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ABSTRACT

Empirical, data-driven approaches and theoretical, model-driven ap-
proaches to investigate the brain largely co-exist. With the intention
to foster synergies, this thesis explores the intricacies of each of these
two approaches.

In the first study, we investigate the neural underpinnings of eye-
hand coordination by analyzing spiking activity recorded via multi-
electrode arrays from behaving monkeys within the Vision-for-Action
experiment. Before exploring movement-related activity along the
dorsal visual stream, we follow the dataset’s evolution from the raw
recording data to preprocessed datasets with integrated metadata as
well as spike sorting, and deal with potential artifacts by characterizing
and excluding them. To isolate the effect of movement variables from
simultaneously occurring behaviors (e.g., vision and eye movements)
on the spiking activity of single neurons, we use Generalized Linear
Models (GLMs).

In particular, we reproduce the observation of a bimodal distribution
of preferred directions of neurons in M1/PMd for hand movements
restricted to the horizontal plane and report similar bimodal distribu-
tions in V1/V2, DP, 7a.

In a second project, we research high-frequency oscillations (~
300 Hz) that are predicted by simulations of biologically constrained,
large-scale, spiking neural network models of a cortical microcircuit.
To understand the model prediction mechanistically, we approximate
the network dynamics via mean-field and linear response theory and
find three network ingredients that impact the power spectrum of
the population activity: the anatomical connectivity, the delay distri-
butions, and the transfer functions. Assuming the model prediction
is accurate, we argue that high-frequency oscillations should be de-
tectable via population measures as the local field potential.
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ZUSAMMENFASSUNG

Empirische, datengestiitzte Ansidtze und theoretische, modellgestiitzte
Ansitze zur Erforschung des Gehirns existieren weitestgehend unab-
hidngig voneinander. Mit der Absicht, Synergien zu férdern, erforscht
diese Arbeit die Feinheiten beider Ansétze.

In der ersten Studie werden die neuronalen Grundlagen der Koordi-
nation von Auge und Hand untersucht, indem Spike-Aktivitdten, die
tiber Multielektroden-Arrays im Rahmen des Vision-for-Action Expe-
riments in Affen aufgezeichnet wurden, analysiert werden. Bevor die
bewegungsbezogene Aktivitdt entlang des dorsalen Sehstroms unter-
sucht wird, wird die Entwicklung des Datensatzes von den Rohdaten
bis hin zu vorverarbeiteten Daten mit integrierten Metadaten und
Spike Sortings erldutert. Artefakte werden charakterisiert und entfernt.
Um die Auswirkungen von Bewegungsvariablen von simultan statt-
findenden Prozessen (z. B. Sehen und Bewegung der Augen) auf die
Spike-Aktivitdt einzelner Neuronen zu isolieren, werden Generalized
Linear Models (GLMs) verwendet.

Insbesondere wird die Beobachtung einer bimodalen Verteilung der
bevorzugten Richtungen von Neuronen in M1/PMd fiir Handbewe-
gungen, die auf die horizontale Ebene beschrédnkt sind, reproduziert
und durch die Beobachtung einer dhnlichen bimodalen Verteilung in
V1/V2, DP, 7a erweitert.

In einem zweiten Projekt werden hochfrequente Oszillationen (~
300Hz) erforscht, die in Simulationen von biologisch eingeschrank-
ten, grof3skaligen, spikenden neuronalen Netzwerkmodellen eines
kortikalen Mikroschaltkreises auftreten. Um die Modellvorhersage
mechanistisch zu verstehen, wird die Netzwerkdynamik durch Mean-
Field- und Linear Response Theorie angendhert und es werden drei
Netzwerkbestandteile ausgemacht, die die spektrale Leistungsdichte
der Populationsaktivitdt beeinflussen: die anatomische Konnektivitét,
die Delay-Verteilungen und die Ubertragungsfunktionen. Unter der
Annahme, dass die Modellvorhersage zutreffend ist, wird argumen-
tiert, dass hochfrequente Oszillationen tiber Populationsmessungen
wie beispielsweise das lokale Feldpotenzial nachweisbar sein sollten.
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1l faut savoir que, d’une part, les plaisirs, les joies, les ris et les jeux, d’autre
part, les chagrins, les peines, les mécontentements et les plaintes ne nous
proviennent que de la (le cerveau). C’est par la surtout que nous pensons,

comprenons, voyons, entendons, que nous connaissons le laid et le beau, le
mal et le bien, I'agréable et le désagréable, soit que nous les reconnaissions
par l'utilité qu’elles nous procurent, ressentant, dans cette utilité méme, le
plaisir et le déplaisir, suivant les opportunités, les mémes objets ne nous
plaisant pas.

— Hippocrates, 460-377 BC

INTRODUCTION

The brain is arguably the most complex organ of the human body, and
its crucial role in our functioning has been philosophized upon since
the time of the sophists in ancient Greece (Breitenfeld et al., 2014).
Unlike Aristotle, who believed the heart to be the crucial organ and the
brain to merely cool down the blood (Clarke et al., 1963), Hippocrates,
as cited above, foresaw the brain’s paramount importance.

Centuries of effort into the investigation of the brain, termed neu-
roscience, enlightened us with insights into basic human capabili-
ties ranging from the instincts of breathing and sleeping via sensory
perception and movement control to complex emotions and social
interactions.

Modern neurosciences reflect the demand to advance understand-
ing of this fascinating multi-scale organ through various approaches
on different spatial and temporal scales, synthesizing insights from
physics, biology, medicine, and psychology research. However, it is un-
clear which line of research brings us closer to unraveling the brain’s
mysteries. Can we merely rely on fMRI studies of the BOLD signal
in humans to understand which brain regions activate during a spe-
cific task? Is it crucial to first explain the membrane potential of a
single neuron in the behaving fruit fly to comprehend the mechanisms
behind Alzheimer’s disease?

Within the scope of this thesis, we deal with projects located in two
subfields: Systems neuroscience and computational neuroscience.

Common to both systems and computational neuroscience is, how-
ever, the assumption that the basic building block constituting the
brain is the neuron. This point of view was established in the late
19th century due to Golgi (1873), who invented the silver-staining of
neural tissue and Ramoén y Cajal (1888), who used such stainings for
astonishingly detailed drawings of single neurons, but also intricate
networks thereof. Both received a joint Nobel prize in 1906 for their
contributions.



2

INTRODUCTION

classical scientific !ooP

observation

/ N\

result
question

conclusion

L\ypothesis

experiment

Figure 1.1: Illustration of the scientific loop.

But while systems and behavioral neuroscience focus on understand-
ing brain subsystems and their functions through experiments and
therefore follow a top-down approach, computational neuroscience,
younger and steadily advancing with computing technology, utilizes
simulations and theoretical descriptions to achieve a mechanistic,
bottom-up understanding of experimental findings. In their common
quest — understanding how the brain works —, they have a symbiotic
history, these subfields remain separate (De Schutter, 2008) due to
increasing specialization and complexity. Yet, the need for integrative
approaches that combine experimental and computational techniques
is of utmost importance.

Arguing in favor of this hypothesis, consider the scientific loop as
depicted in Figure 1.1, which represents an idealization of the scien-
tific process. The observation of an unknown feature in experimental
data, a prediction from simulations, or analytical descriptions lead
to a question that can be formulated as a falsifiable hypothesis. An
experiment must be designed to test this hypothesis, which can be
performed in vitro (including computational approaches) or in vivo.
The obtained knowledge is then converted into a result, which can
lead to new observations depending on the outcome.

The reality is that the brain is analyzed in diverse scientific subfields,
and the gaps between the research directions are significant, making it
difficult for researchers to communicate across communities and keep
track of all the findings. Progress in experimental possibilities allows
simultaneous recording from multiple brain regions, while systematic
examinations of connectivity and neuron densities enable biologically
realistic simulations.

However, while experiments explore functional relationships, sim-
ulations have not yet reached the same level. Reconciliation between
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experiment and simulation/theory is crucial for advancing our under-
standing of the brain.

This thesis presents two lines of projects that, if treated indepen-
dently, would each be considered to belong to just one subfield, either
experimental neuroscience or computational/theoretical neuroscience.

For one part, we will dive deep into an experimental setup, prepro-
cess the data, investigate behavioral data, and relate it to neuronal
activity in specific macaque brain regions. For the other part, we will
perform simulations of spiking neural networks and examine the
network dynamics using theoretical tools.

The goal of combining these projects into one thesis is to understand
the intricacies of each of the two research approaches to finally bridge
the gap between them, profit from this synergy, and eventually gain a
more comprehensive understanding of how the brain works.

Next, we will briefly establish the prerequisites that are needed for
the following chapters. The focus lies on the basic building block of
the brain: the neuron.

1.1 PREREQUISITES

The brain consists of two categories of cells: neurons and glia. While
neurons are believed to play a key role in the brain’s functioning,
the glia’s role is less clear and is often attributed a mere supporting
function.

1.1.1  The neuron

Neurons communicate through electrical and chemical signals trans-
mitted between neurons at connection points, the synapse. As depicted
in Figure 1.2, a neuron consists of a cell body, the soma, the signal-
receiving branches, the dendrites, and outward projecting branches,
the axons. Signals are received at the dendrites, integrated at the cell
body, and propagated down the axon as an action potential. The axon
terminal may connect with a synapse or a muscle. Myelin sheets, which
cover the axons intermitted with gaps, known as nodes of Ranuvier,
insulate the “cable” and allow for faster conduction speeds of a signal
(Purves et al., 2018).

THE ACTION POTENTIAL The action potential (see Figure 1.3), also
commonly called spike, is a large yet brisk (~ 1 — 2 ms) deflection of
the membrane potential that is generated at the part of the cell body
called the axon hillock if sufficiently many incoming signals add up to
cross a certain threshold.

The membrane potential is the difference in ion concentration be-
tween the inside and outside of a neuron. At rest, the membrane
potential is around —70mV, governed by the Nernst potential that
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Figure 1.2: Sketch of a neuron. Image from “Neurons and glial cells” in
Clark et al. (2018) licensed under Creative Commons Attribution
License v4.0.

describes the equilibrium potential for a given ion type. The cell
membrane consists of a lipid bilayer with many ion channels (e.g.,
voltage-gated) and ion pumps (Kandel et al., 2013; Purves et al., 2018)
and thus allows for the exchange of ions if the channels are open or at
the expanse of energy to engage the pumps. Relevant ions involved in
neuronal signaling are potassium (K*), sodium (Na™), chloride (CI7),
and calcium (Ca®*) (Purves et al., 2018).

Depolarization is the process by which the membrane potential be-
comes more positive. This can occur through incoming signals, which
might add up, if sufficiently synchronized. If the excitation threshold
is exceeded, a cascade of events follows: voltage-gated ion channels
open, leading to complete depolarization (peak action potential) un-
til Na*-channels close repolarization (Kandel et al., 2013). The Na*
channels stay closed for a certain amount of time, preventing further
action potentials called the refractory period.

When a neuron receives a signal, sodium channels in the membrane
open and allow positively charged sodium ions (Na™) to flow into
the cell, which depolarizes the membrane and triggers the action
potential. As the membrane potential becomes more positive during
depolarization, potassium channels open and allow positively charged
potassium ions (K™) to flow out of the cell, which repolarizes the
membrane and returns it to its resting potential.
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THE SYNAPSE AND NEUROTRANSMITTERS  Synapses typically con-
nect the axon terminal of a presynaptic neuron with the dendritic
spine of a postsynaptic neuron (see inset in Figure 1.3). There are
two types of synapses: chemical and electrical. Chemical synapses
involve the release of neurotransmitters from the presynaptic neuron
in the synaptic cleft, which then bind to receptors on the postsynaptic
neuron. Electrical synapses involve direct communication between
neurons through gap junctions.

Peak action potential
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Figure 1.3: Sketch of an action potential. Image from “Neurons and glial
cells” in Clark et al. (2018) licensed under Creative Commons
Attribution License v4.0.

At chemical synapses, calcium ions (Ca*") are involved in triggering
the release of neurotransmitters from the presynaptic neuron. When
an action potential reaches the end of an axon, it triggers calcium chan-
nels to open and allows calcium ions to flow into the cell. This influx
of calcium then leads to a fusion of vesicles containing neurotrans-
mitters with the membrane. It causes the release of neurotransmitter
molecules from the axon terminal into the synaptic cleft. The released
neurotransmitters then diffuse across the synaptic cleft and bind to
specific receptors on the postsynaptic membrane, triggering a response
in the postsynaptic neuron.

Neurotransmitters can have excitatory or inhibitory effects on the
postsynaptic neuron, depending on the specific receptor subtypes
they bind to. Depolarization results in an excitatory postsynaptic
potential (EPSP), while hyperpolarization leads to an inhibitory postsy-
naptic potential (IPSP). There is a transmission delay of roughly 1ms
caused by chemical transmission (Clark et al., 2018). Furthermore,
the unidirectional nature of synaptic transmission allows for complex
information processing in the brain (Kandel et al., 2013). Common
neurotransmitters observed in the brain are glutamate (acting exci-
tatory), gamma-aminobutyric acid (GABA) (inhibitory), acetylcholine
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(excitatory), dopamine (both excitatory and inhibitory), and serotonin
(both excitatory and inhibitory).

Electrical synapses are far less common than chemical synapses
but involve direct communication between neurons through gap junc-
tions. These synapses allow for faster communication than chemical
synapses (Connors et al., 2004).

EXTRACELLULAR ELECTROPHYSIOLGY Electrodes that are suffi-
ciently sensitive and located in the neural tissue can detect the deflec-
tions caused by action potentials of nearby neurons. Unlike intracellu-
lar recordings, which require placing an electrode inside a neuron (or
on the membrane —called patch-clamping), extracellular recordings
detect the electrical signals that neurons emit into the extracellular
space.

Extracellular recordings can be done using several types of elec-
trodes, including single-wire electrodes, multi-wire electrodes, and
microelectrode arrays. The choice of electrode depends on the specific
experiment and the desired level of spatial resolution.

Nowadays, extracellular recordings can be used to study the activ-
ity of many neurons simultaneously. To understand how groups of
neurons work together to generate behavior or process information.
Additionally, extracellular recordings can be done in awake, behav-
ing animals, which allows researchers to study neural activity under
naturalistic conditions (see Chapter 3).

DIVERSITY OF NEURON TYPES The brain contains an incredibly
diverse array of neuron types, each with their unique properties and
functions. Neurons vary widely in shape (unipolar, bipolar, multipo-
lar), size, and connectivity. This diversity is critical for enabling the
complex computations and behaviors characteristic of the brain. Two
large research consortia that have recently been working to uncover
this diversity’s full extent are The Blue Brain Project (Er¢ et al., 2018)
and the Allen Institute for Brain Science (Sunkin et al., 2012). By com-
bining cutting-edge techniques like whole-cell patch clamping and
single-cell RNA sequencing, these projects are helping to catalog and
categorize the many different types of neurons found in the brain.

GLIA CELLS Glia cells are non-neuronal cells that are believed to
play a crucial role in supporting neural tissue. These cells provide
structural and functional support to neurons by maintaining the ex-
tracellular environment necessary for neuronal function. Glia cells
participate in the formation and maintenance of synapses, facilitate
the transmission of nerve impulses, and regulate the chemical com-
position of the extracellular fluid. Recently, evidence for a potential
functional role of astrocytes has been accumulated (Delepine et al.,
2023; Rasmussen et al., 2023).
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1.1.2 Neuron models

The biological, chemical, and physical details of an action potential
generation for a single neuron, starting from signal reception at the
synapse to the cascades of ion flux in and out of the cell, are fascinating.
However, it is crucial to find a level of modeling that is simple and
at the same time describes the desired phenomena sufficiently well.
In practice, the trade-off gave rise to a zoo of different models (Herz
et al., 2006).

In computational neurosciences, different complexity levels are re-
quired. A single neuron’s dynamics must be simple enough and com-
putationally efficient to simulate large-scale networks. These, in turn,
allow us to study phenomena that emerge only due to the interaction
of many neurons. Thus, biological details (likely) can be reduced to a
minimum as in binary neurons or, already more advanced, the leaky
integrate-and-fire (LIF) (Gerstner et al., 2014), which will be introduced
below.

However, if the dynamics of the membrane potential of a single
neuron recorded via whole-cell patch clamping are to be explained,
more complex models are necessary. Representatives of such models
are the rather complicated Izhikevich model (Izhikevich, 2003) and
the famous Hodgkin-Huxley model (Hodgkin et al., 1952).

LEAKY INTEGRATE-AND-FIRE (LIF) Neurons can be understood
as input-output devices based on their basic components (dendrites,
soma, axon). The LIF neuron model describes the dynamics of the
membrane potential via a system of coupled differential equations

de‘;it) = —V+RyI(t) , (1.1)
Tsdgtt) — I+ () (1.2)

with V denoting the membrane potential, R,, the membrane resis-
tance, T, the membrane time constant and I(t) the time-dependent
incoming synaptic current induced by the input #(¢). The membrane
time constant and resistance are related to the membrane capacitance
through C,; = g*. The membrane potential is rescaled to zero in the
absence of inputs. The dynamics of the synapse are here defined as an
exponential post-synaptic current.

The firing mechanism is included in the LIF as follows: When V(t)
reaches the threshold potential Viyreshold, the membrane potential is
clamped to the reset potential Vieset fOr a refractory period Ti.¢. After
the refractory period the membrane potential evolves according to
the equations again. The reaching of the threshold with subsequent
depolarization corresponds to one action potential (or spike).
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1.1.3 Large-scale organization

Neurons form connections, and the density of neurons is different
across areas and layers of the cortex, the outer sheet of the brain. This
can be visualized through staining techniques such as done by Golgi
as well as Cajal Golgi (1873) and Ramoén y Cajal (1888). Stereotypical
connections between and within layers are found throughout the cortex
(Mountcastle, 1997). The cortical column, proposed by Mountcastle,
is a basic unit of cortical organization and is often referred to as a
microcircuit.

1.1.4 Information encoding hypotheses

The way that neurons encode and communicate information is one of
the fundamental questions in neuroscience that remain unresolved, de-
spite the fact that spikes are regarded as the fundamental components
of neural communication.

Based on the observation that multiple inputs are required for a neu-
ron to cross its threshold potential, two major theories have emerged.
The first theory, known as rate coding, proposes that information is
encoded in the modulation of a neuron’s firing rate (Georgopoulos
et al., 1982; Hubel et al., 1962; Shadlen et al., 1994), as opposed to
the precise timing of individual pulses. The second theory, temporal
coding (Abeles et al., 1994; Gautrais et al., 1998; Torre et al., 2016),
suggests that precise spike timing and coordination between neurons
on a shorter timescale play a crucial role in information encoding
and processing. Recent studies suggest that both mechanisms may
coexist in the brain, despite the fact that these two hypotheses are
often viewed as exclusive alternatives. Additional theories, including
population coding and sparse coding, have been proposed to explain
neural coding.

1.2 ORGANIZATION OF THE THESIS

In the introduction, I already stated that I will present research from
two distinct neuroscience subfields. Indeed, writing this thesis proved
difficult: If I had condensed the breadth of prior knowledge that I
deemed necessary for the reader to have into one single “Neurosci-
entific Background” chapter, this would have had a sedative effect
exceeding that of commonly used anesthetics.

To keep the overall introduction short, only the most crucial back-
ground is supplied here. Each of the thesis” two parts — Part i and
Part ii —, introduces its own neuroscientific background (Chapter 2
and Chapter 6).
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1.2.1 Research questions

The two research questions that guided my work are:

1. Is the bimodality of the distribution of preferred directions
(PDs) that has been observed in primary motor cortex (M1) and
dorsal premotor cortex (PMd)/ventral premotor cortex (PMv) also
present in the parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task?

2. Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a micro-
circuit model composed of LIF neurons a valid prediction of the
model? Should they be observable in experimental data, and can
we mechanistically understand them?

Besides having the overarching aim to bridge between disciplines,
I worked on projects that are deeply rooted in the research agenda
of the INM-6 at the Forschungszentrum Jiilich. Here, I will briefly
motivate each research question and then present the outline.

1.2.2  Systems neuroscience question

Let us, for a moment, imagine the voluntary act of brushing your teeth
in the morning: You enter the bathroom with the intent to brush your
teeth — you learned that maintaining dental hygiene is important —,
move towards the sink, focus your eyes on the toothbrush and initiate
a movement towards it. The movement starts with pure reaching and
ends with a grasp of the brush. Even without conscious thought, some-
how, you estimate the distance between your current hand position
and the brush correctly, activate the correct sequence of muscles in
the shoulder, elbow, and hand, and finally adjust the position of your
fingers so that the grasp is secured by applying the necessary amount
of grip force. After that, you make a swift eye movement (saccade)
targeted at the toothpaste, grasp it with the other hand, demonstrate
tremendous coordination by screwing it open while holding the tooth-
brush in the other hand, and eventually squeeze the right amount of
paste on the brush. After placing the toothpaste back, you move the
toothbrush to your teeth and start scrubbing.

Due to the visual feedback from the mirror and a sense of the
posture of your arm with respect to the body (proprioception), you
manage to guide it to the mouth instead of your nose.

Several senses are involved in performing this seemingly simple
task, and thus it is apparent that not just one brain area governs the
neural basis of this process.

Hand-eye coordination is a crucial component of our everyday be-
havior. The Vision-for-Action (V4A) experiment aims to probe the
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neural mechanisms that govern hand-eye coordination. Previous re-
search suggests that in the brain, besides the visual and motor cortices,
areas in the dorsal visual stream play a crucial role in this process.

BRIEF DESCRIPTION OF THE EXPERIMENT In the Vision-for-Action
(V4A) experiment, rthesus monkeys (macaca mulatta) are trained to
perform various visually guided hand movement tasks.

Extracellular neural activity is recorded simultaneously with four
Utah arrays with 32 electrodes each inserted in the primary visual
cortex (V1), secondary visual cortex (V2), dorsal prelunate (DP) and
area 7a (7a), and one array of 96 electrodes in the primary motor
cortex (M1)/dorsal premotor cortex (PMd). A two-joint (shoulder and
elbow) robotic exoskeleton system is used to record the monkey’s
arm and hand movements. It restricts movements to a 2D horizontal
plane. Eye movements are recorded via an infrared light source and
camera. Furthermore, a head-fixation mask was used to ensure the
head position’s stability.

PURPOSE OF THE EXPERIMENT  With neural activity recorded from
areas along the dorsal visual stream and the motor cortex and be-
havioral recordings from the arm and eye during tasks that allow for
naturalistic behavior, this dataset yields a reach platform for various
investigations.

This multi-purpose nature of the data from the V4A experiment is
exciting yet challenging to analyze. Rough research ideas immediately
meet the eye, such as:

¢ Can we observe interarea coordination?
¢ How is visual input transformed into motor output?

* What do the areas in posterior parietal cortex (PPC) encode?

Some of the above and more questions were tackled during my
exploration of the data, yet I deemed them not conclusive enough to
be included here (see dashed circles on the left in Figure 1.4).

BIMODALITY OF PREFERRED DIRECTION Literature research re-
vealed a phenomenon observed in the community of motor control:
Single neurons in M1 encode the direction of hand movement in their
firing rate. The direction of hand movement that leads to maximal
firing is termed the PD (Georgopoulos et al., 1982). Across many
recorded neurons, the distribution of PDs was assumed to be uniform.
Indeed for movements in 3D, this was confirmed (Caminiti et al.,
1990; Schwartz et al., 1988) with a notable exception by Naselaris
et al. (2006). However, for movements constrained to 2D, as in the V4A
experiment, this distribution of PDs showed a systematic bias (Scott
et al., 2001b, 1997) that could be traced back to the biomechanics of
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the arm (Codol et al., 2023; Lillicrap et al., 2013; Verduzco-Flores et al.,
2022). Unexpectedly, in addition to M1, the same bimodality could also
be observed in neurons from premotor areas (Suminski et al., 2015).

Given these observations and the recorded datasets of the v4A
experiment, we hence ask:

Is the bimodality of the distribution of PDs that has been observed
in M1 and PMd/PMv also present in the parietal and visual cortex of
macaque monkeys that perform a visually guided reaching task?

1.2.3 Computational neuroscience question

Richard Feynman’s famous quote aptly summarizes the physicist’s
approach to ensuring proper understanding of a matter “What I cannot
create, I do not understand”.

BALANCED NETWORKS In line with this tradition, computational
neuroscientists have not stopped at realistically modeling single neu-
rons (see Section 1.1.2) but went beyond to build models composed of
individual neurons (e.g., binary neurons (van Vreeswijk et al., 1996))
whose population neural activity statistically resembles what is ob-
served in experimental data. In particular, networks were found to
exhibit “realistic” (neither too high firing rates nor silent) spiking
activity statistics if excitation and inhibition are in balance (Amit et al.,
1997b; Brunel, 2000; van Vreeswijk et al., 1998).

THE MICROCIRCUIT MODEL  While very successful and exhibiting
features like efficient information processing and noise robustness
associated with biological neural networks, these artificially balanced
networks were only weakly constrained by known biological data.
One answer to this issue is data-constrained spiking neural networks
(Shimoura et al., 2021): Technical advances nowadays allow for the
measurement of anatomical data (e.g., layer resolved (excitatory/in-
hibitory) neuron densities connection probabilities between neuron
population) or even morphological data of neurons.

The Potjans-Diesmann model (Potjans et al., 2014a), developed at
our institute, aims at modeling a layered cortical microcircuit of 1 mm?
with 4 layers (L23, L4, L5, L6) with a total of 77169 neurons. Each layer
consists of one excitatory and inhibitory population. The connectivity
between the different populations is derived from experimental data.
The single neurons are modeled as LIF. Crucially, the density of neu-
rons in this model is large enough such that the majority of inputs to
a neuron originate in the model and thus reduce the assumptions that
are required on externally supplied background activity.

The model successfully reproduces layer and population-specific
firing rates as observed in vivo experiments. Yet, raster diagrams of
the spiking activity that it generates display population (and even
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Figure 1.4: Projects overview. Grey-circled chapters are merely the means to
the red-circled chapters. The dashed and white circles are open
projects not presented in this thesis.

model-wide) synchronizations that have, up to now, not been observed
in vivo. Hence, we ask ourselves:

Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a microcircuit
model composed of LIF neurons a valid prediction of the model?
Should they be observable in experimental data, and can we mecha-
nistically understand them?

1.2.4 Outline

After having motivated the two guiding questions, let us have a look
at the structure of this document by following the red thread in
Figure 1.4.
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In the first part (Part i), we delve into the analysis of electrophys-
iological data from the V4A experiment, beginning with a systems
neuroscience review in Chapter 2, which includes information on the
macaque brain anatomy, the visual system, motor control and the
PPC. Being equipped with new knowledge, details on the setup, the
recorded data, subjects and tasks, and the preprocessing pipeline that
renders the data accessible for analysis will be explained in Chapter 3.
In the early stages of our data analysis, we encountered potential
artifacts that will be characterized and (at least partly) dealt with in
Chapter 4 before we can tackle our research question in Chapter 5.

The second part (Part ii) starts with a presentation of a theoretical
description of spiking neural networks (Chapter 6) and then investi-
gates the ultra-high-frequency oscillations in the microcircuit model
in Chapter 7.

Lastly, in Chapter 8, we summarize the results, discuss what we
learned, and dare to give an outlook — now that we have gained
insights from and even contributed to two fascinating neuroscience
research directions.
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Part I

ANALYSIS OF ELECTROPHYSIOLOGICAL DATA
FROM THE VISION-FOR-ACTION EXPERIMENT






Our knowledge can only be finite,
while our ignorance must necessarily be infinite.

— Karl Popper

NEUROSCIENTIFIC BACKGROUND — SYSTEMS
NEUROSCIENCE

This part of the thesis presents the analysis of data from the Vision-
for-Action (V4A) experiment.

In this chapter, I supply an overview of the neuroscientific back-
ground that I consider relevant for interpreting this dataset.

The control of limb movements requires the coordination of sensory
information and therefore engages multiple neuronal structures. In
visually guided reaching tasks, vision is the primary sense that needs
to be processed; hence, eye movements are necessary. In this section,
we briefly review foundational knowledge of the visual system, the
circuitry involved in saccade generation, the neural basis for motor
control, the role of the posterior parietal cortex (PPC), and finally,
concepts on their interaction in eye-hand coordination.

Most of the mentioned studies involve primates or humans if not
stated otherwise.

2.1 Macaque brain anatomy . . .. ... ... .. ...... 18
22 Thevisualsystem . . ... ................. 19
2.2.1  Visuotopicmapping . . ... ........... 20
2.2.2 Hierarchical structure . . ... .. ... ... .. 20
2.2.3 Saccade generation . . . ... ... ... ... 22
2.2.4 Saccadic remapping . .. ............. 23
23 Motorcontrol . ... ... ... . L L 24
23.1 Muscles . .... ... ... .. 24
2.3.2  Primary motor cortex (M1) . . . . .. ... .. .. 25
2.4 The role of the posterior parietal cortex (PPC) . . . . . . 26
2.5 Reference frames and coordinate systems . . . . .. .. 29

We start with a brief description of the macaque brain anatomy and
specify the locations of our recordings sites, which shall serve as an
orientation during the subsequent discussion on important literature.
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The terms ipsilateral
and contralateral
refer to whether
something (such as a
stimulus, body
component, or
movement) on one
side of the body is
processed by the
same or opposite
hemisphere of the
brain. Thus, the
processing of vision
occurs in the
contralateral
hemisphere.

NEUROSCIENTIFIC BACKGROUND — SYSTEMS NEUROSCIENCE

2.1 MACAQUE BRAIN ANATOMY

The cerebrum of the rhesus macaque, analogous to the human cere-
brum, consists of two hemispheres connected via the corpus callosum.
Historically, a subdivision into four different lobes according to promi-
nent sulci or fissures (see Figure 2.1), as well as functional differences,
has prevailed: The frontal lobe, the temporal lobe, the parietal lobe,
and the occipital lobe (Gray et al., 1918; Kandel et al., 1991).

A substantial part of the occipital lobe is composed of visual areas.
Visual stimuli that hit the retina in the back of the eye evoke neu-
ral signals that travel via the corpus callosum to the contra-lateral
hemisphere and then via the lateral geniculate nucleus (LGN) in the
thalamus to the visual cortex. In the visual cortex, the visual stimuli
traverse the visual hierarchy (see Felleman et al. (1991)), starting with
the primary visual cortex (V1), also called the striate cortex, followed
by the secondary visual cortex (V2), then higher areas, and eventually,
the temporal and parietal lobe.

Two distinct visual pathways associated with disparate functions
have been proposed (Goodale et al., 1992a; Ungerleider et al., 1982):
The ventral stream, also called the “What” or “Vision-for-Recognition”
pathway, and the dorsal stream, also called the “Where”, “How” or
“Vision-for-Action” pathway.

The dorsal stream leads via the extrastriate visual cortices (e.g.,
V2, V3) and the prelunate gyrus, the gyrus anterior to the lunate
sulcus (Is), to the posterior parietal cortex (PPC). The area called dorsal
prelunate (DP), which will be relevant later on, is located on the medial
part of the prelunate gyrus.

The PPC involves areas posterior to the postcentral gyrus, the gyrus
posterior to the central sulcus (cs), with several somatosensory areas,
and anterior to the superior temporal sulcus (sts). Within PPC, it is
common to distinguish between the superior parietal lobule and the
inferior parietal lobule, which lie medial and lateral with respect to
the intraparietal sulcus, respectively. The area 7a (7a), another area
of importance in the following, is located on the medial end of the
gyrus between the superior temporal sulcus (sts) and intraparietal
sulcus (itps).

In the frontal lobe, the primary motor cortex (M1) and the adjacent
dorsal premotor cortex (PMd) and ventral premotor cortex (PMv) are
located anterior to the central sulcus (cs). Several brain areas, more
rostral to that, belong to the prefrontal cortex.

Having this rough overview in mind, we start the neuroscientific
background with a brief description of the visual system.
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Figure 2.1: Left: Sketch of a monkey illustrating directional references that
are commonly used to describe the brain anatomy. Right: Lateral
view of the macaque monkey brain with sulci. Abbreviations:
arc: arcuate sulcus, iocs: inferior occipital sulcus, itps: intraparietal
sulcus, cs: central sulcus, If: lateral fissure, Is: lunate sulcus, prs:
principal sulcus, sts: superior temporal sulcus. Reproduced with
permission from Springer Nature from Figure 5 in Rushmore et al.
(2021).

2.2 THE VISUAL SYSTEM

The primate body perceives light emitted or reflected from objects
in the three-dimensional world through the eye. It serves as a lens
that projects incoming photons onto the retina at the back of the eye.
Each area in the visual field maps a specific location on the retina;
this is called visuotopic (or retinotopic) mapping. In the visual system,
a neuron’s receptive field (RF) is the portion of the visual field that
excites it (Kuffler, 1953).

The retina consists of cones and rods, the photoreceptors. While
cones react to colored light in specific wavelengths (similar to the RGB
color space axes), rods are responsible for vision in dim light. After
processing in the inner and outer nuclear layers, the photoreceptor
activity is essentially compressed and converges into retinal ganglion
cells whose axons constitute the optic nerve (Kandel et al., 2013). Per
eye, this optic nerve connects to the optic chiasm, where the fibers cross
from one hemisphere to the other. From here on, the visual signals
are processed contralaterally, e.g., the right hemifield perceived by the
right eye, is processed in the brain’s left hemisphere.

From the optic chiasm, the optic nerve projects to the lateral genic-
ulate nucleus (LGN), a structure located in the thalamus that sends
axons to the primary visual cortex (V1). Different layers of the LGN
relay the ipsi- and contralateral visual signals of the same hemifield
and innervate with different layers in V1.
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2.2.1  Visuotopic mapping

Neurons in the primary visual cortex (V1) exhibit a visuotopic map-
ping. Analogously to the density of photoreceptors in the retina, the
center of vision is represented by the largest cortical volume with
neurons that have small, precise, RFs. The larger the eccentricity of the
visual field, the smaller the part of V1 that represents it, and the larger
the corresponding RFs (Kandel et al., 2013). The visuotopic organiza-
tion of visual cortex is illustrated in the maps in panels B and C of
Figure 2.2.

Besides the visuotopic mapping, neurons in Vi are organized in
cortical columns that are selective to the orientation and direction
of moved edges (Hubel et al., 1959), receive predominantly input
from one eye (ocular-dominance), vary in color preference and exhibit
patchy, lateral connections to other nearby columns.

2.2.2  Hierarchical structure

The connectivity between visual areas follows a hierarchical structure
(Felleman et al., 1991). V1, also called striate cortex, in this classical
picture projects to V2, which in turn projects to tertiary visual cortex
(V3), both accounted to be extrastriate areas. With each step in the
hierarchy, single neurons encode more complex features of the visual
scene. One factor that enables this is convergence; many neurons of V1
project to fewer neurons in V2 and so on.

This hierarchy, furthermore, seems to be split into two pathways,
the dorsal and the ventral pathway Figure 2.2D. Interestingly, these
two pathways largely overlap with the two parallel pathways that
originate with two distinct types of ganglion cells (parvocellular and
magnocellular) in the retina, are processed in particular layers at the
level of LGN, and project to different parts of layer IV in V1 (Medathati
et al., 2016; Yoonessi et al., 2011).

There are feedforward and feedback connections to other areas
(Wang et al., 2022b) which are shown to be layer dependent (Rockland,
2022; Rockland et al., 1979).

Influential theories inspired by the hierarchical anatomy and func-
tion of the visual system, whose details are out of the scope of this little
review, have been proposed and lead to ideas on convolutional neural
networks and eventually deep learning (Fukushima, 1988; LeCun et al.,
2015; Marr, 1982).

High-resolution vision is only possible due to the high cone density
in the fovea. Eye movements are necessary to bring objects of a visual
scene into the fovea.
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Figure 2.2: Illustrations on the visual system. A: Block diagram of the main
nodes involved in the two visual pathways. Gray arrows indi-
cate the ventral pathway, which coincides with the parvocellular
pathway, and similarly, black arrows indicate the dorsal pathway
(magnocellular). The figure is taken from (Medathati et al., 2016).
B: Radial and C: angular component of the retinotopic maps in
the macaque visual cortex, color codes as shown in the insets.
Figures reused with permission from Prof. Brian Wandell, whose
Lab distributed them as displayed in Prof. Heeger’s lecture using
data from (Brewer et al., 2002; Dougherty et al., 2003). D: Brain
sketch illustrating the two visual pathways. Figure taken from
(Medathati et al., 2016)
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Curiously, patients
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to damage in V1, yet

retain the ability to

perform visuomotor
tasks and to correctly
guide saccades (Kato
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Figure 2.3: Neural circuitry involved in the generation of eye movements
(both saccades and smooth pursuit). Created by Wurtz, CC BY
4.0, presented in (Wurtz, 2015), file obtained from Wikimedia
Commons.

2.2.3 Saccade generation

Eye movements have been characterized into several categories: Sac-
cades are rapid and ballistic jumps of both eye positions in the ocular
cavity to foveate a new target during a fixation period. In contrast
to the brisk movement during saccades, the smooth pursuit is a con-
tinuous movement of both eyes to follow a moving visual target.
Humans perform 3 — 4 eye saccades per second, and most of these are
thought to happen subconsciously and involuntarily, but some also
are volitional (McDowell et al., 2008).

The circuitry that generates saccades is closely linked to the visual
system. It includes some low-level structures in the midbrain (brain-
stem and superior colliculus (SC)) and some higher-level structures in
the parietal and frontal cortex as illustrated in Figure 2.3.

The six muscle bundles (three agonist-antagonist pairs) that control
the eye are driven by the cranial nerve nuclei in the brainstem (Kandel
et al., 2013). These nuclei receive direct input from the sC. The upper
layer of SC has a retinotopic map of the visual field, and conversely,
neurons have receptive fields (RFs). In contrast to Vi, these neurons
are not tuned to any features of the visual stimuli. The (sensory)
upper layer projects to the lower layer, where neurons are organized in
movement fields that encode the vector from the current eye position
to the RFs of the upper layer. Stimulation of these movement fields
evokes a saccade along this vector and thus leads to the foveation of a
corresponding stimulus.
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Besides SC, also the lateral intraparietal area (LIP) and thefrontal eye
field (FEF) are engaged in saccade generation.

Targeted inactivations or lesions of these areas revealed interesting
connections: If SC is blocked, V1, V2, and LIP can’t generate saccades
anymore, but FEF has a direct connection to the eye muscle control
in the brainstem and can still produce saccades. Furthermore, short
latency saccades called express saccades were not observed anymore
(McPeek et al., 2004; Zhaoping, 2014). If FEF is lesioned or inactivated,
non-visually-guided saccades (e.g., memory-guided) saccades could
not be generated (Sommer et al., 1997).

2.2.4 Saccadic remapping

It has been shown that neurons in LIP (Duhamel et al., 1992) , FEF
(Umeno et al., 1997) and the deep layers of SC (Walker et al., 1995)
transiently shift their visual RFs prior to saccades. This affects three
situations: 1. They already respond to stimuli that are not yet in their
RF but will be after the upcoming saccade (predictive remapping) 2.
They cease to respond to stimuli in the RF once a new saccade plan
moves the eyes away. 3. A remembered stimulus at the remapped
RF, that is no longer present, evokes a response after the saccade
(Kusunoki et al., 2003; Sun et al., 2016).

Remapping has also been suggested in some extrastriate areas
(Nakamura et al., 2002)

For FEF, evidence for a bottom-up mechanism enabling the remap-
ping has been found: The saccade-generating SC sends a corollary
discharge or efference copy of the oculomotor command via the
mediodorsal nucleus (MD) to the FEF, which in turn can prepare for
upcoming visual stimuli (Fukutomi et al., 2020; Sommer et al., 2002).

2.2.4.1 Visual masking and saccadic suppression

The visual perception appears rather stable to us, despite the high
frequency of discontinuous jumps in the retinal image. The perceived
images of a visual scene are generated during periods of fixation,
where the eye position is still. But what happens during a saccade?
How does the brain decide whether the eye is moving or the object
that was kept in focus is moving?

Visual masking is one mechanism that could stabilize the perceived
image: It has been demonstrated that the perception of a low-contrast
image is eliminated if a high-contrast image is presented in quick
succession (Kandel et al., 2013). The low-contrast image is said to be
masked by the high-contrast image.

A second mechanism contributing to a stable visual percept is
saccadic suppression. There is evidence that V1 (McFarland et al., 2015),
V4 (Denagamage et al., 2021; Zanos et al., 2016), middle temporal
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Imagine you sit on
the train and stare
out of the window.
You spot a deer on
the field, and to
maintain the focus,
you perform a
saccade
counteracting the
train’s movement. In
such a situation,
perception during a
saccade is possible!
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area (MT) and middle superior temporal area (MST) (Niknam et al.,
2019; Thiele et al., 2002) are suppressed around the time of a saccade.

Denagamage et al. (2021) investigated saccadic suppression in V4,
observed suppression at the input layer IV prior to saccades, and
hypothesized the pulvinar to be a likely source for such suppression
signals.

2.2.4.2 Saccadic main sequence

The dynamics of saccades are well understood: With increasing sac-
cade amplitude, the duration and peak velocity increase (Dai et al.,
2016; Gibaldi et al., 2021). The observation that peak velocity increases
linearly for small amplitude saccades until it saturates for larger am-
plitudes was termed the saccadic main sequence (Bahill et al., 1975).

Next, we look into the control of limbs and, thus, muscles around
the body which is distinct from the saccade-generating circuitry.

2.3 MOTOR CONTROL

At first glance, body muscles are controlled through cortical projec-
tions from the primary motor cortex (M1) downwards the spinal cord,
where motor neurons activate, innervate with muscles, and lead to
their contraction. However, the network involved in planning and
controlling the signals generated by M1 is much more intricate than
meets the eye. In this section, I will start explaining on the level of
muscles and progressively broaden the picture. The focus will lie on
the control of arm movements, as needed for the analysis of data
during a visually guided reaching task in the upcoming chapters.

2.3.1 Muscles

The axons of motor neurons exit the spinal cord at the ventral root,
branch off at the muscle and connect via neuromuscular synapses (also
neuromuscular junction) to a few to hundreds of muscle fibers (Kandel
et al., 2013). The combination of the motor neuron and innervated
muscle fibers is called the motor unit. Each muscle consists of a few
hundred to thousands of muscle fibers, and most muscles are driven
by hundreds of motor units.

The force exerted by a muscle depends on the motor units recruited
and the firing rate. The recruitment of motor neurons with higher
required muscle force follows the size principle: First, the smallest
neuron is activated, then gradually, larger neurons are engaged. In
contrast to the naive expectation that M1 governs muscle recruitment,
one consequence of this finding is that a mechanism in the spinal cord
decides upon the precise motor neuron to be activated (Kandel et al.,
2013).
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Muscles can be classified based on their role in movement. Agonist
muscles are responsible for generating movement, while antagonist
muscles work in opposition to agonist muscles to control movement.
A triphasic activation pattern of muscles for example consists of three
distinct phases of activity with agonist-antagonist-agonist activation.

Another classification is between flexor and extensor muscles. Flexor
muscles are responsible for bending joints and decreasing the angle
between two body parts, while extensor muscles are responsible for
straightening joints and increasing the angle between two body parts
(Kandel et al., 2013).

But how does the cortex control neurons in the spinal cord and thus
muscles?

2.3.2  Primary motor cortex (M1)

The controversies about what neurons in M1, or sometimes agranu-
lar cortex due to the lack of a granular layer, encode and how they
contribute to voluntary arm movement motivated a long series of
investigations in the 20th century. The starting point was experiments
by Evarts (1968), who recorded single neurons in M1 while a monkey
moved a bar back and forth. They were able to show that neural activ-
ity correlates with the amount of force, a kinetic variable, suggesting
that neurons directly control muscle activation. Opposing this view,
Georgopoulos et al. (1982) found that during arm reaching, requiring
multiple joints and muscles, M1 neurons were tuned to direction, a
kinematic variable.

Georgopoulos demonstrated in his seminar paper that approxi-
mately one-third of the recorded neurons exhibited cosine-like direc-
tional tuning, which can be characterized by a preferred direction (PD)
and a modulation depth. This notion of a PD will be crucial in Chap-
ter 5.

The debate between the encoding of kinetic or kinematic variables
dominated for several decades: While direct projections down the
spinal cord appear to require no additional processing (pro kinetics),
a kinematic variable encoding would necessitate that downstream re-
gions convert the signals to the appropriate muscle commands (Sergio
et al., 2005). Schwartz (1994) found a dependency of hand movement
velocity and the success in decoding movement from the neuronal
population vector (Georgopoulos et al., 1983, 1988; Georgopoulos et al.,
1986), a weighted sum of the PDs of single neurons, argued in favor of
the kinematic perspective.

Todorov (2003) attempts to reconcile these views and, in particu-
lar, the multitude of correlated variables with M1 neural activity by
arguing in favor of direct cortical control of muscle activation.

In Omrani et al. (2017), N.G. Hatsopoulos is cited: “So, we can all
agree that M1 is not one thing”. He argues to differentiate between
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caudal M1, which exhibits more monosynaptic connections to spinal

Griffin et al. (2020) motoneurons, and rostral M.
~ evidence in an More recently, activity in the motor cortex has been analyzed taking
chp;:;;?e{;:l[jg;;; a dynamical systems perspective (see reviews by Vyas et al. (2020) and
the temporal ~ WWang et al. (2022¢)). In these studies, the emphasis shifts from encod-
relationship between ing a single neuron to examining how population activity patterns in

the single unit and  the motor cortex temporally evolve to produce a particular behavioral
electromyography

, output.
(EMG) recordings P
that M1 neurons
send premovement 2.3.2.1 Premotor cortex
suppression signals
to prevent an Motor cortex, previously categorized into primary and supplemen-

antagonist muscle tary motor areas by Brodmann (1909), nowadays is known to have
from opposing the many subdivisions (Graziano et al., 2007; Luppino et al., 2000; Matelli

t ted . . . .
move;;:en generare et al.,, 1985; Rapan, 2021; Strick et al., 2021) with different naming
Y an agonist’s

muscle. conventions (see Table 2.1).
Full Name Short Name Brodmann Matelli 1985
Primary motor cortex M1 area 4 F1
Dorsal premotor cortex PMd area 6 F2
Supplementary motor area proper area 6 F3
Ventral premotor cortex caudal PMyv area 6 F4
Ventral premotor cortex rostral PMv area 6 F5
Pre-supplementary motor area area 6 F6
Pre-dorsal premotor cortex area 6 Fy

Table 2.1: Naming of motor areas. See Graziano et al. (2007) for a visualiza-
tion of their locations in the cortex.

Both PMd and PMv were shown to have a modulatory effect on
M1 (Coté et al., 2017), yet they might also directly influence muscle
activity: e.g., Strick et al. (2021) review the existence of disynaptic
connections of premotor areas to spinal neurons. While PMd is associ-
ated with preparatory signals (Kaufman et al., 2013), PMv discharge
correlates with the purpose of a motor act and not with the individual
movements that constitute it (Kandel et al., 2013; Rizzolatti et al., 2014).

Notably, as it might be relevant for the study of PDs: Glaser et al.
(2018) report that the preferred direction depends on the position of
the hand and, thus, on the probability of an upcoming movement in a
certain direction.

2.4 THE ROLE OF THE POSTERIOR PARIETAL CORTEX (PPC)

According to the chapter on “Voluntary Movement: The Parietal and
Premotor Cortex” in Kandel et al. (2013), one of the key functions of
the PPC is to integrate information from different sensory modalities,
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including vision, touch, and proprioception, to guide movements and
actions.

In particular, the PPC is thought to be involved in transforming
visual information about the location of objects in the environment
into motor commands for the movement of the eyes and limbs. For
example, when we reach for an object, the PPC is thought to integrate
information about the location of the object in visual space, the position
and movement of the eyes, and the position and movement of the
hand and arm, to plan and execute a precise and coordinated reaching
movement (Battaglia-Mayer et al., 2006).

PPC plays a crucial role in eye-hand coordination, which is the
ability to coordinate eye movements with hand movements to reach
and manipulate objects in the environment (Battaglia-Mayer, 2019).

PPC has been associated, in particular, with the intention of per-
forming an action (e.g. hand movement or eye movement) (Andersen
et al., 2002). The same team of researchers argue that PPC would thus
be a favorable implantation site for brain-machine interfaces (BMls)
(Andersen et al., 2022, 2014).

Rigotti et al. (2013) established the term mixed selectivity for neu-
rons in the prefrontal cortex. Single neurons in PPC were found to
exhibit mixed selectivity (Diomedi et al., 2020; Hadjidimitrakis et al.,
2019; Zhang et al., 2017). Thus the firing rate of a neuron is associated
with multiple different behavioral modalities.

By definition, PPC is the posterior part of the parietal lobe. This
region is often subdivided into the superior and inferior parietal
lobules (Gamberini et al., 2021).

Inferior parietal lobule

The inferior parietal lobule is located lateral to the intraparietal sulcus
and medial from the lunate fissure, which merges with the superior
temporal sulcus (cf. Figure 2.1). Brodmann (1909) called the complete
gyrus Area 7 (sometimes short BA7), which was later subdivided by
Vogt et al. (1919) and von Bonin et al. (1947) into the posterior 7a (or
PG) and the anterior 7b (or PF). The modern view on the structural
organization is dominated by Pandya et al. (1982), who suggest a split
of Area 7 into four divisions, from caudal to rostral: Opt, PG, PFG,
and PF (also Gregoriou et al. (2006)). For a recent re-evaluation on this
parcellation based on receptor densities, see Niu et al. (2021).

The cytoarchitecture (Caspers et al., 2011) and receptor densities
(Niu, 2022) in the macaque inferior parietal lobule resemble a potential
homolog area in the human angular gyrus (see e.g., Numssen et al.
(2021)).

The inferior parietal lobule is activated during multiple modalities
(Mountcastle et al., 1975) and assumed to play a role in multi-sensory
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integration during motor behavior (both eye and limb) (Andersen,
1987; Avila et al., 2019; Borra et al., 2017; Rozzi et al., 2008).

Here, we briefly give more detailed information on 7a and DP, as we
record from these in V4A experiment.

2.4.0.1 Area 7a (7a)

CONNECTIVITY 7a is part of the dorsal visual stream and recipro-
cally connected with visual areas Andersen et al. (1990a) and Wang et
al. (2022b). 7a receives disynaptic output connections from hippocam-
pus (Clower et al., n.d.) several motor areas (especially to ventral
premotor cortex (Fs5) and pre-dorsal premotor cortex (Fy)) (Rapan,
2021; Rizzolatti et al., 2014).

Furthermore, it receives feedback input from other parietal and
frontal areas (Gregoriou et al., 2006; Lewis et al., 2000; Niu et al., 2021;
Rozzi et al., 2006; Stepniewska et al., 2005).

FUNCTIONAL ROLE Neurons in 7a activate during saccades (An-
dersen et al., 1990b; Barash et al., 1991) and hand reaches (Heider
et al., 2010, 2014; Hyvérinen et al., 1974, MacKay, 1992), exhibit gain
modulation of large visuotopic RFs due to eye (Andersen et al., 1990b;
Andersen et al., 1985; Bremmer et al., 1998; Siegel et al., 2003) and hand
(Buneo et al., 2012) position, are responsive to optical flow stimuli (Hei-
der, 2005; Raffi et al., 2007) or visual motion stimuli (Merchant et al.,
2004), modulate their activity with (covert) attention (Constantinidis
et al., 1996, 2001; Quraishi et al., 2007; Raffi et al., 2005; Steinmetz et al.,
1994) and also show somatosensory properties (Rozzi et al., 2008).

Rozzi et al. (2008) demonstrate a gradient from more oculomotor-
related activity on the medial end of the inferior parietal lobule to-
wards more limb-movement-related activity in the lateral end of 7a.

In Andersen et al. (2002), the encoding of motor action intent of
several areas in the PPC has been reviewed. In line with this view, Li
et al. (2022) show that 7a not only activates due to sensory triggers
(latency ~ 100 — 150 ms) but also represents pre-movement activity
for an upcoming movement during a manual interception task (lead
~ 50 ms).

Mirror neurons (Gallese et al., 1996; Rizzolatti, 1994; Rizzolatti et al.,
2014, 2004, 1996), that activate during the mere observation of an
action, have also been reported in 7a (Fogassi et al., 2005; Rozzi et al.,
2008; Yokoyama et al., 2021).

Evidence points at preference towards lower eye position and lower
visual receptive fields which, however, are variable in time and depend
on the task and attentional state (Heider et al., 2010, 2014; Karkhanis
et al., 2014; Merchant et al., 2004; Wang et al., 2022b). Battaglia-Mayer
et al., 2005 found an over-representation of eye movements towards
the contralateral side and eye position signals in the contralateral
space.
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Due to the vastly distinct response patterns in 7a, several studies
(Battaglia-Mayer et al., 2007; Merchant et al., 2004) suggest a sub-
division of the neuronal population. The large area covered by 7a, with
demonstrated functional differences (see Rozzi et al. (2008)), likely is
one cause of this.

2.4.0.2 Dorsal prelunate (DP)

The (extrastriate) DP is located on the dorsomedial portion of the
prelunate gyrus and merges into the visual area V4 on the ventral end
(Asanuma et al., 1985).

CONNECTIVITY May et al. (1986) states that DP has prominent con-
nections with LIP, 7a, and areas along the anterior bank of the caudal
superior temporal sulcus. It exhibits direct feedback connections to V1
(Wang et al., 2022b) and is connected to various other parietal areas.
Andersen et al. (1990a) found connections with V3A, LIP, 7a, V4, MST,
PO, 46, and 8a. According to Felleman et al. (1991) it is lower in the
anatomical hierarchy than 7a.

FUNCTIONAL ROLE Neurons in DP respond to saccades and gaze
position (with a latency of 70 — 150 ms) (Andersen et al., 1990a; Li
et al.,, 1989), and are modulated by attention. Several reports state
that DP exhibits RFs in the (contralateral) far lower visual field (Arcaro
et al., 2011; Maguire et al., 1984), however, Heider (2005) also finds a
representation of the upper visual field.

2.5 REFERENCE FRAMES AND COORDINATE SYSTEMS

To discuss these issues, a bit of terminology is necessary:

The terms reference frame and coordinate system are used as in the
physics literature. Reference frames in neuroscience are commonly cat-
egorized into allocentric, with external objects as the point of reference,
and egocentric, with some body part as point of reference (Crawford
et al., 2011). To define a point relative to the origin in a certain refer-
ence frame, a set of (typically 3-D) base vectors or coordinate axes can
be defined (e.g., cartesian or spherical) (Soechting et al., 1992).

In order to guide an accurate movement of an effector (e.g., hand,
eye), we use our senses (e.g., vision, touch, hearing, smell, propriocep-
tion, and the vestibular sense).

Information about the external world is also called extrinsic (e.g.,
object to object or object to body distance), while information about
the body itself is referred to as intrinsic (e.g., set of muscle lengths
and set of joint angles) (Kandel et al., 2013).

Each of the senses represents information about the external world
in a certain manner: Their corresponding primary sensory cortices
— if existent — use a sense-specific reference frame. Vision manifests
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itself in the activation of RFs organized in a visuotopic map in V1 (see
Figure 2.2), touch with a somatotopic map.

Auditory stimuli are coded in a head-centered reference frame
(Cohen et al., 2002).

One of the key sensory receptors involved in proprioception is the
muscle spindle, which is a specialized sensory receptor located in
skeletal muscles that is sensitive to changes in muscle length and
tension.

The vestibular sense is governed by the three semicircular canals
of the vestibular system located in the inner ear. Each of these canals
defines a plane along which movement of the body leads to movement
of fluid inside the canals into the contrary direction (due to inertia),
which in turn tilts the hair cells embedded in the cupula and triggers
electrical signals (Kandel et al., 2013).

A classical idea states that all information represented in different
reference frames merge into one abstract, universal representation in
the parietal cortex and that this reference frame is used to inform
movements (Battaglia-Mayer, 2019; Cohen et al., 2002). However, the
existence of a unique reference frame has not been proven.

Gain modulation due to the eye position (Andersen et al., 1985) was
computationally shown to arise in recurrent neural networks (RNNs)
trained with back-propagation through time (BPTT) (Zipser et al., 1988).
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In the previous chapters, we gave a brief overview of the Vision-for-
Action (V4A) experiment and supplied relevant background knowl-
edge.

This chapter describes the setup in more detail and sketches the
path from the source data files obtained during the recording to the
files with fully integrated metadata used in the analyses that will be
presented in the following chapters.
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The V4A experiment is run in the context of a collaboration between
two laboratories: The Lab of Prof. Thomas Brochier at the Institut
de Neurosciences de la Timone, Centre National de la Recherche
Scientifique-Aix-Marseille Université carried out the actual experi-
ments, while the Lab of Sonja Griin at Institute of Neuroscience and
Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and
JARA Brain Institute I (INM-10), Forschungszentrum Jiilich, Jiilich,
Germany, were mostly concerned with data management, preprocess-
ing and analysis. The split of responsibilities was not strict: Analyses
were also performed in Marseille, and researchers from Juelich partici-
pated in improving the setup.

3.1 SETUP OVERVIEW
The setup of the V4A experiment was designed to flexibly probe neu-

ral activity along the dorsal visual pathway during visually guided
behavior of rhesus monkeys (macaca mulatta).
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Figure 3.1: Experimental Setup. Figure taken from de Haan et al. (2018). The
experimental subject, a macaque monkey, is seated in an exoskele-
ton device (KINARM) in front of a work area. The work area
consists of a semitransparent mirror, which allows for observa-
tion of the arm underneath (in lighted condition) and reflects the
display of a downward-facing screen, e.g., target or a hand cur-
sor feedback. One eye is tracked by an infrared light source and
camera (Eyelink). The monkey is implanted with multiple Utah
arrays that record extracellular potentials along the dorsal visual
stream and motor cortex. Lines illustrate the analog (solid), digital
(dashed), or via Ethernet (dotted) signal flow between devices
and computers (boxes). At the last stage, all signals, behavioral
and electrophysiological, enter the data acquisition (DAQ) system
(henceforth called neural signal processor (NSP)), from where they
are time synced and stored.

Two components were necessary to achieve this: recordings of the
monkey’s behavior and electrophysiological recordings.

Here I will first give an overview of the setup, then dive into the de-
tails of the recorded data, briefly describe the preprocessing pipeline,
supply background knowledge on the experimental subjects and ex-
plain the behavioral tasks.

As illustrated in Figure 3.1, the monkey was seated in a chair in
front of a work area. The monkey’s head direction was fixed with a
mask (Barthélemy, 2023) designed to enable the monkey to view the
whole extent of the work area. Attached to the chair was a motorized
exoskeleton (KINARM Exoskeleton Laboratory, BKIN Technologies)
in which the monkey’s upper arm and forearm were placed.

The work area is part of a virtual reality system: It is a semitrans-
parent mirror that reflects the image of a downward-facing computer
screen. The hand underneath the mirror could be illuminated to enable
direct visual feedback of the hand/arm (de Haan et al., 2018). The
benefit of this setup is that both visual target and hand movements
happen in the same plane, such that the monkey can use direct, natural
mapping.

In the following, we discuss recordings during which the room is
darkened, and the computer screen supplies the hand feedback.
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An eye-tracking system (EyeLink system, SR Research') that records
the movement of one eye was attached at the rear end of the work
area.

Neural activity was recorded via multiple neural implants called
multi-electrode arrays (MEAs), more precisely Utah arrays (Blackrock
Microsystems, Salt Lake City, UT, USA ?) (Campbell et al., Aug./1991;
Nordhausen et al., 1996). The two experimental subjects recorded until
the writing of this thesis, Enya and Jazz, were implanted with four Utah
arrays with 36 electrodes each in the left primary visual cortex (V1),
secondary visual cortex (Vz2), dorsal prelunate (DP) and area 7a (7a),
and one array with 100 electrodes in primary motor cortex (M1)/dorsal
premotor cortex (PMd). Note that 4 electrodes per array are inactive.

The four smaller arrays are connected to one connector with 128
contacts, while the M1/PMd-array connects to a separate connector.
These two connectors were embedded in the skull, fixed through bone
cement, and constituted the starting point of two data streams outside
the brain (more details in Section 3.2.5).

These two data streams were processed by two synchronized real-
time computers (cf. electrophysiology data acquisition (DAQ) system
in Figure 3.1), called the NSPs. The signals about the task, eye tracking,
and hand/arm behavior from the KINARM real-time computer also
entered the NSPs as analog inputs and were therefore synchronized as
well. Furthermore, the NSP performed an online spike-sorting, which
will be discussed in more detail in Section A.1. Details on the hierarchy
of computers processing the Eyelink, the KINARM interface computer,
the KINARM real-time computer, and the NSPs are explained in (de
Haan et al., 2018).

Each NSP sent small packages of data to a computer running soft-
ware Cerebus Central (Blackrock Microsystems, Salt Lake City, UT,
USA, www.blackrockmicro.com) to store the data in different files with
proprietary data format from Blackrock: The raw neural signals are
stored in a .ns6-file, while the analog signals and the extracted wave-
forms were stored in a .ns2-file. The spiketimes and information on
the online sorting were stored in a .nev-file. As a result, two sets of
these three data files are stored, one for the visual-parietal arrays and
one for the motor array.

3.2 RECORDED DATA

In the following subsections, I will discuss the recorded data in more
detail and mention a few preprocessing steps that are needed to use
them. An extensive discussion of all the preprocessing steps is beyond
the scope of this thesis.

1 https//www.sr-research.com
2 www.blackrockmicro.com
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Figure 3.2: Behavioral data sketches. A: A display of the work area with
the targets positioned at the vertices of a hexagon. Right to the
work area is a zoom of a target decomposed into the visible and
logical part. B: Top view of a KINARM exoskeleton sketch. The
shoulder was anchored by the device and defines the position
relative to the work area. Lengths of the upper arm L, forearm
Ly, and fingertip L3 are listed in Table 3.1. C: Sketches of the
Eyelink geometry. The upper part shows a side view of the setup,
while the lower part shows a top view. A change in the (eyeball)
gaze direction would lead to a changed reflection of infrared
signals registered by the Eyelink camera and translated into a
modified output voltage. The colors chosen in this figure are not
the ones used in the experiment: For maximal detectability and
small targets, the screen background was black and targets were
white. The logic radii were not visible to the monkey and were
introduced to allow for less restricted, ballistic movements.

3.2.1 Hand movement data

The KINARM exoskeleton outputs a voltage signal sampled at 1 kHz
for each shoulder and elbow joint, which can be converted into the
corresponding angles. The necessary conversion is detailed in the
Simulink model (see source files Landing_task.mdl or
Drawing_task_6targets.mdl). The resulting x and y positions of the
hand were stored in both .ns2, for the visual-parietal stream and the
motor stream, for all sessions.

The central panel in Figure 3.2 sketches the top view on the KIN-
ARM and defines the required lengths and angles. The corresponding
values used for both subjects, Enya and Jazz, are listed in Table 3.1.

The conversion from angles to the hand position was performed
online, and the resulting hand positions were stored for every session.
However, the joint angle signals are not recorded for all experimental
sessions. However, if at least one angle is recorded, all quantities
shown in Figure 3.2B can be reconstructed.

RECONSTRUCTION OF THE ANGLES  Here we exploit simple, trigono-
metric relationships to obtain either a;, or a;,. Because the hand was
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human readable name | variable name | value unit
shoulder x X0 0.275 cm
shoulder y Yo —26.250 | cm
upper arm length L1 12.6 cm
forearm length Ly 23.0 cm
fingertip offset L3 —0.1 cm

Table 3.1: Kinarm parameters. The shoulder x/y position is given with re-
spect to the screen origin, which is at the bottom-center of the
screen. The screen is thus not centered with respect to the body
but rather shifted to the right.

aligned with the forearm, it was included in its total length, therefore
in the following, the fingertip is neglected.

The x and y positions of the shoulder, elbow and hand (neglecting
the fingertip offset) are given by:

Xshoulder = X0 (31)

Yshoulder = Y0 (32)

Xelbow = Xshoulder T Ll Ccos i, (33)

Yelbow = Yshoulder + Ll sin &r, (34)
and

Xhand = Xshoulder 1 Ll cosxr, + LZ cosxr, (35)

Yhand = Yshoulder + Ll sin X1, + LZ sin Xr, - (36)

In most sessions, the angle a;, was recorded; the missing shoulder
joint angle can then be obtained by

X —X — Ly cos iy,
— arccos hand shoulder ) ) ( 37)

1 L

Xl

HAND MOVEMENT SEGMENTATION The continuous hand move-
ment behavior of the monkey can be split into movement segments.
Given the time-dependent x and y position of the hand, we calculated
velocities in x- and y-direction by taking the first derivative with a
Savitzky-Golay filter with the window length wsg hang = 101 ms and
the polynomial order psg hang = 3. We calculated the absolute velocity
of the resulting 2-D velocity vector by taking its norm.

Movement segments were then defined between minima of the
absolute velocity if 1. the peak velocity between minima was larger
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than a minimum peak velocity of Uminimal peak = 1cm/s and 2. the
depth of the minimum was not too shallow. The minimum required
depth of velocity minima, relative to the height of the nearest velocity
peak, considered for segmentation was diinimal relative—0.1-

3.2.2  Eye movement data

The EyeLink 1000 allows for the non-invasive detection of eye move-
ment. It emits infrared light, which is reflected by the eye. The change
in reflection is then detected with a camera (see details in de Haan
et al. (2018) and sketches in Figure 3.2C).

As a result, we recorded a voltage signal sampled at 1kHz between
—5V and +5V for the vertical and horizontal direction, which had to
be linked to the actual gaze direction (in degree relative to the straight
forward gaze direction) or the corresponding focus of the eye on the
work area (in centimeters).

To obtain this mapping, ideally, prior to each experimental session,
an eye calibration was performed.

CALIBRATION For all sessions recorded with Enya and recordings
with Jazz until mid-2022 the calibration consisted of the presentation
of a regular 5 x 5 grid of targets (later changed to only 17 targets).
The targets were presented in reading order, and the x, y voltage of
the eye signal during the corresponding fixations were recorded for
100ms each. The optimal mapping was then obtained by fitting a
second-order polynomial to the average voltage during the fixation
per target and the fixed target positions in centimeters.

The quality of the eye calibration using the above method relying
on the static fixations turned out to be difficult to evaluate for the
experimenters. Hence, a new calibration method, in which the monkey
is required to follow (pursue) a horizontally moving target, is being
developed and tested at the time of writing.

SACCADE EXTRACTION The eye movement behavior is character-
ized by brisk jumps of the eye position, called saccades. We detect
saccades by thresholding the norm of the 2-D eye velocity vector ob-
tained by application of the first derivative with a Savitzky-Golay filter
with the window length wsgeye = 9ms and the polynomial order
PsGeye = 3. In addition to the threshold, a few heuristically deter-
mined criteria were employed. The parameters are listed in Table 3.2.

3.2.3 Task data

A MATLAB Simulink model controlled the experimental task and
therefore used the data from the KINARM exoskeleton and the Eye-
link.
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name value unit
saccade velocity threshold 50 deg/s
minimal saccade duration 10 ms
maximal saccade duration 100 ms
minimal saccade peak velocity 60 deg/s
minimal saccade peak velocity 20000 deg/s
minimal saccade peak acceleration | 4000000 | deg/s?
minimal saccade peak acceleration | 0.1 deg/s?

Table 3.2: Saccade detection parameters.

Targets appearing in the work area are specified by their visible
radius and their logical radius (see Figure 3.2A). The latter is not
visible, yet defines the region around the visible target that the monkey
needs to enter in a reaching task such that it counts as successfully
reached.

CONSTRAINT ON THE WORK AREA  The targets lay on the vertices
of a hexagon to maximally exploit the usable work area. The horizontal
work area allows the targets to fall in the same plane as the monkey’s
hand movement. However, the region that is reachable by the monkey
is limited by their arm lengths. Furthermore, the KINARM chair with
an attached mask forces the monkey’s head to be guided straight
ahead. To see the work area, the monkey’s gaze downward is quite
steep, with the nose as an obstacle. To maximize its surface, the work
area was thus not centered but slightly shifted to the right relative to
the monkey.

TASK CODEs Each event of the task (e.g., trial start, a hand enter-
ing target 2, reward start, and so on) was stored in the data with
a timestamp and a 16 bit task code. The precise nature of the task
codes can be decoded into a machine- and human-readable format via
semi-automatically written descriptors that depend on the behavioral
task.

LATENCY OF SCREEN The experimenters found that there is a
systematic delay between the time stamp of the target onset and the
actual appearance on the downward-facing screen (see corresponding
discussion in de Haan et al. (2018)). We did not account for this
delay in the following analyses due to inherent variability. Preliminary
investigations by the experimenters by recording the luminance on the
work area via photo receptors revealed three sources for the delayed
appearance:

1. 43 ms due to communication and the graphic card drive
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2. 0 — 16 ms with a linear relationship of the vertical distance be-
tween the target and the top of the screen.

3. 0 — 16 ms due to the refresh rate of the screen

The first two issues are deterministic and should be corrected in
the future. For the second point, the relationship between the target’s
vertical position and the delay can be calculated by knowing the target
coordinates. The last point, however, is more difficult to take into
account.

3.2.4 Choice of recorded analog signals

Each of the two NSPs can process 16 analog signals and store them in
a .ns2-file; thus, in addition to the neural activity, the recording setup
can store up to 32 analog signals.

The experimenters decided to store the x- and y-positions of the
hand, eye, and target positions with each NSPs, yielding redundancy
and thus robustness against signal loss or failure from one NSP. This
choice also allows running analyses on only one dataset (motor or
visual-parietal) without the necessity to load everything.

To be able to reconstruct eventual data gaps due to package losses
during the transmission from the NSP to the computer, two analog
signals with phase-shifted sync pulses are stored.

Given these constraints, there are 8/16 channels undetermined per
NSP. The choice of how to occupy these remaining channels changed
over time. In most cases, additionally stored signals are raw eye signals,
the angles, velocities or acceleration of the KINARM joints, the eye
diameter, or photoresistors measuring the luminance.

3.2.5 Electrophysiological data

This subsection describes the electrophysiological data flow from
arrays to neural signal processors (NSPs) as illustrated in Figure 3.3.

Four Utah arrays (6x6 electrode grid, 32 active electrodes out of 36)
were implanted along the dorsal visual stream in Vi, V2, DP, and 7a.
One Utah array (10x10 electrode grid, 96 active electrodes out of 100)
was implanted in the hand/arm region of M1/PMd. The Vi and V2
array’s location was chosen to obtain overlapping receptive fields. All
array placements were guided by anatomical markers.

In this paragraph, the data flow of the recorded neural signals as
illustrated in Figure 3.3 will be explained. At the electrode, a potential
difference to the reference electrode is recorded. The single wires per
electrode are connected to the array’s backside (called bonding pad),
are bundled in groups of 32 wires, and, within one cable, are guided
to the connector (CerePort). During surgery, pictures were taken to
allow for future localization of cortical areas that lay under the arrays
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Figure 3.3: Electrophysiological data flow with illustrations of the involved
devices.

and to keep track of the array orientation by using the wire bundle as
a side reference. The connector’s inner part is filled with a silicon-like
gel. Inside this isolating gel, the cable bundle splits again into single
wires, which are then connected to the back side of the grid-organized
pin ensemble (called land grid array (LGA)). The headstage (CerePlex
E) is the device that can be screwed on top of the connector to connect
to the LGA with an exact counterpart. In order to guide the electrical
signal from one LGA pin to its counterpart, an insolation membrane
that allows only for current to propagate orthogonally to its surface
(called filament film) is used.

The wires stemming from the four visual-parietal arrays were gath-
ered in one connector (CerePort) attached to the right occipital bone,
while the wires from the motor array were guided to a separate con-
nector that was secured to the right parietal bone.

The resulting two streams of analog signals (sampled at 30 kHz)
were band-pass filtered between 0.3 Hz-7500 Hz and digitized in the
headstage minimizing the chances to collect ambient noise in the data.
These filters are applied online/during runtime by the hardware and
are zero-phase filters (causal filters, see (Yael et al., 2018)). The digital
signal was then sent to the digital hub via a mini-HDMI cable, where
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it was converted to an optical signal. From there, it is sent via an optic
fiber cable to the neural signal processor (NSP).

Each electrode of the Utah array records a voltage: The potential dif-
ference between the tip of the electrode and a reference electrode. The
headstage offers the choice between two reference signals, from which
only the reference yielding the best signals was used per experimental
subject and kept consistent across sessions. The sampling rate of this
signal was 30kHz. According to the Nyquist-Shannon theorem, the
highest frequency that can be resolved with a signal of this sampling
rate is fmax = 15kHz.

The tip of the electrode is located in the neural tissue, and the
voltage will contain signals induced by its surrounding: This can be
low-frequency fluctuations of the overall potential or very local and
fast changes in electrical potential due to a nearby neuron firing an
action potential.

As a consequence, two types of signals are commonly extracted
from such a signal:

1. the low-frequency content of the signal, the local field potential
(LFP)

2. the high-frequency content of the signal, spiking activity.

The spiking activity recorded on one single electrode might stem
from multiple neurons. Therefore a process called spike sorting (in-
depth discussion in Section A.1) was employed. In short, spike sorting
assigns action potentials with the same prototypical waveform shape
to a unit, a putative neuron.

3.3 EXPERIMENTAL SUBJECTS

Up until the writing of this thesis, three subjects performed tasks in
the V4A experiment, Yamako, Enya and Jazz.

Yamako was the first macaque to be trained to work in the setup
and yielded only behavioral data, which were presented in de Haan
et al. (2018). Unfortunately, Yamako died during the surgery for array
implantation.

Enya, born on April 29, 2010, is female and reported to have a
very nice character. She participated in the Reach-to-Grasp (R2G)
experiment before and thus she already was used to training for a
motor task. Training on the V4A experiment started on March 17,
2017. She performed the hand movements with the right arm and,
consequently, during the surgery on December o7, 2017, arrays were
implanted in the (contralateral) left hemisphere (see Figure 3.4). The
left eye was used for eye tracking.

Jazz, born on May 26, 2014, is male and also reported to have a very
nice character. Training on the V4A experiment started on July 11, 2017.
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Figure 3.4: Array placement Enya.

As this was the first experiment he took part in, his training naturally
took longer. He performed the hand movements with the right arm
and, consequently, during the surgery on January o8, 2020, arrays
were implanted in the (contralateral) left hemisphere (see Figure 3.5).
The left eye is used for eye tracking.

3.4 BEHAVIORAL TASKS

In this thesis, we analyze data from two visually guided motor tasks
that we termed the landing task and the drawing task.

Besides these two tasks, the monkeys have performed more tasks in
the V4A experiment, that we will not explain here.

3.4.1 Landing task

In the landing task, the monkey had to perform subsequent, point-
to-point, hand reaches landing within the logical radius of each sub-
sequently shown target of a given landing sequence within certain
time limits. The landing sequence is a unique sequence of target posi-
tions, starting with the central position and followed subsequently by
three peripheral positions, chosen from six possible peripheral target
positions located at the corners of a hexagon centered at the center
target.

Per recording session, the monkeys were required to fulfill 120 trials.
A trial is defined as the time between an initial presentation of a new
landing sequence (called trial type presentation), starting with the
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Figure 3.5: Array placement Jazz.

first target, and its completion ending with a reward. The monkey
was presented with 12 different landing sequences in random order,
yielding ten repetitions of the same landing sequence per session.

Note that the precise task definitions might vary from session to
session: for training purposes or to test different behavioral hypothe-
ses, some sessions have eight landing sequences, while others have
12 different landing sequences. Also, the required durations for the
landing, as well as the radii of the targets, varied.

Each time the experimental system presents the landing sequence
(trial type presentation), starting with the first target and the monkey
performs the task until either success or failure; we call this an attempt.
Attempts can thus be either unsuccessful, leading to a new attempt
of the same trial-type presentation, or successful, ending the trial
and leading to the first attempt of the next trial-type presentation.
Unsuccessful attempts are grouped into time-out errors (the monkey
fails to perform the reaches within the given time limits) or anticipation
errors (the monkey leaves the current target before the next target is
lit up or overshoots the target). Monkeys were slightly water-deprived
before the experiments and received water drops as a reward for
completing a trial.

Refer to the displays of the behavioral in Figure 5.3 and Figure 5.4
as well as for the spike data in Figure 5.8, that are presented in the
next chapter, for a visualization of a landing sequence.
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3.4.2 Drawing task

In the drawing task, each trial starts with the illumination of the
central target, which indicates the hand’s starting position to the
monkey. After 200 ms, the central target was turned off and replaced
by the six peripheral targets. The monkey was then required to hover
over all targets without any constraints on the order and very little
time pressure (maximum 1s between each target). Upon successfully
reaching towards all the targets, the monkey receives a water reward.

3.5 PREPROCESSING PIPELINE

The recording setup outputs two sets of files: {.ns6, .ns2 and .nev}
per session. These are stored with many metadata files, e.g., array
specifications, Simulink model files, and task-specific code descriptors,
to name just a few, in a folder with the following unique format:
[subject-ID][date in yymmdd format]-[short task name]-[3-digit
session-ID]. For example, y180306-land-00o1 would stand for the first
recording session on March 06, 2018, with Enya performing a landing
task, and j210208-draw-002 would be the second recording session
with Jazz on February 08, 2021, performing a drawing task.

After being stored on the local server in Marseille called congloue,
the data is transferred to the local server in Jiilich called hambach.

The multitude of data files and formats makes it difficult for an
end user to deal with the raw data. Furthermore, several preprocess-
ing steps have to be performed on the behavioral data (e.g., convert
signals from volts to centimeters, hand movement segmentation, and
eye segmentation) and the electrophysiological data (integrate spike
sorting, extract LFP signal by filtering and downsampling). Our Lab
developed a preprocessing pipeline to avoid each end user needing
to perform this preprocessing, leading to a zoo of different routines.
This pipeline uses the software Snakemake (Koster et al., 2012) and
multiple Python scripts organized in data and metadata apps. This
allows for a modular and extensible way of merging the raw data files
into a well-organized and usable output file.

The final output is a .nix-file that has a standardized format and
allows the application of the same analysis on several sessions. The
preprocessing output is furthermore version-controlled via GIN3.

Details on the preprocessing pipeline can be found in the thesis by
Alexander Kleinjohann.

In the previous chapter, we introduced the V4A project and reviewed
the neuroscientific background, while this chapter explained the setup,
data, and task. We now have all prerequisites to look at the actual
data. But before we present the main neuroscientific analysis, the next

3 GIN, https://gin.g-node.org/
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chapter will discuss artifacts that were found in preliminary analyses
and that ideally should be dealt with to obtain trustworthy data.



Make the best use of what is in your power,
and take the rest as it happens.

— Epictetus

ARTIFACTS

Initial analyses of the electrophysiological data from the Vision-for-
Action (V4A) project revealed potential non-neuronal data called arti-
facts. This chapter seeks to characterize these artifacts, to argue for
and against their artifactual nature, and to suggest potential origins in
the arrangement.

Finally, to make the recorded data safely usable, we propose a
preprocessing stage that removes the most significant artifacts from
the recorded data even before spike sorting.

While long-term degradation of Utah recordings (Sponheim et al.,
2021) and potential scarring of the neural tissue (through explant
analyses) have been discussed in literature (Patel et al., 2022; Woeppel
et al., 2021), artifacts in the recorded data are rarely mentioned.

4.1 Description of potential non-neuronal data . . . . . . . 45
4.2 Characterization of artifacts . . . . ... ... ... ... 48
421 Crosstalk . . . ... ... .. Lo L 48
422 Commonnoise . . ... .............. 50
4.2.3 DPeaks in power spectrum . . ... ........ 53
4.2.4 Superposition of problems . . . ... ... ... 53
4.2.5 Synchrofacts are symptoms of underlying artifacts 55
4.3 Hypothesized sources in thesetup . . .. ... ... .. 56
4.4 Removal of artifacts . . . . . ... .... .. ... .. 57
4.4.1 Removal of artifact sources in the setup . . . . . 57
4.4.2 Removal of artifacts in existing data . . . . . . . 58
4.5 Limitations . . . ... ... ... ... L. 58
4.6 Employed way of ensuring usability of data . . . . . . 59

4.1 DESCRIPTION OF POTENTIAL NON-NEURONAL DATA

Early visualizations of the single unit activity (SUA) spiketrains ex-
tracted via a manual spike sorting procedure, as explained in Para-
graph A.1.2, revealed that some spikes from different units are highly
coordinated. In the raster plot shown in Figure 4.1, where spikes are
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aligned to the first peripheral target onset in the landing task, espe-
cially spiketrains from primary motor cortex (M1)/dorsal premotor
cortex (PMd) look surprisingly similar.

The binning of the spiking activity with sampling rate precision
(30kHz) into a time histogram exhibits multiple peaks.

We compare the empirical distribution of time histogram entries
(complexity distribution, (Louis et al., 2010)) with the distribution that
is expected if the fine temporal structure of the spiking activity is
explicitly destroyed by dithering each spike in a certain dithering win-
dow (here wyjther = 10ms). With many parallel spiketrains, a certain
amount of synchronization at sampling rate precision is expected by
chance. A direct comparison of these distributions in Figure 4.1 shows
our data’s excess synchrony:.

A €5
()
B Ty ele o Boate fe o0°8 S 2 e § " etater oo
g DO :':l,'--"s . . S e . e e X
ad » l':".;': oA pimevue snee d e eqg° | 00 §oex '00." "§~c —
— *%ee, {",. °3.’“.'n~“"°o RO ~."0\.' ; et e e {
e B v s A R R e U
s ‘o...‘ s d ¢ ~‘;1€.£L..'..“ M Lo, 2N el ’.p:.o 5]
<~ . e e W . . == . .
~A e e e e Wt e A0, - .
ao N s Sge v o% .. . 0 % . °% S, W a g
OR|  ¥elew [bte et ¥oo& . et Crae uilg LW 0,0
S * L — . . * x  complexity > 1
;"' 0 e ee e e e ¢ 6o eem oo 0 — « e sua -
-200 0 200 400 600 800
Time [ms]
Cy Total Spikes: 547666
2 105 Synchr. Spikes: 31389 BN sua spikes from y180306-land-001
@ . Dither 10 ms
2 []
# : : L . -
1 2 3 4 5 6
Complexity

Figure 4.1: Synchrofacts in SUAs. The raster plot (B) shows the spike times of
all SUAs recorded in the session y180306-1and-001. Times are rel-
ative to the first peripheral target onset (ftarget onset = 107.9676s,
right target, marked with dashed vertical line). Each row con-
tains the spiketrain of one single unit; rows are sorted by
recording area. The total number of units per recording is
printed on the panel’s left. Spikes that are recorded on the
same sampling time point across different units (detected via
elephant.spike_train_synchrony.Synchrotool with spread= 0)
are marked with a red cross. The two red, horizontal arrows
point at two spiketrains in M1/PMd which are similar and ex-
hibit several synchronous spikes. A zoom of the shaded area
between t € 700,800ms will be shown in Figure 4.2. The top
panel (A) shows a histogram at sampling rate precision (bin size
b =1/30000s) of all the sUAs. The panel on the bottom (C) shows
distributions of histogram entries (complexity distributions) from
empirical (blue) and dithered (light blue) data from the whole
duration of the sessions on a log-scale. The dithered data shown
here are the mean of five dithering surrogate datasets, and the
error bars show the standard deviation.



4.1 DESCRIPTION OF POTENTIAL NON-NEURONAL DATA

Note that the typical duration of one action potential is around
1 —2ms (see Section 1.1). A synchronization at sampling rate precision
would require a way of synchronizing faster than spike transmission,
which is unlikely.

In the following, we will refer to synchrofacts (Torre et al., 2016) as
hyper-synchronous putative spikes at sampling rate precision of the
recording system, sometimes involving a large number of channels,
which are unlikely to represent neuronal activity. The order of a
synchrofact is defined by the number of putative synchronous spikes
(e.g., three spikes being synchronous at sampling rate precision would
be called a synchrofact of order 3).

Up to now, we looked at the spike sorted SUA, in fact, also other
threshold crossings (multi unit activity (MUA) and noise units) are
affected by excessive synchronization. To illustrate this, Figure 4.2
shows a zoom into the greyly shaded time stretch from Figure 4.1
containing spiketrains of all unit types.

A €18 I
5
8 ald 1 A PR N J dawd L A
B o g x N . % x! B x x X g X x
.
zolx N . ¥ <0 3t 5% % x
—-| X N X oX Xx . . I ]
s x® * x r ¥ x x ® . % X
o © ®e o °x%e o . © L] . o® o .
L X x
<o . A
~o© x
- % - I S
%@ * * . = * x  complexity > 1
N© s * [ x * mua |
>l % X X noise >
SALx XN * M T ** ¢ sua
L T . L ) : T '
700 | 720 740 760! 780 "800
Time [ms]
Cy Total Spikes: 2057421
2 105 Synchr. Spikes: 685884 B sua spikes from y180306-land-001
o Dither 10 ms
5
3 102
(@]
H*

12345678 9101112131415161718192021222324252627282930313233
Complexity

Figure 4.2: Synchrofacts in all unit types. The figures are organized as Fig-
ure 4.1 and show a zoom of the greyly shaded area from that
figure. Besides suA, this plot also includes MUA and threshold
crossings, which have been classified as noise. The red vertical
arrows point at events for which the number of synchronous
spikes over all shown units is larger than 4.

While the display in Figure 4.1 suggests that only some SUA spike-
trains are highly correlated, the occurrence of synchrofacts in all types
of units, predominantly in noise units (see Figure 4.2), indicates that
the origin might be observable in the raw data traces.

Qua natura, there is a relationship between the raw signals and the
spikes sorted into SUA, MUA, and noise units. Thus, the spike sorting
procedure is naturally reflected in the spiking activity.

A crucial parameter is the threshold that is used to extract the
spikes. As described in Section A.1, to obtain spike-sorted data, a few
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preprocessing steps have been performed: First, the raw recorded extra-
cellular voltages are spectrally band-pass filtered between 250 Hz and
7500 Hz. Second, for the displayed session y180306-1and-001, thresh-
old crossings are extracted from these filtered data by a threshold
that has been set by the experimenter during each recording session
(online) (see Paragraph A.1.2). Third, the extracted waveforms of the
threshold crossing events are grouped into analyzed SUA MUA and
noise units during manual spike sorting by the experimenter indepen-
dently per channel. Hence, the spike sorter does not detect potentially
synchronous spike waveforms on multiple channels.

The following section illustrates this intricate relationship between
raw signals, synchrofacts, and spike sorting output.

4.2 CHARACTERIZATION OF ARTIFACTS

The visual inspection of the spike-sorted units and the corresponding
high-pass filtered raw signals around time points of high-order syn-
chrofacts lead to a characterization of three main artifact types, which
will be explained in the following.

4.2.1  Crosstalk

We refer to pairs of channels showing a high cross-correlation across
all frequency bands as crosstalking. This crosstalk eventually leads to
simultaneous threshold crossings. Figure 4.3 shows the band-pass
filtered signals and the resulting spike times of sorted units of some
channels of the motor array. It is clearly visible that the signals of
channels 91,92,93, and 96 are highly similar and essentially exhibit
the same spikes.

It is likely that the spike originates in the channel where the spike
waveform has the highest amplitude (here, channel 96) and then bleeds
over to the other channels with different strengths. The spike observed
at t ~ 7.4ms on channel 91 does not seem to affect the other channels
except for channel 92. This hints at the nature of the coupling that
leads to the crosstalk and would argue against a reciprocal (symmetric)
bleeding of signals between channels.

In this display, the similarity of waveforms is rather obvious; during
spike sorting, however, as explained in Paragraph A.1.2, each channel
is treated independently, such that these similarities of signals easily
go unnoticed.

Figure 4.4 illustrates crosstalk at the example of the visual and
parietal arrays. The cross-correlation coefficient between two signals is
a simple measure to uncover a stable similarity at the level of the band-
pass filtered raw signals (as observed in Figure 4.3). The low-frequency
content of the electrophysiological signal (e.g., local field potential
(LFP)) is known to be similar across the spatial scale of a Utah array.
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Spike Times Filtered Raw Signals
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Figure 4.3: Spike times and filtered raw signals showing crosstalk signature.
Both panels are aligned to t = 16.46587 s and show data from the
motor array in y180116-1and-001. The red lines on the right pan-
els show the spike extraction threshold set by the experimenter
during the recording session. This type of figure has been devel-
oped by Sprenger, 2014.

The high-frequency content, however, is expected to be dampened
by the neural tissue and not measurable on several electrodes. In
this example, cross-correlation coefficients between electrodes on the
secondary visual cortex (V2) array seem excessively correlated.

It is, however, difficult to clearly define pairs of channels to be
crosstalking as we do not find a sharp bimodal distribution of the
cross-correlation coefficients, but rather a smooth distribution; thus,
no threshold can be set.

Panel B in Figure 4.4 relates the cross-correlation coefficient to the
percentage of synchrofacts contained in the spiking of a unit. We
observe the tendency that a higher cross-correlation leads to more
synchrofacts. The point clouds suggest that setting a threshold to
separate the good and bad units or channels is reasonable.

Figure 4.4 shows that crosstalking channels tend to be close on the
array mapping and/or the connector mapping. The same plot for the
motor array can be found in the appendix Figure A.1.

Notably, the composition of crosstalking channels appears to be
changing across sessions (data not shown here).
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Figure 4.4: Panel illustrating features of the artifact called crosstalk. The
data presented in this figure stem from the visual-parietal arrays
recorded in session y180306-1and-001. A: Matrix showing the
cross-correlation coefficient calculated between pairs of channels.
The raw recorded extracellular voltages are spectrally band-pass
filtered between 250 Hz and 7500 Hz with a fourth-order Butter-
worth filter prior to calculating the correlation coefficient over the
whole duration of the session. B: Scatter plot relating the maximal
raw data correlation (maximal value of a row in panel A) on the
x-axis to the percentage of spikes participating in synchrofacts
of a certain unit (SUA in blue or MUA in light blue ) on the y-
axis. Here, the synchrofact detection was performed only across
the visual-parietal areas with a spread= 2 (as was chosen to be
the case in the preprocessing pipeline). The lower two panels
show the topography on the array (left, C) and the connector
(right, D). Each little square belongs to a channel with the channel
ID (number) being colored according to the physical connector
(bank) demarcated in panel D. The shades of red illustrate the
average synchrofacts percentage across all units on that channel.
Connections between channels are fully transparent up to a cross-
correlation coefficient of cx y > 0.4. The transparency decreases
with rising coefficient and vanishes for cx y = 1.

4.2.2  Common noise

We refer to simultaneous deflections (blips) visible on all channels
of the array as common noise, as they are common to all channels
of an array or even the connector. These deflections mostly do not
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resemble a spike; however, they lead to threshold crossing and might
mistakenly end up in a sorted unit (see channel 43 in Figure 4.5).
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Figure 4.5: Spike times and filtered raw signals showing a common noise
signature called long blip. Both panels are aligned to t =
125.8169s and show data from the visual-parietal arrays in
y180306-1and-001. The figure shows the same details as Figure 4.3

Furthermore, we distinguished between fast and slow blips (Ta-
ble 4.1) because the distribution of blip widths turned out to be
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bimodal. An example of a slow (long) blip is shown in Figure 4.5
and an example of a fast (short) blip can be found in the appendix
Figure A.2. The width of these deflections can be used to estimate
their frequency content.

blip type width frequency
slow ~ 1ms 1000 Hz
fast < 0.25ms > 4000 Hz

Table 4.1: Frequency content of slow (long) and fast (short) blips.

Indeed, we find (see Figure 4.6) that the power spectrum shows a
broad region of elevated power between ~ 2000 — 5000 Hz, particu-
larly in the channels of the visual and parietal arrays, which by visual
inspection showed more deflections than the motor array.
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Figure 4.6: Power spectral densities PSD reflect common noise. Power spectral
densitys (PsDs) of all recording channels in the motor (left) and
the visual-parietal arrays (right). The traces are colored according
to the physical connector bank on the connector.

Besides the above-mentioned elevation in power, we furthermore
discovered sharp peaks in the power spectra.
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4.2.3 Peaks in power spectrum

We termed this artifact peaks in the power spectrum or narrow-band
oscillatory noise. With these terms, we refer to the signals that give rise
to sharp peaks in the power spectrum which typically have a width of
~ 5 —50Hz and are observed in frequencies from ~ 2000 — 15000 Hz.

While most of these peaks remain stable at a certain frequency,
others move over time and thus wash out (see Figure 4.7). These ones
give rise to broader peaks with a power spectral density higher than
the average but lower than those of the sharp peaks.

10

1077

frequency [Hz]
=
o
&
log(power) [a.u.]

107°

10710

0 100 200 300 400 500 600
time [s]

Figure 4.7: Time-resolved PSD of channel 70 from the visual-parietal arrays
from session y180306-1and-001. The time axis was segmented
into At = 10s chunks and the PSD per segment was obtained
via scipy.signal.welch() with nperseg= 600. Color encodes the
power on a logarithmic scale. Note that the elevations between ~
4000 — 6000 Hz, visible as broad peaks in Figure 4.6, and around
~ 14000 Hz drift over time

Typically the groups of channels which show those sharp peaks
belong to the same bank of the Blackrock system. This is illustrated in
Figure 4.8, where the relative peak height of the PSDs is plotted on the
array and connector mapping. A similar observation, that the signals
within a cable bundle or connector bank show correlated signals has
been made previously (Mineault, 2011).

Up to now, we have not found an isolated effect of these peaks on
the spiking activity.

4.2.4 Superposition of problems
The three artifact types defined above co-exist in the data and are

intertwined with actual neuronal activity. The simplest model, yet an
illustrative one, would be a linear superposition of signal components:
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Figure 4.8: Peaks in PSDs related to connector bank. Panel A shows the
rsD of all channels from the visual-parietal arrays from session
y180306-1and-001. The traces are colored according to the phys-
ical connector bank on the connector, same as in Figure 4.6.
The signals are shown as stored in the .nsé6-file, i.e. no fur-
ther filtering was applied. To estimate the relative peak height
around 5860 Hz the mean peak power in the range frequency
fpeak = 5860 Hz & 60 Hz (centered shade) was related to the mean
baseline power in the range frequency fpaseline € 5560 — 6160 Hz
(surrounding shade). These relative peak heights per channel are
shown in the form of a heatmap in the array mapping (left, B)
and the connector mapping (right, C).
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Xsignal = Xneuronal T Xcrosstalk + Xcommon noise + Xpeaks in Psp + X2 (41)

where X stands for signatures that might be due to artifacts but
are not yet captured by the three artifact types discussed above.

The idea of the superposition of signals allows for a more differ-
entiated analysis: From the analysis of crosstalk in Figure 4.4, we
know that most channels in area V2 are highly correlated (channel IDs
~ 30 — 50). With this information, Figure 4.5 can be interpreted more
carefully: A close look at ~ 30 — 50 reveals a close similarity of the
overall signals, a signature of crosstalk. However, the blip is observed
not only in those “crosstalking” channels but across all the displayed
channels, likely being caused separately from the crosstalk.

4.2.5 Synchrofacts are symptoms of underlying artifacts

The idea of a superposition of problematic signal components al-
lows for a broader perspective on the discussion about synchrofacts:
Synchrofacts seem to be a common symptom of various types of
underlying noise signals. Above, we reasoned that at least crosstalk
and common noise can give rise to synchrofacts. The impact of the
narrow-band oscillatory noise on synchrofacts was not conclusively
shown.

A further complication in the discussion about synchrofacts is im-
posed by the nonlinear spike sorting process to go from (noisy) raw
signals to sorted units. Given contaminated signals, whether or not
they suffer from synchrofact crucially depends on the spike extraction
threshold and the judgment of the person who sorts the data, when a
waveform belongs to a SUA, MUA or noise unit.

In particular, the spike extraction threshold, which used to be set
online during the experiment, has an impact: The more permissive the
threshold was chosen, the more potential artifacts are also reflected in
the threshold crossings, making it more difficult for the spike sorter to
reject non-neural crossings.

Example 1: A deflection on all channels, also called common noise,
might lead to several simultaneous threshold crossings and thus to a
synchrofact of a high order (as high as there are synchronous thresh-
old crossings). Such a deflection might, for example, be caused by
switching on/off a lamp.

Example 2: Channel A shows a spike. Channel A crosstalks to
Channel B, then simultaneously, you observe a spike in Channel B.
Thus, you see a synchrofact of order 2.
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4.3 HYPOTHESIZED SOURCES IN THE SETUP

In previously recorded data from a similar experimental setup for
the reach-to-grasp project (R2G, (Brochier et al., 2018)), resembling
synchronous events have been identified and linked to the raw voltage
data (Sprenger, 2014).

The main cause for synchrofacts in the old dataset was hypothe-
sized to be the analog signal transmission from the headstage to the
digital hub via the so-called patient cable, which was likely prone to
perturbations by electrical noise.

In the V4A-setup, however, signals are already digitized at the head-
stage (see Figure 3.3). To resolve the issues at the source, it is necessary
to understand the origins of the signatures that were described above.
The following paragraph is admittedly speculative, yet reflects the
state-of-the-art understanding of our collaborative investigations into
the matter.

CROSSTALK  We hypothesize that crosstalk arises due to physically
touching cables (e.g. due to broken isolation in a wire bundle leading
from the array to the connector, or touching wires on the back of the
array).

During the implantation of the arrays, the relatively long cable
bundles (primary visual cortex (V1): 4cm, V2: 5cm, dorsal prelunate
(DP): 6 cm, area 7a (7a): 8 cm) leading from the array to the connector
pedestal have to be accomodated below the skull.

Blackrock supplies a tool name the “Digital Neural Signal Simulator”
(see Figure 3.3), which can be used to replace signals from a connector
with artificial ones. We used this device to test the setup, observed
no crosstalk in the simulated signals, and concluded that crosstalk is
produced in a prior stage of signal transmission (e.g., prior to or at
the connector level).

The contacts of connector land grid array (LGA) connect to the
headstage through a filament: It is supposed to guide the electrical
current from one contact on the connector to the corresponding contact
on the headstage. We tested the effects of pollution on the performance
of the filament: E.g. clogged the filament with blood or left residual
cleaning alcohol undried. We observed that this might lead to crosstalk
at between contacts. However, regular cleaning and replacement of
the filament can prevent this from happening.

The large group of highly correlated channels in V2 (see Figure 4.4),
however, seems not to persist across all sessions. Late sessions (e.g.
j210913-1and-001) in Jazz do not show these correlations. The lab
book during this period of recordings reports that the combination
between Cereplex and connector was changed (e.g. the Cereplex that
was previously used to connect to the motor array was switched to
the visual connector and vice versa).
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COMMON NOISE As the deflections considered as the artifact com-
mon noise can be observed on all arrays simultaneously, we assume
that they stem from electromagnetic waves traveling through the setup.
Alternatively, the ground signal of the electrical grid in the building
where the experiments are performed fluctuations during events like
switching on or off a lamp. Interestingly, the effect is stronger on all
arrays in the visual and parietal areas.

PEAKS IN POWER SPECTRUM The signature of a sharp peak in
the power spectral density is also observed in systems suffering from
ground loops (Gaboian, 2000). We suggest that a ground loop might
be the cause.

In the V4A setup two parallel data streams run from the array/-
connector to the neural signal processor (NSP) (see Figure 3.3). A
huge noise signal is present if the two HDMI cables leading from
the headstages to the digital hubs are not bridged. We observed that
the amplitude of the power spectral density peaks is drastically in-
fluenced by the connection between these two HDMI cables and a
custom solution for bridging them was ordered from Blackrock and
used henceforth. The precise date can be inferred from a change of
Cereplexes, which happened simultaneously.

4.4 REMOVAL OF ARTIFACTS

Artifacts can be removed in two stages:

1. The setup can be improved in order to eliminate artifacts

2. The recorded signal can be post-processed, and the identified
signatures can be removed as well as possible.

In the long run, it is best to try to remove any issue in the setup (if
possible) and resort to the post-ancestry only if necessary. However,
the latter is also necessary because many recorded sessions contain
the discussed artifacts, and we need to deal with them.

4.4.1  Removal of artifact sources in the setup

For the removal of the artifact sources, thorough before-and-after
testing needs to be implemented to judge the effectiveness of a given
measure.

Given the signatures and hypothesized sources, we, first of all,
advise for preventative measures prior to the implantation of another
experimental subject. This entails testing the arrays and cable bundles
for crosstalk.

Furthermore, we propose regular impedance measurements (Cody
et al., 2018) of the electrodes to track eventual degradation. Prior to
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each experiment, a live preview of cross-correlated channels and high-
frequency noise could give the incentive to clean the connector, screw
it tightly to the headstage or check the bridging cable between the
connectors.

To check the impact of a fluctuating ground signal on the setup, we
proposed to test a DC power source to run the whole equipment.

4.4.2 Removal of artifacts in existing data

Crosstalk can be detected by calculating the cross-correlations and
relating these to the number of synchrofacts shown in Figure 4.4.
A threshold, which has to be chosen, can then be used to identify
problematic channels or units, and these can be annotated. Based on
this annotation the user can subsequently decide to include or exclude
the data from analyses.

As for the common noise, a re-referencing technique could be em-
ployed. Methods could consist of removing the median signal across
all channels from each channel as commonly used by the community,
or calculating the a principle component analysis (PCA) and removing
the first component. The latter allows for more local removal of a noise
component.

The impact of the peaks in the power spectrum on synchrofacts is
not yet conclusive. A possible way of removing the peaks one by one
could be a sequential application joint decorrelation (De Cheveigné
et al., 2014), a versatile dimensionality reduction method.

4.5 LIMITATIONS

Any method of removing artifacts requires a measure of success to
answer the question: When are we satisfied? This is problematic, as
the signals have no ground truth to test against.

In the end, any scientific outcome should, however, be rather robust
against the details of preprocessing as the precise spike sorting routine.

For a large part of this these, the measure of success was to reduce
the number of synchrofacts present in the data to the level that is
expected by chance.

In such a scenario, the evaluation of methods that manipulate the
raw signals, as, e.g., a sequential application of joint decorrelation,
unfortunately, requires a new spike extraction and a new spike sorting.
As explained in Section A.1 this is a lengthy process and showed not
to be practical without automatic spike sorting routines.

Within the scope of this thesis, we did implement a pipeline with
artifact characterization and artifact removal on the raw data, but the
crucial step of subsequent spike sorting and, thus, evaluation was
lacking. Recent developments in the accessibility of automatic spike
sorting methods (e.g., Spikelnterface) make such an endeavor possible.
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46 EMPLOYED WAY OF ENSURING USABILITY OF DATA

Due to the lack of conclusive measures of success for the artifacts
common noise and peaks in the power spectrum, we dealt with the
artifact crosstalk for subsequent analyses.

In the first step, we analyzed manually sorted sessions. Therefore,
we chose to annotate those channels and units that are exceedingly
correlated to any other channel and also exhibit a large synchrofact
percentage (see Figure 4.4). The single unit analysis presented in the
next chapter, was performed on all sorted units (SUA and MUA), but
for the end result, only those meeting a strict selection by quality
metrics were permitted. The selection criteria were a larger firing rate
than 1 Hz and a waveform signal-to-noise ratio (SNR) larger than 2.5
(for details, see Section A.1).

With this procedure, a reasonable amount of units in M1/PMd were
gathered across the manually sorted sessions. Due to a low number
of recorded units in V1, a large part of rejected channels in vz and
the overall smaller arrays in the visual-parietal recording sites, the
number of neurons that remained after the strict selection was very
low (see in Table 4.2 row with Alexa and Fred as sorter).

To overcome this bottleneck, only the visual-parietal area has been
automatically spike sorted for more sessions (see details Section A.1.3).
Knowing that a large part of the data is contaminated with crosstalk,
we aimed to reject these channels even before sorting. To achieve that,
we band-pass filtered the raw signals between 250 Hz and 7500 Hz
and extracted threshold crossings per channel by setting a threshold
as

_ , | x|
Thr = —5 - median (06745 (4.2)

where |x| denotes the median absolute deviation of the voltage.

With the resulting spiketrains from threshold crossings, we repli-
cated the plots as in Figure 4.4B by calculating a synchrofact percent-
age per channel. We then used these plots (see Figure 4.9) to manually
set rejection thresholds for the maximum correlation between channels
and the synchrofact index. Only channels that lie below these two
thresholds were subsequently automatically spike-sorted and used for
analysis. In Figure 4.10 the result of such a procedure is visualized
for three different sortings. Not that for the sorting of Alexa without
channel rejection most complexities show more occurrences than the
dither (chance synchrony) prediction.

For Mountainsort4 we chose the parameters listed in Table A.2.
Here, the adjacency radius is —1 and was set as default. It allows
spikes to be detectable on all channels. We observed in complexity
distributions that this setting effectively removes any synchrofacts,
including chance synchrony.
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Figure 4.9: Crosstalk exclusion thresholds that were chosen for
y180116-1and-001 shown in a scatter plot as in Figure 4.4B.
Each circle corresponds to one channel. The size of the circle
is proportional to the amount of detected threshold crossings.
The colors are random. Only channels below the horizontal and
left to the vertical line (area without shade) were chosen for the
analysis.

In the following analyses, we will use the Mountainsort4 sorting. As
we will look into the rate coding of the neurons, it probably does not
hurt to be very conservative and remove any synchrony. A similarly
conservative choice of synchrofact removal was taken in (Torre et al.,
2016).

Table 4.2 lists all used sessions and the numbers of units before
and after rejection for all the different spike sortings that were used.
Table 4.3 summarizes the former table and lists the number of neurons
pooled over sessions.

(ht]
session  sorter Vi/ Vi/ DP DPgtrict 72 Zagtrict | M1/ M1/
name V2 V2gtrict PMd PMdgtrict
y180116 Alexa 44 21 41 20 41 16 118 51
land  Fred X X X X X X X X
001 mountainsort4 16 14 28 21 28 15 X X
tridesclous 5 5 12 11 14 12 X X
y180221 Alexa 20 5 33 11 39 20 113 29
land  Fred X X X X X X X
002 mountainsort4 4 4 14 10 24 15 X X
tridesclous 1 1 8 7 17 15 X X
y180306 Alexa 24 7 31 16 37 14 101 31
land  Fred X X X X X X X X
001 mountainsorty 8 5 22 17 22 15 X X
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session  sorter Vi/ vi/ DP DPgtrict 72 Zagtrict | M1/ M1/
name V2 V2gtrict PMd PMdstrict
tridesclous 4 3 11 11 9 8 X X
y180306 Alexa 25 10 31 14 38 14 102 33
draw  Fred X X X X X X X
002 mountainsorty 7 6 24 20 22 17 X X
tridesclous 2 2 12 11 11 9 X X
j210204 Alexa X X X X X X X X
land Fred 63 1 40 5 41 5 155 58
001 mountainsort4 2 1 6 5 6 3 X X
tridesclous X X 2 6 5 X X
j210208  Alexa X X X X X X X X
land Fred 31 2 24 4 26 2 110 43
001 mountainsort4 1 1 5 5 4 2 X X
tridesclous X X 2 2 3 2 X X
j210212  Alexa X X X X X X X X
land Fred X X X X X X X X
001 mountainsorty 1 1 6 5 7 6 X X
tridesclous X X 3 3 6 5 X X
j210223 Alexa X X X X X X X X
draw  Fred X X X X X X X X
002 mountainsort4 X X 8 8 3 3 X X
tridesclous X X 4 4 2 2 X X
j210301  Alexa X X X X X X X X
draw  Fred X X X X X X X X
001 mountainsort4 X X 5 5 5 5 X X
tridesclous X X 1 1 3 3 X X
j21o60o1  Alexa X X X X X X X X
land  Fred X X X X X X X X
001 mountainsorty 2 1 10 9 4 2 X X
tridesclous X X 7 7 4 2 X X
j210608  Alexa X X X X X X X X
land Fred X X X X X X X X
001 mountainsorty 1 X 13 9 9 8 X X
tridesclous X X 9 7 7 X X
j210729 Alexa X X X X X X X X
draw  Fred X X X X X X X X
001 mountainsort4 6 5 14 13 11 11 X X



62

ARTIFACTS
session  sorter Vi/ vVi/ DP DPgtrict 72 Zagtrict | M1/ M1/
name Va2 V2gtrict PMd PMdstrict
tridesclous 1 1 10 9 8 8 X X
j210901  Alexa X X X X X X X X
draw  Fred X X X X X X X X
001 mountainsorty 5 5 14 13 8 6 X X
tridesclous 4 4 9 9 7 4 X X
j210913  Alexa X X X X X X X X
land  Fred X X X X X X X X
001 mountainsorty 8 5 12 11 11 7 X X
tridesclous 3 3 4 11 8 X X
j211007  Alexa X X X X X X X X
land  Fred X X X X X X X
001 mountainsorts 7 5 11 10 12 10 X X
tridesclous 4 4 4 8 8 X X
j211103  Alexa X X X X X X X X
land  Fred X X X X X X X X
002 mountainsorty 7 4 13 9 10 5 X X
tridesclous 4 4 7 7 9 7 X X

Table 4.2: Table summarizing the unit count in each area per session and

sorter.
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Figure 4.10: Complexities (after channel rejection) for different sorters for all
visual-parietal channels in y180306-1and-001.

SUbjeCt sorter Vi1 / Vogtrict  DPstrict  7astrict M1 / PMdstrict

Enya Alexa 43 61 64 144
Fred X X X X
mountainsort4 29 68 62 X
tridesclous 11 40 44 X

Jazz Alexa X X X X
Fred 3 9 7 101
mountainsort4 28 102 68 X
tridesclous 16 61 61 X

Table 4.3: Table summarizing the unit count in each area per sorter pooled
across sessions.

With the end of this chapter, we conclude the preliminaries for the
actual investigation of the data to answer the research question:

Is the bimodality of the distribution of preferred directions (PDs)
that has been observed in M1 and PMd/ventral premotor cortex (PMv)
also present in the parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task?

We have reviewed the literature on the cortical systems involved in
eye-hand coordination, have explained the details of the experimental
setup, including necessary preprocessing steps and finally excluded
the most severe cause of artifacts to avoid systematic biases in the
recorded data.



Freedom is what you do with what’s been done to you.

— Jean-Paul Sartre

SINGLE UNIT ACTIVITY ANALYSIS

In the previous chapters, we first reviewed neuroscientific background
(Chapter 2), then exhibited the details of the experimental setup (Chap-
ter 3) of the Vision-for-Action (V4A)-project and finally characterized
artifacts in the neural recordings (Chapter 4) and proposed a way of
dealing with the apparent issues. All of these are necessary prereq-
uisites to answer scientific questions with experimental data. In this
chapter, I present an analysis of the single unit activity that we isolated
as explained in the end of the last chapter.
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5.1 INTRODUCTION

5.1 INTRODUCTION

Awake animals and humans constantly interact with their environ-
ment: grabbing the toothbrush in the morning, reaching for the coffee
mug, and opening the laptop lid to start working; in all these circum-
stances, we exert meaningful control of bodily action, which requires
sensory perception of body posture and external world. This is often
referred to as the action-perception loop (Noel et al., 2022).

Visually guided reaching tasks, by definition, emphasize the impor-
tance of visual information to perform concerted sequences of muscle
activations that eventually lead to desired limb movements.

Research suggests that visual information enters the cortex in the
primary visual cortex, and, subsequently flows along the ventral and
the dorsal pathway (Ungerleider et al., 1982) (see Section 2.1). The ven-
tral stream, which projects to the inferotemporal cortex, is associated
with recognition or perception, and thus was also termed the what or
vision-for-perception pathway. In contrast, the dorsal stream projects
to the posterior parietal cortex, is related to spatial vision, and called
where or vision-for-action pathway due to its crucial role in movement
execution (Goodale et al., 1992b).

As reviewed in Section 2.2, most of the occipital cortex is occupied
by visual areas, in particular the primary visual cortex (V1) and higher
order areas (Felleman et al., 1991). Although visual areas are shown
to receive feedback connections from higher-order cortices (Wang et
al., 2022b), the dominant factor governing their activations seem to
be visual variables. Talluri et al. (2022) recently demonstrated that
spontaneous movements explain only a small part of the variance
measured in the macaque V1. This is in contrast to observations in
mice (Musall et al., 2019; Stringer et al., 2019a), which show strong V1
activations also for other behaviors, e.g., movements.

Following the two visual pathway hypothesis, areas in the posterior
parietal cortex have been shown to integrate sensory information of
various modalities and to be activated prior to eye or limb movements
(see Section 2.4 for a literature review). Such neural activations have
been interpreted to code the intent or motor plan rather than the
actual execution. The prevailing hypothesis is that motor intent is
subsequently transmitted to premotor and motor cortex, from which
corticomotoneuronal cells have descending connections to motor neu-
rons in the spinal cord (Strick et al., 2021) that ennervate muscles (see
Section 2.3.1).

Although the debate about what neurons in the motor cortex encode
is not yet resolved (cf. Section 2.3.2), it is well established that the
majority of neurons in the limb area of M1 are tuned to the direction
of limb movement, which classically is described by a cosine tuning
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(Amirikian et al., 2000; Georgopoulos et al., 1982) that is characterized
by a preferred direction (PD).

For movements in 3D, the distribution of PDs across neurons was
demonstrated to be uniform (Caminiti et al., 1990; Schwartz et al.,
1988). If the hand is constrained to a 2D plane by means of an ex-
oskeleton (KINARM), the distribution of PDs across neurons, however,
was shown to be bimodal (Scott et al., 2001b, 1997). Modeling studies
(Codol et al., 2023; Lillicrap et al., 2013; Verduzco-Flores et al., 2022)
which take into account the biomechanics of arm and constrained
movement of the hand in 2D. They demonstrate that for 2D hand
movements there is are directions for which groups of muscles re-
quired maximum contraction. Furthermore, across muscles, as muscles
are grouped in agonist-antagonist pairs, the contraction depending on
the movement angle in 2D is bimodal. In consequence, they suggest
that the bimodality in PDs reflects the bimodal activations of muscles.

Recently, Suminski et al. (2015) have shown that the bimodality of
the distribution of PDs extends to areas PMd and ventral premotor
cortex (PMv), and, hence concluded that even these pre-motor areas
are subject to the biomechanistic properties of the limb. Given this
finding, one can ask whether a bimodality of PDs would be observable
in further areas.

As reviewed in Section 2.4, activity in the posterior parietal cortex
has been shown to respond to several modalities: eye movements
(saccades), body movement, and different sensory stimuli. While
movement-related activity has been demonstrated in several areas
in the posterior parietal cortex (Battaglia-Mayer et al., 2000, 2007;
Diomedi et al., 2021), to our knowledge the existence of a tuning for
hand movement direction with an emphasis on the expect bias of PDs
when the hand is constrained to 2D, has not been investigated along
the dorsal visual pathway.

In this chapter, we want to answer this question by analyzing the
data recorded in the V4A project as detailed in Chapter 3. In a first
step, we confirm that the bias in the PDs distribution in M1/PMd is
reproduced with our data and then proceed to the question: Can we
observe a bimodality of PDs to hand movement along the dorsal visual
pathway?

DISENTANGLING OF MULTIPLE BEHAVIORAL INFLUENCES The
mixed selectivity of neurons in posterior parietal cortex (PPC), however,
hinders a naive extraction of neural tuning to hand movement in
integrated visuo-motor task. Effects due to visual perception and
eye movements, which happen in a correlated manner to the hand
movement, might evoke neural responses that then can falsely be
confounded as responses to simulataneously occuring movements.
One way to deal with these confound effects is to explicitly model
the neural activity of every single neuron via a rich set of behavioral



5.2 MATERIAL AND METHODS

regressors and, by that, isolate the unique effect of the behavior of
importance. The Poisson Generalized linear model (GLM) (McCullagh
et al., 1989a) is a widely used modeling approach in the neurosciences
to describe the dependence of the spike count of a neuron to a variety
of regressor variables (Lepage et al., 2012; Truccolo et al., 2005; Vaccari
et al., 2021).

APPROACH We aim to answer the question of whether a firing rate
tuning towards hand movement direction can be observed in areas
along the dorsal visual pathway. If tunings exist, we furthermore ask
whether the distributions of PDs in these areas are biased towards a
bimodality. To this aim, we perform the following analyses:

In a first step, we employ per neuron a naive Poisson GLM modeling
approach with just the sine and cosine of the instantaneous movement
angle as regressors. This preliminary analysis will reveal tendencies
towards a bimodal distribution of PDs in each of the recording ar-
eas. To exclude possible confounding variables, such as coincidentally
triggered sensory receptive fields of neurons in certain movement
directions, in a second step, we devise a more complex GLMs to de-
scribe the spike count vector via a large collection of regressors that
we group into the modalities: visual, eye position, saccade, hand position
and movement.

We make use of a procedure detailed in (Diomedi et al., 2020; Vaccari
et al., 2021) to uncover overall tendencies in selectivity towards these
regressor blocks in each of the recorded regions and thereby confirm
the expectation of a progressive decrease of the influence of visual
variables along the dorsal visual pathway and, conversely, an increase
of the influence of hand movement variables.

At this stage, having confirmed that many neurons, especially in
the parietal areas, are selective for movement variables, we proceed
and investigate the tuning functions to hand movement direction by
explicitly removing confounding variables and find that the tendency
of a bimodal distribution of PDs survives.

5.2 MATERIAL AND METHODS
5.2.1 Experiment

In the present chapter, we analyze data from the V4A experiment
which was performed with macaque monkeys. For details on the
experimental setup refer to Chapter 3. The monkeys perform two vari-
ants of visuomotor coordination tasks: the landing task and the drawing
task (see Section 3.4), which are supposed to probe various behavioral
modalities from simple visual stimuli, proprioceptive perception and
saccades to movement execution.
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Note that for the purpose of this analysis, we do not cut the session
into successful trials and do not discard unsuccessful trials or eventual
intertrial periods. We removed the first and last 10s of each of the
recordings to avoid artifacts in the signals due to the beginning or end
of the session.

5.2.1.1 Behavioral data

We are making use of different behavioral data recorded at a sampling
rate of f; = 1kHz. Specific details can be found in Section 3.2. Limb
movement is constrained to the horizontal plane by the KINARM
(KINARM Exoskeleton Laboratory, BKIN Technologies) and enables
the recording of the instantaneous hand position. Eye movement is
tracked via the EyeLink (EyeLink system, SR Research'). The experi-
ments are held in a dark room, such that all visual stimuli should be
task-related and located in the work area.

5.2.1.2 Neural data

The recording of the neuronal signals with devices from Blackrock
and more specifically chronically implanted Utah arrays is explained
in Section 3.2.5. In the previous chapter (Chapter 4) we discussed
apparent artifacts in these electrophysiological recordings. To avoid
contamination of our results with crosstalk, we employed the proce-
dure as explained in Section 4.6.

As a result we are analyzing units from manually sorted sessions
for primary motor cortex (M1)/dorsal premotor cortex (PMd), but rely
on units from automatically sorted units (see Section A.1) for primary
visual cortex (V1)/secondary visual cortex (Vz2), dorsal prelunate (DP)
and area 7a (7a). A summary of neuron numbers per session can
be found in Table 4.2. For the sake of this analysis we assume that
neurons recorded in different sessions are independent from each
other, yielding the numbers of neurons shown in Table 4.3.

5.2.2  Generalized linear models (GLMs)

In systems neuroscience, it is common to use either encoding or
decoding model to make sense of neural activity. Encoding models try
to answer the question of what a neuron’s activity encodes. On the
contrary, decoding models aim at decoding behavioral observations
(e.g. movements, decisions, etc.) given neural activity.

GLMs (McCullagh et al., 1989b) belong to the broad category of
encoding models: With their help, it is possible to disentangle the
effects that various variables have on the activity of a neuron.

1 https//www.sr-research.com
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5.2.2.1 Formulation

In contrast to a general linear model, generalized linear models do not
exhibit a linear relationship between the independent variable and
dependent variables (also called regressors or covariates, respectively).

In general, a generalized linear model can be written in vector form
as

A=f(XB) , (5.1)

or with indices as

Ae = f(BoXot + B1X1+ PoXor + -+ BNXNy) (5.2)

where A is the dependent variable, f is a nonlinear link function, X
the design matrix with the i-th independent variable X;; as row and
the coefficients of the model, i.e. the free parameters that need to be
determined via a fitting procedure.

In the neural context, it is useful to model the the firing rate A of an
underlying Poisson process as the dependent variable. Typically, this
is done by assuming that the random variable Y is the spike count y;
in a certain time interval and that this follows a Poisson distribution

/\?’e*)‘t
!

p(Y =y1) = (5:3)

In the Poisson generalized linear model (GLM) (also called the linear-
nonlinear cascade model), the logarithm of the positive rate of the
Poisson process is modeled to be linearly related to a sum of regressors
as

log Ay = XB = BoXos + P1 X1+ PoXop+ -+ BnXnyt . (54)

with the zero-th row of the design matrix X being the intercept
Xo = 1 with T the unity vector. By removing the logarithm on the left,
we can identify the link function in our problem to be f = exp():

M = F(XB) (5.5)
=f(F"%) (5.6)
=exp (BoXos + P1 X1t + BoXor + - - -+ BN XNyt) - (5.7)

The encoding distribution, or likelihood, is then obtained by plug-
ging Equation 5.7 into Equation 5.3:
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p (yt | Eft) =p (Y =y | M= (BT 7)) (5.8)

GAGED]
yi!

For a Poisson generalized linear model the log-likehood is far sim-
pler to calculate

(5.9)

log £ =1log L(B | X) (5.10)
=logp (yt | B, *t) (5.11)
2T = Yt
L
il !

-y (yf log f (") — f (%) - 1\gy_> (513)

constant

and inserting the exponential link function f = exp() and making
use of Equation 5.2.

logL ==Y A+ ) yilogA —) log(ys!) (5.14)
t t t

where A; is the mean of the Poisson distribution at time bin ¢t and
equals the predicted firing rate given the spike count y;. The last
term is constant and often omitted, sometimes expressed in a Gamma
function y;! = I'(ys + 1) and can be conveniently calculated with
scipy.special.gammaln.

In order to obtain the free parameters ; (i € 0, ... N) of this model,
we want to maximize the likelihood of observing the data given
the model. As the logarithm is monotically increasing, we can also
maximize the log-likelihood by setting its first derivative to zero

dlog L(B | X)
op
A solution to this equation is guaranteed (see Paninski (2004b)) as
the negative log-likelihood is required to be a convex function and
can be minimized via methods such as gradient descent. Optimization
yields a set of optimal B; = ;.
This optimization problem can equivalently formulated as

=0 . (5.15)

Bi = argmax (log £) (5.16)
B
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with argmaxg representing the choice of those f values that maxi-
mize the log-likelihood, or in other words the posterior distribution of
the data given the model.

5.2.2.2 Regularization

The naive gradient descent of the model is prone to over-fitting and
non-convergence (Farhoodi et al., 2021; Stevenson, 2018).

To remedy such situations different kinds of regularizations have
been investigated. The regularization imposes a further constraint on
the values of B; by modifying the optimization problem to

B; = argmax (log £ — penalty) . (5.17)
B
Elastic-net regularization (Jas et al., 2020; Zou et al., 2005) combines

two types of penalties known as Lasso (Tibshirani, 1996) and Ridge
regularizations (Hoerl et al., 1970)

N
penaltYelastic net ArEg Z (‘X ’:Bl| + (1 o ‘X) |:Bl|2) : (5'18)
i=0

where the regularization parameter Ay controls the effect of penal-
ization and needs to be estimated by proper cross-validation.

If « = 1 we recover pure Lasso regularization, which uses the
L1-norm
N
penalty,, = AZ 1Bil (5.19)
i

whereas if « = 0 the penalty corresponds to Ridge regularization

N
penalty,, = /\Z Bil* . (5.20)

While the Lasso regularization penalty forces some of the f; coeffi-
cients to zero leading to sparsity in the coefficients, Ridge regression
will lead to a shrinkage of coefficients and thereby avoid single coeffi-
cient to get exceedingly large (Bishop, 1992; Hastie et al., 20009).

5.2.2.3 Goodness-of-Fit

For linear models it is common to use the R?, also called coefficient of
determination, as a measure of the goodness-of-fit. It is defined as

RZ —1— Zf (yt—yAt)z

, (5-21)
Yo (ye — y)z

71

From a Bayesian
point of view, the
L2-penalty is
analogous to the
choise of a Gaussian
prior over the
weights, while the
L1-penalty is
equivalent to a
zero-mean Laplace
priot.



72

SINGLE UNIT ACTIVITY ANALYSIS

where y is the empirical data, 7 its mean and i the model prediction
and the index t stands for a certain sample, as in our application, we
consider samples across time if not mentioned otherwise. Thus, it
relates the sum of squares of the residuals to the variance. If the fit is
perfect, the numerator is 0 and hence R? = 1. However, if the sum of
squared residuals equals the variance then R? = 0.

For nonlinear models, however, the classical coefficient of determi-
nation is not reliable. As an alternative several versions of a pseudo-R?,
henceforth denotes as R?, resembling the classical R? have been pro-
posed. These definitions often measure the improvement of fit of the
actual model (henceforth called complete model) over the null model,
which is a model with just the constant intercept as regressor, or rel-
ative to the null and the saturated model, which set the lower and
upper bounds for the log-likelihood respectively.

SATURATED MODEL A saturated model is a model with the same
amount of parameters as degrees-of-freedom and thus, one that would
yield a perfect fit. This is equivalent to one parameter per time point
and thus the correct spike count prediction would be achieved per time
point, in contrast to just the mean of most likely Poisson distribution.
Hence, Ay — y;, which is inserted into Equation 5.14 yields

10g 'Csaturated = Zyt (108 Y — 1) - Zlog(]/t') . (5-22)
t t

PSEUDO-R?  We use the following pseudo-R? (R?) definition (used
in pyglmnet and henceforth called as such, (Goodman et al., 2019) calls
it McFadden’s pseudo-R? besides other definitions with this name)

10g Esaturated - 1Og L

1 _
1Og Laturated — log Loan

ﬁlzoyglmnet = (523)
where log L is the log-likelihood of the model under investigation.
Note that the constant term in Equation 5.14 and Equation 5.22

drops out naturally.

If the full model fit is perfect, the numerator is 0 then géyglmnet =1,
if it is merely performing as good as the null model R}%yglmnet =0
(Kraus et al., 2015). All other values lie in between.

Alternative pseudo-R? have been suggested. McFadden'’s pseudo-R?

relates the complete model log-likelihood to the null model

10g Ecomplete

108 Lot (5-24)

~o B
RMCFadden =1-

and Cox & Snell’s pseudo-R? similarly defined
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ﬁéox & Snell — 1- exp ((108 ‘Cnull - 108 Ecomplete) : (z/nobs)) ’ (525)

from which the latter is used by default in the python package
statsmodel.

5.2.2.4 Binning

For all GLMs in this thesis, a bin size of the continuous signals and the
spikes count of At = 50 ms was chosen. The choice of binning was a
trade-off between temporal resolution and computational expense (i.e.
computational time). Smaller bin sizes have been inspected for models
with only few regressors and no qualitative difference was observed.

5.2.2.5 Directional tuning via simple GLM per time lag

The simplest approach to uncover the tuning of a single unit activity
(SUA) to hand movement direction using a GLM is to model the firing
rate as

A = ePotBreostctpasin o (5.26)

where 60;_ is the instantaneous movement angle at time point t — T
with T being a fixed shift of the regressor relative to the neural activity.

This form of fit is related to the von Mises function, which has been
used in (Amirikian et al., 2000) as a more flexible choice of tuning
function compared to the classical cosine tuning (Georgopoulos et al.,
1982).

The standard, unimodal and symmetric von Mises function is given
by

d(0) =b+kexp(xcos(6 —pu)) , (5.27)

with a maximum at 0 = u (equalling the preferred direction (D)),
with « defining the shape of the function, b is the baseline firing rate,
k defines the tuning depth. The standard cosine tuning is recovered
with ¥ < 1.

A re-parametrization® reveals the analogy to the GLM fit

d(0) = b+ kexp(xy cos(0) + kpsin(0)) (5.28)

where k1 = xcos() and «, = xsin(u). Hence, one can recover x =
\/K2 + x5 and p = tan ! (%) After fitting a GLM with Equation 5.26

2 see http://kordinglab.com/spykes/tutorial.html
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to a single neurons activity, we can use 1 and B, instead of x; and %,
to determine the PD.
Furthermore, in Equation 5.26 can be ePo can be factorized, revealing
that it is equivalent to k. The variable b is not included in the GLM.
Note that by scanning through the shift 7, a shift-dependent tuning
function can be extracted.

5.2.2.6  Directional tuning via GLM including multiple regressors and time
lags

Instead of restricting the GLM to just one or two regressors at one spe-
cific time lag, as explained in Section 5.2.2.5, we use a more complete
modeling approach to disentangle different behavioral influences. In
the following, we describe the structure of this GLM and the type of
regressors that were used.

The total number of regressors and thus, coefficients, to be succes-
fully fitted is limited by the amount of data samples. Diomedi et al.
(2020) and Vaccari et al. (2021) propose as a rule of thumb to have
approximately ten samples per B-coefficient. For a typical session
duration of Tgession ~ 12min and a bin size of At = 50ms there are
Nsamples = % = 14400 samples. According to the rule of thumb,

t
we aim to build the largest model with less than ~ 1440 regressors.

GROUPING OF REGRESSORS INTO BLOCKS In the following, we
refer to a block as a group of regressors. To describe the neural activity,
we include regressors from five different classes of external variables
(Vaccari et al., 2021): visual, eye position, saccade, hand position and
movement. For the purpose of this study, we do not include internal
variables (e.g. the spike history) due to computational limitations in
the number of regressors.

We group regressors belonging to one of these classes together, such
that the model can be written down as:

Nvisual 3 1 . 1 Nmovement ¢ ¢
_ visua visua movemen movemen
Ade=exp | fo+ ) BIUIXY 4+ ) B Xt
i=1 i=1

(5-29)

REGRESSORS Here, we briefly describe the nature of the regressors
per regressor block. Each regressor is a 1D-vector in time; i.e. the
regressor X;; constitutes i-th row of the design matrix X with t being
the sample index running over time binned with the bin size At =
50 ms.

Some regressors are chosen to be dummy variables (Vaccari et al.,
2021), derived variables that are set to 1 if some condition is true and 0
if false (e.g. if a visual stimulus falls into a certain region in the visual
field at a certain time).
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This is necessary, because the GLM can only fit monotonic relation-
ships between regressor and firing rate, but the response of a neuron
to a certain stimulus can be non-monotonic (for example a neuron
in V1 with a receptive field (RF) would have a Gaussian-like response
curve in 2D).

More explicitly, the regressors were chosen in the following way:

® visual

With the aim to capture neural responses to visual stimuli,
we introduce two sets of visual stimuli and these enter the
visual regressor block: The target position relative to the eye
position and the hand position relative to the eye given in
horizontal and vertical angle from the focal point of the eye.
The relevant extent of target position relative to the eye po-

sition was defined to be XZE;:Z:IM%O*W € [-10,10)° and

Zt}tz:iectu/lhandftofeye c [_10,10]0.
To capture the eventual non-monotonic nature of the response
of neurons, each of these 2D signals have been binned with a
bin width of Ayisua1 = 4° horizontally and vertically, yielding
each 5 bins per axis and thus each 25 bins in total. The pro-
cess of obtaining these visual dummy regressors is sketched in

Figure 5.1.
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Figure 5.1: Sketch of the two types of visual regressors: Target and hand
position relative to eye position.

SEEE]

To account for different response latencies, time-shifted copies
of these regressors have been included. We included 7 time
shifts (—1,...,5At). In total the visual regressor block contains

NBPO™ = 2 % 25 x 7 = 350 regressors.

* eye position

With the aim to capture eye position gain fields, the 2D eye
position which differs slightly across sessions has been binned
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with a bin width of Aeye position = 4 ° horizontally and vertically.
The resulting regressors were time shifted by (—1,...,2At).

For session y180116-1and-001 the signal lived in the following
ranges: X,/ € [-17,31]° and X, ,..q € [—47,22]°. The
binning resulted in 84 dummy regressors. Including all time

shifts we obtained N;;;gr;zi?éin = 84 = 252 regressors.

saccade

We have observed saccade-related activity in some units and
want to capture it by introducing regressors that contain the tim-
ing of saccades in a direction-resolved manner. Saccades direc-
tions (€ [0,360]°) were binned with a bin width of Agyccage = 18°.
Per direction bin, we created two dummy regressors, one for
saccade onset and one for saccade offset which contain a 1 at the
time bin of a corresponding saccade. Furthermore, the eye veloc-
ity was standardized (z-scored) and included as a regressor. The
41 regressors were time shifted 7 times (—1,...,5At) yielding
NISESO — 41 x 7 = 287 regressors.

saccade
hand position

With the aim to capture hand position gain fields, the 2D hand
position which differs slightly across sessions has been binned
with a bin width of Apand position = 3 ¢cm horizontally and verti-
cally. The resulting regressors were time shifted by (—1,...,2) x
At.

For session y180116-1and-001 the signal lived in the following
ranges: X € [-16,4]cm and X" € [—15,9]cm with
respect to the origin of the work area. The binning resulted
in 56 dummy regressors. Including all time shifts we obtained

regressors - .
Njnd position — 56 x 3 = 168 regressors.

movement

We are primarily interested to uncover the neural tuning to hand
movement. To achieve this we parameterized movement by a
direction and velocity and added corresponding regressor.

We first smoothed the x and y coordinates of the hand posi-
tion sampled at 1kHz with a Savitzky-Golay filter using the
window length wsg hang = 101 ms and the polynomial order
PSGhand = 3. From these smoothed signals, we calculated the
instantaneous hand movement angle between subsequent bins
tand t+ 1 as 6 = arctan2(y¢+1 — Yt, X¢4+1 — X¢). From the result-
ing instantaneous hand movement angle sampled at 1 kHz, we
downsampled to the desired sampling period At = 50ms by
taking the circular mean within each bin.

From the resulting signal (€ [0,360]°) we took the cosine and
sine yielding 2 regressors.
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To also capture eventual influence of the hand velocity, we added
the standardized hand velocity and, additionally, dummy vari-
ables of the velocity binned with Apgvement velocity = 2cm/s,
yielding 1 + 14 regressors.

All movement regressors were time shifted (—6,...,6) x At re-
sulting in N;5 000" = (2414 14) x 13 = 221 regressors.

movement ~

In total, our GLM comprises N, oy = 350 + 252 + 287 + 168 +
221 = 1278 regressors.

FITTING PROCEDURE In a GLM with this amount of regressors
many regressors are negligible and we resort to regularization to cope
with this issue. As recommended in (Diomedi et al., 2020; Vaccari
et al., 2021) we employed Lasso regularization. For the regularized fit,
we thus used & = 1.

The value of Areg = 0.001 was heuristically determined by perform-
ing the following analysis on multiple example neurons: We scanned
through values of Arg and chose the value, where the cross-validated
deviance of the fit is minimal.

Per neuron, we first fit the Lasso regularized GLM. The effect of the
Lasso regularization is that many B-coefficient are set to zero. We then
re-fit the model with just those regressors for which the B-coefficients
were non-zero in the Lasso fit to obtain a goodness-of-fit measure that
is not biased by the Lasso penalization term in the log-likelihood

EXTRACTION OF JUST THE INFLUENCE OF THE MOVEMENT RE-
GRESSORS  We fit this large GLM to be able to disentangle the influ-
ences of multiple behavior. To extract the directional tuning of neural
firing to the instantaneous hand movement direction, we want to inte-
grate out the impact of the regressor blocks visual, eye position, saccade,
hand position and thereby avoid possible confounds.

The linear sum of regressors in the exponential leads to a multi-
plicative effect of each regressor. This is in line with the idea of gain
modulation of eye or hand position (Paninski, 2004a). To integrate out
all regressors that do not belong to the movement regressor block, we
calculate

1 S Nmovement
/\;novement — g Z exp < ,BO 4 Z ,Bi Xg}ovement 4 (530)
i=1
+...other regressors shuffled in time...) . (5.31)

with S the number of different shuffles inspired by (Ledergerber
et al., 2021). The shuffling of the other regressors in time destroys the
temporal relation between regressor and caused firing rate and thereby
also destroys the potential of these regressors to be confounded as
response to the movement.
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Figure 5.2: [llustration of the influence of a time shifting of the regressor
variable on the goodness-of-fit in a GLM.

5.2.2.7 Time Shift between Neural Activity and Regressors

It is unlikely that there is an instantaneous relationship (e.g. T =
Oms) between neural activity and a certain regressor variable (e.g.
instantaneous hand movement direction). To illustrate this consider
the following two scenarios as depicted in Figure 5.2:

1. A neuron in Vi with a well-defined RF is triggered by a visual
stimulus, and, as a response, increases its firing rate after a
certain latency (typically around 50 ms in V1 (Schmolesky et al.,
1998)). Consider a regressor for a 2D pixel at the location of
that neuron’s receptive field (RF) location: This regressor equals
one if there is a stimulus at that location and zero otherwise. To
achieve a maximal correlation between the neural response and
the regressor variable, one would ideally shift the regressor by
the amount of the latency.

2. A neuron in M1 indirectly (via an interneuron and a motoneuron)
triggers a certain muscle activity that eventually leads to a move-
ment of the limb in a certain direction. A regressor describing
the instantaneous movement direction would need to be shifted
by the latency between neural firing and the resulting movement
direction.

In the first case, the neural activity lags the external stimulus, while
in the second case neural activity leads the externally observed behav-
ior.
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5.2.2.8 Relative impact of regressor block

In the previous section Section 5.2.2.6, we explained the structure
of the GLM including all regressors grouped into blocks, henceforth
called the complete model.

We can evaluate impact of one particular regressor block on the
goodness-of-fit by leaving out this regressor block from the GLM fit,
then called nested model, and comparing it to the complete model
(Diomedi et al., 2020; Vaccari et al., 2021).

We evaluate the drop in log-likelihood if one regressor block is left
out (nested model) with respect to the complete model and the null model.
The quantity that measures this is the w-value (Diomedi et al., 2020;
Vaccari et al., 2021):

- R?
R%elative = ’“211(37“6(i (532)
complete
_ log Enested - 10g »Cnull (5 33)
10g 'Ccomplete - log ﬁnull
w=1- R%elativepseudo ’ (5:34)

where log £, ested, €xemplary, stands for the log-likelihood of the
nested model.

If the nested model performs as good the complete model and thus
leads to the same log-likelihood, the relativepseudo — R?> = 1 and in
turn w = 0.

On the other hand, if the nested model performs similar as the
null model and the difference in their likelihoods is €, the ratio
relativepseudo — R? = Iog ﬁcomp1et€e—log v 2 0and in turn w = 1. In
this situation, the left-out regressors are responsible for the success in
the complete model.

In summary, the larger the w-value, the larger its influence on the
goodness-of-fit.

5.2.2.9 Test for Bimodality

The Rayleigh r statistic from Batschelet (1981) was modified to deter-
mine the bimodality of the distribution of preferred directions (Scott
et al., 2001a). The original r statistics measures the skewness of the
distribution of angles ¢;’s € [0,360]° with

2 2
r= % (Zcos(gbi)) + (Zsin((l)i)) . (5-35)

If all angles ¢ point into the same direction (e.g. consider 90° —
cos(90) = 1) this measure results in 7 = 1 and consequently drops for
more uniform distributions.
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Similarly, it is possible to test for bimodality with precisely 180 ° in
between the modes by doubling the angles:

2
1

2
Tbimodal = 772 (Z C05(24’z‘)> + (2 Sin(2¢i)> (5-36)

Given a distribution of PDs with sample size N, a p-value can be
determined via bootstrapping. We use an approximation of such
a bootstrap procedure supplied by pycircstat, the python port of
(Berens, 2009). We ensured that the p-values coincide with a bootstrap
distribution that was obtained by calculating the 7pimoga for 106 distri-
butions with each N i.i.d. drawn samples from a uniform distribution.
Significant bimodality was defined by a p-value < 0.05.

5.2.3 Signal triggered distribution

In some circumstances, the assumed causality is such that an external
event/signal evokes a neuronal response. In these cases, the signal
triggered distribution of firing p(#(t)|a < S(6,t) < b, T), with #(t)
being the estimate of the instantaneous firing rate of the neuron, can
be looked at. It is the distribution of firing rates observed when the
signal is in a certain interval.

In the first step, the instantaneous firing rate estimate of spike train
s(t) of neuron i is obtained by a suitable convolution with a kernel
k(s) as #(t) = [si(t — s)k(s)ds.

In a second step, the signal S(6,t) is binned. For all times tp;,
for which the signal is in the range a < S§(0,t) < b the estimated
instantaneous firing rate values are stored. In this way, we get a
distribution of firing rates observed when the signal is that range
p(F(t)|a < S(6,t) < b,7).

From this distribution, the mean p(#(t)|a < S(6,t) < b, T) > can
be evaluated. Repeating this for intervals covering the whole signal
range and for several time-shifts (lags) T of the instantaneous firing
rate with respect to the signal, results in a lag-dependent mapping of
the mean firing rate given a certain signal.

Note, that here the instantaneous firing rate is shifted with respect
to the signal, while in the GLM the signals are shifted with respect to
the spike count vector.

5.2.4 Software

All analyses were conducted using Python. The electrophysiological
data was represented via neo (Garcia et al., 2014). Basic spiketrain
statistics as the waveform signal-to-noise ratio (SNR) (see Section A.1)
or the mean firing rates were calculated using elephant (Denker et
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al., 2018a). Automatic spike sorting, as explained in Section A.1 was
performed using SpikeInterface (Buccino et al., 2020). snakemake
(Koster et al., 2012) was employed to chain seperate analysis steps
together into a modular analysis workflow. The GLM was fitted using
statsmodels. However, the pseudo-R? was inspired from glmnet (Jas
et al., 2020).

5.3 OUTLINE

In the results, we start by presenting a glimpse into the experimental
data. In particular, we illustrate the behavioral complexity by showing
an exemplary trial with all behavioral traces. After reasoning, that
the behavioral data, with focus on the movements, is rich enough to
extract an eventual tuning of single neuron activity to hand movement
direction, we continue by determining the tuning of one exemplary
neuron with classical methods and the GLM approach.

5.4 RESULTS

We analyzed neural activity from 4 sessions from monkey Enya and
from 12 sessions from monkey Jazz (see Table 5.1). For the results
presented in this chapter, we use single unit activity obtained accord-
ing to the procedure detailed in Section 4.6 and ensuring the quality
metric listed in Table A.3. A summary of the used neuron numbers
per monkey and recording site is given in Table 4.3.

5.4.1 Visually guided reaching task probes large set of behaviors

The experimental tasks (see Section 3.4) were designed to probe natu-
ral behavior during a visually guided hand movement that requires a
close and recurrent interplay between perception and action. To illus-
trate the interplay between different behavioral modalities, we show
the recorded behavioral data for one exemplary successful trial of the
landing task in Figure 5.3. Note that in the following, the discussion of
results is simplified by focussing on the landing task, if not mentioned
explicitly otherwise.

After the monkey is presented with a new target, it performs a
saccade towards it (typically with a delay of ~ 200 ms) and initiates the
hand movement. The temporal order of saccade and hand movement
is variable (see bottom two panel rows) and seems to depend on
the direction (data not shown here). The eye position signal in the
top panel shows that the eye rarely hits the target position directly,
but rather jumps into its vicinity and then stays there with multiple
micro-saccades until the next saccade.

The hand movement can be segmented into movement segments
(Section 3.2.1), for which maximal velocities are reached roughly at the
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session name subject fyigs  nSucess  pfl g T dgial 0 (Ayial)

y18o116-land-oo1  Enya 190 121 69 8 700 3.9 0.4
y18o221-land-oo2  Enya 178 120 58 12 6568 38 04
y180306-land-oo1  Enya 176 120 56 12 6575 3.8 04
y180306-draw-002 Enya 134 120 14 X 543 3.4 0.7
j210204-land-001  Jazz 190 120 70 12 590 3.2 0.4
j210208-land-o01  Jazz 268 120 148 12 733.5 3.3 04
j210212-land-001  Jazz 238 120 118 12  649.5 29 0.3
320 2.7 03
556 3.9 0.5

j210223-draw-002  Jazz 87 8o 7 X
X
j210601-land-oo1  Jazz 317 45 272 8 559.1 3.5 0.4
8
X
X

j210301-draw-oo1  Jazz 122 120 2

j210608-land-001  Jazz 382 110 272 854 3.5 0.3
j210729-draw-oo1  Jazz 124 120 4 441 2.8 05
j210901-draw-oo1  Jazz 148 120 28 483 29 0.6
j210913-land-001  Jazz 327 120 207 12 7604 3.2 04
j211007-land-0o0o1  Jazz 307 76 231 8 780 47 05
j211103-land-002  Jazz 181 8o 101 8 838 7.2 0.4

Table 5.1: Information on the sessions that were used in the analysis. nig
denotes the number of different landing sequences that were used.
T: total session duration, (disa, 0(diia1)) : mean and standard
deviation across successful trial durations, respectively. The values
in the last three columns are given in seconds.
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Figure 5.3: (Continued caption.) The presented landing sequence in this ex-
ample trial is depicted on the top left. This trial was performed
successfully. The previous three trial were unsuccessful. The top
panel shows the 2D eye position and hand position in degrees
relative to straight forward eye position. Targets are marked by
crosses and colored as in the depiction of the landing sequence
on the left. The logical radius plotted around the target center
defines the area within which the monkey is required to land.
The eye position (small colored dots) is colored according to pro-
gressing time within the trial. The hand trajectory (solid line)
is shaded in gray according to the hand velocity. Relevant task
events are marked on the hand trajectory with colored markers
(colors match the labels below, triangle: target onset, lightly col-
ored triangle: target reached, diamond: maximal hand movement
velocity, star: saccade onset). Thin lines connect these markers to
the eye position at the event’s time. The bottom panel shows the
behavioral data across time. The first two rows show the x and
y components of the hand, eye and target. Relevant task events
are marked by colored vertical lines, corresponding labels can
be found above. The third row shows the distances hand-to-eye,
target-to-eye and hand-to-target across time. Saccade onsets are
marked by lilac vertical lines, which are solid for the first sac-
cade onset after a target onset and dashed otherwise. The bottom
row shows the hand velocity and acceleration across time. Hand
movement onsets are marked by brown vertical lines, which are
solid for the first hand movement onset after target onset and
dashed otherwise, corresponding labels can be found below. The
diamonds denote the time points of maximal velocity in the de-
tected movement segment. Their color corresponds to the colorbar
encoding time in the top panel.

halfway point when moving from one target to another. During this
landing task, the hand is required to stay within the logical radius of
the targets for a certain amount of time. While the hand movement is
visibly slower during this landing period, the hand does not stand still.
In some occasions, e.g. for the top right target landing in the presented
example trial, the monkey seems to use this landing period to change
the movement direction even before the next target is showing up.
Note that the hand movement is constrained by the mechanics of the
KINARM, which likely hinders very brisk changes in hand movement.

5.4.2 Visually guided reaching task allows for hand movement direction
tuning analysis

Classically, directional tuning is evaluated in well-constrained tasks in
which center-out movements are used and only the data during the
task performance periods are analyzed (e.g. 8 center-out directions
are used in Georgopoulos et al. (1982)). To enable comparison to such
previous studies, the first part of each landing task trial consists of a
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classic center-out reach Figure 5.4A. Depending on our selection of the
positions of subsequent targets in the landing sequences, movements
in certain directions were performed more than in other directions
(Figure 5.6 and Figure 5.7). The full twelve landing sequences, with
three sub-trajectories each, sample a wide range of hand movement
directions (see Figure 5.4C). Hand movement trajectories exhibit vari-
ability across the same trial type as can be seen in Figure 5.4B.

Similarly, multiple trials in the drawing task require the monkey to
perform all hand movement directions (see Figure 5.4D).
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Figure 5.4: Hand movement examples. A Hand position trajectories on the
horizontal work area during the center-out part of the landing
task. Trajectories are colored according to the mean movement
direction, colors coded as shown in the color wheel in the next
panel. B shows the hand position of ten repetitions of one landing
sequence, while panels C show the hand position during ten suc-
cessive trials; the color encodes the instantaneous hand movement
direction. D shows the hand position of ten repetitions of one
drawing session. Note the larger logical radius of the targets in
the drawing task.

CHOICE OF ANALYSIS TIME RANGE  The two types of tasks, as illus-
trated above, only require the monkey to adhere to timing constraints
(e.g. maximal reach time, minimal landing time), and thus, allow the
monkey to perform movements with variability in the trajectories and
their velocities. In consequence, the timing of events is different across
repetitions of the trials of the same landing sequence, rendering classi-
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cal alignment analyses (e.g. via peri-stimulus time histograms (PSTHs))
difficult. In the following, we will use a GLM approach to circumvent
the need for alignments.

Such an approach, furthermore, alleviates us from the need to use
only the successfully executed parts of the experiment. In line with
tendencies in the field to move towards the use of neural recordings
during naturalistic behavior, we decided to use the whole recording
sessions at hand: That is, including unsuccessful trials, reward and
inter-trial periods. Figure 5.5 illustrates the proportions of each of these
different periods in the analyzed sessions. To interpret this figure see
also Table 5.1. It is noteworthy, that monkey Jazz, tends to execute
movements faster than Enya, at the expense of more unsuccessful
trials.

One benefit of using the whole stretch of the continuous behavioral
and neural recordings is the large amounts of samples: Consider-
ing only periods of movements between targets during successful
trials would amount to around one third of the total duration of the
recordings, which corresponds to substantially fewer samples.

total_duration W&Eﬁ
task_duration &_%

successful_duration &D
- ¢ b )

unsuccessful_duration Em
movement_in_successful_duration ¢ @ db

variable

center_out_movement_in_successful_duration @Q
landing_in_successful_duration ¢

¢
reward_in_successful_duration #
n- - '

3 Enya
[ Jazz

intertrial_in_successful_duration ¢®¢
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time [s]

Figure 5.5: Overview over the durations of recording session, pure task ex-
ecution and several epochs shown in a boxplot with overlayed
single session values (circles) for the two experimnental subjects
Enya and Jazz.

On the contrary, one could argue that the behavior during unsuc-
cessful trials, as well as reward and inter-trial periods, is not controlled.
Yet, in the case of the experiments in the V4A-experiments, the behavior
was not strictly controlled during the task either.

Luckily, the behavioral recordings of hand position, eye position
and the timing of the occurrence of targets in the work area yield a
rich set of variables that can help interpret potential “uncontrolled”
movements and timings of the recordings.
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Hence, unsuccessful periods in the experiment were not thrown
away, because the movements performed were largely valid and made
up only a little fraction of the whole experimental session. Subsequent
analyses, thus, contain data from uncontrolled periods during the ex-
periment such as unsuccessful trials or eventual inter-trial periods. For
future analyses it might be worth considering that different contexts
(successful vs. unsuccessful) can alter the neural representation of a
given movement.

BIASED DISTRIBUTIONS OF HAND MOVEMENT DIRECTIONS  With
the aim to extract the neural tuning to the hand movement direction,
and with the argument of the previous paragraph in mind, we looked
at the distribution of instantaneous movement angles samples (binned
at At = 50ms) during the center-out part of the landing task and the
whole session (Figure 5.6A for Enya and Figure 5.7A for Jazz). In both
subjects, the distribution of angles for the center-out part, is clearly
biased towards the directions defined by the work area and target
locations (cf. Figure 5.4A). Considering the complete trials and the
required movements imposed by the task, certain movement directions
in the 2D work-area are overrepresented due to the location of the
targets (see Figure 5.6 and Figure 5.7).

Similarly, the distribution of angles across the complete sessions is
biased: However, this bias is not dictated by the required movements
that are demanded by the task, but seems to be aligned to a certain
axis. The count of binned instantaneous movement angles depends
on the velocity of movements. To resolve this dependency, panels B
in both figures show the 2D heatmap of the distribution of angle and
velocity of movements. It can be seen that the 95™-percentile of the
normalized velocity distribution per direction is reached for smaller
velocities in some directions. This means that movement velocities for
certain movement directions (slightly differing for the two subjects)
are lower and thus lead to more samples in the distribution in A.

The non-uniform distributions of both angles and velocities bring
classical techniques (e.g. reverse correlation) to calculate the tuning
curve for single unit activity to their limit and would lead to a bias
(Paninski et al., 2004), that can be avoided by using a GLM approach
(Pillow, 2005).

5.4.3 Distribution of PDs for hand movement is bimodal in Mz/PMd

After having presented some characteristics of the movement behavior
of the two subjects in the recorded data, we will now related the neural
activity to it. We illustrate the extraction of a PD at the hand of an
exemplary neuron from M1/PMd and then present the results obtained
from the population of neurons.
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Figure 5.6: Hand movement directions distributions for session by Enya. A
shows the normalized, circular distribution of bins (signal binned
into 50 ms bins) that show a particular instantaneous hand move-
ment direction; grey for the center-out period and black for the
whole session. B Probability density of observing an absolute
velocity in a certain direction P(6, |v|) in polar coordinates with
the radius encoding the velocity in units of cm/s. The thin black
contour marks the 95"-percentile of the normalized velocity dis-
tribution per direction P (|v||6 = 0).
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Figure 5.7: Hand movement directions distributions for session by Jazz. Same
as in Figure 5.6.



5.4 RESULTS

5.4.3.1 Example of single unit activity in M1/PMd

Single unit activity in M1/PMd is known to be active during hand
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