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A B S T R A C T

Empirical, data-driven approaches and theoretical, model-driven ap-
proaches to investigate the brain largely co-exist. With the intention
to foster synergies, this thesis explores the intricacies of each of these
two approaches.

In the first study, we investigate the neural underpinnings of eye-
hand coordination by analyzing spiking activity recorded via multi-
electrode arrays from behaving monkeys within the Vision-for-Action
experiment. Before exploring movement-related activity along the
dorsal visual stream, we follow the dataset’s evolution from the raw
recording data to preprocessed datasets with integrated metadata as
well as spike sorting, and deal with potential artifacts by characterizing
and excluding them. To isolate the effect of movement variables from
simultaneously occurring behaviors (e.g., vision and eye movements)
on the spiking activity of single neurons, we use Generalized Linear
Models (GLMs).

In particular, we reproduce the observation of a bimodal distribution
of preferred directions of neurons in M1/PMd for hand movements
restricted to the horizontal plane and report similar bimodal distribu-
tions in V1/V2, DP, 7a.

In a second project, we research high-frequency oscillations (∼
300 Hz) that are predicted by simulations of biologically constrained,
large-scale, spiking neural network models of a cortical microcircuit.
To understand the model prediction mechanistically, we approximate
the network dynamics via mean-field and linear response theory and
find three network ingredients that impact the power spectrum of
the population activity: the anatomical connectivity, the delay distri-
butions, and the transfer functions. Assuming the model prediction
is accurate, we argue that high-frequency oscillations should be de-
tectable via population measures as the local field potential.
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Z U S A M M E N FA S S U N G

Empirische, datengestützte Ansätze und theoretische, modellgestützte
Ansätze zur Erforschung des Gehirns existieren weitestgehend unab-
hängig voneinander. Mit der Absicht, Synergien zu fördern, erforscht
diese Arbeit die Feinheiten beider Ansätze.

In der ersten Studie werden die neuronalen Grundlagen der Koordi-
nation von Auge und Hand untersucht, indem Spike-Aktivitäten, die
über Multielektroden-Arrays im Rahmen des Vision-for-Action Expe-
riments in Affen aufgezeichnet wurden, analysiert werden. Bevor die
bewegungsbezogene Aktivität entlang des dorsalen Sehstroms unter-
sucht wird, wird die Entwicklung des Datensatzes von den Rohdaten
bis hin zu vorverarbeiteten Daten mit integrierten Metadaten und
Spike Sortings erläutert. Artefakte werden charakterisiert und entfernt.
Um die Auswirkungen von Bewegungsvariablen von simultan statt-
findenden Prozessen (z. B. Sehen und Bewegung der Augen) auf die
Spike-Aktivität einzelner Neuronen zu isolieren, werden Generalized
Linear Models (GLMs) verwendet.

Insbesondere wird die Beobachtung einer bimodalen Verteilung der
bevorzugten Richtungen von Neuronen in M1/PMd für Handbewe-
gungen, die auf die horizontale Ebene beschränkt sind, reproduziert
und durch die Beobachtung einer ähnlichen bimodalen Verteilung in
V1/V2, DP, 7a erweitert.

In einem zweiten Projekt werden hochfrequente Oszillationen (∼
300 Hz) erforscht, die in Simulationen von biologisch eingeschränk-
ten, großskaligen, spikenden neuronalen Netzwerkmodellen eines
kortikalen Mikroschaltkreises auftreten. Um die Modellvorhersage
mechanistisch zu verstehen, wird die Netzwerkdynamik durch Mean-
Field- und Linear Response Theorie angenähert und es werden drei
Netzwerkbestandteile ausgemacht, die die spektrale Leistungsdichte
der Populationsaktivität beeinflussen: die anatomische Konnektivität,
die Delay-Verteilungen und die Übertragungsfunktionen. Unter der
Annahme, dass die Modellvorhersage zutreffend ist, wird argumen-
tiert, dass hochfrequente Oszillationen über Populationsmessungen
wie beispielsweise das lokale Feldpotenzial nachweisbar sein sollten.
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Il faut savoir que, d’une part, les plaisirs, les joies, les ris et les jeux, d’autre
part, les chagrins, les peines, les mécontentements et les plaintes ne nous
proviennent que de là (le cerveau). C’est par là surtout que nous pensons,

comprenons, voyons, entendons, que nous connaissons le laid et le beau, le
mal et le bien, l’agréable et le désagréable, soit que nous les reconnaissions
par l’utilité qu’elles nous procurent, ressentant, dans cette utilité même, le

plaisir et le déplaisir, suivant les opportunités, les mêmes objets ne nous
plaisant pas.

— Hippocrates, 460-377 BC

1
I N T R O D U C T I O N

The brain is arguably the most complex organ of the human body, and
its crucial role in our functioning has been philosophized upon since
the time of the sophists in ancient Greece (Breitenfeld et al., 2014).
Unlike Aristotle, who believed the heart to be the crucial organ and the
brain to merely cool down the blood (Clarke et al., 1963), Hippocrates,
as cited above, foresaw the brain’s paramount importance.

Centuries of effort into the investigation of the brain, termed neu-
roscience, enlightened us with insights into basic human capabili-
ties ranging from the instincts of breathing and sleeping via sensory
perception and movement control to complex emotions and social
interactions.

Modern neurosciences reflect the demand to advance understand-
ing of this fascinating multi-scale organ through various approaches
on different spatial and temporal scales, synthesizing insights from
physics, biology, medicine, and psychology research. However, it is un-
clear which line of research brings us closer to unraveling the brain’s
mysteries. Can we merely rely on fMRI studies of the BOLD signal
in humans to understand which brain regions activate during a spe-
cific task? Is it crucial to first explain the membrane potential of a
single neuron in the behaving fruit fly to comprehend the mechanisms
behind Alzheimer’s disease?

Within the scope of this thesis, we deal with projects located in two
subfields: Systems neuroscience and computational neuroscience.

Common to both systems and computational neuroscience is, how-
ever, the assumption that the basic building block constituting the
brain is the neuron. This point of view was established in the late
19th century due to Golgi (1873), who invented the silver-staining of
neural tissue and Ramón y Cajal (1888), who used such stainings for
astonishingly detailed drawings of single neurons, but also intricate
networks thereof. Both received a joint Nobel prize in 1906 for their
contributions.

1
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Figure 1.1: Illustration of the scientific loop.

But while systems and behavioral neuroscience focus on understand-
ing brain subsystems and their functions through experiments and
therefore follow a top-down approach, computational neuroscience,
younger and steadily advancing with computing technology, utilizes
simulations and theoretical descriptions to achieve a mechanistic,
bottom-up understanding of experimental findings. In their common
quest — understanding how the brain works —, they have a symbiotic
history, these subfields remain separate (De Schutter, 2008) due to
increasing specialization and complexity. Yet, the need for integrative
approaches that combine experimental and computational techniques
is of utmost importance.

Arguing in favor of this hypothesis, consider the scientific loop as
depicted in Figure 1.1, which represents an idealization of the scien-
tific process. The observation of an unknown feature in experimental
data, a prediction from simulations, or analytical descriptions lead
to a question that can be formulated as a falsifiable hypothesis. An
experiment must be designed to test this hypothesis, which can be
performed in vitro (including computational approaches) or in vivo.
The obtained knowledge is then converted into a result, which can
lead to new observations depending on the outcome.

The reality is that the brain is analyzed in diverse scientific subfields,
and the gaps between the research directions are significant, making it
difficult for researchers to communicate across communities and keep
track of all the findings. Progress in experimental possibilities allows
simultaneous recording from multiple brain regions, while systematic
examinations of connectivity and neuron densities enable biologically
realistic simulations.

However, while experiments explore functional relationships, sim-
ulations have not yet reached the same level. Reconciliation between
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experiment and simulation/theory is crucial for advancing our under-
standing of the brain.

This thesis presents two lines of projects that, if treated indepen-
dently, would each be considered to belong to just one subfield, either
experimental neuroscience or computational/theoretical neuroscience.

For one part, we will dive deep into an experimental setup, prepro-
cess the data, investigate behavioral data, and relate it to neuronal
activity in specific macaque brain regions. For the other part, we will
perform simulations of spiking neural networks and examine the
network dynamics using theoretical tools.

The goal of combining these projects into one thesis is to understand
the intricacies of each of the two research approaches to finally bridge
the gap between them, profit from this synergy, and eventually gain a
more comprehensive understanding of how the brain works.

Next, we will briefly establish the prerequisites that are needed for
the following chapters. The focus lies on the basic building block of
the brain: the neuron.

1.1 prerequisites

The brain consists of two categories of cells: neurons and glia. While
neurons are believed to play a key role in the brain’s functioning,
the glia’s role is less clear and is often attributed a mere supporting
function.

1.1.1 The neuron

Neurons communicate through electrical and chemical signals trans-
mitted between neurons at connection points, the synapse. As depicted
in Figure 1.2, a neuron consists of a cell body, the soma, the signal-
receiving branches, the dendrites, and outward projecting branches,
the axons. Signals are received at the dendrites, integrated at the cell
body, and propagated down the axon as an action potential. The axon
terminal may connect with a synapse or a muscle. Myelin sheets, which
cover the axons intermitted with gaps, known as nodes of Ranvier,
insulate the “cable” and allow for faster conduction speeds of a signal
(Purves et al., 2018).

the action potential The action potential (see Figure 1.3), also
commonly called spike, is a large yet brisk (∼ 1 − 2 ms) deflection of
the membrane potential that is generated at the part of the cell body
called the axon hillock if sufficiently many incoming signals add up to
cross a certain threshold.

The membrane potential is the difference in ion concentration be-
tween the inside and outside of a neuron. At rest, the membrane
potential is around −70 mV, governed by the Nernst potential that
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Figure 1.2: Sketch of a neuron. Image from “Neurons and glial cells” in
Clark et al. (2018) licensed under Creative Commons Attribution
License v4.0.

describes the equilibrium potential for a given ion type. The cell
membrane consists of a lipid bilayer with many ion channels (e.g.,
voltage-gated) and ion pumps (Kandel et al., 2013; Purves et al., 2018)
and thus allows for the exchange of ions if the channels are open or at
the expanse of energy to engage the pumps. Relevant ions involved in
neuronal signaling are potassium (K+), sodium (Na+), chloride (Cl−),
and calcium (Ca2+) (Purves et al., 2018).

Depolarization is the process by which the membrane potential be-
comes more positive. This can occur through incoming signals, which
might add up, if sufficiently synchronized. If the excitation threshold
is exceeded, a cascade of events follows: voltage-gated ion channels
open, leading to complete depolarization (peak action potential) un-
til Na+-channels close repolarization (Kandel et al., 2013). The Na+

channels stay closed for a certain amount of time, preventing further
action potentials called the refractory period.

When a neuron receives a signal, sodium channels in the membrane
open and allow positively charged sodium ions (Na+) to flow into
the cell, which depolarizes the membrane and triggers the action
potential. As the membrane potential becomes more positive during
depolarization, potassium channels open and allow positively charged
potassium ions (K+) to flow out of the cell, which repolarizes the
membrane and returns it to its resting potential.
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the synapse and neurotransmitters Synapses typically con-
nect the axon terminal of a presynaptic neuron with the dendritic
spine of a postsynaptic neuron (see inset in Figure 1.3). There are
two types of synapses: chemical and electrical. Chemical synapses
involve the release of neurotransmitters from the presynaptic neuron
in the synaptic cleft, which then bind to receptors on the postsynaptic
neuron. Electrical synapses involve direct communication between
neurons through gap junctions.

Figure 1.3: Sketch of an action potential. Image from “Neurons and glial
cells” in Clark et al. (2018) licensed under Creative Commons
Attribution License v4.0.

At chemical synapses, calcium ions (Ca2+) are involved in triggering
the release of neurotransmitters from the presynaptic neuron. When
an action potential reaches the end of an axon, it triggers calcium chan-
nels to open and allows calcium ions to flow into the cell. This influx
of calcium then leads to a fusion of vesicles containing neurotrans-
mitters with the membrane. It causes the release of neurotransmitter
molecules from the axon terminal into the synaptic cleft. The released
neurotransmitters then diffuse across the synaptic cleft and bind to
specific receptors on the postsynaptic membrane, triggering a response
in the postsynaptic neuron.

Neurotransmitters can have excitatory or inhibitory effects on the
postsynaptic neuron, depending on the specific receptor subtypes
they bind to. Depolarization results in an excitatory postsynaptic
potential (EPSP), while hyperpolarization leads to an inhibitory postsy-
naptic potential (IPSP). There is a transmission delay of roughly 1 ms
caused by chemical transmission (Clark et al., 2018). Furthermore,
the unidirectional nature of synaptic transmission allows for complex
information processing in the brain (Kandel et al., 2013). Common
neurotransmitters observed in the brain are glutamate (acting exci-
tatory), gamma-aminobutyric acid (GABA) (inhibitory), acetylcholine
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(excitatory), dopamine (both excitatory and inhibitory), and serotonin
(both excitatory and inhibitory).

Electrical synapses are far less common than chemical synapses
but involve direct communication between neurons through gap junc-
tions. These synapses allow for faster communication than chemical
synapses (Connors et al., 2004).

extracellular electrophysiolgy Electrodes that are suffi-
ciently sensitive and located in the neural tissue can detect the deflec-
tions caused by action potentials of nearby neurons. Unlike intracellu-
lar recordings, which require placing an electrode inside a neuron (or
on the membrane —called patch-clamping), extracellular recordings
detect the electrical signals that neurons emit into the extracellular
space.

Extracellular recordings can be done using several types of elec-
trodes, including single-wire electrodes, multi-wire electrodes, and
microelectrode arrays. The choice of electrode depends on the specific
experiment and the desired level of spatial resolution.

Nowadays, extracellular recordings can be used to study the activ-
ity of many neurons simultaneously. To understand how groups of
neurons work together to generate behavior or process information.
Additionally, extracellular recordings can be done in awake, behav-
ing animals, which allows researchers to study neural activity under
naturalistic conditions (see Chapter 3).

diversity of neuron types The brain contains an incredibly
diverse array of neuron types, each with their unique properties and
functions. Neurons vary widely in shape (unipolar, bipolar, multipo-
lar), size, and connectivity. This diversity is critical for enabling the
complex computations and behaviors characteristic of the brain. Two
large research consortia that have recently been working to uncover
this diversity’s full extent are The Blue Brain Project (Erö et al., 2018)
and the Allen Institute for Brain Science (Sunkin et al., 2012). By com-
bining cutting-edge techniques like whole-cell patch clamping and
single-cell RNA sequencing, these projects are helping to catalog and
categorize the many different types of neurons found in the brain.

glia cells Glia cells are non-neuronal cells that are believed to
play a crucial role in supporting neural tissue. These cells provide
structural and functional support to neurons by maintaining the ex-
tracellular environment necessary for neuronal function. Glia cells
participate in the formation and maintenance of synapses, facilitate
the transmission of nerve impulses, and regulate the chemical com-
position of the extracellular fluid. Recently, evidence for a potential
functional role of astrocytes has been accumulated (Delepine et al.,
2023; Rasmussen et al., 2023).
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1.1.2 Neuron models

The biological, chemical, and physical details of an action potential
generation for a single neuron, starting from signal reception at the
synapse to the cascades of ion flux in and out of the cell, are fascinating.
However, it is crucial to find a level of modeling that is simple and
at the same time describes the desired phenomena sufficiently well.
In practice, the trade-off gave rise to a zoo of different models (Herz
et al., 2006).

In computational neurosciences, different complexity levels are re-
quired. A single neuron’s dynamics must be simple enough and com-
putationally efficient to simulate large-scale networks. These, in turn,
allow us to study phenomena that emerge only due to the interaction
of many neurons. Thus, biological details (likely) can be reduced to a
minimum as in binary neurons or, already more advanced, the leaky
integrate-and-fire (LIF) (Gerstner et al., 2014), which will be introduced
below.

However, if the dynamics of the membrane potential of a single
neuron recorded via whole-cell patch clamping are to be explained,
more complex models are necessary. Representatives of such models
are the rather complicated Izhikevich model (Izhikevich, 2003) and
the famous Hodgkin-Huxley model (Hodgkin et al., 1952).

Leaky integrate-and-fire (LIF) Neurons can be understood
as input-output devices based on their basic components (dendrites,
soma, axon). The LIF neuron model describes the dynamics of the
membrane potential via a system of coupled differential equations

τm
dV(t)

dt
= −V + Rm I(t) , (1.1)

τs
dI(t)

dt
= −I(t) + τsη(t) . (1.2)

with V denoting the membrane potential, Rm the membrane resis-
tance, τm the membrane time constant and I(t) the time-dependent
incoming synaptic current induced by the input η(t). The membrane
time constant and resistance are related to the membrane capacitance
through Cm = τm

Rm
. The membrane potential is rescaled to zero in the

absence of inputs. The dynamics of the synapse are here defined as an
exponential post-synaptic current.

The firing mechanism is included in the LIF as follows: When V(t)
reaches the threshold potential Vthreshold, the membrane potential is
clamped to the reset potential Vreset for a refractory period τref. After
the refractory period the membrane potential evolves according to
the equations again. The reaching of the threshold with subsequent
depolarization corresponds to one action potential (or spike).
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1.1.3 Large-scale organization

Neurons form connections, and the density of neurons is different
across areas and layers of the cortex, the outer sheet of the brain. This
can be visualized through staining techniques such as done by Golgi
as well as Cajal Golgi (1873) and Ramón y Cajal (1888). Stereotypical
connections between and within layers are found throughout the cortex
(Mountcastle, 1997). The cortical column, proposed by Mountcastle,
is a basic unit of cortical organization and is often referred to as a
microcircuit.

1.1.4 Information encoding hypotheses

The way that neurons encode and communicate information is one of
the fundamental questions in neuroscience that remain unresolved, de-
spite the fact that spikes are regarded as the fundamental components
of neural communication.

Based on the observation that multiple inputs are required for a neu-
ron to cross its threshold potential, two major theories have emerged.
The first theory, known as rate coding, proposes that information is
encoded in the modulation of a neuron’s firing rate (Georgopoulos
et al., 1982; Hubel et al., 1962; Shadlen et al., 1994), as opposed to
the precise timing of individual pulses. The second theory, temporal
coding (Abeles et al., 1994; Gautrais et al., 1998; Torre et al., 2016),
suggests that precise spike timing and coordination between neurons
on a shorter timescale play a crucial role in information encoding
and processing. Recent studies suggest that both mechanisms may
coexist in the brain, despite the fact that these two hypotheses are
often viewed as exclusive alternatives. Additional theories, including
population coding and sparse coding, have been proposed to explain
neural coding.

1.2 organization of the thesis

In the introduction, I already stated that I will present research from
two distinct neuroscience subfields. Indeed, writing this thesis proved
difficult: If I had condensed the breadth of prior knowledge that I
deemed necessary for the reader to have into one single “Neurosci-
entific Background” chapter, this would have had a sedative effect
exceeding that of commonly used anesthetics.

To keep the overall introduction short, only the most crucial back-
ground is supplied here. Each of the thesis’ two parts — Part i and
Part ii —, introduces its own neuroscientific background (Chapter 2

and Chapter 6).
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1.2.1 Research questions

The two research questions that guided my work are:

1. Is the bimodality of the distribution of preferred directions
(PDs) that has been observed in primary motor cortex (M1) and
dorsal premotor cortex (PMd)/ventral premotor cortex (PMv) also
present in the parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task?

2. Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a micro-
circuit model composed of LIF neurons a valid prediction of the
model? Should they be observable in experimental data, and can
we mechanistically understand them?

Besides having the overarching aim to bridge between disciplines,
I worked on projects that are deeply rooted in the research agenda
of the INM-6 at the Forschungszentrum Jülich. Here, I will briefly
motivate each research question and then present the outline.

1.2.2 Systems neuroscience question

Let us, for a moment, imagine the voluntary act of brushing your teeth
in the morning: You enter the bathroom with the intent to brush your
teeth — you learned that maintaining dental hygiene is important —,
move towards the sink, focus your eyes on the toothbrush and initiate
a movement towards it. The movement starts with pure reaching and
ends with a grasp of the brush. Even without conscious thought, some-
how, you estimate the distance between your current hand position
and the brush correctly, activate the correct sequence of muscles in
the shoulder, elbow, and hand, and finally adjust the position of your
fingers so that the grasp is secured by applying the necessary amount
of grip force. After that, you make a swift eye movement (saccade)
targeted at the toothpaste, grasp it with the other hand, demonstrate
tremendous coordination by screwing it open while holding the tooth-
brush in the other hand, and eventually squeeze the right amount of
paste on the brush. After placing the toothpaste back, you move the
toothbrush to your teeth and start scrubbing.

Due to the visual feedback from the mirror and a sense of the
posture of your arm with respect to the body (proprioception), you
manage to guide it to the mouth instead of your nose.

Several senses are involved in performing this seemingly simple
task, and thus it is apparent that not just one brain area governs the
neural basis of this process.

Hand-eye coordination is a crucial component of our everyday be-
havior. The Vision-for-Action (V4A) experiment aims to probe the
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neural mechanisms that govern hand-eye coordination. Previous re-
search suggests that in the brain, besides the visual and motor cortices,
areas in the dorsal visual stream play a crucial role in this process.

brief description of the experiment In the Vision-for-Action
(V4A) experiment, rhesus monkeys (macaca mulatta) are trained to
perform various visually guided hand movement tasks.

Extracellular neural activity is recorded simultaneously with four
Utah arrays with 32 electrodes each inserted in the primary visual
cortex (V1), secondary visual cortex (V2), dorsal prelunate (DP) and
area 7a (7a), and one array of 96 electrodes in the primary motor
cortex (M1)/dorsal premotor cortex (PMd). A two-joint (shoulder and
elbow) robotic exoskeleton system is used to record the monkey’s
arm and hand movements. It restricts movements to a 2D horizontal
plane. Eye movements are recorded via an infrared light source and
camera. Furthermore, a head-fixation mask was used to ensure the
head position’s stability.

purpose of the experiment With neural activity recorded from
areas along the dorsal visual stream and the motor cortex and be-
havioral recordings from the arm and eye during tasks that allow for
naturalistic behavior, this dataset yields a reach platform for various
investigations.

This multi-purpose nature of the data from the V4A experiment is
exciting yet challenging to analyze. Rough research ideas immediately
meet the eye, such as:

• Can we observe interarea coordination?

• How is visual input transformed into motor output?

• What do the areas in posterior parietal cortex (PPC) encode?

Some of the above and more questions were tackled during my
exploration of the data, yet I deemed them not conclusive enough to
be included here (see dashed circles on the left in Figure 1.4).

bimodality of preferred direction Literature research re-
vealed a phenomenon observed in the community of motor control:
Single neurons in M1 encode the direction of hand movement in their
firing rate. The direction of hand movement that leads to maximal
firing is termed the PD (Georgopoulos et al., 1982). Across many
recorded neurons, the distribution of PDs was assumed to be uniform.
Indeed for movements in 3D, this was confirmed (Caminiti et al.,
1990; Schwartz et al., 1988) with a notable exception by Naselaris
et al. (2006). However, for movements constrained to 2D, as in the V4A

experiment, this distribution of PDs showed a systematic bias (Scott
et al., 2001b, 1997) that could be traced back to the biomechanics of
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the arm (Codol et al., 2023; Lillicrap et al., 2013; Verduzco-Flores et al.,
2022). Unexpectedly, in addition to M1, the same bimodality could also
be observed in neurons from premotor areas (Suminski et al., 2015).

Given these observations and the recorded datasets of the V4A

experiment, we hence ask:
Is the bimodality of the distribution of PDs that has been observed

in M1 and PMd/PMv also present in the parietal and visual cortex of
macaque monkeys that perform a visually guided reaching task?

1.2.3 Computational neuroscience question

Richard Feynman’s famous quote aptly summarizes the physicist’s
approach to ensuring proper understanding of a matter “What I cannot
create, I do not understand”.

balanced networks In line with this tradition, computational
neuroscientists have not stopped at realistically modeling single neu-
rons (see Section 1.1.2) but went beyond to build models composed of
individual neurons (e.g., binary neurons (van Vreeswijk et al., 1996))
whose population neural activity statistically resembles what is ob-
served in experimental data. In particular, networks were found to
exhibit “realistic” (neither too high firing rates nor silent) spiking
activity statistics if excitation and inhibition are in balance (Amit et al.,
1997b; Brunel, 2000; van Vreeswijk et al., 1998).

the microcircuit model While very successful and exhibiting
features like efficient information processing and noise robustness
associated with biological neural networks, these artificially balanced
networks were only weakly constrained by known biological data.
One answer to this issue is data-constrained spiking neural networks
(Shimoura et al., 2021): Technical advances nowadays allow for the
measurement of anatomical data (e.g., layer resolved (excitatory/in-
hibitory) neuron densities connection probabilities between neuron
population) or even morphological data of neurons.

The Potjans-Diesmann model (Potjans et al., 2014a), developed at
our institute, aims at modeling a layered cortical microcircuit of 1 mm2

with 4 layers (L23, L4, L5, L6) with a total of 77169 neurons. Each layer
consists of one excitatory and inhibitory population. The connectivity
between the different populations is derived from experimental data.
The single neurons are modeled as LIF. Crucially, the density of neu-
rons in this model is large enough such that the majority of inputs to
a neuron originate in the model and thus reduce the assumptions that
are required on externally supplied background activity.

The model successfully reproduces layer and population-specific
firing rates as observed in vivo experiments. Yet, raster diagrams of
the spiking activity that it generates display population (and even
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Figure 1.4: Projects overview. Grey-circled chapters are merely the means to
the red-circled chapters. The dashed and white circles are open
projects not presented in this thesis.

model-wide) synchronizations that have, up to now, not been observed
in vivo. Hence, we ask ourselves:

Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a microcircuit
model composed of LIF neurons a valid prediction of the model?
Should they be observable in experimental data, and can we mecha-
nistically understand them?

1.2.4 Outline

After having motivated the two guiding questions, let us have a look
at the structure of this document by following the red thread in
Figure 1.4.
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In the first part (Part i), we delve into the analysis of electrophys-
iological data from the V4A experiment, beginning with a systems
neuroscience review in Chapter 2, which includes information on the
macaque brain anatomy, the visual system, motor control and the
PPC. Being equipped with new knowledge, details on the setup, the
recorded data, subjects and tasks, and the preprocessing pipeline that
renders the data accessible for analysis will be explained in Chapter 3.
In the early stages of our data analysis, we encountered potential
artifacts that will be characterized and (at least partly) dealt with in
Chapter 4 before we can tackle our research question in Chapter 5.

The second part (Part ii) starts with a presentation of a theoretical
description of spiking neural networks (Chapter 6) and then investi-
gates the ultra-high-frequency oscillations in the microcircuit model
in Chapter 7.

Lastly, in Chapter 8, we summarize the results, discuss what we
learned, and dare to give an outlook — now that we have gained
insights from and even contributed to two fascinating neuroscience
research directions.





Part I

A N A LY S I S O F E L E C T R O P H Y S I O L O G I C A L D ATA
F R O M T H E V I S I O N - F O R - A C T I O N E X P E R I M E N T





Our knowledge can only be finite,
while our ignorance must necessarily be infinite.

— Karl Popper

2
N E U R O S C I E N T I F I C B A C K G R O U N D — S Y S T E M S
N E U R O S C I E N C E

This part of the thesis presents the analysis of data from the Vision-
for-Action (V4A) experiment.

In this chapter, I supply an overview of the neuroscientific back-
ground that I consider relevant for interpreting this dataset.

The control of limb movements requires the coordination of sensory
information and therefore engages multiple neuronal structures. In
visually guided reaching tasks, vision is the primary sense that needs
to be processed; hence, eye movements are necessary. In this section,
we briefly review foundational knowledge of the visual system, the
circuitry involved in saccade generation, the neural basis for motor
control, the role of the posterior parietal cortex (PPC), and finally,
concepts on their interaction in eye-hand coordination.

Most of the mentioned studies involve primates or humans if not
stated otherwise.

2.1 Macaque brain anatomy . . . . . . . . . . . . . . . . . . 18

2.2 The visual system . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Visuotopic mapping . . . . . . . . . . . . . . . . 20

2.2.2 Hierarchical structure . . . . . . . . . . . . . . . 20

2.2.3 Saccade generation . . . . . . . . . . . . . . . . . 22

2.2.4 Saccadic remapping . . . . . . . . . . . . . . . . 23

2.3 Motor control . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Muscles . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Primary motor cortex (M1) . . . . . . . . . . . . . 25

2.4 The role of the posterior parietal cortex (PPC) . . . . . . 26

2.5 Reference frames and coordinate systems . . . . . . . . 29

We start with a brief description of the macaque brain anatomy and
specify the locations of our recordings sites, which shall serve as an
orientation during the subsequent discussion on important literature.

17
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2.1 macaque brain anatomy

The cerebrum of the rhesus macaque, analogous to the human cere-
brum, consists of two hemispheres connected via the corpus callosum.
Historically, a subdivision into four different lobes according to promi-
nent sulci or fissures (see Figure 2.1), as well as functional differences,
has prevailed: The frontal lobe, the temporal lobe, the parietal lobe,
and the occipital lobe (Gray et al., 1918; Kandel et al., 1991).

A substantial part of the occipital lobe is composed of visual areas.
Visual stimuli that hit the retina in the back of the eye evoke neu-
ral signals that travel via the corpus callosum to the contra-lateral
hemisphere and then via the lateral geniculate nucleus (LGN) in the
thalamus to the visual cortex. In the visual cortex, the visual stimuli
traverse the visual hierarchy (see Felleman et al. (1991)), starting with
the primary visual cortex (V1), also called the striate cortex, followed
by the secondary visual cortex (V2), then higher areas, and eventually,
the temporal and parietal lobe.The terms ipsilateral

and contralateral
refer to whether

something (such as a
stimulus, body
component, or

movement) on one
side of the body is

processed by the
same or opposite

hemisphere of the
brain. Thus, the

processing of vision
occurs in the
contralateral

hemisphere.

Two distinct visual pathways associated with disparate functions
have been proposed (Goodale et al., 1992a; Ungerleider et al., 1982):
The ventral stream, also called the “What” or “Vision-for-Recognition”
pathway, and the dorsal stream, also called the “Where”, “How” or
“Vision-for-Action” pathway.

The dorsal stream leads via the extrastriate visual cortices (e.g.,
V2, V3) and the prelunate gyrus, the gyrus anterior to the lunate
sulcus (ls), to the posterior parietal cortex (PPC). The area called dorsal
prelunate (DP), which will be relevant later on, is located on the medial
part of the prelunate gyrus.

The PPC involves areas posterior to the postcentral gyrus, the gyrus
posterior to the central sulcus (cs), with several somatosensory areas,
and anterior to the superior temporal sulcus (sts). Within PPC, it is
common to distinguish between the superior parietal lobule and the
inferior parietal lobule, which lie medial and lateral with respect to
the intraparietal sulcus, respectively. The area 7a (7a), another area
of importance in the following, is located on the medial end of the
gyrus between the superior temporal sulcus (sts) and intraparietal
sulcus (itps).

In the frontal lobe, the primary motor cortex (M1) and the adjacent
dorsal premotor cortex (PMd) and ventral premotor cortex (PMv) are
located anterior to the central sulcus (cs). Several brain areas, more
rostral to that, belong to the prefrontal cortex.

Having this rough overview in mind, we start the neuroscientific
background with a brief description of the visual system.
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Figure 2.1: Left: Sketch of a monkey illustrating directional references that
are commonly used to describe the brain anatomy. Right: Lateral
view of the macaque monkey brain with sulci. Abbreviations:
arc: arcuate sulcus, iocs: inferior occipital sulcus, itps: intraparietal
sulcus, cs: central sulcus, lf: lateral fissure, ls: lunate sulcus, prs:
principal sulcus, sts: superior temporal sulcus. Reproduced with
permission from Springer Nature from Figure 5 in Rushmore et al.
(2021).

2.2 the visual system

Eccentricity is the
angular distance of a
visual stimulus from
the focus of vision.
The density of cones
is highest at the
fovea, the center of
vision, then
decreases for larger
eccentricity. Rod
density, in contrast,
peaks for ∼ 25 ◦

eccentricity (Curcio
et al., 1990;
Wells-Gray et al.,
2016), which
explains why the
dimmest stars on the
night sky always
seem to evade the
focus of vision.

The primate body perceives light emitted or reflected from objects
in the three-dimensional world through the eye. It serves as a lens
that projects incoming photons onto the retina at the back of the eye.
Each area in the visual field maps a specific location on the retina;
this is called visuotopic (or retinotopic) mapping. In the visual system,
a neuron’s receptive field (RF) is the portion of the visual field that
excites it (Kuffler, 1953).

The retina consists of cones and rods, the photoreceptors. While
cones react to colored light in specific wavelengths (similar to the RGB
color space axes), rods are responsible for vision in dim light. After
processing in the inner and outer nuclear layers, the photoreceptor
activity is essentially compressed and converges into retinal ganglion
cells whose axons constitute the optic nerve (Kandel et al., 2013). Per
eye, this optic nerve connects to the optic chiasm, where the fibers cross
from one hemisphere to the other. From here on, the visual signals
are processed contralaterally, e.g., the right hemifield perceived by the
right eye, is processed in the brain’s left hemisphere.

From the optic chiasm, the optic nerve projects to the lateral genic-
ulate nucleus (LGN), a structure located in the thalamus that sends
axons to the primary visual cortex (V1). Different layers of the LGN

relay the ipsi- and contralateral visual signals of the same hemifield
and innervate with different layers in V1.
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2.2.1 Visuotopic mapping

Neurons in the primary visual cortex (V1) exhibit a visuotopic map-
ping. Analogously to the density of photoreceptors in the retina, the
center of vision is represented by the largest cortical volume with
neurons that have small, precise, RFs. The larger the eccentricity of the
visual field, the smaller the part of V1 that represents it, and the larger
the corresponding RFs (Kandel et al., 2013). The visuotopic organiza-
tion of visual cortex is illustrated in the maps in panels B and C of
Figure 2.2.

Besides the visuotopic mapping, neurons in V1 are organized in
cortical columns that are selective to the orientation and direction
of moved edges (Hubel et al., 1959), receive predominantly input
from one eye (ocular-dominance), vary in color preference and exhibit
patchy, lateral connections to other nearby columns.

2.2.2 Hierarchical structure

The connectivity between visual areas follows a hierarchical structure
(Felleman et al., 1991). V1, also called striate cortex, in this classical
picture projects to V2, which in turn projects to tertiary visual cortex
(V3), both accounted to be extrastriate areas. With each step in the
hierarchy, single neurons encode more complex features of the visual
scene. One factor that enables this is convergence; many neurons of V1

project to fewer neurons in V2 and so on.
This hierarchy, furthermore, seems to be split into two pathways,

the dorsal and the ventral pathway Figure 2.2D. Interestingly, these
two pathways largely overlap with the two parallel pathways that
originate with two distinct types of ganglion cells (parvocellular and
magnocellular) in the retina, are processed in particular layers at the
level of LGN, and project to different parts of layer IV in V1 (Medathati
et al., 2016; Yoonessi et al., 2011).

There are feedforward and feedback connections to other areas
(Wang et al., 2022b) which are shown to be layer dependent (Rockland,
2022; Rockland et al., 1979).

Influential theories inspired by the hierarchical anatomy and func-
tion of the visual system, whose details are out of the scope of this little
review, have been proposed and lead to ideas on convolutional neural
networks and eventually deep learning (Fukushima, 1988; LeCun et al.,
2015; Marr, 1982).

High-resolution vision is only possible due to the high cone density
in the fovea. Eye movements are necessary to bring objects of a visual
scene into the fovea.
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Figure 2.2: Illustrations on the visual system. A: Block diagram of the main
nodes involved in the two visual pathways. Gray arrows indi-
cate the ventral pathway, which coincides with the parvocellular
pathway, and similarly, black arrows indicate the dorsal pathway
(magnocellular). The figure is taken from (Medathati et al., 2016).
B: Radial and C: angular component of the retinotopic maps in
the macaque visual cortex, color codes as shown in the insets.
Figures reused with permission from Prof. Brian Wandell, whose
Lab distributed them as displayed in Prof. Heeger’s lecture using
data from (Brewer et al., 2002; Dougherty et al., 2003). D: Brain
sketch illustrating the two visual pathways. Figure taken from
(Medathati et al., 2016)

https://www.cns.nyu.edu/~david/courses/perception/lecturenotes/what-where/what-where.html


22 neuroscientific background — systems neuroscience

Figure 2.3: Neural circuitry involved in the generation of eye movements
(both saccades and smooth pursuit). Created by Wurtz, CC BY
4.0, presented in (Wurtz, 2015), file obtained from Wikimedia
Commons.

2.2.3 Saccade generation

Eye movements have been characterized into several categories: Sac-
cades are rapid and ballistic jumps of both eye positions in the ocular
cavity to foveate a new target during a fixation period. In contrast
to the brisk movement during saccades, the smooth pursuit is a con-
tinuous movement of both eyes to follow a moving visual target.
Humans perform 3 − 4 eye saccades per second, and most of these are
thought to happen subconsciously and involuntarily, but some also
are volitional (McDowell et al., 2008).Curiously, patients

with blindsight lost
visual awareness due
to damage in V1, yet
retain the ability to
perform visuomotor

tasks and to correctly
guide saccades (Kato

et al., 2021).

The circuitry that generates saccades is closely linked to the visual
system. It includes some low-level structures in the midbrain (brain-
stem and superior colliculus (SC)) and some higher-level structures in
the parietal and frontal cortex as illustrated in Figure 2.3.

The six muscle bundles (three agonist-antagonist pairs) that control
the eye are driven by the cranial nerve nuclei in the brainstem (Kandel
et al., 2013). These nuclei receive direct input from the SC. The upper
layer of SC has a retinotopic map of the visual field, and conversely,
neurons have receptive fields (RFs). In contrast to V1, these neurons
are not tuned to any features of the visual stimuli. The (sensory)
upper layer projects to the lower layer, where neurons are organized in
movement fields that encode the vector from the current eye position
to the RFs of the upper layer. Stimulation of these movement fields
evokes a saccade along this vector and thus leads to the foveation of a
corresponding stimulus.

https://commons.wikimedia.org/wiki/File:Brain_circuits_for_visually_guided_saccades.jpg
https://commons.wikimedia.org/wiki/File:Brain_circuits_for_visually_guided_saccades.jpg
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Besides SC, also the lateral intraparietal area (LIP) and thefrontal eye
field (FEF) are engaged in saccade generation.

Targeted inactivations or lesions of these areas revealed interesting
connections: If SC is blocked, V1, V2, and LIP can’t generate saccades
anymore, but FEF has a direct connection to the eye muscle control
in the brainstem and can still produce saccades. Furthermore, short
latency saccades called express saccades were not observed anymore
(McPeek et al., 2004; Zhaoping, 2014). If FEF is lesioned or inactivated,
non-visually-guided saccades (e.g., memory-guided) saccades could
not be generated (Sommer et al., 1997).

2.2.4 Saccadic remapping

It has been shown that neurons in LIP (Duhamel et al., 1992) , FEF Recommended read:
Duhamel et al.
(1992)

(Umeno et al., 1997) and the deep layers of SC (Walker et al., 1995)
transiently shift their visual RFs prior to saccades. This affects three
situations: 1. They already respond to stimuli that are not yet in their
RF but will be after the upcoming saccade (predictive remapping) 2.
They cease to respond to stimuli in the RF once a new saccade plan
moves the eyes away. 3. A remembered stimulus at the remapped
RF, that is no longer present, evokes a response after the saccade
(Kusunoki et al., 2003; Sun et al., 2016).

Remapping has also been suggested in some extrastriate areas
(Nakamura et al., 2002)

For FEF, evidence for a bottom-up mechanism enabling the remap-
ping has been found: The saccade-generating SC sends a corollary
discharge or efference copy of the oculomotor command via the
mediodorsal nucleus (MD) to the FEF, which in turn can prepare for
upcoming visual stimuli (Fukutomi et al., 2020; Sommer et al., 2002).

2.2.4.1 Visual masking and saccadic suppression

The visual perception appears rather stable to us, despite the high
frequency of discontinuous jumps in the retinal image. The perceived
images of a visual scene are generated during periods of fixation,
where the eye position is still. But what happens during a saccade?
How does the brain decide whether the eye is moving or the object
that was kept in focus is moving?

Visual masking is one mechanism that could stabilize the perceived
image: It has been demonstrated that the perception of a low-contrast
image is eliminated if a high-contrast image is presented in quick
succession (Kandel et al., 2013). The low-contrast image is said to be
masked by the high-contrast image.

A second mechanism contributing to a stable visual percept is
saccadic suppression. There is evidence that V1 (McFarland et al., 2015),
V4 (Denagamage et al., 2021; Zanos et al., 2016), middle temporal
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area (MT) and middle superior temporal area (MST) (Niknam et al.,
2019; Thiele et al., 2002) are suppressed around the time of a saccade.Imagine you sit on

the train and stare
out of the window.
You spot a deer on

the field, and to
maintain the focus,

you perform a
saccade

counteracting the
train’s movement. In

such a situation,
perception during a
saccade is possible!

Denagamage et al. (2021) investigated saccadic suppression in V4,
observed suppression at the input layer IV prior to saccades, and
hypothesized the pulvinar to be a likely source for such suppression
signals.

2.2.4.2 Saccadic main sequence

The dynamics of saccades are well understood: With increasing sac-
cade amplitude, the duration and peak velocity increase (Dai et al.,
2016; Gibaldi et al., 2021). The observation that peak velocity increases
linearly for small amplitude saccades until it saturates for larger am-
plitudes was termed the saccadic main sequence (Bahill et al., 1975).

Next, we look into the control of limbs and, thus, muscles around
the body which is distinct from the saccade-generating circuitry.

2.3 motor control

At first glance, body muscles are controlled through cortical projec-
tions from the primary motor cortex (M1) downwards the spinal cord,
where motor neurons activate, innervate with muscles, and lead to
their contraction. However, the network involved in planning and
controlling the signals generated by M1 is much more intricate than
meets the eye. In this section, I will start explaining on the level of
muscles and progressively broaden the picture. The focus will lie on
the control of arm movements, as needed for the analysis of data
during a visually guided reaching task in the upcoming chapters.

2.3.1 Muscles

The axons of motor neurons exit the spinal cord at the ventral root,
branch off at the muscle and connect via neuromuscular synapses (also
neuromuscular junction) to a few to hundreds of muscle fibers (Kandel
et al., 2013). The combination of the motor neuron and innervated
muscle fibers is called the motor unit. Each muscle consists of a few
hundred to thousands of muscle fibers, and most muscles are driven
by hundreds of motor units.

The force exerted by a muscle depends on the motor units recruited
and the firing rate. The recruitment of motor neurons with higher
required muscle force follows the size principle: First, the smallest
neuron is activated, then gradually, larger neurons are engaged. In
contrast to the naive expectation that M1 governs muscle recruitment,
one consequence of this finding is that a mechanism in the spinal cord
decides upon the precise motor neuron to be activated (Kandel et al.,
2013).
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Muscles can be classified based on their role in movement. Agonist
muscles are responsible for generating movement, while antagonist
muscles work in opposition to agonist muscles to control movement.
A triphasic activation pattern of muscles for example consists of three
distinct phases of activity with agonist-antagonist-agonist activation.

Another classification is between flexor and extensor muscles. Flexor
muscles are responsible for bending joints and decreasing the angle
between two body parts, while extensor muscles are responsible for
straightening joints and increasing the angle between two body parts
(Kandel et al., 2013).

But how does the cortex control neurons in the spinal cord and thus
muscles?

2.3.2 Primary motor cortex (M1)

The controversies about what neurons in M1, or sometimes agranu-
lar cortex due to the lack of a granular layer, encode and how they
contribute to voluntary arm movement motivated a long series of
investigations in the 20th century. The starting point was experiments
by Evarts (1968), who recorded single neurons in M1 while a monkey
moved a bar back and forth. They were able to show that neural activ-
ity correlates with the amount of force, a kinetic variable, suggesting
that neurons directly control muscle activation. Opposing this view,
Georgopoulos et al. (1982) found that during arm reaching, requiring
multiple joints and muscles, M1 neurons were tuned to direction, a
kinematic variable.

Georgopoulos demonstrated in his seminar paper that approxi-
mately one-third of the recorded neurons exhibited cosine-like direc-
tional tuning, which can be characterized by a preferred direction (PD)
and a modulation depth. This notion of a PD will be crucial in Chap-
ter 5.

The debate between the encoding of kinetic or kinematic variables
dominated for several decades: While direct projections down the
spinal cord appear to require no additional processing (pro kinetics),
a kinematic variable encoding would necessitate that downstream re-
gions convert the signals to the appropriate muscle commands (Sergio
et al., 2005). Schwartz (1994) found a dependency of hand movement
velocity and the success in decoding movement from the neuronal
population vector (Georgopoulos et al., 1983, 1988; Georgopoulos et al.,
1986), a weighted sum of the PDs of single neurons, argued in favor of
the kinematic perspective.

Todorov (2003) attempts to reconcile these views and, in particu-
lar, the multitude of correlated variables with M1 neural activity by
arguing in favor of direct cortical control of muscle activation.

In Omrani et al. (2017), N.G. Hatsopoulos is cited: “So, we can all
agree that M1 is not one thing”. He argues to differentiate between
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caudal M1, which exhibits more monosynaptic connections to spinal
motoneurons, and rostral M1.Griffin et al. (2020)

evidence in an
impressive study via

careful analysis of
the temporal

relationship between
the single unit and

electromyography
(EMG) recordings
that M1 neurons

send premovement
suppression signals

to prevent an
antagonist muscle
from opposing the

movement generated
by an agonist’s

muscle.

More recently, activity in the motor cortex has been analyzed taking
a dynamical systems perspective (see reviews by Vyas et al. (2020) and
Wang et al. (2022c)). In these studies, the emphasis shifts from encod-
ing a single neuron to examining how population activity patterns in
the motor cortex temporally evolve to produce a particular behavioral
output.

2.3.2.1 Premotor cortex

Motor cortex, previously categorized into primary and supplemen-
tary motor areas by Brodmann (1909), nowadays is known to have
many subdivisions (Graziano et al., 2007; Luppino et al., 2000; Matelli
et al., 1985; Rapan, 2021; Strick et al., 2021) with different naming
conventions (see Table 2.1).

Full Name Short Name Brodmann Matelli 1985

Primary motor cortex M1 area 4 F1

Dorsal premotor cortex PMd area 6 F2

Supplementary motor area proper area 6 F3

Ventral premotor cortex caudal PMv area 6 F4

Ventral premotor cortex rostral PMv area 6 F5

Pre-supplementary motor area area 6 F6

Pre-dorsal premotor cortex area 6 F7

Table 2.1: Naming of motor areas. See Graziano et al. (2007) for a visualiza-
tion of their locations in the cortex.

Both PMd and PMv were shown to have a modulatory effect on
M1 (Côté et al., 2017), yet they might also directly influence muscle
activity: e.g., Strick et al. (2021) review the existence of disynaptic
connections of premotor areas to spinal neurons. While PMd is associ-
ated with preparatory signals (Kaufman et al., 2013), PMv discharge
correlates with the purpose of a motor act and not with the individual
movements that constitute it (Kandel et al., 2013; Rizzolatti et al., 2014).

Notably, as it might be relevant for the study of PDs: Glaser et al.
(2018) report that the preferred direction depends on the position of
the hand and, thus, on the probability of an upcoming movement in a
certain direction.

2.4 the role of the posterior parietal cortex (PPC)

According to the chapter on “Voluntary Movement: The Parietal and
Premotor Cortex” in Kandel et al. (2013), one of the key functions of
the PPC is to integrate information from different sensory modalities,
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including vision, touch, and proprioception, to guide movements and
actions.

In particular, the PPC is thought to be involved in transforming
visual information about the location of objects in the environment
into motor commands for the movement of the eyes and limbs. For
example, when we reach for an object, the PPC is thought to integrate
information about the location of the object in visual space, the position
and movement of the eyes, and the position and movement of the
hand and arm, to plan and execute a precise and coordinated reaching
movement (Battaglia-Mayer et al., 2006).

PPC plays a crucial role in eye-hand coordination, which is the
ability to coordinate eye movements with hand movements to reach
and manipulate objects in the environment (Battaglia-Mayer, 2019).

PPC has been associated, in particular, with the intention of per-
forming an action (e.g. hand movement or eye movement) (Andersen
et al., 2002). The same team of researchers argue that PPC would thus
be a favorable implantation site for brain-machine interfaces (BMIs)
(Andersen et al., 2022, 2014).

Rigotti et al. (2013) established the term mixed selectivity for neu-
rons in the prefrontal cortex. Single neurons in PPC were found to
exhibit mixed selectivity (Diomedi et al., 2020; Hadjidimitrakis et al.,
2019; Zhang et al., 2017). Thus the firing rate of a neuron is associated
with multiple different behavioral modalities.

By definition, PPC is the posterior part of the parietal lobe. This
region is often subdivided into the superior and inferior parietal
lobules (Gamberini et al., 2021).

Inferior parietal lobule

The inferior parietal lobule is located lateral to the intraparietal sulcus
and medial from the lunate fissure, which merges with the superior
temporal sulcus (cf. Figure 2.1). Brodmann (1909) called the complete
gyrus Area 7 (sometimes short BA7), which was later subdivided by
Vogt et al. (1919) and von Bonin et al. (1947) into the posterior 7a (or
PG) and the anterior 7b (or PF). The modern view on the structural
organization is dominated by Pandya et al. (1982), who suggest a split
of Area 7 into four divisions, from caudal to rostral: Opt, PG, PFG,
and PF (also Gregoriou et al. (2006)). For a recent re-evaluation on this
parcellation based on receptor densities, see Niu et al. (2021).

The cytoarchitecture (Caspers et al., 2011) and receptor densities
(Niu, 2022) in the macaque inferior parietal lobule resemble a potential
homolog area in the human angular gyrus (see e.g., Numssen et al.
(2021)).

The inferior parietal lobule is activated during multiple modalities
(Mountcastle et al., 1975) and assumed to play a role in multi-sensory
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integration during motor behavior (both eye and limb) (Andersen,
1987; Avila et al., 2019; Borra et al., 2017; Rozzi et al., 2008).

Here, we briefly give more detailed information on 7a and DP, as we
record from these in V4A experiment.

2.4.0.1 Area 7a (7a)

connectivity 7a is part of the dorsal visual stream and recipro-
cally connected with visual areas Andersen et al. (1990a) and Wang et
al. (2022b). 7a receives disynaptic output connections from hippocam-
pus (Clower et al., n.d.) several motor areas (especially to ventral
premotor cortex (F5) and pre-dorsal premotor cortex (F7)) (Rapan,
2021; Rizzolatti et al., 2014).

Furthermore, it receives feedback input from other parietal and
frontal areas (Gregoriou et al., 2006; Lewis et al., 2000; Niu et al., 2021;
Rozzi et al., 2006; Stepniewska et al., 2005).

functional role Neurons in 7a activate during saccades (An-
dersen et al., 1990b; Barash et al., 1991) and hand reaches (Heider
et al., 2010, 2014; Hyvärinen et al., 1974; MacKay, 1992), exhibit gain
modulation of large visuotopic RFs due to eye (Andersen et al., 1990b;
Andersen et al., 1985; Bremmer et al., 1998; Siegel et al., 2003) and hand
(Buneo et al., 2012) position, are responsive to optical flow stimuli (Hei-
der, 2005; Raffi et al., 2007) or visual motion stimuli (Merchant et al.,
2004), modulate their activity with (covert) attention (Constantinidis
et al., 1996, 2001; Quraishi et al., 2007; Raffi et al., 2005; Steinmetz et al.,
1994) and also show somatosensory properties (Rozzi et al., 2008).

Rozzi et al. (2008) demonstrate a gradient from more oculomotor-
related activity on the medial end of the inferior parietal lobule to-
wards more limb-movement-related activity in the lateral end of 7a.

In Andersen et al. (2002), the encoding of motor action intent of
several areas in the PPC has been reviewed. In line with this view, Li
et al. (2022) show that 7a not only activates due to sensory triggers
(latency ∼ 100 − 150 ms) but also represents pre-movement activity
for an upcoming movement during a manual interception task (lead
∼ 50 ms).

Mirror neurons (Gallese et al., 1996; Rizzolatti, 1994; Rizzolatti et al.,
2014, 2004, 1996), that activate during the mere observation of an
action, have also been reported in 7a (Fogassi et al., 2005; Rozzi et al.,
2008; Yokoyama et al., 2021).

Evidence points at preference towards lower eye position and lower
visual receptive fields which, however, are variable in time and depend
on the task and attentional state (Heider et al., 2010, 2014; Karkhanis
et al., 2014; Merchant et al., 2004; Wang et al., 2022b). Battaglia-Mayer
et al., 2005 found an over-representation of eye movements towards
the contralateral side and eye position signals in the contralateral
space.
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Due to the vastly distinct response patterns in 7a, several studies
(Battaglia-Mayer et al., 2007; Merchant et al., 2004) suggest a sub-
division of the neuronal population. The large area covered by 7a, with
demonstrated functional differences (see Rozzi et al. (2008)), likely is
one cause of this.

2.4.0.2 Dorsal prelunate (DP)

The (extrastriate) DP is located on the dorsomedial portion of the
prelunate gyrus and merges into the visual area V4 on the ventral end
(Asanuma et al., 1985).

connectivity May et al. (1986) states that DP has prominent con-
nections with LIP, 7a, and areas along the anterior bank of the caudal
superior temporal sulcus. It exhibits direct feedback connections to V1

(Wang et al., 2022b) and is connected to various other parietal areas.
Andersen et al. (1990a) found connections with V3A, LIP, 7a, V4, MST,
PO, 46, and 8a. According to Felleman et al. (1991) it is lower in the
anatomical hierarchy than 7a.

functional role Neurons in DP respond to saccades and gaze
position (with a latency of 70 − 150 ms) (Andersen et al., 1990a; Li
et al., 1989), and are modulated by attention. Several reports state
that DP exhibits RFs in the (contralateral) far lower visual field (Arcaro
et al., 2011; Maguire et al., 1984), however, Heider (2005) also finds a
representation of the upper visual field.

2.5 reference frames and coordinate systems

To discuss these issues, a bit of terminology is necessary:
The terms reference frame and coordinate system are used as in the

physics literature. Reference frames in neuroscience are commonly cat-
egorized into allocentric, with external objects as the point of reference,
and egocentric, with some body part as point of reference (Crawford
et al., 2011). To define a point relative to the origin in a certain refer-
ence frame, a set of (typically 3-D) base vectors or coordinate axes can
be defined (e.g., cartesian or spherical) (Soechting et al., 1992).

In order to guide an accurate movement of an effector (e.g., hand,
eye), we use our senses (e.g., vision, touch, hearing, smell, propriocep-
tion, and the vestibular sense).

Information about the external world is also called extrinsic (e.g.,
object to object or object to body distance), while information about
the body itself is referred to as intrinsic (e.g., set of muscle lengths
and set of joint angles) (Kandel et al., 2013).

Each of the senses represents information about the external world
in a certain manner: Their corresponding primary sensory cortices
— if existent — use a sense-specific reference frame. Vision manifests
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itself in the activation of RFs organized in a visuotopic map in V1 (see
Figure 2.2), touch with a somatotopic map.

Auditory stimuli are coded in a head-centered reference frame
(Cohen et al., 2002).

One of the key sensory receptors involved in proprioception is the
muscle spindle, which is a specialized sensory receptor located in
skeletal muscles that is sensitive to changes in muscle length and
tension.Neurons in LIP

respond to auditory
stimuli in an
eye-centered

reference frame
(Stricanne et al.,

1996).

The vestibular sense is governed by the three semicircular canals
of the vestibular system located in the inner ear. Each of these canals
defines a plane along which movement of the body leads to movement
of fluid inside the canals into the contrary direction (due to inertia),
which in turn tilts the hair cells embedded in the cupula and triggers
electrical signals (Kandel et al., 2013).

A classical idea states that all information represented in different
reference frames merge into one abstract, universal representation in
the parietal cortex and that this reference frame is used to inform
movements (Battaglia-Mayer, 2019; Cohen et al., 2002). However, the
existence of a unique reference frame has not been proven.

Gain modulation due to the eye position (Andersen et al., 1985) was
computationally shown to arise in recurrent neural networks (RNNs)
trained with back-propagation through time (BPTT) (Zipser et al., 1988).
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In the previous chapters, we gave a brief overview of the Vision-for-
Action (V4A) experiment and supplied relevant background knowl-
edge.

This chapter describes the setup in more detail and sketches the
path from the source data files obtained during the recording to the
files with fully integrated metadata used in the analyses that will be
presented in the following chapters.
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The V4A experiment is run in the context of a collaboration between
two laboratories: The Lab of Prof. Thomas Brochier at the Institut
de Neurosciences de la Timone, Centre National de la Recherche
Scientifique-Aix-Marseille Université carried out the actual experi-
ments, while the Lab of Sonja Grün at Institute of Neuroscience and
Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and
JARA Brain Institute I (INM-10), Forschungszentrum Jülich, Jülich,
Germany, were mostly concerned with data management, preprocess-
ing and analysis. The split of responsibilities was not strict: Analyses
were also performed in Marseille, and researchers from Juelich partici-
pated in improving the setup.

3.1 setup overview

The setup of the V4A experiment was designed to flexibly probe neu-
ral activity along the dorsal visual pathway during visually guided
behavior of rhesus monkeys (macaca mulatta).
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Figure 3.1: Experimental Setup. Figure taken from de Haan et al. (2018). The
experimental subject, a macaque monkey, is seated in an exoskele-
ton device (KINARM) in front of a work area. The work area
consists of a semitransparent mirror, which allows for observa-
tion of the arm underneath (in lighted condition) and reflects the
display of a downward-facing screen, e.g., target or a hand cur-
sor feedback. One eye is tracked by an infrared light source and
camera (Eyelink). The monkey is implanted with multiple Utah
arrays that record extracellular potentials along the dorsal visual
stream and motor cortex. Lines illustrate the analog (solid), digital
(dashed), or via Ethernet (dotted) signal flow between devices
and computers (boxes). At the last stage, all signals, behavioral
and electrophysiological, enter the data acquisition (DAQ) system
(henceforth called neural signal processor (NSP)), from where they
are time synced and stored.

Two components were necessary to achieve this: recordings of the
monkey’s behavior and electrophysiological recordings.

Here I will first give an overview of the setup, then dive into the de-
tails of the recorded data, briefly describe the preprocessing pipeline,
supply background knowledge on the experimental subjects and ex-
plain the behavioral tasks.

As illustrated in Figure 3.1, the monkey was seated in a chair in
front of a work area. The monkey’s head direction was fixed with a
mask (Barthélemy, 2023) designed to enable the monkey to view the
whole extent of the work area. Attached to the chair was a motorized
exoskeleton (KINARM Exoskeleton Laboratory, BKIN Technologies)
in which the monkey’s upper arm and forearm were placed.

The work area is part of a virtual reality system: It is a semitrans-
parent mirror that reflects the image of a downward-facing computer
screen. The hand underneath the mirror could be illuminated to enable
direct visual feedback of the hand/arm (de Haan et al., 2018). TheFor Jazz the

semitransparent
mirror was replaced

with a true mirror.

benefit of this setup is that both visual target and hand movements
happen in the same plane, such that the monkey can use direct, natural
mapping.

In the following, we discuss recordings during which the room is
darkened, and the computer screen supplies the hand feedback.
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An eye-tracking system (EyeLink system, SR Research1) that records
the movement of one eye was attached at the rear end of the work
area.

Neural activity was recorded via multiple neural implants called
multi-electrode arrays (MEAs), more precisely Utah arrays (Blackrock
Microsystems, Salt Lake City, UT, USA 2) (Campbell et al., Aug./1991;
Nordhausen et al., 1996). The two experimental subjects recorded until
the writing of this thesis, Enya and Jazz, were implanted with four Utah
arrays with 36 electrodes each in the left primary visual cortex (V1),
secondary visual cortex (V2), dorsal prelunate (DP) and area 7a (7a),
and one array with 100 electrodes in primary motor cortex (M1)/dorsal
premotor cortex (PMd). Note that 4 electrodes per array are inactive.

The four smaller arrays are connected to one connector with 128
contacts, while the M1/PMd-array connects to a separate connector.
These two connectors were embedded in the skull, fixed through bone
cement, and constituted the starting point of two data streams outside
the brain (more details in Section 3.2.5).

These two data streams were processed by two synchronized real-
time computers (cf. electrophysiology data acquisition (DAQ) system
in Figure 3.1), called the NSPs. The signals about the task, eye tracking,
and hand/arm behavior from the KINARM real-time computer also
entered the NSPs as analog inputs and were therefore synchronized as
well. Furthermore, the NSP performed an online spike-sorting, which
will be discussed in more detail in Section A.1. Details on the hierarchy
of computers processing the Eyelink, the KINARM interface computer,
the KINARM real-time computer, and the NSPs are explained in (de
Haan et al., 2018).

Each NSP sent small packages of data to a computer running soft-
ware Cerebus Central (Blackrock Microsystems, Salt Lake City, UT,
USA, www.blackrockmicro.com) to store the data in different files with
proprietary data format from Blackrock: The raw neural signals are
stored in a .ns6-file, while the analog signals and the extracted wave-
forms were stored in a .ns2-file. The spiketimes and information on
the online sorting were stored in a .nev-file. As a result, two sets of
these three data files are stored, one for the visual-parietal arrays and
one for the motor array.

3.2 recorded data

In the following subsections, I will discuss the recorded data in more
detail and mention a few preprocessing steps that are needed to use
them. An extensive discussion of all the preprocessing steps is beyond
the scope of this thesis.

1 https//www.sr-research.com
2 www.blackrockmicro.com

www.blackrockmicro.com
https//www.sr-research.com
www.blackrockmicro.com
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Figure 3.2: Behavioral data sketches. A: A display of the work area with
the targets positioned at the vertices of a hexagon. Right to the
work area is a zoom of a target decomposed into the visible and
logical part. B: Top view of a KINARM exoskeleton sketch. The
shoulder was anchored by the device and defines the position
relative to the work area. Lengths of the upper arm L1, forearm
L2, and fingertip L3 are listed in Table 3.1. C: Sketches of the
Eyelink geometry. The upper part shows a side view of the setup,
while the lower part shows a top view. A change in the (eyeball)
gaze direction would lead to a changed reflection of infrared
signals registered by the Eyelink camera and translated into a
modified output voltage. The colors chosen in this figure are not
the ones used in the experiment: For maximal detectability and
small targets, the screen background was black and targets were
white. The logic radii were not visible to the monkey and were
introduced to allow for less restricted, ballistic movements.

3.2.1 Hand movement data

The KINARM exoskeleton outputs a voltage signal sampled at 1 kHz
for each shoulder and elbow joint, which can be converted into the
corresponding angles. The necessary conversion is detailed in the
Simulink model (see source files Landing_task.mdl or
Drawing_task_6targets.mdl). The resulting x and y positions of the
hand were stored in both .ns2, for the visual-parietal stream and the
motor stream, for all sessions.

The central panel in Figure 3.2 sketches the top view on the KIN-
ARM and defines the required lengths and angles. The corresponding
values used for both subjects, Enya and Jazz, are listed in Table 3.1.

The conversion from angles to the hand position was performed
online, and the resulting hand positions were stored for every session.
However, the joint angle signals are not recorded for all experimental
sessions. However, if at least one angle is recorded, all quantities
shown in Figure 3.2B can be reconstructed.

reconstruction of the angles Here we exploit simple, trigono-
metric relationships to obtain either αL1 or αL2 . Because the hand was
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human readable name variable name value unit

shoulder x x0 0.275 cm

shoulder y y0 −26.250 cm

upper arm length L1 12.6 cm

forearm length L2 23.0 cm

fingertip offset L3 −0.1 cm

Table 3.1: Kinarm parameters. The shoulder x/y position is given with re-
spect to the screen origin, which is at the bottom-center of the
screen. The screen is thus not centered with respect to the body
but rather shifted to the right.

aligned with the forearm, it was included in its total length, therefore
in the following, the fingertip is neglected.

The x and y positions of the shoulder, elbow and hand (neglecting
the fingertip offset) are given by:

xshoulder = x0 (3.1)

yshoulder = y0 , (3.2)

xelbow = xshoulder + L1 cos αL1 (3.3)

yelbow = yshoulder + L1 sin αL1 , (3.4)

and

xhand = xshoulder + L1 cos αL1 + L2 cos αL2 (3.5)

yhand = yshoulder + L1 sin αL1 + L2 sin αL2 . (3.6)

In most sessions, the angle αL2 was recorded; the missing shoulder
joint angle can then be obtained by

αL1 = arccos
xhand − xshoulder − L2 cos αL2

L1
. (3.7)

hand movement segmentation The continuous hand move-
ment behavior of the monkey can be split into movement segments.
Given the time-dependent x and y position of the hand, we calculated
velocities in x- and y-direction by taking the first derivative with a
Savitzky-Golay filter with the window length wSG hand = 101 ms and
the polynomial order pSG hand = 3. We calculated the absolute velocity
of the resulting 2-D velocity vector by taking its norm.

Movement segments were then defined between minima of the
absolute velocity if 1. the peak velocity between minima was larger
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than a minimum peak velocity of vminimal peak = 1 cm/s and 2. the
depth of the minimum was not too shallow. The minimum required
depth of velocity minima, relative to the height of the nearest velocity
peak, considered for segmentation was dminimal relative=0.1.

3.2.2 Eye movement data

The EyeLink 1000 allows for the non-invasive detection of eye move-
ment. It emits infrared light, which is reflected by the eye. The change
in reflection is then detected with a camera (see details in de Haan
et al. (2018) and sketches in Figure 3.2C).

As a result, we recorded a voltage signal sampled at 1 kHz between
−5 V and +5 V for the vertical and horizontal direction, which had to
be linked to the actual gaze direction (in degree relative to the straight
forward gaze direction) or the corresponding focus of the eye on the
work area (in centimeters).

To obtain this mapping, ideally, prior to each experimental session,
an eye calibration was performed.

calibration For all sessions recorded with Enya and recordings
with Jazz until mid-2022 the calibration consisted of the presentation
of a regular 5 × 5 grid of targets (later changed to only 17 targets).
The targets were presented in reading order, and the x, y voltage of
the eye signal during the corresponding fixations were recorded for
100 ms each. The optimal mapping was then obtained by fitting a
second-order polynomial to the average voltage during the fixation
per target and the fixed target positions in centimeters.In de Haan et al.

(2018), a
fourth-order

polynomial was
proposed because it
yielded the best fit
for fixations inside

the calibration area.
Unfortunately, this

high-order fit did not
generalize well and

resulted in a
weird-looking warp
of the eye positions
for gazes above the

work area.

The quality of the eye calibration using the above method relying
on the static fixations turned out to be difficult to evaluate for the
experimenters. Hence, a new calibration method, in which the monkey
is required to follow (pursue) a horizontally moving target, is being
developed and tested at the time of writing.

saccade extraction The eye movement behavior is character-
ized by brisk jumps of the eye position, called saccades. We detect
saccades by thresholding the norm of the 2-D eye velocity vector ob-
tained by application of the first derivative with a Savitzky-Golay filter
with the window length wSG eye = 9 ms and the polynomial order
pSG eye = 3. In addition to the threshold, a few heuristically deter-
mined criteria were employed. The parameters are listed in Table 3.2.

3.2.3 Task data

A MATLAB Simulink model controlled the experimental task and
therefore used the data from the KINARM exoskeleton and the Eye-
link.
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name value unit

saccade velocity threshold 50 deg/s

minimal saccade duration 10 ms

maximal saccade duration 100 ms

minimal saccade peak velocity 60 deg/s

minimal saccade peak velocity 20000 deg/s

minimal saccade peak acceleration 4000000 deg/s2

minimal saccade peak acceleration 0.1 deg/s2

Table 3.2: Saccade detection parameters.

Targets appearing in the work area are specified by their visible
radius and their logical radius (see Figure 3.2A). The latter is not
visible, yet defines the region around the visible target that the monkey
needs to enter in a reaching task such that it counts as successfully
reached.

constraint on the work area The targets lay on the vertices
of a hexagon to maximally exploit the usable work area. The horizontal
work area allows the targets to fall in the same plane as the monkey’s
hand movement. However, the region that is reachable by the monkey
is limited by their arm lengths. Furthermore, the KINARM chair with
an attached mask forces the monkey’s head to be guided straight
ahead. To see the work area, the monkey’s gaze downward is quite
steep, with the nose as an obstacle. To maximize its surface, the work
area was thus not centered but slightly shifted to the right relative to
the monkey.

task codes Each event of the task (e.g., trial start, a hand enter-
ing target 2, reward start, and so on) was stored in the data with
a timestamp and a 16 bit task code. The precise nature of the task
codes can be decoded into a machine- and human-readable format via
semi-automatically written descriptors that depend on the behavioral
task.

latency of screen The experimenters found that there is a
systematic delay between the time stamp of the target onset and the
actual appearance on the downward-facing screen (see corresponding
discussion in de Haan et al. (2018)). We did not account for this
delay in the following analyses due to inherent variability. Preliminary
investigations by the experimenters by recording the luminance on the
work area via photo receptors revealed three sources for the delayed
appearance:

1. 43 ms due to communication and the graphic card drive
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2. 0 − 16 ms with a linear relationship of the vertical distance be-
tween the target and the top of the screen.

3. 0 − 16 ms due to the refresh rate of the screen

The first two issues are deterministic and should be corrected in
the future. For the second point, the relationship between the target’s
vertical position and the delay can be calculated by knowing the target
coordinates. The last point, however, is more difficult to take into
account.

3.2.4 Choice of recorded analog signals

Each of the two NSPs can process 16 analog signals and store them in
a .ns2-file; thus, in addition to the neural activity, the recording setup
can store up to 32 analog signals.

The experimenters decided to store the x- and y-positions of the
hand, eye, and target positions with each NSPs, yielding redundancy
and thus robustness against signal loss or failure from one NSP. This
choice also allows running analyses on only one dataset (motor or
visual-parietal) without the necessity to load everything.

To be able to reconstruct eventual data gaps due to package losses
during the transmission from the NSP to the computer, two analog
signals with phase-shifted sync pulses are stored.

Given these constraints, there are 8/16 channels undetermined per
NSP. The choice of how to occupy these remaining channels changed
over time. In most cases, additionally stored signals are raw eye signals,
the angles, velocities or acceleration of the KINARM joints, the eye
diameter, or photoresistors measuring the luminance.

3.2.5 Electrophysiological data

This subsection describes the electrophysiological data flow from
arrays to neural signal processors (NSPs) as illustrated in Figure 3.3.

Four Utah arrays (6x6 electrode grid, 32 active electrodes out of 36)
were implanted along the dorsal visual stream in V1, V2, DP, and 7a.
One Utah array (10x10 electrode grid, 96 active electrodes out of 100)
was implanted in the hand/arm region of M1/PMd. The V1 and V2

array’s location was chosen to obtain overlapping receptive fields. All
array placements were guided by anatomical markers.

In this paragraph, the data flow of the recorded neural signals as
illustrated in Figure 3.3 will be explained. At the electrode, a potential
difference to the reference electrode is recorded. The single wires per
electrode are connected to the array’s backside (called bonding pad),
are bundled in groups of 32 wires, and, within one cable, are guided
to the connector (CerePort). During surgery, pictures were taken to
allow for future localization of cortical areas that lay under the arrays
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Figure 3.3: Electrophysiological data flow with illustrations of the involved
devices.

and to keep track of the array orientation by using the wire bundle as
a side reference. The connector’s inner part is filled with a silicon-like
gel. Inside this isolating gel, the cable bundle splits again into single
wires, which are then connected to the back side of the grid-organized
pin ensemble (called land grid array (LGA)). The headstage (CerePlex
E) is the device that can be screwed on top of the connector to connect
to the LGA with an exact counterpart. In order to guide the electrical
signal from one LGA pin to its counterpart, an insolation membrane
that allows only for current to propagate orthogonally to its surface
(called filament film) is used.

The wires stemming from the four visual-parietal arrays were gath-
ered in one connector (CerePort) attached to the right occipital bone,
while the wires from the motor array were guided to a separate con-
nector that was secured to the right parietal bone.

The resulting two streams of analog signals (sampled at 30 kHz)
were band-pass filtered between 0.3 Hz-7500 Hz and digitized in the
headstage minimizing the chances to collect ambient noise in the data.
These filters are applied online/during runtime by the hardware and
are zero-phase filters (causal filters, see (Yael et al., 2018)). The digital
signal was then sent to the digital hub via a mini-HDMI cable, where
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it was converted to an optical signal. From there, it is sent via an optic
fiber cable to the neural signal processor (NSP).

Each electrode of the Utah array records a voltage: The potential dif-
ference between the tip of the electrode and a reference electrode. The
headstage offers the choice between two reference signals, from which
only the reference yielding the best signals was used per experimental
subject and kept consistent across sessions. The sampling rate of this
signal was 30 kHz. According to the Nyquist-Shannon theorem, the
highest frequency that can be resolved with a signal of this sampling
rate is fmax = 15 kHz.

The tip of the electrode is located in the neural tissue, and the
voltage will contain signals induced by its surrounding: This can be
low-frequency fluctuations of the overall potential or very local and
fast changes in electrical potential due to a nearby neuron firing an
action potential.

As a consequence, two types of signals are commonly extracted
from such a signal:

1. the low-frequency content of the signal, the local field potential
(LFP)

2. the high-frequency content of the signal, spiking activity.

The spiking activity recorded on one single electrode might stem
from multiple neurons. Therefore a process called spike sorting (in-
depth discussion in Section A.1) was employed. In short, spike sorting
assigns action potentials with the same prototypical waveform shape
to a unit, a putative neuron.

3.3 experimental subjects

Up until the writing of this thesis, three subjects performed tasks in
the V4A experiment, Yamako, Enya and Jazz.

Yamako was the first macaque to be trained to work in the setup
and yielded only behavioral data, which were presented in de Haan
et al. (2018). Unfortunately, Yamako died during the surgery for array
implantation.

Enya, born on April 29, 2010, is female and reported to have a
very nice character. She participated in the Reach-to-Grasp (R2G)
experiment before and thus she already was used to training for a
motor task. Training on the V4A experiment started on March 17,
2017. She performed the hand movements with the right arm and,
consequently, during the surgery on December 07, 2017, arrays were
implanted in the (contralateral) left hemisphere (see Figure 3.4). The
left eye was used for eye tracking.

Jazz, born on May 26, 2014, is male and also reported to have a very
nice character. Training on the V4A experiment started on July 11, 2017.
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Figure 3.4: Array placement Enya.

As this was the first experiment he took part in, his training naturally
took longer. He performed the hand movements with the right arm
and, consequently, during the surgery on January 08, 2020, arrays
were implanted in the (contralateral) left hemisphere (see Figure 3.5).
The left eye is used for eye tracking.

3.4 behavioral tasks

In this thesis, we analyze data from two visually guided motor tasks
that we termed the landing task and the drawing task.

Besides these two tasks, the monkeys have performed more tasks in
the V4A experiment, that we will not explain here.

3.4.1 Landing task

In the landing task, the monkey had to perform subsequent, point-
to-point, hand reaches landing within the logical radius of each sub-
sequently shown target of a given landing sequence within certain
time limits. The landing sequence is a unique sequence of target posi-
tions, starting with the central position and followed subsequently by
three peripheral positions, chosen from six possible peripheral target
positions located at the corners of a hexagon centered at the center
target.

Per recording session, the monkeys were required to fulfill 120 trials.
A trial is defined as the time between an initial presentation of a new
landing sequence (called trial type presentation), starting with the
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Figure 3.5: Array placement Jazz.

first target, and its completion ending with a reward. The monkey
was presented with 12 different landing sequences in random order,
yielding ten repetitions of the same landing sequence per session.

Note that the precise task definitions might vary from session to
session: for training purposes or to test different behavioral hypothe-
ses, some sessions have eight landing sequences, while others have
12 different landing sequences. Also, the required durations for the
landing, as well as the radii of the targets, varied.

Each time the experimental system presents the landing sequence
(trial type presentation), starting with the first target and the monkey
performs the task until either success or failure; we call this an attempt.
Attempts can thus be either unsuccessful, leading to a new attempt
of the same trial-type presentation, or successful, ending the trial
and leading to the first attempt of the next trial-type presentation.
Unsuccessful attempts are grouped into time-out errors (the monkey
fails to perform the reaches within the given time limits) or anticipation
errors (the monkey leaves the current target before the next target is
lit up or overshoots the target). Monkeys were slightly water-deprived
before the experiments and received water drops as a reward for
completing a trial.

Refer to the displays of the behavioral in Figure 5.3 and Figure 5.4
as well as for the spike data in Figure 5.8, that are presented in the
next chapter, for a visualization of a landing sequence.
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3.4.2 Drawing task

In the drawing task, each trial starts with the illumination of the
central target, which indicates the hand’s starting position to the
monkey. After 200 ms, the central target was turned off and replaced
by the six peripheral targets. The monkey was then required to hover
over all targets without any constraints on the order and very little
time pressure (maximum 1 s between each target). Upon successfully
reaching towards all the targets, the monkey receives a water reward.

3.5 preprocessing pipeline

The recording setup outputs two sets of files: {.ns6, .ns2 and .nev}
per session. These are stored with many metadata files, e.g., array
specifications, Simulink model files, and task-specific code descriptors,
to name just a few, in a folder with the following unique format:
[subject-ID][date in yymmdd format]-[short task name]-[3-digit

session-ID]. For example, y180306-land-001 would stand for the first
recording session on March 06, 2018, with Enya performing a landing
task, and j210208-draw-002 would be the second recording session
with Jazz on February 08, 2021, performing a drawing task.

After being stored on the local server in Marseille called congloue,
the data is transferred to the local server in Jülich called hambach. Fun fact: The small

and large Congloué
are two little islands
near the coast of
Marseille, while
Hambach is a small
village close to
Jülich.

The multitude of data files and formats makes it difficult for an
end user to deal with the raw data. Furthermore, several preprocess-
ing steps have to be performed on the behavioral data (e.g., convert
signals from volts to centimeters, hand movement segmentation, and
eye segmentation) and the electrophysiological data (integrate spike
sorting, extract LFP signal by filtering and downsampling). Our Lab
developed a preprocessing pipeline to avoid each end user needing
to perform this preprocessing, leading to a zoo of different routines.
This pipeline uses the software Snakemake (Köster et al., 2012) and
multiple Python scripts organized in data and metadata apps. This
allows for a modular and extensible way of merging the raw data files
into a well-organized and usable output file.

The final output is a .nix-file that has a standardized format and
allows the application of the same analysis on several sessions. The
preprocessing output is furthermore version-controlled via GIN3.

Details on the preprocessing pipeline can be found in the thesis by
Alexander Kleinjohann.

In the previous chapter, we introduced the V4A project and reviewed
the neuroscientific background, while this chapter explained the setup,
data, and task. We now have all prerequisites to look at the actual
data. But before we present the main neuroscientific analysis, the next

3 GIN, https://gin.g-node.org/

https://gin.g-node.org/
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chapter will discuss artifacts that were found in preliminary analyses
and that ideally should be dealt with to obtain trustworthy data.



Make the best use of what is in your power,
and take the rest as it happens.

— Epictetus

4
A RT I FA C T S

Initial analyses of the electrophysiological data from the Vision-for-
Action (V4A) project revealed potential non-neuronal data called arti-
facts. This chapter seeks to characterize these artifacts, to argue for
and against their artifactual nature, and to suggest potential origins in
the arrangement.

Finally, to make the recorded data safely usable, we propose a
preprocessing stage that removes the most significant artifacts from
the recorded data even before spike sorting.

While long-term degradation of Utah recordings (Sponheim et al.,
2021) and potential scarring of the neural tissue (through explant
analyses) have been discussed in literature (Patel et al., 2022; Woeppel
et al., 2021), artifacts in the recorded data are rarely mentioned.

4.1 Description of potential non-neuronal data . . . . . . . 45

4.2 Characterization of artifacts . . . . . . . . . . . . . . . . 48

4.2.1 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Common noise . . . . . . . . . . . . . . . . . . . 50

4.2.3 Peaks in power spectrum . . . . . . . . . . . . . 53

4.2.4 Superposition of problems . . . . . . . . . . . . 53

4.2.5 Synchrofacts are symptoms of underlying artifacts 55

4.3 Hypothesized sources in the setup . . . . . . . . . . . . 56
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4.6 Employed way of ensuring usability of data . . . . . . 59

4.1 description of potential non-neuronal data

Early visualizations of the single unit activity (SUA) spiketrains ex-
tracted via a manual spike sorting procedure, as explained in Para-
graph A.1.2, revealed that some spikes from different units are highly
coordinated. In the raster plot shown in Figure 4.1, where spikes are
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aligned to the first peripheral target onset in the landing task, espe-
cially spiketrains from primary motor cortex (M1)/dorsal premotor
cortex (PMd) look surprisingly similar.

The binning of the spiking activity with sampling rate precision
(30 kHz) into a time histogram exhibits multiple peaks.

We compare the empirical distribution of time histogram entries
(complexity distribution, (Louis et al., 2010)) with the distribution that
is expected if the fine temporal structure of the spiking activity is
explicitly destroyed by dithering each spike in a certain dithering win-
dow (here wdither = 10 ms). With many parallel spiketrains, a certain
amount of synchronization at sampling rate precision is expected by
chance. A direct comparison of these distributions in Figure 4.1 shows
our data’s excess synchrony.

Figure 4.1: Synchrofacts in SUAs. The raster plot (B) shows the spike times of
all SUAs recorded in the session y180306-land-001. Times are rel-
ative to the first peripheral target onset (ttarget onset = 107.9676 s,
right target, marked with dashed vertical line). Each row con-
tains the spiketrain of one single unit; rows are sorted by
recording area. The total number of units per recording is
printed on the panel’s left. Spikes that are recorded on the
same sampling time point across different units (detected via
elephant.spike_train_synchrony.Synchrotool with spread= 0)
are marked with a red cross. The two red, horizontal arrows
point at two spiketrains in M1/PMd which are similar and ex-
hibit several synchronous spikes. A zoom of the shaded area
between t ∈ 700, 800 ms will be shown in Figure 4.2. The top
panel (A) shows a histogram at sampling rate precision (bin size
b = 1/30000 s) of all the SUAs. The panel on the bottom (C) shows
distributions of histogram entries (complexity distributions) from
empirical (blue) and dithered (light blue) data from the whole
duration of the sessions on a log-scale. The dithered data shown
here are the mean of five dithering surrogate datasets, and the
error bars show the standard deviation.
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Note that the typical duration of one action potential is around
1− 2 ms (see Section 1.1). A synchronization at sampling rate precision
would require a way of synchronizing faster than spike transmission,
which is unlikely.

In the following, we will refer to synchrofacts (Torre et al., 2016) as
hyper-synchronous putative spikes at sampling rate precision of the
recording system, sometimes involving a large number of channels,
which are unlikely to represent neuronal activity. The order of a
synchrofact is defined by the number of putative synchronous spikes
(e.g., three spikes being synchronous at sampling rate precision would
be called a synchrofact of order 3).

Up to now, we looked at the spike sorted SUA, in fact, also other
threshold crossings (multi unit activity (MUA) and noise units) are
affected by excessive synchronization. To illustrate this, Figure 4.2
shows a zoom into the greyly shaded time stretch from Figure 4.1
containing spiketrains of all unit types.

Figure 4.2: Synchrofacts in all unit types. The figures are organized as Fig-
ure 4.1 and show a zoom of the greyly shaded area from that
figure. Besides SUA, this plot also includes MUA and threshold
crossings, which have been classified as noise. The red vertical
arrows point at events for which the number of synchronous
spikes over all shown units is larger than 4.

While the display in Figure 4.1 suggests that only some SUA spike-
trains are highly correlated, the occurrence of synchrofacts in all types
of units, predominantly in noise units (see Figure 4.2), indicates that
the origin might be observable in the raw data traces.

Qua natura, there is a relationship between the raw signals and the
spikes sorted into SUA, MUA, and noise units. Thus, the spike sorting
procedure is naturally reflected in the spiking activity.

A crucial parameter is the threshold that is used to extract the
spikes. As described in Section A.1, to obtain spike-sorted data, a few
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preprocessing steps have been performed: First, the raw recorded extra-
cellular voltages are spectrally band-pass filtered between 250 Hz and
7500 Hz. Second, for the displayed session y180306-land-001, thresh-
old crossings are extracted from these filtered data by a threshold
that has been set by the experimenter during each recording session
(online) (see Paragraph A.1.2). Third, the extracted waveforms of the
threshold crossing events are grouped into analyzed SUA MUA and
noise units during manual spike sorting by the experimenter indepen-
dently per channel. Hence, the spike sorter does not detect potentially
synchronous spike waveforms on multiple channels.

The following section illustrates this intricate relationship between
raw signals, synchrofacts, and spike sorting output.

4.2 characterization of artifacts

The visual inspection of the spike-sorted units and the corresponding
high-pass filtered raw signals around time points of high-order syn-
chrofacts lead to a characterization of three main artifact types, which
will be explained in the following.

4.2.1 Crosstalk

We refer to pairs of channels showing a high cross-correlation across
all frequency bands as crosstalking. This crosstalk eventually leads to
simultaneous threshold crossings. Figure 4.3 shows the band-pass
filtered signals and the resulting spike times of sorted units of some
channels of the motor array. It is clearly visible that the signals of
channels 91, 92, 93, and 96 are highly similar and essentially exhibit
the same spikes.

It is likely that the spike originates in the channel where the spike
waveform has the highest amplitude (here, channel 96) and then bleeds
over to the other channels with different strengths. The spike observed
at t ∼ 7.4 ms on channel 91 does not seem to affect the other channels
except for channel 92. This hints at the nature of the coupling that
leads to the crosstalk and would argue against a reciprocal (symmetric)
bleeding of signals between channels.

In this display, the similarity of waveforms is rather obvious; during
spike sorting, however, as explained in Paragraph A.1.2, each channel
is treated independently, such that these similarities of signals easily
go unnoticed.

Figure 4.4 illustrates crosstalk at the example of the visual and
parietal arrays. The cross-correlation coefficient between two signals is
a simple measure to uncover a stable similarity at the level of the band-
pass filtered raw signals (as observed in Figure 4.3). The low-frequency
content of the electrophysiological signal (e.g., local field potential
(LFP)) is known to be similar across the spatial scale of a Utah array.
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Figure 4.3: Spike times and filtered raw signals showing crosstalk signature.
Both panels are aligned to t = 16.46587 s and show data from the
motor array in y180116-land-001. The red lines on the right pan-
els show the spike extraction threshold set by the experimenter
during the recording session. This type of figure has been devel-
oped by Sprenger, 2014.

The high-frequency content, however, is expected to be dampened
by the neural tissue and not measurable on several electrodes. In
this example, cross-correlation coefficients between electrodes on the
secondary visual cortex (V2) array seem excessively correlated.

It is, however, difficult to clearly define pairs of channels to be
crosstalking as we do not find a sharp bimodal distribution of the
cross-correlation coefficients, but rather a smooth distribution; thus,
no threshold can be set.

Panel B in Figure 4.4 relates the cross-correlation coefficient to the
percentage of synchrofacts contained in the spiking of a unit. We
observe the tendency that a higher cross-correlation leads to more
synchrofacts. The point clouds suggest that setting a threshold to
separate the good and bad units or channels is reasonable.

Figure 4.4 shows that crosstalking channels tend to be close on the
array mapping and/or the connector mapping. The same plot for the
motor array can be found in the appendix Figure A.1.

Notably, the composition of crosstalking channels appears to be
changing across sessions (data not shown here).
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Figure 4.4: Panel illustrating features of the artifact called crosstalk. The
data presented in this figure stem from the visual-parietal arrays
recorded in session y180306-land-001. A: Matrix showing the
cross-correlation coefficient calculated between pairs of channels.
The raw recorded extracellular voltages are spectrally band-pass
filtered between 250 Hz and 7500 Hz with a fourth-order Butter-
worth filter prior to calculating the correlation coefficient over the
whole duration of the session. B: Scatter plot relating the maximal
raw data correlation (maximal value of a row in panel A) on the
x-axis to the percentage of spikes participating in synchrofacts
of a certain unit (SUA in blue or MUA in light blue ) on the y-
axis. Here, the synchrofact detection was performed only across
the visual-parietal areas with a spread= 2 (as was chosen to be
the case in the preprocessing pipeline). The lower two panels
show the topography on the array (left, C) and the connector
(right, D). Each little square belongs to a channel with the channel
ID (number) being colored according to the physical connector
(bank) demarcated in panel D. The shades of red illustrate the
average synchrofacts percentage across all units on that channel.
Connections between channels are fully transparent up to a cross-
correlation coefficient of cX,Y > 0.4. The transparency decreases
with rising coefficient and vanishes for cX,Y = 1.

4.2.2 Common noise

We refer to simultaneous deflections (blips) visible on all channels
of the array as common noise, as they are common to all channels
of an array or even the connector. These deflections mostly do not
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resemble a spike; however, they lead to threshold crossing and might
mistakenly end up in a sorted unit (see channel 43 in Figure 4.5).

Figure 4.5: Spike times and filtered raw signals showing a common noise
signature called long blip. Both panels are aligned to t =
125.8169 s and show data from the visual-parietal arrays in
y180306-land-001. The figure shows the same details as Figure 4.3

Furthermore, we distinguished between fast and slow blips (Ta-
ble 4.1) because the distribution of blip widths turned out to be
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bimodal. An example of a slow (long) blip is shown in Figure 4.5
and an example of a fast (short) blip can be found in the appendix
Figure A.2. The width of these deflections can be used to estimate
their frequency content.

blip type width frequency

slow ∼ 1 ms 1000 Hz

fast ≤ 0.25 ms ≥ 4000 Hz

Table 4.1: Frequency content of slow (long) and fast (short) blips.

Indeed, we find (see Figure 4.6) that the power spectrum shows a
broad region of elevated power between ∼ 2000 − 5000 Hz, particu-
larly in the channels of the visual and parietal arrays, which by visual
inspection showed more deflections than the motor array.

Figure 4.6: Power spectral densities PSD reflect common noise. Power spectral
densitys (PSDs) of all recording channels in the motor (left) and
the visual-parietal arrays (right). The traces are colored according
to the physical connector bank on the connector.

Besides the above-mentioned elevation in power, we furthermore
discovered sharp peaks in the power spectra.
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4.2.3 Peaks in power spectrum

We termed this artifact peaks in the power spectrum or narrow-band
oscillatory noise. With these terms, we refer to the signals that give rise
to sharp peaks in the power spectrum which typically have a width of
∼ 5 − 50 Hz and are observed in frequencies from ∼ 2000 − 15000 Hz.

While most of these peaks remain stable at a certain frequency,
others move over time and thus wash out (see Figure 4.7). These ones
give rise to broader peaks with a power spectral density higher than
the average but lower than those of the sharp peaks.

Figure 4.7: Time-resolved PSD of channel 70 from the visual-parietal arrays
from session y180306-land-001. The time axis was segmented
into ∆t = 10 s chunks and the PSD per segment was obtained
via scipy.signal.welch() with nperseg= 600. Color encodes the
power on a logarithmic scale. Note that the elevations between ∼
4000 − 6000 Hz, visible as broad peaks in Figure 4.6, and around
∼ 14000 Hz drift over time

Typically the groups of channels which show those sharp peaks
belong to the same bank of the Blackrock system. This is illustrated in
Figure 4.8, where the relative peak height of the PSDs is plotted on the
array and connector mapping. A similar observation, that the signals
within a cable bundle or connector bank show correlated signals has
been made previously (Mineault, 2011).

Up to now, we have not found an isolated effect of these peaks on
the spiking activity.

4.2.4 Superposition of problems

The three artifact types defined above co-exist in the data and are
intertwined with actual neuronal activity. The simplest model, yet an
illustrative one, would be a linear superposition of signal components:
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Figure 4.8: Peaks in PSDs related to connector bank. Panel A shows the
PSD of all channels from the visual-parietal arrays from session
y180306-land-001. The traces are colored according to the phys-
ical connector bank on the connector, same as in Figure 4.6.
The signals are shown as stored in the .ns6-file, i.e. no fur-
ther filtering was applied. To estimate the relative peak height
around 5860 Hz the mean peak power in the range frequency
fpeak = 5860 Hz± 60 Hz (centered shade) was related to the mean
baseline power in the range frequency fbaseline ∈ 5560 − 6160 Hz
(surrounding shade). These relative peak heights per channel are
shown in the form of a heatmap in the array mapping (left, B)
and the connector mapping (right, C).
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Xsignal = Xneuronal +Xcrosstalk +Xcommon noise +Xpeaks in PSD +X? (4.1)

where X? stands for signatures that might be due to artifacts but
are not yet captured by the three artifact types discussed above.

The idea of the superposition of signals allows for a more differ-
entiated analysis: From the analysis of crosstalk in Figure 4.4, we
know that most channels in area V2 are highly correlated (channel IDs
∼ 30 − 50). With this information, Figure 4.5 can be interpreted more
carefully: A close look at ∼ 30 − 50 reveals a close similarity of the
overall signals, a signature of crosstalk. However, the blip is observed
not only in those “crosstalking” channels but across all the displayed
channels, likely being caused separately from the crosstalk.

4.2.5 Synchrofacts are symptoms of underlying artifacts

The idea of a superposition of problematic signal components al-
lows for a broader perspective on the discussion about synchrofacts:
Synchrofacts seem to be a common symptom of various types of
underlying noise signals. Above, we reasoned that at least crosstalk
and common noise can give rise to synchrofacts. The impact of the
narrow-band oscillatory noise on synchrofacts was not conclusively
shown.

A further complication in the discussion about synchrofacts is im-
posed by the nonlinear spike sorting process to go from (noisy) raw
signals to sorted units. Given contaminated signals, whether or not
they suffer from synchrofact crucially depends on the spike extraction
threshold and the judgment of the person who sorts the data, when a
waveform belongs to a SUA, MUA or noise unit.

In particular, the spike extraction threshold, which used to be set
online during the experiment, has an impact: The more permissive the
threshold was chosen, the more potential artifacts are also reflected in
the threshold crossings, making it more difficult for the spike sorter to
reject non-neural crossings.

Example 1: A deflection on all channels, also called common noise,
might lead to several simultaneous threshold crossings and thus to a
synchrofact of a high order (as high as there are synchronous thresh-
old crossings). Such a deflection might, for example, be caused by
switching on/off a lamp.

Example 2: Channel A shows a spike. Channel A crosstalks to
Channel B, then simultaneously, you observe a spike in Channel B.
Thus, you see a synchrofact of order 2.
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4.3 hypothesized sources in the setup

In previously recorded data from a similar experimental setup for
the reach-to-grasp project (R2G, (Brochier et al., 2018)), resembling
synchronous events have been identified and linked to the raw voltage
data (Sprenger, 2014).

The main cause for synchrofacts in the old dataset was hypothe-
sized to be the analog signal transmission from the headstage to the
digital hub via the so-called patient cable, which was likely prone to
perturbations by electrical noise.

In the V4A-setup, however, signals are already digitized at the head-
stage (see Figure 3.3). To resolve the issues at the source, it is necessary
to understand the origins of the signatures that were described above.
The following paragraph is admittedly speculative, yet reflects the
state-of-the-art understanding of our collaborative investigations into
the matter.

crosstalk We hypothesize that crosstalk arises due to physically
touching cables (e.g. due to broken isolation in a wire bundle leading
from the array to the connector, or touching wires on the back of the
array).

During the implantation of the arrays, the relatively long cable
bundles (primary visual cortex (V1): 4 cm, V2: 5 cm, dorsal prelunate
(DP): 6 cm, area 7a (7a): 8 cm) leading from the array to the connector
pedestal have to be accomodated below the skull.

Blackrock supplies a tool name the “Digital Neural Signal Simulator”
(see Figure 3.3), which can be used to replace signals from a connector
with artificial ones. We used this device to test the setup, observed
no crosstalk in the simulated signals, and concluded that crosstalk is
produced in a prior stage of signal transmission (e.g., prior to or at
the connector level).

The contacts of connector land grid array (LGA) connect to the
headstage through a filament: It is supposed to guide the electrical
current from one contact on the connector to the corresponding contact
on the headstage. We tested the effects of pollution on the performance
of the filament: E.g. clogged the filament with blood or left residual
cleaning alcohol undried. We observed that this might lead to crosstalk
at between contacts. However, regular cleaning and replacement of
the filament can prevent this from happening.

The large group of highly correlated channels in V2 (see Figure 4.4),
however, seems not to persist across all sessions. Late sessions (e.g.
j210913-land-001) in Jazz do not show these correlations. The lab
book during this period of recordings reports that the combination
between Cereplex and connector was changed (e.g. the Cereplex that
was previously used to connect to the motor array was switched to
the visual connector and vice versa).
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common noise As the deflections considered as the artifact com-
mon noise can be observed on all arrays simultaneously, we assume
that they stem from electromagnetic waves traveling through the setup.
Alternatively, the ground signal of the electrical grid in the building
where the experiments are performed fluctuations during events like
switching on or off a lamp. Interestingly, the effect is stronger on all
arrays in the visual and parietal areas.

peaks in power spectrum The signature of a sharp peak in
the power spectral density is also observed in systems suffering from
ground loops (Gaboian, 2000). We suggest that a ground loop might
be the cause.

In the V4A setup two parallel data streams run from the array/-
connector to the neural signal processor (NSP) (see Figure 3.3). A
huge noise signal is present if the two HDMI cables leading from
the headstages to the digital hubs are not bridged. We observed that
the amplitude of the power spectral density peaks is drastically in-
fluenced by the connection between these two HDMI cables and a
custom solution for bridging them was ordered from Blackrock and
used henceforth. The precise date can be inferred from a change of
Cereplexes, which happened simultaneously.

4.4 removal of artifacts

Artifacts can be removed in two stages:

1. The setup can be improved in order to eliminate artifacts

2. The recorded signal can be post-processed, and the identified
signatures can be removed as well as possible.

In the long run, it is best to try to remove any issue in the setup (if
possible) and resort to the post-ancestry only if necessary. However,
the latter is also necessary because many recorded sessions contain
the discussed artifacts, and we need to deal with them.

4.4.1 Removal of artifact sources in the setup

For the removal of the artifact sources, thorough before-and-after
testing needs to be implemented to judge the effectiveness of a given
measure.

Given the signatures and hypothesized sources, we, first of all,
advise for preventative measures prior to the implantation of another
experimental subject. This entails testing the arrays and cable bundles
for crosstalk.

Furthermore, we propose regular impedance measurements (Cody
et al., 2018) of the electrodes to track eventual degradation. Prior to
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each experiment, a live preview of cross-correlated channels and high-
frequency noise could give the incentive to clean the connector, screw
it tightly to the headstage or check the bridging cable between the
connectors.

To check the impact of a fluctuating ground signal on the setup, we
proposed to test a DC power source to run the whole equipment.

4.4.2 Removal of artifacts in existing data

Crosstalk can be detected by calculating the cross-correlations and
relating these to the number of synchrofacts shown in Figure 4.4.
A threshold, which has to be chosen, can then be used to identify
problematic channels or units, and these can be annotated. Based on
this annotation the user can subsequently decide to include or exclude
the data from analyses.

As for the common noise, a re-referencing technique could be em-
ployed. Methods could consist of removing the median signal across
all channels from each channel as commonly used by the community,
or calculating the a principle component analysis (PCA) and removing
the first component. The latter allows for more local removal of a noise
component.SpikeInterface

(Buccino et al.,
2020), currently

discusses the
implementation of

such a functionality.

The impact of the peaks in the power spectrum on synchrofacts is
not yet conclusive. A possible way of removing the peaks one by one
could be a sequential application joint decorrelation (De Cheveigné
et al., 2014), a versatile dimensionality reduction method.

4.5 limitations

Any method of removing artifacts requires a measure of success to
answer the question: When are we satisfied? This is problematic, as
the signals have no ground truth to test against.

In the end, any scientific outcome should, however, be rather robust
against the details of preprocessing as the precise spike sorting routine.

For a large part of this these, the measure of success was to reduce
the number of synchrofacts present in the data to the level that is
expected by chance.

In such a scenario, the evaluation of methods that manipulate the
raw signals, as, e.g., a sequential application of joint decorrelation,
unfortunately, requires a new spike extraction and a new spike sorting.
As explained in Section A.1 this is a lengthy process and showed not
to be practical without automatic spike sorting routines.

Within the scope of this thesis, we did implement a pipeline with
artifact characterization and artifact removal on the raw data, but the
crucial step of subsequent spike sorting and, thus, evaluation was
lacking. Recent developments in the accessibility of automatic spike
sorting methods (e.g., SpikeInterface) make such an endeavor possible.
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4.6 employed way of ensuring usability of data

Due to the lack of conclusive measures of success for the artifacts
common noise and peaks in the power spectrum, we dealt with the
artifact crosstalk for subsequent analyses.

In the first step, we analyzed manually sorted sessions. Therefore,
we chose to annotate those channels and units that are exceedingly
correlated to any other channel and also exhibit a large synchrofact
percentage (see Figure 4.4). The single unit analysis presented in the
next chapter, was performed on all sorted units (SUA and MUA), but
for the end result, only those meeting a strict selection by quality
metrics were permitted. The selection criteria were a larger firing rate
than 1 Hz and a waveform signal-to-noise ratio (SNR) larger than 2.5
(for details, see Section A.1).

With this procedure, a reasonable amount of units in M1/PMd were
gathered across the manually sorted sessions. Due to a low number
of recorded units in V1, a large part of rejected channels in V2 and
the overall smaller arrays in the visual-parietal recording sites, the
number of neurons that remained after the strict selection was very
low (see in Table 4.2 row with Alexa and Fred as sorter).

To overcome this bottleneck, only the visual-parietal area has been
automatically spike sorted for more sessions (see details Section A.1.3).
Knowing that a large part of the data is contaminated with crosstalk,
we aimed to reject these channels even before sorting. To achieve that,
we band-pass filtered the raw signals between 250 Hz and 7500 Hz
and extracted threshold crossings per channel by setting a threshold
as

Thr = −5 · median
(

|x|
0.6745

)
(4.2)

where |x| denotes the median absolute deviation of the voltage.
With the resulting spiketrains from threshold crossings, we repli-

cated the plots as in Figure 4.4B by calculating a synchrofact percent-
age per channel. We then used these plots (see Figure 4.9) to manually
set rejection thresholds for the maximum correlation between channels
and the synchrofact index. Only channels that lie below these two
thresholds were subsequently automatically spike-sorted and used for
analysis. In Figure 4.10 the result of such a procedure is visualized
for three different sortings. Not that for the sorting of Alexa without
channel rejection most complexities show more occurrences than the
dither (chance synchrony) prediction.

For Mountainsort4 we chose the parameters listed in Table A.2.
Here, the adjacency radius is −1 and was set as default. It allows
spikes to be detectable on all channels. We observed in complexity
distributions that this setting effectively removes any synchrofacts,
including chance synchrony.



60 artifacts

Figure 4.9: Crosstalk exclusion thresholds that were chosen for
y180116-land-001 shown in a scatter plot as in Figure 4.4B.
Each circle corresponds to one channel. The size of the circle
is proportional to the amount of detected threshold crossings.
The colors are random. Only channels below the horizontal and
left to the vertical line (area without shade) were chosen for the
analysis.

In the following analyses, we will use the Mountainsort4 sorting. As
we will look into the rate coding of the neurons, it probably does not
hurt to be very conservative and remove any synchrony. A similarly
conservative choice of synchrofact removal was taken in (Torre et al.,
2016).

Table 4.2 lists all used sessions and the numbers of units before
and after rejection for all the different spike sortings that were used.
Table 4.3 summarizes the former table and lists the number of neurons
pooled over sessions.

[ht]

session
name

sorter V1/
V2

V1/
V2strict

DP DPstrict 7a 7astrict M1/
PMd

M1/
PMdstrict

y180116 Alexa 44 21 41 20 41 16 118 51

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 16 14 28 21 28 15 ✗ ✗

tridesclous 5 5 12 11 14 12 ✗ ✗

y180221 Alexa 20 5 33 11 39 20 113 29

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

002 mountainsort4 4 4 14 10 24 15 ✗ ✗

tridesclous 1 1 8 7 17 15 ✗ ✗

y180306 Alexa 24 7 31 16 37 14 101 31

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 8 5 22 17 22 15 ✗ ✗
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session
name

sorter V1/
V2

V1/
V2strict

DP DPstrict 7a 7astrict M1/
PMd

M1/
PMdstrict

tridesclous 4 3 11 11 9 8 ✗ ✗

y180306 Alexa 25 10 31 14 38 14 102 33

draw Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

002 mountainsort4 7 6 24 20 22 17 ✗ ✗

tridesclous 2 2 12 11 11 9 ✗ ✗

j210204 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred 63 1 40 5 41 5 155 58

001 mountainsort4 2 1 6 5 6 3 ✗ ✗

tridesclous ✗ ✗ 3 2 6 5 ✗ ✗

j210208 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred 31 2 24 4 26 2 110 43

001 mountainsort4 1 1 5 5 4 2 ✗ ✗

tridesclous ✗ ✗ 2 2 3 2 ✗ ✗

j210212 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 1 1 6 5 7 6 ✗ ✗

tridesclous ✗ ✗ 3 3 6 5 ✗ ✗

j210223 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

draw Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

002 mountainsort4 ✗ ✗ 8 8 3 3 ✗ ✗

tridesclous ✗ ✗ 4 4 2 2 ✗ ✗

j210301 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

draw Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 ✗ ✗ 5 5 5 5 ✗ ✗

tridesclous ✗ ✗ 1 1 3 3 ✗ ✗

j210601 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 2 1 10 9 4 2 ✗ ✗

tridesclous ✗ ✗ 7 7 4 2 ✗ ✗

j210608 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 1 ✗ 13 9 9 8 ✗ ✗

tridesclous ✗ ✗ 9 9 7 7 ✗ ✗

j210729 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

draw Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 6 5 14 13 11 11 ✗ ✗
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session
name

sorter V1/
V2

V1/
V2strict

DP DPstrict 7a 7astrict M1/
PMd

M1/
PMdstrict

tridesclous 1 1 10 9 8 8 ✗ ✗

j210901 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

draw Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 5 5 14 13 8 6 ✗ ✗

tridesclous 4 4 9 9 7 4 ✗ ✗

j210913 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 8 5 12 11 11 7 ✗ ✗

tridesclous 3 3 4 4 11 8 ✗ ✗

j211007 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

001 mountainsort4 7 5 11 10 12 10 ✗ ✗

tridesclous 4 4 4 4 8 8 ✗ ✗

j211103 Alexa ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

land Fred ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

002 mountainsort4 7 4 13 9 10 5 ✗ ✗

tridesclous 4 4 7 7 9 7 ✗ ✗

Table 4.2: Table summarizing the unit count in each area per session and
sorter.
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Figure 4.10: Complexities (after channel rejection) for different sorters for all
visual-parietal channels in y180306-land-001.

subject sorter V1/V2strict DPstrict 7astrict M1/PMdstrict

Enya Alexa 43 61 64 144

Fred ✗ ✗ ✗ ✗

mountainsort4 29 68 62 ✗

tridesclous 11 40 44 ✗

Jazz Alexa ✗ ✗ ✗ ✗

Fred 3 9 7 101

mountainsort4 28 102 68 ✗

tridesclous 16 61 61 ✗

Table 4.3: Table summarizing the unit count in each area per sorter pooled
across sessions.

With the end of this chapter, we conclude the preliminaries for the
actual investigation of the data to answer the research question:

Is the bimodality of the distribution of preferred directions (PDs)
that has been observed in M1 and PMd/ventral premotor cortex (PMv)
also present in the parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task?

We have reviewed the literature on the cortical systems involved in
eye-hand coordination, have explained the details of the experimental
setup, including necessary preprocessing steps and finally excluded
the most severe cause of artifacts to avoid systematic biases in the
recorded data.



Freedom is what you do with what’s been done to you.

— Jean-Paul Sartre
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In the previous chapters, we first reviewed neuroscientific background
(Chapter 2), then exhibited the details of the experimental setup (Chap-
ter 3) of the Vision-for-Action (V4A)-project and finally characterized
artifacts in the neural recordings (Chapter 4) and proposed a way of
dealing with the apparent issues. All of these are necessary prereq-
uisites to answer scientific questions with experimental data. In this
chapter, I present an analysis of the single unit activity that we isolated
as explained in the end of the last chapter.
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5.1 introduction

Awake animals and humans constantly interact with their environ-
ment: grabbing the toothbrush in the morning, reaching for the coffee
mug, and opening the laptop lid to start working; in all these circum-
stances, we exert meaningful control of bodily action, which requires
sensory perception of body posture and external world. This is often
referred to as the action-perception loop (Noel et al., 2022).

Visually guided reaching tasks, by definition, emphasize the impor-
tance of visual information to perform concerted sequences of muscle
activations that eventually lead to desired limb movements.

Research suggests that visual information enters the cortex in the
primary visual cortex, and, subsequently flows along the ventral and
the dorsal pathway (Ungerleider et al., 1982) (see Section 2.1). The ven-
tral stream, which projects to the inferotemporal cortex, is associated
with recognition or perception, and thus was also termed the what or
vision-for-perception pathway. In contrast, the dorsal stream projects
to the posterior parietal cortex, is related to spatial vision, and called
where or vision-for-action pathway due to its crucial role in movement
execution (Goodale et al., 1992b).

As reviewed in Section 2.2, most of the occipital cortex is occupied
by visual areas, in particular the primary visual cortex (V1) and higher
order areas (Felleman et al., 1991). Although visual areas are shown
to receive feedback connections from higher-order cortices (Wang et
al., 2022b), the dominant factor governing their activations seem to
be visual variables. Talluri et al. (2022) recently demonstrated that
spontaneous movements explain only a small part of the variance
measured in the macaque V1. This is in contrast to observations in
mice (Musall et al., 2019; Stringer et al., 2019a), which show strong V1

activations also for other behaviors, e.g., movements.
Following the two visual pathway hypothesis, areas in the posterior

parietal cortex have been shown to integrate sensory information of
various modalities and to be activated prior to eye or limb movements
(see Section 2.4 for a literature review). Such neural activations have
been interpreted to code the intent or motor plan rather than the
actual execution. The prevailing hypothesis is that motor intent is
subsequently transmitted to premotor and motor cortex, from which
corticomotoneuronal cells have descending connections to motor neu-
rons in the spinal cord (Strick et al., 2021) that ennervate muscles (see
Section 2.3.1).

Although the debate about what neurons in the motor cortex encode
is not yet resolved (cf. Section 2.3.2), it is well established that the
majority of neurons in the limb area of M1 are tuned to the direction
of limb movement, which classically is described by a cosine tuning
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(Amirikian et al., 2000; Georgopoulos et al., 1982) that is characterized
by a preferred direction (PD).

For movements in 3D, the distribution of PDs across neurons was
demonstrated to be uniform (Caminiti et al., 1990; Schwartz et al.,
1988). If the hand is constrained to a 2D plane by means of an ex-
oskeleton (KINARM), the distribution of PDs across neurons, however,
was shown to be bimodal (Scott et al., 2001b, 1997). Modeling studies
(Codol et al., 2023; Lillicrap et al., 2013; Verduzco-Flores et al., 2022)
which take into account the biomechanics of arm and constrained
movement of the hand in 2D. They demonstrate that for 2D hand
movements there is are directions for which groups of muscles re-
quired maximum contraction. Furthermore, across muscles, as muscles
are grouped in agonist-antagonist pairs, the contraction depending on
the movement angle in 2D is bimodal. In consequence, they suggest
that the bimodality in PDs reflects the bimodal activations of muscles.

Recently, Suminski et al. (2015) have shown that the bimodality of
the distribution of PDs extends to areas PMd and ventral premotor
cortex (PMv), and, hence concluded that even these pre-motor areas
are subject to the biomechanistic properties of the limb. Given this
finding, one can ask whether a bimodality of PDs would be observable
in further areas.

As reviewed in Section 2.4, activity in the posterior parietal cortex
has been shown to respond to several modalities: eye movements
(saccades), body movement, and different sensory stimuli. While
movement-related activity has been demonstrated in several areas
in the posterior parietal cortex (Battaglia-Mayer et al., 2000, 2007;
Diomedi et al., 2021), to our knowledge the existence of a tuning for
hand movement direction with an emphasis on the expect bias of PDs

when the hand is constrained to 2D, has not been investigated along
the dorsal visual pathway.

In this chapter, we want to answer this question by analyzing the
data recorded in the V4A project as detailed in Chapter 3. In a first
step, we confirm that the bias in the PDs distribution in M1/PMd is
reproduced with our data and then proceed to the question: Can we
observe a bimodality of PDs to hand movement along the dorsal visual
pathway?

disentangling of multiple behavioral influences The
mixed selectivity of neurons in posterior parietal cortex (PPC), however,
hinders a naive extraction of neural tuning to hand movement in
integrated visuo-motor task. Effects due to visual perception and
eye movements, which happen in a correlated manner to the hand
movement, might evoke neural responses that then can falsely be
confounded as responses to simulataneously occuring movements.

One way to deal with these confound effects is to explicitly model
the neural activity of every single neuron via a rich set of behavioral
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regressors and, by that, isolate the unique effect of the behavior of
importance. The Poisson Generalized linear model (GLM) (McCullagh
et al., 1989a) is a widely used modeling approach in the neurosciences
to describe the dependence of the spike count of a neuron to a variety
of regressor variables (Lepage et al., 2012; Truccolo et al., 2005; Vaccari
et al., 2021).

approach We aim to answer the question of whether a firing rate
tuning towards hand movement direction can be observed in areas
along the dorsal visual pathway. If tunings exist, we furthermore ask
whether the distributions of PDs in these areas are biased towards a
bimodality. To this aim, we perform the following analyses:

In a first step, we employ per neuron a naive Poisson GLM modeling
approach with just the sine and cosine of the instantaneous movement
angle as regressors. This preliminary analysis will reveal tendencies
towards a bimodal distribution of PDs in each of the recording ar-
eas. To exclude possible confounding variables, such as coincidentally
triggered sensory receptive fields of neurons in certain movement
directions, in a second step, we devise a more complex GLMs to de-
scribe the spike count vector via a large collection of regressors that
we group into the modalities: visual, eye position, saccade, hand position
and movement.

We make use of a procedure detailed in (Diomedi et al., 2020; Vaccari
et al., 2021) to uncover overall tendencies in selectivity towards these
regressor blocks in each of the recorded regions and thereby confirm
the expectation of a progressive decrease of the influence of visual
variables along the dorsal visual pathway and, conversely, an increase
of the influence of hand movement variables.

At this stage, having confirmed that many neurons, especially in
the parietal areas, are selective for movement variables, we proceed
and investigate the tuning functions to hand movement direction by
explicitly removing confounding variables and find that the tendency
of a bimodal distribution of PDs survives.

5.2 material and methods

5.2.1 Experiment

In the present chapter, we analyze data from the V4A experiment
which was performed with macaque monkeys. For details on the
experimental setup refer to Chapter 3. The monkeys perform two vari-
ants of visuomotor coordination tasks: the landing task and the drawing
task (see Section 3.4), which are supposed to probe various behavioral
modalities from simple visual stimuli, proprioceptive perception and
saccades to movement execution.
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Note that for the purpose of this analysis, we do not cut the session
into successful trials and do not discard unsuccessful trials or eventual
intertrial periods. We removed the first and last 10 s of each of the
recordings to avoid artifacts in the signals due to the beginning or end
of the session.

5.2.1.1 Behavioral data

We are making use of different behavioral data recorded at a sampling
rate of fs = 1 kHz. Specific details can be found in Section 3.2. Limb
movement is constrained to the horizontal plane by the KINARM
(KINARM Exoskeleton Laboratory, BKIN Technologies) and enables
the recording of the instantaneous hand position. Eye movement is
tracked via the EyeLink (EyeLink system, SR Research1). The experi-
ments are held in a dark room, such that all visual stimuli should be
task-related and located in the work area.

5.2.1.2 Neural data

The recording of the neuronal signals with devices from Blackrock
and more specifically chronically implanted Utah arrays is explained
in Section 3.2.5. In the previous chapter (Chapter 4) we discussed
apparent artifacts in these electrophysiological recordings. To avoid
contamination of our results with crosstalk, we employed the proce-
dure as explained in Section 4.6.

As a result we are analyzing units from manually sorted sessions
for primary motor cortex (M1)/dorsal premotor cortex (PMd), but rely
on units from automatically sorted units (see Section A.1) for primary
visual cortex (V1)/secondary visual cortex (V2), dorsal prelunate (DP)
and area 7a (7a). A summary of neuron numbers per session can
be found in Table 4.2. For the sake of this analysis we assume that
neurons recorded in different sessions are independent from each
other, yielding the numbers of neurons shown in Table 4.3.

5.2.2 Generalized linear models (GLMs)

In systems neuroscience, it is common to use either encoding or
decoding model to make sense of neural activity. Encoding models try
to answer the question of what a neuron’s activity encodes. On the
contrary, decoding models aim at decoding behavioral observations
(e.g. movements, decisions, etc.) given neural activity.

GLMs (McCullagh et al., 1989b) belong to the broad category of
encoding models: With their help, it is possible to disentangle the
effects that various variables have on the activity of a neuron.

1 https//www.sr-research.com

https//www.sr-research.com
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5.2.2.1 Formulation

In contrast to a general linear model, generalized linear models do not
exhibit a linear relationship between the independent variable and
dependent variables (also called regressors or covariates, respectively).

In general, a generalized linear model can be written in vector form
as

λ⃗ = f (X β⃗) , (5.1)

or with indices as

λt = f (β0X0,t + β1X1,t + β2X2,t + · · ·+ βNXN,t) , (5.2)

where λ is the dependent variable, f is a nonlinear link function, X
the design matrix with the i-th independent variable Xi,t as row and β

the coefficients of the model, i.e. the free parameters that need to be
determined via a fitting procedure.

In the neural context, it is useful to model the the firing rate λ of an
underlying Poisson process as the dependent variable. Typically, this
is done by assuming that the random variable Y is the spike count yt

in a certain time interval and that this follows a Poisson distribution

p(Y = yt) =
λ

yt
t e−λt

yt!
. (5.3)

In the Poisson generalized linear model (GLM) (also called the linear-
nonlinear cascade model), the logarithm of the positive rate of the
Poisson process is modeled to be linearly related to a sum of regressors
as

log λt = X β⃗ = β0X0,t + β1X1,t + β2X2,t + · · ·+ βNXN,t , (5.4)

with the zero-th row of the design matrix X being the intercept
X⃗0 = 1⃗ with 1⃗ the unity vector. By removing the logarithm on the left,
we can identify the link function in our problem to be f = exp():

λt = f (X β⃗) (5.5)

= f
(

β⃗T x⃗t

)
(5.6)

= exp (β0X0,t + β1X1,t + β2X2,t + · · ·+ βNXN,t) . (5.7)

The encoding distribution, or likelihood, is then obtained by plug-
ging Equation 5.7 into Equation 5.3:
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p
(

yt | β⃗, x⃗t

)
= p

(
Y = yt | λt = f

(
β⃗T x⃗t

))
(5.8)

=

[
f
(

β⃗T x⃗t

)]yt

yt!
e− f(β⃗T x⃗t) (5.9)

For a Poisson generalized linear model the log-likehood is far sim-
pler to calculate

logL = logL(β⃗ | X) (5.10)

= log p
(

yt | β⃗, x⃗t

)
(5.11)

= log
T

∏
t=1

[
f
(

β⃗T x⃗t

)]yt

yt!
e− f(β⃗T x⃗t) (5.12)

=
T

∑
t=1

yt log f
(

β⃗T x⃗t

)
− f

(
β⃗T x⃗t

)
− log yt!︸ ︷︷ ︸

constant

 (5.13)

and inserting the exponential link function f = exp() and making
use of Equation 5.2.

logL = −∑
t

λt + ∑
t

yt log λt − ∑
t

log(yt!) , (5.14)

where λi is the mean of the Poisson distribution at time bin t and
equals the predicted firing rate given the spike count yt. The last
term is constant and often omitted, sometimes expressed in a Gamma
function yt! = Γ(yt + 1) and can be conveniently calculated with
scipy.special.gammaln.

In order to obtain the free parameters βi (i ∈ 0, . . . N) of this model,
we want to maximize the likelihood of observing the data given
the model. As the logarithm is monotically increasing, we can also
maximize the log-likelihood by setting its first derivative to zero

∂ logL(β⃗ | X)

∂β⃗
= 0 . (5.15)

A solution to this equation is guaranteed (see Paninski (2004b)) as
the negative log-likelihood is required to be a convex function and
can be minimized via methods such as gradient descent. Optimization
yields a set of optimal βi = β̂i.

This optimization problem can equivalently formulated as

β̂i = argmax
β

(logL) (5.16)
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with argmaxβ representing the choice of those β values that maxi-
mize the log-likelihood, or in other words the posterior distribution of
the data given the model.

5.2.2.2 Regularization

The naive gradient descent of the model is prone to over-fitting and
non-convergence (Farhoodi et al., 2021; Stevenson, 2018).

To remedy such situations different kinds of regularizations have
been investigated. The regularization imposes a further constraint on
the values of βi by modifying the optimization problem to

β̂i = argmax
β

(logL− penalty) . (5.17)

Elastic-net regularization (Jas et al., 2020; Zou et al., 2005) combines
two types of penalties known as Lasso (Tibshirani, 1996) and Ridge
regularizations (Hoerl et al., 1970)

penaltyelastic net = λreg

N

∑
i=0

(
α |βi|+ (1 − α) |βi|2

)
. (5.18)

where the regularization parameter λreg controls the effect of penal-
ization and needs to be estimated by proper cross-validation.

If α = 1 we recover pure Lasso regularization, which uses the
L1-norm From a Bayesian

point of view, the
L2-penalty is
analogous to the
choise of a Gaussian
prior over the
weights, while the
L1-penalty is
equivalent to a
zero-mean Laplace
prior.

penaltyL1 = λ
N

∑
i
|βi| , (5.19)

whereas if α = 0 the penalty corresponds to Ridge regularization

penaltyL2 = λ
N

∑
i
|βi|2 . (5.20)

While the Lasso regularization penalty forces some of the βi coeffi-
cients to zero leading to sparsity in the coefficients, Ridge regression
will lead to a shrinkage of coefficients and thereby avoid single coeffi-
cient to get exceedingly large (Bishop, 1992; Hastie et al., 2009).

5.2.2.3 Goodness-of-Fit

For linear models it is common to use the R2, also called coefficient of
determination, as a measure of the goodness-of-fit. It is defined as

R2 = 1 − ∑t (yt − ŷt)
2

∑t (yt − ȳ)2 , (5.21)
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where y is the empirical data, ȳ its mean and ŷ the model prediction
and the index t stands for a certain sample, as in our application, we
consider samples across time if not mentioned otherwise. Thus, it
relates the sum of squares of the residuals to the variance. If the fit is
perfect, the numerator is 0 and hence R2 = 1. However, if the sum of
squared residuals equals the variance then R2 = 0.

For nonlinear models, however, the classical coefficient of determi-
nation is not reliable. As an alternative several versions of a pseudo-R2,
henceforth denotes as R̃2, resembling the classical R2 have been pro-
posed. These definitions often measure the improvement of fit of the
actual model (henceforth called complete model) over the null model,
which is a model with just the constant intercept as regressor, or rel-
ative to the null and the saturated model, which set the lower and
upper bounds for the log-likelihood respectively.

saturated model A saturated model is a model with the same
amount of parameters as degrees-of-freedom and thus, one that would
yield a perfect fit. This is equivalent to one parameter per time point
and thus the correct spike count prediction would be achieved per time
point, in contrast to just the mean of most likely Poisson distribution.
Hence, λt → yt, which is inserted into Equation 5.14 yields

logLsaturated = ∑
t

yt (log yt − 1)− ∑
t

log(yt!) . (5.22)

pseudo-R2 We use the following pseudo-R2 (R̃2) definition (used
in pyglmnet and henceforth called as such, (Goodman et al., 2019) calls
it McFadden’s pseudo-R2 besides other definitions with this name)

R̃2
pyglmnet = 1 − logLsaturated − logL

logLsaturated − logLnull
, (5.23)

where logL is the log-likelihood of the model under investigation.
Note that the constant term in Equation 5.14 and Equation 5.22

drops out naturally.
If the full model fit is perfect, the numerator is 0 then R̃2

pyglmnet = 1,

if it is merely performing as good as the null model R̃2
pyglmnet = 0

(Kraus et al., 2015). All other values lie in between.
Alternative pseudo-R2 have been suggested. McFadden’s pseudo-R2

relates the complete model log-likelihood to the null model

R̃2
McFadden = 1 −

logLcomplete

logLnull
, (5.24)

and Cox & Snell’s pseudo-R2 similarly defined
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R̃2
Cox & Snell = 1− exp

(
(logLnull − logLcomplete) · (2/nobs)

)
, (5.25)

from which the latter is used by default in the python package
statsmodel.

5.2.2.4 Binning

For all GLMs in this thesis, a bin size of the continuous signals and the
spikes count of ∆t = 50 ms was chosen. The choice of binning was a
trade-off between temporal resolution and computational expense (i.e.
computational time). Smaller bin sizes have been inspected for models
with only few regressors and no qualitative difference was observed.

5.2.2.5 Directional tuning via simple GLM per time lag

The simplest approach to uncover the tuning of a single unit activity
(SUA) to hand movement direction using a GLM is to model the firing
rate as

λt = eβ0+β1 cos θt−τ+β2 sin θt−τ , (5.26)

where θt−τ is the instantaneous movement angle at time point t − τ

with τ being a fixed shift of the regressor relative to the neural activity.
This form of fit is related to the von Mises function, which has been

used in (Amirikian et al., 2000) as a more flexible choice of tuning
function compared to the classical cosine tuning (Georgopoulos et al.,
1982).

The standard, unimodal and symmetric von Mises function is given
by

d(θ) = b + k exp(κ cos(θ − µ)) , (5.27)

with a maximum at θ = µ (equalling the preferred direction (PD)),
with κ defining the shape of the function, b is the baseline firing rate,
k defines the tuning depth. The standard cosine tuning is recovered
with κ ≪ 1.

A re-parametrization2 reveals the analogy to the GLM fit

d(θ) = b + k exp(κ1 cos(θ) + κ2 sin(θ)) , (5.28)

where κ1 = κ cos(µ) and κ2 = κ sin(µ). Hence, one can recover κ =√
κ2

1 + κ2
2 and µ = tan−1

(
κ2
κ1

)
. After fitting a GLM with Equation 5.26

2 see http://kordinglab.com/spykes/tutorial.html

http://kordinglab.com/spykes/tutorial.html
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to a single neurons activity, we can use β1 and β2 instead of κ1 and κ2

to determine the PD.
Furthermore, in Equation 5.26 can be eβ0 can be factorized, revealing

that it is equivalent to k. The variable b is not included in the GLM.
Note that by scanning through the shift τ, a shift-dependent tuning

function can be extracted.

5.2.2.6 Directional tuning via GLM including multiple regressors and time
lags

Instead of restricting the GLM to just one or two regressors at one spe-
cific time lag, as explained in Section 5.2.2.5, we use a more complete
modeling approach to disentangle different behavioral influences. In
the following, we describe the structure of this GLM and the type of
regressors that were used.

The total number of regressors and thus, coefficients, to be succes-
fully fitted is limited by the amount of data samples. Diomedi et al.
(2020) and Vaccari et al. (2021) propose as a rule of thumb to have
approximately ten samples per β-coefficient. For a typical session
duration of Tsession ≈ 12 min and a bin size of ∆t = 50 ms there are
Nsamples = Tsession

∆t = 14400 samples. According to the rule of thumb,
we aim to build the largest model with less than ≈ 1440 regressors.

grouping of regressors into blocks In the following, we
refer to a block as a group of regressors. To describe the neural activity,
we include regressors from five different classes of external variables
(Vaccari et al., 2021): visual, eye position, saccade, hand position and
movement. For the purpose of this study, we do not include internal
variables (e.g. the spike history) due to computational limitations in
the number of regressors.

We group regressors belonging to one of these classes together, such
that the model can be written down as:

λt = exp

(
β0 +

Nvisual

∑
i=1

βvisual
i Xvisual

t,i + · · ·+
Nmovement

∑
i=1

βmovement
i Xmovement

t,i

)
.

(5.29)

regressors Here, we briefly describe the nature of the regressors
per regressor block. Each regressor is a 1D-vector in time; i.e. the
regressor Xi,t constitutes i-th row of the design matrix X with t being
the sample index running over time binned with the bin size ∆t =

50 ms.
Some regressors are chosen to be dummy variables (Vaccari et al.,

2021), derived variables that are set to 1 if some condition is true and 0
if false (e.g. if a visual stimulus falls into a certain region in the visual
field at a certain time).
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This is necessary, because the GLM can only fit monotonic relation-
ships between regressor and firing rate, but the response of a neuron
to a certain stimulus can be non-monotonic (for example a neuron
in V1 with a receptive field (RF) would have a Gaussian-like response
curve in 2D).

More explicitly, the regressors were chosen in the following way:

• visual

With the aim to capture neural responses to visual stimuli,
we introduce two sets of visual stimuli and these enter the
visual regressor block: The target position relative to the eye
position and the hand position relative to the eye given in
horizontal and vertical angle from the focal point of the eye.
The relevant extent of target position relative to the eye po-
sition was defined to be Xtarget/hand−to−eye

horizontal ∈ [−10, 10]◦ and
Xtarget/hand−to−eye

vertical ∈ [−10, 10]◦.

To capture the eventual non-monotonic nature of the response
of neurons, each of these 2D signals have been binned with a
bin width of ∆visual = 4 ◦ horizontally and vertically, yielding
each 5 bins per axis and thus each 25 bins in total. The pro-
cess of obtaining these visual dummy regressors is sketched in
Figure 5.1.

Figure 5.1: Sketch of the two types of visual regressors: Target and hand
position relative to eye position.

To account for different response latencies, time-shifted copies
of these regressors have been included. We included 7 time
shifts (−1, . . . , 5∆t). In total the visual regressor block contains
Nregressors

visual = 2 × 25 × 7 = 350 regressors.

• eye position

With the aim to capture eye position gain fields, the 2D eye
position which differs slightly across sessions has been binned
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with a bin width of ∆eye position = 4 ◦ horizontally and vertically.
The resulting regressors were time shifted by (−1, . . . , 2∆t).

For session y180116-land-001 the signal lived in the following
ranges: Xeye

horizontal ∈ [−17, 31]◦ and Xeye
vertical ∈ [−47, 22]◦. The

binning resulted in 84 dummy regressors. Including all time
shifts we obtained Nregressors

eye position = 84 = 252 regressors.

• saccade

We have observed saccade-related activity in some units and
want to capture it by introducing regressors that contain the tim-
ing of saccades in a direction-resolved manner. Saccades direc-
tions (∈ [0, 360]◦) were binned with a bin width of ∆saccade = 18 ◦.
Per direction bin, we created two dummy regressors, one for
saccade onset and one for saccade offset which contain a 1 at the
time bin of a corresponding saccade. Furthermore, the eye veloc-
ity was standardized (z-scored) and included as a regressor. The
41 regressors were time shifted 7 times (−1, . . . , 5∆t) yielding
Nregressors

saccade = 41 × 7 = 287 regressors.

• hand position

With the aim to capture hand position gain fields, the 2D hand
position which differs slightly across sessions has been binned
with a bin width of ∆hand position = 3 cm horizontally and verti-
cally. The resulting regressors were time shifted by (−1, . . . , 2)×
∆t.

For session y180116-land-001 the signal lived in the following
ranges: Xhand

horizontal ∈ [−16, 4]cm and Xhand
vertical ∈ [−15, 9]cm with

respect to the origin of the work area. The binning resulted
in 56 dummy regressors. Including all time shifts we obtained
Nregressors

hand position = 56 × 3 = 168 regressors.

• movement

We are primarily interested to uncover the neural tuning to hand
movement. To achieve this we parameterized movement by a
direction and velocity and added corresponding regressor.

We first smoothed the x and y coordinates of the hand posi-
tion sampled at 1 kHz with a Savitzky-Golay filter using the
window length wSG hand = 101 ms and the polynomial order
pSG hand = 3. From these smoothed signals, we calculated the
instantaneous hand movement angle between subsequent bins
t and t + 1 as θ = arctan2(yt+1 − yt, xt+1 − xt). From the result-
ing instantaneous hand movement angle sampled at 1 kHz, we
downsampled to the desired sampling period ∆t = 50 ms by
taking the circular mean within each bin.

From the resulting signal (∈ [0, 360]◦) we took the cosine and
sine yielding 2 regressors.
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To also capture eventual influence of the hand velocity, we added
the standardized hand velocity and, additionally, dummy vari-
ables of the velocity binned with ∆movement velocity = 2 cm/s,
yielding 1 + 14 regressors.

All movement regressors were time shifted (−6, . . . , 6)× ∆t re-
sulting in Nregressors

movement = (2 + 1 + 14)× 13 = 221 regressors.

In total, our GLM comprises Nregressors
total = 350 + 252 + 287 + 168 +

221 = 1278 regressors.

fitting procedure In a GLM with this amount of regressors
many regressors are negligible and we resort to regularization to cope
with this issue. As recommended in (Diomedi et al., 2020; Vaccari
et al., 2021) we employed Lasso regularization. For the regularized fit,
we thus used α = 1.

The value of λreg = 0.001 was heuristically determined by perform-
ing the following analysis on multiple example neurons: We scanned
through values of λreg and chose the value, where the cross-validated
deviance of the fit is minimal.

Per neuron, we first fit the Lasso regularized GLM. The effect of the
Lasso regularization is that many β-coefficient are set to zero. We then
re-fit the model with just those regressors for which the β-coefficients
were non-zero in the Lasso fit to obtain a goodness-of-fit measure that
is not biased by the Lasso penalization term in the log-likelihood

extraction of just the influence of the movement re-
gressors We fit this large GLM to be able to disentangle the influ-
ences of multiple behavior. To extract the directional tuning of neural
firing to the instantaneous hand movement direction, we want to inte-
grate out the impact of the regressor blocks visual, eye position, saccade,
hand position and thereby avoid possible confounds.

The linear sum of regressors in the exponential leads to a multi-
plicative effect of each regressor. This is in line with the idea of gain
modulation of eye or hand position (Paninski, 2004a). To integrate out
all regressors that do not belong to the movement regressor block, we
calculate

λmovement
t =

1
S

S

∑ exp

(
β0 +

Nmovement

∑
i=1

βiXmovement
t,i + (5.30)

+ . . . other regressors shuffled in time . . . ) . (5.31)

with S the number of different shuffles inspired by (Ledergerber
et al., 2021). The shuffling of the other regressors in time destroys the
temporal relation between regressor and caused firing rate and thereby
also destroys the potential of these regressors to be confounded as
response to the movement.
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Figure 5.2: Illustration of the influence of a time shifting of the regressor
variable on the goodness-of-fit in a GLM.

5.2.2.7 Time Shift between Neural Activity and Regressors

It is unlikely that there is an instantaneous relationship (e.g. τ =

0 ms) between neural activity and a certain regressor variable (e.g.
instantaneous hand movement direction). To illustrate this consider
the following two scenarios as depicted in Figure 5.2:

1. A neuron in V1 with a well-defined RF is triggered by a visual
stimulus, and, as a response, increases its firing rate after a
certain latency (typically around 50 ms in V1 (Schmolesky et al.,
1998)). Consider a regressor for a 2D pixel at the location of
that neuron’s receptive field (RF) location: This regressor equals
one if there is a stimulus at that location and zero otherwise. To
achieve a maximal correlation between the neural response and
the regressor variable, one would ideally shift the regressor by
the amount of the latency.

2. A neuron in M1 indirectly (via an interneuron and a motoneuron)
triggers a certain muscle activity that eventually leads to a move-
ment of the limb in a certain direction. A regressor describing
the instantaneous movement direction would need to be shifted
by the latency between neural firing and the resulting movement
direction.

In the first case, the neural activity lags the external stimulus, while
in the second case neural activity leads the externally observed behav-
ior.
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5.2.2.8 Relative impact of regressor block

In the previous section Section 5.2.2.6, we explained the structure
of the GLM including all regressors grouped into blocks, henceforth
called the complete model.

We can evaluate impact of one particular regressor block on the
goodness-of-fit by leaving out this regressor block from the GLM fit,
then called nested model, and comparing it to the complete model
(Diomedi et al., 2020; Vaccari et al., 2021).

We evaluate the drop in log-likelihood if one regressor block is left
out (nested model) with respect to the complete model and the null model.
The quantity that measures this is the w-value (Diomedi et al., 2020;
Vaccari et al., 2021):

R̃2
relative =

R̃2
nested

R̃2
complete

(5.32)

=
logLnested − logLnull

logLcomplete − logLnull
(5.33)

w = 1 − R2
relativepseudo , (5.34)

where logLnested, exemplary, stands for the log-likelihood of the
nested model.

If the nested model performs as good the complete model and thus
leads to the same log-likelihood, the relativepseudo − R2 = 1 and in
turn w = 0.

On the other hand, if the nested model performs similar as the
null model and the difference in their likelihoods is ϵ, the ratio
relativepseudo − R2 = ϵ

logLcomplete−logLnull
≳ 0 and in turn w = 1. In

this situation, the left-out regressors are responsible for the success in
the complete model.

In summary, the larger the w-value, the larger its influence on the
goodness-of-fit.

5.2.2.9 Test for Bimodality

The Rayleigh r statistic from Batschelet (1981) was modified to deter-
mine the bimodality of the distribution of preferred directions (Scott
et al., 2001a). The original r statistics measures the skewness of the
distribution of angles ϕi’s ∈ [0, 360]◦ with

r =
1

N2

(∑
i

cos(ϕi)

)2

+

(
∑

i
sin(ϕi)

)2
 . (5.35)

If all angles ϕ point into the same direction (e.g. consider 90◦ →
cos(90) = 1) this measure results in r = 1 and consequently drops for
more uniform distributions.
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Similarly, it is possible to test for bimodality with precisely 180 ◦ in
between the modes by doubling the angles:

rbimodal =
1

N2

(∑
i

cos(2ϕi)

)2

+

(
∑

i
sin(2ϕi)

)2
 (5.36)

Given a distribution of PDs with sample size N, a p-value can be
determined via bootstrapping. We use an approximation of such
a bootstrap procedure supplied by pycircstat, the python port of
(Berens, 2009). We ensured that the p-values coincide with a bootstrap
distribution that was obtained by calculating the rbimodal for 106 distri-
butions with each N i.i.d. drawn samples from a uniform distribution.
Significant bimodality was defined by a p-value < 0.05.

5.2.3 Signal triggered distribution

In some circumstances, the assumed causality is such that an external
event/signal evokes a neuronal response. In these cases, the signal
triggered distribution of firing p(r̃i(t)|a < S(θ, t) < b, τ), with r̃i(t)
being the estimate of the instantaneous firing rate of the neuron, can
be looked at. It is the distribution of firing rates observed when the
signal is in a certain interval.

In the first step, the instantaneous firing rate estimate of spike train
si(t) of neuron i is obtained by a suitable convolution with a kernel
k(s) as r̃i(t) =

∫
si(t − s)k(s)ds.

In a second step, the signal S(θ, t) is binned. For all times tbin
for which the signal is in the range a < S(θ, t) < b the estimated
instantaneous firing rate values are stored. In this way, we get a
distribution of firing rates observed when the signal is that range
p(r̃i(t)|a < S(θ, t) < b, τ).

From this distribution, the mean p(r̃i(t)|a < S(θ, t) < b, τ) > can
be evaluated. Repeating this for intervals covering the whole signal
range and for several time-shifts (lags) τ of the instantaneous firing
rate with respect to the signal, results in a lag-dependent mapping of
the mean firing rate given a certain signal.

Note, that here the instantaneous firing rate is shifted with respect
to the signal, while in the GLM the signals are shifted with respect to
the spike count vector.

5.2.4 Software

All analyses were conducted using Python. The electrophysiological
data was represented via neo (Garcia et al., 2014). Basic spiketrain
statistics as the waveform signal-to-noise ratio (SNR) (see Section A.1)
or the mean firing rates were calculated using elephant (Denker et
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al., 2018a). Automatic spike sorting, as explained in Section A.1 was
performed using SpikeInterface (Buccino et al., 2020). snakemake

(Köster et al., 2012) was employed to chain seperate analysis steps
together into a modular analysis workflow. The GLM was fitted using
statsmodels. However, the pseudo-R2 was inspired from glmnet (Jas
et al., 2020).

5.3 outline

In the results, we start by presenting a glimpse into the experimental
data. In particular, we illustrate the behavioral complexity by showing
an exemplary trial with all behavioral traces. After reasoning, that
the behavioral data, with focus on the movements, is rich enough to
extract an eventual tuning of single neuron activity to hand movement
direction, we continue by determining the tuning of one exemplary
neuron with classical methods and the GLM approach.

5.4 results

We analyzed neural activity from 4 sessions from monkey Enya and
from 12 sessions from monkey Jazz (see Table 5.1). For the results
presented in this chapter, we use single unit activity obtained accord-
ing to the procedure detailed in Section 4.6 and ensuring the quality
metric listed in Table A.3. A summary of the used neuron numbers
per monkey and recording site is given in Table 4.3.

5.4.1 Visually guided reaching task probes large set of behaviors

The experimental tasks (see Section 3.4) were designed to probe natu-
ral behavior during a visually guided hand movement that requires a
close and recurrent interplay between perception and action. To illus-
trate the interplay between different behavioral modalities, we show
the recorded behavioral data for one exemplary successful trial of the
landing task in Figure 5.3. Note that in the following, the discussion of
results is simplified by focussing on the landing task, if not mentioned
explicitly otherwise.

After the monkey is presented with a new target, it performs a
saccade towards it (typically with a delay of ∼ 200 ms) and initiates the
hand movement. The temporal order of saccade and hand movement
is variable (see bottom two panel rows) and seems to depend on
the direction (data not shown here). The eye position signal in the
top panel shows that the eye rarely hits the target position directly,
but rather jumps into its vicinity and then stays there with multiple
micro-saccades until the next saccade.

The hand movement can be segmented into movement segments
(Section 3.2.1), for which maximal velocities are reached roughly at the
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session name subject ntrials nsuccess
trials nfail

trials nLS T d̄trial σ(dtrial)

y180116-land-001 Enya 190 121 69 8 700 3.9 0.4

y180221-land-002 Enya 178 120 58 12 656.8 3.8 0.4

y180306-land-001 Enya 176 120 56 12 657.5 3.8 0.4

y180306-draw-002 Enya 134 120 14 ✗ 543 3.4 0.7

j210204-land-001 Jazz 190 120 70 12 590 3.2 0.4

j210208-land-001 Jazz 268 120 148 12 733.5 3.3 0.4

j210212-land-001 Jazz 238 120 118 12 649.5 2.9 0.3

j210223-draw-002 Jazz 87 80 7 ✗ 320 2.7 0.3

j210301-draw-001 Jazz 122 120 2 ✗ 556 3.9 0.5

j210601-land-001 Jazz 317 45 272 8 559.1 3.5 0.4

j210608-land-001 Jazz 382 110 272 8 854 3.5 0.3

j210729-draw-001 Jazz 124 120 4 ✗ 441 2.8 0.5

j210901-draw-001 Jazz 148 120 28 ✗ 483 2.9 0.6

j210913-land-001 Jazz 327 120 207 12 760.4 3.2 0.4

j211007-land-001 Jazz 307 76 231 8 780 4.7 0.5

j211103-land-002 Jazz 181 80 101 8 838 7.2 0.4

Table 5.1: Information on the sessions that were used in the analysis. nLS
denotes the number of different landing sequences that were used.
T: total session duration, (d̄trial, σ(dtrial)) : mean and standard
deviation across successful trial durations, respectively. The values
in the last three columns are given in seconds.
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Figure 5.3: (Continued caption.) The presented landing sequence in this ex-
ample trial is depicted on the top left. This trial was performed
successfully. The previous three trial were unsuccessful. The top
panel shows the 2D eye position and hand position in degrees
relative to straight forward eye position. Targets are marked by
crosses and colored as in the depiction of the landing sequence
on the left. The logical radius plotted around the target center
defines the area within which the monkey is required to land.
The eye position (small colored dots) is colored according to pro-
gressing time within the trial. The hand trajectory (solid line)
is shaded in gray according to the hand velocity. Relevant task
events are marked on the hand trajectory with colored markers
(colors match the labels below, triangle: target onset, lightly col-
ored triangle: target reached, diamond: maximal hand movement
velocity, star: saccade onset). Thin lines connect these markers to
the eye position at the event’s time. The bottom panel shows the
behavioral data across time. The first two rows show the x and
y components of the hand, eye and target. Relevant task events
are marked by colored vertical lines, corresponding labels can
be found above. The third row shows the distances hand-to-eye,
target-to-eye and hand-to-target across time. Saccade onsets are
marked by lilac vertical lines, which are solid for the first sac-
cade onset after a target onset and dashed otherwise. The bottom
row shows the hand velocity and acceleration across time. Hand
movement onsets are marked by brown vertical lines, which are
solid for the first hand movement onset after target onset and
dashed otherwise, corresponding labels can be found below. The
diamonds denote the time points of maximal velocity in the de-
tected movement segment. Their color corresponds to the colorbar
encoding time in the top panel.

halfway point when moving from one target to another. During this
landing task, the hand is required to stay within the logical radius of
the targets for a certain amount of time. While the hand movement is
visibly slower during this landing period, the hand does not stand still.
In some occasions, e.g. for the top right target landing in the presented
example trial, the monkey seems to use this landing period to change
the movement direction even before the next target is showing up.
Note that the hand movement is constrained by the mechanics of the
KINARM, which likely hinders very brisk changes in hand movement.

5.4.2 Visually guided reaching task allows for hand movement direction
tuning analysis

Classically, directional tuning is evaluated in well-constrained tasks in
which center-out movements are used and only the data during the
task performance periods are analyzed (e.g. 8 center-out directions
are used in Georgopoulos et al. (1982)). To enable comparison to such
previous studies, the first part of each landing task trial consists of a
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classic center-out reach Figure 5.4A. Depending on our selection of the
positions of subsequent targets in the landing sequences, movements
in certain directions were performed more than in other directions
(Figure 5.6 and Figure 5.7). The full twelve landing sequences, with
three sub-trajectories each, sample a wide range of hand movement
directions (see Figure 5.4C). Hand movement trajectories exhibit vari-
ability across the same trial type as can be seen in Figure 5.4B.

Similarly, multiple trials in the drawing task require the monkey to
perform all hand movement directions (see Figure 5.4D).

Figure 5.4: Hand movement examples. A Hand position trajectories on the
horizontal work area during the center-out part of the landing
task. Trajectories are colored according to the mean movement
direction, colors coded as shown in the color wheel in the next
panel. B shows the hand position of ten repetitions of one landing
sequence, while panels C show the hand position during ten suc-
cessive trials; the color encodes the instantaneous hand movement
direction. D shows the hand position of ten repetitions of one
drawing session. Note the larger logical radius of the targets in
the drawing task.

choice of analysis time range The two types of tasks, as illus-
trated above, only require the monkey to adhere to timing constraints
(e.g. maximal reach time, minimal landing time), and thus, allow the
monkey to perform movements with variability in the trajectories and
their velocities. In consequence, the timing of events is different across
repetitions of the trials of the same landing sequence, rendering classi-
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cal alignment analyses (e.g. via peri-stimulus time histograms (PSTHs))
difficult. In the following, we will use a GLM approach to circumvent
the need for alignments.

Such an approach, furthermore, alleviates us from the need to use
only the successfully executed parts of the experiment. In line with
tendencies in the field to move towards the use of neural recordings
during naturalistic behavior, we decided to use the whole recording
sessions at hand: That is, including unsuccessful trials, reward and
inter-trial periods. Figure 5.5 illustrates the proportions of each of these
different periods in the analyzed sessions. To interpret this figure see
also Table 5.1. It is noteworthy, that monkey Jazz, tends to execute
movements faster than Enya, at the expense of more unsuccessful
trials.

One benefit of using the whole stretch of the continuous behavioral
and neural recordings is the large amounts of samples: Consider-
ing only periods of movements between targets during successful
trials would amount to around one third of the total duration of the
recordings, which corresponds to substantially fewer samples.

Figure 5.5: Overview over the durations of recording session, pure task ex-
ecution and several epochs shown in a boxplot with overlayed
single session values (circles) for the two experimnental subjects
Enya and Jazz.

On the contrary, one could argue that the behavior during unsuc-
cessful trials, as well as reward and inter-trial periods, is not controlled.
Yet, in the case of the experiments in the V4A-experiments, the behavior
was not strictly controlled during the task either.

Luckily, the behavioral recordings of hand position, eye position
and the timing of the occurrence of targets in the work area yield a
rich set of variables that can help interpret potential “uncontrolled”
movements and timings of the recordings.
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Hence, unsuccessful periods in the experiment were not thrown
away, because the movements performed were largely valid and made
up only a little fraction of the whole experimental session. Subsequent
analyses, thus, contain data from uncontrolled periods during the ex-
periment such as unsuccessful trials or eventual inter-trial periods. For
future analyses it might be worth considering that different contexts
(successful vs. unsuccessful) can alter the neural representation of a
given movement.

biased distributions of hand movement directions With
the aim to extract the neural tuning to the hand movement direction,
and with the argument of the previous paragraph in mind, we looked
at the distribution of instantaneous movement angles samples (binned
at ∆t = 50 ms) during the center-out part of the landing task and the
whole session (Figure 5.6A for Enya and Figure 5.7A for Jazz). In both
subjects, the distribution of angles for the center-out part, is clearly
biased towards the directions defined by the work area and target
locations (cf. Figure 5.4A). Considering the complete trials and the
required movements imposed by the task, certain movement directions
in the 2D work-area are overrepresented due to the location of the
targets (see Figure 5.6 and Figure 5.7).

Similarly, the distribution of angles across the complete sessions is
biased: However, this bias is not dictated by the required movements
that are demanded by the task, but seems to be aligned to a certain
axis. The count of binned instantaneous movement angles depends
on the velocity of movements. To resolve this dependency, panels B
in both figures show the 2D heatmap of the distribution of angle and
velocity of movements. It can be seen that the 95th-percentile of the
normalized velocity distribution per direction is reached for smaller
velocities in some directions. This means that movement velocities for
certain movement directions (slightly differing for the two subjects)
are lower and thus lead to more samples in the distribution in A.

The non-uniform distributions of both angles and velocities bring
classical techniques (e.g. reverse correlation) to calculate the tuning
curve for single unit activity to their limit and would lead to a bias
(Paninski et al., 2004), that can be avoided by using a GLM approach
(Pillow, 2005).

5.4.3 Distribution of PDs for hand movement is bimodal in M1/PMd

After having presented some characteristics of the movement behavior
of the two subjects in the recorded data, we will now related the neural
activity to it. We illustrate the extraction of a PD at the hand of an
exemplary neuron from M1/PMd and then present the results obtained
from the population of neurons.
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Figure 5.6: Hand movement directions distributions for session by Enya. A
shows the normalized, circular distribution of bins (signal binned
into 50 ms bins) that show a particular instantaneous hand move-
ment direction; grey for the center-out period and black for the
whole session. B Probability density of observing an absolute
velocity in a certain direction P(θ, |v|) in polar coordinates with
the radius encoding the velocity in units of cm/s. The thin black
contour marks the 95th-percentile of the normalized velocity dis-
tribution per direction P

(
|v|
∣∣θ = θ̂

)
.

Figure 5.7: Hand movement directions distributions for session by Jazz. Same
as in Figure 5.6.
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5.4.3.1 Example of single unit activity in M1/PMd

Single unit activity in M1/PMd is known to be active during hand
movement and to be modulated by the direction of movement (Geor-
gopoulos et al., 1982). We observe such a modulation of the activity
in raster plots (example shown in Figure 5.8) that visualize the spik-
ing of a single unit across many trials triggered on a certain event
(here target_02_on). The neuron illustrated in this example has an
elevated firing rate for upward movements (e.g. LS 3/4 and LS 7/8

between target_02_on and target_02_reached) and even ceases to fire
for movements to the lower right (e.g. LS 5/6 between target_02_on
and target_02_reached). This directional tuning seems not to be very
sensitive with regards to the starting point of a given movement (see
e.g. LS 2 between target_04_on and target_04_reached).

5.4.3.2 The classical way of extracting directional tuning

While it is very illustrative to look at raster plots as in Figure 5.8, it
is also useful to summarize the spiking activity in (smoothed) peri-
stimulus time histograms (PSTHs). These can be estimated on a single-
trial basis, but also averaged across repetitions of the same behavior
(e.g. center-out hand movements in an identical direction). Figure 5.9A
shows such an average and illustrates the variability across repetitions
by showing the interquartile range. The center-out alignment is limited
to 20 repetitions and thus reveals a substantial “trial-to-trial” variability.
A comparison of the movement-related activity to a baseline period
defined in the window from −100 ms to 100 ms, in which supposedly
no movement is occurring, reveals an enhanced firing rate for upward
movements and a suppression for downward movements (consistent
with the observation in the raster plot shown previously).

To enhance the amount of data used to evaluate the tuning, we
next segmented the hand movement behavior into a discrete set of
movements with a bell-shaped velocity curve and a mean movement
direction (see Section 3.2.1) and triggered the PSTH at the maximal
velocity events of these segments. In the example shown in Figure 5.9B,
the enhanced firing (relative to the mean firing rate) in the putative PD

(∼ 100 ◦) precedes the maximal velocity event, while the suppression
of firing rather is maximal simultaneous to the maximal movement
velocity. This highlights the dynamic nature and temporal dependence
of the tuning of neural activity to hand movement.

As discussed in Section 2.3.2, neural tuning to hand movement
likely also depends on velocity. In our experiment, the movement
velocities are not of equal magnitude in the different direction as has
been shown in Figure 5.6 and Figure 5.7. The picture in Figure 5.9,
hence, might be biased.
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Figure 5.8: (Continued caption.) Raster plot illustrating the spiketrains of
exemplary unit M1/PMd in session y180306-land-001 for all suc-
cessful trials. Details on the unit are printed on the top left. The
spiketrain is triggered on the event target_02_on and shown for
the period from −200 ms to 3000 ms around that event. Each row
shows the spiketrain belonging to one trial (trial number printed
on the y-axis) and rows are grouped into the twelve different
landing sequences. The trials within one landing sequence are
sorted by increasing latencies of the event hand onset after target
2. Further event marker are explained in the legend above the
plot. Per landing sequence, the average firing rate across trials ±
standard deviation are plotted with black and faint grey dotted
lines, respectively (grey shade for better visibility). First, single
trial firing rates were calculated by convolution with a Gaussian
kernel with σ = 15 ms and then averaged.

To deal with the non-uniformity of the behavioral data, we chose to
use GLM approach to extract the tuning of single neurons to the hand
movement direction.

5.4.3.3 Extracting directional tuning via a simple GLM

Therefore we fit a single GLM model as regressed in Section 5.2.2.5.
The spike count was binned in 50 ms and described by a linear sum of
cosine and sine of the instantaneous movement angle via an exponen-
tial link function. As described via Figure 5.9B, the relation between
firing and, in this case, external action has a temporal dependence. To
account for this, we repeat the GLM fit with time-shifted regressors
(see Section 5.2.2.5 and Section 5.2.2.7).

Figure 5.10 illustrates the result obtained from multiple GLMs fits
with a range of time shifts τ ∈ [−1, 1[ s. Each “column” in Figure 5.10B
stems from one independent fit and shows the von Mises tuning curve
calculated from the fit as explained in Section 5.2.2.5. The overall
pattern resembles Figure 5.9B, but while in the previous figure the
neural activity was aligned to a behavioral event, here we “align”
the behavioral data to the neural activity. For our example unit, this
alignment is best for a time-shift of τOTL = −200 ms, also called the
optimal time lag (OTL) (Mulliken et al., 2008; Paninski et al., 2004), as
can be read off the goodness-of-fit measure in Figure 5.10A.

Note that the range of predicted firing rates in Figure 5.10B is sub-
stantially lower than what is observed in the classical PSTH alignment
analysis (Figure 5.9). This is likely due to the fact, that we are consider-
ing data from the whole recording sessions, which might include times
at which the hand is basically still, but slowly drifting into a certain
direction and hence might “dilute” the extracted tuning strength.
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Figure 5.9: Peri-stimulus time histograms (PSTHs) triggered on center-out tar-
get onset (A) and maximal movement velocity event (B) of unit
M1/PMd 10.1 sorted by Alexa on session y180306-land-001. PSTHs

were obtained by convolution of spiketrains with Gaussian kernel
with σ = 25 ms per event and then averaging across repetitions.
Details A: The shaded regions span from the first to the third
quartile of the data distribution across repetitions. The baseline
rate in A was obtained in the window from −100 ms to 100 ms.
The time windows on which the PSTHs were calculated extended
from −500 ms to −1000 ms around the peripheral target onset.
Yet, the displayed time ranges are shorter to avoid edge effects due
to the convolution (trimming). Details B: PSTHs were calculated
between −800 ms and −800 ms around the maximal movement
velocity event. Only movement segments with a movement dura-
tion exceeding 100 ms and a maximal movement velocity larger
than 7 cm/s were considered yielding 532 movement distributed
across all directions. The colorbar is diverging (non-linearly) at
the overall mean firing rate of the example neuron, with every-
thing below and above being displayed in red green, respectively.
. A
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Figure 5.10: Directional tuning curve across time shifts of exemplary unit
10.1 from M1/PMd sorted by Alexa on session y180306-land-001.
A Dependence of goodness-of-fit measure pseudo-R2 (Equa-
tion 5.23) on the time shift of the instantaneous hand movement
with respect to the neural activity.B Predicted firing rate depen-
dence on the movement. Firing rate is encoded in color according
to the colorbar. The tuning curve for a particular time shift τ
is obtained by modeling the spike count vector y(t) via a single
GLM Section 5.2.2.5, with the instantaneous movement angle re-
gressor being shifted by τ. Blue vertical line marks the OTL. The
two black vertical lines demark the time range that is focused
on in Figure 5.11.
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5.4.3.4 Dynamic view on directional tuning

Typically, units are characterized by just one single, static PD, ne-
glecting the, sometimes strong, temporal dependence of tuning. In
hommage to this view, we define the optimal time lag (OTL) as the
time shift that maximizes the goodness-of-fit. We then read off a single
PD read at the OTL from the corresponding effective von Mises fit
(compare Section 5.2.2.5). The example unit shown in Figure 5.10 has
a PD at the OTL of µOTL = 95.8 ◦.

It is well established that the tuning of motor neurons to hand move-
ment direction depends on the lead or lag with respect to the neural
activity (Churchland et al., 2007; Hatsopoulos et al., 2007a; Mazzetti
et al., 2022; Paninski et al., 2004; Suway et al., 2018). Nevertheless, the
notion of having one single PD per neuron still prevails in literature.

To account for the temporal dependence, we will determine a PD

per time shift (µτ) and weight it by a normalized modulation depth.
The peak of the normalized modulation depth in general coincides
with the peak in goodness-of-fit.

We define the time shift dependent modulation depth as

k(τ) = max
θ

λ(τ, θ)− min
θ

λ(τ, θ) (5.37)

with maxθ λ(τ, θ) being the maximal firing rate at time shift τ across
all directions θ. We normalize by the maximal modulation depth
k̂ = maxτ k(τ), which in general coincides with modulation depth at
OTL, and get the normalized modulation depth k̃(τ) = k(τ)/k̂.

A unit can then be characterized using a distribution of (weighted)
PDs accumulated across plausible time shifts (in the range of τ ∈
[−300, 300[ms) as in Figure 5.11C,

Figure 5.11 illustrates that the PD at the OTL is a good representative
for this example neuron: the largest entry to the histogram is still
the PD as obtained via OTL. However, the advantage of the presented
measure is, that it captures sudden switches in the PD of a unit.

5.4.3.5 Directional tuning via a simple GLM summarized across units

Having illustrated the way extracting the directional tuning of a single
neuron that will be employed, we can proceed and summarize the
distribution of these tuning across neurons. Figure 5.12 C shows the
mean (weighted) PD distribution across all neurons pooled across
all sessions, separately for Enya and Jazz. Panel A and B show the
distribution of weighted PDs across neurons per time shift. Taking the
marginal of these heatmaps over time yields the distribution in C.

To test these distributions for bimodality the Rayleigh r test for
uniformity has been modified (see Section 5.2.2.9) and applied onto
these distributions. We consider a bimodality to be significant if the
p-value is smaller than 0.05.
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Figure 5.11: Directional tuning curve in plausible range of time shifts of
exemplary motor unit M1/PMd 10.1 sorted by Alexa on session
y180306-land-001. Data shown in B is same as within the vertical
black, dashed lines in Figure 5.10. Red dots mark the PD for
each time shift. A shows the modulation depth normalized
by the maximal modulation strength observed across all time
shifts (at the OTL). C is a histogram of the (weighted) PDs across
time leads/lags, here “single” shows the unweighted histogram,
while for “single weighted” each histogram entry is weighted
by its corresponding normalized modulation depth.

The distributions for both monkeys are significantly bimodal (p-
values reported in the figure) with the main axes of the bimodality
being θEnya = 111.7 and θJazz = 94.7. We hereby reproduce the bi-
modality of hand movement direction PDs in setups where hand
movement is constraint to the horizontal plane that has been observed
in M1/PMd previously by Scott et al. (2001b) and Suminski et al. (2015)
and is theoretically predicted by Lillicrap et al. (2013) and Verduzco-
Flores et al. (2022).

Furthermore, we resolve this distribution temporally in panels A
and B, by plotting the kernel density estimate of the distribution of PDs

across neurons per time lead/lag. These illustrate that the bimodality
is stable across leads/lags in τ ∈ [−300, 300[ms.

While for Enya, the PDs very clearly cluster around the two direc-
tions of the bimodality, for Jazz the evidence is less clear. It remains to
be show, whether this is an effect of the smaller sample size.

5.4.4 Distribution of PDs for hand movement direction exhibits significant
bimodality in visual and parietal areas

To answer the question of whether a similar bimodality is also reflected
in the unit activities upstream of the dorsal visual pathway, we now
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Figure 5.12: Summary of (time-resolved) distribution of PDs - M1/PMd. A
and B show the time-resolved distribution of PDs for Enya and
Jazz, respectively. Ro obtain a kernel density estimate (KDE),
the distribution at each time shift was smoothed with kernel
width σKDE = 25◦. The polar distributions in panel C show the
histogram of PDs across all units in M1 unweighted (dashed)
and weighted by normalized modulation strength (solid) for
Enya (green) and Jazz (brown). The main axis of skew of the
distribution and p-value of the Rayleigh r test for bimodality are
reported in the legend.
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go beyond the analysis of units from M1/PMd and apply the same
methodology to unit recorded from the visual and parietal areas.

To increase the number of analyzed units, we used two automatic
spike sorters (Mountainsort4 and Tridesclous) to complement the
manually sorted sessions. Details are described in Section 4.6. In the
main text, we only present results based on units from Mountainsort4.
The data for Trisdesclous is not shown. We observe no qualitative
differences in the result and thus consider the neuroscientific finding
as robust against spike sorters.

Similarly, to the situation in M1, Figure 5.13 show that distributions
for the PDs are significantly bimodal for V1/V2, DP and 7a in Enya. For
Jazz a significant bimodality could only observed in DP.

The lead/lag dependent KDE of PDs in Enya 7a reveals a prominent
stripes centered at ∼ 100 ◦ and less prominent at ∼ 300 ◦. In contrast
to M1, however, the PDs distribution at ∼ 100 ◦ dominates for strong
negative time shifts and then seems to progressively switch to ∼ 300 ◦

for positive time shifts. Similar trends are observed in the other areas.
While for Enya, the lagged PDs at ∼ 100 ◦ dominate, in Jazz the lead-

ing PDs at ∼ 300 ◦ are stronger. The marginal distributions, integrated
across time shifts, reflect these two stripes.

The similarity of time shift dependent KDE of PDs among M1/PMd,
the parietal areas and even the visual areas, was not expected. The
prevailing hypothesis for the origin of the bimodality M1/PMd is that
for hand movements constrained to the horizontal plane particular
groups of muscle are maximally contracted only in two directions (the
two directions of the bimodality) (cf. Verduzco-Flores et al. (2022) and
Section 5.6) and that this is reflected in the neural activity. While has
been shown that this effect is observable in motor (Scott et al., 2001b)
and premotor areas (Suminski et al., 2015), it would be surprising if
muscle activity affects parietal and visual areas. To ensure the validity
of our results, we hence need to be careful and exclude potential
confounds as discussed below.

5.4.5 The directional tuning might be biased due to confounding variables,
especially in visual and parietal areas

The GLM analyses shown in the previous section are solely based
on the instantaneous hand movement direction as a regressor. This
in turn, effectively leads to fitting the optimal β-coefficients over all
occurrences of a certain movement angle and thus an average across
all possible circumstances. Behaviors other than hand movement but
occurring correlated in time with the could thus give rise to spurious
hand movement tunings, especially if the neural response to other
behaviors is also tuned.

In the following, we present examples of neurons that exhibit re-
sponses to other behavioral variables and argue that these might bias
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Figure 5.13: (Continued caption.) Summary of (time-resolved) distribution of
PDs - visual and parietal areas. The three rows of plots show the
results of areas V1/V2, DP and 7a, respectively. For an explanation
of the figure elements refer to Figure 5.12.

the directional tuning analysis. Then we deal with these confounds
by using a more complex variant of a GLM (see Section 5.2.2.6), briefly
analyze the GLM fit outcome and present corrected distributions of
PDs.

5.4.5.1 Examples of neural responses that might lead to confounds

V2 unit with clear receptive field (RF) A preliminary re-
ceptive field mapping of online sorted single units in the visuo-parietal
areas revealed that the receptive fields are located on the lower right
of the fovea in V1 and V2 (data not shown) and thereby confirmed the
RF location expected by retinotopic maps (see Figure 2.2).

This was confirmed by looking at the reverse correlation of both the
hand and target positions relative to the eye, which is basically a signal
triggered distribution of the instantaneous firing rate Section 5.2.3.
We here average the means of firing rate distributions obtained for a
range of time lags of the firing rate shifted with respect to the signal
(e.g. hand position relative to the eye position) from 20 ms to 120 ms to
isolate the neuronal response to the visual stimulus being at a certain
position.

Figure 5.14: Reverse correlation analysis of an example unit from V1/V2

exhibiting a RF. A shows the average triggered rate distribution
with the hand position relative to the eye position as signal and
B the target position relative to the eye position.

The example neuron shown in Figure 5.14 has its RF centered at
roughly 5◦ downward and 2◦ to the right with respect to the gaze point.
We observe that many neurons in V2 have RFs at similar positions, but
the RF size might differ (data not shown here).
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Given the position of the RF, we expected responses to occur pre-
dominantly in two different situation in the landing task (see also
Figure 5.15):

Figure 5.15: Example: V1/V2 unit with RF - Sketch of relation between RF and
saccade-related activity. A and B illustrate two situations in the
landing task that lead to a stimulation of the RF.

1. the target appears directly in the RF

• consider the eye focuses the center target

• the lower right target appears and triggers the RF

• the monkey does a saccade towards the target (direction
∼ 300◦)

• the monkey moves the hand towards the target (direction
∼ 300◦)

2. the hand moves through the RF

• consider the eye focuses the center target

• the upper left target appears

• the monkey does a saccade towards the target (direction
∼ 100◦)

• the monkey moves the hand towards the target (direction
∼ 100◦) and triggers the RF

Evidence for this can be found on in the direction-resolved saccade
triggered PSTHs as shown in Figure 5.16. The first situation manifest
as increased in activity for ∼ 300◦ after the saccade, while the second
shows as activity around ∼ 100◦ prior to the saccade.

Critically, these activations give rise to hand movement directional
tuning as a by-product. The origin of this artifactual hand movement
directional tuning, however, is the visual stimulus. As visual stimuli
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Figure 5.16: Example: V1/V2 unit with RF - Saccade triggered PSTHs. The
spiketrains are aligned to the saccade onsets. Only saccades with
a saccade distance exceeding 2 cm were chosen, yielding 1405
saccades and saccades were binned by their direction on the
y-axis. Single trial firing rates were calculated by convolution
with a Gaussian kernel with σ = 15 ms and then averaged.

and movement occur in the task in a correlated fashion, a naive
extraction of hand movement PD leads to a false conclusion.

By explicitly including regressors that would capture this visual
response in the GLM, we can correct this confound. In Section A.3.3.1,
we convince ourselves that this actually works quite decently.

influence of saccade activity on hand movement direc-
tional tuning Similarly, we found strong responses (or sup-
pressed firing) due to saccades in several unit recorded from area DP.
Figure 5.17 shows raster diagrams of three exemplary units.

These saccade responses seem to appear for saccades in every di-
rection. However, as can be seen in panels A and B the response is
stronger for some directions. Saccade direction and hand movement
direction are strongly correlated, as in the task typically both eye and
hand move towards the target, and hence we want to avoid spurious
movement tuning due to saccades.

In Section A.3.3.1, we demonstrate that the GLM captures the effect.
By explicitly removing the saccade-related influence, it turns out,
that the remaining contribution of the movement-related components
becomes stronger (see Figure A.10).

eye position and hand position gain fields We reviewed
in Section 2.4 that neurons in 7a were shown to exhibit gain modula-
tion due to the eye and hand position. A signal triggered distribution
averaged across multiple time lags in Figure 5.18) shows increased ac-
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Figure 5.17: Example: Three DP units with saccade response. The spiketrains
are aligned to the saccade onsets. Only saccades with a saccade
distance exceeding 2 cm were chosen, yielding 1405 saccades
and saccades were sorted by their direction on the y-axis.

tivity of that neurons for a certain eye position. Refer to Section A.3.3.3
to see that the complete GLM manages to reflect the activity pattern
rather well.

Figure 5.18: Reverse correlation analysis of an example unit from 7a unit with
strong eye position gain modulation. A Eye position and B hand
position gain.

5.4.5.2 GLM reveals tendencies in neural response patterns

In the previous section, we presented a few example neurons with
a characteristic neural response. Furthermore, we argued that a GLM

with well-modeled regressors is able to capture these neural responses.
Having access to such model fits, we can further analyze the impact

of different behavioral variables on every single neuron. To achieve
this, as described in Section 5.2.2.8, we first fit the complete model,
followed by models in which we leave out a particular regressor block
(nested model), and then compare the goodness-of-fit of the nested to
the complete model. The measure that we are interested in is the w-
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value, which measures the impact of a regressor block on the neuron’s
activity Equation 5.34). The set of w-values for each nested model
can be seen as a neuron fingerprint, which shows the selectivity to the
behavioral modalities (idea by Diomedi et al. (2020) and Vaccari et al.
(2021)).

For the example neurons that we presented before, we obtain
the fingerprints shown in Figure 5.19. The V2 unit with a clear RF

shows a strong impact of the visual regressors. For the DP unit
(DP_93.1_mountainsort4) the largest increase in goodness-of-fit for
the unit with saccade response as achieved by adding the saccade
regressor block.

Figure 5.19: Neural fingerprints of example units. In addition to the fin-
gerprints, the goodness-of-fit as defined by Equation 5.23, the
recording session, the mean firing rate and the number of re-
maining regressors after Lasso regularization are reported.

overall goodness-of-fit of the complete GLM Figure 5.20

illustrates that the level of goodness-of-fit observed for the example
neurons in Figure 5.19 is achieved for the majority of neurons. Across
sessions, experimental subjects, sorters and areas, we accumulated
2053 neurons, out of which 1373 survived the rejection due to our
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quality metrics (see Section A.1.4). These numbers contains cases of
the same unit being isolated by multiple sorters. Nevertheless, the
complex GLM was fitted to all unit irrespective of whether it was later
on excluded.Comparing the

outcome of two
disparate spike

sorting procedures is
difficult due to the

lack of ground truth.
Having our single

neuron fingerprints
enables us to identify
matching units that
were isolated by two

different sorters.

Besides the quality metrics, we use a threshold in the goodness-
of-fit set at R̃2 = 0.05 to exclude units from further analysis, for
which the GLM performs poorly. Goodman et al. (2019) state that a
pseudo-R2 value of R̃2 = 0.05 roughly corresponds to a regression on
the trial-averaged PSTH with R2 = 0.08. Requiring at least R̃2 = 0.05
was recommended in (Goodman et al., 2019; Vaccari et al., 2021) and
proved to be sensible threshold judging by the visual comparison of
model prediction and real data akin to Figure A.9.

Figure 5.20: Goodness-of-fit and w-values across all analyzed neurons. A
Distribution of pseudo-R2 as a measure of goodness-of-fit in a
histogram with logged x-scale. Contributions of the different
recording areas are encoded in the stacked histogram. Unit fits
with goodness-of-fit < 0.05 (red, shaded region) are excluded
from analysis. B Sorted w-values.

In Figure 5.20B we see the sorted w-values from which one can
easily read off how many neuron have a certain w-value or larger. The
eye position and hand position regressor blocks seem to have a weaker
explanatory power than the other three. Largest w-values are observed
for the movement regressor block.

distribution of w-values per area In Figure 5.21, we show
the distributions of w-values per regressor block. Similarly, in Fig-
ure 5.22 we depict the distributions of w-values per recording area.

To avoid any double count of units from the same session, we here
include only M1/PMd units sorted by Alexa (from Enya sessions) and
Fred (from Jazz sessions) and visual-parietal unit sorted by Mountain-
sort4 (compare Table 4.3).
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Figure 5.21: (Continued caption.) Distribution of w-values per regressor
block. Within one regressor block, we report the distributions
of the units from the different areas. The box plots summarize
the all units from both monkeys. The violin plots shows the
distributions per monkey (Enya: green, Jazz: brown) with the
values of each single neuron being marked with a small circle.
A two-sided Mann-Whitney-Wilcoxon test was performed on all
pairs of distributions (as represented by the box plots) between
areas and only significant parings were annotated. P-value anno-
tation legend: *: 1.00e − 02 < p <= 5.00e − 02, **: 1.00e − 03 <
p <= 1.00e − 02, ∗ ∗ ∗ : 1.00e − 04 < p <= 1.00e − 03, ****:
p <= 1.00e − 04.

We observe a clear increase in w-values for the movement regressor
block along the dorsal visual stream. Conversely, we see decreasing
w-values for the visual regressor block. As far as we know, such a
progression of the importance of movement variables along the dorsal
visual stream and a decrease of visual variables has not been reported
in literature yet.

We tested for significant difference between the distribution with
a two-sided Mann-Whitney-Wilcoxon test. The information in the
plot can be read as follows: The distribution of the visual regressor
block w-values V1/V2 is significantly different from DP, 7a and M1/PMd.
However, the distributions of the visual regressor block w-values do
not significantly differ between DP, 7a. As this is not the main result of
the present analysis, we will leave more in depth interpretations for
future research at this point.

Noteworthy, there are some V1/V2 neurons which exhibit strong
w-values for the movement regressor block (opposing the argument
made in Talluri et al. (2022) and in line with findings in mice (Musall
et al., 2019; Stringer et al., 2019b)).

The average fingerprints per area (Figure 5.22) reveals that:

• there is no clear dominant regressor block in DP and 7a revealing
mixed selectivity

• in DP, the saccade regressor block shows slighlty higher values
compared to in the other areas

• in DP the mean w-value for eye-position is strongest

• 7a shows a few neurons with strong impact of the eye position
regressor block (likely reflecting eye position gain fields)

• 7a shows a few neurons with strong impact of the movement
regressor block

• there is an impact of the visual regressor block on M1/PMd
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Figure 5.22: Distribution of w-values per area.

After having decided to only include neurons which have a goodness-
of-fit larger then R̃2 = 0.05 and having demonstrated the effectiveness
of the GLM approach, we can finally make use of the models to calcu-
late the directional tuning and explicitely remove confounding effects.
We follow the procedure detailed in Paragraph 5.2.2.6.

5.4.6 Bimodality in visual and parietal areas prevails after correction for
confounding effects

Per unit, we follow the procedure detailed in Paragraph 5.2.2.6 to aver-
age out the effect of any regressor except for the movement regressor
block. The aim of this is to avoid potentially confounding variable to
cause spurious activity that would misleadingly influence the nature
of the instantanteous hand movement directional tuning of single
units.

Figure 5.24 presents the results of this rather intricate procedure
pooled across all neurons in the visual and parietal areas. The results
after exclusion of confounds for M1/PMd is shown in Figure 5.23.

We observe that the main tendencies were already visible via the
simple GLM extraction of PDs as shown in Figure 5.12 and Figure 5.13.

For M1/PMd the correction lead to slightly shifted main axes of
the bimodality (θEnya = 113.0 and θJazz = 100.1.) and marginally
decrease p-values. Only weak changes in the result were expected,
as the movement regressor block by far has the greatest impact on
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Figure 5.23: Summary of (time-resolved) distribution of PDs via complete GLM

- M1/PMd. A and B show the time-resolved distribution of PDs for
Enya and Jazz, respectively. Ro obtain a KDE, the distribution at
each time shift was smoothed with kernel width σKDE = 25◦. The
polar distributions in panel C show the histogram of PDs across
all units in M1 from single GLM (dashed, as before) and weighted
by normalized modulation strength (solid) for Enya (green) and
Jazz (brown). The main axis of skew of the distribution and
p-value of the Rayleigh r test for bimodality are reported in the
legend.
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Figure 5.24: (Continued caption.) Summary of time-resolved distribution
of PDs via complete GLM - visual and parietal areas. For an
explanation of the figure elements refer to Figure 5.23.

units from the motor areas (see Figure 5.21). Hence, we confirm the
predicted (Lillicrap et al., 2013; Scott et al., 2001b; Suminski et al., 2015;
Verduzco-Flores et al., 2022) bimodality of the distribution of PDs for
the hand movement direction in our monkeys, setup, and tasks.

Following the discussion upstream the dorsal visual pathway, in 7a,
we still have the same picture as before: The distribution is significantly
bimodal in the neuron population recorded from Enya, but not for
Jazz.

Strikingly, the main axis of bimodality in Enya (θEnya, 7a = 99.4)
roughly points into the same direction as predicted in M1/PMd. The
two pronounced bands of the time-resolved distribution as visible in
M1/PMd, now are distinctly visible in Enya. Although not significant
in Jazz, there is a tendency for two bands, as well. However, this might
be due to the visualization which ideally should lie on a cylindrical
plot instead of suggesting a discontinuity between 0◦ and 360◦.

Further upstream, DP, exhibits significant bimodalities in both mon-
keys which are also reflected in two pronounced bands of the time-
resolved distribution. While the simple GLM result showed a stronger
band around 100◦, the corrected result is visually peakier around 300◦.

Finally, in V1-V2, both distributions are significantly bimodal. The
main axis of skew for Jazz, however, shifted towards θEnya, V1-V2

=

245.8 − 180◦ = 65.8◦.

5.5 summary

The study presented in this chapter aimed to answer the following
research question: Is the bimodality of the distribution of PDs that has
been observed in M1 and PMd/PMv also present in the parietal and
visual cortex of macaque monkeys that perform a visually guided
reaching task with hand movement being constrained to the horizontal
plane?

We investigated datasets from the V4A experiment, in which the
experimenters recorded neural activity along the dorsal visual stream
and motor cortex and various behavioral signals (e.g. hand position,
eye position) from two monkeys that performed visually guided reach-
ing task.

We started our analysis by reasoning, that the V4A datasets are
suitable for the analysis of our question. In particular, we showed
exemplary behavioral data with a focus on the hand movement and
illustrated the presence of directional tuning in the neural activity of
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an exemplary M1/PMd unit by means of a classical trigger-alignment
of the PSTH.

To avoid biases in the extraction of the tuning curve due to an ob-
serve anisotropy of the movement velocities for different directions, we
first resorted to fitting an encoding model, namely a GLM (explained
in Section 5.2.2). In its simple form this GLM allows to extract a von
Mises tuning curve for a specific temporal relationship (time-shift)
between neural activity and hand movement Section 5.2.2.5.

After having ensured, that the GLM fit yields results that are compat-
ible with the classical tuning analyses for the example unit, we extend
our analysis to all units from M1/PMd and look at the distribution of
PDs across units.

By doing so, we reproduce the bimodality of the distribution of PDs

that has been observed in M1 and PMd/PMv with V4A dataset. For each
monkey the main axis of bimodality is consistent with the predictions.

In a next step, we went one step further, and applied the same
analysis to the recording sites along the dorsal visual stream, namely
v1/V2, DP and 7a. We find that that distributions for the PDs are
significantly bimodal for V1/V2, DP and 7a in one monkey (Enya),
however for Jazz a significant bimodality could only observed in DP.

These observations were unexpected, because the bimodality in the
PD distribution is assumed to be dictated by the biomechanics of the
limb and in particular the required muscle activations during hand
movements in 2D. Based on this assumption, it is not trivial to see an
effect of this in visual and parietal areas.

Being aware of the fact, that in our tasks, the monkeys perceive
visual signals, make saccadic eye movements, and move their hand to
the displayed targets, simultaneously, we had to explicitly exclude any
confounding effects to further validate these surprising observations.
In Section 5.4.5 we therefore presented example neurons that exhibit a
RF, saccade-related activity or eye position gain field, respectively.

To achieve a removal of these confounds, we chose to fit a more
complex GLMs to the neural activity that could account for the impact
of various behavioral modalities (visual, eye position, saccade, hand
position and movement) on the activity.

We then reasoned, that the more complex GLMs indeed captures
the confounding influences. The GLMs gave us access to a measure
of the impact of various behavioral modalities on a single neuron’s
activity (set of w-values that we considered as a neuron fingerprint).
With these, we confirm the expectation of a progressive decrease in
the influence of visual variables along the dorsal visual pathway and,
conversely, an increase in the influence of hand movement variables.

Finally, the complex GLM allowed us to isolate the influence of the
hand movement direction on the neural activity, and thus supplied a
“corrected and unbiased” estimation of the PD of each single unit. Even
after applying this correction, we are confident to answer the initial
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research question: We do find significantly bimodal distributions of
PDs for hand movement for both monkeys in V1-V2, DP and for Enya
also in 7a.

5.6 discussion

5.6.1 Implications of the results

biomechanics as cause for bimodal distribution of PDs

Recently, the biomechanistic modeling of joints and muscles received
a lot of attention from the robotics and machine learning community.
The open-source, physical simulations software MuJoCo (Todorov et
al., 2012) is used to model the agent, that is trained via reinforcement
learning algorithm to generate a broad range of movements (Fischer
et al., 2021; Mukherjee et al., 2022; Schumacher et al., n.d.; Wang
et al., 2022a). In line with the view that embodiment is necessary to
achieve appropriate understanding of the interplay between sensory
and motor systems, this could serve as a platform to create biorelatistic
models driven by networks of spiking neural networks.

Modern studies (Codol et al., 2023; Verduzco-Flores et al., 2022)
train such biomechanics model with neural networks (of varying com-
plexity) to perform movement in the horizontal plane. The resulting
neural activations reflect the biomality as was shown experimentally
in Scott et al. (2001b) and later on modeled by Lillicrap et al. (2013).

The most precise model, to our knowledge, is presented in Verduzco-
Flores et al. (2022). Their model consists of a circuit based on senso-
rimotor area, motor cortex, the spinal cord and muscles that learns
2D center-out reaching with biological plausible learning rules. They
use this circuit as a feedback controller: In sensorimotor cortex some
unit encode the acutal position (using a proprioceptive signal from
the spinal cord), some the position of the target, in another layer of
the sensorimotor cortex then encode the error (hand-target distance),
which is then transmitted to motor cortex, where units are grouped in
dual pairs accounting for positive and negative errors. These motor
neurons in turn connect to the spinal cord which controls the muscles.

One of their results is, that their model reproduces the bimodality of
PDs and they make the link between motor units firing preference and
biomechanistic constraints even more clear: They are able to explain
the bimodality as a linear combination of “directions of maximum
(muscle) contraction”.

Closely related to such a picture is a study by Griffin et al. (2020)
who presented evidence, that neurons in M1 generate command signals
that generate “pre-movement suppression”, which in turn leads to
antagonist muscles of upcoming movements to turn off.

Naselaris et al. (2006), who find an enrichment of for forward and
backward PDs in 3D reaching hypothesize hyperacuity to be the cause.
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The hyperacuity hypothesis states that certain movements, like for-
ward and backward reachings, are performed more often in naturalis-
tic behavior and thus might be overrepresented in neural activity. The
accumulated evidence in favor of the hypothesis that the bimodality of
PDs arises due to the biomechanics constraint in 2D movement renders
this alternative hypotheses unconvincing (see also Kurtzer et al. (2007)
who commented on the hyperacuity theory).

The most surprising result to us, is that we found tuning of visual
neurons to the hand movement direction and that across neurons, the
distribution of PDs turned out to be bimodal (at least judging based
on the statistics). This raises the question of whether neurons in V1/V2

exhibits movement-related activity and if yes how strong it is.
A recent study by Musall et al. (2019) sparked interest in the com-

munity by showing that, in mice, uninstructed movements during
a cognitive task execution accounted for most of the measured neu-
ral variance, also in visual cortex. Recently, Talluri et al. (2022) and
Tremblay et al. (2022) investigated this hypothesis in primate data and
demonstrate the effect to be present, but much weaker. Our study sim-
ilarly suggests neural activity being related to movement. By chance
our analysis resembles the one in Talluri et al. (2022), with the differ-
ence that they use a linear encoding model, while our encoding model
is non-linear.

Our results further add evidence for an existence of such a movement-
related activity even in visual cortex of primates.

Less striking, yet unexpected are the bimodalities of PDs observed in
parietal cortex. PPC is known to exhibit movement-related acitivities.
However, our finding raises doubts on the current understanding of
the origin of the bimodality. While for M1 and also the premotor areas
PMd/PMv it seems reasonable that muscular activation influences the
neural activity (or vice versa) as mono- or disynaptic connections
down the spinal cord exist (Strick et al., 2021), such direct connections
from parietal cortex to spinal cord are less reported (notable exception
(Rathelot et al., 2017)) and thus such a direct influence is not expected.

5.6.2 Limitations of the current study

controlled vs . naturalistic task design Here, we chose
to include data from the whole recording sessions, accepting that
uncontrolled behavior during intertrial periods might happen. Still,
the data largely consists of period in which the monkeys perform the
task.

Our dataset thus lives in between two extremes: On the one hand,
traditionally, there are very controlled settings, which likely also con-
straint the neural repertoire which it gives rise to. On the other hand,
the trend goes to the recording of very naturalistic behavior in freely
moving animals (Frey et al., 2021; Musall et al., 2019; Urai et al., 2022),
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probing a larger variety of neural response. While our tasks move
away the very controlled settings, we are still far from completely
naturalistic movements.

In Aflalo et al. (2006), for example, they used a free moving paradigm
was and extracted directional tuning via a linear regression analysis.
They found that the directional tuning explained a vanishingly small
amount of the variance.

The advantage of a dataset like from the V4A is, that it is multi-
purpose and allows for data-driven analyses of various kinds, poten-
tially revolutionizing the field. However, while this dataset allowed for
the kind of analysis as presented here, I would argue that a more con-
trolled setup/task specific to the research question (akin to hypothesis-
driven research) could have simplified the analysis and would remove
doubts on the removal of confound variables.

GLMs - the swiss army knife of a neuroscientist One
challenge in the analysis of data that does not adhere to a strict trial
structure is that classical alignment analysis are difficult. It is demand-
ing to isolate the relevant events to trigger the neural activity. While
the powerful GLM deals with this issue “under the hood”, it starts
to become a black box. Therefore, after “knowing” about response
patterns from the GLM, we again resorted to visualizations based on
the old fashioned alignment analyses (e.g. Figure 5.9, Figure A.10) to
confirm and make sense of this black box. In Figure A.6 we took a
glimpse into this black box by visualizing the β-coefficients that sup-
posedly represent the RF of the example V1 unit. Yet, to confirm the
model fit in such a way for each single unit is tedious for large-scale
recordings with many single neurons.

include regressor , that capture task performance For
future analyses it might be worth considering that different contexts
(successful vs. unsuccessful) can alter the neural representation of a
given movement. It is well established that, in particular, parietal areas
modulate their acitivty with attention. The task performance could be
used as a proxy to capture such an effect. Ideally, we could record the
pupil size (as was done for some recording sessions) and include it as
regressor to describe such effects.

choice of movement regressors In its current form, in our
GLM directional tuning to hand movement is assumed to be unimodal
following a von Mises function. However, we performed preliminary
analysis using reverse correlation analyses and found tunings that
were best fit by a bimodal single unit tuning curve. A future study
should definitely incorporate regressors that allow for a bimodal
tuning curve to exist.
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influence of left out regressors The choice of regressor
variables in a large GLM is subject to a trade-off: The number of sam-
ples in a recording needs to be large enough to allow for a reasonable
fit, yet you want to include as many regressors as possible to capture
every possible explainable effect.

One large block of regressors, which could be added to our mod-
els, are the other neurons recorded simultaneously. This was done
by Stevenson et al. (2012) with success and enable the analysis of
functional connectivities. In Stevenson (2018) the same author demon-
strates that omitting regressor variables might introduce a bias (very
similar to our reasoning after the use of the simple GLM).

Interestingly, the models in Stevenson et al. (2012) use a time-
instantaneous GLM, which drastically reduces the number of regressors
and thus allows for the inclusion of parallel recorded spiketrains. In
contrast, our model takes into account time shifts, which leads to a
quick explosion of regressor variables.

The key point in our analysis is the presence of the bimodality of
PDs and it is noteworthy that Stevenson et al. (2012) states in their
paper that “However, the structure of the tuning curve (i.e. the PD,
frequency, or place) remained relatively unchanged”, while the tuning
modulation might change. Interestingly, this statement proofed to be
miraculously true also for neurons in visual and parietal areas.

pooling across sessions in chronic recordings might in-
troduce bias One major point of critique is that we pool neurons
across many sessions from chronically implanted Utah arrays: One
may doubt the independence of units isolated from the same channel,
but on two different recording days. To weaken this critique, we aimed
to choose session with substantial time in between recordings. Unfor-
tunately, this was not always the case which might have introduced
multiple counts of effectively the same neuron in the presented distri-
butions. If present, this bias would be stronger in Jazz, as we pooled
across more sessions to have a reasonable neuron count in total.

To strengthen the observations one could compare the neuron finger-
prints of units recorded from the same electrodes and try to exclude
matching units. To counteract an eventually reduced neuron count,
we would need to expand the analysis to more sessions, in turn.

5.6.3 Outlook

test the predictions made by biomechanistic modeling

As reviewed above, several ways of modeling neural control of biomech-
anistic arm models have shown the occurrence of the bimodality of PDs.
Common among the models is the prediction, that the main axis of
bimodality changes with the area within which the hand movements
are performed. Lillicrap et al. (2013) modelled a shift in the location
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of the targets and showed that the bimodality of PDs systematically
shifts its main axis.

This prediction could be tested in the V4A setup as well. We propose
to uncouple the actual hand movement from the visual feedback to
achieve this. If the visual feedback of the hand movement is still
located centered to the body, but the actual hand movement happens
displaced with respect to it (e.g. to the right), we would expect to see
the predicted shift of the main axis. If we see the shift of bimodality
also in visual and parietal areas, this would strengthen evidence that
the bimodality is a result of the movement and therefore validate the
finding of the present study.

neuron fingerprint as a mean to detect mixed selectiv-
ity The neuron fingerprints obtained by calculating the various
nested models can be interpreted as strong evidence fo the occurrence
of mixed selectivity (Rigotti et al., 2013) in all recorded area. This
has been advertised by the nicely written method paper Vaccari et al.
(2021) and used previously in (Diomedi et al., 2020) to uncover mixed
selectivity in medial parietal cortex area V6A. A similar approach
was taken by Ledergerber et al. (2021), who perform a forward model
selection procedure and thereby evaluate the gain of the addition of
regressor variable to assess mixed selectivity.

We observe for many neurons, in particular for neurons in the pari-
etal cortex, that there is no single regressor block with a dominating
w-value. The examples presented in Figure 5.19 rather are hand-picked
exceptions for the sake of presentability. Yet, the display in Figure 5.22

this mixed selectivity. Future studies could refine this type of analysis
and focus the investigation on the difference in representations across
areas.

the notion of a static PD Despite many unresolved contro-
versies about what neurons in the motor cortex represent, it is well
established since the first descriptions by (Georgopoulos et al., 1982)
that neurons in the arm area of M1 show a cosine-like tuning toward
the hand movement direction. The classical task to uncover this tuning
is the center-out task, where several targets lie on a circle surrounding
a central target where the hand rests at the beginning of each trial.
The monkey is then trained to reach a target if presented.

In a subsequent analysis, a neuron’s firing rate is then averaged
across all repetitions of a reach into a certain direction.

Such task and analysis designs have the drawbacks that they assume
the directional tuning to be stable (see Suway et al. (2018) for similar
arguments). In our study, we represented the tuning of a neuron by
the distribution of PDs per time-shift and weighted by the normalized
modulation depth. A future study could systematically evaluate how
good this proposed measure captures sudden changes in PDs and
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quantify how prevalent stable tunings are compared to switching
ones.

goodness-of-fit and explained variance Due to the fact
that our encoding model is non-linear, we could not use classical
measures for the goodness-of-fit. While closely related, it is difficult to
compare absolute values with e.g. Talluri et al. (2022). Future research
could define a measure that allows for the comparison of the goodness-
of-fit of linear and non-linear models in the context of single unit
spiking activity.
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This part of the thesis presents the mean-field description of neuronal
networks composed of leaky integrate-and-fire (LIF) neurons and an
investigation into the mechanism of ultra-high frequency oscillations
observed in a simulation of a microcircuit model.

The following chapter deals with the basics of how mean-field
theory can be use to describe simulations of neural networks and
presents a toolbox, which supplies numerical implementations for this
aim. Finally, we then use this knowledge in the central chapter of this
part to answer our second research question:

Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a microcircuit
model composed of LIF neurons a valid prediction of the model?
Should they be observable in experimental data, and can we mecha-
nistically understand them?
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6.1 simulation of network models

In the motivation for this research question (Section 1.2.3), we briefly
introduced the idea of simulating a spiking neural network.

The evolution from random networks (van Vreeswijk et al., 1996),
via simple “Brunel” networks (Amit et al., 1997b; Brunel, 2000) to
more complex networks involving structured connectivity and larger
amounts of neurons was steadily accompanied by theoretical analyses.

In the picture of the scientific loop Figure 1.1, simulations take
over the part of the experiment, and the observed activity is ideally
described by appropriate analytics. This strong interplay between
simulation and theory proofed to be very powerful and allowed for a

121
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deep understanding of the mechanism behind emerging properties
such as oscillations.

In this section, we will have a closer look at the type of simulations
that will be employed later. The following section then introduces the
analytics based on mean-field theory and linear response theory.

6.1.1 Cortical microcircuit model

Here we want to throw a closer look at the cortical microcircuit model
by Potjans et al. (2014a). The circuit network model is composed of
point neurons with biologically plausible parameters and biologically
constrained connectivity.

The model consists of eight populations of LIF neurons, correspond-
ing to the excitatory and inhibitory populations of four cortical layers:
2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I (see Figure 6.1A). It defines the
number of neurons in each population, the number of connections
between the populations, the single neuron properties, and the exter-
nal input. Simulations show that the model yields realistic firing rates
for the different populations as observed in particular in the healthy
resting-state of early sensory cortex (Potjans et al., 2014a, Table 6).

Neurons in the microcircuit model have exponentially shaped post-
synaptic currents. The single neurons are modelled as LIF with gov-
erning equations:

τm
dVki(t)

dt
= −Vki + Rm Iki(t) , (6.1)

τs
dIki(t)

dt
= −Ii(t)+ τs

N

∑
l=1

Ml

∑
j=1

wki,l j ∑
n

δ(t− tn
lj − dki,kl)+ τs

Mext

∑
j=1

wki,j ∑
n

δ(t− tn
j ) ,

(6.2)

with Vki denoting the (rescaled) membrane potential of neuron i
in population k, Rm the membrane resistance, τm the membrane time
constant and Iki(t) the time-dependent incoming synaptic current. τs is
the synaptic time constant, wki,jl the synaptic weight of the connection
between neuron j of population l to neuron i in population k, d
is the corresponding transmission delay, and ∑n δ(t − tn

j ) describes
theincoming spike train of neuron j. The index j in the first sum
runs over all Ml neurons in population l, N denotes the number of
populations. tn

lj is the time of the n-th spike of neuron j in population
l. When Vi(t) reaches the threshold potential Vthreshold, the membrane
potential is clamped to the reset potential Vreset for a refractory period
τref. The reaching of the threshold with subsequent depolarization
corresponds to one spiking event.
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The model has been recently used in a number of other works:
for example, to study network properties such as layer-dependent
attentional processing (Wagatsuma et al., 2011), connectivity structure
with respect to oscillations (Bos et al., 2016), and the effect of synaptic
weight resolution on activity statistics (Dasbach, Tetzlaff, Diesmann,
and Senk, 2021); to assess the performance of different simulator
technologies such as neuromorphic hardware (van Albada et al., 2018)
and GPUs (Golosio et al., 2021; Knight et al., 2018); to demonstrate
forward-model prediction of local-field potentials from spiking activity
(Hagen et al., 2016).

6.1.2 Multi area model

Furthermore, the microcircuit model served as a building block for
large-scale models (Schmidt et al., 2018b). The multi-area model pro-
posed by Schmidt et al. (2018a) is a computational model of the
primate visual system that attempts to explain how visual informa-
tion is processed and represented across different areas of the cortex.
The model is based on neurophysiological and anatomical data from
macaque monkeys and consists of a hierarchy of interconnected areas.

Multiple microcircuit models, which represent single areas, are con-
nected according to tracing data (Markov et al., 2014). The multi-area
model reproduced large-scale features observed in fMRI recordings
(Schmidt et al., 2018a).

One achievement by the Potjans-Diesmann model is, that the major-
ity of inputs to a single neuron originate in the model. By connecting
multiple network models together, the dependence on external input
could be further reduced.

In the next chapter, the primary visual cortex (V1) circuit from this
multi-area model will be used as an alternative instantiation of the
same model type. Notably, the experimental data used to infer the
neuron densities and connection probabilities is updated leading to
changes in activity, even if the V1 network is simulated in isolation. A
comparison of the neuron counts per population is given in Table 6.1.

Networks of interacting excitatory and inhibitory populations have
been shown to be amenable to analytical descriptions. While the simu-
lations solve the full non-linear system quantitatively, mean-field and
linear response theory supply us with a linear approximation of these
complex networks and thus allow a rather qualitative understanding
of the underlying mechanisms.

Next, we introduce this theoretical description of such network
models.
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original isolated V1

23E 20683 47386

23I 5834 13366

4E 21915 70387

4I 5479 17597

5E 4850 20740

5I 1065 4554

6E 14395 19839

6I 2948 4063

total 77169 197935

Table 6.1: Comparison of neuron numbers Potjans vs. isolated V1.

6.2 theoretical description of network models

Over the past few decades, the mean-field theory of neural networks
has significantly improved both our analytical and intuitive compre-
hension of their dynamics. We developed an extendable, user-friendly
open-source Python toolbox that gathers a number of mean-field ap-
proaches for the leaky integrate-and-fire neuron model in order to
increase the accessibility of mean-field based analytic tools. In its
present version, the Neuronal Network Mean-field Toolbox (NNMT)
enables the estimation of features of large neuronal networks, such as
firing rates, power spectra, and dynamical stability in mean-field and
linear response approximation, without the need for simulations.

In this section, we explain the fundamental parts of the mean-field
theory that are needed for the investigation of ultra-high frequency os-
cillations in the next chapter. For the presentation of these concepts, we
focus in particular on techniques for leaky integrate-and-fire neurons
and thereby reproduce previously published network model analyses
from Sanzeni et al. (2020), Bos et al. (2016) and Schuecker et al. (2015).

Whenever suitable, we will apply the presented theory making use
of the NNMT (Neuronal Network Meanfield Toolbox) (Layer et al.,
2022b) to compare the theoretical prediction to actual simulations.

6.2.1 Toolbox

We created the Python toolbox NNMT (Layer et al., 2021), short for
Neuronal Network Mean-field Toolbox, to make analytical tools for
neuronal network model analysis available to a larger part of the
neuroscientific community and to create a platform for collecting
well-tested and validated implementations of such tools. NNMT is
not a simulation tool; it is a set of numerically computed mean-field
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equations that directly connect the parameters of a microscopic net-
work model to the statistics of its dynamics. NNMT was created to
accommodate the wide range of mean-field theories, and the primary
aspects we are looking for are flexibility, extensibility, and ease of use.
It also includes a thorough test suite to check the correctness of the
implementations, as well as rich user documentation. NNMT’s current
version primarily includes tools for researching networks of leaky
integrate-and-fire neurons, as well as techniques for studying binary
neurons and neural field models. The toolkit is open source and freely
accessible on GitHub1.

6.2.2 Literature overview

Large numbers of recurrently linked neurons comprise biological
neural networks, with a single cortical neuron generally receiving
synaptic inputs from thousands of other neurons (Braitenberg et al.,
1998; DeFelipe et al., 2002). Although the inputs of different neurons
are integrated in a complicated manner, such a huge number of weak
synaptic inputs points to the fact that the average features of neuronal
populations do not depend heavily on the contributions of individual
neurons (Amit et al., 1991). On the basis of this discovery, it is feasible
to create analytically tractable models of population characteristics
in which the effects of individual neurons are averaged out and the
complex, recurrent input to individual neurons is replaced with a
self-consistent effective input(reviewed, e.g., in Gerstner et al., 2014).

In classical physics (e.g., Goldenfeld, 1992), this effective input is
termed a mean-field since it is the self-consistent mean of a field, which
is simply another word for the input the neuron is getting. The term
self-consistent refers to the fact that the population of neurons that
gets the effective input is the same population that contributes to
this effective input in a recurring manner: the population’s output
controls its input and vice versa. Therefore, the stationary statistics
of the effective input may be discovered in a self-consistent way: the
input to a neuron must be adjusted precisely such that the caused
output leads to the relevant input.

Mean-field theories have been established for a wide range of
synapse, neuron, and network models. They have been effectively
used to investigate average population firing rates (Amit et al., 1997b;
van Vreeswijk et al., 1998; van Vreeswijk et al., 1996), and the various
activity states a network of spiking neurons can exhibit, depending
on the network parameters (Amit et al., 1997a; Brunel, 2000; Ostojic,
2014), as well as the effects that different kinds of synapses have on
firing rates (Fourcaud et al., 2002; Lindner, 2004; Mattia et al., 2019;
Schuecker et al., 2015; Schwalger et al., 2015).

1 https://github.com/INM-6/nnmt

https://github.com/INM-6/nnmt
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They have been used to investigate how neuronal networks respond
to external inputs (Lindner et al., 2005b, 2001), and they explain why
neuronal networks can track external input on much faster time scales
than a single neuron could (van Vreeswijk et al., 1998; van Vreeswijk et
al., 1996). Mean-field theories allow studying correlations of neuronal
activity (Ginzburg et al., 1994; Lindner et al., 2005a; Sejnowski, 1976;
Trousdale et al., 2012) and were able to reveal why pairs of neurons
in random networks, despite receiving a high proportion of common
input, can show low output correlations (Helias et al., 2014; Hertz,
2010; Renart et al., 2010; Tetzlaff et al., 2012), which for example has
important implication for information processing. They describe pair-
wise correlations in network with spatial organization (Dahmen et
al., 2022; Rosenbaum et al., 2014, 2017) and can be generalized to
correlations of higher orders (Buice et al., 2013). Mean-field theories
were utilized to show that neuronal networks can exhibit chaotic
dynamics (Sompolinsky et al., 1988; van Vreeswijk et al., 1998; van
Vreeswijk et al., 1996), in which two slightly different initial states can
lead to totally different network responses, which has been linked
to the network’s memory capacity (Schuecker et al., 2018; Toyoizumi
et al., 2011). Most of the results mentioned above have been derived for
networks of either rate, binary, or spiking neurons of a linear integrate-
and-fire type. But various other models have been investigated with
similar tools as well; for example, just to mention a few, Hawkes
processes, non-linear integrate-and-fire neurons (Brunel et al., 2003a;
Fourcaud-Trocmé et al., 2003; Grabska-Barwinska et al., 2014; Montbrió
et al., 2015; Richardson, 2007, 2008), or Kuramoto-type models (Stiller
et al., 1998; van Meegen et al., 2018). Additionally, there is an ongoing
effort showing that many of the results derived for distinct models are
indeed equivalent and that those models can be mapped to each other
under certain circumstances (Grytskyy et al., 2013; Ostojic et al., 2011;
Senk et al., 2020).

6.2.3 Stationary quantities in balanced networks

Networks of excitatory and inhibitory neurons (EI networks) are
widely used in computational neuroscience (Gerstner et al., 2014), e.g.,
to show analytically that a balanced state featuring asynchronous,
irregular activity emerges dynamically in a broad region of the param-
eter space (Brunel, 2000; Hertz, 2010; Renart et al., 2010; van Vreeswijk
et al., 1998; van Vreeswijk et al., 1996). Remarkably, such balance states
emerge in inhibition dominated networks for a variety of neuron mod-
els if the indegree is large, K ≫ 1, and the weights scale as J ∝ 1/

√
K

(Ahmadian et al., 2021; Sanzeni et al., 2020).
Furthermore, in a balanced state, a network responds linearly to

external input in the limit K → ∞ (Ahmadian et al., 2021; Brunel, 2000;
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Sanzeni et al., 2020; van Vreeswijk et al., 1998; van Vreeswijk et al.,
1996).

The classical “Brunel” network, an EI network, as e.g. used in
Sanzeni et al. (2020), consists of two populations, E and I, of identical
LIF neurons with instantaneous (delta) synapses (Gerstner et al., 2014).
The subthreshold dynamics of the membrane potential Vi of neuron i
obeys

τmV̇i = −Vi + RIi , (6.3)

where τm denotes the membrane time constant, R the membrane
resistance, and Ii the input current. If the membrane potential exceeds
a threshold Vth, a spike is emitted and the membrane voltage is reset to
the reset potential V0 and clamped to this value during the refractory
time τr. After the refractory period, the dynamics continue according
to Equation 6.3. For instantaneous synapses, the input current is given
by

RIi(t) = τm ∑
j

Jij ∑
k

δ(t − tj,k − dij) , (6.4)

where Jij is the synaptic weight from presynaptic neuron j to post-
synaptic neuron i (with Jij = 0 if there is no synapse), the tj,k are the
spike times of neuron j, and dij is a synaptic delay (in this example
dij = d for all pairs of neurons). In total, there are NE and NI neurons
in the respective populations. Each neuron is connected to a fixed
number of randomly chosen presynaptic neurons (fixed in-degree);
additionally, all neurons receive external input from independent Pois-
son processes with rate νX. The synaptic weights and in-degrees of
recurrent and external connections are population-specific:

J =

(
JEE −JEI

JIE −JII

)
, Jext =

(
JEX

JIX

)
, K =

(
KEE KEI

KIE KII

)
, and Kext =

(
KEX

KIX

)
.

(6.5)

All weights are positive, implying an excitatory external input.
The core idea of mean-field theory is to approximate the input to

a neuron as Gaussian white noise ξ(t) with mean ⟨ξ(t)⟩ = µ and
noise intensity ⟨ξ(t)ξ(t′)⟩ = τmσ2δ(t − t′). This approximation is well-
suited for asynchronous, irregular network states (Amit et al., 1997b;
van Vreeswijk et al., 1998; van Vreeswijk et al., 1996). For a LIF neuron
driven by such Gaussian white noise, the firing rate is given by (Amit
et al., 1997b; Siegert, 1951; Tuckwell, 1988)

ϕ(µ, σ) =

(
τr + τm

√
π
∫ Ṽth(µ,σ)

Ṽ0(µ,σ)
es2

(1 + erf(s))ds

)−1

, (6.6)
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where the rescaled reset- and threshold-voltages are

Ṽ0(µ, σ) =
V0 − µ

σ
, Ṽth(µ, σ) =

Vth − µ

σ
. (6.7)

The first term in Equation 6.6 is the refractory period and the second
term is the mean first-passage time of the membrane voltage from
reset to threshold. The mean and the noise intensity of the input to
a neuron in a population a ∈ {E, I}, which control the mean first-
passage time through Equation 6.7, are determined by (Amit et al.,
1997b)

µa = τm(JaEKaEνE − JaIKaIνI + JaXKaXνX) , (6.8)

σ2
a = τm(J2

aEKaEνE + J2
aIKaIνI + J2

aXKaXνX) , (6.9)

respectively, where each term reflects the contribution of one popula-
tion,with the corresponding firing rates of the excitatory νE, inhibitory
νI, and external population νX. Note that we use the letters i, j, k, . . .
to index single neurons and a, b, c, . . . to index neuronal populations.
Both µa and σa depend on the firing rate of the neurons νa, which is
in turn given by Equation 6.6. Thus, one arrives at the self-consistency
problem

νa = ϕ(µa, σa) , (6.10)

which is coupled across the populations due to Equation 6.8 and
Equation 6.9.

6.2.3.1 Firing rates of microcircuit model

Here we show the mean-field prediction of the firing rates of cortical
microcircuit model by Potjans et al. (2014a) compares to simulations.

In contrast to the EI-network model that we looked at before, the
neurons in the microcircuit model have exponentially shaped post-
synaptic currents: Equation 6.4 is replaced by (Fourcaud et al., 2002)

τsR
dIi

dt
(t) = −RIi(t) + τm ∑

j
Jij ∑

k
δ(t − tj,k − dij) , (6.11)

with synaptic time constant τs. Note that Jij is a measure in volts
here. As discussed in Section 6.2.3, in mean-field theory the second
term, representing the neuronal input, is approximated by Gaussian
white noise. The additional synaptic filtering leads to the membrane
potential (Equation 6.3) receiving colored noise input. Fourcaud et
al. (2002) developed a method for calculating the firing rate for this
synapse type. They have shown that, if the synaptic time constant τs
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Figure 6.1: Cortical microcircuit model by Potjans et al. (2014a). (A) Network
diagram (only the strongest connections are shown as in Figure
1 of the original publication). Network diagram with nodes and
edges according to the graphical notation proposed by Senk
et al. (2021). (B) Simulation and mean-field estimate for average
population firing rates using the parameters from Bos et al. (2016).

is much smaller than the membrane time constant τm, the firing rate
for LIF neurons with exponential synapses can be calculated using
Equation 6.6 with shifted integration boundaries

Ṽcn,0(µ, σ) = Ṽ0(µ, σ) +
α

2

√
τs

τm
, Ṽcn,th(µ, σ) = Ṽth(µ, σ) +

α

2

√
τs

τm
,

(6.12)

with the rescaled reset- and threshold-voltages from Equation 6.7
and α =

√
2 |ζ(1/2)| ≈ 2.07, where ζ(x) denotes the Riemann zeta

function; the subscript cn stands for “colored noise”.

6.2.3.2 Microcircuit parameters

The microcircuit has been implemented as an NNMT model. We here
use the parameters of the circuit as published in Bos et al. (2016)
which is slightly differently parameterized than the original model
(see Table 6.2).
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Symbol Value
Potjans et al.
(2014a)

Value
Bos et al. (2016)

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated
Gaussian

Delay distribution

de ± δde 1.5 ± 0.75 ms 1.5 ± 1.5 ms Mean and standard
deviation of excitatory delay

di ± δdi 0.75 ± 0.375 ms 0.75 ± 0.75 ms Mean and standard
deviation of inhibitory delay

Table 6.2: Parameter adaptions used here are introduced by Bos et al. (2016)
compared to original microcircuit model. Kij denotes the in-degrees
from population j to population i. The delays in the simulated net-
works were drawn from a truncated Gaussian distribution with the
given mean and standard deviation. The mean-field approximation
of the microcircuit by Potjans et al. (2014a) assumes the delay to
be fixed at the mean value, which is specified in the toolbox by
setting the parameter delay_dist to none.

The simulated rates in Figure 6.1 have been obtained by a numerical
network simulation (for simulation details see Bos et al., 2016) in which
the neuron populations are connected according to the model’s orig-
inal connectivity rule: “random, fixed total number with multapses
(autapses prohibited)”, see Senk et al. (2021) as a reference for con-
nectivity concepts. The term multapses refers to multiple connections
between the same pair of neurons and autapses are self-connections;
with this connectivity rule multapses can occur in a network real-
ization but autapses are not allowed. For simplicity, the theoretical
predictions assume a connectivity with a fixed in-degree for each
neuron. Dasbach et al. (2021) show that simulated spike activity data
of networks with these two different connectivity rules are charac-
terized by differently shaped rate distributions (“reference” in their
Figures 3d and 4d). In addition, the weights in the simulation are
normally distributed while the theory replaces each distribution by
its mean; this corresponds to the case Nbins = 1 in Dasbach et al.
(2021). Nevertheless, our mean-field theoretical estimate of the average
population firing rates is in good agreement with the simulated rates
(Figure 6.1B).
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6.2.4 Dynamical quantities

6.2.4.1 Transfer function

One of the most important dynamical properties of a neuronal net-
work is how it reacts to external input. A systematic way to study the
network response is to apply an oscillatory external input current lead-
ing to a periodically modulated mean input µ(t) = µ + δµ Re

(
eiωt)

(cf. Equation 6.8), with fixed frequency ω, phase, and amplitude δµ,
and observe the emerging frequency, phase, and amplitude of the
output. If the amplitude of the external input is small compared to
the stationary input, the network responds in a linear fashion: it only
modifies phase and amplitude, while the output frequency equals
the input frequency. This relationship is captured by the input-output
transfer function N (ω) (Brunel et al., 2001, 1999; Lindner et al., 2001),
which describes the frequency-dependent modulation of the output
firing rate of a neuron population

ν(t) = ν + Re
(

N (ω) δµ eiωt
)

.

Note that in this section we only study the linear response to a
modulation of the mean input, although in general, a modulation
of the noise intensity (Equation 6.9) can also be included (Lindner
et al., 2001; Schuecker et al., 2015). The transfer function N (ω) is a
complex function: Its absolute value describes the relative modulation
of the firing rate. Its phase, the angle relative to the real axis, describes
the phase shift that occurs between input and output. We denote the
transfer function for a network of LIF neurons with instantaneous
synapses in linear-response approximation as

N (ω) =

√
2ν

σ

1
1 + iωτm

Φ′
ω|

√
2Ṽth√
2Ṽ0

Φω|
√

2Ṽth√
2Ṽ0

, (6.13)

with the rescaled reset- and threshold-voltages Ṽ0 and Ṽth as defined

in Equation 6.7 and Φω(x) = e
x2
4 U

(
iωτm − 1

2 , x
)

using the parabolic
cylinder functions U

(
iωτm − 1

2 , x
)

as defined in (Abramowitz et al.,
1974, Section 19.3) and (Olver et al., 2021, Section 12.2). Φ′

ω denotes
the first derivative by x. A comparison of our notation and the transfer
function given in Schuecker et al. (2015, Eq. 29) can be found in the
Appendix, Paragraph 6.2.4.1.

For a neuronal network of LIF neurons with exponentially shaped
post-synaptic currents, introduced in Section 6.2.3.1, Schuecker et al.
(2014, 2015) show that an analytical approximation of the transfer
function can be obtained by a shift of integration boundaries, akin to
Equation 6.12:
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Ncn (ω) =

√
2ν

σ

1
1 + iωτm

Φ′
ω|

√
2Ṽcn,th√
2Ṽcn,0

Φω|
√

2Ṽcn,th√
2Ṽcn,0

. (6.14)

To take into account the effect of the synaptic dynamics, we include
an additional low-pass filter:

Ncn,s (ω) = Ncn (ω)
1

1 + iωτs
. (6.15)

If the synaptic time constant is much smaller than the membrane
time constant (τs ≪ τm), an equivalent expression for the transfer func-
tion is obtained by a Taylor expansion around the original boundaries
(cf. Schuecker et al. 2015, Eq. 30).

The toolbox implements both variants and offers choosing between
them by setting the argument method of nnmt.lif.exp.transfer_function
to either shift or taylor. Using this, we show the “shift version” of
the transfer function for different means and noise intensities of the in-
put current in Figure 6.2 and thereby reproduce Figure 4 in Schuecker
et al. (2015) with the NNMT toolbox. Note that the complex-valued
transfer function was split into its absolute value and phase in Fig-
ure 6.2. This illustration shows that the transfer function acts as a
low-pass filter that suppresses the amplitude of high frequency activ-
ity, introduces a phase lag, and can lead to resonance phenomena for
certain configurations of mean input current and noise intensity.

Note that the implemented analytical form of the transfer function
by Schuecker et al. (2015) is an approximation for low frequencies,
and deviations from a simulated ground truth are expected for higher
frequencies (ω/2π ? 100 Hz at the given parameters).

transfer function notations In Section 7.2.2.4, we introduce
the analytical form of the transfer function implemented in the toolbox.
Schuecker et al. (2015), derive a more general form of the transfer
function, which includes a modulation of the variance of the input.
Here we compare the notation used in Equation 6.13 to the notation
used in Schuecker et al. (2015, Eq. 29).

Schuecker et al. (2015) define the modulations of input mean and
variance as

µ(t) = µ + ϵµ eiωt , (6.16)

σ2(t) = σ2 + Hσ2 eiωt ,

and introduce the transfer function in terms of its influence on the
firing rate
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Figure 6.2: Colored-noise transfer function Ncn of LIF model in different
regimes. (A) Absolute value and (B) phase of the “shift” version
of the transfer function as a function of the log-scaled frequency.
Neuron parameters are set to Vth = 20 mV, V0 = 15 mv, τm =
20 ms, and τs = 0.5 ms. For given noise intensities of input current,
σ = 4 mV (solid line) and σ = 1.5 mV (dashed line), the mean
input µ is chosen such that firing rates ν = 10 Hz (black) and
ν = 30 Hz (gray) are obtained.

ν(t)/ν0 = 1 + n (ω) eiωt ,

where ν0 is the stationary firing rate. Here the transfer function
n (ω) includes contributions of both the modulation of the mean
nG(ω) ∝ ϵ and the modulation of the variance nH(ω) ∝ H. We write
the modulation of the mean as

µ(t) = µ + δµ eiωt ,

implying that δµ corresponds to ϵµ in Equation 6.16. As we only
consider the modulation of the mean, the firing rate can be rewritten
as

ν(t) = ν + N (ω) δµ eiωt ,

where we moved the stationary firing rate ν to the right hand side
and included it inthe definition of the transfer function N (ω).Additionally,
we swap the voltage boundaries in Equation 6.13, introducing a can-
celing sign change in both the numerator and the denominator. This
reformulation was chosen to align the presented formula with the
implementation in the toolbox.

6.2.4.2 Power Spectrum

Another frequently studied dynamical property is the power spectrum,
which describes how the power of a signal is distributed across its dif-
ferent frequency components, revealing oscillations of the population
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activity. The power is the Fourier transformed auto-correlation of the
population activities (c.f. Bos et al. (2016, Eq. 16-18)). Linear response
theory on top of a mean-field approximation , allows computing the
power, dependent on the network architecture, the stationary firing
rates, and the neurons’ transfer function (Bos et al., 2016). The corre-
sponding analytical expression for the power spectra of population
a at angular frequency ω is given by the diagonal elements of the
correlation matrix

Pa(ω) = Caa(ω) =

[(
1−M̃d(ω)

)−1
diag (ν ⊘ n)

(
1−M̃d(−ω)

)−T
]

aa
,

(6.17)

with ⊘ denoting the elementwise (Hadamard) division, the effective
connectivity matrix

M̃d(ω) = τmNcn,s(ω) · J ⊙ K ⊙ D(ω) (6.18)

where the dot denotes the scalar product, while ⊙ denotes the
elementwise (Hadamard) product, the mean population firing rates
ν, and the numbers of neurons in each population n. The effective
connectivity combines the static, anatomical connectivity J ⊙ K, rep-
resented by synaptic weight matrix J and in-degree matrix K, and
dynamical quantities, represented by the transfer functions Ncn,s,a (ω)
(Equation 6.15), and the contribution of the delays in Equation 6.11,
represented by their Fourier transformed distributions Dab(ω) (cf. Bos
et al. (2016, Eq. 14-15)).

The toolbox permits an easy calculation of the power spectra. For a
given network model, we determine the working point, which charac-
terizes the statistics of the model’s stationary dynamics. It is defined
by the population firing rates, the mean, and the standard deviation
of the input to a neuron of the respective population. This is neces-
sary for determining the transfer functions. The calculation of the
delay distribution matrix is then required for calculating the effec-
tive connectivity and to finally get an estimate of the power spectra.
Figure 6.3 reproduces Figure 1E in Bos et al. (2016) and shows the
spectra for each population of the adjusted version (see Table 6.2) of
the microcircuit model.

The numerical predictions obtained from the toolbox largely coin-
cide with simulated data taken from the original publication (Bos et al.,
2016) and reveal dominant oscillations of the population activities in
the low-γ range around 63 Hz. Furthermore, faster oscillations with
peak power around 300 Hz are predicted with higher magnitudes in
the inhibitory populations 4I, 5I, and 6I.

The deviation between predicted and simulated power spectra seen
at ∼ 130 Hz in population 2/3E could be a harmonic of the correctly
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Figure 6.3: Power spectra of the population spiking activity in the adapted
cortical microcircuit from Bos et al. (2016). The spiking activity of
each population in a 10 s simulation of the model is binned with
1 ms resolution and the power spectrum of the resulting histogram
is calculated by a fast Fourier transform (FFT; light gray curves).
In addition, the simulation is split into 500 ms windows, the
power spectrum calculated for each window and averaged across
windows (gray curves). Black curves correspond to analytical
prediction obtained with NNMT. The panels show the spectra for
the excitatory (top) and inhibitory (bottom) populations within
each layer of the microcircuit.

predicted, prominent 63 Hz peak; a non-linear effect not captured in
linear response theory. Furthermore, the systematic overestimation of
the power spectrum at large frequencies is explained by the limited
validity of the analytical approximation of the transfer function for
high frequencies.

6.2.4.3 Sensitivity Measure

The power spectra shown in the previous section exhibit prominent
peaks at certain frequencies, which indicate oscillatory activity. Nat-
urally, this begs the question: which mechanism causes these oscilla-
tions? Bos et al. (2016) expose the crucial role that the microcircuit’s
connectivity plays in shaping the power spectra of this network model.
They have developed a method called sensitivity measure to directly
relate the influence of the anatomical connections, especially the in-
degree matrix, on the power spectra.

The power spectrum of the a-th population Pa(ω) receives a contri-
bution from each eigenvalue λb of the effective connectivity matrix,
Pa(ω) ∝ 1/ (1 − λb(ω))2. Such a contribution consequently diverges
as the complex-valued λb approaches 1 + 0i in the complex plane,
which is referred to as the point of instability. This relation can be
derived by replacing the effective connectivity matrix M̃d(ω) in Equa-
tion 6.17 by its eigendecomposition. The sensitivity measure leverages
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Figure 6.4: Sensitivity measure at low-γ frequency and corresponding power
spectrum of microcircuit with adjusted connectivity. (A) Sensi-
tivity measure of one eigenmode of the effective connectivity
relevant for low-γ oscillations. The sensitivity measure for this
mode is evaluated at the frequency where the corresponding
eigenvalue is closest to the point of instability 1 + 0i in complex
plane. Zamp

b (ω) (left subpanel) visualizes the influence of a per-
turbation of a connection on the peak amplitude of the power
spectrum. Zfreq

b (ω) (right subpanel) shows the impact on the peak
frequency. Non-existent connections are masked white. (B) Mean-
field prediction of power spectrum of population 4I with original
connectivity parameters (solid line), 5% increase (dashed line)
and 10% increase (dotted line) in connections K4I→4I. The increase
in inhibitory input to population 4I was counteracted by and
increase of the excitatory external input Kext→4I to maintain the
working point.

this relationship and evaluates how a change in the in-degree matrix
affects the eigenvalues of the effective connectivity and thus indirectly
the power spectrum. Bos et al. (2016) introduce a small perturbation
αcd of the in-degree matrix, which allows writing the effective connec-
tivity matrix as M̂ab(ω) = (1 + αcdδcaδdb) M̃ab(ω), where we dropped
the delay subscript d. The sensitivity measure Zb,cd(ω) describes how
the b-th eigenvalue of the effective connectivity matrix varies when
the cd-th element of the in-degree matrix is changed

Zb,cd(ω) =
∂λb(ω)

∂αcd

∣∣∣∣
αcd=0

=
vb,c M̃cdub,d

vT
b · ub

, (6.19)

where ∂λb(ω)
∂αcd

is the partial derivative of the eigenvalue with respect
to a change in connectivity, vT

b and ub are the left and right eigenvectors
of M̃ corresponding to eigenvalue λb(ω).

The complex sensitivity measure can be understood in terms of two
components: Zamp

b is the projection of the matrix Zb onto the direction
in the complex plane defined by 1 − λb(ω); it describes how, when
the in-degree matrix is perturbed, the complex-valued λb(ω) moves
towards or away from the instability 1 + 0i, and consequently how
the amplitude of the power spectrum at frequency ω increases or
decreases. Zfreq

b is the projection onto the perpendicular direction and
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thus describes how the peak frequency of the power spectrum changes
with the perturbation of the in-degree matrix. For a visualization of
these projections, refer to Figure 5B in Bos et al. (2016).

According to the original publication (Bos et al., 2016), the peak
around 63 Hz has contributions from one eigenvalue of the effective
connectivity matrix. Figure 6.4 shows the projections of the sensitivity
measure at the frequency for which this eigenvalue is closest to the
instability, as illustrated in Figure 4 of Bos et al. (2016). The sensitivity
measure returns one value for each connection between populations in
the network model. For Zamp

b a negative value indicates that increasing
the in-degrees of a specific connection causes the amplitude of the
power spectrum at the evaluated frequency to drop. If the value is
positive, the amplitude is predicted to grow as the in-degrees increase.
Similarly, for positive Zfreq

b the frequency of the peak in the power
spectrum shifts towards higher values as in-degrees increase, and vice
versa. The main finding in this analysis is that the low-γ peak seems
to be affected by excitatory-inhibitory loops in layer 2/3 and layer 4.

If several eigenvalues of the effective connectivity matrix influence
the power spectra in the same frequency range, adjustments of the
connectivity are more involved. This is because a change in connec-
tivity would inevitably affect all eigenvalues simultaneously. Further
care has to be taken because the sensitivity measure is subject to the
same constraints as the current implementation of the transfer func-
tion, which is only valid for low frequencies and enters the sensitivity
measure directly.
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V S T R I P E S — U LT R A - H I G H - F R E Q U E N C Y
O S C I L L AT I O N S I N T H E M I C R O C I R C U I T M O D E L

In the previous chapter, we briefly looked at some details of biologi-
cally constrained spiking neural network models and reviewed a way
of analytically approximate static and dynamical quantities of such
simulations. We shall make use of the theoretical description in this
chapter, as we finally tackle the second research question that we
raised in Section 1.2.3:

Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a microcircuit
model composed of leaky integrate-and-fire (LIF) neurons a valid
prediction of the model? Should they be observable in experimental
data, and can we mechanistically understand them?
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7.1 introduction

Randomly connected spiking neural network models with balanced
excitation and inhibition exhibit sustained population-rate oscillations
that are attributed to two main mechanisms, the Pyramidal Interneu-
ron Network Gamma (PING) and the Interneuron Network Gamma
(ING) (Buzsáki et al., 2012). The PING mechanism describes cou-
pled excitatory and inhibitory populations generating oscillations at
γ-frequencies (≲ 70 Hz), whereas the ING gives rise to high-γ oscil-
lations (≫ 70 Hz) generated within an inhibitory population (Brunel
et al., 2003b; Traub et al., 1997).

139
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Simple model networks of leaky integrate-and-fire (LIF) neurons
with balanced excitation and inhibition successfully predict experi-
mentally observed asynchronous irregular firing of the neural activity
(Brunel, 2000; Brunel et al., 1999) and confirm first order statistics as
the firing rate as well as population-rate oscillations below < 100 Hz.
In contrast, sustained high-frequency oscillations (∼ 300 Hz) are a ro-
bust phenomenon in models (Brunel et al., 2003b), but rarely observed
in experiments of cortex.

Sustained high-frequency oscillations are also prevalent in an anatom-
ically more realistic multi-layered model of the cortical microcircuit
(Potjans et al., 2014a). This model respects the realistic densities of
neurons and synapses, so doubts about the up-scaling of observed
model effects are eliminated (van Albada et al., 2015).

The sustained high-frequency oscillations are not visible in individ-
ual spike trains, however, for sufficiently large neuron numbers N, are
visible in raster diagrams as vertical stripes and reflected as respective
peaks in the power spectrum of the population activity. While for a
low number of neurons N, the auto-correlations of the spike trains
(scaling with ∼ N) dominate the power spectrum, for a large number
of observed neurons the cross-correlations gain dominance (scaling
with ∼ N2).

A few questions naturally arise: Is the omnipresence of high-frequency
oscillations in our model of the cortical network an unavoidable conse-
quence of our model architecture? What are the mechanisms that give
rise to these oscillations? Are high-frequency oscillations expected to
be observed in nature?

In this manuscript, we investigate the discrepancy between model
prediction and, so far, missing experimental confirmation through
direct simulation and mean-field analysis of the model. Despite the
robustness of high-frequency oscillations to a broad range of param-
eter variations, a mean-field analysis uncovers that high-frequency
oscillations disappear if the effective coupling is not too strong. This
prediction is numerically confirmed in an anatomically better con-
strained model of the cortical microcircuit specific for V1.

The remainder of this chapter is organized as follows: Visibility of
ultra-high frequency oscillations in model data describes the obser-
vation of fast oscillations of the population activity in the microcircuit
model and discusses under which conditions such oscillations are
visible in experimental recordings of both spiking activity (Visibility
in spiking activity) and local field potential (Visibility in local field
potential). Subsequently, Mean-field theoretical description analyzes
a mean-field approximation of the microcircuit model and character-
izes the dynamics of the population activity by means of linear re-
sponse theory. This analytical description leads to a graphical intuition
(Intuition on behavior of eigenvalue trajectories) for the dependence
of oscillatory population activity on the effective connectivity matrix.
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In Influence of network structure, we show that an anatomically
more correct revision of the microcircuit model specific for macaque
V1 (Schmidt et al., 2018c) substantially reduces fast oscillatory activity
compared to the original circuit. The following sections probe the ro-
bustness of connectivity as the key promoter of fast oscillations. First,
Influence of the delay distribution demonstrates that with respect to
synaptic delays, only an exponential delay distribution has a relevant
effect on fast oscillations in the original circuit. Second, Influence of
the transfer function investigates the dependence of the phenomenon
on the transfer function of the leaky integrate-and-fire neuron model
summarizing all single neuron properties and the drive by external
currents. The latter finding highlights how external currents exert an
influence on the effective connectivity by shifting the working point
of the transfer function. Finally, we discuss the limitations of presently
available analytical approximations and discuss the implications of
our findings (Discussion) for experiment, simulation, and theory.

7.2 results

Sustained high-frequency oscillations > 300 Hz are observed across a
broad range of models starting from two-population networks (Brunel,
2000) to more elaborate, biologically constrained networks. At the
example of the Potjans-Diesmann microcircuit (Potjans et al., 2014a),
we here aim to evaluate the biological plausibility of observed high-
frequency oscillations in the simulated spiking activity. Therefore,
we start by describing the observations in simulated data and dis-
cuss difficulties in the comparison of our findings to experimental
recordings.

7.2.1 Visibility of ultra-high frequency oscillations in model data

In this study, we look at the cortical microcircuit as described in
Section 6.1.
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Figure 7.1: Visibility of ultra-high frequency oscillations in simulated neu-
ral data. A Sketch (according to Senk et al. (2022)) of the cortical
microcircuit model by Potjans et al. (2014a). Only connections
with connection probability > 0.04 are shown (as in Figure 1

of the original publication). Throughout the study colors indi-
cate layer (2/3: purple, 4: blue, 5: green, 6: brown) and cell type
(excitatory (E): dark, inhibitory (I): light), here with redundant
layer-number and E/I labeling. B Violin plots (Hintze et al., 1998)
of the firing rate distributions of each population, with the inner
of the violin showing a box plot (Tukey, 1977). C Raster plot of
50 ms of simulated spiking activity. Spike trains are grouped by
populations and vertically stacked. D Probability density distri-
butions of the inter-spike interval (ISI) with inset showing shorter
ISIs. E Probability density distributions of the coefficient of vari-
ation (CV) of the ISI. F Average population-rate power spectra
calculated via FFT on non-overlapping 500 ms windows of the
binned (bin size 1 ms) population spike count (same method as in
Layer et al. (2022a)) on the time interval [1, 10 ]s. Data in panels B,
D and E are calculated on the time interval [0.3, 10 ]s of a single
simulation run with the software NEST.

A raster plot (Figure 7.1C) of the spiking activity of the microcircuit
model exposes reoccurring synchronized firing of neurons within
a population, visible as vertical stripes. Two different time scales
dominate the activity: While in the inhibitory population of layer 4 we
count roughly 17 narrow stripes within the plotted 50 ms windows,
the activity of the excitatory population of layer 2/3 is shaped by four
broad stripes. These broad stripes are in turn modulated by narrow
stripes, similar to those in layer 4. This synchronization pattern of
the spiking activity hints at superimposed oscillatory processes with
different frequencies.

A neuron does not contribute a spike to every period of these os-
cillations as evident from the distribution of spike rates (Figure 7.1B).
Similarly, the inter-spike interval (ISI) distributions (Figure 7.1D) show
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preferred intervals in a range from ∼ 10 ms to ∼ 100 ms and a long
decay towards larger intervals. The distributions exhibit periodic mod-
ulations, most prominently observed in the distribution of population
2/3E, that peaks every 10 − 15 ms and hence suggests an oscillation
at ∼ 66 − 100 Hz. Faster modulation of the ISI distribution at ∼ 3 ms,
that would correspond to the narrow stripes in the raster plots, (cf.
Figure 7.1C inset) is not exhibited. The distributions of the coefficients
of variation (CV) are centered at values smaller than unity, suggesting
that the activity of the individual neurons is more regular than a
Poisson process (Figure 7.1E). In particular, the distributions of pop-
ulations 2/3E and 6E are skewed towards smaller CVs. The power
spectrum of the population time histograms, however, confirms domi-
nant frequencies at ∼ 80 Hz and ∼ 340 Hz (Figure 7.1F). We refer to
the former as γ-oscillations and to the latter as ultra-high frequency
oscillations. For populations 6E and 6I the peak in power occurs at
lower frequencies compared to populations 2/3I, 4I, and 4E. While
population 2/3E shows almost no elevated power at higher frequen-
cies, populations 5I and 5E have substantial power in a broad range of
high frequencies.

It has been shown that solving the differential equations for neuron
dynamics on a discrete time grid can lead to an artificial synchroniza-
tion of neuronal network activity (Hansel et al., 1998; Morrison et al.,
2007). In Section A.5.2 we show simulations with discrete and precise
spike time representation and exclude these parameters as the cause
for the observed synchronizations.

7.2.1.1 Visibility in spiking activity

The power spectrum of the population time histogram can be decom-
posed into two components: the population-averaged single neuron
power spectra Ai(ω) and the cross-spectra of pairs of neurons Cij(ω)

(Harris et al., 2011; Tetzlaff et al., 2012):

C(ω) =
1

N2

(
N

∑
i=1

Ai(ω) +
N

∑
i=1

N

∑
j=1,j ̸=i

Cij(ω)

)
, (7.1)

where ω = 2π f denotes the angular frequency. The first term scales
with N while the second term scales with N2.
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Figure 7.2: Visibility of ultra-high frequency oscillations under subsam-
pling. First column displays 100 ms of activity of all N = 5479
neurons of population 4I of the microcircuit model (same data as
in Figure 7.1). Subsequent columns show subsamples of decreas-
ing size of these data (size indicated by column titles, identical
vertical scaling but different for first column). A Raster plots, B
population time histograms (bin size 1 ms) and C power spectra
calculated as in Figure 7.1).

Figure 7.2 illustrates the consequence of the differing dependence
on N of these two terms. In the raster plots and the population time
histograms it becomes more difficult with decreasing N to distinguish
the vertical stripe-like structure of activity from an irregular back-
ground. Equation 7.1 explains the observed phenomenon: while for
large N the cross-spectra dominate, for small N the single neuron auto-
spectra govern the population-rate power spectrum. The visibility in
experimentally recorded spiking data is hence limited, as even modern
recording techniques drastically subsample the local cortical network.
The Utah array technology (Blackrock Microsystems, Salt Lake City,
UT, USA, www.blackrockmicro.com) typically isolates around ∼ 150
neurons. Neuropixels (Jun et al., 2017a) delivers simultaneous spike
trains of hundreds of neurons, but across a larger spatial extent. As
the statistics of spiking activity differs between cell types, grouping
spike trains according to neuronal population would enhance the
detectability of vertical stripes.

7.2.1.2 Visibility in local field potential

Power spectra of the population spiking activity with a sufficiently
large number of neurons from the same population are hard to obtain
from experimental data. A simpler, population measure that allows
for comparison with simulated data is the local-field potential (LFP).
Hagen et al. (2016) present a hybrid-scheme to calculate the LFP

www.blackrockmicro.com
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from simulations of network models based on point neurons like the
microcircuit model introduced above. This hybrid scheme uses the
dynamics of point-neuron networks and sends the obtained spikes
into the synapses of multi-compartment neurons with cell-type and
layer-specific connectivity. Those allow the computation of the trans-
membrane currents and thus the resulting LFP. The LFP calculated in
this way indeed exposes the ultra-high frequency peak around 300 Hz
of the microcircuit activity (cf. Fig. 8 of Hagen et al. (2016)) although
several cell types contribute to the signal.

For a quantitative comparison of experimental data to simulated
LFP power spectra, the aperiodic and periodic components of the
power spectra (Donoghue et al., 2020) ideally have to be disentangled:
The aperiodic component, a 1/ f -like decay observed in experimental
spectra, which mostly impacts lower frequencies, according to some
authors (Bédard et al., 2009) originates from ionic diffusion, which is
not captured by the model of Hagen et al. (2016). Besides this aperiodic
component, experimental power spectra reflect periodic components
as elevated power in certain frequency bands, which are assumed to
reflect the underlying spiking dynamics and in particular the synaptic
currents induced by it. Traditionally, LFP spectra above 200 Hz are
disregarded due to potential contamination of the high-frequency
power spectrum (starting above 50 Hz) by the waveform of action
potentials in the vicinity of the tip of the electrode (Zanos et al., 2011).

In summary, whether or not oscillatory activity present in the sim-
ulated spiking data is observable in experimental data depends on
the number of recorded neurons. The LFP can be used as an antenna
that probes the activity of thousands of neurons simultaneously. The
quantitative comparison of experimental and simulated LFP, however,
is hampered by various frequency-dependent filtering effects due to
the extracellular medium (Bédard et al., 2004). Irrespective of whether
or not ultra-high frequency oscillations are experimentally observable
to date we need to investigate whether they constitute a robust signa-
ture of our understanding of cortical dynamics or rather a result of
oversimplification.

7.2.2 Mean-field theoretical description

In order to gain a theoretical understanding of the oscillatory behavior
in the microcircuit model, we resort to a mean-field description of the
model and apply linear response theory to approximate the dynamics.
The formalism employed here has been established in previous works
(Bos et al., 2016) and was presented as part of the previous Chapter 6.

The critical quantities are the effective connectivity matrix given
in Equation A.4 and the power spectra in Equation 6.17. Applying
an eigenvalue decomposition to effective connectivity, allows us to
see that the power spectrum of the a-th population Pa(ω) receives
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a contribution from each eigenvalue λb of the effective connectivity
matrix, Pa(ω) ∝ 1/ (1 − λb(ω))2.

For λk(ω) → 1 the power spectra, grow proportionally to |1 −
λi(ω)|2 in the vicinity of the point of instability in the complex plane
(1 + i0), henceforth called the critical point. Figure 7.3 illustrates the
contributions to the effective connectivity matrix for the microcircuit
model.

Figure 7.3: Mean-field description of the microcircuit model. The effective
connectivity in the Fourier domain M̃d(ω) is a 8 × 8 complex-
valued matrix describing the interactions between the neuronal
populations. M̃d(ω) consists of a structural part and a dynamic
part: The anatomical connectivity is characterized by the matrix
of in-degrees K (panel A) and the weight matrix (panel B). The
dynamical contributions are the transfer functions H(ω) (panel
C; color code (legend) as in Figure 7.1 left: absolute value, right:
phase) and the delay distributions (panel D; gray code indicates
cell type (legend) left: absolute value, right: phase). E Frequency
dependence of the eigenvalues of the effective connectivity matrix
(vertical: imaginary part, horizontal: real). The eigenvalues at
f = 0 Hz are marked by black pentagons and trajectories show
the evolution with increasing frequency (color bar: up to 500 Hz in
steps of 1 Hz). The inset highlights the closest approaches ωc,k of
the trajectories of five eigenvalues to the point of instability (1+ i0,
red cross) by markers (triangle left: λ1, square: λ2, triangle up:
λ3, disk: λ4, triangle right: λ5). F Population-rate power spectra
predicted by the mean-field theory (color code as in C).

At zero frequency (ω = 0 Hz) all quantities are real. The delay dis-
tribution (Figure 7.3D) has an absolute value of 1 and hence doesn’t
affect the effective connectivity at zero frequency. The transfer function
(Figure 7.3C) at zero frequency corresponds to the derivative of the
firing rate with respect to the mean input to the population (Schuecker
et al., 2015). The corresponding eigenvalues of the effective connectiv-
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ity at zero frequency are symmetric with respect to the real axis and
have complex conjugate pairs (see Figure 7.3E). Both, the transfer func-
tion and the delay distribution, effectively act as low-pass filters which
suppress the absolute values with increasing frequency and addition-
ally rotate the eigenvalues clockwise. A parameterized plot of the
eigenvalue of a matrix in the complex plane is known in literature as a
Nyquist plot (Oppenheim et al., 1996). As a function of the frequency,
the eigenvalues form a spiraling trajectory terminating at the origin
(0 + i0) of the complex plane for ω → ∞. As a consequence, each
trajectory comes closest to the critical point (1 + i0) at some frequency
ωc,k (see enlargement in Figure 7.3G). At these critical frequencies the
power spectrum grows as the inverse square of this distance. While
four of the trajectories shown in the enlargement are responsible for
the ultra-high frequency peak in the power spectrum, the fifth has
its close encounter at a lower frequency and drives the γ-peak. The
mean-field predictions of the power spectra in Figure 7.3E resemble
the power spectra of the direct simulations Figure 7.1D. The ultra-high
frequency peak of the theory is, however, more pronounced than in
the simulations. How can we use the knowledge from the mean-field
equations, that uncovered relationship of the network parameters and
power spectrum, to understand the emergence of oscillations?

7.2.2.1 Intuition on behavior of eigenvalue trajectories

The distance of the eigenvalue trajectory at a certain frequency to the
critical point (1 + i0) in the complex plane is inversely proportional
to the magnitude of the power spectrum at that frequency. This facil-
itates a geometrical intuition on how changes of model parameters
differentially impact the emergence of oscillatory activity. Figure 7.4
illustrates global changes to the effective connectivity matrix, their
effect on the eigenvalue trajectories, and the resulting power spectra.
A multiplication with a real value smaller than unity leads to a con-
traction of the eigenvalue spiral. Conversely, a multiplication with an
absolute value larger 1 expands the spiral. A multiplication by a com-
plex number eiθ with phase θ rotates the spiral in the complex plane:
A positive phase rotates the spiral counterclockwise. In the exemplary
sketch this rotation mainly affects the frequency at which the power
spectrum reaches its maximum. In addition, the magnitude of the
peak changes as the spiral’s radius is smaller for higher frequencies.
A multiplication of the effective connectivity matrix with a generic
complex value (z = |r|eiθ) thus leads to a rotation combined with a
contraction (|r| < 1) or expansion (|r| > 1).

In light of this intuition, we now discuss the effects of the anatomical
connectivity, different delay distributions and the transfer functions
on the occurrence of ultra-fast oscillations.
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Figure 7.4: Schematic influence of a spiraling eigenvalue on population-
rate power spectra. A Sketch of the trajectory of an eigenvalue in
the complex plane (upper panel) with an implicit dependence on
frequency ω/2π (color bar) and resulting population-rate power
spectrum (lower panel). The power spectrum is proportional to
1/ |(1 − λ(ω)|2, where 1 − λ(ω) is the distance of the eigenvalue
trajectory to the critical point (1 + i0). The colored dotted lines
relate the frequencies marked in the lower panel to the locations
on the spiral. B Eigenvalue trajectory and power spectrum if ef-
fective connectivity is multiplied with an absolute value |r| = 1

2
(dashed gray: original trajectory of A for comparison). C Eigen-
value trajectory and power spectrum if effective connectivity is
multiplied with a complex phase factor eiθ for θ = 115◦.

7.2.2.2 Influence of network structure

The microcircuit model (Potjans et al., 2014a) is widely used with
adapted connectivity parameters (Bos et al., 2016; Hagen et al., 2016;
Schmidt et al., 2018c; van Albada et al., 2015) (see also Section 6.1.2).

The V1 circuit embedded in the multi-area model of Schmidt et al.
(2018c) is one particular example. It shows no signs of a high-frequency
oscillation. At the outset of the present study we hypothesized that
this might be due to the intricate interplay between multiple microcir-
cuits in the multi-area model. However, the isolated V1 circuit where
external input from other cortical areas is replaced by spikes trains
drawn from a Poisson process does neither exhibit vertical stripes in
the raster plot nor peaks in the power spectrum (Figure 7.5). A com-
parison of the parameters reveals that in the V1 model the number of
neurons is roughly doubled compared to the original model (Potjans
et al., 2014a) to better correspond to the experimental data for the
macaque, but the density of synapses in the volume is identical. As
a result, the in-degrees are reduced by about a factor of two, as can
be seen in Figure 7.5C. An exception is the projection from popula-
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Figure 7.5: Influence of network structure on oscillations. Displays and
color schemes as in Figure 7.3. A Raster plot of activity in the
V1 model isolated from Schmidt et al. (2018c). B Eigenvalue
trajectories as function of frequency; the anatomical connectivity
leads to a change in the eigenvalues at 0 Hz compared to the
microcircuit model (gray pentagons, cf. Figure 7.3E). C Ratio of
in-degrees between the connectivity of the isolated V1 model and
the microcircuit model. D Population-rate power spectra.

tion 4I to population 6I; there are very few synapses in both models
and the ration remains essentially the same. Furthermore, the ratio
of synaptic strengths of the inhibitory and the excitatory connections
g = JI/JE is larger in the isolated V1 circuit (g = −11) as compared to
the original circuit (g = −4) . The absence of oscillations and the re-
sulting flat spectrum for high frequencies can be understood in terms
of the intuition presented in Section 7.2.2.1: The radii of the eigenvalue
trajectories of the effective connectivity matrix are compressed due
to the overall reduced in-degrees. At zero frequency this contraction
can be observed by comparing the eigenvalues to those of the original
model (see Figure 7.5B). At high frequencies, the trajectories thus pass
the critical point at a larger distance. Further simulations show that
the effect of the stronger inhibitory synapses does not explain the flat
spectrum.

Global differences in the connectivity structure as in the V1 model
compared to the original microcircuit model are expected to change
network dynamics. However, also fine-grained changes in the anatom-
ical connectivity may influence oscillatory activity. In Bos et al. (Bos
et al., 2016) the impact of network structure is assessed by a quantity
called ’sensitivity measure’. The sensitivity measure quantifies how
an infinitesimal change in the in-degree matrix impacts the distance
(Zamp) and frequency (Zfreq) at which an eigenvalue trajectory of the
effective connectivity matrix passes the critical point (1 + i0). In Fig-
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Figure 7.6: Anatomical origin of oscillations. A Four eigenvalue trajecto-
ries of mean-field representation of the Potjans-Diesmann model
(same data as in Figure 7.3, markers (legend) indicate frequency
at closest distance to critical point 1 + i0) with ultra-high frequen-
cies in the vicinity of the critical point. B, C, D, E Sensitivity
measure for the four eigenvalues contributing to the ultra-high
frequency population-rate power spectrum. Left Zamp, connec-
tions contributing to the amplitude at the critical frequency (title
of graph). Right Zfreq, connections determining frequency. Shades
of blue (color bar) denote that a decrease in the in-degree leads
to an increase in power or frequency, respectively; shades of red
the opposite.

ure 7.6A, the inset of Figure 7.3E is enlarged to display the behavior of
the eigenvalue trajectories around the critical point. At the ultra-high
frequencies, there are four trajectories passing close by the critical
point. These four trajectories determine the high-frequency oscillation
peak. Panels B - D show that predominantly the in-degrees of the
inhibitory loops 23I-23I, 4I-4I, 5I-5I and 6I-6I have a strong effect on
both, the distance and the frequency, at which the relevant eigenvalue
trajectory passes the critical point.

7.2.2.3 Influence of the delay distribution

The transmission delay from one population to another shapes the
dynamics of a multi-population network. To discuss the impact of
the delay distribution on the eigenvalue trajectories of the effective
connectivity and thus the population-rate power spectra, we treat
them as a separate factor in the Fourier domain. We study fixed delays
as well as uniform, exponential, log-normal and truncated Gaussian
distributions of delays (see Figure 7.7 for illustrations of the delay
distributions in the time domain at the example of the microcircuit
model). We ensure comparability of the distributions by matching their
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statistical moments where possible (for details refer to Section A.5.1).
The corresponding absolute values and phases in the Fourier domain
resemble those of a low-pass filter, except for the fixed delay case,
where transmission is unfiltered (see 7.7). Mattia et al., 2019 recently
showed analytically that the effect of the exponential delay distribution
in neuronal networks is approximately equivalent to synaptic filtering.

Figure 7.7: Characteristics of common delay distributions. A Different de-
lay distributions in the time domain with mean and standard
deviation (except for fixed delay) matched to the truncated Gaus-
sian distribution of the excitatory connections in the microcircuit
model. B Magnitude of delay distributions in the Fourier domain.
C Phase of delay distributions in the Fourier domain. D, E, F
Same as upper row for the inhibitory connections.

The mean and standard deviations of the delay distributions differ
for the excitatory and inhibitory populations. A quantitative statement
of the effect of the delay distribution on the eigenvalue trajectories is
more involved due to the delay matrix being inhomogeneous. However,
an intuition of the influence of the delay distribution can be gained by
discussing deviations from a reference distribution, here taken to be
the truncated Gaussian distribution.

The change of the delay distribution of a given network to an expo-
nential distribution has a particularly strong effect on the ultra-high
frequency oscillations: a prominent feature illustrated in Figure 7.7 is
the slowly changing phase of the exponential distribution for higher
frequencies, which corresponds to an effective counterclockwise ro-
tation of the trajectories with respect to the truncated Gaussian tra-
jectories. This counterclockwise rotation impacts the high-frequency
oscillations in two ways: first, the frequency at which the trajectory
passes the critical value is shifted towards higher frequencies and the
radius of the trajectories for high-frequencies is decreases. The com-
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bined effect is a larger distance of the trajectories to the critical point.
The corresponding eigenvalue trajectories of the Potjans-Diesmann
model with exponential delays are shown in Figure 7.8 together with
he raster plot and power spectra as resulting from direct simulations.

In Bos et al. (2016) the delay distributions of the Potjans-Diesmann
model are modified to have twice as large standard deviations as in
the original model in order to stabilize the dynamics of the model.
The intuition of a faster compression of the eigenvalue trajectories
due to a counterclockwise rotation of the trajectories explains the
stabilizing effect. The uniform and log-normal distributions do not
differ substantially from the reference truncated Gaussian.

Figure 7.8: Effect of exponential delay distribution on oscillations. A Raster
plot of a microcircuit simulation with exponentially distributed
delays (same display as in Figure 7.1) with mean and standard
deviation matched with the original truncated Gaussian. B Plot of
the eigenvalue trajectories of the effective connectivity calculated
with exponentially distributed delays (same display as in Fig-
ure 7.3). C Power spectra (same display Figure 7.1). Other model
parameters as in Figure 7.1.

7.2.2.4 Influence of the transfer function

The transfer function describes the response of a population of leaky
integrate-and-fire model neurons to a weak oscillatory input current
of a given frequency on top of a stationary white noise with a certain
mean and standard deviation representing the synaptic input. For
synapses with an exponentially decaying current, the transfer function
needs to incorporate the additional low-pass filter. From the view point
of the conventional mean-field neuron model the noise is not white
anymore, but colored. Expressions for the colored noise problem have
been derived in Schuecker et al. (2015). These authors approximate the
transfer function up to first order in k =

√
τs/τm, with τs and τm the
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synaptic and membrane time constants, respectively. In the limit of
τs → 0 the white noise problem is recovered. Two equivalent methods
to calculate the colored noise correction term of the transfer function
linear in k consist in either shifting the boundaries of integration of
the white noise transfer function or calculating the Taylor expansion
(rf. Schuecker et al. (2015) for details). The two methods of calculating
the transfer function differ slightly for low frequencies. Figure 7.9
shows the difference in absolute value and phase, respectively, and
illustrates that the discrepancy impacts the eigenvalue trajectories and
in particular the magnitude of the 70 Hz peak in the power spectrum.

Figure 7.9: Influence of transfer function. A Differences in absolute value
(left) and phase (right) of the transfer function approximations for

each population (∆ |H(ω)| =
∣∣∣Htaylor(ω)

∣∣∣− |Hshift(ω)|). B Eigen-
value trajectories obtained by using two different approximations
of the transfer function (dashed: boundary shift; dotted: Taylor
expansion). C Impact of the transfer functions on the predicted
power spectra, data from direct simulations (light gray) shown
for comparison. Data representation as in previous figures.

The perturbative derivation of this expression neglects terms of
order O(k2) and higher. This is only valid for moderate frequencies
ωτm k ≪ 1, leading to expected deviations of the mean-field result
from direct simulations of the full nonlinear system for high frequen-
cies (> 100 Hz) (Schuecker et al., 2015). In Section A.5.3, we introduce
an ad-hoc correction that improves the fit of the mean-field prediction
to the data for different network models. Nevertheless, the mean-field
approximation to first order is accurate enough to gain qualitative
insights.

It can be useful to think of the transfer function as a series of two
effective low-pass filters: the filtering due to the synaptic dynamics,
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and a filtering due to the membrane potential dynamics including the
threshold crossing process.

In the mean-field approximation, the input to a neuron is described
by an effective Gaussian noise with mean µ and standard deviation
σ. The statistics of the input µ, σ to a population defines its working
point and the firing rate. See Figure 7.10A for comparison of the mean
firing rate distributions in the simulations and the predicted mean
firing rates (red markers). The contribution of the hypergeometric
functions appearing in the transfer function varies quite drastically
for different input statistics. In (Ledoux et al., 2011) the effect of the
fraction of hypergeometric functions is discussed at the example of an
E-I network with varying working points (e.g. due to external noise). It
is further known that in the mean driven regime (high firing rate, low
noise), resonance phenomena appear (Lindner et al., 2001; Schuecker
et al., 2015).

Figure 7.10: The transfer function depends on the working point. The work-
ing point is given by the mean input µ and its standard deviation
σ. A Firing rate distributions (histogram of time-averaged firing
rates across neurons, violine plots ) for each population. Red
markers denote the mean-field prediction. B Absolute value and
C phase of the transfer function (shift) for different values of µ
and σ.

In Figure 7.10B and C the absolute value and phase of transfer
functions in the ’shift’ approximation are shown for different working
points. A network with fixed anatomical connectivity and biologically
realistic delays can thus be driven into different regimes by modifying
the working point. Furthermore, it is noteworthy, that a change in the
connectivity structure will necessarily impact the transfer functions as
well, as these in turn modify the working point.
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7.3 discussion

The present chapter discussed the emergence of ultra-high frequency
oscillations in spiking network models with a focus on potential ex-
perimental visibility and mechanistic understanding of their origins.
To this aim, we take into account experiment, simulation and theory.
Different interactions between these approaches lead to incremental
improvement of the understanding: Experiments supply anatomical
data, that can be incorporated into simulations. Large-scale simu-
lations give rise to quantitative predictions, which can in turn be
validated or falsified by experiments. A qualitative understanding
of the mechanisms that govern the activity of these complex models
can be gained through theoretical descriptions. A comparison of the
theoretical prediction to simulations allows the control of approxima-
tions and the assessment of shortcomings in the theory. The reduced
complexity and mathematical formalism of the theory, even though
approximate, enable the formation of an intuition for the processes.
The gained intuition can in turn inform the modeler, theoreticians,
and experimenters to guide incremental improvements.

The main findings of this work are:

1. under the assumption that the model prediction of high-frequency
oscillations is valid, these oscillations are (likely) not visible with
state-of-the-art recordings of spiking activity, but could be no-
ticeable in population measures, such as the local-field potential;

2. mean-field theory combined with linear response theory reveals
the roles of anatomical connectivity, the delay distribution, and
the the transfer function for the emergence and properties of
oscillations in the model

a) the activity of the V1 circuit of the multi-area model due
to its reduced effective connection density shows no high-
frequency oscillations

b) the ultra-high frequency oscillations are sensitive to pertur-
bations of the inhibitory-inhibitory loops in layers 2-3, 5,
and 6

c) the uniform, exponential, log-normal and truncated Gaus-
sian delay distributions have a similar low-pass filter-like
behavior, but the exponential distribution has the largest
influence at high-frequencies due to a particular trend in
the phase

d) the linear response approximation of the transfer functions
is expected to deviate from simulations at high-frequencies

e) the transfer functions are sensitive to changes in the work-
ing point; the system can be driven from a non-oscillatory
to an oscillatory state by varying the external input
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The microcircuit model by Potjans-Diesmann, with realistic cell densi-
ties per population and experimentally extracted connectivity parame-
ters, predicts network oscillations in the ultra-high frequency range
(∼ 340 Hz). These fast oscillations are clearly visible in raster plots and
power spectra of the full simulation and strongest in the inhibitory
populations and weakest in the populations 23E and 6E. Sustained
oscillations of such high frequency are not reported in the literature.
We assess the experimental visibility in electrophysiological recordings
of spiking activity by sub-sampling and observe that the visibility in
raster plots and power spectra decreases with the number of neurons.
This is expected from the scaling of the contributions of auto-spectra
and cross-spectra to the power spectrum. In modern multi-electrode
recordings, the simultaneous spiking activity of roughly 100 (e.g. Utah
array) to 1000 (e.g. Neuropixels) neurons are observed. The spatial
extents of Utah arrays or Neuropixel probes span several layers and
even brain areas, such that the activity is difficult to compare to the
populations in the network model, which is supposed to model 1 mm2

of cortical surface.
A hybrid-scheme of obtaining the local field potential from the

microcircuit model predicts that the ultra-high frequency oscillations
are visible in the local field potential. In the literature, local field
potentials above 300 Hz are often disregarded to avoid contamination
of the signal with slow components of waveforms of nearby action
potential (see Section 7.2.1.2).

Another difficulty comparing simulations and experimental data
arises from the fact, that the simulation operates at one dynamical
state (fixed rate of external Poisson input) and stays in that state across
the time span of simulation. An oscillatory state will hence produce
sustained oscillations. In nature, such a controlled state is unlikely to
be realistic. In LFP and EEG literature reports of ripples 140 − 200 Hz
(Logothetis et al., 2012) or high-frequency oscillations (HFO, > 80 Hz),
that last only a couple of oscillation cycles (for a recent example see
Cai et al. (2021)) can be found. These point to transient changes in the
network state.

A further investigation into the theoretical underpinnings via mean-
field and linear response theory led to a holistic, yet abstract un-
derstanding of the oscillatory network activity being linked to the
eigenvalues of the effective connectivity matrix passing a critical point.
This point of instability can be interpreted as the transition point of
the Hopf-bifurcation between asynchronous irregular (AI, R(λk) < 1)
and synchronous irregular (SI, R(λk) > 1) state (Bos et al., 2016). The
eigenvalues of the effective connectivity matrix, parameterized by the
frequency, form a spiral in complex plane which at some particular
frequency is closest to this point of instability. As the power spectrum
is proportional to the inverse squared distance of the trajectory to the
point of instability, it is governed by the spiraling eigenvalue trajec-
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tories. Changes in the anatomical connectivity, the delay distribution
and the transfer functions impact these eigenvalue trajectories and
thus the power spectra.

The sensitivity measure defined by Bos et al. (2016) confirms the
ultra-high frequency oscillations being sensitive to the connections
within the inhibitory populations. Overall, lower in-degrees in the
multi-area model isolated V1 microcircuit lead to an effective compres-
sion of the eigenvalue spirals radii and in consequence a reduction of
high-frequency activity.

Another crucial ingredient in multi-population networks is the
transmission delay from one population to another. The distribution
effectively acts as a low-pass filter on the dynamics of the network.
We find that the exponential distribution rotates the eigenvalues to a
smaller extent compared to the truncated Gaussian delays and hence
leads to a flat power spectrum for high frequencies. The uniform,
log-normal and truncated Gaussian distributions have comparable
effects.

Lastly, we discussed the limitations of the dynamical mean-field
theory due to the transfer functions. The current state-of-the-art ap-
proximation of the transfer function for colored noise is expected to
be inaccurate for large frequencies. This likely explains the mismatch
between (linear) theoretical prediction and (non-linear) simulations.
An ad-hoc correction in form of an additional low-pass filter on the
transfer function improves correspondence of theory and simulation
(see Section A.5.3). Another important observation is the dependence
of the transfer function on the working point. This leads the discussion
back to the dynamical state in which the network operates.

The current approach of determining the external input into the
network consists in fitting the input to the network such that the
resulting mean firing rates (across time and neurons within each
population) fit those measured in experiment. This is probably the
best we can do, as experimentally we are limited in knowing which
connections are recurrent (from within the local circuitry) and which
stem from external connections. As the consequence, the network
operates in a dynamical state that successfully replicates the mean
firing rates of the populations. To account for temporal changes in the
input to the network, one could propose to define a range of dynamical
states (or working points) by looking at the time-dependent population
firing rates. This could be realized in the simulation model by a range
of inputs to the system. The change in the network dynamics would
then arise due to changes in the transfer function only. Depending on
the input (or target firing rates) the network could in principle account
for short, transient oscillations of high-frequencies (for a few cycles).

With larger network simulations, the dependence on external in-
put is decreased, the networks become more self-consistent and the
quantitative prediction improves. However, the intricate interactions
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in multi-population networks make it difficult to isolate the influence
of single parameters on the network behavior. This work points at
employing the network models as tools that work at the interface
between theory and experiment and can help bridging intuition from
theories to quantitative and testable predictions.
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C O N C L U S I O N

The brain is a fascinating organ, yet its precise way of function remains
elusive until now. However, as it determines our way of thinking and
the behavior of humans and animals alike, it is the subject of study by
many researchers from different backgrounds.

In this thesis, we presented two projects that investigated the brain
on two fronts: First, by recording neural activity from behaving mon-
keys, and second, by simulating biologically constrained spiking neu-
ral networks.

While the first project would be considered at the core of systems
neuroscience, the second project belongs to the research agenda of
computational neuroscientists.

Needless to say, systems neuroscience and computational neuro-
science are abstract concepts of a grouping that can only be observed
through the preferred way of communicating about a problem or
through the constellation of researchers meeting at a conference. A
computational neuroscientist, for example, with physics background,
who extends current mean-field descriptions of large spiking networks
to higher-order interactions, would feel “at home” at the annual Com-
putational Neuroscience Meeting (CNS), but much less understood
at the, despite its name, more systems neuroscience oriented Cosyne
(Computational and Systems Neuroscience).

Yet, as the name of the Cosyne probably says, the overlap between
systems and computational neuroscience is far greater than, e.g. to,
cellular and molecular or cognitive neuroscience. The annual Society
for Neuroscience (SfN) meeting, which attracts over 30,000 attendees
annually, brings all these fields together.

However, already in our Lab at the INM-6 at Forschungszentrum
Jülich, we noticed a gap worth bridging, and this thesis was an attempt
in that direction.

We researched two distinct research questions and explored each
subfield’s intricacies:

1. Is the bimodality of the distribution of preferred directions
(PDs) that has been observed in primary motor cortex (M1) and
dorsal premotor cortex (PMd)/ventral premotor cortex (PMv) also
present in the parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task?

2. Are oscillatory synchronizations of the spiking activity observed
as vertical stripes of raster diagrams in simulations of a microcir-
cuit model composed of leaky integrate-and-fire (LIF) neurons
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a valid prediction of the model? Should they be observable
in experimental data, and can we mechanistically understand
them?

Here, I want to summarize our research results, report on the in-
sights gained respectively difficulties encountered, and finally suggest
possible ways of bringing the two research fields closer together.

8.1 summary

8.1.1 Analysis of electrophysiological data from the Vision-for-Action ex-
periment

To answer the question regarding the existence of bimodality of the
distribution of PDs parietal and visual cortex of macaque monkeys
that perform a visually guided reaching task, we first had to improve
our understanding of the data that we were going to analyze.

In Chapter 2, we performed a literature review to get familiar with
neuronal structures in the macaque brain that are relevant for eye-
hand coordination. In particular, we scanned existing literature on
the parietal areas dorsal prelunate (DP) and area 7a (7a), because we
were to analyze neural recordings thereof. Next, in Chapter 3, we
summarized joint efforts of the labs by Thomas Brochier and Sonja
Grün to make the datasets from the Vision-for-Action (V4A) experiment
accessible for analyses. Before using the data, however, we had to take
preventative measures to avoid any bias of potential artifacts to our
analysis. So, in Chapter 4, we characterized artifactual signatures in
the data, hypothesized about their origin in the setup, such that they
might be avoided in future evolutions of the setup, and explained the
exclusion of crosstalking channels from further analyses.

Finally, we were all set to approach the research question and pre-
sented this investigation in Chapter 5. By employing a generalized
linear model (GLM) fitting approach, we started reproducing the pre-
dicted bimodality of the distribution of PDs across single units in
M1/PMd and could indeed find significant bimodality for the distribu-
tion for both monkeys. Further, we saw evidence for the bimodality
of PD distributions in primary visual cortex (V1)/secondary visual
cortex (V2), DP, and 7a, however, we doubted these results as we recog-
nized that confounding effects might give rise to these.

To exclude these confounds, we resorted to a more holistic GLM

including regressors from the behavior modalities visual, eye position,
saccade, hand position and movement. Surprisingly, the bimodality of
PDs persisted even after correction for the confounding effect. The
hand movement PD distribution for both monkeys was significantly
bimodal in V1-V2 and DP. Furthermore, in Enya also, area 7a (7a)
showed a significant bimodality.
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8.1.2 Simulation and theoretical description of spiking neural networks

In the second part of this thesis, we wanted to investigate ultra-fast
oscillatory synchronizations (at frequencies around 340 Hz) of the
spiking activity — we often times termed these vertical stripes or
vstripes as they are visible in raster plots as such—in simulations of a
microcircuit model.

We quickly noticed that the analysis of the spiking activity from
large-scale networks is intricate and that cause-and-effect with param-
eter changes are difficult to disentangle. The solution to advancing
our understanding was to resort to mean-field and linear response
theory to approximate the network activity.

In the first step, we thus introduce this level of description in Chap-
ter 6. Here, we showcased a toolbox that implements the analytical
equations and supplies efficient algorithms to apply the theory to
network models. During my PhD, I contributed substantially to the
development of this toolbox.

In the second step, we then make use of both simulations and
theoretical descriptions thereof to discuss the research question in
Chapter 7. After having excluded artifacts due to the representation of
time in our simulations, we evaluate whether an activity, as predicted
by the model, could be observed in experimental data. While we doubt
that the vertical stripes would be visible in spiking activity, we predict
that population measures such as the local field potential (LFP) should
exhibit a corresponding high-frequency peak in the power spectrum.

We find that the frequency power spectrum in the microcircuit
model is governed essentially by three quantities: The anatomical
connectivity, the employed delay distribution, and the transfer func-
tion, which in turn is subject to the external (background) input to
the network. This description may not be mechanistic, yet it provides
valuable intuition. For example, a structurally identical model with
updated connectivity (isolated V1 circuit from (Schmidt et al., 2018b))
shows no high-frequency oscillation, an effect that can be explained in
our graphical analysis through the change in connectivity.

Finally, we conclude that the simulation prediction is valid. It is,
however, crucial to consider that the microcircuit model is in a station-
ary state with no functional input. Driving the network with additional
(functional) external input would (theoretically) lead to a modified
transfer function and, thus, another high-frequency power spectrum.

8.2 discussion

The scientific achievements that were summarized in the previous
section have been discussed in Section 5.6 and Section 7.3, respectively.
At this stage, we will zoom out and attempt a wider glance at the
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research topics, relate them to the scientific loop that was discussed in
Chapter 1, and try to see the links between the projects.

science is a community effort A glance at the Author Con-
tribution’s per chapter reveals that most of the content of this thesis
was developed in a joint effort — either between the author and direct
supervisors or as part of larger collaborations.

The necessity to exchange ideas and establish understanding through
discussions within our lab and with close collaborators has large-scale
pendants in initiatives like the Human Brain Project (HBP) (Amunts
et al., 2019, 2022) in Europe, the BRAIN Initiative (Insel et al., 2013) in
the US or the Brain/MINDS (Okano et al., 2015) in Japan.

The initiatives likely reflect the complexity of the matter under
investigation: the brain.

vision-for-action experiment — a joint lab effort At
a smaller scale, the V4A experiment illustrates that research can’t be
done in isolation. As mentioned in Chapter 3, the experiment was
designed jointly by a team at Forschungszentrum Jülich together with
a team at Institut de Neurosciences de la Timone, Marseille. Haan et al.
(2018) established an experimental setup that enables the conduction
of various behavioral tasks within one setup (de Haan et al., 2018).
Until we could start analyzing the first datasets, monkeys had to be
trained and implanted, the behavioral recording had to be calibrated,
and finally, the actual recording sessions had to be performed. Once
the dataset exists in Marseille, a way of sharing the large datasets
(each 12 min recording session requires roughly 12 GB) with the team
in Jülich needs to be found.

However, without prior knowledge and without access to an incred-
ible amount of metadata, such a raw dataset is basically worthless.
Previous generations of PhD students at INM-6 (e.g. Sprenger (2020)
and Zehl et al. (2016)) in close collaboration with the collaborators in
Marseille have established automatized ways of recording and storing
metadata in the attempt to publish data that is usable stand-alone
(Brochier et al., 2018).

In this thesis, I aimed to present as many of the necessary prerequi-
sites that are needed to finally tackle a research question using a neural
recording dataset from behaving monkeys. A step of preprocessing
that is rarely talked about in literature presenting new scientific find-
ings, is the curation of the data prior to the analysis. This might entail
complicated procedures to reduce the amount of noise (Keating et al.,
2002; Lecoq et al., 2021) or the removal of artifacts (Paralikar et al.,
2009) (or as shown for our setup in Chapter 4).

While only mentioned briefly in Section 3.5, one crucial ingredient
to obtaining “usable” datasets is the preprocessing pipeline; its de-
velopment is an ongoing effort by the joint lab. Thereby we heavily
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rely on software, that is supplied by the community: Consider e.g.
elephant (Denker et al., 2018a), neo (Garcia et al., 2014), odml (Grewe
et al., 2011), GIN1, SpikeInterface (Buccino et al., 2020) or Snakemake
(Köster et al., 2012) to name just a few.

But this reliance on tools is not unique to the analysis of experimen-
tal data in the systems neuroscience community.

the neuronal meanfield toolbox (nnmt) For the analysis
on the “vertical stripes” in Chapter 7, we heavily use the Neuronal
Meanfield Toolbox (NNMT) (Layer et al., 2022b). As one of the con-
tributing developers of the toolbox, the amount of considerations
and time that flow into a well-designed tool with usable documenta-
tion and quality insurance via a testing suite, is non-negligible (see
Section A.4 for further discussion on that). Yet, the collection of im-
plementations of analytical expressions in the Neuronal Meanfield
Toolbox (NNMT), is simple compared to software projects like NEST
(Diesmann et al., 2002; Gewaltig et al., 2007).

8.2.1 Uncertainty

Throughout the projects, that I worked on, I encountered fundamental
uncertainties in many research areas that can’t be resolved and have
to be accepted.

how sure are we about the spike sorted units? For the
analysis of the V4A data, I was primarily interested in the spiking
activity of single neurons and wanted to relate their activity to behav-
ior. However, in extracellularly recorded data it is not always trivial
to assign spikes to a single neuron identity. For a long time in the
previous century, recordings were performed with single electrodes.
Such recordings are often considered to be biased as the experimenter
was of course tempted to search for a responsive neuron. In recordings
with multi-electrode arrays, as discussed in the first part of this thesis,
another challenge arises: The amount of signals for which a spike
sorting has to be performed is too large and can’t be done manually
in reasonable amounts of time. This leads to a clash of tradition and
innovation with the resistance of some researchers to accept modern,
automatic spike sorting solutions. In Section A.1, we discuss both ap-
proaches and use a hybrid approach for the datasets used in Chapter 5,
with the M1/PMd arrays being manually sorted and the visual-parietal
arrays being automatically sorted.

The astonishing part is, however, that this very uncertain step of
spike sorting, which is difficult due to the lack of ground truth, lays
the foundation for almost all following analyses. To avoid that this
uncertainty leads to an uncertainty in the neuroscientific result, I chose

1 GIN, https://gin.g-node.org/

https://gin.g-node.org/
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to apply two different automatic spike sorting algorithms. In the end,
although the data is not shown in this thesis, the neuroscientific result
(bimodality of PDs in visual and parietal areas) proved to be robust
across sortings.

For some research questions, spike sortings will remain crucial, e.g.,
tuning analyses as presented in Chapter 5 or precise spike timing
analyses (Grün et al., 2002; Riehle et al., 1997; Stella et al., 2019).
Interestingly, for some scientific questions and analysis methods, the
identity of single neurons was demonstrated to have no or little impact,
e.g., Trautmann et al. (2019).

can we rely on anatomical data for biologically con-
strained neural networks? Biologically constrained networks
rely on the experimental data that are used to constrain parameters.
However, with the quickly evolving techniques, also the quality of
available data evolves. Models, such as the Potjans-Diesmann micro-
circuit (Potjans et al., 2014b) (or e.g. Billeh et al. (2020)) need to allow
for an update of the constraining data. One point of consideration is
the following: Obtaining tracing data from primates (e.g. Markov et al.
(2014) and Wang et al. (2022b)) requires sacrificing the animals, which
is difficult under ethical consideration. In consequence, the variability
within a small cohort might be large and raise the uncertainty on how
representative certain data is. It is thus important that existing data
can be pooled across experiments in large databases (Bakker et al.,
2012; Kötter, 2004).

In Chapter 7, we encountered that an update in connectivity parame-
ters from the original microcircuit model to the isolated V1 circuit from
Schmidt et al. (2018b) indeed had an impact on the activity dynamics
of a spiking neuronal network.

can linear theories capture relevant phenomena in sim-
ulations or even biological brains? A large part of the
theoretical, mathematical descriptions of neural networks approximate
the system’s response to be linear. As we have seen in Chapter 6 and
Chapter 7, linear theories in computational neuroscience can provide
a useful framework for understanding certain aspects of cortical net-
works. However, it is well known that the activity of neurons in the
brain is highly nonlinear, and it is not clear how well linear models
can capture these nonlinear effects.

One final thought before jumping into the outlook: Given complex-
ities that arise in any research direction, at least within systems or
computational neuroscience, it is inevitable that specialized bubbles
of knowledge form, and exchange beyond these bubbles is hampered.
However, by clearly communicating the uncertainties each of the dis-
ciplines might struggle with, understanding across disciplines might
arise.
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8.3 outlook

Neurosciences as a whole develop at an incredible pace. New tech-
niques to record neural activity (Jun et al., 2017b) record more neurons
simultaneously and reduce the subsampling issue. Spiking neural net-
work simulations grow in size, reach full biologically realistic densities
of neurons (Billeh et al., 2020; Potjans et al., 2014b; Schmidt et al.,
2018b) and thereby eliminate doubts on scaling.

Spatially extended spiking neural networks that reach the volume
below the Utah array (4x4mm2) are in development (Senk et al., 2018a)
and will soon allow for interesting comparisons between experimental
recordings and simulations, especially for spatially extended phenom-
ena like traveling waves (Denker et al., 2018b; Senk et al., 2018b).

beyond stationary activity The type of network model that
was discussed in Chapter 7 commonly operates at a certain working
point, which describes the model’s stationary dynamics. It is character-
ized by the firing rates, mean, and standard deviation of the respective
population’s input to a neuron. Although these networks allow for
the activity to fluctuate around this “mean activity state”, and might
even exhibit metastable activity (Schmidt et al., 2018b), these fluctua-
tions are not to be confused with input-driven, functionally relevant
changes in the firing rate patterns and rather resemble resting state
activity (Dąbrowska et al., 2021).

Functionally active biological cortical networks have in recent years
been shown to exhibit a low-dimensional structure (Gao et al., 2015,
2017) and that low-dimensional representations have functional rele-
vance (Kaufman et al., 2014; Mante et al., 2013; Matsumoto et al., 2005;
Mazor et al., 2005; Vyas et al., 2020).

Interestingly, the activity of artificial recurrent neural networks
(RNNs), trained via back-propagation through time (BPTT) to perform
tasks, lives on suitable low-dimensional structures (Sussillo et al.,
2013). In particular, for motor control, remarkable success has been
achieved by comparing trained RNNs and experimental recordings
(Russo et al., 2018; Saxena et al., 2022; Vyas et al., 2020). As mentioned
in Figure 1.4, we started analyses elucidating the nature of neural
activity state space in the V4A dataset via Hidden Markov Models
or dimensionality reduction methods (Williams et al., 2018; Yu et al.,
2009), but unfortunately, after the rejection of artifacts (Section 4.6) the
parallel neuron count is quite low for such analyses.

In line with Williamson et al. (2018), I would argue that one way of
bringing together large-scale, biologically constrained network models
with functional neuronal recordings, is through a comparison of the
level of their low-dimensional representations.

Currently, one limitation is imposed by the computational cost
(including energy expenses) and time of large-scale networks. This
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hinders effective training via suitable plasticity mechanisms, which
would be required for a task-relevant structure to emerge. This lim-
itation recently sparked reasonable interest in the development and
testing of neuromorphic hardware for such purposes (Rhodes et al.,
2018).

In the future, we hopefully gain a proper understanding of how
to effectively model neural networks, including plasticity, that make
ethically difficult in vivo investigations in behaving animals redundant,
yet allow us to advance our understanding of arguably the most
complex organ: niarb eht.
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a.1 spike sorting

In neuroscience, it is interesting to investigate the spiketrains emitted
by single neurons and relate them to the behavior. Extracellularly
recorded potentials, however, do not immediately give access to the
spike times of a single neuron. In an optimal case, per electrode, the
action potentials of up to 4-5 neurons can be recorded.

Spike sorting is the process of assigning the action potentials recorded
on one electrode to one or more units, putative neurons. Thereby we
distinguish between single unit activity (SUA) and multi unit activ-
ity (MUA). While the former is used to refer to clearly separated units
(i.e., the waveforms assigned to that unit have a high waveform signal-
to-noise ratio (SNR), see Paragraph A.1.4), the latter is often used as
a container that contains all waveforms, which could not be clearly
attributed to a single neuron.

The optimal way of achieving this sorting is still an active field of
research (see e.g., Buccino et al. (2022)). In the times of single electrode
recordings, it was common to sort the waveforms semi-manually. With
the increasing number of electrodes recorded simultaneously, this
semi-manual process became increasingly time-consuming, giving rise
to the development of fully automatic sorters.

Parts of Vision-for-Action (V4A) data were sorted manually by Prof.
Alexa Riehle based on threshold crossings extracted during the record-
ing by the neural signal processor (NSP). Dr. Frederic Barthelemy
and MSc. Shrabasti Jana sorted sessions by thresholding the data of-
fline. Furthermore, I employed two automatic spike sorters to sort the
data from the visual and parietal areas to improve the database for
the upcoming analyses. In the following, I will explain the different
approaches and mention advantages, disadvantages, and challenges.

a.1.1 Automatic spike sorting by the NSP

Blackrock supplies a software called Cerebus Central, with which each
recorded channel can be monitored during the experiment.

Based on these signals, the experimenter can set a threshold to
detect spikes based on visual inspection. Here, the trade-off is to set a
threshold beyond the noise floor but not too far off to not miss any
putative spikes. Alternatively, and this has not been used in the V4A

experiment so far, the thresholds can be set to a certain multiplier
Ξ times the root mean square (RMS) of the signal (c.f. Quiroga et al.
(2004)).

If the online thresholded waveforms shall be used for subsequent
spike sorting, the adjustment of these thresholds prior to each record-
ing needs to be performed. This was the case for most, but not all,
recordings with Enya.
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In the NSP, neural signals (up to here band-pass filtered between
0.3 Hz-7500 Hz) are high-pass filtered (causally, ’filt’) with a 4-th
order Butterworth filter with cutoff frequency 250 Hz for spike extrac-
tion. The real-time computer detects all threshold crossings and stores
in total 38 samples (thereof ten pre-threshold samples). Threshold
crossings that lie within a 30 sample range after a previously detected
threshold are excluded (dead-time/refractory period).

The NSP then performs a sorting on the threshold crossings, which
we did not consider reliable, and saves the results in a .nev-file.

a.1.2 Manual spike sorting by the experimenter

In the V4A experiment, two different ways of manual spike sorting
were employed. The difference lies in the extraction of the threshold
crossings.

spike sorting based on the threshold crossings set dur-
ing the experiment Prof. Alexa Riehle loaded the .nev-file gen-
erated by the online thresholding of the NSP into the Plexon Offline
Sorter and re-sorted the threshold crossings in a semi-automatic fash-
ion. Commonly, this involved a projection of the waveforms in a 2-D
or 3-D principle component analysis (PCA) space, clustering of the
waveforms in that space using K-Means or Template Matching and
final quality control of the resulting spike trains by looking at the
inter-spike interval (ISI) distributions and auto-/cross-correlation plots.
For more details on the spike sorting procedure, see the description
for the previous experiment in Brochier et al. (2018).

Per channel, each unit is stored under an ID. Invalidated spikes
during offline sorting are assigned to unit ID = 255. Spikes that are
considered noise are sorted into unit ID = 0.

spike sorting using the raw data The sorter loads the recorded
signals (0.3 Hz-7500 Hz) into the Plexon Offline Sorter, high-pass fil-
tered the signal with a (non-causal) 4-th order Butterworth filter with
cutoff frequency 500 Hz, then set the threshold offline by inspecting
the noise floor, and performed the sorting as explained above.

The sorting result is then stored in a .plx-file, but the unit IDs are
chosen analogously to the .nev-file.

a.1.3 Automatic spike sorting on the raw data

The number of sessions that are manually sorted is limited and in-
creasing this number is a time-consuming process in the V4A-project.
Per session, the manual sorter would need to sort 96+ 128 = 224 chan-
nels: Optimistically assuming that this takes about two minutes per
channel, the sorter would spend 448 min ∼ 7.5 h. This quickly exceeds
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feasibility, thus automatic sorting alternatives are required. In addition
to the time argument, algorithmic solution would be beneficial for
reproducibility of the sorting result.

To increase the usable database, I assembled a pipeline via Snake-
make (Köster et al., 2012) that uses SpikeInterface (Buccino et al., 2020)
to run automatic spike sorters.

As the number of neurons for the arrays in primary motor cor-
tex (M1)/dorsal premotor cortex (PMd) obtained from the manually
sorted sessions seemed large enough, within the scope of the thesis, I
restricted the pipeline to run only on the visual and parietal arrays.

Furthermore, as detailed in Chapter 4, the signal of multiple elec-
trodes is highly correlated, which is likely caused by crosstalk. In
Section 4.4 we proposed a way to exclude these channels before run-
ning spike extraction and spike sorting. After a visual inspection of
the scatter plot between the maximal correlation coefficient and the
synchrofact percentage, channel exclusion thresholds on these two
quantities were set manually, and hence electrodes were excluded
before spike sorting.

The overall strategy for the sorting and the subsequent analysis was
the following: Instead of optimizing the result for the spike sorting
(a blind source separation problem (Buccino et al., 2022) which is a
difficult problem due to the lack of a ground truth), we wanted to
devise a sorting and analysis pipeline to show the robustness of a
neuroscientific result across spike sorters.

For the scope of the thesis, we restricted this pipeline to two au-
tomatic spike sorters that were simple to set up on the local cluster
and did not require GPU access: tridesclous (Garcia et al., 2015) and
Mountainsort4 (Chung et al., 2017).

running spikeinterface The practical steps to run an auto-
matic sorting in SpikeInterface are quickly described here: SpikeInter-
face works with a lazy procedure, that mean that the steps that shall
be executed are first defined and only executed if necessary. This is
beneficial in the context of spike sorting, because potentially large
amounts of data have to be processed at once, taking considerable
amounts of time.

SpikeInterface supplies a routine to load data from Blackrock source-
files, which allow load raw data from the .ns6-files. After loading all
channels, only those that survived the artifact removal are retained.
These signals are then spectrally band-pass filtered between 250 Hz
and 7500 Hz.

SpikeInterface allows the treatment of various recording devices,
among other things high-density probes for which the probe geome-
try is crucial to know about the distances between probes and thus
requires the defintion of a probefile. I defined a generic probefile
specifying a 128-channel Utah array and filled the retained recording
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channels into that probe disregarding the actual positions. Generally,
the distances between electrodes in the Utah array, with the distance
between neighboring electrodes being d = 0.4 mm, are far enough
apart to not record from the same neuron, justifying that simplifying
approach.

Finally, the sorters are run with the parameters given in Table A.1
and Table A.2 and the sorting output is saved into separate destina-
tions. This output can be loaded, post-processed (e.g. annotated with
quality metrics) and saved in a format that is readable via neo, here I
chose the phy-format.

In the chosen setup, the sorters in SpikeInterface treat the signals as
if they stem from a high-density probe, assuming that the signal ap-
pearing on one electrode could also be observed on another electrode.
Both tridesclous and Mountainsort4 define a template waveform per
unit that is defined. This template waveform has a corresponding
amplitude on each electrode, and this amplitude is maximal for the
actual recording electrode, the extremum channel.

In a last step to integrate the new sortings into the preprocessed
.nix-files, I load the the phy-data per sorter into neo and append
them with the appropriate annotations to the V4A-data. Before using
these automatically sorted units in the analysis I require a few quality
metrics to be met. These are described in the following.

parameter value

chunk_duration 1 s

chunk_memory None

chunk_size None

common_ref_removal False

detect_sign −1

detect_threshold 5

freq_max 7500 Hz

freq_min 250 Hz

n_jobs 1

nested_params None

progress_bar True

total_memory None

Table A.1: Parameters Tridesclous.

a.1.4 Post-processing quality metrics

Spike sorting is a hard problem as it lacks a ground truth and faces
challenges inherent to the data: For example, it might occur that
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parameter value

adjacency_radius −1

clip_size 40

detect_interval 10

detect_sign −1

filter True

freq_max 7500 Hz

freq_min 250 Hz

num_workers 1

tempdir None

whiten True

Table A.2: Parameters Mountainsort4. The clip size parameter was previously
determined by Sridhar (2020). The adjacency radius set at −1 was
set as default and used. It allow spikes to be detectable on all
channels. We observed in complexity distributions that this setting
effectively remove any synchrofacts, including chance synchrony.

during a long recording session, the movement of the monkey leads
to a slight shift of the neural tissue with respect to the electrode, such
that at the beginning of the session a neuron clearly detectable, but
vanishes later in the session. Or, multiple nearby neurons have very
similar waveform shapes, such that they are assigned to the same unit.
Furthermore, the extraction via a fixed threshold can lead to missing
spikes, if due to counteracting signal fluctuations the threshold is not
crossed.

Quality metrics allow an assessment of these errors and were ap-
plied with the parameters listed in Table A.3 in a post-processing step
to choose units for subsequent analysis. The choice of parameters was
inspired by a tutorial by the Allen Institute for Brain Science (2022).

metric requirement

Firing rate > 1 Hz

Waveform SNR > 2.5

Presence ratio > 0.9

Amplitude cutoff < 0.1

ISI violations < 0.5

Table A.3: Quality metrics required per spiketrain.

In the following, each parameter will be briefly explained.

firing rate The firing rate is a quantity that describes the number
of spikes in a given duration. To relate the activity of a single unit
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to the behavior as in Chapter 5, a certain amount of spikes are nec-
essary. Effects of drift, that would lead to a decreased firing rate and
require a more local-in-time measure, are neglected as recording with
chronically implanted Utah arrays are assumed to be rather stable.

waveform SNR The waveform SNR is defined to quantify the reli-
ability or consistency of the waveforms that have been assigned to a
unit. In contrast to the

waveform SNR, the
electrode SNR
evaluates the actual
recording electrode
by relating the signal
(e.g. peak-to-peak
amplitude voltage) to
the noise level (e.g.
standard deviation of
the recorded voltage).
Here, the impedance
of an electrode
determines its
sensitivity: The
higher the
impedance, the larger
the needed voltage to
drive a current
through that
electrode and vice
versa.

Throughout this thesis, the following definition (Hatsopoulos et al.,
2007b; Kelly et al., 2007; Nordhausen et al., 1996; Suner et al., 2005)
was used:

SNRwaveform =
max

(
W
)
− min

(
W
)

2 × std(W)
, (A.1)

where the bar denotes the mean and W is a matrix containing all
the waveforms. Each row of W contains a waveform

W =


w1

w2

...

wK

 (A.2)

=


v1(τ1), v1(τ2) · · · v1(τS)

v2(τ1), v2(τ2) · · · v2(τS)
...

v3(τ1), v3(τ2) · · · v3(τS)

 (A.3)

with vi(τj) being the voltage sample the i-th threshold crossing
(i ∈ 1, . . . , K) on the j-th sample (j ∈ 1, . . . , S, with S the number of
samples per waveform) at time τj relative to the threshold crossing.
std(W) is the column-wise standard deviation (per τj) and std(W) its
mean.

A weaker electrode SNR is likely to lead to a weaker waveform
SNR. We aimed to focus the analysis on well-defined, stable units
and wanted to reject eventual common noise artifacts (see Chapter 4).
Therefore, we chose a rather strict threshold.

presence ratio For the calculation of the presence ratio, the
whole duration is split into 100 equally long epochs and the percentage
of epochs containing a spike is evaluated. In principle this measure
could detect units that drift out of the recording. In our dataset, it
could reject units that arose due to the common noise artifacts (see
Chapter 4) that drifts over time. The drawback is, that highly selective
spike responses might be rejected.
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amplitude cutoff The amplitude cutoff evaluates how strongly
the distribution of spike amplitudes is truncated by the chosen thresh-
old. If a large part of the distribution is cut off, it could mean that
many spikes just fell below the threshold and the detected spike train
gives incomplete information about the actual neurons firing.

According to Allen Institute for Brain Science, 2022, an amplitude
cutoff of 0.1 would indicate that approximately 10 % of spikes are
missing from this unit.

ISI violations As discussed in Section 1.1 neurons have a refrac-
tory period after emitting an action potential, that prevents further
spiking during approximately 1.5 ms. If the ISI distribution has entries
that are < 1.5 ms, this refractory period is violated and it is likely that
the violating spike originates from a different neuron.

The ISI violation metric Hill et al., 2011 measures the firing rate of
the contaminating neuron relative to the “true” neuron. A value of 0.5
thus indicates the contaminating spikes occur at half the rate of the
“true” neuron.
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a.2 vision-for-action - artifacts

Figure A.1: Panel illustrating features of the artifact called crosstalk. The
data shown in this figure stem from the motor array recorded in
session y180306-land-001. Figure organization is the same as in
Figure 4.4.
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Figure A.2: Spike times and filtered raw signals showing a common noise
signature called short blip. Both panels are aligned to t =
516.0403 s and show data from the visual-parietal arrays in
y180306-land-001. The figure shows the same details as Fig-
ure 4.5
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a.3 vision-for-action - single unit activity

a.3.1 Distribution of classic preferred directions (PDs) at optimal time
lag (OTL) exhibits bimodality as well

The distribution of OTL in Figure A.3 reveals a skew towards lags,
which indicates that the neural activity precedes the hand movement
direction. We note that the mean lag of ∼ −96 ms for Enya is larger
than the lag for Jazz ∼ −23 ms. Possibly linked to that are overall
faster reaction times (data not shown) and movement velocities in Jazz
(compare e.g.Figure 5.6 and Figure 5.7).

The distribution of PDs at these OTLs Figure A.3 reproduces the
bimodality that has been observed in Figure 5.12.

Figure A.3: Summary of directional tuning OTLs and PDs - M1/PMd. Panel A
shows the distribution of OTL. The solid line shows a histogram
of OTLs within τ ∈ [−300, 300[ms. The arrows show the mean
of these distributions. For the histogram in dashed this range
is extended τ ∈ [−1, 1[ s. B The polar distribution the PDs at
OTL across all units in M1 for both monkeys. The dashed lines
show the main axis of skew of the bimodality and corresponding
p-value of the Rayleigh r test for bimodality is reported in the
legend.



182 appendix

Figure
A

.
4:(C

aption
continues

on
next

page.)



A.3 vision-for-action - single unit activity 183

Figure A.4: (Continued caption.) Summary of directional tuning OTLs and
PDs - visual and parietal areas. For an explanation of the figure
elements refer to Figure A.3.

Figure A.5: PCA of w-values

a.3.2 Neural fingerprints

a.3.3 Example neurons

Here, we complement Section 5.4.5 and show a few figures, that
demonstrate that the generalized linear model (GLM) with many re-
gressors indeed captures the relevant features of the neural response.

a.3.3.1 Visual

The example unit from secondary visual cortex (V2) introduced in the
main text exhibits a receptive field (RF) and is therefore expected to be
activated by 1. a target appearing in the RF and 2. the hand traversing
the RF. Another possible scenario is 3. a saccade that brings a visual
stimulus into the RF. We did not find evidence for 3. scenario until the
write-up of this thesis.
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Figure A.6: (Continued caption.) Example: primary visual cortex (V1)/V2 unit
with RF - β-coefficients of visual regressor block. Plot shows the
β-coefficients of the fitted GLM for all regressors included in the
visual regressor block. As explained in Section 5.2.2.6 these are
dummy variables for the possible visual stimuli for regions in
the visual field.

Figure A.7: Example: V1/V2 unit with RF - Complete GLM captures RF re-
sponse. A and B show the complete GLM fit. Notice the resem-
blance with Figure 5.14. In C and D the visual regressor block
was not included in the fit and consequently the RF structure was
not captured by the model.

a.3.3.2 Saccade

a.3.3.3 Eye position
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Figure A.8: Example: V1/V2 unit with RF - Direction tuning as predicted by
simple and complete GLMs. Upper left panel shows the directional
tuning extracted via the simple GLM (“single” regressor) while
the upper right panel shows the prediction obtained from the
complete GLM for which all regressors except for the movement-
related ones were integrated out (see Paragraph 5.2.2.6). Lower
left panel shows the normalized modulation depth in both sce-
narios and lower right panel show the weighted histogram of
PDs.
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Figure A.9: Example: dorsal prelunate (DP) unit with saccade response -
Comparison of peri-stimulus time histograms (PSTHs) in real data
and GLM prediction.
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Figure A.10: Example: DP unit with saccade response - Direction tuning as
predicted by simple and complete GLMs. Same figure content as
Figure A.8.
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Figure A.11: Example: area 7a (7a) unit with eye position gain modulation -
Comparison of PSTHs in real data and GLM prediction.
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a.4 neuronal network mean-field toolbox (nnmt)

The content of this section has been published in Layer et al. (2022b).
Analytic theories have clearly helped to our knowledge of neural

networks, and they provide a multitude of effective and efficient ap-
proaches for network model research. When comparing analytical
theory predictions to simulations, experimental data, or alternative
theories, a numerical implementation suitable to multiple network
models is required, depending on the research objective. Such imple-
mentation is sometimes difficult and requires a significant investment
of time and effort. Typically, such technologies are built as needed, and
their reuse is not planned systematically and is limited to a specific lab.
Not only are the neuroscientific community’s efforts and resources
duplicated, but many scientists are discouraged from taking full use
of such methodologies, even if they may offer up new possibilities for
researching their research issues.

We created the Python toolbox NNMT (Layer et al., 2021), short
for Neuronal Network Mean-field Toolbox, to make analytical tools
for neuronal network model analysis available to a larger part of
the neuroscientific community and to create a platform for collecting
well-tested and validated implementations of such tools. NNMT is
not a simulation tool; it is a set of numerically computed mean-field
equations that directly connect the parameters of a microscopic net-
work model to the statistics of its dynamics. NNMT was created to
accommodate the wide range of mean-field theories, and the primary
aspects we are looking for are flexibility, extensibility, and ease of use.
It also includes a thorough test suite to check the correctness of the
implementations, as well as rich user documentation. NNMT’s current
version primarily includes tools for researching networks of leaky
integrate-and-fire neurons, as well as techniques for studying binary
neurons and neural field models. The toolkit is open source and freely
accessible on GitHub1.

design considerations What are the requirements for a set of
analytical approaches for neural network model analysis? To begin, it
should be adaptable and modular enough to handle a broad variety
of analytical approaches while avoiding code duplication and a con-
voluted interdependency of package components. It should simplify
and clarify the application of the collected methods to various net-
work models. It should facilitate the usage of the tools by beginners
while providing specialists with rapid access to all parameters and
settings. Finally, methods must be thoroughly tested and meticulously
recorded.

These are the main considerations that guided the development of
NNMT. Figure A.12A,B illustrate how the toolbox can be used in to

1 https://github.com/INM-6/nnmt

https://github.com/INM-6/nnmt
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Figure A.12: Structure and workflows of the Neuronal Network Mean-field
Toolbox (NNMT). (A) Basic workflow: individual mean-field
based analysis methods are implemented as functions, called
_tools(), that can be used directly by explicitly passing the
required arguments. (B) Model workflow: to facilitate the han-
dling of parameters and results, they can be stored in a model
class instance, which can be passed to a tool(), which wraps
the basic workflow of the respective _tool(). (C) Structure
of the Python package. In addition to the tool collection (red
frame), containing the tools() and the _tools(), and pre-
defined model classes, the package provides utility functions
for handling parameter files and unit conversions, as well as
software aiding the implementation of new methods.

two different workflows, depending on the preferences and goals of
the user. In the basic workflow the individual method implementations
called tools are directly accessed, whereas the model workflow provides
additional functionality for the handling of parameters and results.

Details on the structure of the toolbox can be found in the original
paper (Layer et al., 2021).

comparison to other tools There are various approaches
and corresponding tools that can help to gain a better understanding
of a neuronal network model. There are numerous simulators that
numerically solve the dynamical equations for concrete realizations
of a network model and all its stochastic components, often focusing
either on the resolution of single-neurons, for example NEST (Gewaltig
et al., 2007), Brian (Stimberg et al., 2019), or Neuron (Hines et al., 2001),
or on the population level, for example TheVirtualBrain (Sanz Leon
et al., 2013). Similarly, general-purpose dynamical system software
like XPPAUT (Ermentrout, 2002) can be used. Simulation tools, like
DynaSim (Sherfey et al., 2018), come with enhanced functionality
for simplifying batch analysis and parameter explorations. All these
tools yield time-series of activity, and some of them even provide



192 appendix

the methods for analyzing the generated data. However, simulations
only indirectly link a model’s parameters with its activity: to gain an
understanding of how a model’s parameters influence the statistics of
their activity, it is necessary to run many simulations with different
parameters and analyze the generated data subsequently.

Other approaches provide a more direct insight into a model’s be-
havior on an abstract level: TheVirtualBrain and the Brain Dynamics
Toolbox (Heitmann et al., 2018), for example, allow plotting a model’s
phase space vector field while the parameters can be changed interac-
tively, allowing for exploration of low-dimensional systems defined
by differential equations without the need for simulations. XPPAUT
has an interface to AUTO-07P (Doedel et al., 1998), a software for per-
forming numerical bifurcation and continuation analysis. It is worth
noting that such tools are limited to models that are defined in terms
of differential equations. Models specified in terms of update rules,
such as binary neurons, need to be analyzed differently, for example
using mean-field theory.

A third approach is to simplify the model analytically and simulate
the simplified version. The simulation platform DiPDE2 utilizes the
population density approach to simulate the statistical evolution of a
network model’s dynamics. Schwalger et al. (2017) start from a mi-
croscopic model of generalized integrate-and-fire neurons and derive
mesoscopic mean-field population equations, which reproduce the
statistical and qualitative behavior of the homogeneous neuronal sub-
populations. Similarly, Montbrió et al. (2015) derive a set of non-linear
differential equations describing the dynamics of the rate and mean
membrane potentials of a population of quadratic integrate-and-fire
(QIF) neurons. The simulation platform PyRates (Gast et al., 2019)
provides an implementation of this QIF mean-field model, and allows
simulating them to obtain the temporal evolution of the population
activity measures.

However, mean-field and related theories can go beyond such re-
duced dynamical equations: they can directly link model parameters
to activity statistics, and they can even provide access to informative
network properties that might not be accessible otherwise. The spectral
bound (Rajan et al., 2006) of the effective connectivity matrix in linear
response theory (Lindner et al., 2005a; Pernice et al., 2011; Trousdale
et al., 2012) is an example of such a property. It is a measure for the
stability of the linearized system and determines, for example, the
occurrence of slow dynamics and long-range correlations (Dahmen
et al., 2022). Another example is the sensitivity measure presented in
Section 6.2.4.3, which directly links a network model’s connectivity
with the properties of its power spectrum. These measures are not
accessible via simulations. They require analytical calculation.

2 http://alleninstitute.github.io/dipde

http://alleninstitute.github.io/dipde
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Similarly, NNMT is not a simulator. NNMT is a collection of mean-
field equation implementations that directly relate a model’s parame-
ters to the statistics of its dynamics or to other informative properties.
It provides these implementations in a format that makes them appli-
cable to as many network models as possible. This is not to say that
NNMT does not involve numerical integration procedures; solving
self-consistent equations, such as in the case of the firing rates calcu-
lations in Section 6.2.3 and Section 6.2.3.1, is a common task, and a
collection of respective solvers is part of NNMT.

limitations As a collection of analytical methods, NNMT comes
with inherent limitations that apply to any toolbox for analytical meth-
ods: it is restricted to network, neuron, and synapse models, as well
as observables, for which a mean-field theory exists, and the tools are
based on analytical assumptions, simplifications, and approximations,
restricting their valid parameter regimes and their explanatory power,
which we expand upon in the next paragraphs.Analytical methods
can provide good estimates of network model properties, but there
are limitations that must be considered when interpreting results pro-
vided by NNMT: First of all, the employed numerical solvers introduce
numerical inaccuracies, but they can be remedied by changing hy-
perparameters such as integration step sizes or iteration termination
thresholds. More importantly, analytical methods almost always rely
on approximations, which can only be justified if certain assumptions
are fulfilled. Typical examples of such assumptions are fast or slow
synapses, or a random connectivity. If such assumptions are not met,
at least approximately, and the valid parameter regime of a tool is left,
the corresponding method is not guaranteed to give reliable results.
Hence, it is important to be aware of a tool’s limitations, which we
aim to document as thoroughly as possible.

An important assumption of mean-field theory is uncorrelated Pois-
sonian inputs. As discussed in Section 6.2.3, asynchronous irregular
activity is a robust feature of inhibition dominated networks, and
mean-field theory is well-suited to describe the activity of such mod-
els. However, if a network model features highly correlated activity, or
strong external input common to many neurons, approximating the
input by uncorrelated noise no longer holds and mean-field estimates
become unreliable.

In addition to the breakdown of such assumptions, some approaches,
like linear response theory, rely on neglecting higher order terms. This
restricts the tools’ explanatory power, as they cannot predict higher
order effects, such as the presence of higher harmonics in a network’s
power spectrum. Addressing these deficiencies necessitates using more
elaborate analyses, and users should be aware of such limitations when
interpreting the results.
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Finally, a specific limitation of NNMT is that it currently only collects
methods for LIF neurons. However, one of the aims of this paper is
to encourage other scientists to contribute to the collection, and we
outline how to do so in the following section.
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a.5 vstripes

a.5.1 Delay distributions

In Fourier space the delay term can be separated in the expression
for the effective connectivity matrix, that governs the observed rate
fluctuations

Md,ij(ω) = Mij(ω)e−iωdij .

The exponential term e−iωdij stands for the average over all possible
values for the delay dij

e−iωdij =
∫ ∞

−∞
e−iωy p(y)dy ,

where p(y) denotes the probability density function for the delays.
Explicit expressions for delays distributed by truncated Gaussian,
exponential, uniform or log-normal distributions are derived in the
supplementary.

The microcircuit model by default is initialized with delays, which
are drawn from a truncated Gaussian probability distribution. The
truncation allows, physically and biologically necessary, only positive
values for the delay.

The parameters for exponential and uniform distribution were cho-
sen such that they match the mean of the (default) truncated Gaussian
distribution, whereas the log-normal delay distribution was chosen
to match its mean and standard deviation. The resulting probability
density functions in time domain are shown in Figure 7.7.

The changes in the mean and the standard deviation of truncated
Gaussian distribution with respect to the untruncated Gaussian are
neglected for simplicity.

a.5.1.1 Truncated Gaussian distribution

One can define a truncated Gaussian on the interval [a, b], a < b in
terms of the mean µG and standard deviation σG of an un-truncated
Gaussian by defining the variables

α =
a − µG

σG
,

β =
b − µG

σG
.

The mean of the truncated Gaussian are then be defined as
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µt = µG − σG · ϕ(β)− ϕ(α)

Φ(β)− Φ(α)

with

ϕ(x) =
1√
2π

e−
x2
2

and

Φ(x) =
1
2

[
1 + erf

(
x√
2

)]
where

erf(x)=
2√
π

∫ x

0
e−t2

dt .

A truncated Gaussian distribution can be obtained numerically
by re-drawing those samples from a normal Gaussian, that fall out-
side the range of definition of the truncated Gaussian. The effective
connectivity with truncated Gaussian delays can be written as

Md,ij(ω) = Mij(ω)

1 − Φ
(

−µij+iωσ2
ij

σij

)
1 − Φ

(−µij
σij

) e−iωµij e−
σ2

ijω2

2 .

a.5.1.2 Exponential distribution

The probability density function for the exponential distribution is
given by

p(x; λe) = λee−λex ,

and hence

e−iωdij =
∫ ∞

−∞
e−iωy p(y)dy

=
∫ ∞

0
e−iωyλee−λeydy

= λe

∫ ∞

0
e−(iωy+λe)ydy

= − λe

iω + λe

[
e−(iωy+λe)y

]y=∞

y=0

=
λe

iω + λe
ifλe,ω ≥ 0 .
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The mean and standard deviation of the exponential are both
defined as µe = σe = 1

λe
. As it is not possible to fit both parame-

ters to those of a truncated Gaussian, just the mean was matched
µt = µe → λe =

1
µt

. The effective connectivity with exponential delays
can be written as

Md,ij(ω) = Mij(ω)
λ

iω + λ

a.5.1.3 Uniform distribution

The probability density function for the uniform distribution is given
by

p(x; a, b) =
1

b − a
,

and hence

e−iωdij =
∫ ∞

−∞
e−iωy p(y)dy

=
∫ ∞

0
e−iωy 1

b − a
dy

= − 1
(b − a)iω

[
e−(iωy+λe)y

]y=b

y=a

=
1

(b − a)iω

(
e−iωa − e−iωb

)
.

The mean of a uniform distribution between a and b is given by its
arithmetic mean µu = a+b

2 , while the standard deviation is defined as
σu = b−a√

12
. . As it is not possible to fit both parameters to those of a

truncated Gaussian, just the mean was matched µt = µu → a + b =

2µt. To obtain the best correspondence between the two distributions,
a was chosen to be 0, therefore b = 2µt. The effective connectivity with
uniform delays can be written as

Md,ij(ω) = Mij(ω)
1

(b − a)iω

(
e−iωa − e−iωb

)
.

Log-normal distribution

The probability density function for the log-normal distribution is
given by

p(x; µlog, σlog) =
1

xσlog
√

2π
e−

(ln(x)−µ)2

2σ2 .
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An analytic solution for the averaging could not be obtained, thus
a numeric integration was performed by splitting the integral into
its real and its imaginary part and integrating separately. Validity of
the integration was checked by confirming the cumulative probability
equaling one.

The mean of the log-normal distribution is defined by

µ̃log = eµlog+
σ2

log
2 ,

where µlog, and σ2
logare the mean and standard deviation of the

normal distribution on the log-scale. The standard deviation is defined
by

σ̃2
log =

(
eσ2

log − 1
)

e2µlog+σ2
log .

The two parameters can be fitted such that the mean and standard
deviation of log-normal distribution and truncated Gaussian are equal
by solving equating µ̃log = µtand σ̃2

log = σ2
t which is satisfied if

σ2
log = 2

(
ln µt−µlog

)
and inserting this into µ̃log = µt yields

µlog = 2lnµt −
ln
(
σ2

t + e2lnµt
)

2

and thus leads to

σ2
log = ln

(
σ2

t + e2lnµt
)
− 2lnµt

Md,ij(ω) =
∫ ∞

0
e−iωxMij(ω)

1
xσlog

√
2π

e−
(ln(x)−µ)2

2σ2 dx

a.5.2 Rule out simulation artifacts

It has been shown that solving the differential equations for neuron
dynamics on a discrete time grid can lead to an artificial synchro-
nization of neuronal network activity.(Hansel et al., 1998; Morrison
et al., 2007). In order to rule out this effect as cause for the observed
high-frequency oscillations, control simulations have been run with all
combinations of discrete or continous spiketimes and delays. Figure
A.13 shows the corresponding raster plots on the left and the power
spectra on the right. It is notable that the high-frequency peak in the
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Figure A.13: Rule out simulation artifacts. (A) Continuous spiketimes, con-
tinuous delays (B) Continuous spiketimes, discrete delays, (C)
discrete spiketimes, continuous delays and (D) discrete spike-
times, discrete delays

power spectrum remains visible for all simulations, suggesting that
the articial synchronization is not the causing factor. The exact realiza-
tion of the spikes, however, differs as can be seen in the raster plots.
Furthermore there is a slight shift of the high-frequency peak (∼ 340
Hz) towards lower frequencies but larger power for the simulation
with discrete spike times and continuous delays.

a.5.3 Ad-hoc correction to align simulation and theory

In Chapter 7, we argue that there are three main influences in our
network simulations, that, if manipulated, can change the power
spectrum of the population activity.

The connectivity was extracted from the experimental data to the
best of the modeler’s knowledge. And the mean firing rates (given the
connectivity) match what is observed in experiments.

The delay distribution was shown above to have minor effects on
the eigenvalue trajectories, assuming the mean delays are biologically
correct.

For the transfer function, the situation is not as clear: Currently there
are two ways of approximating the colored-noise transfer function
up to the order O(k) with k =

√
τs/τm: in Schuecker et al., 2014 it

is demonstrated that using effective integration boundaries in the
expression of the white-noise case is equivalent to a Taylor expansion
up to order O(k) of the full colored-noise expression. The meanfield
prediction of the original Potjans-Diesmann model calculated using
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Figure A.14: Mean-field theory predict microcircuit lives in instable regime.

the shift of the integration boundary leads to one eigenvalues lying
on top of the point of instability leading to exploding activity at the
corresponding frequency. During the derivation of these equations, a
few assumptions on the validity for high frequencies > 100 Hz are
made (see 6.2.4.1). The systematic mismatch between simulations and
theory mainly occurs for high frequencies and has the tendency, that
the theory overestimates the activity for high frequencies.

As a consequence, we propose that an additional low-pass filter
can be applied to the effective connectivity matrix, which leads to a
shifting of the eigenvalues towards smaller real values and thus away
from the instability and such that they pass it on the left. For a number
of simulated circuit, such an ad-correction yields a better prediction
of the resulting power spectra as the original theory (see FigureA.14).

The adapted effective connectivity matrix is then given by:

M̃d(ω) = τmN′
cn,s(ω) · J ⊙ K ⊙ D(ω) (A.4)

with a modified transfer function N′
cn,s(ω) that contains an addi-

tional low-pass filter with cutoff-frequency ωc.
Figure A.14 shows a comparison of power spectra for the simulates

Bos model and isolated V1 the prediction produced by the modified
transfer functions with additional low-pass filter using two differ-
ent cutoff-frequencies ωc. It is visible that the power spectra peak
for high-frequencies now has a similar magnitude as the peak from
the simulations. and eigenvalue trajectories behaved as expected an
effectively rotated away from the point of instability.
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