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A data-driven strategy for phase field
nucleation modeling
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We propose a data-driven strategy for parameter selection in phase field nucleation models using
machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field
model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked
against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase
field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius)
are identified as essential for accurately modeling the nucleation behavior. These parameters serve as
input features for machine learning classification and regression models. The classification model
categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation
attempts in simulations, while the regression model estimates the appropriate Langevin noise
strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-
driven approach improves the efficiency of parameter selection in phase field models and provides a
generalizable method for simulating nucleation-driven microstructural evolution processes in various
materials.

Formany years, the phasefield (PF)method iswidely utilized for simulating
microstructure evolution processes1,2, with applications to various fields like
solidification3, solid-state transformations4, grain growth and coarsening5,
additive manufacturing6, fracture7–9, biological systems10 and many other
use cases. The fundamental concept of the methodology is based on the use
of “phase fields” (order parameters), which allow to distinguish between
the different phases or grains, and the use of partial differential equations for
the evolution of the microstructure as expressed through the dynamics of
these orderparameters.These evolution equations replacea tedious tracking
of the interface locations, which is required for complementary sharp
interface modeling, and therefore largely simplify the algorithmic effort for
these moving boundary problems. A characteristic feature is the use of
diffusive interfaces, and their thickness is usually chosen significantly larger
than physical interface thicknesses, in order to avoid too fine discretizations
of the computational domain. However, this increase of the interface
thickness requires careful extrapolation of results towards the sharp inter-
face limit to ensure reliable results. This step can be supported by superior
model formulations involving thin interface approaches3,11 andnondiagonal
phase field models12,13.

Although these approaches nowadays allow to perform large scale
quantitative simulations of technically relevant multi-components alloy
systems in thedeterministic growth regime, the formulationofnucleation as
a random event is still a challenge. For example, oxidation can significantly

limit materials service through degradation processes. Although the phase
field method is employed to tailor the materials design in various ways,
reproducing properly the initial nucleation of oxides is still difficult for this
approach.A central reason for this difficulty is thementioned increase of the
interface thickness, as it naturally implies thatnuclei have to appearon scales
much larger than the numerical interface thickness, far beyond their
expected physical size, as otherwise they would shrink and disappear
immediately for insufficient supersaturations and undercooling. A natural
choice of a Langevin noise strength in the evolution equations to enable
thermal fluctuations is therefore not sufficient for obtaining a proper
nucleation behavior, therefore requiring model-specific and technical code
modifications beyond the established deterministic phase field evolution
equations.

Generally, there are two different approaches to modeling the
nucleation behavior in phasefield simulations. The straightforwardmethod
is in the spirit of the above discussion that one can explicitly include a
Langevin noise term into the governing phase field equations. Another
method has been proposed by Gránásy et al.14, in which the critical fluc-
tuations are calculated as a function of local composition, i.e. chemical
driving force. Through statistically assigning the critical fluctuations to
different areas of the simulation domain and adding a Langevin noise with
small amplitude, a potential nucleus growth beyond critical fluctuations is
determined. Although the second method can significantly reduce the
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computational effort, the nucleation formation in the phase field simula-
tions remains sensitive to the underlying grid spacing of the simulation
domain, the local driving force and the amplitude of the fluctuations.
Improper parametersmay lead to the decay of the fluctuations or numerical
instabilities of the simulations. Using a trial and error method can help to
identify proper parameters for nucleation in the phase field simulations, to
be in agreement with experimental observations. However, existing phase
fieldmodels are still inherently computationally expensive and require high-
performance computing resources.

A particular application of phase field nucleationmodels is related
to the formation of oxides. Zaeeme and Kadiri developed amulti-phase
field model with simple quadratic free energy density for non-selective
oxidation to study oxidation kinetics and stress generation in the Zr-
ZrO2 system

15. Sherman et al. formulated a phase field model to study
the equilibrium state of an oxide where the film thickness is below the
Debye length16. Kim et al. examined the kinetics of diffusion-controlled
oxide growth by using Sherman’s model17. Wang et al. investigated the
impact of alloy composition, oxide nuclei size, shape and distribution
on the internal to external oxide growth transition18. However, these
investigations only consider the oxidation processes in sandwich
structures or with pre-existing oxide nuclei. These artificially pre-
defined morphologies may lead to inconsistent grain numbers and
shapes, as well as improper grain boundary distributions compared to
experimental observations.

Contrary, machine learning generated significant progress for mate-
rials modeling, e.g. for material design, materials properties prediction,
microstructure investigations, and improving and accelerating ab initio
simulations19,20. In particular, in the field of corrosion, data-driven
approaches successfully predict electrochemical corrosion21, stress corro-
sion cracking22, the corrosion rate of alloys23 and the corrosion resistance for
multi-principal element alloys24. Therefore, the question arises whether
machine learning (ML) techniques can be suitable for the required para-
meter optimization in phase field nucleationmodels.With the development
in recent decades, more and more powerful machine learning models have
emerged, among them several deep learning algorithms, namely, convolu-
tional neural networks (CNN), recurrent neural networks (RNN) and other
artificial neural networks (ANN)25. Amachine learningmodel is considered
as a black box that can analyze complicated relationships by training a
mathematical model according to a given data set. The construction of
relationships between the input parameters and output results without
consideration of underlying physical models can be powerful for situations,
where appropriate physical descriptions are difficult to develop or the
computing time for an existingmodel becomes too long. As a result of such
an approach, the computing speed canbe accelerated tremendously through
the use of a trainedmodel. For example, Z. Shen et al. developedaphasefield
model for the breakdown process of polymer-based dielectrics by incor-
porating the electrical, thermal, and mechanical effects and training a
machine learningmodel on the basis of high-throughput simulation results
toproduce an analytical expression for the breakdown strength as a function
of differentmaterial parameters26. D. Zapiain et al. built amodel for learning
the microstructural evolution of targeted systems directly by combining
phase field and history-dependent machine learning techniques to accel-
erate the calculations27.

In thepresentwork,we aim todemonstrate such a fruitful combination
of phase field and machine learning models for an efficient formulation of
oxidation during the service of ferritic steel-based interconnects for solid
oxide fuel and electrolyzer applications. Solid oxide fuel cells (SOFCs) are an
attractive approach for efficiently producing energy in an environmentally
friendly manner28–31. Generally, SOFCs are operated as a serial “stack” with
common interconnects between the cells, which link the anodes and cath-
odes of adjacent units. The interconnects not only establish the electrical
connection between the electrodes of neighboring cells but also block the
contact of the oxidizing and reducing atmospheres. Therefore, inter-
connects are of crucial importance for the performance of SOFCs, and their
properties significantly influence the overall performance of SOFCs32.

Different metallic alloys are broadly selected as interconnects due to their
high mechanical strength, sufficient thermal conductivity, excellent elec-
tronic conductivity and low price33. At the high working temperature of
SOFCs, ferritic stainless steels with formation of protective chromia scales
are promising candidates, such as AISI43034,35, ZMG33236 and Crofer 22
APU37,38. The formation of continuousCr2O3 protective layerswith 20–25%
Cr content increases the oxidation resistance of the interconnects. The
oxidation patterns are complex and depend on temperature, Cr con-
centration, atmospheric conditions and composition39–41. Already for a Fe-
Cr binary alloy, the oxide layers typically consist of Fe-rich oxides, Fe-Cr
mixed oxide and Cr-rich oxides from the exposed interface to the matrix.
Two severe challenges arise when ferritic stainless steels are chosen as
interconnects. First, the overall electrical resistance during service time
increases. Second, the Cr2O3 layer can react with dry or wet air, which leads
to the evaporation of gaseous hexavalent Cr species, such as CrO3(g) and
CrO2(OH)2. As a result, cathode materials like LaxSr1−xCoyFe1−yO3-δ

(LSCF) can subsequently react with the gaseous Cr species, and a formation
of a Sr- and Cr-containing oxides is observed in the cathodes, leading to Cr-
related degradation42. Therefore, a deep understanding of the Cr-oxide
formation processes in ferritic steels is important to optimize the perfor-
mance and longevity of SOFCs.

Aiming to develop a machine learning model that accurately predicts
nucleation parameters, thereby reducing computational costs and
improving model fidelity, we propose a data-driven strategy for the phase
field oxide nucleation modeling in the present work. The integration of
phase field modeling of the Cr2O3 nucleation process during the initial
oxidation process in the interconnect with machine learning predictions of
nucleation parameters for the desired Cr2O3 oxide nucleation density is
explored. To this end, a grand potential-based phase field nucleationmodel
is developed in section “Phase field nucleation model”. The phase field
nucleationmodel is benchmarked against classicalmodels in section “Phase
field model validation”. In view of the fact that the nucleation behavior in
phase field simulations depends on the grid spacing, the chemical driving
force as well as the amplitude of the fluctuation, the influence of these
parameters on the nucleation density in the phase field simulations is
investigated in section “Phase field simulation analysis”. Then, based on the
phase field results, the predictions of the nucleation density via a developed
ANN model are demonstrated. First, a classification of the different
nucleation density regimes is done in section “Phase field simulation ana-
lysis”, followed by a quantitative regression in section “Regression model”.
As a result, we obtain machine learning-based predictions for the choice of
numerical parameters in the phase fieldmodel to get the desired nucleation
behavior.

Results and discussion
Phase field nucleation model
As mentioned in the introduction, there are different approaches to
model nucleation in phase field simulations, with different advantages
and disadvantages. In the present work, we adapt the approach pro-
posed by Ode and Ohnuma43. A central observation is, that the direct
addition of an additive white noise term to the phase field evolution
equation (14) at each grid point would typically require unreasonably
high noise strengths, as otherwise, the fluctuations would be insufficient
to trigger the formation of a nucleus. This is a result of the fact that nuclei
typically appear on scales lower than those considered in mesoscale
phase field simulations, and therefore the interface thickness overrides
the physical critical radius for nucleation, hence affecting artificially the
nucleation energy barrier. However, overcoming this effect by
increasing the noise strength tends to destabilize the numerics and is
therefore not a favorable approach.

The starting point of our considerations is to use a grand potential-
based phase field model without consideration of nucleation, as detailed in
the methods section. This phase field model allows for more accurate
representation of the free energy landscape, which is crucial for predicting
microstructure evolution44. We add an uncorrelated, white Gaussian noise
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to this basic phase field model, such that the evolution equation becomes as
extension of Eq. (14) (see methods section)

τ _ηαi ¼ κ∇2ηαi �M0 η3αi � ηαi þ 2ηαi
PN
β¼1

Ppβ
j¼1;αi≠βj

γαiβjη
2
βj

 !

�PN
β¼1

∂hβ
∂ηαi

ωβ þ τζ ;

ð1Þ

where ζ is a stochastic scalar field, which obeys

ð2Þ

where δij is theKronecker delta. For the definition of all parameters, we refer
to the methods section. As will be discussed below, the selection of the
proper noise strength is essential, and a suitable approach for it is presented
in this work.

The secondelement is that supercriticalfluctuations,whichmay lead to
the formation of a nucleus, are spatially extended. Therefore, if at a certain
location, the phase field (including the thermal fluctuations) exceeds a cri-
tical value, the phase field is elevated above the nucleation threshold inside a
spherical environment with a randomly selected radius. In this way, the
nucleus, whichwould physically appear on a scale below the grid resolution,
is magnified to a scale which is spatially resolved in the phase field simu-
lations. Its further growth or shrinkage is then described by the evolution
equation (1).

It is obvious that the behavior of this nucleation model depends on
physical aspects and numerical details of the implementation, which are
analyzed in the following. The goal is to identify the most relevant depen-
dencies, in order to find a strategy for selecting the noise strength such that
the desired nucleation density is obtained. We note that due to the afore-
mentioned nucleus enhancement, the noise strength is becoming a
numerical parameter and is therefore not determined by the fluctuation-
dissipation theorem.

Physically, we expect the nucleation to depend on the bulk driving
force, which is in the current context the grand potential difference Δω
between the mother and oxide phase. In analogy to the work in ref. 43, the
first derivative of the well potential term and chemical free energy are
considered, while the interface gradient term is omitted. Hence, for an
assumed grain j of phase β growing from grain i of the α matrix, the
simplified expression of the critical fluctuations is ∂ωmw

∂ηαi
þ ∂ωchem

∂ηαi
¼ 0. After

expansion, we have

M0ðη3αi � ηαi þ 2ηαiγαiβjη
2
βjÞ þ

∂hα
∂ηαi

ðωα � ωβÞ ¼ 0: ð3Þ

With ηβj = 1 − ηαi and dimensionless γαiβj = 1.5, ηcrit(Δω) can be solved
numerically, where Δω = ωα − ωβ is the grand potential difference. This
critical phase field value is used explicitly in the procedure explained above,
as the order parameter inside the artificially stabilized nucleus is set to this
value. From this physical argument, we can therefore expect the nucleation
process to be dependent on the dimensionless ratio A/ηcrit.

The second dependence, which is based on physical arguments, is
that the nucleation density will depend on the local value of the critical
nucleus.Whereas in the above consideration, the gradient square term
from the phase field model has been ignored, it is directly linked to the
formation of a critical nucleus as a balance between the above bulk
energy gain and an increase of interfacial energy. Therefore, the
characteristic length scale for the critical nucleus is given by Rcrit = σ/
Δω with the interfacial energy σ. It is calculated via the integration of
ωgrad and ωmw, i.e. σ ¼ R1�1ðωgrad þ ωmwÞ dx. A larger chemical
driving force or smaller interface energy requires a smaller nucleation
radius, which directly leads to larger nucleation density. Therefore, we
expect the choice of the Langevin noise to depend on the dimen-
sionless ratio Rcrit/W with the phase field interface thickness W, and

the latter is normalized to one in the following. Finally, as elaborated in
ref. 43, the phase field nucleation behavior depends on the chosen grid
spacing as a numerical parameter. Therefore, the third expected
relevant dependency for the selection of the Langevin noise strength is
the ratio Δx/W.

Altogether, we therefore expect that the noise strength for determining
the desired nucleation is density will depend in a nontrivial way on the three
parameters Rcrit/W, Δx/W and A/ηcrit. A direct way to determine the noise
strength A would be by performing many phase field simulations and then
iterativelydetermining the suitable choice for this parameter.However, such
an iterative approach is tedious and time-consuming, and therefore we
propose here a strategy based on selected small-scale phasefield simulations
in combination with machine learning techniques, for accelerated deter-
mination of the noise strength. We illustrate the approach in detail in the
following sections for the givenphasefieldmodel.Wenote that the selection
of suitable parameters may additionally depend on other internal model
parameters, which are used e.g. for the detection of nuclei within a certain
environment and the rate of nucleus magnification. However, these para-
meters are kept constant throughout the simulations and are therefore not
screened. On a more general level, we emphasize that the overall approach
will also be beneficial for other phase field applications and different
nucleationmodels,which suffer from the combineddependenceonphysical
and numerical influencing factors.

Phase field model validation
For the application of the proposed phase field nucleation model, it is
essential that it leads tophysically reasonablepredictions.Therefore,we start
with a comparison of phasefield nucleation simulationswith the established
and frequently used Johnson-Mehl-Avrami-Kolmogorov (JMAK)
model45–49. The JMAK theory describes the time evolution of the volume
fraction of a new phase that forms during a phase transformation, and it
provides a framework for analyzing the rate of the transformation. Typi-
cally, JMAK theory can be expressed as

YðtÞ=Yeq ¼ 1� expð�ktnÞ; ð4Þ

where Y(t) is the fraction of the new phase at time t. Yeq is the equilibrium
fraction of the new phase, k is a constant relating to the nucleation and
growth rates,n is the so calledAvrami exponent, which is determined by the
mechanisms of nucleation and growth. The expression for n is given by

n ¼ qd þ B; ð5Þ

where typically q equals 1 for interface-controlled growth while q ≃ 0.5 for
diffusion-controlled growth patterns. d is the spatial dimensions, and B is
related to the nucleation generation mode. For preexisting nuclei, B = 0,
while B = 1 for continuous nucleation with a constant rate. Generally, the
Avrami exponent n can conveniently be extracted through plotting
lnf� ln½1� YðtÞ=Yeq�g versus lnðtÞ50.

Figure 1 compares two-dimensional phase field simulations with the
JMAK theory for a critical nucleation radius of Rcrit/W = 0.1. In these
simulations, the grid spacing is chosenasΔx=Δy=0.8W, and the amplitude
of the fluctuation is A/ηcrit=0.12 and 0.06 to generate different nucleation
densities. In Fig. 1a, five independent two-dimensional phase field simula-
tions with continuous nucleation mode using different random number
initializations are presented as the cross pointswhenA/ηcrit=0.12, all leading
to essentially the same results. The corresponding average nucleation den-
sity after convergence is, which is defined as the number of nuclei per unit
area of the two-dimensional system size. We note that nucleation occurs
continuously during the simulation, but as the supersaturation decreases
due to the formation and growth of oxide nuclei, it converges to a density,
which is optimized in the following investigations. Snapshots of one of the
phase field simulations are displayed in the embedded figures. In Fig. 1b, the
average nucleation density is 1.13 × 10−4W−2, which is much lower than in
Fig. 1a, leading to coarser structures.
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Next, the phase field results are fitted against the JMAK expression
(shown as solid lines) in the intermediate time regime. We find that the
corresponding slopes of the fitted lines are 2.01 and 1.989 for the two panels,
which are in excellent agreement with the expected Avrami exponent n = 2.
Furthermore, the error analysis of the phase field results in Fig. 1a and b are
also implemented via mean absolute errors (MAE) according to the fitted
slopes of five independent phase field simulations. The small MAEs indi-
cates the the robustness of the validation. Therefore, we can conclude that
the nucleation generationmodel in the present work agrees with the JMAK
theory and is independent of the nucleation sites and densities.

Phase field simulation analysis
In order to construct a database of nucleation density for training the
machine learning models, 547 phase field simulations are carried out for
different dimensionless nucleation parameters. In this section, the central
results of these simulations are summarized. InFig. 2a–c, selectedphasefield
results representing “high density”, “medium density” and “no nucleation”
nucleation are presented.When the nucleation density is larger than 4.47 ×
10−4W−2, corresponding to 300 nuclei in the chosen size of the simulation
domain, the phase field results are marked as “high density”. When the

nucleation density is in between 0 and 4.47 × 10−4W−2, the label “medium
density" is assigned. For the phase field results without nucleation, the “no
nucleation” label is used. The choice of these dividing criteria has no direct
physicalmeaning and therefore the actual choiceof the limiting values is not
critical. However, it assists in selecting the desired nucleation density in the
machine learning regression model.

For the nucleation example labeled with “high density” in Fig. 2a,
the dimensionless nucleation parameters Rcrit/W, Δx/W and A/ηcrit are
chosen as 0.1, 0.8 and 0.2, respectively. Here, the nucleation density is
about 1.6 × 10−3W−2 and the dimensionless average radius of the grains is
about 5.5W after 106 simulation time steps. A decrease of the tempera-
ture during operation can lead to large chemical driving forces, andmore
suitable nucleation sites are activated by the larger fluctuations in the
matrix phase. In turn, when the chemical driving force and the fluc-
tuations decrease, the number of suitable nucleation sites drops sig-
nificantly and the average grain radius increases due to more
pronounced grain growth. For the medium density case in Fig. 2b, the
nucleation density and dimensionless average grain radius are
approximately 1.79 × 10−4W−2 and 30W, respectively. Finally, in Fig. 2c,
when the chemical driving force or the fluctuations are not large enough,

(b) Medium Density(a) High Density (c) No Nucleation

Fig. 2 | Snapshots of microstructures for different nucleation densities. The
snapshots are labeled as (a) high density (using Rcrit/W = 0.1, Δx/W = 0.8, A/ηcrit =
0.2), (b) medium density (Rcrit/W = 0.1, Δx/W = 0.8, A/ηcrit = 0.12) and (c) no
nucleation (Rcrit/W = 0.12, Δx/W = 0.4, A/ηcrit = 0.07). High, medium and no
densities refer to nucleation densities are in the range of [4.47 × 10−4W−2,∞], [4.47 ×

10−4W−2,0] and [-∞,0], respectively. At here, density 4.47 × 10−4W−2 corresponding
to 300 nuclei in the selected simulation domain. The higher nucleation density
indicates the stronger nucleation driving force and thus the smaller average size of
oxide grains.
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Fig. 1 | Comparison of the phase field results with the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) theory in two-dimensions for two different nucleation
densities. a 1.05 × 10−3W−2 and (b) 1.13 × 10−4W−2 for continuous nucleation. The

agreement between phase field results and the JMAK theory supports the phase field
nucleation concept. To verify the robustness of the validation, the error analysis of
phase field results in (a) and (b) are measured via mean absolute error (MAE).
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nucleation cannot occur and only subcritical white noise fluctuations are
visible inside the simulation domain. Figure 3 includes all the phase field
results. As mentional above, these results serve as input for training the
machine learning models. The dimensionless nucleation parameters
Rcrit/W,Δx/W andA/ηcrit are in the range 0.05 to 0.15, 0.4 to 0.8 and 0.06
to 0.22, respectively, and are shown in Fig. 3 for the three categories with
high andmediumdensity, as well as no nucleation. Firstly, the sensitivity
of the phase field results to the chosen parameters, i.e. Rcrit,Δx/W andA/
ηcrit, are summarized. The parameter Rcrit/W is crucial in determining
the critical radius for nucleation. Variability in this parameter directly
impacts the nucleation rate, where a smaller Rcrit/W promotes more
frequent nucleation events, potentially leading to a higher nucleation
density and finermicrostructure. Conversely, a larger value can suppress
nucleation, resulting in lower nucleation density and coarser structures.
Δx/W is a numerical parameter, which represents the grid resolution. It
is introduced by the numerical method, i.e. finite difference method. It
contributes the Laplacian term in the phase field equations. A larger Δx/
W can leads to higher nucleation density. Additionaly, A/ηcrit affects the
amplitude of the noise term in the Langevin equation, influencing the
stochasticity of the nucleation process. Higher values of A/ηcrit increase
the influence of thermal fluctuations, potentially leading to more ran-
dom nucleation events and a less predictable microstructure. Lower
values significantly reduce this stochastic effect, making the nucleation
fomation unsuccessfully. Typically, the medium density category is the
most relevant range for the phase field simulations, as it corresponds to
phase transformation under the condition of quasi-equilibrium or with
moderate chemical driving force, while the high nucleation density
region corresponds to transformations with large undercooling or
supersaturation. From the phase field results, we find that the medium
density parameter case only occupies the smallest parameter region.
Obviously, this region depends on the choice of the category criteria, as
discussed above. Consequently, the manual determination of suitable
nucleation parameters in the phase field simulations demands large
computational resources due to the high sensitivity, especially when the
desired value needs to be located in the medium density domain.

Data driven strategy
In this paper, we propose a data-driven strategy for phase field modeling,
where suitable machine learning techniques based on the initial phase field
results are developed, which can optimize the phase field nucleation para-
meters, such that the intended nucleation density is achieved. To this end, a
deep learningANN is employed, as detailed in themethods section. Figure 4
illustrates our data-driven strategy for linking the phase field and the
machine learning modeling. For this purpose, the nucleation density ρnuc is
obtained from the phase field simulations, together with the previously
identified relevant and dimensionless features amplitude A/ηcrit, grid

spacingΔx/W and critical nucleation radiusRcrit/W. This four-dimensional
data set is taken as input data for the further data driven regression analysis,
as detailed in the methods section. For the classification, the nucleation
density is translated to the three different regimes according to the
description above. Here, a non-linear relation between the nucleation
density and three dimensionless nucleation features is expected. Both a
classification and a regression multi-layer ANN model are trained in the
present work, in the spirit of a fast but coarse analysis using a classification
model first and a more refined regression model for tuning the continuous
model parameters afterwards. In detail, the purpose of the classification
model is to assign categories of “no nucleation”, “medium density” and
“highdensity”ofnuclei todifferent spatial regions in the simulationdomain,
as discussed in the previous section “Phase field simulation analysis”. This
information can be used to avoid time-consuming nucleation attempts in
regions of the phase field simulation domainwhere it is not expected to play
a role. The regression model predicts the nucleation density with regard to
specific nucleation parameters. Consequently, the combination of these two
models can significantly decrease the computation efforts of the phase field
simulations. For instance, the chemical driving and the surface energy are
essentially constant during the typical operation of an interconnectmaterial
for a specific temperature. Hence, the nucleation parameter Rcrit/W is
constant. To reproduce experimental results, suitable amplitudes of the
fluctuations have to be determined through the regression model,
depending on the chosen grid spacing.

Classification model
As a first step, a classification model is developed to evaluate the nucleation
behavior. Here, we use the nucleation density as the criterion to divide the
parameter space into three different domains, as mentioned before, i.e., no
nucleation, medium density and high density. According to this classifica-
tion model, unnecessary computations in the phase field simulation could
be avoided, such as the possibility of nucleation events in the “no nucleation
region" could be skipped and the check loop for the appearance of new
nuclei in the “medium density region" could be done less frequently, or
larger time steps could be used.

Technically, the prediction dataset in our classification model consists
of 47 data points and the trained model accuracy reaches 94.54 %. Figure 5
shows the distribution of the three different nucleation regimes. The clas-
sification algorithm calculates actually the possibility of each category and
the final category is determined according to the highest possibility. The
yellow, green and blue regimes in the plot reflect the high, medium and no
nucleation density regimes, respectively. Although the domain boundaries
between these regimes are not straight, it can be useful to use approximating
dividingplanes instead, as indicated in thefigure. Such separators are easy to
parameterize and to use directly in PF simulations to discriminate locally
between the different nucleation regimes.Obviously, stronger thermal noise

Fig. 3 | Representation of the phase field results as the dataset for the machine
learning method. From (a) to (c), the data are classified according to the dimen-
sionless nucleation density, i.e. more than 4.47 × 10−4W−2, up to 4.47 × 10−4W−2 and

no nucleation. The influence of the key parameters, Rcrit/W, Δx/W and A/ηcrit, are
explicitly demonstrated. Increasing Δx/W, A/ηcrit, and decreasing Rcrit/W leads to a
higher nucleation density.
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and lower critical radii favor high nucleation densities. The dependence on
the grid spacing as a numerical parameter is less pronounced, exhibiting
easier nucleation for coarser grids, similar to the discussion in the Ode et al.
research43. Overall, the machine learning classification model shows good
consistency with the phase field model, see Fig. 3.

Regression model
Beyond the classification, also a regressionmodel is developed to predict
the nucleation density directly. As mentioned before, the goal is to
predict efficiently suitable parameters for the desired nucleation beha-
vior in the PF simulations. Typically, a single PF simulation with the
system dimensions given in the methods section requires single node
computation times of several minutes. In contrast, the resulting ML
predictions are about 106 times faster. Figure 6 (a) shows the predicted
nucleation density versus the phase field results. The mean absolute

error (MAE), root mean squared error (RMSE) and R-square are 0.0002
W−2, 0.0002 W−2 and 0.9863, respectively. It is worthwhile to mention
that the MAE and RMSE are identical, which indicates that the error
distribution of the prediction is uniform. Furthermore, the R-square
here is close to one, expressing that the machine learning predictions
match the phase field values very well. Close to the origin, some devia-
tions can be found, which is due to the fact that theMLmodel can predict
unphysical negative nucleation densities, which do not play a role. Thus,
themachine learningmodel possesses comparable accuracy and shows a
good agreement with the phase field model.

To investigate the impact of three identified independent features, A/
ηcrit,Rcrit/W andΔx/W, on the nucleation density, Fig. 7 (a) shows a 3Dheat
map of the nucleation density based on the machine learning regression
model. Overall, it shows a similar tendency as the previous classification
model. Furthermore, to clarify the interaction of the different features’

Fig. 5 | 3D plot of the predicted nucleation regime
based on the machine learning
classification model. Three different colors yellow,
green and blue represent high, medium and no
nucleation regimes, respectively. The surrounding
red dashed line marks the border of the domain
boundaries of the three different categories, whereas
the blue dashed line indicates the intersection of the
planar approximation. These planar approxima-
tions of the regimes can be used as simplified
boundaries in phase field simulations e.g. to sup-
press unnecessary nucleation attempts in the “no
nucleation regime” for saving computer time.

Fig. 4 | Data-driven strategy for linking phase field and machine learning models. Classification and regression machine learning models are developed based on three
dimensionless features amplitude A/ηcrit, grid spacing Δx/W and critical nucleation radius Rcrit/W and the nucleation density ρnuc from phase field modeling.

https://doi.org/10.1038/s41529-024-00529-8 Article

npj Materials Degradation |           (2024) 8:109 6

www.nature.com/npjmatdeg


impact on the nucleation behavior, three cross-sectional views are shown in
Fig. 7, where one of the variables is set constant and the other two features
vary in a certain range. Specifically, Rcrit/W, Δx/W and A/ηcrit are set as 0.1,
0.71 and 0.13, respectively, see Fig. 7b–d. We observe a monotonic
dependence of the nucleation density on the control parameters, exhibiting
a rather steep increase in the medium nucleation density, following the
rationale discussed in the preceding section. An additional SHAP value
analysis51 is employed, which can be used to explain the contribution of
individual features to a model’s predictions, see Fig. 6b. The color bar
indicates themagnitude of the feature values, and a positive/negative SHAP
value means that the related features have a positive/negative influence on
the final prediction.Here, a higher amplitudeA/ηcrit, a lower critical nucleus
radiusRcrit/W andahigher grid spacingΔx/Wmaygenerally lead to ahigher

nucleation density. The SHAP value calculation supports the previous
analysis and is consistent with the previous phase field simulation in Fig. 3.

At this point we can return to our intended goal of the coupled phase
field and machine learning simulations, to identify efficiently suitable
numerical parameters for the nucleation model. In a phase field model,
the grid spacingΔx is selected by the chosen discretization and the (local)
value of the critical radius Rcrit is related to the supersaturation or
undercooling, hence, it is a known quantity, as discussed in section “Data
driven strategy”. The goal is then to determine a suitable noise strength
A, in order to obtain the desired nucleation density. As suggested by
Fig. 7, the functional dependence between these parameters is mono-
tonic, hence a numerical inversion is straightforward, as demonstrated
explicitly in Fig. 8. Interestingly, the functional form looks like a

Fig. 6 | Evaluation of machine learning regression model. a Comparison of the machine learning predicted nucleation density in the prediction data set to the phase field
results, (b) SHAP value analysis for the nucleation density regression model.

Fig. 7 |Analysis ofmachine learning regressionmodel results. a 3Dheatmapof the
predicted nucleation density ρnuc based on the machine learning regression model,
(b) 2D plot at Rcrit/W = 0.10, (c) 2D plot at Δx/W = 0.7, (d) 2D plot at A/ηcrit = 0.13.
The color bar in each graph reflects the values of nucleation density. Whereas the

influence on the nucleation density is weak in wide parameter ranges, strong gra-
dients appear in an intermediate regime, emphasizing the importance of accurate
parameter selection for obtaining the desired nucleation density.
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piecewise definition, and the detailed shape may depend on the training
data set, the chosen network topology and the transfer function.
Nevertheless, the results show clearly, that (i) a proper noise strength can
be selected uniquely, and (ii) that the dependence of the nucleation
density on the numerical model parameters can be rather sensitive, and
therefore the developed coupled phase field andmachine learningmodel
is beneficial for identifying the required parameters efficiently, which can
save high computational efforts by avoiding trial-and-error approaches.

As a result, we have therefore developed an efficient scheme for
identifying the requirednoise strength for the selectedphasefieldmodel.We
note that this parameter selection strategy is not restricted to the current
application of oxide nucleation, but could also be transferred to other
applications, like the determination of optimized kinetic parameters
depending on the chosen numerical discretization, complementing tech-
niques like the thin interface approach in situations, where exact relation-
ships are not available.

Discussion
Tuning numerical parameters for phase field simulations in order to
reproduce a desired nucleation behavior can be a tedious and computa-
tionally expensive task. In this paper, we have proposed a data-driven
strategy for phase field nucleation modeling to overcome this challenge.
Therefore, a combination of a grand canonical phase field model together
withmachine learning approaches for the classificationand regressionof the
nucleation behavior has been investigated, which allows to predict a suitable
noise strength for obtaining a desired nucleation density. The approach is
demonstrated for Cr2O3 oxide nucleation in ferritic interconnector steels.
According to the analysis of the results the following main conclusions can
be drawn:
(i) The discussed phase field nucleation model is in agreement with

expectations from a classical JMAK description, which demonstrates
the suitability of the approach. We note that the choice of the under-
lying PF model is not critical, and similar parameter optimization
strategies can also be used for other models.

(ii) We have identified that the most relevant features for quantifying the
nucleation behavior are the Langevin noise strength, the critical radius
for oxide nucleation and the numerical grid spacing of the phase field
simulations. Such a feature identification from physical arguments is
useful for efficient and accurate machine learning models. As the
nucleation density depends smoothly on the phase field parameters,
the usednumberof datapoints leads already to anaccurate description,
and additional training data is expected to lead only to minor
improvements of the predictions.

(iii) The machine learning approach allows to classify the expected
nucleation behavior, depending on the local values of the aforemen-
tioned parameters. This enables accelerated simulations by neglecting

nucleationattempts in regionswhere such events areunlikely.Also, it is
conceivable that a coarser timediscretization canbe accepted, provided
that the ML approach predicts unfavorable nucleation conditions.

(iv) The selection of a suitable Langevin noise strength in order to repro-
duce the desired nucleation behavior using machine learning can help
to avoid additional phase field screening simulations. Instead, the pre-
trained machine learning model allows us to skip this step with high
accuracy and low computational effort.

Finally, we mention that such a data-driven strategy can be also of use
for other applications related to phase-field simulations, as selected training
results,which are obtained fromsmall-scale sample simulations, canbeused
efficiently to optimize large-scale simulations. In particular, the developed
model can be used for further investigations of oxide scale formation and
growth for SOFC applications and degradation prevention.

Methods
Grand potential-based phase field model
Based on the work by Plapp52 and Aagesen53, a grand potential-based
phase field model is formulated for N different phases and K compo-
nents. For each phase, enumerated by α, there are pα different grain
orientations, hence the phase field order parameter for phase α is
denoted as η!α ¼ ðηα1; ηα2; . . . ; ηαpα Þ.

The number density ρI of component I is defined as ρI= cI/Va, where cI
is the local atomic fraction of solvent I, andVa is the average atomic volume.

The grand potential functional is written as

Ω ¼
Z

V
ωgrad þ ωmw þ ωchem

� �
dV: ð6Þ

The first term ωgrad contains the gradient energy, which is given by

ωgrad ¼
κ

2

XN
α¼1

Xpα
j¼1

ð∇ηαjÞ2; ð7Þ

with κ being the (isotropic) gradient energy coefficient. The second term
reflects the multi-well potential density and has the form

ωmw ¼ M0

XN
α¼1

Xpα
i¼1

η4αi
4

� η2αi
2

� �
þ
XN
α¼1

Xpα
i¼1

XN
β¼1

Xpβ
j¼1;αi≠βj

γαiβj
2

η2αiη
2
βj

0
@

1
Aþ 1

4
;

ð8Þ

whereM0 is a constant of dimension energy per unit volume. γαiβj is related
to the interface profile between the grain i of phase α and grain j of phase β.
At here, γαiβj = γβjαi = 1.5 to generate symmetrical phase field profiles54. The
last term, ωchem, is the contribution of chemical grand potential density,
which can be expressed as

ωchem ¼
XN
α¼1

hαωα; ð9Þ

with hα being an interpolation function, which indicates the phase fraction
and is formulated as

hα ¼
Ppα

i η2αiPN
β

Ppβ
j η2βj

: ð10Þ

In addition, ωα is the grand potential density of phase α, which can be
written as

ωα ¼ f α � ρAμA � ρBμB � . . .� ρK�1μK�1; ð11Þ

Fig. 8 | Relationship between the nucleation density ρnuc and the noise of fluctuation
A/ηcrit for fixed values Δx/W = 0.7 and Rcrit/W = 0.10.
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where fα is the chemical free energydensity ofphaseα, andμA is the chemical
potential of componentA in theαphase, relative to the solventwith indexK.
In thiswork, parabolic free energy functions are utilized for constructing the
dimensionless expressions fα, i.e.

f α ¼
XK�1

I¼1

ϵαI ðcI � cαI Þ2=2þ f 0α: ð12Þ

The parabolic coefficient ϵαI determines the curvature of the parabola
(dimension: energy density) of component I in phase α. The dimensionless
chemical potential of component I in phase α can be expressed as
μI ¼ ∂f α=∂ρI ¼ Vaϵ

α
I ðcI � cαI Þ. In the spirit of the grand canonical phase

fieldmodelwe assume in the following that they are locally balanced for each
component, thatwe candealwith a single chemical potentialμI at eachpoint
in space. The grand potential density of phase α can be expressed for the
given choice of free energy densities as

ωα ¼ f 0α �
XK�1

I¼1

μ2I =ð2V2
αϵ

α
I Þ � μI c

α
I =Vα: ð13Þ

According to the Allen-Cahn equation, the time evolution of order
parameter ηαi becomes

τ _ηαi ¼ κ∇2ηαi �M0 η3αi � ηαi þ 2ηαi
PN
β¼1

Ppβ
j¼1;αi≠βj

γαiβjη
2
βj

 !

�PN
β¼1

∂hβ
∂ηαi

ωβ:

ð14Þ

Then, for each solute species A the diffusion equation reads

∂ρA
∂t

¼ ∇ �
XK�1

I¼1

MAI∇μI ; ð15Þ

whereMAI is the mobility coefficient. Using the chain rule, we have

∂ρA
∂t

¼
XK�1

I¼1

∂ρA
∂μI

∂μI
∂t

þ
XN
β¼1

Xpβ
i¼1

∂ρA
∂ηβi

∂ηβi
∂t

ð16Þ

Substituting Eq. (15) in Eq. (16), we obtain

XK�1

I¼1

χAI
∂μI
∂t

¼ ∇ �
XK�1

I¼1

MAI∇μI �
XN
β¼1

Xpβ
i¼1

∂ρA
∂ηβi

∂ηβi
∂t

; ð17Þ

with χAI being the susceptibility, known as the thermodynamic factor. It is
given by

χAI ¼
∂ρA
∂μI

¼ ∂

∂μI

XN
β¼1

hβρ
β
A ¼

XN
β¼1

hβχ
β
AI : ð18Þ

The explicit form of the chemical potential evolution equations provided by
Eq. (17) can be obtained from a matrix inversion,

_μA

..

.

_μK�1

2
664

3
775 ¼

χAA . . . χAK�1

..

. . .
. ..

.

χK�1A . . . χK�1K�1

2
664

3
775
�1 QA

..

.

QK�1

2
664

3
775; ð19Þ

with

QX;X¼A;B;:::;K�1 ¼ ∇ �
XK�1

I¼1

MXI∇μX �
XN
β¼1

Xpβ
i¼1

∂ρX
∂ηβi

∂ηβi
∂t

: ð20Þ

In the present work, the nucleation of β grains from an α matrix is
modeled via PF simulations by using the aforementioned approaches. The
total size of the two-dimensional PF simulation domain is 1024Δx ×
1024Δy, using Δx/W = Δy/W = 0.4. The thermodynamic descriptions of
Cr2O3 and the ferritic matrix are taken from the Fe-Cr-O ternary database
by Taylor et al.55. These free energy densities are fitted by a parabolic
function near the local-equilibrium states for different temperatures. As
Cr2O3 is stoichiometric, the curvature of the parabola of the Cr2O3 free
energy density is 1000 times larger than the ferritic matrix phase. Conse-
quently, the concentrations of Cr and O in Cr2O3 grains are nearly inde-
pendent of the temperature. These treatments not only reproduce all the
necessary thermodynamic properties but also save computational efforts.
Then, the dimensionless capillary length d0 =M0W/6 is set as 0.1 in the PF
simulations, which is sufficient for the production of the scale of the cur-
vature of Cr2O3 grains, and the dimensionless parameter κ in Eq. (7) is κ =
3d0W/4. In addition, the diffusivity in this work is normalized by using
~Di ¼ Di=DCr (i=Cr, O), with DCr being the diffusivity of Cr in the ferritic
matrix phase. The dimensionless diffusivities of Cr and O in the ferritic
matrix phase are set as 1 and 104 according to the diffusivity ratio in ref. 56,
while the diffusion of Cr and O in Cr2O3 grains are negligible. In order to
enhance the computational efficiency, periodic boundary conditions are
prescribed at all the boundaries and GPU acceleration is applied in the
simulations57.

Artificial neural networks
The ANN algorithm is inspired by the biological neural network of animal
brains and consists of multi-layer structures. A precious and reliable model
could be obtained by utilizing suitable hyperparameters like efficient acti-
vation functions and appropriate layers/nodes58. Generally, the multi-layer
structure involves input layer, hidden layer and output layer. The different
layers play significant roles in theneural network and could be considered as
a filter for data. Deep learning is built on different, densely connected neural
layers and implements a form of progressive data distillation59.

In order to carry out the machine learning method, the open-source
packageTensorflow isused in thepresentwork60.A total numberof 547data
sets obtained from the phase field simulations are randomly split into the
training (85% of the entire data) and testing dataset (15%). All the data are
normalized by using the MinMaxScaler algorithm from the open-source
package scikit-learn61. The classificationmodel in this work consists of four
different hidden layers, where each dense layer has 8 nodes, and the output
layer has the aforementioned three different categories. As an optimizer, the
root mean square propagation (RMSprop) is used. The metric and loss
function for the classification model are sparse categorical accuracy and
sparse categorical cross entropy, respectively. The regression model also
contains four different hidden layers, each dense layer possesses 8 nodes.
The final output layer delivers the desired nucleation density. The popular
optimizer AdaptiveMoment Estimation (Adam) is employed for themodel
training.Here,weuseMSEas themetric and loss function.The evaluationof
final model is based on the MAE, MSE and R2 calculation. Additionally, a
dropout layer is introducedbetween eachhidden layerwith adropout rate of
0.5 and an early stopping with a patience of 10 is ustilized to avoid over-
fitting. For the further data prediction, the parameter ranges are A/ηcrit:
[0.06, 0.22], Δx/W: [0.4, 0.8] and Rcrit/W: [0.06, 0.15], respectively.

Data availability
The data and codes used in this study can be shared upon reasonable
request.

Received: 10 June 2024; Accepted: 14 October 2024;

References
1. Steinbach, I. Phase-field model for microstructure evolution at the

mesoscopic scale. Annu. Rev. Mater. Res. 43, 89–107 (2013).

https://doi.org/10.1038/s41529-024-00529-8 Article

npj Materials Degradation |           (2024) 8:109 9

www.nature.com/npjmatdeg


2. Chen, Long-Qing Phase-field models for microstructure evolution.
Annu. Rev. Mater. Res. 32, 113–140 (2002).

3. Echebarria, B., Folch, R., Karma, A. & Plapp, M. Quantitative phase-
field model of alloy solidification. Phys. Rev. E 70, 061604 (2004).

4. Spatschek, R.,Müller-Gugenberger, C., Brener, E. &Nestler, B. Phase
fieldmodeling of fracture and stress-induced phase transitions.Phys.
Rev. E 75, 066111 (2007).

5. Moelans, N., Wendler, F. & Nestler, B. Comparative study of two phase-
field models for grain growth. Comput. Mater. Sci. 46, 479–490 (2009).

6. Ji, K., Clarke, A. J., McKeown, J. T. & Karma, A. Microstructure
development during rapid alloy solidification. MRS Bulletin 49,
556–567 (2024).

7. Karma, A., Kessler, D. A. & Levine, H. Phase-field model of mode iii
dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001).

8. Brener, E., Spatschek, R. & Karma, A. Phase field modeling of crack
propagation. Philos. Mag. 91, 75–95 (2011).

9. Spatschek, R., Hartmann, M., Brener, E., Müller-Krumbhaar, H. &
Kassner,K.Phasefieldmodelingof fast crackpropagation.Phys.Rev.
Lett. 96, 015502 (2006).

10. Castro, M., Travasso, RuiD. M. & Oliveira Joana, C. R. E. The phase-
field model in tumor growth. Philos. Mag. 91, 183–206 (2011).

11. Karma, A. & Rappel,Wouter-JanQuantitative phase-fieldmodeling of
dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323
(1998).

12. Wang, K., Boussinot, G., Brener, E. A. & Spatschek, R. Quantitative
nondiagonal phase field modeling of eutectic and eutectoid
transformations. Phys. Rev. B 103, 184111 (2021).

13. Wang, K., Boussinot, G., Hüter, C., Brener, E. A. & Spatschek, R.
Modeling of dendritic growth using a quantitative nondiagonal phase
field model. Phys. Rev. Mater. 4, 033802 (2020).

14. Gránásy, L. ászló,Börzsönyi, Tamás&Pusztai, TamásNucleationand
bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88,
206105 (2002).

15. Zaeem, MohsenAsle & El Kadiri, H. An elastic phase field model for
thermal oxidation of metals: Application to zirconia. Comput. Mater.
Sci. 89, 122–129 (2014).

16. Sherman, Q. C. & Voorhees, P. W. Phase-field model of oxidation:
Equilibrium. Phys. Rev. E 95, 032801 (2017).

17. Kim, K., Sherman,Q. C., Aagesen, L. K. & Voorhees, P.W. Phase-field
model of oxidation: Kinetics. Phys. Rev. E 101, 022802 (2020).

18. Wang, R. et al. A phase-field study on internal to external oxidation
transition in high-temperature structural alloys. JOM 74, 1435–1443
(2022).

19. Choudhary, K. et al. Recent advances and applications of deep
learningmethods inmaterials science. npj ComputationalMater. 8, 59
(2022).

20. Morgan, D. & Jacobs, R. Opportunities and challenges for machine
learning in materials science. Annu. Rev. Mater. Res. 50, 71–103
(2020).

21. Coelho, LeonardoBertolucci et al. Reviewing machine learning of
corrosion prediction in a data-oriented perspective. npj Mater.
Degrad. 6, 8 (2022).

22. Alamri, A. H. Application of machine learning to stress corrosion
cracking risk assessment. Egypt. J. Pet. 31, 11–21 (2022).

23. Diao, Y., Yan, L. & Gao, K. Improvement of the machine learning-
based corrosion rate prediction model through the optimization of
input features.Mater. Des. 198, 109326 (2021).

24. Roy, A. et al. Machine-learning-guided descriptor selection for
predicting corrosion resistance in multi-principal element alloys. npj
Mater. Degrad. 6, 9 (2022).

25. Géron, A. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. “O’Reilly Media, Inc.”, (2022).

26. Shen, Zhong-Hui et al. Phase-field modeling and machine learning of
electric-thermal-mechanical breakdown of polymer-based
dielectrics. Nat. Commun. 10, 1843 (2019).

27. Montes de Oca Zapiain, D., Stewart, J. A. & Dingreville, R. émi
Accelerating phase-field-based microstructure evolution predictions
via surrogate models trained by machine learning methods. npj
Computational Mater. 7, 3 (2021).

28. Chehrmonavari, H. et al. Hybridizing solid oxide fuel cells with internal
combustion engines for power and propulsion systems: A review.
Renew. Sustain. Energy Rev. 171, 112982 (2023).

29. Golkhatmi, SanazZarabi, Asghar, MuhammadImran & Lund, P. D. A
review on solid oxide fuel cell durability: Latest progress,
mechanisms, and study tools. Renew. Sustain. Energy Rev. 161,
112339 (2022).

30. Xu, Q. et al. A comprehensive review of solid oxide fuel cells operating
on various promising alternative fuels. Energy Convers. Manag. 253,
115175 (2022).

31. Hanif, MuhammadBilal et al. Recent advancements, doping
strategies and the future perspective of perovskite-based solid
oxide fuel cells for energy conversion. Chem. Eng. J. 428, 132603
(2022).

32. Hu, Ying-Zhen, Yao, Shu-Wei, Li, Cheng-Xin, Li, Chang-Jiu &
Zhang, Shan-Lin Influence of pre-reduction on microstructure
homogeneity and electrical properties of aps mn1.5co1.5o4
coatings for sofc interconnects. Int. J. Hydrog. Energy 42,
27241–27253 (2017).

33. Han, M., Peng, S., Wang, Z., Yang, Z. & Chen, X. Properties of fe–cr
based alloys as interconnects in a solid oxide fuel cell. J. Power
Sources 164, 278–283 (2007).

34. Ebrahimifar, H. & Zandrahimi, M. Oxidation and electrical behavior of
aisi 430 coated with cobalt spinels for sofc interconnect applications.
Surf. Coat. Technol. 206, 75–81 (2011).

35. Thublaor, T. & Chandra-ambhorn, S. High temperature oxidation and
chromium volatilisation of aisi 430 stainless steel coated by mn-co
and mn-co-cu oxides for sofc interconnect application. Corros. Sci.
174, 108802 (2020).

36. Fujita, K., Ogasawara, K., Matsuzaki, Y. & Sakurai, T. Prevention of
sofc cathodedegradation in contactwith cr-containing alloy.J. Power
Sources 131, 261–269 (2004).

37. Manjunath, N., Santhy, K. & Rajasekaran, B. Thermal expansion of
crofer 22 apu steel used for sofc interconnect using in-situ high
temperature x-ray diffraction. Materials Today: Proceedings, (2023).

38. Topcu, A., Öztürk, B. ülent & Cora, ÖmerNecati Performance
evaluation of machined and powder metallurgically fabricated
crofer®22 apu interconnects for sofc applications. Int. J. Hydrog.
Energy 47, 3437–3448 (2022).

39. Dheeradhada, V. S., Cao, H. & Alinger, M. J. Oxidation of ferritic
stainless steel interconnects: Thermodynamic and kinetic
assessment. J. Power Sources 196, 1975–1982 (2011).

40. Williams, C. A., Unifantowicz, P., Baluc, N., Smith, GeorgeD. W. &
Marquis, E. A. The formation and evolution of oxide particles in oxide-
dispersion-strengthened ferritic steels during processing. Acta
Materialia 61, 2219–2235 (2013).

41. Safikhani, A., Esmailian, M., Tinatiseresht, T. & Darband,
GhasemBarati High temperature cyclic oxidation behavior of ferritic
stainless steel with addition of alloying elements nb and ti for use in
sofcs interconnect. Int. J. Hydrog. Energy 41, 6045–6052
(2016).

42. Yin, X., Spatschek, R., Menzler, N. H. & Hüter, C. A pragmatic transfer
learning approach for oxygen vacancy formation energies in oxidic
ceramics.Materials 15, 2879 (2022).

43. Ode, M. & Ohnuma, I. A thermal fluctuation-based nucleation method
for phase-field models. Computational Mater. Sci. 194, 110448
(2021).

44. Choudhury, A., Kellner, M. & Nestler, B. A method for coupling the
phase-field model based on a grand-potential formalism to
thermodynamic databases. Curr. Opin. Solid State Mater. Sci. 19,
287–300 (2015).

https://doi.org/10.1038/s41529-024-00529-8 Article

npj Materials Degradation |           (2024) 8:109 10

www.nature.com/npjmatdeg


45. William, J. &Mehl, R. Reaction kinetics in processes of nucleation and
growth. Trans. Metall. Soc. AIME 135, 416–442 (1939).

46. Avrami, M. Kinetics of phase change. i general theory. J. Chem. Phys.
7, 1103–1112 (1939).

47. Avrami, M. Kinetics of phase change. ii transformation-time relations
for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940).

48. Avrami, M. Granulation, phase change, andmicrostructure kinetics of
phase change. iii. J. Chem. Phys. 9, 177–184 (1941).

49. Kolmogorov, AndreiNikolaevich On the statistical theory of the
crystallization of metals. Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 3,
335 (1937).

50. Wu, W. et al. Phase field benchmark problems for nucleation.
Computational Mater. Sci. 193, 110371 (2021).

51. Lundberg, S.M.& Lee,Su-In. A unifiedapproach to interpretingmodel
predictions. In Guyon, I. et al. editors, Advances in Neural Information
Processing Systems 30, pages 4765–4774. Curran Associates, Inc.,
(2017).

52. Plapp, M. Unified derivation of phase-field models for alloy
solidification from a grand-potential functional. Phys. Rev. E 84,
031601 (2011).

53. Aagesen, L. K., Gao, Y., Schwen, D. & Ahmed, K. Grand-potential-
based phase-field model for multiple phases, grains, and chemical
components. Phys. Rev. E 98, 023309 (2018).

54. Moelans, N., Blanpain, B. &Wollants, P. Quantitative analysis of grain
boundary properties in a generalized phase field model for grain
growth in anisotropic systems. Phys. Rev. B 78, 024113 (2008).

55. Taylor, J. R. & Dinsdale, A. T. A thermodynamic assessment of the cr-
fe-o system. Int. J. Mater. Res. 84, 335–345 (1993).

56. Auinger, M., Naraparaju, R., Christ, H. J. & Rohwerder, M. Modelling
high temperature oxidation in iron–chromium systems: Combined
kinetic and thermodynamic calculation of the long-term behaviour
and experimental verification. Oxid. Met. 76, 247–258 (2011).

57. Thörnig, P. & von St. Vieth, B. JURECA: Data Centric and Booster
Modules implementing the Modular Supercomputing Architecture at
Jülich Supercomputing Centre. J. large-scale Res. facilities 7, A182
(2021).

58. Arriagada, J., Olausson, P. & Selimovic, A. Artificial neural network
simulator for sofc performance prediction. J. Power Sources 112,
54–60 (2002).

59. Chollet, F. Deep learning with Python. Simon and Schuster, (2021).
60. Abadi, M. et al. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
(2016).

61. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011).

Acknowledgements
The work was funded by the BMBF projects WirLebenSOFC (03SF0622B)
and SOC-Degradation 2.0 (03SF0621A). The authors gratefully acknowl-
edge computing time on the supercomputer JURECA57 at For-
schungszentrum Jülich under grant no. CJIEK2C. Open access was funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) in the framework of the Collaborative Research Centre 1548 (CRC
1548, project number 463184206, subproject B03).

Author contributions
Y.H:conceptualization,methodology,machine learning, visualization, analysis
and writing; R.S: methodology, analysis and writing; K. W: conceptualization,
methodology, phase field, visualization, analysis and writing.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Kai Wang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41529-024-00529-8 Article

npj Materials Degradation |           (2024) 8:109 11

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjmatdeg

	A data-driven strategy for phase field nucleation modeling
	Results and discussion
	Phase field nucleation model
	Phase field model validation
	Phase field simulation analysis
	Data driven strategy
	Classification model
	Regression model

	Discussion
	Methods
	Grand potential-based phase field model
	Artificial neural networks

	Data availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




