDown algorithm does not depend on the natural action

of the input group. The GoingDown basic step involves tasks such as computing random elements

and their characteristic polynomials, and verifying if the stingray bodies of a stingray duo intersect

trivially. However, in black-box groups computing characteristic polynomials is not possible and,

thus, computing stingray elements by random selections requires an alternative approach. A pre-

liminary version of a black-box GoingDown basic step has been developed by Niemeyer and the

author but has yet to be published.

12.4 Further improvements of the composition tree

In this thesis we utilise stingray elements within the GoingDown basic step of the GoingDown

algorithm, where these elements serve as a powerful tool for computing a descending recognition

chain of length at most O (log∗(d )). Given the pivotal role of stingray elements in this context, it is

logical to explore the potential of stingray elements in other applications, such as constructive recog-

nition of other quasi-simple matrix groups or in computing the composition tree, see Section 1.1.3.

However, the proportion results for stingray elements published in [39, 42, 75] are currently limited

to classical groups. Therefore, further investigations into the proportion of pre-stingray elements
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for additional applications would be beneficial.

As of now, the author has not delved into exploring further applications of stingray elements.
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Symplectic group 32

Terminal group 61

Totally isotropic 31

Totally singular 31

Transvection 38

Unitary form 30

Unitary group 32

Weak doubling element 124

Witt index 33
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