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ABSTRACT

Polyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In
industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic
activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being *'P NMR. Here, we present a
simple staining method using the fluorescent dye JC-D7 for the semi-quantitative polyP evaluation in yeast extracts. Notably,
fluorescence response was affected by polyP concentration and polymer chain length in the 0.5-500 pug/mL polyP concentration
range. Hence, for polyP samples of unknown chain compositions, JC-D7 cannot be used for absolute quantification. Fluorescence of
JC-D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO, > CoCl, > ZnSO,) and toxic mineral
salts (PbNO; and HgCl,) diminished polyP-induced JC-D7 fluorescence, affecting its applicability to samples containing polyP—
metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation,
this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate
homeostasis. The results suggest that staining with JC-D7 provides a robust and sensitive method for detecting polyP in yeast extracts
and likely in extracts of other microbes. The simplicity of the assay enables high-throughput screening of microbes to fully elucidate
and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.

1 | Introduction

Inorganic polyphosphate (polyP) is the linear polymer of phos-
phate (P/PO,>”) linked by phosphoanhydride bonds and is
ubiquitous in all domains of life (Rao, Gomez-Garcia, and
Kornberg 2009; Brown and Kornberg 2004). The widespread
presence of polyP is related to the diverse cellular functions,
including phosphate and energy storage, sequestration of cations,
membrane channel formation, regulation of enzyme activities,
control of gene activity, and stress response (Kulakovskaya,
Vagabov, and Kulaev 2012). Several bacteria, algae, yeast, and
fungi can rapidly and selectively hyperaccumulate P; and store it

as polyP, a phenomenon described for more than 70 years
(Plouviez et al. 2021; Delgadillo-Mirquez et al. 2016; Christ and
Blank 2019; Vila, Frases, and Gomes 2022). Besides its physio-
logical roles, polyP is of significant interest in numerous indus-
trial applications due to its physicochemical properties
(Kulakovskaya, Vagabov, and Kulaev 2012). PolyPs are non-
flammable, biodegradable, and nontoxic. Therefore, they are
used in fertilizers, flame retardants, or as food additives
(Kulakovskaya, Vagabov, and Kulaev 2012; Younes et al. 2019).
Some properties are also directly defined by the polyP chain
length. For example, the reactivation of actomyosin in meat
products is most pronounced with polyP,. Moreover, short-chain
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Take-Away

« The commercially available fluorescence sensor JC-D7
was used to establish a fast, highly sensitive polyP
detection assay tailored for yeast samples.

« First-time evaluation of JC-D7's robustness to various
abiotic factors, including polyP counteracting metal
cations and polyP extraction agents.

+ Pre-screening of yeast strains and rapid classification
based on JC-D7 polyP detection.

» Researchers and industry professionals can benefit from
this powerful, easy-to-use method for detecting poly-
phosphates in yeasts and other organisms.

polyPs are mildly acidic and can be used as pH-buffering agents.
Long-chain polyPs are highly hydrophilic and bacteriostatic, both
are beneficial properties in the food industry (Kulakovskaya,
Vagabov, and Kulaev 2012; Shen and Swartz 2010). Additionally,
their cation complexing ability increases with longer chain
lengths (Wazer and Campanella 1950).

Despite the importance of polyP in biology and industry, many
research questions regarding polyP, such as the primary signal
(s) for polyP hyperaccumulation across the domains of life or
the distribution of polyP in different compartments such as the
mitochondrion, the nucleus, and the vacuole, remain
unanswered (Rao, Gémez-Garcia, and Kornberg 2009; Brown
and Kornberg 2004; Borghi and Saiardi 2023). One of the key
challenges of polyP research is the limited number of easy-to-
use and inexpensive methods for direct detection and investi-
gation of polyP (Christ, Willbold, and Blank 2020; Bru
et al. 2017). Currently, >'P NMR is the analytical gold standard
to identify and quantitatively determine polyP concentrations
and molecular weight. However, >'P NMR requires samples
with high polyP concentrations, expensive instruments, and a
low throughput (Godinot et al. 2016; Christ, Willbold, and
Blank 2019). Recently, two enzymatic assays for the determi-
nation of the total polyP content and average chain length were
developed (Christ, Willbold, and Blank 2019; Christ and
Blank 2018a). Although these assays allow reliable and high
throughput characterization, they both rely on elaborated en-
zymatic cascades to detect the single monomer or dimer of
polyP via colorimetric and fluorometric signals, respectively.
Therefore, polyP is not detected in its original molecular
structure and specific enzymes are required. Another option to
determine the total polyP content in samples is via low
molecular weight fluorescent probes. For polyP detection, DAPI
is the most popular fluorescence probe. DAPI/polyP complexes
emit yellow-green fluorescence (maximum emission intensity at
550 nm), while DAPI/DNA complexes exhibit their emission
maximum in the blue-white part at 475 nm (DAPI excitation at
360 nm) (Aschar-Sobbi et al. 2008). Despite their high affinity
toward polyP, DAPI is known to interact with lipid inclusions
(Gomes et al. 2013; Streichan, Golecki, and Schoén 1990),
nucleotides (Martin and van Mooy 2013), RNA (Martin and van
Mooy 2013), and inositol phosphates (Kolozsvari, Parisi, and
Saiardi 2014). Moreover, polyPs with a chain length below 15
P-subunits cannot be detected via DAPI (Diaz and Ingall 2010).
Therefore, DAPI staining-based detection is limited due to

interferences with sample-related materials and by not covering
the whole range of polyP chain lengths.

Angelova et al. (2014) introduced the fluorescent probe JC-D7
to specifically detect polyP in vitro as well as endogenous polyP
in mammalian tissue sections. In these studies, JC-D7 exhibited
high selectivity toward polyP and no responsivity to a wide
range of ubiquitous cellular phosphate-containing molecules
such as DNA, RNA, ATP, and GTP. Later on, Zhu et al. (2020)
applied the dye for plant polyP detection (Zhu et al. 2020), and
just recently, the sensor has found application as a polyP dye in
environmental algae and bacteria (Yang et al. 2024). To our
knowledge, JC-D7 has not yet been described for use in polyP
detection in microbes used in biotechnology and food technol-
ogy, including yeasts (Demling et al. 2024).

Here, we present the transfer of the protocol previously published
by Angelova et al. (2014) to extracts of Saccharomyces cerevisiae.
Baker's yeast is particularly intriguing for polyP research, given its
capability to accumulate up to 28% (w/w) polyP (as KPOs) per cell
dry weight (Christ and Blank 2019). The impact of polyP concen-
tration and chain length differences, polyP ligands such as metal
cations, and polyP extraction agents on the fluorescence of JC-D7
was investigated. With the assay in hand, yeast strains carrying gene
deletions in (poly)phosphate homeostasis were characterized.

2 | Material and Methods
2.1 | Chemicals, Materials, and Strains

The chemically produced sodium polyPs named Budit 4, 7, and
9 were obtained from Budenheim (Budenheim, Germany). The
Budit number indicates the pH of a 1% (w/v) polyP solution.
Budit 4 has a chain length of 20—25 P-subunits, Budit 7 of
10—15 P-subunits and Budit 9 of 4—6 P-subunits. Graham's salt
(sodium polyphosphate, Emplura, lot 1.06529.1000) was
obtained from Sigma-Aldrich Chemie GmbH (Taufkirchen,
Germany) and is reported in the publication of Robinson et al.
(2022) with a chain length of n =22 (Robinson et al. 2022). A
10 mg/mL stock solutions of Graham's and Budits were pre-
pared by dissolving the powder in double-distilled water. For
the polyP mix, equal volumes of the three polyP stock solutions
(Budit 4, 7, and 9) were mixed to reach a final polyP concen-
tration of 10 ug/mL. Ammonium polyPs (APPs) were obtained
with chain lengths ranging from 7 up to 1472 P-subunits
(Budenheim, Germany). Only APP8 dissolved readily in stan-
dard buffer (1 mM MOPS, 0.1 mM EDTA, pH 7) at 2 g/L. NaCl
(240 mM) was added as dissolution aid to 2g/L of the other
APPs. JC-D7 dye was from Holzel Diagnostic (Cologne, Ger-
many). 5.9 mg/mL stock solutions of JC-D7 were prepared by
dissolving the powder in pure DMSO. S. cerevisiae VH2.200 was
a kind gift from the research institute of baker's yeast (Berlin,
Germany), the laboratory strain CEN.PK 113-7D (Nijkamp
et al. 2012) was obtained from Peter Kotter (Johann Wolfgang
Goethe University Frankfurt, Germany). BY4742 MATalpha
his3A1 leu2A0 lys2A0 ura3A0 (subsequently referred to as BY
WT) was obtained from EUROSCARF (Oberursel, Germany).
BY4742 strains with single deletions of YDR452W/PPN1
(subsequently referred to as BY APPN1) and YFR034C/PHO4
(subsequently referred to as BY APHO4) were selected from the
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EUROSCARF-collection (i.e., a single gene deletion S. cerevisiae
library containing 4500 strains; http://www.euroscarf.de).

2.2 | PolyP-Rich Yeast Cells

PolyP-enriched yeast cells were generated according to (Christ
and Blank 2019; for further details on polyP enrichment, see
Christ and Blank 2019). The hyperaccumulation protocol started
with a S. cerevisiae cultivation in a synthetically defined SD growth
medium. In the second step, S. cerevisiae was starved in a synthetic
medium containing all nutrients that are required for growth ex-
cept for P; (incubation time 6 h). Subsequently, P;-starved S. cer-
evisiae was supplied with magnesium, glucose, and phosphate for
2.5h to initiate polyP hyperaccumulation. The auxotrophic
BY4742 strains were additionally supplied with the corresponding
amino acids during preculture and starvation (Pronk 2002).

2.3 | Enzymatic PolyP Analytics

The polyP was extracted from polyP-rich S. cerevisiae cells with
phenol/chloroform extraction according to (Christ and
Blank 2018b). The Pi and polyP concentrations were measured
colorimetrically with the Phosfinity kit from Aminoverse B.V.
(Nuth, the Netherlands) (Christ and Blank 2018a).

2.4 | JC-D7 Fluorescence Assays

The JC-D7 polyP analytics in the absence of cells was performed
according to (Angelova et al. 2014), unless stated otherwise. A
reaction mixture of 200 uL was prepared by combining equal
volumes of up to 50 uM JC-D7 diluted in assay buffer (20 mM
HEPES buffer, pH 7.4, containing 1% (v/v) DMSO) and polyP
solution (0-1000 ug/mL) in a 96-well polystyrene microtiter plate.
Following 30 min incubations at 30°C, fluorescence measurements
were performed at ambient temperatures in a Tecan Infinite M200
Reader (Tecan Austria GmbH, Grodig/Salzburg, Austria; excita-
tion at 390 nm with a bandwidth of 9 nm, emission at 530 nm with
a bandwidth of 20 nm, and detector gain 50).

The effects of detergents and inorganic metal salts on polyP-
mediated JC-D7 fluorescence were evaluated by preincubating
50 uL of the polyP chain length mix (10 yug/mL polyP) with 50 uL
of the fourfold concentrated test substances (individual substances
prediluted in double-distilled water) for 30 min at 30°C before JC-
D7 treatment (addition of 100 uL 50 uM JC-D7; 30 min incubation
at 30°C) and fluorescence measurement. To investigate the effect
of the metal chelator EDTA, the metal salt-pretreated polyP
mixtures (final concentration of inorganic metal salt solutions
1 mM) were post-treated with 1 mM EDTA for 30 min, followed by
JC-D7 addition and fluorescence readout.

S. cerevisiae extracts (preparation according to Christ and
Blank 2018b) used in this work were diluted 1:500 in the assay
buffer. Afterward, 100 uL of the respective dilution were mixed
with 100 uL JC-D7 (20 M) for 30 min at 30°C and fluorescence
was measured in an Agilent BioTek Synergy Mx (Agilent
Technologies, Santa Clara, USA; excitation at 390 nm with a

bandwidth of 9 nm, emission at 530 nm with a bandwidth of
9 nm, automatic gain adjustment).

2.5 | Statistical Analyses

The statistical significance of experimental results was calcu-
lated by GraphPad Prism software version 8.02 (GraphPad
Software Inc., CA, USA) using the tests indicated in the
respective figure legends.

3 | Results

With the overall goal of developing a simple polyP detection
method for assessing bio-polyP in S. cerevisiae samples, we
investigated the suitability of the fluorescent dye JC-D7 as a sen-
sor. For that purpose, industrial polyPs and polyPs from yeast
origin were analyzed under various conditions with JC-D7.

3.1 | JC-D7 Response to Chemically Produced
PolyPs

First, the dependence of JC-D7 fluorescence signal to polyPs
with increasing concentrations and average chain lengths from
4 to 1500 P-subunits was examined in an experimental setting
similar to that used by (Angelova et al. 2014).

The fluorescence signal of JC-D7/polyP increased with increasing
concentration and chain length of the polyP standards, reaching
values up to 40-fold higher than buffer-treated controls (Figure 1
and Supporting Information S1: Figures 1 and 2). JC-D7 did not
respond to P; (Figure 1 and Supporting Information S1: Figures 1
and 2), even in the presence of cell-relevant concentrations of up
to 50 mM (data not shown). PolyPs with an average chain length
between 4 and 1472 P-subunits could be detected, although at the
lowest test concentrations of 0.5 and 1 pg/mL polyP, the signal was
low (1.3-4.4-fold higher compared to control). For polyP concen-
trations higher than 10 ug/mL and average chain lengths above 79
P-subunits, JC-D7 fluorescence was saturated. A two-way ANOVA
was used to estimate how the mean of JC-D7 fluorescence value
changes according to the two independent parameters concen-
tration and average chain length (Supporting Information S1:
Table 1). A statistically significant difference in JC-D7 fluorescence
was observed for both polyP concentration (F=151.9, p <0.001)
and chain length (F=24.7, p <0.001), as well as for their inter-
action (F=2.2, p<0.001). The interaction effects and the satura-
tion of JC-D7 fluorescence at certain polyP concentrations make
reliable polyP quantification in heterogeneous chain composition
samples impossible. Nevertheless, the fluorescent probe allows a
semi-qualitative evaluation of polyP.

3.2 | Potential Abiotic Disturbance Factors
Influencing JC-D7 Measurements

Due to its anionic nature, polyP can bind and sequester cations.
This P; backbone masking might affect JC-D7's interaction with
polyP. Thus, different metal salt solutions were analyzed with
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FIGURE 1 | Polyphosphate concentration and chain length dependence of the JC-D7 fluorescence signal. A measure of 25 uM solutions of JC-D7

was combined with increasing quantities of monoP or polyP of different chain lengths, followed by fluorescence detection (dex = 390 nm, Ay, = 530 nm;

Tecan Infinite M200 Reader). Data are presented as means + SEM of three independent experiments.

respect to their effects on JC-D7 polyP response (Figure 2 and
Supporting Information S1: Figure 3).

Treatment with EDTA before the addition of JC-D7 reduced the
quenching of the fluorescence for some of the metal solutions
(Figure 3). These results should be considered if JC-D7 is used
to assess polyP in samples containing macro- and micro-
minerals, such as yeasts or cells/tissues from other unicellular
or multicellular organisms.

In the case of JC-D7 usage on cell extracts, molecules provided
by the cell extraction buffers may also have an impact on the
interaction of polyP and JC-D7. Hence, the effect of various
agents, commonly used for polyP extraction from yeast biomass
(Christ and Blank 2018b), on the fluorescence outcome was
tested (Figure 4). A polyP mix was pretreated for 30 min with
different concentrations of either NaCl, LiCl, Triton X-100,
sodium dodecyl sulfate (SDS), Nonidet P-40 (NP-40), and
Pluronic F-127, followed by fluorescence detection with 25 uM
JC-D7. There was a decrease in fluorescence signal after 20.1%
SDS treatment. All other solvents and salt solutions had no
significant effect on the fluorescence.

3.3 | Validation of Polyp Detection With JC-D7 in
PolyP-Rich S. cerevisiae Extract

Even under various experimental conditions, JC-D7 could not
be loaded into intact yeast cells for direct measurement of
intracellular polyP (data not shown). Instead, the JC-D7
reaction with extracts from polyP-enriched S. cerevisiae
VH2.200 cells (VH2.200¢4) was compared with those of
polyP,g_»s (Budit 4), polyPig_ ;5 (Budit 7), polyP, ¢ (Budit 9)
(either at 2.5 or 5.0 ug/mL) standards (Supporting Information
S1: Figure 4). JC-D7 fluorescence analysis at 530 nm, as

depicted by Angelova et al. (2014), is also applicable for polyP
detection in yeast extracts. PolyP Budit spectra match yeast
extract spectra, suggesting that no other sample-related com-
ponents interfere with JC-D7 fluorescence detection. The
spectra also demonstrate an increase in signal intensity with the
chain length as well as with the concentration of the respective
Budit standard (2.5 vs. 5.0 ug/mL), yet not in a proportional
manner as observed before (Figure 1). It is possible to analyze
yeast samples with low fluorescent signal intensity using the
fluorescent dye because the intensity of the lowest Budit spectra
(polyP4_¢) is 2.8-fold higher compared to the control (buffer).
Thus, JC-D7 is suitable for semi-quantitative assessment of
chemically produced polyP as well as bio-polyP in S. cerevisiae
extract even at low concentrations.

A series of measurement parameters, including temperature,
pH value, and incubation time, were tested to optimize the JC-D7
fluorescence staining protocol (Figure 5). These parameters have
previously been demonstrated to be critical for fluorescence mea-
surements (Hope et al. 2016). Therefore, extracts of the industrial
yeast VH2.200 and the laboratory strain CEN.PK 113-7D either after
P; starvation or P; feeding were applied. Considering the tempera-
ture during the JC-D7 treatment period, no differences in the rel-
ative fluorescence intensity were observed between 24°C and 30°C
(Figure 5A). However, a labeling temperature of 37°C led to a minor
decrease in fluorescence. Consequently, 30°C was used for further
JC-D7 incubations. Besides that, the effect of temperature variations
inside the plate reader during fluorescence measurement was
investigated (24°C, 30°C, and 37°C) (Figure 5B). In general, the
relative fluorescence intensity readout was highest at 30°C. How-
ever, here only differences with S. cerevisiae VH2.200 extract, and
polyP;_15 (Budit 7) were detected (Figure 5B). Next, the influence
of the pH value on the fluorescence intensity of JC-D7 was inves-
tigated (Figure 5C). Yeast extracts and chemical polyP standards
were diluted in buffers with pH values ranging from 3.0 to 9.0. A
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FIGURE 2 | PolyP-mediated JC-D7 fluorescence in the presence of inorganic metal salts. A measure of 10 ug/mL of polyP mix was pretreated
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JC-D7; Aex =90 nm, Ay, = 530 nm; Tecan Infinite M200 Reader). Data are presented as means + SEM of three independent experiments. Significant
differences from buffer incubations are marked by asterisks (*p < 0.05, **p < 0.01, and ***p < 0.001; one-way ANOVA with Dunnett's post hoc test).
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FIGURE 3 | The effect of EDTA on metal salt quenching of polyP
JC-D7 fluorescence. A measure of 10 ug/mL of polyP mix was pretreated
with 1mM metal salt solutions, followed by buffer treatment or 1 mM
EDTA posttreatment and fluorescence detection with 25uM JC-D7
(Aex =390 nm, A, =530 nm; Tecan Infinite M200 Reader). Data are pre-
sented as means + SEM of three independent experiments. Significant dif-
ferences from buffer incubations (**p <0.01 and ***p <0.001; two-way
ANOVA/Tukey's post hoc test) or from metal salt treatment (**p < 0.01 and
##p < 0.001; two-way ANOVA/Tukey's post hoc test) are indicated.

fluorescence signal was measurable irrespective of the pH value of
the test solution. However, the JC-D7 signal decreased for samples
containing cell extract at the pH values of 3.0 and 9.0. Therefore,
solutions with these two pH values should be avoided to prevent a
substantial drop in the fluorescence signal. In our setup, the
pH value was kept around 7.4 using HEPES buffer. Moreover, the
incubation time after JC-D7 addition was examined (Figure 5D).
Samples were mixed and the JC-D7 signals were determined
immediately (¢ = 0 min) and after different time periods. Incubation
times of 10 min resulted in fluorescence intensities almost compa-
rable to those measured directly. However, after 20 min incubation,
the fluorescence values of cell extract samples and chemically
produced polyP standards slightly decreased and continued to
decline after 30 min incubation. The cause of the signal decline after

20 min remains ambiguous and necessitates additional exploration.
Based on these findings, it is advisable to conduct measurements on
JC-D7-treated samples promptly or within a 20-min timeframe to
mitigate potential signal reduction. As the JC-D7 evaluation meth-
odology shows stability under different test conditions, it can be
used for the evaluation of a broad spectrum of chemical polyP
samples, polyP-containing yeast cell extracts, and probably also
extracts prepared from other prokaryotic and eukaryotic cells or
tissues.

Finally, the suitability of JC-D7 to monitor yeast samples of different
polyP concentrations was assessed. Therefore, extracts of yeast
strains with varying polyP accumulation capabilities were treated
with JC-D7 (Figure 6A) and the results compared to the established,
enzymatic assay for total polyP quantification applying S. cerevisiae
exopolyphosphatase scPpxlp and inorganic pyrophosphatase
scIpplp (Figure 6B) (Christ and Blank 2018a).

In the enzymatic assay, VH2.200q4 exhibited a polyP content of
26.8% (w/w, as KPOs), whereas CEN.PK 113-7Dg4 produced 4.3%
(w/w) polyP and BY WTy4 produced 7.5% (w/w) polyP. However,
by deleting the endo- and exopolyphosphatase Ppnlp (Sethuraman,
Rao, and Kornberg 2001), BY APPN1 increased the polyP produc-
tion up to 10.3% (w/w) (Figure 6B) (Pestov, Kulakovskaya, and
Kulaev 2005; Andreeva et al. 2016). In BY APHO4, deleted in the
transcriptional activator Phod4p (Lemire et al. 1985), the polyP
content was markedly lower (2.9%, w/w). Under phosphate limi-
tation, Phodp activates transcription of Pho-responsive genes
together with Pho2p, leading to the expression of Pho regulon
genes, including phosphate transporters, phosphatases, and vacuo-
lar storage regulators. These genes play a critical role in the P;
import process and in maintaining intracellular P; levels (Bun-Ya
et al. 1991; Ogawa, DeRisi, and Brown 1995, 2000). Applying JC-D7
to these S. cerevisiae extracts, the fluorescence data (Figure 6A)
matched the trend of the enzymatic polyP data. The strain-related
differences in polyP levels were clearly depicted via fluorescence
measurement (Figure 6A). Therefore, one can assess and categorize
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FIGURE 5 | Optimization of JC-D7 application on yeast extracts. PolyP standards as well as extracts from P;-starved or P;-fed yeasts were treated

with 10 uM JC-D7, followed by fluorescence detection (dex = 390 nm, Ao, = 530 nm; Agilent BioTek Synergy Mx). The impact of the (A) incubation
temperature during JC-D7 staining; (B) temperature of the plate reader during readout; (C) pH of the JC-D7 staining buffer; and (D) duration of
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FIGURE 6 | Comparison of JC-D7 fluorescence measurements and enzymatic analysis of polyP in yeast extracts. (A) Extracts from phosphate-

starved or phosphate-fed yeasts were treated either with 10 uM JC-D7 or buffer (temperature 30°C, time 30 min), followed by detection of fluo-
rescence emission spectra (1o = 450-700 nm). (B) The same extracts were analyzed for their polyP content by enzymatic assays. Data are presented as

means + SEM of three independent experiments.

polyP production of various yeast strains based on the JC-D7 fluo-
rescent signal.

4 | Discussion

In our work, the protocol for polyP detection published by
Angelova et al. (2014) was applied to S. cerevisiae extract sam-
ples. After validating the capability of JC-D7 for detecting
chemically synthesized polyPs with varying chain lengths, we

examined the influence of potential interfering abiotic factors
and parameters originating from yeast pretreatment or yeast
extract preparation procedure (metal cations, extraction agents,
pH, and temperature). Finally, JC-D7 was tested as a polyP
fluorescence dye on various yeast cell extracts including two S.
cerevisiae strains of the EUROSCARF collection containing
single gene deletions in polyP metabolism.

The detection of polyP at various concentrations and chain
lengths was demonstrated, and P; up to 50 mM did not interfere
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with JC-D7 measurements. This is in line with the results of
Angelova et al. (2014). Usually, the P; concentration in yeast is
between 10 and 75 mM (van Eunen et al. 2010; Bru et al. 2016)
so the P; content in yeast samples should not impact the JC-D7-
based detection of polyP. A 5.0- to 15.0-fold increase in JC-D7
fluorescence upon treatment with 10 ug/mL polyP of 15, 60, or
120 P-subunits chain length was demonstrated by Angelova
et al. (2014). As an additional measure, polyPy, was saturating
the sensor at a concentration of 50 ug/mL in the same study
(Angelova et al. 2014). We observed a stronger fluorescence
response of JC-D7 in the mentioned concentration and chain
length range. Moreover, fluorescence saturation was achieved
already at 10 ug/mL for polyP molecules =79 P-subunits. Sim-
ilar to Angelova et al. (2014), longer polyP chains had a stronger
fluorescence response. However, in contrast to the minimum
detection limit of 2 ug/mL polyP given by Angelova et al. (2014),
the outcome of our plate reader fluorescence measurements
revealed a response even in the presence of 0.5 ug/mL polyP.
Our statistical evaluation showed that polyP amount and chain
length as independent variables are decisive for the JC-D7 flu-
orescence outcome, but also the combined effects of these two
factors. This finding is important since biological samples
usually contain a mixture of diverse polyP molecules with a
high polydispersity (Christ et al. 2020; Breus et al. 2012;
Khourchi, Delaplace, and Bargaz 2023; Andreeva et al. 2016),
which makes quantification challenging (Christ, Willbold, and
Blank 2019; Christ and Blank 2018a). However, as a semi-
quantitative parameter, JC-D7 fluorescence is suitable for
evaluating those samples. Christ and Blank (2019) have recently
introduced two consecutive enzymatic assays designed for the
quantitative determination of both total polyP concentration
and the average chain length within biological samples. These
assays determine the total polyP content via phosphate stan-
dards in the range from 20 to 200 uM P; and the concentration
of the polyP chains (for the average chain length calculation) in
the range of 1-10 uM via polyP, standards (Christ, Willbold,
and Blank 2019). Within our study's data set, the JC-D7 fluo-
rescence and the results of the enzymatic assay showed a con-
sistent trend for each S. cerevisiae extract analyzed. Thus, both
assays allow to record polyP molecules, but the JC-D7 test
cannot quantify them. The lowest applied concentration of
Budit 7 in the JC-D7 assay (0.5 ug/mL) translates to 4.0 uM P; in
the total polyP assay (Christ, Willbold, and Blank 2019) (see
Supporting Information S1: 1). Thus, measurements with JC-D7
are slightly more sensitive than enzymatic polyP detection.
When deciding which of the two detection methods should be
used for polyP assessment, the sample quantity and the research
question must be considered.

Another fluorescence dye often used for polyP detection in cells
and tissues is DAPI (Christ, Willbold, and Blank 2020). DAPI is
most prominently known for its application in DNA detection
(450-475nm emission maximum upon binding to dsDNA)
(Aschar-Sobbi et al. 2008; Kapuscinski 1990, 1995) but it is also
applicable to the detection of polyP by switching the emission
wavelength to 525 nm (Aschar-Sobbi et al. 2008). Thus, DAPI is
not specific for polyP, as is the case for JC-D7 (Angelova
et al. 2014). DAPI detects polyP only with a chain length greater
than 15 P-subunits; short-chain polyPs (e.g., 3-5 P-subunits)
react slightly or not at all with DAPI at polyP concentrations
ranging from 0.5 to 3 uM P; (Aschar-Sobbi et al. 2008; Diaz and

Ingall 2010). Likewise, the PPK, PPX, and TBO quantification
methods described by Ohtomo et al. (2008), as well as the
affinity polyP labeling approach using a recombinant polyP
binding domain reported by Saito et al. (2005) (Saito et al. 2005)
were not suitable for detecting short-chain polyPs. In contrast to
JC-D7, no difference in the DAPI fluorescence intensity was
registered following treatment with 15-130 P-subunit polyP
standards between 1.5 and 3uM P; (Diaz and Ingall 2010).
However, Aschar-Sobbi et al. (2008) demonstrated a slower
kinetic in DAPI-polyP fluorescence increase for polyP with an
average chain length of 15 P-subunits compared to 130
P-subunits. The rate was suggested as a polyP chain length
indicator, but this principle was only demonstrated for the two
named chain lengths varying by 115 P-subunits and a concen-
tration of 0.5 ug/mL Aschar-Sobbi et al. (2008). Similar to JC-
D7, polyP-induced DAPI fluorescence very likely has inde-
pendent contributors, making accurate quantification chal-
lenging. A nearly linear dependency of the DAPI signal on the
polyP concentration has been demonstrated between 25 and
200 ng polyP;s/mL. This linear relationship is maintained until
1.5ug/mL polyP. A signal saturation is registered at higher
concentrations Aschar-Sobbi et al. (2008). This offers a higher
sensitivity, but also lower saturation levels compared to the JC-
D7 fluorescence assay.

The sensitivity of JC-D7 is suitable for the envisioned applica-
tion with yeast extracts since the enzymatically determined
concentration via total polyP assay (Christ and Blank 2018a) of
the low polyP-producing strain is at ~2mM P; and of the high-
producing strain at ~45mM P; Aschar-Sobbi et al. (2008) and
Diaz and Ingall (2010) both reported a decrease in polyP-
induced DAPI fluorescence in the presence of =10 mM calcium
or a salinity level of 150 mM for chains of around 15 P-subunits,
respectively (Aschar-Sobbi et al. 2008; Diaz and Ingall 2010).
JC-D7 response was not affected by 100 mM Nacl, LiCl, MgSOy,,
or CaCl, within our experimental setup. According to Angelova
et al's (2014) study, the polyP responsiveness of JC-D7 was
substantially reduced in 150 mM KCI saline buffers. Further-
more, a very recent manuscript by Yang et al. (2024) revealed
that concentrations exceeding 100 mM NaCl had a negative
impact on JC-D7 fluorescence. Therefore, keeping the ionic
strength in the detection solution as low as feasible is recom-
mended to make the JC-D7-based fluorescence assay highly
sensitive. A diminishing effect of NaCl concentrations as low as
5mM on polyP outcome was also observed in the extraction
protocol published by Christ and Blank (2018b). It might be
caused by reduced extraction efficiencies and/or by an inhibi-
tory effect on polyP detection. A determination of which factor
caused the inhibition was not attempted in the aforementioned
study. However, this should be considered during sample
preparation, as extraction and detection are inevitably linked.

Amongst the detergents tested, only SDS>0.1% (v/v) had a
negative effect on the polyP-induced JC-D7 fluorescence. A
negative effect of SDS was also noted during the optimization of
analytical polyP extraction by Christ and Blank (2018b). When
adding 2.8% (v/v) SDS into the lysis buffers for polyP extraction,
polyP quantification was completely inhibited. SDS breaks ionic
bond interactions and hydrophobic interactions, as well as
hydrogen bonds, when interacting with proteins (Hou, He, and
Wang 2020). This might among other things have led to
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denaturation and thus inactivation of the enzymes applied for
polyP quantification by Christ and Blank (2018). The detergent
may have impaired the interaction between JC-D7 and polyPs
as well. Future studies will require an in-depth analysis to
determine the so far unknown mechanism by which JC-D7
interacts with polyP, to provide more insight into its favorability
for polyP detection.

The JC-D7 measurement and enzymatic polyP quantitation in
yeast extracts showed similar patterns in this study. The above-
average polyP accumulation capacity of S. cerevisiae VH2.200
(Christ and Blank 2019; Fees et al. 2023) was demonstrated by
both methods. Moreover, yeast mutants previously identified to
hypoaccumulate (gene deletion mutant of transcriptional acti-
vator Pho4p/YFR034C) or hyperaccumulate (gene deletion
mutant of polyphosphatase Ppnlp/YDR452W) polyP (Andreeva
et al. 2016; Ogawa, DeRisi, and Brown 2000; Lonetti et al. 2011)
by means of enzymatic quantification could be verified with the
JC-D7 fluorescence assay. In the future, the JC-D7 fluorescence
assay might be used for high-throughput screening of various
engineered and natural yeast strains. As a result of these find-
ings, yeasts with more efficient biotechnological polyP pro-
duction reusing P;-containing wastewater or side streams can be
identified (Fees et al. 2023; Blank 2023).

PolyP is also a polyelectrolyte that allows metal cations to
complex with negatively charged P; moieties. Storage of polyP
inside microorganisms enables the bioaccumulation of other
minerals and trace elements. In fact, metal-polyP complexes
play a key role in the sequestration and detoxification of metals,
which so far has mostly been studied in prokaryotic and eu-
karyotic ~ microorganisms  (Sanz-Luque, Bhaya, and
Grossman 2020; Kulakovskaya 2018; Sun et al. 2022). Mono-
valent (Na* and Ag"), divalent (Ca®*, Mn**, Sr**, Zn**, Co*",
Ni**, and Cu®"), and trivalent cations (Fe**, Al**, and Eu**)
are reported to interact with polyP (Miiller, Schréder, and
Wang 2019; Jastrzab et al. 2021; Park et al. 2021). PolyP can
bind metal ions with dissociation constants in the micromolar
to nanomolar range (Wazer and Campanella 1950), which
agrees well with the concentrations and phosphate/element
ratio reported for yeasts (Cockrell et al. 2011; Nguyen, Dziuba,
and Lindahl 2019). Moreover, complex formation is largely
determined by the coordination sphere, with longer chains and
more coordination numbers conducive to the complex forma-
tion (Wazer and Campanella 1950; Miiller, Schréder, and
Wang 2019; Park et al. 2021). According to our results, polyP-
induced JC-D7 fluorescence can change significantly after
treatment with metal salt solutions. FeSO,, CuSO,, CoCl,,
ZnS0O,, PbNO;, and HgCl, showed the most pronounced
quenching effects. The conformation of polyP could be altered
by metal ions (Miiller, Schroder, and Wang 2019; Park
et al. 2021; Schroder et al. 2022), which also might impact its
subsequent interaction with the JC-D7 fluorescence sensor.
Based on Yan et al.'s (2023) findings, Zn>* reduces the stability
of the P-O-P bond by causing a conformational change in polyP
due to chelation, which in turn promotes hydrolysis. Under the
conditions chosen in the present study, the latter point does not
seem to matter much, because the addition of the metal che-
lator EDTA, at least for zinc, could restore JC-D7's fluorescence.
To counteract metal quenching in JC-D7-based polyP assess-
ments of zinc-enriched cell/tissue samples, membrane-

permeable chelators such as Tris(2-pyridylmethyl)amine (TPA)
or N,N,N’,N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN)
might be used to trap biologically mobile zinc (Huang
et al. 2013). Besides zinc, both chelators also bind other divalent
elements such as cadmium, cobalt, nickel, and copper
(Anderegg et al. 1977), and are thus promising candidates for
eliminating such polyP-metal complexes.

5 | Conclusion

This study presents the so far unprecedented application of JC-
D7 for the detection of biologically produced polyPs extracted
from S. cerevisiae. The robustness of the JC-D7 signal against a
variety of abiotic factors and extraction agents was demon-
strated. The semi-quantitative nature and the high sensitivity of
the JC-D7 assay would allow its application in an envisioned
workflow for pre-screening a large number of yeast strains and
rapid classification of these strains concerning their polyP
production capabilities. Thus, yeast polyP accumulation could
be studied further, and the results used to make bio-polyP.
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