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Abstract
A new moving mesh scheme based on the Lagrange–Galerkin method for the approximation
of the one-dimensional convection–diffusion equation is studied. The mesh movement is
prescribed by a discretized dynamical system for the nodal points. This system is related
to the velocity and diffusion coefficient in the convection–diffusion equation such that the
nodal points follow the convective flow of the model. It is shown that under a restriction
of the time step size the mesh movement cannot lead to an overlap of the elements and
therefore an invalid mesh. Using a piecewise linear approximation, optimal error estimates
in the �∞(L2)∩�2(H1

0 ) norm are proved in case of both, a first-order backward Euler method
and a second-order two-step method in time. These results are based on new estimates of the
time dependent interpolation operator derived in this work. Preservation of the total mass
is verified for both choices of the time discretization. Numerical experiments are presented
that confirm the error estimates and demonstrate that the proposed moving mesh scheme can
circumvent limitations that the Lagrange–Galerkin method on a fixed mesh exhibits.
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1 Introduction

Apart from their application in fluid flow problems convection–diffusion equations have
recently been extensively used in the modeling of chemical and biological processes such as
pollutant transport, immune system dynamics and cancer growth, see e.g. [2, 28]. In many
of these applications, migration of cells or transport of solutes in fluids are involved, which
leads to convection-dominant problems. In these cases the Galerkin finite element scheme
can produce oscillating solutions. Hence, a plethora of extended and alternative numerical
methods have been developed to perform stable computation, e.g., upwindmethods [3, 23, 34]
and characteristics methods [17, 18, 30, 35]. Among the latter ones the Lagrange–Galerkin
(LG) method has been shown to be an effective and efficient method to deal with convection-
dominated problems, see for example [4–6, 19, 20, 31, 32]. Not only the convection-dominant
nature but also the rich dynamics of the biological applications, which include traveling
waves and aggregation phenomena, pose a challenge for the numerical schemes. Different
approaches related to mesh adaptation have been recently proposed to improve the accuracy
in these cases, including a mass-transport approach for the one-dimensional problem [12]
and adaptive mesh refinement [1, 25].

The application of the LG method to convection–diffusion problems offers the advantage
that the time step size is not constrained by traditional CFL-type conditions. However, it
is important to note that while a time step restriction is indeed necessary, this restriction
is not directly proportional to the spatial discretization, as is typically the case with CFL
conditions. This flexibility has motivated the use of the LG method in solving the Navier–
Stokes equations and models of viscoelastic fluid flow, to name only a few [26, 27, 29].
Various LGmethods have been proposed for convection–diffusion problems: Some have been
concerned with higher order approximations in time using single- and multi-step methods,
e.g., [4, 5, 7]. Others have focused on maintaining the mass balance on the discrete level,
e.g. [16, 32]. In [20, 32] such mass-preserving LG schemes of first- and second-order in time
have been proposed and error estimates have been provided. As the LG scheme relies on an
upwind-interpolation of the numerical solution that follows the velocity field backwards in
time a promising approach is to introduce mesh movement along the velocity field. From
a computational point of view this might ease the identification of the upwind points and
reduce the interpolation error.

Different kinds of moving mesh methods have been considered to numerically solve
convection–diffusion problems. A common approach is the redistribution of mesh cells
according to a monitor function that depends on local features of the numerical solution
or an a posteriori error estimator, see e.g. [1]. In other approaches separate moving mesh
PDEs and transformations obtained from the solution of the Monge–Kantorovich problem
are used, see [22, 33]. In the context of hyperbolic balance laws and fluid dynamics a variety
of schemes, which also entail mesh movement, has been derived from the Lagrangian for-
mulation of the problem, such as the hydrodynamic GLACE scheme [11] and the arbitrary
Lagrangian–Eulerian finite element method [13, 36]. In this context high order of accuracy
has been achieved by adopting high order essentially non-oscillatory reconstructions, see
e.g., [9, 14]. In some applications error estimates have been derived taking the movement
of the mesh into account, e.g. [15, 21]. We consider here a Lagrangian grid approach based
on a dynamical system for the nodal points that both exhibits significant benefits over static
grids in numerical simulations and allows for an error analysis of the extended LG scheme.

In this work we are concerned with a moving mesh approach within LG schemes of first-
and second-order in time and corresponding error estimates. We introduce the Lagrange–
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Galerkin Moving Mesh (LGMM) schemes, which combine the LG schemes derived in [20,
32] with a moving mesh, in order to improve the performance and efficiency over the original
LG schemes with fixed mesh. The mesh movement we consider is inspired by [12]; although
we focus on the one-dimensional case in this work our mesh movement is expressed in a
form suitable for higher dimensional cases. We derive a condition under which the mesh
movement is applicable. We generalize the mass-conservation property and stability results
from the static grid versions of the schemes to the new LGMM schemes. Based on the idea of
temporal derivatives on deforming grids in [24] we derive bounds for the time derivative of
the dynamic interpolation operator, which then allow us to prove optimal error estimates for
the LGMM scheme on piecewise linear elements in the �∞(L2) ∩ �2(H1

0 ) norm. Moreover,
we present numerical experiments that verify the error estimates. They further show that in
case of aggregation the LGMMmethod eliminates oscillations of the numerical solution that
the LG method produces.

The rest of the paper is organized as follows: In Sect. 2 we present the mass-preserving LG
schemes of first- and second-order in time for the convection–diffusion problem. This scheme
is equippedwith ameshmoving technique in Sect. 3, for which we state various properties. In
Sects. 4 and5, we provide the main results concerned with the mass-conservation property,
the stability, and the error estimates for the schemes of order one and two, respectively,
which are afterwards proven in Sect. 6. To show the advantages of the LGMM schemes, two
numerical simulations are given in Sect. 7, followed by the conclusions in Sect. 8.

2 Lagrange–Galerkin Schemes

2.1 Statement of the Problem

Let� = (a, b) be a bounded interval inR.We denote by�:=∂� the two point boundary of�
and by T a positive constant. In this paperwe use the Lebesgue spaces L2(�), L∞(�) and the
Sobolev spacesWm,p(�),W 1,∞

0 (�), Hm(�), H1
0 (�), for m ∈ N∪ {0} and p ∈ [1,∞]. We

use the notation (·, ·) to represent the L2(�) inner products for both scalar and vector-valued
functions. The norm in L2(�) is simply denoted as ‖ · ‖:=‖ · ‖L2(�). For any normed space
Y with norm ‖ · ‖Y , we define the function spaces Hm(0, T ; Y ) and C0(0, T ; Y ) consisting
of Y -valued functions in Hm(0, T ) and C0([0, T ]), respectively. For the two real numbers
t0 < t1 we introduce the function space

Zm(t0, t1):={ψ ∈ C j (t0, t1; Hm− j (�)); j = 0, . . . ,m, ‖ψ‖Zm (t0,t1) < ∞},

with the norm

‖ · ‖Zm (t0,t1):=
⎛
⎝

m∑
j=1

‖ · ‖2C j (t0,t1;Hm− j (�))

⎞
⎠

1/2

,

and set Zm :=Zm(0, T ). We often omit � and [0, T ] if there is no confusion and write, e.g.,
C0(L∞) in place ofC0([0, T ]; L∞(�)). Although we are concerned with a one-dimensional
domain we use the general notations∇:=∂x ,∇ ·:=∂x ,�:=∂2x , and

∂
∂n :=n∂x to refer to spatial

derivatives in order to allow for a straightforward application of the multi-dimensional theory
for LG schemes. We use c and C (with or without subscript or superscript) to denote generic
positive constant independent of discretization parameters and solutions.
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We consider a convection–diffusion problem, in whichwe aim to find φ : �×(0, T ) → R

such that

∂φ

∂t
+ ∇ · (uφ) − ν�φ = f in � × (0, T ), (1a)

ν
∂φ

∂n
− φu · n = g on � × (0, T ), (1b)

φ = φ0 in �, at t = 0, (1c)

where u : � × (0, T ) → R, f : � × (0, T ) → R, g : � × (0, T ) → R and φ0 : � → R are
given functions, n : � → {±1} is the outward unit normal vector and ν > 0 is the diffusion
coefficient.

Let 
:=H1(�) and 
 ′ be the dual space of 
. The weak formulation corresponding to
problem (1) is to find {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} such that for t ∈ (0, T ) the variational
equality

(
∂φ

∂t
(t), ψ

)
+ a0(φ(t), ψ) + a1(φ(t), ψ; u(t)) = 〈F(t), ψ〉, ∀ψ ∈ 
 (2)

holds in addition to φ(0) = φ0. The bilinear forms a0(·, ·) and au(·, ·) = a1(·, · ; u) and for
t ∈ (0, T ) in (2) are defined such that by

a1(φ, ψ; u):= − (φ, u∇ψ)

and F(t) ∈ 
 ′ is a functional given by

〈F(t), ψ〉 = ( f (t), ψ) + [g(t), ψ]�,

[g(t), ψ]� :=
∫

�

g(t)ψ ds= g(a, t)ψ(a) + g(b, t)ψ(b),

for f (t) = f (·, t) ∈ L2(�) and g(t) = g(·, t) ∈ L2(�).
By substituting 1 ∈ 
 intoψ in (2), and integrating over (0, t), we derive themass balance

identity
∫

�

φ(x, t) dx =
∫

�

φ0(x) dx +
∫ t

0

∫
�

f (x, τ )dx dτ +
∫ t

0

∫
�

g(s, τ )ds dτ (3)

that holds for all t ∈ (0, T ). This property is desired to be maintained also at the discrete
level, which is indeed achieved by the Lagrange–Galerkin schemes of first- and second-order
in time proposed in [32] and [20], respectively.

2.2 The First-Order Lagrange–Galerkin Scheme

Let �t > 0 be a time step size, tn :=n�t for n ∈ N ∪ {0} an equidistant discretiza-
tion of the time domain and NT :=
T /�t�. For a function ρ defined in � × (0, T )

and 0 ≤ tn ≤ T the function ρ(·, tn) in � is denoted by ρn . Let T n
h :={Kn}, n ∈

{0, . . . , NT } be a time-dependent partition of �̄ with Kn representing an element in T n
h .

Let h:=maxn=0,...,NT maxKn∈T n
h
diam(Kn) denote the global mesh size. Let 
n

h ⊂ 
 be a
time varying finite element space defined by


n
h := {ψh ∈ C0(�̄); ψh|Kn ∈ P1(K

n),∀Kn ∈ T n
h

}
,
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where P1(Kn) is the space of linear polynomial functions on Kn ∈ T n
h . Details about the

spaces
n
h and T

n
h are discussed in Sect. 3.1, the rest of this section as well as Sect. 2.3 address

the first- and second-order schemes assuming 
n
h is known.

For a given velocity v : � → R, we define the upwind point of x with respect to v and
�t using the mapping X1(v,�t) : � → R,

X1(v,�t)(x):=x − v(x)�t .

With respect to the velocity u we define the mapping Xn
1 : � → R and its corresponding

Jacobian γ n : � → R by

Xn
1 (x):=X1(u

n,�t)(x) = x − un(x)�t, γ n(x):= det

(
∂Xn

1

∂x
(x)

)
.

Suppose an approximate function φ0
h ∈ 
0

h of φ0 is given. In the first-order Lagrangian
moving mesh scheme we look for {φn

h ∈ 
n
h ; n = 1, . . . , NT } such that for n = 1, . . . , NT

it holds (
φn
h − φn−1

h ◦ Xn
1γ

n

�t
, ψh

)
+ a0(φ

n
h , ψh) = 〈Fn, ψh〉, ∀ψh ∈ 
n

h . (4)

The functional Fn ∈ (
n
h )′ on the right hand side of (4) is defined by

〈Fn, ψh〉:=( f n, ψh) + [gn, ψh]�.

2.3 The Second-Order Lagrange–Galerkin Scheme

To obtain a higher order discretization in time we define the additional mapping X̃n
1 : � → R

and its Jacobian γ̃ n : � → R by

X̃n
1 (x):=X1(u

n, 2�t)(x) = x − 2un(x)�t, γ̃ n(x):= det

(
∂ X̃n

1

∂x
(x)

)
.

Suppose an approximation φ0
h ∈ 
0

h of φ0 is given. Then the second-order Lagrangian
moving mesh scheme aims to find {φn

h ∈ 
n
h ; n = 1, . . . , NT } satisfying

(
φn
h − φn−1

h ◦ Xn
1γ

n

�t
, ψh

)
+ a0(φ

n
h , ψh) = 〈Fn, ψh〉, ∀ψh ∈ 
n

h , n = 1, (5a)

(
3φn

h − 4φn−1
h ◦ Xn

1γ
n + φn−2

h ◦ X̃n
1 γ̃

n

2�t
, ψh

)
+ a0(φ

n
h , ψh) = 〈Fn, ψh〉,

∀ψh ∈ 
n
h , n ≥ 2. (5b)

In the following, we rewrite scheme (5) as

(A�tφ
n
h , ψh) + a0(φ

n
h , ψh) = 〈Fn, ψh〉, ∀ψh ∈ 
n

h , (6)

where, for a series {ρn}NT
n=0 ⊂ 
, the function A�tρ

n : � → R is given by

A�tρ
n :=

⎧⎪⎨
⎪⎩

A(1)
�t ρ

n := 1

�t

(
ρn − ρn−1 ◦ Xn

1γ
n) , n = 1,

A(2)
�t ρ

n := 1

2�t

(
3ρn − 4ρn−1 ◦ Xn

1γ
n + ρn−2 ◦ X̃n

1 γ̃
n
)

, n ≥ 2,
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We introduce some discrete norms in the following. Let Y be a normed space, m ∈
{0, . . . , NT } be an integer, and {ρn}Nt

n=0 ⊂ Y . We define the norms ‖ · ‖�∞
m (Y ) and ‖ · ‖�2m (Y )

by

‖ρ‖�∞
m (Y ):= max

n=m,...,NT
‖ρn‖Y , ‖ρ‖�2m (Y ):=

(
�t

NT∑
n=m

‖ρn‖2Y
)1/2

.

Additionally, we define the following norm over the time varying finite element spaces

‖ρ‖�2m (
 ′
h)

:=
(

�t
NT∑
n=m

‖ρn‖2(
n
h )′

)1/2

.

If there is no confusion we omit the subscript i.e, ‖ρ‖�∞
1 (Y )=:‖ρ‖�∞(Y ) and ‖ρ

‖�21(Y )=:‖ρ‖�2(Y ).

3 MovingMeshMethod for the Lagrange–Galerkin Scheme

3.1 MovingMesh

In this section the construction and evolution of the partitions T n
h is considered. To this end

a moving mesh is employed that in this work is defined as follows.

Definition 1 For a given partition {tn : n = 0, . . . , NT } of the time domain [0, T ] a moving
mesh of�×[0, T ] is a set of points {Pn

i : i = 1, . . . , Np, n = 0, . . . , NT } ⊂ �̄ that satisfy
the monotonicity condition

a = Pn
1 < Pn

2 < · · · < Pn
Np

= b, n ∈ {0, . . . , NT }. (7)

We refer to Np ∈ N as the number of moving mesh points.

A moving mesh allows us to define the partitions introduced in Sect. 2.2 more precisely
as

T n
h = {Kn

i : i = 1, . . . , Np − 1}, Kn
i :=[Pn

i , Pn
i+1], n ∈ {0, . . . , NT }

and therefore determines the nodal points of the finite element spaces
n
h for n ∈ {0, . . . , NT }.

We note that for any fixed i ∈ {1, . . . , Np} the series {Pn
i }NT

n=0 can be considered a time
discrete trajectory of the moving point Pi . For our analysis we define the velocities of the
moving mesh points as

wn
i :=

Pn
i − Pn−1

i

�t
, i ∈ {1, . . . , Np}, n ∈ {1, . . . , Nt }, (8)

which allow us to introduce the time continuous point trajectories

Pi (t):=Pn−1
i + wn

i (t − tn−1), i ∈ {1, . . . , Np}, t ∈ [tn−1, tn]. (9)

In addition, for t ∈ [0, T ] we define w(x, t) as an extension of wn
i , by

w(x, t):= Pi+1(t) − x

Pi+1(t) − Pi (t)
wn
i + x − Pi (t)

Pi+1(t) − Pi (t)
wn
i+1,

x ∈ [Pi (t), Pi+1(t)], t ∈ [tn−1, tn]. (10)
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Note thatw ∈ C0([0, T ];W 1,∞
0 (�)). Also the basis functions of the finite element spaces
n

h
can be naturally extended using the trajectories (9): for i ∈ {1, . . . , Np} letψi (·, t) denote the
unique function on � that is affine linear restricted to the intervals [Pj (t), Pj+1(t)] for j ∈
{1, . . . , Np − 1} and satisfies ψi (Pj (t), t) = δi j . Then clearly {ψi (·, tn) : i = 1, . . . , Np}
is a basis of 
n

h .

3.2 MovingMeshMethod

In this section we propose amoving mesh method that is used to obtain a moving mesh in the
sense of Definition 1 and therefore determines the finite element spaces 
n

h as described in
Sect. 3.1. Suppose that the points P0

1 , …, P0
NP

are given and the monotonicity condition (7)
is satisfied for n = 0. The method we propose determines the position of the points Pn

i
iteratively by employing a time discretization of the dynamical system

d P̃i
dt

(t) = u
(
P̃i (t), t

)+ νM

Np−1∑
j=1

∇ψi (t)|[P̃j (t),P̃j+1(t)] (11)

with initial data P̃i (0) = P0
i for i ∈ {1, . . . , Np}. Here, ∇ refers to the gradient with respect

to the spatial variables, and the parameter νM ≥ 0 accounts for regularization of the moving
mesh. The dynamical system (11) generalizes themass transport approach from [8, 12]: If d =
1, f = 0 and νM = ν hold it provides a semi-discrete scheme for the convection–diffusion
equation (1a) in terms of the inverse cumulative distribution function of the state φ. Applying
it to the nodal points and assuming an exact solution of (1a) yields an equidistribution of the

mass of the solution, i.e.
∫ P̃i+1(t)

P̃i (t)
φ dx = Const for all i ∈ {1, . . . , Np − 1} and t ≥ 0. By

employing (11) in our LG scheme we aim to follow the mass movement due to convection
and diffusion with the moving mesh. Note that in this setting the approach can also be used
if f �= 0, in which case a parameter νM �= ν might yield more accurate results.

Applying a linearly implicit time discretization to the continuous problem (11) gives rise
to our moving mesh method: find {Pn

i : i = 1, . . . , Np, n = 0, . . . , NT } such that for
n = 1, . . . , NT it holds

Pn
i − Pn−1

i

�t
= un−1(Pn−1

i ) + νM
Pn
i+1 − 2Pn

i + Pn
i−1

(Pn−1
i − Pn−1

i−1 )(Pn−1
i+1 − Pn−1

i )
,

i = 2, . . . , Np − 1, (12a)

Pn
1 = a, Pn

Np
= b, (12b)

{P0
i : i = 1, . . . , Np} ⊂ �̄ given ; a = P0

1 < P0
2 < ... < P0

Np
= b. (12c)

The discretization has been constructed making use of the fact that for d = 1 it holds

Np−1∑
j=1

∇ψi |[P̃j ,P̃j+1] = 1

P̃i − P̃i−1
− 1

P̃i+1 − P̃i
= P̃i+1 − 2 P̃i + P̃i−1

(P̃i − P̃i−1)(P̃i+1 − P̃i )
.

The method is inspired by [12] and can be extended to higher dimensions in a straightfor-
ward way. In the case νM = 0, the transition from Pn−1

i to Pn
i due to (12) and the transition

from Pn−1
i to X1(un−1,�t)(Pn−1

i ) describe movements in opposite directions. In particular,
if the velocity field u is smooth we have Pn−1

i ≈ Xn
1 (P

n
i ). Hence, a reduction of the com-

putational costs to identify Xn
1 (P

n
i ) as well as a decrease of the corresponding interpolation

123



37 Page 8 of 37 Journal of Scientific Computing (2024) 101 :37

error in the scheme are expected. The main idea of the LGMM method is, to combine the
LG schemes (4) and (6) with the moving mesh method (12).

Remark 1 While the moving mesh method (12) leads to a well defined set of nodal points
{Pn

i : i = 1, . . . , Np, n = 0, . . . , NT } it is not clear whether they constitute a moving mesh
in the sense of Definition 1 since the condition (7) might not be satisfied.

Remark 2 To obtain the nodal points Pn
1 , . . . , Pn

Np
from Pn−1

1 , . . . , Pn−1
Np

according to (12a)
and (12b) a sparse linear system is solved. In general, the coefficient matrix of this system is
not symmetric.

In fact we show that the method (12) results in a moving mesh for a suitable choice of
�t , see Sect. 1. The other theoretical results we show in this work assume a given moving
mesh. While it is important that a positive distance between neighbor points is maintained
in the moving mesh, it needs to be also verified that this distance does not become too large.
In particular, with respect to the error estimates that we present in the following section we
are interested in the situation that the global mesh size h tends to 0. This can be realized by
employing an equidistant mesh of size h0 at the initial time that is iteratively decreased by
increasing the number of moving points and ensuring that the distance between neighboring
points does not exceed Ch0 over all time instances for a fixed constant C > 0. In practice,
positive νM in scheme (12) has resulted in a control over the maximal point distance. Next,
we state several results concerning the moving mesh method (12). We begin by formulating
the following hypotheses.

Hypothesis 1 The function u satisfies u ∈ C0([0, T ];W 1,∞
0 (�)).

Hypothesis 2 The nodal points of the finite element spaces
0
h , . . . 


NT
h are given by amoving

mesh.

Hypothesis 3 The solution φ of problem (1) satisfies φ ∈ Z3 ∩ H2(0, T ; H2(�)) ∩
H1(0, T ; H3(�)).

Theorem 1 (Non-overlapping condition for the moving mesh method) Suppose that Hypoth-
esis 1 holds true. Let C0 ∈ [0, 1) be fixed, the set of nodal points {Pn

i : i = 1, . . . , Np, n =
1, . . . , NT } be given by method (12), and

�t |u|C0(W 1,∞(�)) ≤ C0, (13)

then the set of nodal points describes amovingmesh, i.e., it holds that for any n ∈ {0, . . . , NT }
Pn
i < Pn

j ; i < j; i, j ∈ {1, . . . , Np}. (14)

Proof Refer to Sect. 6.1.1. ��
Remark 3 Suppose that the nodal points of thefinite element spaces
0

h , . . . 

NT
h are governed

by the moving mesh method (12) then Hypothesis 2 is implied by condition (13) due to
Theorem 1.

Next, we state two results that are necessary in order to derive the error estimates for the
LGMM schemes. For f ∈ C0(�̄), t ∈ [0, T ], and the time dependent P1-basis functions
ψi (x, t) for i ∈ {1, . . . , Np} we define the time dependent Lagrange interpolation of f by

[�h(t) f ] (x):=
Np∑
i=1

f (Pi (t))ψi (x, t). (15)
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We also denote the difference operator D̄�t f := f n− f n−1

�t .

Theorem 2 Let {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} be the solution of problem (1). Suppose that
Hypothesis 2 and Hypothesis 3 hold true. Then assuming w ∈ C0(W 1,∞

0 (�)) the following
results hold.

i) There exists a positive constant C = C(‖w‖C0(L∞)) independent of �t and h such that
∥∥∥∥∥D̄�t (�

n
hφ

n) − 1

�t

∫ tn

tn−1
�h(t)

∂φ

∂t
(·, t)dt

∥∥∥∥∥ ≤ Ch√
�t

‖φ‖L2(tn−1,tn;H2(�)). (16a)

ii) For a positive constant C ′ = C ′(‖w‖C0(W 1,∞)) independent of �t and h it holds
∥∥∥∥∥D̄�t (�

n
hφ

n) − 1

�t

∫ tn

tn−1
�h(t)

∂φ

∂t
(·, t)dt

∥∥∥∥∥

 ′

≤ Ch2‖φ‖H1(H3). (16b)

Proof Refer to Sect. 6.1.2. ��
Remark 4 In the case of a fixed mesh (velocity w = 0), the bounds on the right hand side of
(16b) and (16a) are zero.

Corollary 1 Let {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} be the solution of problem (1). Suppose
that Hypothesis 2 and Hypothesis 3 hold true. Define η(t):=φ(t)−�h(t)φ(t). Then for w ∈
C0(W 1,∞

0 (�)) there exist positive constantsC = C(‖w‖C0(L∞))andC
′ = C ′(‖w‖C0(W 1,∞))

independent of �t and h such that the following bounds hold

∥∥D̄�tη
n
∥∥ ≤ Ch√

�t
‖φ‖H1(tn−1,tn;H2(�)), (17a)

∥∥D̄�tη
n
∥∥


 ′ ≤ C ′h2
(

1√
�t

‖φ‖H1(tn−1,tn;H2(�)) + ‖φ‖H1(H3)

)
. (17b)

Proof Refer to Sect. 6.1.3. ��

4 Results For The First-Order LGMM Scheme

In this section we state results for the scheme introduced in Sect. 2.2. We start by stating the
following hypothesis.

Hypothesis 4 The time step size �t satisfies the condition �t |u|C0(W 1,∞) ≤ 1/8.

Remark 5 Hypothesis 4 is not a CFL condition since the mesh size h is not included in the
inequality. The time step size �t can be chosen independently of h.

Proposition 1 (Mass preserving property of the first-order LGMM Scheme) Suppose that
Hypotheses 1, 2 and 4 hold true. Let {φn

h }NT
n=1 be the solution of the numerical scheme (4) for

a given initial datum φ0
h . Then it holds for n = 0, 1, . . . , NT that

∫
�

φn
h dx =

∫
�

φ0
hdx + �t

n∑
i=1

(∫
�

f i dx +
∫

�

gids

)
. (18)
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Proposition 2 (Stability of the first-order LGMM scheme) Suppose that Hypotheses 1, 2
and 4 hold true. Let F ∈ H1(0, T ;
 ′) be given. For the given function φ0

h ∈ 
h, let

{φn
h }NT

n=1 ⊂ 
h be the numerical solutions of scheme (4). Then there exists a constant C > 0
independent of h and �t such that

‖φh‖�∞(L2) + √
ν‖∇φh‖�2(L2) ≤ C

(
‖φ0

h‖ + ‖F‖�2(
 ′
h)

)
. (19)

Proofs of Proposition 1 and Proposition 2 The proof of the two propositions follows directly
from Theorem 1 and Theorem 2 in [32], respectively. For convenience we provide the proofs
in Appendix D.1 and Appendix E.1. ��
Remark 6 The mass-preserving and stability properties of the first-order Lagrange-Galerkin
scheme with fixed mesh (Theorem 1 and Theorem 2 of [32]) are maintained in the first-order
LGMM scheme.

Theorem 3 (Error estimates for the first-order LGMM scheme) Suppose that Hypothe-
ses 1, 2, 4, and 3 hold true. Let F ∈ H1(0, T ;
 ′) be given. Assuming the initial datum
φ0
h = �0

hφ
0 ∈ 
h let {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} be the solution of problem (1)

and {φn
h }NT

n=1 the numerical solutions of scheme (4). Then there exists a constant C > 0
independent of h and �t such that

‖φh − φ‖�∞(L2) + √
ν‖∇(φh − φ)‖�2(L2) ≤ C(�t + h2)‖φ‖Z2∩H1(H2)∩H1(H3). (20)

Proof Refer to Sect. 6.2. ��
Remark 7 Using the bound (17a) instead of (17b) in the proof of Theorem 3 a first order
bound that requires lower regularity of φ is obtained. Namely, under the assumptions of
Theorem 3 there exists a constant C > 0 independent of h and �t such that

‖φh − φ‖�∞(L2) + √
ν‖∇(φh − φ)‖�2(L2) ≤ C(�t + h)‖φ‖Z2∩H1(H2)∩H1(H2).

5 Results For The Second-Order LGMM Scheme

The results in this section concern the second-order scheme introduced in Sect. 2.3.

Proposition 3 (Mass preserving property of the second-order LGMM scheme) Suppose that
Hypotheses 1, 2 and 4 hold true. Let {φn

h }NT
n=1 be the solution of the numerical scheme (6) for

a given initial datum φ0
h . Then, we have the following.

(i) It holds for n = 1, 2, . . . , NT that

∫
�

(
3

2
φn
h − 1

2
φn−1
h

)
dx =

∫
�

1

2

(
φ0
h + φ1

h

)
dx + �t

n∑
i=1

(∫
�

f i dx +
∫

�

gids

)
. (21)

(ii) Assume f = g = 0 additionally. Then, it holds for n = 1, 2, . . . , NT that
∫

�

φn
h dx =

∫
�

φ0
hdx . (22)

Proposition 4 (Stability for the Second-Order LGMMScheme) Suppose thatHypotheses 1, 2
and 4 hold true. Let F ∈ H1(0, T ;
 ′) be given. For a given function φ0

h ∈ 
h let {φn
h }NT

n=1 ⊂
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h be the numerical solutions of scheme (6). Then, there exists a constant C > 0 independent
of h and �t such that

‖φh‖�∞(L2) + √
ν‖∇φh‖�2(L2) ≤ C

(
‖φ0

h‖ + ‖F‖�2(
 ′
h)

)
. (23)

Proofs of Proposition 3 and Proposition 4 The proof of both propositions follows from The-
orem 1 and Theorem 2 in [20], respectively. For convenience we provide the proofs in
Appendices D.2 and E.2. ��
Remark 8 Also in case of the second-order Lagrange–Galerkin scheme the mass-preserving
and stability properties of the fixed mesh method (Theorem 1 and Theorem 2 of [20]) are
maintained in the LGMM scheme.

Theorem 4 (Error Estimates the Second-Order LGMM Scheme) Suppose that Hypothe-
ses 1, 2, 4, and 3 hold true. Let F ∈ H1(0, T ;
 ′) be given. For a given function
φ0
h = �0

hφ
0 ∈ 
h let {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} be the solution of problem (1)

and {φn
h }NT

n=1 be the numerical solutions of scheme (6). Then, there exists a constant C > 0
independent of h and �t such that

‖φh − φ‖�∞(L2) + √
ν‖∇(φh − φ)‖�2(L2) ≤ C(�t2 + h2)‖φ‖Z3∩H2(H2)∩H1(H3). (24)

Proof Refer to Sect. 6.3. ��
Remark 9 In analogy to Remark 7 in the proof of Theorem 4 the bound (17a) can be used
instead of (17b) to obtain a first order bound that requires lower regularity of φ. Namely,
under the assumptions of Theorem 4 there exists a constant C > 0 independent of h and �t
such that

‖φh − φ‖�∞(L2) + √
ν‖∇(φh − φ)‖�2(L2) ≤ C(�t2 + h)‖φ‖Z3∩H2(H2)

Remark 10 In case of a static mesh the error estimate (24) is consistent with [20, Theorem 3
(ii)] except for the dependence on ‖φ‖H1(H3). Taking into account Remark 4 the exact
literature result can easily be recovered. The same is true for the relation between the error
estimate (20) and [32, Theorem 3].

6 Proofs

In this section we provide proofs for the results stated in Sects. 3, 4 and 5.

6.1 Proofs of the Results Regarding theMovingMesh

6.1.1 Proof of Theorem 1

We show property (14) inductively. Hence, suppose Pn−1
i < Pn−1

j ; i < j; i, j ∈
{1, . . . , Np}, we show that (14) holds true. Let hn−1

i :=Pn−1
i+1 − Pn−1

i for i ∈ {1, . . . , Np −1}.
It is sufficient to show that hni > 0 for i ∈ {1, . . . , Np − 1}. Shifting the index i in scheme
(12a), we have

Pn
i+1 − Pn−1

i+1

�t
= un−1(Pn−1

i+1 ) + νM
Pn
i+2 − 2Pn

i+1 + Pn
i

(Pn−1
i+1 − Pn−1

i )(Pn−1
i+2 − Pn−1

i+1 )
, i = 1, . . . , Np − 2.

(25)
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By subtracting (12a) from (25) we obtain

hni − hn−1
i

�t
= un−1(Pn−1

i+1 ) − un−1(Pn−1
i ) + νM

[
hni+1 − hni
hn−1
i hn−1

i+1

− hni − hni−1

hn−1
i−1 h

n−1
i

]
,

i = 2, . . . , Np − 2.

Rearranging the terms it follows for i = 2, . . . , Np − 2
[

1

�t
+ νM

(
1

hn−1
i hn−1

i+1

+ 1

hn−1
i−1 h

n−1
i

)]
hni − νM

1

hn−1
i hn−1

i+1

hni+1 − νM
1

hn−1
i−1 h

n−1
i

hni−1

= un−1(Pn−1
i+1 ) − un−1(Pn−1

i ) + hn−1
i

�t
. (26)

Using (13) we derive a lower bound of the right hand side in (26) as follows:

un−1(Pn−1
i+1 ) − un−1(Pn−1

i ) + hn−1
i

�t
≥ hn−1

i

�t
− |un−1(Pn−1

i+1 ) − un−1(Pn−1
i )|

≥ hn−1
i

�t
− hn−1

i |u|C0(W 1,∞
0 )

= hn−1
i

�t

(
1 − �t |u|C0(W 1,∞

0 )

)
> 0. (27)

Note that from (12a) for i = 2 we have

Pn
2 − Pn−1

2

�t
= un−1(Pn−1

2 ) + νM
hn2 − hn1
hn−1
1 hn−1

2

,

and from (12b) follows Pn−1
1 = a, which implies

Pn
1 −Pn−1

1
�t = 0. Therefore, it holds

(
1

�t
+ ν

1

hn−1
1 hn−1

2

)
hn1 − νM

1

hn−1
1 hn−1

2

hn2 = un−1(Pn−1
2 ) − un−1(Pn−1

1 ) + hn−1
1

�t
. (28)

Similarly, from (12a) for i = Np − 1 we have

Pn
Np−1 − Pn−1

Np−1

�t
= un−1(Pn−1

Np−1) + νM

hnNp−1 − hnNp−2

hn−1
Np−2h

n−1
Np−1

and from (12b) we obtain Pn−1
Np

= b, which implies
Pn
Np

−Pn−1
Np

�t = 0. Therefore, we have

(
1

�t
+ ν

1

hn−1
Np−2h

n−1
Np−1

)
hnNp−1 − νM

1

hn−1
Np−2h

n−1
Np−1

hnNp−2

= un−1(Pn−1
Np

) − un−1(Pn−1
Np−1) +

hn−1
Np−1

�t
. (29)

Proceeding as in (27) positivity of the right hand sides in both (28) and (29) follows. Com-
bining (28), (26) and (29) yields a linear system with unknown variables hn1, …, hnNp−1 and
a strictly diagonally dominant coefficient matrix, which is thus an M-matrix. Since an M-
matrix A has the property that Ax > 0 implies x > 0, the solution of the linear system is
positive, i.e., hn1, …,hnNp−1 > 0, hence (14) follows. ��
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6.1.2 Proof of Theorem 2

First, we state the following lemma, which plays an important role in the proof of Theorem 2.
The proof of the lemma is given in Appendix A.

Lemma 1 Let {φ(t) = φ(·, t) ∈ 
; t ∈ (0, T )} be the solution of problem (1) and suppose
that Hypothesis 2 holds true. For x ∈ �̄ and t ∈ [tn−1, tn] we define

I (x, t):=
Np∑
i=1

φ(Pi (t), t)

[
∂

∂t
ψi (x, t)

]
,

where Pi (t) for i ∈ {1, . . . , Np} are the nodal point positions defined in (9) and ψi (x, t) for
i ∈ {1, . . . , Np} denote the time extendedP1basis functions.We assume x ∈ [Pk(t), Pk+1(t)]
for a k ∈ {1, . . . , Np − 1}. Then I (x, t) can be expressed as

I (x, t) = −φ(Pk+1(t), t) − φ(Pk(t), t)

Pk+1(t) − Pk(t)

[
wn(Pk+1(t))ψk+1(x, t) + wn(Pk(t))ψk(x, t))

]
.

(30)

Proof of Theorem 2 We first define the interpolation operators

(
��

hφ
�
)

(x):=
Np∑
i=1

φ�(P�
i )ψ�

i (x), � ∈ {n − 1, n}.

Then we rewrite their difference as
(
�n

hφ
n − �n−1

h φn−1
)

(x)

=
∫ tn

tn−1

d

dt
(�h(t)φ(·, t))(x)dt

=
Np∑
i=1

∫ tn

tn−1

∂

∂t
[φ(Pi (t), t)ψi (x, t)]dt

=
Np∑
i=1

∫ tn

tn−1

([
∂

∂t
φ(Pi (t), t)

]
ψi (x, t) + φ(Pi (t), t)

[
∂

∂t
ψi (x, t)

])
dt

=
Np∑
i=1

∫ tn

tn−1

([
∂φ

∂t
(Pi (t), t) + dPi

dt
(t)(∇φ)(Pi (t), t)

]
ψi (x, t)

+φ(Pi (t), t)

[
∂

∂t
ψi (x, t)

])
dt

=
Np∑
i=1

∫ tn

tn−1

([
∂φ

∂t
(Pi (t), t) + wn(Pi (t))(∇φ)(Pi (t), t)

]
ψi (x, t)

+φ(Pi (t), t)

[
∂

∂t
ψi (x, t)

])
dt

=
∫ tn

tn−1
�h(t)

[
∂φ

∂t
(·, t) + wn(·)∇φ(·, t)

]
(x)dt +

∫ tn

tn−1
I (x, t)dt . (31)
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The rest of the proof concerns the last integral in (31). Without loss of generality let
t ∈ [tn−1, tn] and x ∈ Kk(t):=[Pk(t), Pk+1(t)]. For brevity we introduce the notations:

wn
k :=wn(Pn−1

k ), wn
k+1:=wn(Pn−1

k+1 ), hk = Pk+1(t) − Pk(t),

φk :=φ(Pk(t), t), φk+1:=φ(Pk+1(t), t).

We’re now in the position to show i). Due to the Taylor expansions

φk+1 − φk = φ(Pk(t) + hk(t), t) − φ(Pk(t), t)

= hk(t)(∇φ)(Pk(t), t) + h2k(t)
∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + s1hk(t), t)ds1ds0,

φk+1 − φk = φ(Pk+1(t), t) − φ(Pk+1(t) − hk(t), t)

= hk(t)(∇φ)(Pk+1(t), t) − h2k(t)
∫ 1

0

∫ s0

0
(∇2φ)(Pk+1(t) − s1hk(t), t)ds1ds0.

we obtain the identity

φk+1 − φk

Pk+1(t) − Pk(t)

[
wn
kψk(x, t) + wn

k+1ψk+1(x, t)
]

= [�h(t)w
n(·)∇φ(·, t)] (x) + hk(t)w

n
kψk(x, t)

∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + s1hk(t), t)ds1ds0

− hk(t)w
n
k+1ψk+1(x, t)

∫ 1

0

∫ s0

0
(∇2φ)(Pk+1(t) − s1hk(t), t) ds1ds0. (32)

By using Lemma 1, we substitute (32) into (31), and through a change of variable, we proceed
to compute

∣∣∣∣∣
(
�n

hφ
n − �n−1

h φn−1
)

−
∫ tn

tn−1

(
�h(t)

∂φ

∂t
(·, t)

)
dt

∣∣∣∣∣

=
∣∣∣∣∣
∫ tn

tn−1
�h(t)w

n(·)∇φ(·, t)(x) +
∫ tn

tn−1
I (x, t)dt

∣∣∣∣∣

≤ c‖w‖C0(L∞)

∫ tn

tn−1

∫ Pk+1(t)

Pk (t)
|(∇2φ)(x, t)|dxdt .

By taking the L2-norm over � and applying the Cauchy–Schwartz inequality on the right
hand side, we obtain

∥∥∥∥∥
(
�n

hφ
n − �n−1

h φn−1
)

−
∫ tn

tn−1

(
�h(t)

∂φ

∂t
(·, t)

)
dt

∥∥∥∥∥
2

≤ c2h�t‖w‖2C0(L∞)

∫
�

∫ tn

tn−1

∫
Kk̃ (t)

(∇2φ)(y, t)2dydtdx

= c2h�t‖w‖2C0(L∞)

∫ tn

tn−1

Np−1∑
k=1

hk(t)

∫
Kk (t)

(∇2φ)(y, t)2dydt

≤ c2h2�t‖w‖2C0(L∞)
||∇2φ||2L2(tn−1,tn;L2(�))

, (33)

where the dynamic index k̃ = k̃(x, t) is defined such that x ∈ Kk̃(t). To complete the proof,
we take the square root and divide both sides of (33) by �t , obtaining (16a).
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Next, we proof (ii). Therefore, we first rewrite and then further expand the last double
integral in (32) as follows

∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + (1 − s1)hk(t), t)ds1ds0

=
∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + s1hk(t), t)ds1ds0

+ hk(t)
∫ 1

0

∫ s0

0

∫ 1−s1

s1
(∇3φ)(Pk(t) + s2hk(t), t)ds2ds1ds0.

Additionally we introduce the Taylor expansion

wn
k+1 = wn

k + hk

∫ 1

0
(∇wn)(Pk(t) + shk(t))ds.

By using Lemma 1 and substituting the above expressions into (31) we compute

An(x) : = 1

�t

[(
�n
hφn − �n−1

h φn−1
)

(x) −
∫ tn

tn−1

(
�h(t)

∂φ

∂t
(·, t)

)
(x)dt

]

= − 1

�t

∫ tn

tn−1
hk (t)w

n
k (ψk (x, t) − ψk+1(x, t))

∫ 1

0

∫ s0

0
(∇2φ)(Pk (t) + s1hk (t), t)ds1ds0dt

+ 1

�t

∫ tn

tn−1
h2k (t)ψk+1(x, t)w

n
k

∫ 1

0

∫ s0

0

∫ 1−s1

s1
(∇3φ)(Pk (t) + s2hk (t), t)ds2ds1ds0dt

+ 1

�t

∫ tn

tn−1

(
h2k (t)ψk+1(x, t)

∫ 1

0
(∇wn)(Pk (t) + shk (t))ds

∫ 1

0

∫ s0

0
(∇2φ)(Pk (t) + (1 − s1)hk (t), t)ds1ds0

)
dt

=:An1(x) + An2(x) + An3(x).

We proceed by estimating the (
 ′)-norm, i.e., ‖An‖
 ′ ≤ ‖An
1‖
 ′ + ‖An

2‖
 ′ + ‖An
3‖
 ′ . The

following bounds hold

‖An
1‖
 ′ ≤ c1h

2‖w‖C0(L∞)‖φ‖H1(H3) (34)

‖An
2‖
 ′ ≤ c2h

2‖w‖C0(L∞)‖φ‖H1(H3) (35)

‖An
3‖
 ′ ≤ c3h

2‖w‖C0(W 1,∞)‖φ‖H1(H3) (36)

and their detailed proofs are provided in Appendix B. Combining all the bounds, we obtain
the estimate

‖A‖
 ′ ≤ Ch2‖w‖C0(W 1,∞)‖φ‖H1(H3),

which completes the proof of (16b). ��

6.1.3 Proof of Corollary 1

Wefirst recall an error estimate for the Lagrange interpolation that follows from [10, Theorem
4.4.20].
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Lemma 2 We suppose that Hypothesis 2 holds true and fix t ∈ [0, T ]. Let �h = �h(t) =∑Np
i=1 f (Pi (t))ψi (x, t) be the Lagrange interpolation operator at time t and v ∈ H2(�).

Then there exists a constant C > 0 independent of h such that

‖�hv − v‖Hs (�) ≤ Ch2−s |v|H2(�) for s ∈ {0, 1}. (37)

Proof of Corollary 1 We show (17a) and assume t ∈ [tn−1, tn]. By applying the bound (16a)
from Theorem 2, Cauchy-Schwartz’s inequality, as well as Lemma 2, we obtain the estimate,

∥∥ηn − ηn−1
∥∥ =

∥∥∥(φn − �n
hφ

n) − (φn−1 − �n−1
h φn−1)

∥∥∥
=
∥∥∥φn − φn−1 − (�n

hφ
n − �n−1

h φn−1)

∥∥∥

≤
∥∥∥∥∥
∫ tn

tn−1

(
∂φ

∂t
− �h(t)

∂φ

∂t

)
dt

∥∥∥∥∥+ c1h
√

�t‖φ‖L2(tn−1,tn);H2(�))

≤ √
�t

√∫ tn

tn−1

∥∥∥∥
∂φ

∂t
− �h

∂φ

∂t

∥∥∥∥
2

L2(�)

dt + c1h
√

�t‖φ‖L2(tn−1,tn);H2(�))

≤ c2
√

�t

⎛
⎝h2

√∫ tn

tn−1

∣∣∣∣
∂φ

∂t

∣∣∣∣
2

H2(�)

dt + h‖φ‖L2(tn−1,tn);H2(�))

⎞
⎠

≤ c2h
√

�t
(
h‖φ‖H1(tn−1,tn;H2(�)) + ‖φ‖L2(tn−1,tn);H2(�))

)
. (38)

To complete the proof, we divide both sides of (38) by �t and obtain (17a). The bound (17b)
is obtained repeating the above estimates in the 
 ′-norm, using (16b) instead of (16a) and
embedding L2 in 
 ′. ��

6.2 Proof of Theorem 3

To prove Theorem 3, we first state the following lemma.

Lemma 3 (Evaluation of composite functions [20, 32]) Let a be a function in W 1,∞
0 (�)d

satisfying �t‖a‖1,∞ ≤ 1/4 and consider the mapping X1(a,�t) defined in (4). Then, the
following inequalities hold.

‖ψ ◦ X1(a,�t)‖ ≤ (1 + c1�t)‖ψ‖, ∀ψ ∈ L2(�), (39a)

‖ψ − ψ ◦ X1(a,�t)‖ ≤ c2�t‖ψ‖H1(�), ∀ψ ∈ H1(�), (39b)

‖ψ − ψ ◦ X1(a,�t)‖H−1(�) ≤ c3�t‖ψ‖, ∀ψ ∈ L2(�). (39c)

Proof of Theorem 3 We define the terms

enh :=φn
h − �n

hφ
n, η(t):=φ(t) − �h(t)φ(t).

By substituting the error enh in the numerical scheme (4), we obtain the following expression:

(
enh − [en−1

h ◦ Xn
1 ]γ n

�t
, ψh

)
+ a0(e

n
h , ψh) = 〈Rn

h , ψh〉, ∀ψh ∈ 
n
h , (40)
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where the residual on the right hand side is given by

Rn
h :=Rn

1 + Rn
2 + Rn

3 ,

Rn
1 :=

∂φn

∂t
+ ∇ · (unφn) − φn − [φn−1 ◦ Xn

1 ]γ n

�t
,

Rn
2 :=

ηn − [ηn−1 ◦ Xn
1 ]γ n

�t
,

〈Rn
3 , ψh〉:=a0(η

n, ψh).

To obtain an estimate on ‖R1‖, we follow the error estimate framework for the convection–
diffusion problem on a static mesh (details are given in Appendix C.1), which gives us

‖R1‖�2(
 ′
h)

≤ c4�t‖φ‖Z2(0,T ). (41)

In case of linear elements in one dimension that are considered here we have Rn
3 = 0 as is

shown in Appendix C.3. To compute a bound for Rn
2 we rewrite it as

Rn
2 = ηn − [ηn−1 ◦ Xn

1 ]γ n

�t

= ηn − ηn−1

�t
+ ηn−1 − ηn−1 ◦ Xn

1

�t
+ (ηn−1 ◦ Xn

1 )(1 − γ n)

�t
.

Then, using (39c) and (39a), noting that thanks to Hypothesis 1 it holds 1 − γ n ≤ c2�t ,
employing (17b), Lemma 2 and embedding L2(�) in H1(�)′, we obtain the following

‖Rn
2‖(
n

h )′ ≤
∥∥∥∥
ηn − ηn−1

�t

∥∥∥∥
(
n

h )′
+ c3‖ηn−1‖ + c6‖ηn−1 ◦ Xn

1‖

≤ c7

[
h2√
�t

‖φ‖H1(tn−1,tn;H2(�)) + h2‖φ‖H1(H3) + ‖ηn−1‖
]

≤ c8

[
h2√
�t

‖φ‖H1(tn−1,tn;H2(�)) + h2‖φ‖H1(H3)

]
(42)

Hence, by taking the �2-norm

‖R2‖�2(
 ′
h)

≤ c9h
2 (‖φ‖H1(0,T ;H2(�)) + ‖φ‖H1(H3)

)
. (43)

By combining the estimates (41), (43), and taking into account the fact Rn
3 = 0, we get

‖Rh‖�2(
 ′
h)

≤ C
(
�t‖φ‖Z2(0,T ) + h2‖φ‖H1(0,T ;H2(�)) + h2‖φ‖H1(H3)

)
, (44)

as estimate for the total residual, where C > 0 is independent of h and �t . Lastly, we
apply the stability result from Proposition 2 to problem (40) by substituting φ in (19) with
enh = φn

h − �n
hφ

n , initial value e0h = 0 and RHS term Fn as Rn
h . We use the bound (44) to

obtained the error estimates (20). ��

6.3 Proof of Theorem 4

First, we state the following lemma which provides the estimates of the first time step error.
The proof is given in Appendix F.
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Lemma 4 Suppose that Hypotheses 1, 2, 4, and 3 hold true. Then, it holds that

||e1h || ≤ ||e1h || + √
ν�t ||∇e1h || ≤ C(�t2 + h2)||φ||Z3∩H2(H2)∩H1(H3). (45)

Proof of Theorem 4 We substitute enh in the numerical scheme (5) and obtain the following
equations for the error:

(
enh − [en−1

h ◦ Xn
1 ]γ n

�t
, ψh

)
+a0(e

n
h , ψh) =〈Rn

h , ψh〉, ∀ψh ∈ 
n
h , n=1,

(46)(
3enh−4en−1

h ◦ Xn
1γ

n+en−2
h ◦ X̃n

1 γ̃
n

2�t
, ψh

)
+a0(e

n
h , ψh) =〈R̃n

h , ψh〉, ∀ψh ∈ V n
h , n ≥ 2,

(47)

where the residual Rn
h , R

n
1 , R

n
2 , and Rn

3 are given as in the proof of Theorem 3, cf., Sect. 6.2,
while the residual on the right hand side of (47) is given by:

R̃n
h :=R̃n

1 + R̃n
2 + Rn

3 ,

R̃n
1 :=

∂φn

∂t
+ ∇ · (unφn) − 3φn − 4φn−1 ◦ Xn

1γ
n + φn−2 ◦ X̃n

1 γ̃
n

2�t
,

R̃n
2 :=

3ηn − 4ηn−1 ◦ Xn
1γ

n + ηn−2 ◦ X̃n
1 γ̃

n

2�t
.

To obtain an estimate for ‖R̃1‖, we follow the error estimate framework for the general
convection–diffusion problemonuniformmesh (details are given inAppendicesC.2 andC.3),
which gives us

‖R̃1‖�2(
 ′
h)

≤ C1�t2‖φ‖Z3(0,T ) (48)

and as we have shown in Appendix C.3 it holds Rn
3 = 0. Next, we compute an estimate for

‖R̃2‖(
n
h )′ . For n ≥ 2 it holds

‖R̃n
2‖(
n

h )′ = 1

2�t
‖3ηn − 4ηn−1 ◦ Xn

1γ
n + ηn−2 ◦ X̃n

1 γ̃
n‖(
n

h )′

=
∥∥∥∥
3

2
D̄�tη

n − 1

2
D̄�tη

n−1 + 2

�t
(ηn−1 − ηn−1 ◦ Xn

1γ
n) − 1

2�t
(ηn−2

−ηn−2 ◦ X̃n
1 γ̃

n)

∥∥∥
(
n

h )′

≤ 3

2
‖D̄�tη

n‖ + 1

2
‖D̄�tη

n−1‖ + 2

�t
‖(ηn−1 − ηn−1 ◦ Xn

1γ
n)‖(
n

h )′

+ 1

2�t
‖(ηn−2 − ηn−2 ◦ X̃n

1 γ̃
n)‖(
n

h )′

≤ C3(‖D̄�tη
n‖ + ‖D̄�tη

n−1‖ + ‖ηn−1‖ + ‖ηn−2‖) (∵ (Lem.3))

≤ C4
(
h2�t−1/2‖φ‖H1(tn−2,tn;H2(�)) + h2‖φ‖H1(H3)

)
,

where the last inequality follows from Lemma 2 and Theorem 2. Taking the �2-norm in the
previous estimate we obtain

‖R̃2‖�2(
 ′
h)

≤ C5h
2 (‖φ‖H1(0,T ;H2(�)) + ‖φ‖H1(H3)

)
. (49)
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Combining the bounds (48) and (49) and taking into account the fact R3 = 0, it follows

‖R̃h‖�2(
 ′
h)

≤C(�t2‖φ‖Z3(0,T )+h2‖φ‖H1(0,T ;H2(�))+h2‖φ‖H1(H3)), (50)

where C > 0 is independent of h and �t . Finally, from the stability result of Proposition 4
and using e0h = 0, we get

||eh ||�∞(L2)+
√

ν||∇eh ||�2(L2) ≤
(
||e1h ||+

√
ν�t ||∇e1h ||

)
+
(
||eh ||�∞

2 (L2)+
√

ν||∇e1h ||�22(L2)

)

≤ (||e1h || + √
ν�t ||∇e1h ||) + C ||R̃h ||�22(
 ′

h)

≤ C1(�t2 + h2)||φ||Z3∩H2(H2)∩H1(H3)

which implies the error estimate (24). We employ Lemma 4 for the estimates of the first time
step error such that there is no loss of convergence order. ��

7 Numerical Experiments

In this section, we present two numerical experiments using the second order LGMM
scheme (6) combined with the moving mesh method (12) that show the benefits of the new
scheme and verify the error estimate from Theorem 4. As initial data we take φ0

h = �0
hφ

0

from the examples below. To compute the integrals that occur in the scheme we employ the
Gauss quadrature of order nine. Since linear finite element spaces are used in our proposed
scheme we do not consider higher order quadrature formulae as proposed e.g., in [7]. The
linear system appearing in (6) and (12) are iteratively solved using the conjugate gradient
(CG) method and successive over-relaxation (SOR) method, respectively. In all experiments
we start with an equidistant mesh at the initial time, i.e., for a given h0 > 0 the points
P0
1 , . . . , P0

Np
are such that

P0
j+1 − P0

j = h0, ∀i ∈ {1, . . . , Np}. (51)

The numerical results obtained by the new LGMM scheme are compared to analogous
results by the LG scheme with static mesh, which can be interpreted as LGMM scheme with
points satisfying Pn

j = P0
j for all i ∈ {1, . . . , Np} and n ∈ {1, . . . , NT } in addition to (51).

Example 1 We consider the domain � = (−1, 1), final time T = 0.5 and velocity field
u(x, t) = 1+ sin(t − x) in problem (1). No force field is assumed in this example as we set
f = 0, and for the boundary conditions we set g = 0. We take the initial value φ0 = φ(·, 0)
according to the exact solution

φ(x, t) = exp

(
−1 − cos(t − x)

ν

)
.

We solve Example 1 with diffusion coefficient set to ν = 0.01 and ν = 0.0001. In the
moving mesh method (12) we set νM = ν. The integer N determines the discretization of the
domain as we choose the initial mesh size h0 = 2/N . The time step size is linearly coupled
to the initial mesh size through the relation �t = 4h0. In this example, since the velocity u
does not satisfy Hypothesis 1, i.e.,u|� �= 0, the non-overlapping condition (cf. Theorem 1)

might not be met at the boundary. In this case, we allow the nodal points {Pn
i }Np

i=1 to extend
beyond the domain.

In Fig. 1we show the solution of the LGMMscheme for N = 512 and ν = 0.01 in terms of
the functionsφn

h togetherwith the corresponding localmesh or partition sizes hni = Pn
i+1−Pn

i
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Table 1 Relative errors and EOCs of LG scheme for Example 1 with ν = 0.01

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 2.795558×10−3 – 4.621785×10−3 – 1.931562×10−5

256 3.12×10−2 8.085728×10−4 1.79 1.296162×10−3 1.83 1.389046×10−6

512 1.56×10−2 2.221100×10−4 1.86 3.445636×10−4 1.91 1.527363×10−6

1024 7.81×10−3 5.927475×10−5 1.91 9.098049×10−5 1.92 8.199302×10−8

2048 3.91×10−3 1.540739×10−5 1.95 2.505214×10−5 1.86 7.994320×10−8

4096 1.95×10−3 3.949271×10−6 1.96 7.976085×10−6 1.64 8.886055×10−8

Table 2 Relative errors and EOCs for of LGMM scheme for Example 1 with ν = 0.01

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 3.293675×10−3 – 5.441997×10−3 – 1.141478×10−6

256 3.12×10−2 8.756374×10−4 1.91 1.467274×10−3 1.87 5.715086×10−6

512 1.56×10−2 2.265597×10−4 1.95 3.853933×10−4 1.93 9.131147×10−7

1024 7.81×10−3 5.945318×10−5 1.93 8.875689×10−5 2.12 4.549741×10−7

2048 3.91×10−3 1.545287×10−5 1.95 2.439410×10−5 1.87 4.652903×10−8

4096 1.95×10−3 3.948940×10−6 1.96 6.051897×10−6 1.98 1.034399×10−7

Table 3 Relative errors and EOCs of LG scheme for Example 1 with ν = 0.0001

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 6.127321×10−2 – 1.255443×10−1 – 1.256237×10−2

256 3.12×10−2 1.369196×10−2 2.16 2.916377×10−2 2.10 5.927426×10−3

512 1.56×10−2 3.286310×10−3 2.06 6.026062×10−3 2.27 2.317702×10−3

1024 7.81×10−3 1.045305×10−3 1.66 1.375878×10−3 2.13 1.144369×10−3

2048 3.91×10−3 5.000259×10−4 1.07 5.729551×10−4 1.27 5.870192×10−4

4096 1.95×10−3 2.650173×10−4 0.91 3.289690×10−4 0.78 2.986775×10−4

for i = 1, . . . , NP with respect to their distribution over the computational domain. Clearly,
the LGMM scheme maintains a high resolution, i.e., small mesh sizes, in the region, where
φh is large, whereas regions with small φh are partly significantly lower resolved.

Tables 1, 2, 3 and 4 show the errors and the corresponding experimental orders of con-
vergence (EOC)1 of both the LGMM and the LG scheme of second-order after (initial) grid
refinement, i.e., iteratively increasing N . In the tables we consider discretization errors with

1 The EOC is computed by the formula EOC = log2(E
1/E2) with E1 and E2 denoting the corresponding

error in two consecutive lines of the table.
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Table 4 Relative errors and EOCs of LGMM scheme for Example 1 with ν = 0.0001

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 1.021001 ×10−1 – 2.825924×10−1 – 4.833423 ×10−4

256 3.12×10−2 1.898798×10−2 2.42 4.633479×10−2 2.60 4.112482×10−5

512 1.56×10−2 5.634064×10−3 1.75 1.141006×10−2 2.02 4.714461×10−8

1024 7.81×10−3 8.094441×10−4 2.80 1.244332×10−3 3.20 3.034628×10−6

2048 3.91×10−3 2.574393×10−4 1.66 6.381969×10−4 0.97 5.883933×10−7

4096 1.95×10−3 6.442978×10−5 1.99 1.598421×10−4 1.99 3.556603×10−9

respect to L2(�), H1(�) and the loss of total mass, defined as:

E�∞(L2):=
‖φh − �hφ‖�∞(L2)

‖�hφ‖�∞(L2)

, E�2(H1
0 ):=

‖φh − �hφ‖�2(H1
0 )

‖�hφ‖�2(H1
0 )

,

Emass:=
∣∣∣∫� φ

NT
h dx − ∫

�
(�hφ)NT dx

∣∣∣
∣∣∫

�
(�hφ)NT dx

∣∣ ,

where ‖φ‖�2(H1
0 ):=‖∇φ‖�2(L2) and �h denotes the time dependent Lagrange interpolation

operator at time instance tn given as a mapping �h(tn) : C0(�̄) → 
n
h . Due to Theorem 4

and the coupling between �t and h we expected experimental convergence order 2 in both
the �∞(L2) and the �2(H1

0 ) (semi-) norm. While the EOCs in the tables mostly support this
expectation a decrease in case of higher mesh resolutions for the LG scheme is visible. In
the case ν = 0.01 this occurs in �2(H1

0 ) and becomes more significant also in �∞(L2) in
the case ν = 0.0001. The LGMM scheme does not suffer from this decrease in EOC and
provides in the affected cases more accurate numerical solution in terms of both norms. The
tables further exhibit a low relative loss of mass as Emass is of low magnitude even for coarse
grids and further decreases as the mesh is refined. While the mesh movement of the LGMM
scheme leads to slightly larger Emass on fine meshes in comparison to the LG scheme if
ν = 0.01 the loss of mass for the LGMM scheme is significantly smaller than for the LG
scheme if ν = 0.0001.

Remark 11 1. Readersmight find some of the EOC result of Example 1 for N = 2048, 4096
to be unusual. In fact, we observed that the “strange” errors in Example 1 are due to
numerical integration errors. In the current computation, we used a numerical integra-
tion formula of degree 9. When we use a numerical integration formula of degree 21,
we achieve EOCs of approximately 2. Therefore, we can say that our LGMM scheme
reduces numerical integration errors, particularly when using high-degree quadrature
formulas. We provide a grid convergence study using numerical integration of degree 21
in Appendix G.1.

2. The theoretical analysis does not require the restriction g = 0. We provide an additional
example similar to Example 1 with a non-zero boundary condition in Appendix G.2.

Example 2 We consider the domain � = (−1, 1), final time T = 2, velocity field u(x, t) =
sin(2πx) and diffusion coefficient ν = 10−5 in problem (1). Again we take f = 0 and
g = 0. The initial datum is set to φ0(x) = exp[−100(1 − cos(x))].
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Fig. 1 Numerical solution φh and corresponding mesh sizes in Example 1 over the computational domain at
time instances t = 0 (left), t = 0.2340 (center) and t = 0.4875 (right) obtained by the LGMM scheme for
ν = 0.01 and N = 512

Fig. 2 Numerical solution φh and corresponding mesh sizes in Example 2 over the computational domain
at time instances t = 0 (left), t = 1 (center) and t = 2 (right) obtained by the LG scheme with fixed mesh
(N = 256). The numerical solution exhibits oscillations

We solve Example 2 using scheme (6) combined with the moving mesh method (12),
using the parameter νM = ν, an initial uniform mesh satisfying (51) for h0 = 2/1024 and
the fixed time step size �t = 10−4, which satisfies condition (13) during the computation.
Again the results by the new LGMM scheme are compared to the LG scheme with static
mesh. Comparing Figs. 2 and 3, we can observe that while the uniformmesh scheme leads to
an oscillating solution, the LGMM scheme is capable to capture the aggregation phenomena.
This simulation shows the advantage of the proposed LGMM scheme in capturing sharp
spike pattern as observed in bio-medical applications.

8 Conclusion

In this work, we have equipped the mass-preserving Lagrange–Galerkin scheme of second-
order in time with a moving mesh method giving rise to the LGMM scheme, which is
capable of numerically solving convection–diffusion problems in one space dimension. We
also establish the stability and error estimates of the proposed numerical scheme, the latter
beingwith respect to the �∞(L2)∩�2(H1

0 ) -norm, of order O(�t+h2) if the one-stepmethod
is used in time and of order O(�t2 + h2) if the two-step scheme is used in time. We show
numerical results which support the proved error estimates. To this end we have derived a
new estimate for the time dependent interpolation operator, which we then embedded in the
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Fig. 3 Numerical solution φh and corresponding mesh sizes in Example 2 over the computational domain at
time instances t = 0 (left), t = 1 (center) and t = 2 (right) obtained by the LGMM scheme with N = 256.
The nodal points aggregate along with the solution φh

error estimate framework for the Lagrange–Galerkinmethod. The numerical simulations also
show that the proposed LGMM scheme is capable to capture aggregation phenomena. We
believe that the LGMM scheme can be extended to the cases d = 2, 3; though this extension
may not be straightforward for all element types used in the spatial discretization. While
we anticipate that our method will perform well with P1 triangular elements, more complex
elements or those employing higher-order interpolation, such as P2, may require additional
considerations or modifications to ensure efficiency of the method. In forthcoming research
we consider extensions of our scheme to multidimensional problems as well as applications
to real-world problems, especially from biology such as immune system dynamics and cancer
growth, in which diffusion and aggregation play crucial roles.

Appendix

A Proof of Lemma 1

In the following, we assume t ∈ [tn−1, tn] and x ∈ [Pk(t), Pk+1(t)] and use the notations
φk = φ(Pk(t), t) and φk+1 = φ(Pk+1(t), t). By our choice of t and x the linear basis
functions evaluate as

ψi (x, t) =

⎧⎪⎨
⎪⎩

Pk+1(t)−x
Pk+1(t)−Pk (t)

i = k
x−Pk (t)

Pk+1(t)−Pk (t)
i = k + 1

0 otherwise

.

Hence, we note the identity

wn
kψk + wn

k+1ψk+1 = x(wn
k+1 − wn

k ) + Pk+1w
n
k − Pkwn

k+1

Pk+1 − Pk
. (52)

and obtain the time derivatives

∂

∂t
ψk = x(P

′
k+1 − P

′
k) − P

′
k+1Pk + Pk+1P

′
k

(Pk+1 − Pk)2
,

∂

∂t
ψk+1 = − x(P

′
k+1 − P

′
k) + P

′
k Pk+1 − Pk P

′
k+1

(Pk+1 − Pk)2
.
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Employing the fact that due to (9) it holds P ′
i (t) = wn

i we compute

I (x, t) =
Np∑
i=1

φ(Pi (t), t)
∂

∂t
ψi (x, t)

= φk
∂

∂t
ψk + φk+1

∂

∂t
ψk+1

= φk
x(wn

k+1 − wn
k ) − wn

k+1Pk + Pk+1w
n
k

(Pk+1 − Pk)2

− φk+1
x(wn

k+1 − wn
k ) + wn

k Pk+1 − Pkwn
k+1

(Pk+1 − Pk)2

= − (φk+1 − φk)

(Pk+1 − Pk)2
[
x(wn

k+1 − wn
k ) + (Pk+1w

n
k − Pkw

n
k+1)

]

= − (φk+1 − φk)

Pk+1 − Pk

[
wn
k+1ψk+1(x, t) + wn

kψk(x, t)
]
,

where (52) has been used in the last step. This concludes the proof of Lemma 1. ��

B Bounds in the9′-Norm

In this appendix we compute estimates for ‖An
1‖
 ′ , ‖An

2‖
 ′ , and ‖An
3‖
 ′ . To this end we

take v ∈ H1
0 (�) satisfying ‖v‖H1 ≤ 1. We start by showing the estimate (34) on ‖An

1‖
 ′ and
therefore define for k ∈ {1, . . . , Np − 1} the average vk := 1

hk

∫
Kk

v(x) dx and the function

Qk(t):=
∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + s1hk(t), t)ds1ds0

for brevity of notation. Then we estimate

|(An
1, v)| =

∣∣∣∣
1

�t

∫ tn

tn−1

Np−1∑
k=1

hk(t)w
n
k Qk(t)

∫
Kk

(
ψk(x, t) − ψk+1(x, t)

)
v(x)dxdt

∣∣∣∣

≤ c
h

�t
‖w‖C0(L∞)

∫ tn

tn−1
‖φ‖H1(H3)

Np−1∑
k=1

∫
Kk

∣∣(ψk(x, t) − ψk+1(x, t)
)(

v(x) − vk
)∣∣ dxdt

≤ c
h

�t
‖w‖C0(L∞)‖φ‖H1(H3)

∫ tn

tn−1

Np−1∑
k=1

‖ψk(·, t) − ψk+1(·, t)‖L2(Kk )
‖v − vk‖L2(Kk )

dt

≤ c
h

�t
‖w‖C0(L∞)‖φ‖H1(H3)

∫ tn

tn−1

⎛
⎝

Np−1∑
k=1

hk
3

⎞
⎠

1/2⎛
⎝

Np−1∑
k=1

h2k |v|2H1(Kk )

⎞
⎠

1/2

dt

≤ c′h2‖w‖C0(L∞)‖φ‖H1(H3)||v||H1 ,

where we have used the Cauchy-Schwartz inequality, the Poincaré inequality as well as the
following bound and identities

Qk(t) ≤ c‖φ‖H1(H3),

∫
Kk

(ψk+1 − ψk) dx = 0,
∫
Kk

(ψk+1 − ψk)
2 dx = hk

3
.
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Hence, we obtain the estimate

‖An
1‖
 ′ = sup

‖v‖H1≤1
(An

1, v) ≤ ch2‖w‖C0(L∞)‖φ‖H1(H3).

To show the estimate (35) on ‖An
2‖
 ′ we note that the bound

Np−1∑
k=1

∫
Kk

∣∣∣∣
∫ 1

0

∫ s0

0

∫ 1−s1

s1
(∇3φ)(Pk(t) + s2hk(t), t)ds2ds1ds0 v(x)

∣∣∣∣ dx

≤ c‖φ(·, t)‖H3(�)‖v‖L2(�).

holds and compute

|(An
2, v)| =

∣∣∣∣
1

�t

∫ tn

tn−1

Np−1∑
k=1

h2k(t)
∫
Kk

ψk+1(x, t)w
n
k

×
∫ 1

0

∫ s0

0

∫ 1−s1

s1
(∇3φ)(Pk(t) + s2hk(t), t)ds2ds1ds0 v(x)dxdt

∣∣∣∣

≤ c
h2

�t
‖w‖C0(L∞)

∫ tn

tn−1
‖φ(·, t)‖H3dt‖v‖L2

= c′ h2√
�t

‖w‖C0(L∞)‖φ‖L2(tn−1,tn;H3(�))‖v‖L2 .

Embedding L2(�) in 
 ′, we thus obtain the estimate

‖An
2‖
 ′ ≤ ch2√

�t
‖w‖C0(L∞)‖φ‖L2(tn−1,tn;H3(�)) ≤ ch2‖w‖C0(L∞)‖φ‖H1(H3).

Lastly, to show (36) we define

Rk(t):=
∫ 1

0

∫ s0

0
(∇2φ)(Pk(t) + (1 − s1)hk(t), t)ds1ds0

and note the bounds

|Rk(t)| ≤ c‖φ‖H1(H3),

∣∣∣∣
∫ 1

0
(∇wn)(Pk(t) + shk(t))ds

∣∣∣∣ ≤ c‖w‖C0(W 1,∞),

which allow us to estimate

|(An
3, v)| =

∣∣∣∣
1

�t

∫ tn

tn−1

Np−1∑
k=1

h2k(t)
∫
Kk

ψk+1(x, t)
∫ 1

0
(∇wn)(Pk(t) + shk(t))dsRk(t)dt v(x) dx

∣∣∣∣

≤ ch2‖w‖C0(W 1,∞)‖φ‖H1(H3)‖v‖L2 ,

where we have used the Cauchy–Schwartz inequality. Hence, we obtain

‖An
3‖
 ′ ≤ ch2‖w‖C0(W 1,∞)‖φ‖H1(H3),

which implies (36). ��
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C Residual bounds

In this part of the appendix we derive the bounds for the residual terms that are used in the
proofs of Theorems 3 and 4 in Sects. 6.2 and 6.3.

C.1 Bound for the Term R1 in (40)

To derive an estimate for Rn
1 we write Rn

1 = I n1 + I n2 , where

I n1 :=∂φn

∂t
+ un ∇φn − φn − φn−1 ◦ Xn

1

�t
,

I n2 :=(∇ · un)φn − φn−1 ◦ Xn
1 (1 − γ n)

�t
.

We first consider the term I n1 . The computation

φn(x) − [φn−1 ◦ Xn
1 ](x)

= φ(x, tn) − φ(x − un(x)�t, tn−1)

= −
∫ 1

0

∂

∂s
[φ(x − sun(x)�t, tn − s�t)] ds

=
∫ 1

0
un(x)�t ∇φ(x − sun(x)�t, tn − s�t)

+ �t
∂φ

∂t
(x − sun(x)�t, tn − s�t)ds

= �t
∫ 1

0

[
∂φ

∂t
+ un(x)∇φ

]
(x − sun(x)�t, tn − s�t)ds.

shows that we can write this term in the form

I n1 (x) =
∫ 1

0

[
∂φ

∂t
+ un(x)∇φ

]
(x, tn)ds

−
∫ 1

0

[
∂φ

∂t
+ un(x)∇φ

]
(x − sun(x)�t, tn − s�t)ds

= −
∫ 1

0

[[
∂φ

∂t
+ un(x)∇φ

]
(x − s1u

n(x)�t, tn − s1�t)

]∣∣∣∣
s

s1=0
ds

= −
∫ 1

0

∫ s

0

∂

∂s1

[
∂φ

∂t
+ un(x)∇φ

]
(x − s1u

n(x)�t, tn − s1�t) ds1 ds

= �t
∫ 1

0

∫ s

0

([
∂

∂t
+ un(x)∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t) ds1 ds.
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Using the Cauchy-Schwartz inequality, we estimate

|I n1 (x)| ≤ �t
∫ 1

0

(∫ s

0

([
∂

∂t
+ un(x) ∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t)2 ds1

)1/2 (∫ s

0
ds1

)1/2
ds

≤ �t
∫ 1

0

(∫ s

0

([
∂

∂t
+ un(x) ∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t)2 ds1

)1/2

ds

≤ �t

(∫ 1

0

([
∂

∂t
+ un(x) ∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t)2 ds1

)1/2

.

Hence, it holds

‖I n1 (x)‖2 ≤ �t2
∫

�

∫ 1

0

([
∂

∂t
+ un(x)∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t)2 ds1 dx

≤ C1�t2
∫ 1

0

∫
�

([
∂

∂t
+ ∇

]2
φ

)
(x − s1u

n(x)�t, tn − s1�t)2dx ds1.

Let y:=x − s1un(x)�t and τ :=tn − s1�t . Then, by a change of variable, we have

‖I n1 (x)‖2 ≤ C2�t2
∫ 1

0

∫
�

([
∂

∂t
+ ∇

]2
φ

)
(y, tn − s1�t)2dy ds1

= C2�t2
∫ tn

tn−1

1

�t

∫
�

([
∂

∂t
+ ∇

]2
φ

)
(y, τ )2dy dτ

= C2�t

∥∥∥∥∥
[

∂

∂t
+ ∇

]2
φ

∥∥∥∥∥
2

L2(tn−1,tn;L2(�))

≤ C3�t‖φ‖2Z2(tn−1,tn).

By taking the square root, we obtain

‖I n1 (x)‖L2(�) ≤ C4
√

�t‖φ‖Z2(tn−1,tn).

On the other hand, we note that (1−γ n)
�t = ∇ · un + O(�t), which using (39b) leads to

‖I n2 ‖ = ‖∇ · un(φn − φn−1 ◦ Xn
1 ) + [φn−1 ◦ Xn

1 ]O(�t)‖ ≤ C5
√

�t‖φ‖Z1(tn−1,tn).

By combining the estimates of I n1 and I n2 , we have

‖R1‖�2(
 ′
h)

≤
(

�t
NT∑
n=1

‖Rn
1‖2
)1/2

≤ C6�t‖φ‖Z2(0,T ),

where C6 > 0 is independent of h and �t . ��

C.2 Bound for the Term R̃1 in (47)

First, we note that γ n and γ̃ n can be written as

γ n(x) = 1 − �t∇ un(x), γ̃ n(x) = 1 − 2�t∇ un(x).
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Therefore, the term R̃n
1 in (47) is recasted as

R̃n
1 = 1

2�t

(
3φn − 4φn−1 ◦ Xn

1γ
n + φn−2 ◦ X̃n

1 γ̃
n
)

−
[

∂φ

∂t
+ ∇ · (unφn)

]
(·, tn)

=
[

1

2�t

(
3φn − 4φn−1 ◦ Xn

1 + φn−2 ◦ X̃n
1

)
−
(

∂φ

∂t
+ un∇ · φn

)]

+ ∇ · un[2φn−1 ◦ Xn
1 − φn−2 ◦ X̃n

1 − φn]
=:I n1 + I n2 .

Proceeding in analogy to C.2, let y(x, s) = y(x, s; n) : = x − un(x)(1 − s)�t and t(s) =
t(s; n) : = tn−1 + s�t . Then, the terms I n1 and I n2 can be expressed in terms of the integrals

I n1 (x) = −2�t2
∫ 1

0
s
∫ s

2s−1

[(
∂

∂t
+ un(x)∇

)3
φ

]
(y(x, s1), t(s1))ds1 ds,

I n2 (x) = −�t2(∇ · un)(x)
∫ 1

0

∫ s

s−1

[(
∂

∂t
+ un(x)∇

)2
φ

]
(y(x, s1), t(s1))ds1ds.

Now, we can estimate

‖I n1 ‖ = 2�t2
∥∥∥∥∥
∫ 1

0
s
∫ s

2s−1

[(
∂

∂t
+ un(x) · ∇

)3
φ

]
(y(·, s1), t(s1))ds1 ds

∥∥∥∥∥

≤ C1�t2
∫ 1

0
s
∫ s

2s−1

∥∥∥∥∥

[(
∂

∂t
+ ∇

)3
φ

]
(y(·, s1), t(s1))

∥∥∥∥∥ ds1 ds

≤ C2�t2
∫ 1

0
s
∫ s

2s−1

∥∥∥∥∥

[(
∂

∂t
+ ∇

)3
φ

]
(·, t(s1))

∥∥∥∥∥ ds1 ds

≤ C3�t
∫ tn

tn−2

∥∥∥∥∥

[(
∂

∂t
+ ∇

)3
φ

]
(·, t)

∥∥∥∥∥ dt

≤ √
2C3�t3/2

∥∥∥∥∥
(

∂

∂t
+ ∇

)3
φ

∥∥∥∥∥
L2(tn−2,tn;L2)

≤ C4�t3/2‖φ‖Z3(tn−2,tn)

and similarly

‖I n2 ‖ ≤ C5�t2
∫ 1

0
s
∫ s

s−1

∥∥∥∥∥

[(
∂

∂t
+ ∇

)2
φ

]
(y(·, s1), t(s1))

∥∥∥∥∥ ds1 ds

≤ C6�t
∫ tn

tn−2

∥∥∥∥∥

[(
∂

∂t
+ 1 · ∇

)2
φ

]
(·, t)

∥∥∥∥∥ dt

≤ C7�t3/2‖φ‖Z2(tn−2,tn).

By combining the bounds of I n1 and I n2 and taking the �2-norm over all time instances, we
obtain

‖R̃1‖�2(
 ′
h)

≤
(

�t
NT∑
n=1

‖Rn
1‖2
)1/2

≤ C8�t2‖φ‖Z3(0,T ),
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where C8 > 0 is independent of h and �t . ��

C.3 Bound for the Term Rn3 in (40) and (47)

We compute an estimate for Rn
3 in (
n

h )′. To this end let vh ∈ 
n
h be such that ‖vh‖H1 = 1

and further let Ki = [Pi (tn), Pi+1(tn)] for all i ∈ {1, . . . , Np−1}. Then we have, employing
the fact that for vh ∈ 
n

h the function ∇vh |Ki is constant

|〈Rn
3 , vh〉| = |a0(ηn, vh)|

≤ |a0(φ, vh) − a0(�hφ, vh)|

≤ ν

Np−1∑
i=1

∣∣∣∣
∫
Ki

(
∇φ∇vh − φn(Pi+1) − φn(Pi )

hi
∇vh

)
dx

∣∣∣∣

= ν

Np−1∑
i=1

|∇vh |Ki |
∣∣∣∣φn(Pi+1) − φn(Pi ) − φn(Pi+1) − φn(Pi )

hi

∫
Ki

dx

∣∣∣∣ = 0.

Hence, it follows that Rn
3 = 0 ∈ (
n

h )′. ��

D Proofs of theMass Preserving Properties

To prove Proposition 1 and 3 we first state anotherproposition that will be used in the proofs.

Proposition 5 ([20, 32]) Suppose that Hypotheses 1, 2 and 4 hold true. Then it holds that
Xn
1 (�) = X̃n

1 (�) = � and 1/2 ≤ γ n, γ̃ n ≤ 3/2 for n = 0, . . . , NT .

D.1 Proof of Proposition 1

Suppose that Hypotheses 1, 2 and 4 hold true. By Proposition 5 and a change of variable
y = Xn

1 (x), it holds for all ρ ∈ 
, n = 1, . . . , NT that

∫
�

ρ ◦ Xn
1 (x)γ

n(x)dx =
∫

�

ρdx .

We prove the theorem by induction. Let m ∈ {2, . . . , NT } and assume that (18) holds true
for n = m − 1. By substituting 1 ∈ 
h into ψh in the scheme (4), we obtain

∫
�

φm
h (x)dx =

∫
�

φm−1
h ◦ Xm

1 (x)γm(x)dx + �t

(∫
�

f m(x)dx +
∫

�

gm(x)ds

)

=
∫

�

φ0
h(x)dx + �t

m∑
i=1

(∫
�

f i (x)dx +
∫

�

gi (x)ds

)
,

which proves (18). ��
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D.2 Proof of Proposition 3

Suppose that Hypothesis 1, 2 and 4 holds true. By Proposition 5 and a change of variable
y = X̃n

1 (x), it holds for all ρ ∈ 
, n = 1, . . . , NT that
∫

�

ρ ◦ X̃n
1 (x)γ̃

n(x)dx =
∫

�

ρdx .

We prove (i) of the proposition by induction. Let m ∈ {2, . . . , NT } and assume that (21)
holds true for n = m − 1. By substituting 1 ∈ 
h into ψh in scheme (6), we obtain

∫
�

(
3

2
φmh − 1

2
φm−1
h

)
dx =

∫
�

(
3

2
φmh − 1

2
φm−1
h ◦ Xm

1 γm
)
dx

=
∫
�

(
3

2
φm−1
h ◦Xm

1 γm− 1

2
φm−2
h ◦ X̃m

1 γ̃m
)
dx+�t

(∫
�

f m (x)dx+
∫
�
gm (x)ds

)

=
∫
�

(
3

2
φm−1
h − 1

2
φm−2
h

)
dx + �t

(∫
�

f m (x)dx +
∫
�
gm (x)ds

)

=
∫
�

(
3

2
φ1h − 1

2
φ0h

)
dx + �t

m∑
i=2

(∫
�

f i (x)dx +
∫
�
gi (x)ds

)

=
∫
�

1

2

(
φ0h + φ1h

)
dx + �t

m∑
i=1

(∫
�

f i (x)dx +
∫
�
gi (x)ds

)
,

which implies (21).
We prove (ii). As f = g = 0, the identity

∫
�

φ1
hdx = ∫

�
φ0
hdx holds from scheme (6)

with n = 1, which implies similarly,
∫
�

φ2
hdx = ∫

�
φ0
hdx from the scheme with n = 2.

Using the same argument for all n, we obtain (22). ��

E Proofs of the Stability Results

E.1 Proof of Proposition 2

We substitute φn
h ∈ 
h into the numerical scheme (4) and obtain
(

φn
h − (φn−1

h ◦ Xn
1 )γ

n

�t
, φn

h

)
+ ν‖∇φn

h‖2 = 〈Fn, φn
h 〉. (53)

By Young’s inequality, the functional on the right hand side of (53) can be estimated as

〈Fn, φn
h 〉 ≤

(
1

2ν
‖Fn‖2(
n

h )′ + ν

2
‖φn

h‖2(
n
h )′

)
. (54)

Let the first term on the left hand side of (53) be denoted by In , then the following lower
bound holds

In :=
(

φn
h − (φn−1

h ◦ Xn
1 )γ

n

�t
, φn

h

)

= 1

�t

[
1

2
‖φn

h ‖2 − 1

2
‖(φn−1

h ◦ Xn
1 )γ

n‖2 + 1

2
‖φn

h − (φn−1
h ◦ Xn

1 )γ
n‖2
]

≥ 1

�t

[
1

2
‖φn

h ‖2 − 1

2
‖(φn−1

h ◦ Xn
1 )γ

n‖2
]

.
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Since γ n − 1 = O(�t) it holds

‖(φn−1
h ◦ Xn

1 )γ
n‖ = ‖(φn−1

h ◦ Xn
1 )γ

n − φn−1
h ◦ Xn

1 + φn−1
h ◦ Xn

1‖
≤ ‖(φn−1

h ◦ Xn
1 )(γ

n − 1)‖ + ‖(φn−1
h ◦ Xn

1 )‖
≤ C1�t‖(φn−1

h ◦ Xn
1 )‖ + ‖(φn−1

h ◦ Xn
1 )‖

= (1 + C1�t)‖(φn−1
h ◦ Xn

1 )‖
≤ (1 + 2C2�t)‖φn−1

h ‖.

Then, In can be written as

In ≥ 1

�t

[
1

2
‖φn

h ‖2 − 1

2
‖φn−1

h ‖2
]

− C2‖φn−1
h ‖2. (55)

By substituting (55) and (54) into (53) we obtain

1

�t

[
1

2
‖φn

h ‖2 − 1

2
‖φn−1

h ‖2
]

+ ν

2
‖∇φn

h‖2 ≤ 1

2ν
‖Fn‖2(
n

h )′ + c"‖φn−1
h ‖2. (56)

To complete the proof we apply the Gronwall inequality to (56) and get

‖φh‖�∞(L2) + √
ν‖φh‖�2(H1

0 ) ≤ C
[
‖φ0

h‖ + ‖F‖�2(
 ′
h)

]
,

where the constant C > 0 is independent of �t and h. ��

E.2 Proof of Proposition 4

First we state the following lemma that will be used in the last part of the proof.

Lemma 5 (Gronwall’s Inequality [20]) Let a0, a1 and a2 be non-negative numbers such
that a1 ≥ a2, let further �t ∈ (0, 3/(4a0)] and {xn}n≥0, {yn}n≥1, {zn}n≥2, {bn}n≥2 be non-
negative sequences. Suppose that

1

�t

(
3

2
xn − 2xn−1 + 1

2
xn−2 + yn − yn−1

)
+ zn ≤ aoxn +a1xn−1+a2xn−2+bn, ∀n ≤ 2

(57)
is satisfied. Then it holds that

xn + 2

3
yn + 2

3
�t

n∑
i=2

zi ≤ (exp(2(a0 + a1 + a2)n�t) + 1)

(
x0 + 3

2
x1 + y1 + �t

n∑
i=2

bi

)
,

∀n ≤ 2. (58)

Proof of Proposition 4 For n ≥ 2, note that the scheme (5b) can be written as

(
3φn

h − 4φn−1
h + φn−2

h

2�t
, ψh

)
+ a0(φ

n
h , ψh) = 〈Fn, ψh〉 + 〈I nh , ψh〉, ∀ψh ∈ 
n

h , (59)
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where I nh ∈ (
n
h )′ is given by

I nh := 1

2�t

[
−4(φn−1

h − φn−1
h ◦ Xn

1γ
n) + (φn−2

h − φn−2
h ◦ X̃n

1 γ̃
n)
]
,

= 1

2�t

[
−4(φn−1

h − φn−1
h ◦ Xn

1 ) + (φn−2
h − φn−2

h ◦ X̃n
1 )
]

+ 1

2�t

[
−4(φn−1

h ◦ Xn
1 − φn−1

h ◦ Xn
1γ

n) + (φn−2
h ◦ X̃n

1 − φn−2
h ◦ X̃n

1 γ̃
n)
]

:=I nh1 + I nh2

for n ∈ {2, . . . , NT }. By substituting φn
h ∈ 
h as ψh into (6) we have

(
3φn

h − 4φn−1
h + φn−2

h

2�t
, φn

h

)
+ ν‖∇φn

h‖2 = 〈Fn, φn
h 〉 + 〈I nh , φn

h 〉. (60)

The first term of the left hand side can thereby be estimated as

(
3φn

h − 4φn−1
h + φn−2

h

2�t
, φn

h

)

= 1

�t

[
3

4
‖φn

h‖2 − ‖φn−1
h ‖2 + 1

4
‖φn−2

h ‖2 + 1

4
‖φn

h − 2φn−1
h + φn−2

h ‖2
]

+ 1

�t

[
1

2

(
‖φn

h − φn−1
h ‖2 − ‖φn−1

h − φn−2
h ‖2

)]

≥ 1

�t

[
3

4
‖φn

h‖2 − ‖φn−1
h ‖2 + 1

4
‖φn−2

h ‖2
]

+ 1

�t

[
1

2

(
‖φn

h − φn−1
h ‖2 − ‖φn−1

h − φn−2
h ‖2

)]
.

Conversely, the terms on the right hand side can be estimated as

〈Fn, φn
h 〉 ≤ ‖Fn‖(
n

h )′ ‖φn
h‖H1(�)

≤ ‖Fn‖(
n
h )′(‖φn

h )‖ + ‖∇φn
h‖)

≤ 1

8
‖φn

h‖2 + ν

4
‖∇φn

h‖2 + (2 + 1/ν)‖Fn‖2(
n
h )′ ,

‖I nh1‖(
n
h )′ ≤ C(‖φn−1

h + ‖φn−2
h ‖) (∵ Lemma 3 (38c)),

‖I nh2‖ ≤ c

�t

(
‖φn−1

h ◦ Xn
1 (1 − γ n)‖ + ‖φn−2

h ◦ X̃n
1 (1 − γ̃ n)‖

)

≤ c1(‖φn−1
h ‖ + ‖φn−2

h ‖) (∵ (1 − γ̃ n) ≤ c1�t,Lemma 3 (38a)),

〈I nh , φn
h 〉 ≤ ‖I nh1‖(
n

h )′ ‖φn
h‖
h + ‖I nh2‖‖φn

h‖
h

≤ ‖I nh1‖(
n
h )′(‖φn

h‖ + ‖∇φn
h‖) + ‖I nh2‖‖φn

h‖
h

≤
(
2 + 1

ν

)
‖I nh1‖2(
n

h )′ + 2‖I nh2‖2 + 1

4
‖φn

h‖2 + ν

4
‖∇φn

h‖2

≤ 1

4
‖φn

h‖2 + ν

4
‖∇φn

h‖2 + c2

(
1

2
‖φn−1

h ‖2 + 1

2
‖φn−2

h ‖2
)

.
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Then, by combining the above estimates (60) can be rewritten as

1

�t

[
3

4
‖φn

h‖2 − ‖φn−1
h ‖2 + 1

4
‖φn−2

h ‖2 + 1

2
(‖φn

h − φn−1
h ‖2 − ‖φn−1

h − φn−2
h ‖2)

]

+ ν

2
‖∇φn

h‖2 ≤ 3

8
‖φn

h‖2 + c1

(
1

2
‖φn−1

h ‖2 + ‖φn−2
h ‖2

)
+ c2‖Fn‖2(
n

h )′ .

To complete the proof of Proposition 4, we apply the Gronwall inequality from Lemma 5
and obtain

‖φh‖�∞
2 (L2) + √

ν‖∇φh‖�∞
2 (L2) ≤ C(‖φ0

h‖ + ‖φ1
h‖ + ‖F‖�2(
 ′

h)
),

where C > 0 is independent of �t and h. By combining this estimate with Proposition 2,
the proof of Proposition 4 is completed. ��

F Proof of Lemma 4

Proof Recalling the calculation of ||Rn
1 ||(
n

h )′ , cf. C.1, the bound of ||Rn
2 ||(
n

h )′ from (42),
and taking into account the fact Rn

3 = 0, it holds that

||R1
h || ≤ c1

(√
�t ||φ||Z2(t0,t1) + h2√

�t
‖φ‖H1(t0,t1;H2) + h2‖φ‖H1(H3)

)

≤ c2
(
�t ||φ||Z3 + h2||φ||H2(H2)∩H1(H3)

) ≤ c3(�t + h2)||φ||Z3∩H2(H2)∩H1(H3).

(61)

By substituting e1h into ψh in (40), dropping the positive term a0(e1h, e
1
h), taking into account

e0h = 0, 〈R1
h, e

1
h〉 ≤ ‖R1

h‖‖e1h‖, and using (61), we get

‖e1h‖ ≤ �t‖R1
h‖ ≤ �tc1(�t + h2)‖φ‖Z3∩H2(H2)∩H1(H3)

≤ c2(�t2 + h2)‖φ‖Z3∩H2(H2)∩H1(H3).

Similarly, substituting e1h into ψh in (40), taking into account e0h = 0, 〈R1
h, e

1
h〉 ≤ ‖R1

h‖‖e1h‖,
and using (61), we get

‖e1h‖2 + ν�t‖∇e1h‖2 ≤ �t‖R1
h‖‖e1h‖

≤ �tc1(�t + h2)(�t2 + h2)‖φ‖2Z3∩H2(H2)∩H1(H3)

≤ c2(�t2 + h2)2‖φ‖2Z3∩H2(H2)∩H1(H3)
,

which implies (45). ��

G Additional Numerical Results

G.1 Example 1 with Higher Order Integration Formula

We simulate Example 1 using the Gauss quadrature formula of degree 21. As we can see in
Tables 5 and 6, we achieve an EOC of approximately 2. While the LG scheme yields slightly
more accurate results in �2(H1

0 ) on fine gridswe note that a similar accuracy is obtained by the
LGMM scheme using the lower order integration formula, which has smaller computational
cost.
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G.2 Example of Non-zero Boundary Condition Problem

We consider the domain � = (0, 1), final time T = 0.5, diffusion coefficient ν = 0.0001,
and velocity field u(x, t) = sin(πx) in problem 1.We take theNeumann boundary conditions
as

gN (x, t) =
{

− νπ cos(π(x + t)), (x, t) ∈ {0} × [0, T ],
νπ cos(π(x + t)), (x, t) ∈ {1} × [0, T ].

We set the external force f and the initial value φ0 appropriately so that the following exact
solution is

φ(x, t) = sin(π(x + t)).

Table 5 Relative errors and EOCs for the LG schemewith high order quadrature for Example 1with ν = 10−4

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 6.838965×10−2 – 1.390206×10−1 – 2.576334 ×10−3

256 3.12×10−2 1.363359×10−2 2.322 3.159460×10−2 2.140 6.867530 ×10−4

512 1.56×10−2 3.561592×10−3 1.938 7.527114×10−3 2.072 4.880633 ×10−5

1024 7.81×10−3 8.752015×10−4 2.022 1.778242×10−3 2.086 2.986503 ×10−5

2048 3.91×10−3 2.083146×10−4 2.073 4.125544×10−4 2.108 1.518585 ×10−5

4096 1.95×10−3 4.925582×10−5 2.085 9.721731×10−5 2.089 6.912510 ×10−6

Table 6 Relative errors and EOCs for the LGMM scheme with high order quadrature for Example 1 with
ν = 10−4

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC Emass

128 6.25×10−2 1.014336×10−1 – 2.762122×10−1 – 6.870175 ×10−4

256 3.12×10−2 1.573545×10−2 2.689 3.981974×10−2 2.798 1.210617 ×10−5

512 1.56×10−2 4.384326×10−3 1.840 1.077595×10−2 1.887 8.170278×10−6

1024 7.81×10−3 1.038217×10−3 2.079 2.580781×10−3 2.066 6.160171×10−7

2048 3.91×10−3 2.823952×10−4 1.881 6.766483×10−4 1.933 2.721251×10−8

4096 1.95×10−3 4.911175×10−5 2.526 1.301657×10−4 2.374 3.394361×10−8

Table 7 Relative errors and EOCs for the LG scheme for the example with non-zero boundary condition

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC E ′

mass

128 3.12×10−2 2.298854×10−2 – 7.654998×10−2 – 6.991448×10−3

256 1.56×10−2 5.857277×10−3 1.973 1.971024×10−2 1.953 1.783230×10−3

512 7.81×10−3 1.479036×10−3 1.983 4.995912×10−3 1.973 4.495670×10−4

1024 3.91×10−3 3.716389×10−4 1.992 1.257303×10−3 1.987 1.127530×10−4

2048 1.95×10−3 9.314610×10−5 1.996 3.153476×10−4 1.996 2.822066×10−5

4096 9.77×10−4 2.331617×10−5 1.998 7.896535×10−5 1.997 7.057941×10−6
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Table 8 Relative errors and EOCs for the LGMM scheme for the example with non-zero boundary condition

N �t E�∞(L2) EOC E
�2(H1

0 )
EOC E ′

mass

128 3.12×10−2 2.303668×10−2 – 7.657135×10−2 – 6.997073×10−3

256 1.56×10−2 5.872575×10−3 1.972 1.973625×10−2 1.951 1.783821×10−3

512 7.81×10−3 1.483052×10−3 1.985 5.003768×10−3 1.972 4.496149×10−4

1024 3.91×10−3 3.726406×10−4 1.992 1.259449×10−3 1.987 1.127605×10−4

2048 1.95×10−3 9.341311×10−5 1.996 3.158620×10−4 1.996 2.821955×10−5

4096 9.77×10−4 2.338526×10−5 1.998 7.909588×10−5 1.997 7.057869×10−6

The integer N determines the discretization of the domain as we choose the initial mesh size
h0 = 1/N . The time step size is linearly coupled to the initial mesh size through the relation
�t = 4h0. Tables 7 and 8 show the numerical convergence of both the LGMM and the LG
schemes in this example and again confirm our theoretical results. Since the mass of the exact
solution at t = T is 0, we introduce another suitable error for the mass defined by

E ′
mass:=

max
n=1,...,NT

∣∣∣∣
∫

�

φn
h dx −

∫
�

(�hφ)ndx

∣∣∣∣

max
n=1,...,NT

∣∣∣∣
∫

�

(�hφ)ndx

∣∣∣∣
,

which is also relatively low.
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