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Abstract
We present a stable mixed isogeometric finite element formulation for geometrically and
materially nonlinear beams in transient elastodynamics, where a Cosserat beam formulation
with extensible directors is used. The extensible directors yield a linear configuration space
incorporating constant in-plane cross-sectional strains. Higher-order (incompatible) strains
are introduced to correct stiffness, whose additional degrees of freedom are eliminated by
an element-wise condensation. Further, the present discretization of the initial director field
leads to the objectivity of approximated strain measures, regardless of the degree of basis
functions. For physical stress resultants and strains, we employ a global patch-wise ap-
proximation using B-spline basis functions, whose higher-order continuity enables using
much fewer degrees of freedom than an element-wise approximation. For time-stepping, we
employ implicit energy–momentum consistent scheme, which exhibits superior numerical
stability in comparison to standard trapezoidal and mid-point rules. Several numerical ex-
amples are presented to verify the present method.

Keywords Beam · Extensible directors · Objectivity · Mixed formulation · Warping ·
Implicit dynamics

1 Introduction

A Cosserat beam represents a slender object described by a spatial curve with two attached
directors at each material point. Those directors span the (planar) cross-section and are often
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assumed to be orthonormal so that they can be parameterized by three rotational parameters.
It has been shown that a standard finite element approximation of three-dimensional rota-
tion parameters can lead to a loss of frame-invariance of the underlying continuous strains
due to the nonadditive nature of finite rotations, see Crisfield and Jelenić [11] and Jelenić
and Crisfield [20] for the relevant investigation and its remedies using the concept of local
rotation. For a comprehensive review of different types of rotational parameterizations for
nonlinear beams, one may refer to Romero [33]. It has also been shown that a direct finite
element approximation of the director vectors can circumvent this issue, which, however, re-
quires an additional constraint for the directors’ orthonormality. For example, this constraint
can be imposed at the nodal points using a Lagrange multiplier method (Betsch and Stein-
mann [2]) or introducing nodal rotational parameters (Gruttmann et al. [18], Romero and
Armero [34]). On the other hand, this orthonormality constraint can be simply abandoned
so that one has two independent extensible (unconstrained) directors, which represent in-
plane shear and transverse normal strains of the cross-section. This increases the number of
degrees of freedom (DOFs) per cross-section from six to nine, but the configuration space
becomes linear, R9. The relevant approaches can be found, e.g., in Rhim and Lee [32], Coda
[10], Durville [13], and Choi et al. [7]. Note that these approaches based on a direct finite
element approximation of the director field may have a singularity in coarse meshes, when
the directors’ orientation changes abruptly along the length (Romero [33, Sect. 4.3]). The
direct finite element approximation of (total) directors implies that the initial director field
is also approximated. A continuous (exact) representation of the initial director field, incon-
sistent with the finite element approximation, may lead to a loss of objectivity. In Choi et al.
[9, Sect. 6.2], it turned out that using a reduced degree of basis pd for the change of directors
lower than that of the initial (continuous) director field may result in the inability to repre-
sent rigid body rotations. In the present paper, we present a finite element approximation
of the initial director field such that the objectivity is satisfied for any degree pd. For the
relevant discussion on the objectivity under Kirchhoff beam kinematics, we refer interested
readers to Meier et al. [26].

Out-of-plane warping means a cross-sectional deformation such that an initially planar
cross-section does not remain plane. It can be coupled with other deformation modes like
bending, shear, or torsion. In order to take this into account in Timohsenko beam kinemat-
ics, Simo and Vu-Quoc [38] introduced an additional DOF representing the amplitude of
warping, and it is multiplied by a pre-defined warping function to produce an out-of-plane
displacement, which has also been applied in the framework of unconstrained directors in
Coda [10]. This has been extended by Klinkel and Govindjee [23] to deal with anisotropic
linear elastic materials exhibiting a bending-torsion coupling. In these previous works, the
additional DOF for warping leads to nonstandard stress resultants, bi-moment, and bi-shear
in the equilibrium equations. See also Nukala and White [29] for a relevant approach with
simplified shear strains such that the transverse shear strain and the warping shear strain due
to nonuniform torsion are neglected. In the framework of an enhanced assumed strain (EAS)
method (Simo and Rifai [36]), one can enhance the cross-sectional strains that do not exist
in the compatible strain field from the configuration. This requires additional constraints like
orthogonality between the enhanced strain and the stress field. Wackerfuß and Gruttmann
[41] presented a construction of global polynomial basis functions of arbitrary order for
the enhanced cross-sectional strains. This has been extended to incorporate arbitrary (open)
cross-section shapes by using a local polynomial basis in Wackerfuß and Gruttmann [42],
which has also been employed in Klarmann et al. [22] for a coupling between beam and
brick elements. In the present work, the construction of global polynomial basis functions
needs to be more generalized in order to account for the additional deformation modes in the
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compatible strain field, such as transverse normal and in-plane shear strains, due to the ex-
tensible (unconstrained) directors. An alternative way to incorporate warping, which, how-
ever, requires an increased number of global DOFs, is to use higher-order directors (Choi
et al. [8], Moustacas et al. [28]). One may also consider using multiple brick (solid beam)
elements in the cross-section, e.g., as in Frischkorn and Reese [15].

The total linear momentum, total angular momentum, and total energy are fundamental
integral quantities of motion in nonlinear elastodynamics, and their conservation (under
suitable boundary conditions) manifests the stability of a numerical time-stepping scheme.
For nonlinear problems, the standard trapezoidal rule, corresponding to β = 1/4 and γ =
1/2 in the Newmark family, preserves the total linear momentum but neither the total angular
momentum nor the total energy (Simo et al. [39]). The standard mid-point rule preserves
the total linear and angular momentums but not the total energy (Gonzalez [16]). It has
been shown that time-stepping schemes that preserve the conservation laws underlying the
time-continuous form show superior numerical stability compared with standard ones like
the trapezoidal and mid-point rules. A class of these energy-momentum-consistent (EMC)
algorithms can be obtained by modifying the (implicit) mid-point rule. For example, one
may refer to the algorithmic treatment of the stress resultant in Romero and Armero [34],
and Betsch and Janz [1] for geometrically nonlinear beam and shell problems, respectively,
and Gonzalez [16] for general (nonlinear) hyperelastic materials.

The paper is organized as follows. In Sect. 2, we introduce the beam kinematics based on
the extensible directors. Section 3 presents a mixed variational formulation for nonlinear dy-
namics of beams, which includes an EAS method for enriching higher-order cross-sectional
strains. Section 4 presents an implicit time-stepping scheme for energy–momentum consis-
tency. Section 5 presents an isogeometric spatial discretization. In Sect. 6, several numerical
examples are presented. Section 7 concludes the paper.

2 Beam kinematics

This section presents the kinematical description of Cosserat beams, based on extensible
directors, and the resulting configuration–strain relation. A beam characterizes a three-
dimensional body whose dimension along the longitudinal direction is much larger than
the others such that a suitable kinematical assumption on the cross-sectional deformation
can be employed. The origin of the transverse coordinates ζ α (α ∈ {1,2}) is given by the ge-
ometrical center of the initial cross-section, which coincides with the mass center, assuming
constant mass density in the initial configuration. The line connecting these center points is
called an initial center axis whose position is represented by the vector ϕ0(s), s ∈ [0,L],
where s denotes its arc-length coordinate, and L denotes its length. Then, the initial beam
configuration can be expressed by

x0(ζ
1, ζ 2, s) = ϕ0(s) + ζ αDα(s), (1)

where the two orthonormal vectors Dα(s) ∈ R
3 (α ∈ {1,2}) are called initial directors, and

they span the initial cross-sectional plane, A0 in Fig. 1. Those initial directors are defined
along two principal directions of the cross-section’s second moment of inertia. Here and
hereafter, unless stated otherwise, repeated Greek indices like α, β , and γ imply summation
over 1 to 2, and repeated Latin indices like i and j imply summation over 1 to 3. The
initial directors are unit vectors and dimensionless, such that the cross-sectional dimension
is associated with the range of the transverse coordinates

(
ζ 1, ζ 2

) ∈ A ∪ ∂A, where A
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Fig. 1 A schematic illustration of
the beam kinematics. B0 and Bt

denote the (open) domains of the
initial (undeformed) and current
configurations, respectively. e1,
e2, and e3 represent the global
Cartesian base vectors. This
figure is redrawn with
modifications from Choi et al. [9]

Fig. 2 A schematic illustration of the reference domain of a beam having a rectangular cross-section with
dimension h1 × h2. B denotes the (open) domain of the reference configuration. This figure is redrawn with
modifications from Choi et al. [9]

denotes the (open) domain of the (initial) cross-section and ∂A denotes its boundary, see
Fig. 2. It should be noted that the transverse coordinates ζ α are independent of time. In
the initial configuration, we define the covariant basis Gi := ∂x0/∂ζ i (i ∈ {1,2,3}) with
ζ 3 ≡ s, and the contravariant basis

{
G1,G2,G3

}
can then be uniquely determined by the

orthogonality condition Gi · Gj = δ
j

i , where δ
j

i denotes the Kronecker-delta.

Remark 2.1 Initial curvature. The initial covariant base vectors are obtained by (Choi et al.
[7])

⎧
⎪⎪⎨

⎪⎪⎩

G1 = D1(s),

G2 = D2(s),

G3 = ϕ0,s (s) + ζ αDα,s(s).

(2)

The infinitesimal volume in the initial configuration can be decomposed into

dB0 = j0 dAds, (3)

where the Jacobian is expressed by

j0 := (G1 × G2) · G3 = 1 − ζ ακα, (4)

with

κα := ϕ0,ss · Dα, α ∈ {1,2} , (5)

which is associated with the initial curvature of the center axis, for a given initial center
axis curve ϕ0 ≡ ϕ0(s) and the attached initial directors Dα ≡ Dα(s). Note that, for initially
straight beams or linear elements, κα = 0 so that j0 = 1.
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We introduce the first-order beam kinematics, which expresses the current position of a
material point, as

x(ζ 1, ζ 2, s, t) = ϕ(s, t) + ζ αdα(s, t), (6)

where ϕ(s, t) denotes the current position of the center axis, and the current cross-sectional
plane is spanned by two current directors dα(s, t) ∈ R

3 (α ∈ {1,2}), see Fig. 1. Here,
t ∈ [0, T ] denotes time, where T represents the terminal time. We obtain the velocity by
differentiating Eq. (6) with respect to time, as

ẋ(ζ 1, ζ 2, s, t) = ϕ̇(s, t) + ζ α ḋα(s, t), (7)

where the upper dot denotes the material time derivative. Hereafter, for brevity, we often
omit the arguments, e.g., x ≡ x(ζ 1, ζ 2, s, t), ϕ ≡ ϕ(s, t) and dα ≡ dα(s, t). Further, we

define a configuration variable y := [
ϕT,dT

1 ,dT
2

]T ∈R
d , where d = 9 denotes the number of

independent cross-sectional components.

2.1 Geometric strain: strain-configuration relation

We may represent a three-dimensional strain state of a beam by so called beam strains
evaluated at the center axis. In the current configuration, we define the covariant basis
gi := ∂x/∂ζ i (i ∈ {1,2,3}), and then the contravariant basis

{
g1,g2,g3

}
can be uniquely

determined by the orthogonality condition gi · gj = δ
j

i . Then, the deformation gradient ten-
sor F can be expressed by (Wriggers [43, page 31])

F := ∂x/∂x0 = gi ⊗ Gi . (8)

The Green-Lagrange strain tensor E ≡ E(y) is defined by

E(y) := 1

2

(
F TF − 1

)= Eij Gi ⊗ Gj , (9)

where 1 denotes the identity tensor. In Voigt notation, we have

E := [E11,E22,E33,2E12,2E13,2E23]T = A(ζ 1, ζ 2)ε(y), (10)

where the underline (•) denotes Voigt notation of a second-order tensor, and we have defined
the matrix A ≡ A(ζ 1, ζ 2) (Choi et al. [7])

A(ζ 1, ζ 2) :=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 ζ 1 ζ 2 ζ 1ζ 1 ζ 2ζ 2 ζ 1ζ 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 ζ 1 ζ 2 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 ζ 1 ζ 2 0 0 0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,

(11)

and the beam strain components

ε := 1

2
(
∥∥ϕ,s

∥∥2 − 1), (12a)
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ρα := ϕ,s ·dα,s − ϕ0,s ·Dα,s , (12b)

δα := ϕ,s ·dα − ϕ0,s ·Dα, (12c)

γαβ := dα ·dβ,s − Dα ·Dβ,s , (12d)

χαβ := 1

2
(dα ·dβ − Dα ·Dβ), (12e)

καβ := 1

2

(
dα,s ·dβ,s − Dα,s ·Dβ,s

)
, (12f)

α,β ∈ {1,2}, which are arrayed in the form

ε(y) := [ε,ρ1, ρ2, κ11, κ22,2κ12, δ1, δ2, γ11, γ12, γ21, γ22, χ11, χ22,2χ12]T ∈ R
dp , (13)

where dp = 15 denotes the number of independent strain components. Those beam strain
components are called

ε : axial strain,

ρ1, ρ2 : bending strain,

κ11, κ22, κ12 : higher-order bending strain,

δ1, δ2 : transeverse shear strain,

γ11, γ12, γ21, γ22 : couple shear strain,

χ11, χ22, χ12 : in-plane stretching and shear strains.

Note that κ12 = κ21 and χ12 = χ21. We call ε(y), expressed in terms of the configuration
variable y, a geometric strain, which represents the strain-configuration relation, whose
objectivity is proved in Sect. A.1.

3 Mixed variational formulation

This section presents a mixed variational formulation for nonlinear transient dynamics of
beams based on the kinematics in Sect. 2.

3.1 Variational forms

3.1.1 Total strain energy: Hu-Washizu principle

Based on the Hu-Washizu variational principle, the total strain energy, UHW ≡ UHW(y,Ep,

Sp), can be expressed, using Eq. (3), as

UHW :=
∫ L

0

∫

A

[
Ψ
(
Ep

)+ {
E(y) − Ep

} : Sp

]
j0 dAds, (14)

where Ψ
(
Ep

)
denotes the strain energy density per unit undeformed volume, expressed in

terms of the physical (independent) Green-Lagrange strain tensor, Ep. The compatibility
condition,

E(y) = Ep, (15)
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is enforced by a Lagrange multiplier method, where the Lagrange multiplier Sp can be
interpreted as the physical second Piola-Kirchhoff stress tensor. This type of variational
formulation is motivated by the following:

• The introduction of an independent strain Ep aims at an alleviation of numerical lock-
ing due to the parasitic terms in the compatible (geometric) strain E(yh) from the finite
element approximation of the configuration variable, y ≈ yh.

• The introduction of an independent stress field Sp alleviates the overestimation of in-
ternal force at inequilibrium configurations, which turns out to allow much larger load
increments compared with the displacement-based formulation.

The relevant investigations can be found in, e.g., Klinkel et al. [24] for elastostatics, and
Betsch and Janz [1] for elastodynamics. Further, we may enhance the physical strain field,
as (Büchter et al. [3], Simo and Rifai [36])

Etot = Ep︸︷︷︸
kinematic

+ ˜E︸︷︷︸
enhanced

, (16)

where ‘tot’ means ‘total’, and the ‘kinematic’ part means its compatibility with the geomet-
ric (compatible) strain, E(y) in Eq. (15). Substituting Eq. (16) into Eq. (14), the total strain
energy in Eq. (14) can be rewritten as

UHW=
∫ L

0

∫

A

[
Ψ
(
Etot

)+ {
E(y) − Ep

} : Sp
]
j0 dAds, (17)

where the following orthogonality condition is utilized

∫

A
˜E : Sp j0 dA = 0. (18)

The compatibility in Eq. (15) enables us to represent the three-dimensional strain state in
terms of the physical strain εp ≡ εp(s, t) ∈R

dp , as

Ep = A(ζ 1, ζ 2)εp(s, t), (19)

as in Eq. (10). This, so called an enhanced assumed strain (EAS) method is introduced to
correct stiffness, which, especially, takes the following into account:

• Correction of the bending stiffness, considering the fact that a bending deformation may
lead to (at least) linear in-plane cross-sectional strain due to nonzero Poisson’s ratio.

• Correction of the torsional stiffness, considering the fact that torsion may induce cross-
sectional warping.

• Correction of the transverse shear stiffness.

The enhanced strain can also be represented by the parameters α ∈R
da , as

˜E = 𝚪(ζ 1, ζ 2)α(s, t), (20)



622 M.-J. Choi et al.

with the following matrix of basis functions (Wackerfuß and Gruttmann [41])

𝚪
(
ζ 1, ζ 2

)=

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

w1

w1

w3

w2

w4,1

w4,2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

6×da

, (21)

where the blank entries represent zeros, and (•),α denotes the derivative with respect to ζ α

(α ∈ {1,2}). Here, w1, w2, w3, and w4 denote row arrays of the global polynomial basis
functions for enriching the transverse normal (Ẽ11, Ẽ22), in-plane shear (Ẽ12), axial normal
(Ẽ33), and transverse shear (Ẽ13, Ẽ23) strains, respectively.

Remark 3.1 For the transverse shear strains (Ẽ13, Ẽ23), we employ the derivatives of w4.
However, we distinguish w4 from w3, which is in contrast to the formulation of Wackerfuß
and Gruttmann [41]. This is due to the quadratic basis for E33 in Eq. (11), which does not
exist for E13 and E23. We verify the erroneous results from using w4 = w3 in Figs. 7 and
13a in Sect. 6.3.

The detailed process of constructing wi ∈ R
1×di (i ∈ {1,2,3,4}) is given in Ap-

pendix A.3. Then, the total number of independent components in the enhanced strain field
is da = 2d1 + d2 + d3 + d4, where the dimension di is given by Eq. (A.20). It is noted
that ‘global’ implies that the basis functions span the whole domain of the cross-section,
A �(ζ 1, ζ 2

)
. This, however, is not suitable to represent localized warping, e.g., for a beam

having an open cross-section. This limits the applicability of the present formulation to
convex-shaped cross-sections like a rectangular one. In order to overcome this, one may
consider the local polynomial basis functions in Wackerfuß and Gruttmann [42]. Substitut-
ing Eqs. (19) and (20) into Eq. (17) gives

UHW =
∫ L

0
[ψ (

εp,α
)+ {

ε(y) − εp

}

︸ ︷︷ ︸
compatibility

· rp]ds, (22)

where we define the line energy density (strain energy per undeformed unit length),

ψ(εp,α) :=
∫

A
Ψ
(
Etot(εp,α)

)
j0 dA. (23)

Here, the Lagrange multiplier

rp :=
∫

A
AT Sp j0 dA ∈R

dp (24)

for the compatibility condition, ε(y) = εp, in Eq. (22) represents an array of physical stress
resultants. Note that each component of the array rp is an independent variable, a work-
conjugate to the corresponding component in the array εp. Taking the first variation of
Eq. (22), we obtain the internal virtual work (Choi et al. [9])

GHW
int ≡ δUHW = G

y
int(y, rp, δy) + Gr

int(y,εp, δrp) + Gε
int(rp,εp,α, δεp),

+ Ga
int(εp,α, δα), (25)
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where we have defined

G
y
int(y, rp, δy) :=

∫ L

0
δy ·B(y)T rp ds, (26a)

Gr
int(y,εp, δrp) :=

∫ L

0
δrp · {ε(y) − εp

}
ds, (26b)

Gε
int(rp,εp,α, δεp) :=

∫ L

0
δεp ·

{
∂εpψ(εp,α) − rp

}
ds, (26c)

Ga
int(εp,α, δα) :=

∫ L

0
δα · ∂αψ(εp,α)ds. (26d)

Here, δ(•) denotes the first variation, and we have defined

∂εpψ
(
εp,α

) :=
∫

A
AT ∂EΨ|E=Etot j0 dA, (27a)

∂αψ
(
εp,α

) :=
∫

A
𝚪T ∂EΨ|E=Etot j0 dA, (27b)

with ∂EΨ := ∂Ψ(E)/∂E. The detailed expression of the operator B(y), defined by

δε = B(y) δy, (28)

is given in Choi et al. [7, Eq. (A.4.5)].

3.1.2 Work function due to external loads

We define a work function for time-dependent external loads,

Wext(y, t):=
∫ L

0
y · R̄(t) ds + [

y · R̄0(t)
]
s∈ΓN

, t ∈ [0, T ] , (29)

where (Choi et al. [7])

R̄ :=
⎧
⎨

⎩

n̄
¯̃m1

¯̃m2

⎫
⎬

⎭
, R̄0 :=

⎧
⎨

⎩

n̄0¯̃m1
0¯̃m2
0

⎫
⎬

⎭
. (30)

Here, n̄ and ¯̃mα (α ∈ {1,2}) denote the given external (distributed) force and director couple
along the center axis, respectively, that follow from the body force and the lateral-surface
tractions. Further, n̄0 and ¯̃mα

0 denote the prescribed force and director couple at the Neumann
boundary, ΓN ⊂ ∅ ∪ {0,L}, due to a given surface traction acting on the end faces. ∅ denotes
the empty set. Then, by taking the first variation of the work function in Eq. (29), the external
virtual work at time t ∈ [0, T ] can be expressed as

Gext(δy, t) = δWext =
∫ L

0
δy · R̄(t)ds + [

δy · R̄0(t)
]
s∈ΓN

. (31)

Note that, here, we assume that the external load is deformation-independent. If the external
load has no explicit time dependence, the system is conservative, i.e., the total energy of
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the system is conserved (Lanczos [25, Sects. 1.7 and 1.8]), and we may define an external
potential energy as

Uext(y) = −Wext(y). (32)

3.1.3 Kinetic energy

We define an independent (material) velocity vector v that satisfies

v = ẋ. (33)

From the beam kinematics in Eq. (7), we may also decompose the independent velocity
field into two parts: the center axis velocity vϕ ≡ vϕ(s, t) ∈ R

3 and the director velocity
vα ≡ vα(s, t) ∈R

3 (α ∈ {1,2}) that satisfy the compatibility condition

V = ẏ, (34)

where, for brevity, we define a generalized velocity V := [
vT

ϕ,v
T
1 ,vT

2

]T ∈R
d . Then, we can

express the total linear momentum as

L(V ) =
∫ L

0
p(V )ds, (35)

where we have defined the local linear momentum per undeformed unit arc-length,

p(V ) := ρAvϕ + Iα
ρ vα, (36)

with the mass per undeformed unit arc-length, i.e., the line mass density,

ρA :=
∫

A
ρ0 j0 dA, (37)

and the first mass moment of inertia per undeformed unit arc-length,

Iα
ρ :=

∫

A
ρ0 ζ αj0 dA, α ∈ {1,2} . (38)

We can then express the total angular momentum as

J (y,V ) =
∫ L

0
{ϕ × p(V ) + dα × μα(V )} ds, (39)

where we have defined the local director momentum per undeformed unit arc-length,

μα(V ) := Iα
ρ vϕ + Iαβ

ρ vβ, α ∈ {1,2} , (40)

with the second mass moment of inertia per undeformed unit arc-length,

Iαβ
ρ :=

∫

A
ρ0 ζ αζ βj0 dA, α,β ∈ {1,2} . (41)
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For brevity, we combine Eqs. (36) and (40) into

⎧
⎨

⎩

p(V )

μ1(V )

μ2(V )

⎫
⎬

⎭
= MV , (42a)

with the mass moment of inertia

M :=
⎡

⎣
ρA1 I 1

ρ 1 I 2
ρ 1

I 11
ρ 1 I 12

ρ 1
sym. I 22

ρ 1

⎤

⎦ , (42b)

which is time-independent. It should be noted that M is symmetric (i.e., I 12
ρ =I 21

ρ ), regard-
less of the cross-section’s shape and initial mass distribution. Further, we define the total
kinetic energy as

K(V ) = 1

2

∫ L

0
V ·MV ds. (43)

Accordingly, we have an inertial contribution to the virtual work,

Giner(V̇ , δy) :=
∫ L

0
δy ·MV̇ ds. (44)

3.2 Euler-Lagrange equations: Livens’ theorem

Based on Livens’ theorem (Pars [30, Sect. 26.2]), we define the Lagrangian with the inde-
pendent velocity field V as

L := K(V ) − UHW
(
ε(y),εp, rp,α

)+ Wext(y, t) +
∫ L

0
(ẏ − V ) ·

⎧
⎨

⎩

λϕ

λ1

λ2

⎫
⎬

⎭
ds, (45)

where the last term represents a weak enforcement of the compatibility condition in Eq. (34).
Here, the Lagrange multipliers λϕ,λ

α ∈R
3, α ∈ {1,2} can be identified by the stationarity of

the Lagrangian with respect to the independent velocities vϕ and vα (α ∈ {1,2}), as (Betsch
and Janz [1, Sect. 3.2])

λϕ = p(V ), (46a)

λα = μα(V ), α ∈ {1,2} . (46b)

Substituting Eqs. (46a)–(46b) into Eq. (45), the Lagrangian can be rewritten as

L =
∫ L

0

(
ẏ − 1

2
V

)
·MV ds − UHW

(
ε(y),εp, rp,α

)+ Wext(y, t), (47)

from which we define an action integral in the time span [0, T ] � t ,

S :=
∫ T

0
L(V ,y,εp, rp,α, t)dt . (48)
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By the stationarity condition of the action integral, we obtain the following weak form of the
initial-boundary-value problem: Find the solution

{
V ,y, rp,εp,α

} ∈ V̄ × V × Vp × Vp × Va

at time t ∈ (0, T ) such that

Giner

(
V̇ , δy

)
+ G

y
int(y, rp, δy) = Gext(δy, t), (49a)

Gr
int(y,εp, δrp) = 0, (49b)

Gε
int(rp,εp,α, δεp) = 0, (49c)

Ga
int(εp,α, δα) = 0, (49d)

are satisfied for all
{
δy, δrp, δεp, δα

} ∈ V̄ × Vp × Vp × Va, together with the compatibility
condition from Eq. (34),

∫ L

0
δV ·M (

ẏ − V
)

ds = 0, ∀δV ∈ V̄, (50)

and the initial conditions at s ∈ (0,L),

ϕ(s,0) = ϕ0(s), dα(s,0) = Dα(s), α ∈ {1,2} , (51a)

vϕ(s,0) = v̄ϕ(s), vα(s,0) = v̄α(s), α ∈ {1,2} . (51b)

Here, v̄ϕ(s) and v̄α(s) denote the given initial velocity fields for the center axis and directors,
respectively. We define the kinematically admissible solution space for the configuration
variable y as

V :=
{

y ∈ [
H 1(0,L)

]d ∣∣∣ϕ = ϕ̄, d1 = d̄1, and d2 = d̄2 at s ∈ ΓD

}
, (52)

where ΓD ⊂ ∅ ∪ {0,L} denotes the Dirichlet boundary such that ΓD ∪ ΓN = {0,L} and
ΓD ∩ ΓN = ∅. The variational space is defined as

V̄ :=
{

δy ∈ [
H 1(0,L)

]d ∣∣
∣ δϕ = δd1 = δd2 = 0 at s ∈ ΓD

}
. (53)

Further, we employ the solution spaces for the physical variables, Vp := [
L2(0,L)

]dp , and

Va := [
L2(0,L)

]da such that those solution functions may have discontinuity in the domain.
Further comment on the selection of the approximation space is given in Sects. 5.2.2 and
5.2.3.

4 Temporal discretization: an EMC scheme

We divide a given time span [0, T ] into N intervals, and find approximate solutions at dis-
crete times {t0 = 0, t1, . . . , tn, tn+1, . . . , tN = T }, where n is a nonnegative integer. Note that
time increment Δt := tn+1 − tn can vary adaptively. We denote the approximation of the in-
dependent solution variables at time tn by n(•). In the given time interval [tn, tn+1], our goal
is to find an approximate solution at time tn+1 for a given solution at time tn. We present an
implicit time-stepping scheme, based on the previous work in Betsch and Janz [1], which
exactly preserves the total energy for linear constitutive laws. A further extension to non-
linear constitutive laws, e.g., using the discrete derivative of Gonzalez [16] remains future
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work. The present time-stepping scheme turns out to exhibit superior numerical stability in
comparison to standard trapezoidal and mid-point rules. We first approximate the first-order
time derivatives at the mid-point as

ẏ

(
tn + 1

2
Δt

)
≈ 1

Δt

(
n+1y − ny

)
, (54a)

and

V̇

(
tn + 1

2
Δt

)
≈ 1

Δt

(
n+1V − nV

)
. (54b)

Further, we define the mid-point approximations

y

(
tn + 1

2
Δt

)
≈ 1

2

(
n+1y + ny

) =: n+ 1
2 y, (55a)

rp

(
tn + 1

2
Δt

)
≈ 1

2

(
n+1rp + nrp

) =: n+ 1
2 rp, (55b)

εp

(
tn + 1

2
Δt

)
≈ 1

2

(
n+1εp + nεp

)=: n+ 1
2 εp, (55c)

α

(
tn + 1

2
Δt

)
≈ 1

2

(
n+1α + nα

) =: n+ 1
2 α, (55d)

and

V

(
tn + 1

2
Δt

)
≈ 1

2

(
n+1V + nV

)=: n+ 1
2 V . (55e)

From the compatibility condition in Eq. (50) at the mid-point, combining Eqs. (54a) and
(55e) gives (Betsch and Janz [1, Sect. 3.8])

n+1V = 2

Δt

(
n+1y − ny

)− nV . (56)

Then, substituting Eq. (56) into Eq. (54b) yields

V̇

(
tn + 1

2
Δt

)
≈ 2

Δt2

(
n+1y − ny

)− 2

Δt

nV . (57)

Substituting Eq. (57) into Eq. (49a), a time-discrete form of the momentum balance equation
at the mid-point can be stated as

2

Δt2
Giner

(
n+1y, δy

)+ G
y
int

(
n+ 1

2 y, n+ 1
2 rp, δy

)

= Gext

(
δy, tn + 1

2
Δt

)
+ 2

Δt
Giner

(
nV + 1

Δt

ny, δy

)
, (58a)

which is subject to

Gr
int

(
n+1y, n+1εp, δrp

)= 0, (58b)
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Gε
int

(
n+ 1

2 rp,
n+ 1

2 εp,
n+ 1

2 α, δεp

)
= 0, (58c)

Ga
int

(
n+ 1

2 εp,
n+ 1

2 α, δα
)

= 0, (58d)

∀{δy, δrp, δεp, δα
} ∈ V̄ × Vp × Vp × Va. It should be noted that, in Eq. (58b), we have

imposed the compatibility between the displacement and the physical strain at time t =
tn+1 instead of t = tn + 1

2Δt , which is sufficient for the exact conservation of total energy
for linear constitutive laws (Betsch and Janz [1]). Note that this treatment is in line with
using the algorithmic stress resultant in Romero and Armero [34], which evaluates the stress
resultant by taking an average between two subsequent discrete times instead of evaluating
it from the nonlinear strain-configuration relation at the mid-point.

4.1 Linearization

Due to the geometrical and material nonlinearities in the internal virtual work term of
Eq. (25), we need an incremental-iterative (Newton-Raphson) solution process. It can be
stated as: In the (n + 1)th time step, for the given solution at the previous nth time step{

nV , ny, nrp,
nεp,

nα
}
, and that in the previous iteration

{
n+1y(i−1), n+1r (i−1)

p , n+1ε(i−1)
p , n+1α(i−1)

}
,

find the solution increment

{
Δy,Δrp,Δεp,Δα

} ∈ V̄ × Vp × Vp × Va

such that

∫ L

0

⎧
⎪⎪⎨

⎪⎪⎩

δy

δrp

δεp

δα

⎫
⎪⎪⎬

⎪⎪⎭
· k

⎧
⎪⎪⎨

⎪⎪⎩

Δy

Δrp

Δεp

Δα

⎫
⎪⎪⎬

⎪⎪⎭
ds + 4

Δt2

∫ L

0
δy ·MΔy ds

= 2Gext

(
δy, tn + 1

2
Δt

)
+ 4

Δt
Giner

(
nV − 1

Δt

(
n+1y(i−1) − ny

)
, δy

)

− 2G
y
int

(
ȳ, r̄p, δy

)− Gr
int

(
n+1y(i−1), n+1ε(i−1)

p , δrp

)

− 2Gε
int

(
r̄p, ε̄p, ᾱ, δεp

)

− 2Ga
int

(
ε̄p, ᾱ, δα

)
, (59)

∀{δy, δrp, δεp, δα
} ∈ V̄ × Vp × Vp × Va, and update

n+1y(i) = n+1y(i−1) + Δy, n+1y(0) ≡ ny, (60a)

n+1r (i)
p = n+1r (i−1)

p + Δrp,
n+1r (0)

p ≡ nrp, (60b)

n+1ε(i)
p = n+1ε(i−1)

p + Δεp,
n+1ε(0)

p ≡ nεp, (60c)

n+1α(i) = n+1α(i−1) + Δα, n+1α(0) ≡ nα, (60d)
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for i = 1,2, . . ., until a convergence criteria is satisfied. After the iteration finishes, we
should also update the independent velocity field using Eq. (56). In Eq. (59), we have the
tangent operator

k :=

⎡

⎢⎢
⎣

Y TkG

(
r̄p

)
Y B(ȳ)T 0d×dp 0d×da

B
(
n+1y(i−1)

)
0dp×dp −1dp×dp 0dp×da

0dp×d −1dp×dp C
εε
p

(
ε̄p, ᾱ

)
C

aε
p

(
ε̄p, ᾱ

)T

0da×d 0da×dp C
aε
p

(
ε̄p, ᾱ

)
C

aa
p

(
ε̄p, ᾱ

)

⎤

⎥⎥
⎦ , (61)

where we have defined the constitutive matrices as (Choi et al. [9])

∂2ψ

∂εp∂εp
=
∫

A
ATCpA j0 dA =:Cεε

p

(
εp,α

)
, (62a)

∂2ψ

∂α∂α
=
∫

A
𝚪TCp𝚪 j0 dA =:Caa

p

(
εp,α

)
, (62b)

∂2ψ

∂α∂εp
=
∫

A
𝚪TCpA j0 dA =:Caε

p

(
εp,α

)
, (62c)

based on the material elasticity tensor

Cp := ∂2Ψ(Ep)

∂Ep ∂Ep
. (63)

Here, (•) denotes Voigt notation of a fourth-order tensor with major and minor symmetries.

The detailed expressions of the operators kG and Y can be found in Eq. (A.4.9) and (A.4.11)
of Choi et al. [7], respectively. In Eq. (61), for brevity, we also employ the following nota-
tions for averaged solution variables

ȳ := 1

2

(
n+1y(i−1) + ny

)
, (64a)

r̄p := 1

2

(
n+1r (i−1)

p + nrp

)
, (64b)

ε̄p := 1

2

(
n+1ε(i−1)

p + nεp

)
, (64c)

ᾱ := 1

2

(
n+1α(i−1) + nα

)
. (64d)

Further, 1n×m and 0n×m denote the identity and zero matrices of dimension n × m, respec-
tively.

Remark 4.1 It should be noted that the tangent stiffness operator in Eq. (61) is unsymmet-
ric due to B(ȳ) �= B(n+1y(i−1)), as we enforce the compatibility condition at time t = tn+1

instead of t = tn + 1
2Δt in Eq. (58b).

Remark 4.2 In Sect. B.2, we analytically verify the energy–momentum consistency of the
present EMC scheme, which holds regardless of the element sizes in temporal and spatial
domains.



630 M.-J. Choi et al.

5 Spatial discretization: an isogeometric approach

Next, we present the spatial discretization of the configuration and physical variables in the
framework of isogeometric analysis (IGA). Especially, we show that the finite element ap-
proximation of the (total) director field leads to the objectivity of the approximated (discrete)
beam strain. This basically necessitates an approximation of the initial director field.

5.1 NURBS curve

In the isogeometric approach, we employ the same spline basis functions in the Computer-
Aided Design (CAD) model for the analysis. This enables (i) an exact representation of
the geometry of the beam’s initial center axis including conic sections like a circle, and
(ii) higher-order inter-element continuity which leads to the superior per DOF accuracy,
compared with the conventional C0-finite elements, see, e.g., Choi et al. [9]. Using NURBS
(Non-Uniform Rational B-Spline), the beam’s initial center axis can be represented by

ϕ0(s(ξ)) ≡ X(ξ) =
ncp∑

I=1

N
p

I (ξ)PI , (65)

where PI denotes the position of the I th control point, N
p

I (ξ) denotes the corresponding
NURBS basis function of degree p, and ncp denotes the total number of basis functions
(control points) in the given patch. Here, ξ ∈ Ξ ⊂ R denotes the parametric coordinate,
and the parametric domain Ξ := [

ξ1, ξncp+p+1
]

is associated with the so called knot vector,
which is a given sequence of nondecreasing real numbers, Ξ̃ = {

ξ1, ξ2, . . . , ξncp+p+1

}
, where

ξi ∈ R denotes the ith knot. For a more detailed description on the NURBS basis functions
and mesh refinements, one may refer to Piegl and Tiller [31] and Hughes et al. [19]. The
arc-length coordinate along the initial center axis can be expressed by the mapping s(ξ) :
Ξ → [0,L], (Choi et al. [7])

s(ξ) :=
∫ η=ξ

ξ1

∥∥X,η(η)
∥∥dη, (66)

whose Jacobian is

j̃ := ds

dξ
= ∥∥X,ξ (ξ)

∥∥ . (67)

In the following section, we often use the notation N
p

I,s for brevity, which is defined by

N
p

I,s := N
p

I,ξ

dξ

ds
= 1

j̃
N

p

I,ξ , (68)

where N
p

I,ξ denotes the differentiation of the basis function N
p

I (ξ) with respect to ξ .

5.1.1 Approximation of the initial director field

For a given continuous initial director field Dα(ξ), we approximate (reconstruct) it using the
NURBS basis functions of degree pd, as

Dh
α(ξ) =

nd
cp∑

I=1

N
pd
I (ξ)DαI , ξ ∈ Ξ, α ∈ {1,2} , (69)
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where (•)h denotes a finite element approximation in space. Here, the knot vector for the

basis functions is given by Ξ̃ d =
{
ξ d

1 , ξ d
2 , . . . , ξ d

nd
cp+pd+1

}
. We determine the control coeffi-

cients
{

Dα1,Dα2, . . . ,Dαnd
cp

}
(α ∈ {1,2}) from the set of equations,

Dh
α(ξ̄J ) = Dα(ξ̄J ), J ∈

{
1,2, . . . , nd

cp

}
, (70)

where the coordinate ξ̄J is given by the Greville-abscissae (a moving average of knots)
(Farin and Hansford [14, Chap. 10])

ξ̄J = 1

pd

pd∑

i=1

ξ d
J+i , J ∈

{
1,2, . . . , nd

cp

}
. (71)

Note that, here, the collocation points from the Greville-abscissae are merely introduced
to approximate the initial director field. Further, their number is the same as that of the
unknown control coefficient vectors, so that Eq. (70) can be rewritten as

N̄

⎡

⎢
⎢⎢
⎢
⎣

DT
α1

DT
α2
...

DT
αnd

cp

⎤

⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎣

DT
α(ξ̄1)

DT
α(ξ̄2)
...

DT
α(ξ̄nd

cp
)

⎤

⎥⎥⎥
⎦

, α ∈ {1,2} , (72)

with square matrix

N̄ :=

⎡

⎢
⎢⎢⎢
⎢
⎣

N
pd
1 (ξ̄1) N

pd
2 (ξ̄1) · · · N

pd

nd
cp
(ξ̄1)

N
pd
1 (ξ̄2) N

pd
2 (ξ̄2) · · · N

pd

nd
cp
(ξ̄2)

...
...

. . .
...

N
pd
1 (ξ̄nd

cp
) N

pd
2 (ξ̄nd

cp
) · · · N

pd

nd
cp
(ξ̄nd

cp
)

⎤

⎥
⎥⎥⎥
⎥
⎦

. (73)

Note that the matrix N̄ is banded with band-width pd + 1 due to the local support property
of NURBS basis functions, and invertible due to their linear independence. The control
coefficients of the initial director field are determined by solving Eq. (72) in pre-processing.
A continuous director field Dα(ξ), which is evaluated on the right-hand side of Eq. (72) at

the discrete points of Ξ̄ d :=
{
ξ̄1, ξ̄2, . . . , ξ̄nd

cp

}
, can be obtained in various ways like with the

Frenet-Serret formula and the smallest rotation method, see, e.g., Meier et al. [26], Choi and
Cho [6], and references therein. In the present approach, Dh

α(ξ) �= Dα(ξ) in general, except
for the chosen points ξ ∈ Ξ̄ d. This approximation error should decrease by increasing the
number of basis functions (control coefficients) or elevating the degree pd. One may also
refer to the approach to enforce the condition Dh

α(ξ) = Dα(ξ) at the Gauss quadrature points
of Dornisch et al. [12], which requires an additional matrix multiplication to obtain a square
(invertible) system matrix. However, note that, in the present formulation, the beam strain
components in Eqs. (12a)–(12f) still vanish at the undeformed configuration, in spite of the
approximation error in the initial director field.
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5.2 Spatial discretization of the variational forms

5.2.1 Patch-wise approximation of kinematic variables

We approximate the current center axis position as

ϕh(ξ) =
ncp∑

I=1

N
p

I (ξ)ϕI , ξ ∈ Ξ, (74)

with the control coefficients ϕI ∈R
3. Similarly, we approximate the director field as

dh
α(ξ) =

nd
cp∑

I=1

N
pd
I (ξ)dαI , α ∈ {1,2} , ξ ∈ Ξ. (75)

In IGA, we define an element by a nonzero knot span. Let Ξe := [
ξ e

1 , ξ e
2

) � ξ denote the
eth element such that Ξ = Ξ1 ∪ Ξ2 ∪ · · · ∪ Ξnel where nel denotes the total number of
elements. For the last element (i.e., e = nel) of an open curve, we have a closed interval
Ξnel := [

ξ
nel
1 , ξ

nel
2

]
to include the end point. Further, we use the same mesh along the initial

center axis for both the current center axis position and director vectors. Then, in each
element, from Eqs. (74) and (75), we have

ϕh(ξ) =
ne∑

I=1

N
p

I (ξ)ϕe
I , ξ ∈ Ξe, (76)

and

dh
α(ξ) =

nd
e∑

I=1

N
pd
I (ξ)de

αI , ξ ∈ Ξe, α ∈ {1,2} , (77)

respectively, where ne = p + 1 and nd
e = pd + 1 denote the numbers of local support basis

functions, and ϕe
I ,de

αI ∈ R
3 denote the I th control coefficients in the eth element. Combin-

ing Eqs. (76) and (77), we obtain

yh =
⎧
⎨

⎩

ϕh

dh
1

dh
2

⎫
⎬

⎭
= Ne(ξ)ye, ξ ∈ Ξe, (78)

with

Ne :=
[

N
p

1 13×3 · · · N
p
ne 13×3 03×6nd

e

06×3ne N
pd
1 16×6 · · · N

pd

nd
e

16×6

]

, (79)

and the column array of the control coefficients in each element,

ye :=
[
ϕe T

1 , . . . ,ϕe T
ne

,de T
1 , . . . ,de T

nd
e

]T
,

where we have defined de
I := [

de T
1I ,de T

2I

]T ∈ R
6. Further, using the same basis functions as

in Eq. (78), we discretize the independent velocity field as

V h = Ne(ξ)Ve, ξ ∈ Ξe. (80)



An objective isogeometric mixed finite element formulation. . . 633

5.2.2 Patch-wise approximation of physical stress resultants and strains

It has been shown that the element-wise approximation of the physical stress resultant and
strain in an isogeometric mixed finite element formulation may still suffer from numeri-
cal locking due to the parasitic terms from the higher-order inter-element continuity in the
displacement field, see Kikis and Klinkel [21], Casquero and Golestanian [5], Choi et al.
[9], Sauer et al. [35], and references therein. To circumvent this, we introduce the following
patch-wise approximation of the physical variables.

rh
p(ξ) = Be(ξ) re, (81a)

εh
p(ξ) = Be(ξ) ee, (81b)

ξ ∈ Ξe, with

Be(ξ) :=
[
B

pp
1 (ξ)1dp×dp · · · B

pp

n
p
e
(ξ)1dp×dp

]
, (82)

where B
pp
I (ξ) denotes the I th B-spline basis functions of degree pp, and n

p
e = pp + 1 de-

notes the number of basis functions per element. Here, we choose pp = p − 1 for numerical
stability.

Remark 5.1 Even though this global approach turns out to be numerically more stable com-
pared to the local (element-wise) approach with further reduced degree pp of Choi et al.
[9], the condensation of those control coefficients of the physical solution fields is compu-
tationally prohibitive. Thus, here, we include those control coefficients in the global system
of equations. However, compared to the local approaches, for the same number of elements,
this approach still requires a much smaller number of control coefficients due to the higher-
order continuity of the B-spline functions B

pp
I .

In Sect. 6.3, we present a numerical example to compare DOF numbers between the
global (‘mix.glo’) and local (‘mix.loc-ur’, ‘mix.loc-sr’) approaches.

5.2.3 Element-wise approximation of enhanced strains

It should be noted that, in contrast to the physical strain (εp), the enhanced strain (α) has no
associated geometric strain from the configuration variable. This may simplify the selection
of approximate solution space for the enhanced strain field, without any special care about
numerical locking. In order to facilitate an element-wise elimination (condensation) of the
control coefficients, we allow inter-element discontinuity. We utilize Lagrange polynomial
basis functions in the parametric domain [−1,1) � ξ̄ which can be mapped to the interval
Ξe := [

ξ e
1 , ξ e

2

) � ξ via

ξ̄ = 1 − 2

(
ξ e

2 − ξ

ξ e
2 − ξ e

1

)
. (83)

Then, we approximate the enhanced strain as

αh
(
ξ̄
)= Le

(
ξ̄
)
αe, (84)
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with

Le

(
ξ̄
) :=

[
L

pa
1

(
ξ̄
)
1da×da · · · L

pa
na
e

(
ξ̄
)
1da×da

]
, (85)

and the nodal coefficients αe in the eth element. Here, L
pa
I denotes the I th basis function

of degree pa, and ne
a = pa + 1 denotes the number of basis functions per element. Here,

without any special care about numerical instability, we simply choose the lowest degree of
the basis functions, pa = 0.

5.3 Discretization of linearized variational equation

We first discretize the external virtual work in Eq. (59), using Eq. (78), as

Gext

(
δy, tn + 1

2
Δt

)
≈ δyTFext

(
tn + 1

2
Δt

)
, (86)

where we have defined the global external load vector

Fext(t) :=
nel

A
e=1

feext(t) + A [
R̄0(t)

]
s∈ΓN

, (87)

from the element external load vector due to the distributed load,

feext(t) :=
∫

Ξe

NT
e R̄(t) j̃ dξ . (88)

Here, A denotes the finite element assembly operator, and y denotes the global array of
the control coefficients for the approximated configuration variable yh. Then, the linearized
equation (59) is discretized as

nel∑

e=1

δyeT

{(
ke

yy + 4

Δt2
me

)
Δye + ke

yrΔre

}
=

δyT2 Fext

(
tn+ 1

2
Δt

)
−

nel∑

e=1

δyeT2

(
fey + 2

Δt
feρ

)
, (89a)

and

nel∑

e=1

δreT
(

ke
ryΔye + ke

rεΔee
)

= −
nel∑

e=1

δreTfer , (89b)

nel∑

e=1

δeeT
(
ke T

rε Δre + ke
εεΔee + ke T

aε Δαe
)= −2

nel∑

e=1

δeeTfeε, (89c)

ke
aεΔee + ke

aaΔαe = −2 fea, for e ∈ {1, . . . , nel} , (89d)

where we have defined the following elemental matrices for the inertial contribution

me :=
∫

Ξe

NT
e MNe j̃ dξ , (90)
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feρ :=
∫

Ξe

NT
eM

{
1

Δt

(
n+1yh(i−1) − nyh

)− nV h

}
j̃ dξ . (91)

We also have

ke
yy :=

∫

Ξe

Y
T
e kG(r̄h

p)Ye j̃ dξ, (92a)

ke
yr :=

∫

Ξe

B
T
e

(
ȳh
)

Be j̃ dξ, (92b)

ke
ry :=

∫

Ξe

BT
eBe

(
n+1yh(i−1)

)
j̃ dξ, (92c)

ke
rε := −

∫

Ξe

BT
e Be j̃ dξ, (92d)

ke
εε :=

∫

Ξe

BT
e C

εε
p

(
ε̄ h

p , ᾱh
)

Be j̃ dξ, (92e)

ke
aε :=

∫

Ξe

Le
T
C

aε
p

(
ε̄ h

p , ᾱh
)

Be j̃ dξ, (92f)

ke
aa :=

∫

Ξe

Le
T
C

aa
p

(
ε̄ h

p , ᾱh
)

Le j̃ dξ, (92g)

and

fey :=
∫

Ξe

B
T
e

(
ȳh
)
r̄h

p j̃ dξ, (93a)

fer:=
∫

Ξe

BT
e

{
ε
(
n+1yh(i−1)

)−n+1εh(i−1)
p

}
j̃ dξ, (93b)

feε :=
∫

Ξe

BT
e

{
∂εpψ

(
ε̄ h

p , ᾱh
)

− r̄h
p

}
j̃ dξ, (93c)

fea :=
∫

Ξe

Le
T ∂αψ

(
ε̄h

p, ᾱ
h
)

j̃ dξ, (93d)

where the matrices Be and Ye are defined by Eqs. (A.5.2) and (A.5.4) in Choi et al. [7],
respectively. Here, from Eqs. (64a)–(64d), we also define

ȳh := 1

2

(
n+1yh(i−1) + nyh

)
,

r̄h
p := 1

2

(
n+1rh(i−1)

p + nrh
p

)
,

ε̄h
p := 1

2

(
n+1εh(i−1)

p + nεh
p

)
,

ᾱh := 1

2

(
n+1αh(i−1) + nαh

)
.
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Note that Eq. (89d) is given element-wisely, since we allow discontinuity in the enhanced
strain field αh. In contrast, Eqs. (89a)–(89c) are given by a global equation, due to the
higher-order continuity in the solution fields yh, rh

p , and εh
p .

5.3.1 Condensation and solution update

The unknown nodal variables of the enhanced strain field αe can be eliminated from the
global finite element equation, via element-wise condensation. As the matrix ke

aa is invert-
ible, from Eq. (89d), we obtain

Δαe = −ke−1
aa

(
2 fea + ke

aεΔee
)
, for e ∈ {1, . . . , nel} . (95a)

Substituting Eq. (95a) into Eq. (89c), we obtain

nel∑

e=1

δeeT
(
ke T

rε Δre + ke
εεΔee

)= −2
nel∑

e=1

δeeTf e
ε , (96)

with

f e
ε := feε − ke T

aε ke−1
aa fea, (97)

k
e
εε := ke

εε − ke T
aε ke−1

aa ke
aε. (98)

Combining Eqs. (89a), (89b), and (96), we obtain

nel∑

e=1

⎧
⎨

⎩

δye

δre

δee

⎫
⎬

⎭

T

ke

⎧
⎨

⎩

Δye

Δre

Δee

⎫
⎬

⎭
= δyT

{
2 Fext

(
tn + 1

2
Δt

)}
−

nel∑

e=1

⎧
⎨

⎩

δye

δre

δee

⎫
⎬

⎭

T

(2 f e), (99)

with

ke :=

⎡

⎢
⎢
⎣

(
ke

yy + 4

Δt2
me

)
ke

yr 0me×m
p
e

ke
ry 0m

p
e×m

p
e

ke
rε

0m
p
e×me

ke T
rε ke

εε

⎤

⎥
⎥
⎦ (100)

and

f e :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fey + 2

Δt
feρ

1

2
fer
f e
ε

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (101)

where we have the DOF numbers me = 3ne + 6nd
e , and m

p
e = dp · np

e . Then, Eq. (99) can be
rewritten as

δzTKΔz = δzT2 R, (102)

where we define the effective global tangent stiffness matrix

K :=
nel

A
e=1

ke, (103)
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and the effective global residual vector

R :=
⎧
⎨

⎩
Fext

(
tn + 1

2
Δt

)

02n
p
dof×1

⎫
⎬

⎭
−

nel

A
e=1

f e. (104)

Here, z := [yT, rT, eT]T
denotes a column array of the unknown global control coefficients,

which assembles the control coefficients for the configuration variable (y), the physical
stress resultant (r), and the physical strain (e), where r and e have the same number of
entries, n

p
dof. It should be noted that ke T

yr �= ke
ry in Eq. (100) (see Remark 4.1), which makes

ke , and eventually K unsymmetric. After applying the displacement boundary conditions
to Eq. (102), we finally have the reduced system of linear equations at ith iteration in the
(n + 1)th time step,

Kr Δzr = 2 Rr, (105)

where (•)r denotes the reduced matrix. Using Δz obtained from solving Eq. (105), we up-
date the global control coefficients at the ith iteration in the (n + 1)th time step, as

n+1y(i) = n+1y(i−1) + Δy, n+1y(0) ≡ ny, (106a)

n+1r(i) = n+1r(i−1) + Δr, n+1r(0) ≡ nr, (106b)

n+1e(i) = n+1e(i−1) + Δe, n+1e(0) ≡ ne. (106c)

Further, using the element-wise control coefficients Δee extracted from the global one Δe,
we calculate the increment Δαe using Eq. (95a), which is followed by the update,

n+1αe (i) = n+1αe (i−1) + Δαe, n+1αe (0) ≡ nαe, for e ∈ {1,2, . . . , nel} . (107)

After the iteration finishes, we need to update the array of global control coefficients V for
the approximated independent velocity field in Eq. (80), using the following update formula
from Eq. (56).

n+1V = 2

Δt

(
n+1y − ny

)− nV. (108)

6 Numerical examples

We present six numerical examples whose objectives are as follows.

• Ex. 1. Rigid rotation of a stress-free rod (quasi-statics). We verify the invariance of the
beam strain under a rigid rotation, for any degree pd by employing the present discretiza-
tion of the initial director field.

• Ex. 2. Rigid rotation of a bent rod (quasi-statics). We investigate the invariance of the
beam strain under a rigid rotation superposed to a deformed configuration.

• Ex. 3. A straight beam under twisting moment (quasi-statics). We verify the present
EAS method to correct the torsional stiffness by comparison with analytical and brick
element solutions.

• Ex. 4. Twisting of an elastic ring (quasi-statics). We verify the present EAS method to
correct stiffness for an initially curved beam undergoing a large rotational motion.
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• Ex. 5. Flying beam (dynamics). We verify the superior numerical stability in time-
stepping due to the conservation of the total energy from using the EMC scheme, com-
pared with the results from using standard schemes.

• Ex. 6. Slotted ring with a rectangular cross-section (quasi-statics and dynamics). We
verify the efficiency and accuracy of the present beam solution by comparison with a brick
element one. Further, we verify the energy–consistency of the present EMC scheme.

We consider two different ways of evaluating the initial director field:

• [D–cont.] A continuous (exact) representation of the initial director field.
• [D–disc.] A discrete (reconstructed) initial director field from the continuous one evalu-

ated at chosen discrete points, see Sect. 5.1.1.

Further, we employ the following different finite element formulations for reference solu-
tions:

• [disp.] The displacement-based isogeometric beam formulation with extensible directors
in Choi et al. [7].

• [Δθ ] The finite element formulation of geometrically exact beams from Simo and Vu-
Quoc [37], with Lagrange polynomial basis functions and uniformly reduced integration.

• [Brick] An isogeometric brick element formulation, where we denote the degree of basis
functions by ‘deg. = (pL,pW,pH)’, and the number of elements by ‘nel = nL

el × nW
el ×

nH
el’, where ‘L’, ‘W’, and ‘H’ represent the directions along the length, width, and height,

respectively.

The present isogeometric mixed finite element formulation can be combined with the fol-
lowing approaches:

• [mix.loc-ur] pd = p − 1, and a uniformly reduced degree pp = 1.
• [mix.loc-sr] pd = p −1, and a selectively reduced degree pp from Table A.1 in Choi et al.

[9].
• [mix.glo] pd = p, pp = p − 1, and the inter-element continuity of the physical stress

resultant and strain is Cpp−1, see Sect. 5.2.2.

In both [mix.loc-ur] and [mix.loc-sr], the reduction of the degrees pp and pd = p − 1 com-
pared to [mix.glo] is due to the parasitic strains arising from the higher-order inter-element
continuity of the displacement field in IGA. Choi et al. [9] showed that a further (selective)
reduction of pp in [mix.loc-sr] could alleviate the parasitic strains more effectively in general
cases than the uniform degree pp = 1 in [mix.loc-ur] does. Although these local approaches
allow element-wise condensation, we have observed numerical instability in some cases. In
contrast, the approach [mix.glo] shows numerical stability in those cases. Further, due to
the global patch-wise approximation, the number of DOFs for the physical stress resultants
and strains in [mix.glo] is much lower than those in the local approaches, [mix.loc-ur] and
[mix.loc-sr]. In all of those three approaches, we apply element-wise condensation of the
enhanced strain field αh. In the present mixed formulation, we use full Gauss integration
for both longitudinal and transverse directions. In the center axis, we use p + 1 quadrature
points per element, and in the cross-section, we use (mmax + 1) × (mmax + 1) quadrature
points, where mmax denotes the largest value in {m1,m2,m3,m4}.

6.1 Rigid rotation of a stress-free rod: objectivity test 1

We consider a quasi-static beam problem where the initial center axis is placed on the XY -
plane and represents a quarter circle of radius R = 100 m. It has a square cross-section of
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Fig. 3 Rigid rotation of a
stress-free rod (objectivity test 1):
Change of the total strain energy
under a rigid rotation. The
dashed vertical lines indicate full
turns. Note that those markers are
only plotted in every four
rotational increments for better
visibility (Color figure online)

dimension d = 1 m. We constrain one end of the beam, at which a rotation of angle 20π [rad]
(10 full turns) with respect to the X-axis is prescribed. We prescribe rotational motion by
the two directors at the constrained end, but their extensions are not allowed. We incremen-
tally apply the total rotation in 100 uniform increments (nload = 100) and investigate the
change of total strain energy. A St. Venant-Kirchhoff type isotropic hyperelastic material is
considered with the Young’s modulus E = 1 MPa and the Poisson’s ratio ν = 0. This ex-
ample for testing the objectivity was proposed in Meier et al. [27, Sect. 11.1]. In Fig. 3, in
cases of using the displacement-based beam formulation [disp.], and the continuous initial
director field [D–cont.] with pd = 1, it is seen that the strain energy does not vanish (black
and green curves), which represents the inability to represent the rigid body rotation (=
nonobjectivity). It is noticeable that the spurious strain energy vanishes in every full turn
(= path-independence). It is also seen that the error decreases by increasing the number of
elements (green curve). If we consider the continuous (exact) initial director field, we need
at least quadratic NURBS basis functions in order to represent the rigid body rotation ex-
actly due to the circular initial geometry (Choi et al. [9]). This can be seen in cases of using
pd = 2 and 3 (black star and cyan curve) where the strain energy vanishes up to machine
precision. In contrast, employing the discrete initial director field [D–disc.] gives objectivity
even with pd = 1 (cyan square, black diamond, blue circle, and red curve).

6.2 Rigid rotation of a bent rod: objectivity test 2

We investigate the invariance of nonvanishing strain under rigid body rotation superposed
onto a deformed configuration in quasi-statics. This test was presented in Romero and
Armero [34, Sect. 5.1]. We consider a straight beam in its initial (undeformed) configuration
with the position vectors of center axis’ two end points A and B given by ϕA

0 = [0,0,2 m]T

and ϕB
0 = [0,0,5 m]T, respectively, in a global Cartesian coordinate system. The application

of external load is divided into two phases, whose boundary conditions are as follows:

• First phase. The displacement of the end point B is prescribed by ūB = [1 m,−1 m,0]T,
with the directors at B free, and the cross-section at point A fixed. That is, we apply the
boundary conditions

ϕ = ϕ0, dα = Dα (α = 1,2) at point A, (109a)
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Fig. 4 Rigid rotation of a bent rod (objectivity test 2): Change of the total strain energy under a superposed
rigid body rotation in the second phase. (a) Here, nload represents the number of load steps in the second
phase. (b) We use nload = 9 for all cases (Color figure online)

ϕ = ϕ0 + ūB at point B, (109b)

and

¯̃mα
0 = 0 , i.e.,dα (α = 1,2) are free at point B. (109c)

• Second phase. In order to investigate the objectivity, a series of nine rigid body rotations
are quasi-statically superposed onto the deformed configuration after the first phase. We
apply the boundary conditions

ϕ = ϕ0, dα = 𝚲̄iDα (α = 1,2) at point A, (110)

and

ϕ = 𝚲̄i

(
ϕ0 + ūB

)
, with dα (α = 1,2) free at point B, (111)

for i = 1,2, . . . ,9, where

𝚲̄i = exp
[
i
π

18
a
]

∈ SO(3), (112)

with the axis of rotation

a = 1√
3

[1,1,1]T.

We consider a St. Venant-Kirchhoff type isotropic hyperelastic material with Young’s mod-
ulus E = 21 MPa and Poisson’s ratio ν = 0.3, and a square cross-section of dimension
d = 0.1 m. In this example, since the beam’s initial geometry is straight, the two approaches
[D–cont.] and [D–disc.] yield the same initial director fields. In Fig. 4a, it is seen that the
beam formulation [Δθ ] suffers from spurious strain energy in superposed rigid rotation, that
is, it is nonobjective. It is noticeable that the numerical error decreases by increasing num-
ber of load steps, nload in the second phase, where we use a uniform load increment. The
reason for this is that the error in the finite element approximation of an incremental rotation
should decrease, as the magnitude of rotation decreases. This can be seen, in the much lower
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Fig. 5 Straight beam under
twisting moment: Initial
geometry and boundary
conditions. θ̄A and θ̄B denote the
prescribed rotation angles of the
cross-sections at the points A and
B with respect to the center axis,
respectively

spurious energy resulting from using doubled nload (cyan curve with star), compared with
that of using nload = 18 (black curve with circle). This nonobjectivity can be also alleviated
by mesh refinement, a degree elevation (blue curve with triangle) or a larger number of ele-
ments (red curve with square). In contrast, the beam formulation with a direct finite element
approximation of the director vectors [mix.loc-sr] exhibits no spurious strain energy in the
second phase. In Fig. 4b, both methods [D–cont.] and [D–disc.] give the same results and
have constant strain energy under superposed rigid rotation (red star and black curve with
circle). Figure 4b also verifies the objectivity in higher degrees p = 3,4,5 and pd = p − 1
(red, blue, and black curves).

6.3 Straight beam under twisting moment

We consider a straight beam along the X-axis that is subject to a prescribed twisting angle
θ̄ = 2π [rad], which is applied quasi-statically, about its center axis at both ends A and B in
opposite directions. The beam has an initial length L = 10 m, and a rectangular cross-section
of width w and height h, see Fig. 5. For the following cases of w and h, we verify that the
present beam formulation can represent the correct torsional stiffness without additional
global DOFs.

• Case 1: w = 0.3 m, and h = 0.4 m,
• Case 2: w = 1/3 m, and h = 1 m.

A St. Venant-Kirchhoff type isotropic hyperelastic material with Young’s modulus E =
210 GPa and Poisson’s ratio ν = 0.3 is considered. For comparison, we consider two dif-
ferent boundary conditions:

• [free-free] Prescribe the rotation angles θ̄A = −θ̄/2 and θ̄B = θ̄/2. Note that, here, out-
of-plane cross-sectional warping is allowed at both ends, A and B. For the brick solution,
the X-displacement is constrained at C in order to prevent a rigid-body translation.

• [fixed-free] Fix the cross-section at A (θ̄A = 0), and prescribe the rotation angle θ̄B = θ̄ at
B. Note that we still allow for out-of-plane cross-sectional warping at the loaded end, B.

It should be noted that, in both cases of the boundary conditions, in-plane cross-sectional
strains are not allowed at the ends. For beams, we use the [free-free] only, where the cross-
sectional warping due to the enhanced strains is allowed at both ends. An application of
boundary conditions to constrain the enhanced strain field remains future work. Figures 6–12
compare the cross-sectional strains at the middle of the center axis (s = L/2) between the
present beam and brick solutions for case 1 (w = 0.3 m and h = 0.4 m). Here, for the beam
solution, we use [mix.loc-sr] with p = 3, m1 = m2 = m3 = m4 = 4, and nel = 40. For the
brick solution, we use deg. = (3,3,3) and nel = 80 × 10 × 10, and the [free-free] condition.

Observation 1 In Fig. 6, it is seen that the enhanced strain Ẽ33 vanishes. This implies that
the quadratic polynomial basis in A(ζ 1, ζ 2) in the third row of Eq. (11) is sufficient to
represent the axial normal strain. It has also been discussed in Wackerfuß and Gruttmann
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Fig. 6 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the axial normal
strain, E33 at s = L/2. For the beam solution, we enhance Ẽ33 by the basis w3 with the maximum degree
m3 = 4 and the minimum degree m̄3 + 1 = 3, which is orthogonal to polynomials up to degree m̄3 = 2. The
maximum value of

∣
∣Ẽ33

∣
∣ is 4.0 × 10−17 [−]. There is excellent agreement between the total strains for beam

and brick (Color figure online)

Fig. 7 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the axial normal
strain, E33 at s = L/2. Brick solution is the same as in Fig. 6. For the beam solution, we enhance Ẽ33 by the
basis w4 = w3 with the maximum degree m3 = 4 and the minimum degree m̄3 + 1 = 2, which is orthogonal
to polynomials up to degree m̄3 = 1. The resulting enhanced strain Ẽ33 leads to erroneous total strain (Etot

33 )
(Color figure online)

[42] that the enhancement of E33 is not needed for a correct representation of the three-
dimensional strain state. Accordingly, they presented a so-called ‘E2-model’ which does not
enrich the axial normal strain. This significantly reduces the number of internal DOFs for
the enhanced strain field, which makes the formulation more efficient.
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Fig. 8 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the transverse
shear strain, E13 at s = L/2. For the beam solution, we enhance Ẽ13 by the derivative w4,1, where the
maximum and minimum degrees of w4 are m4 = 4 and m̄4 +1 = 2, respectively. There is excellent agreement
between the total strains for beam and brick (Color figure online)

In Figs. 8 and 9, the physical transverse shear strains E
p
13 and E

p
23 are limited to linear

distributions since it has polynomial basis up to degree 1. It is noticeable that, by employing
the enhanced strains, the total strains show excellent agreement with the brick solution, in
both cases, Etot

13 and Etot
23 . In Fig. 7, we show the beam solution using m̄3 = 1 instead of

m̄3 = 2, with all other parameters the same as in the result of Fig. 6. This aims at showing
that losing the orthogonality between E

p
33 and Ẽ33 can lead to significant error. Selecting

the lower degree m̄3 = 1 means that the basis w3 may have quadratic terms in spite of the
existing quadratic terms in E

p
33. This eventually pollutes the physical strain field, which can

be seen by the deviation of the resulting total strain from the brick solution.
In Figs. 10 and 11, the physical in-plane cross-sectional strains E

p
11 and E

p
22, respec-

tively, have negative constant values, which represents a uniform transversal contraction of
the cross-section. Although the enhanced strains improve the degree of approximation, they
are limited to a quadratic distribution due to the coupling with the axial normal strain E

p
33

by the nonzero Poisson’s ratio. Further, in the case of the in-plane shear strain, the enhanced
strain Ẽ12 turns out not to be activated, as Fig. 12 shows. Further investigation on the selec-
tion of the basis w1 and w2 for improving the enhancement of in-plane cross-sectional strain
remains future work. In Fig. 13, we compare the applied moment for a given prescribed
rotation angle θ̄ between the present beam element solution, the reference brick element so-
lution, and the analytical solution in Eq. (C.1). In the first case (w = 0.3 m and h = 0.4 m),
the beam solutions show excellent agreement with both analytic and brick element solu-
tions. In Fig. 13a, the beam solution with higher degree m̄4 = 2 (cyan diamonds) shows
overly stiff behavior due to the missing quadratic terms in the enriched basis w4. Over-
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Fig. 9 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the transverse
shear strain component, E23 at s = L/2. For the beam solution, we enhance Ẽ23 by the derivative w4,2,
where the maximum and minimum degrees of w4 are m4 = 4 and m̄4 + 1 = 2. There is excellent agreement
between the total strains for beam and brick (Color figure online)

Fig. 10 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the transverse
normal strain, E11 at s = L/2. For the beam solution, we enhance Ẽ11 by w1 with the maximum and mini-
mum degrees m1 = 4 and m̄1 + 1 = 1, respectively (Color figure online)

all, the mixed finite element formulation enables much larger load increments compared
to the displacement-based brick element formulation. In the second case (w = 1/3 m and
h = 1 m), a nonlinear effect of increasing torsional stiffness along the prescribed rotation is
clearly seen in both beam and brick solutions. In the latter range of the prescribed rotation, it
is seen that the brick solution with the [fixed–free] boundary condition exhibits more rapidly
increasing torsional stiffness compared to the solution using the [free-free] condition due to
the constrained out-of-plane warping at s = 0. It is remarkable that the beam and brick so-
lutions under the [free–free] condition show excellent agreement. In Table 1, we compare
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Fig. 11 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the transverse
normal strain, E22 at s = L/2. For the beam solution, we enhance Ẽ22 by w1 with the maximum and mini-
mum degrees m1 = 4 and m̄1 + 1 = 1, respectively (Color figure online)

Fig. 12 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m: Comparison of the in-plane
shear cross-sectional strain component, E12 at s = L/2. For the beam solution, we enhance Ẽ12 by w2 with
the maximum and minimum degrees m2 = 4 and m̄2 + 1 = 1, respectively (Color figure online)

Fig. 13 Straight beam under twisting moment: Change of the applied moment along the prescribed rotation
θ̄ . In [mix.loc-ur] and [mix.loc-sr], we use p = 3, pd = 2. For [mix.glo], we use p = pd = 3. All the beam
solutions are from using nel = 40, and m1 = m2 = 2, without enriching the axial normal strain, E33. For the
brick solutions, we use deg. = (3,3,3), and nel = 80 × 10 × 10 (Color figure online)
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Table 1 Straight beam under twisting moment: Comparison of total number of DOFs for cases 1 and 2. For
our beam formulation, we have DOFs for the configuration (y), physical stress resultant (rp), physical strain
(εp), and enhanced strain (α). The gray cells represent the numbers of internal DOFs

Beam [mix.loc-sr] Beam [mix.loc-ur] Beam [mix.glo] Brick

Degree of basis p = 3, pd = 2 p = 3, pd = 2 p = pd = 3 deg. = (3,3,3)

#elements 40 40 40 80 × 10 × 10

#DOFs (y) 381 381 387 42,081

#DOFs (rp) 814 1200 630 –

#DOFs (εp) 814 1200 630 –

#DOFs (α) 1080 1080 1080 –

#global DOFs 381 381 1647 42,081

#internal DOFs 2708 3480 1080 –

Fig. 14 Straight beam under twisting moment for w = 0.3 m and h = 0.4 m (case 1): Final deformed config-
uration at θ̄A = −π and θ̄B = π . The colors represent the relative change of the cross-sectional area, where
a and A denote the deformed and initial cross-sectional areas, respectively. For the beam solution, we use
[mix.loc-sr] with p = 3, nel = 40, and m1 = m2 = 2, m4 = 4, where E33 has not been enriched. For the
brick solution, we use deg. = (3,3,3), and nel = 80 × 10 × 10. There is excellent agreement between beam
and brick solutions apart from the two end faces (Color figure online)

the total number of global and internal DOFs between beam and brick solutions. It is notice-
able that the beam solutions use much smaller number of DOFs than the brick solution does,
since the DOFs of the enhanced strain (α) can be element-wisely condensed out. In the beam
formulation [mix.glo], the DOFs of the physical stress resultants (r) and physical strain (e)
are considered in the global system of equations, whose number is much smaller than those
of the local approaches for the same number of elements, due to the higher-order continu-
ity of B-spline basis functions, see Remark 5.1. Figures 14 and 15 compare the deformed
configurations between the beam and brick solutions for the two different dimensions of the
initial cross-section. It is noticeable that the same level of decrease in the cross-sectional
area is observed in the beam and brick solutions. In the brick solution, it is seen that the
cross-sectional area slightly increases at both ends due to the out-of-plane warping. This is
not explicitly shown in the beam solution since we calculate the cross-sectional area using
only two directors d1 and d2, which can only represent planar cross-section deformations.
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Fig. 15 Straight beam under twisting moment for w = 1/3 m and h = 1 m (case 2): Final deformed config-
uration at θ̄A = −π and θ̄B = π . The colors represent the relative change of the cross-sectional area, where
a and A denote the deformed and initial cross-sectional areas, respectively. For the beam solution, we use
[mix.loc-sr] with p = 3, nel = 40, and m1 = m2 = 2, m4 = 4, where E33 has not been enriched. For the
brick solution, we use deg. = (3,3,3), and nel = 80 × 10 × 10. There is excellent agreement between beam
and brick solutions apart from the two end faces (Color figure online)

Fig. 16 Twisting of an elastic
ring: Undeformed configuration
and boundary conditions

6.4 Twisting of an elastic ring

We consider a closed circular ring twisted by a prescribed rotation. Figure 16 shows the un-
deformed configuration and boundary conditions. The initial ring has a radius R = 20 m, and
a rectangular cross-section having width w and height h. We prescribe a rotation of the cross-
sections at the material points of initial coordinates [R,0,0]T (point A) and [−R,0,0]T

(point B) by the angle θ̄ with respect to the X-axis in opposite directions. We apply the pre-
scribed rotation angle θ̄ = 2π [rad] in total, such that the configuration finally goes back to
the initial (undeformed) one if no impenetrability condition is imposed, see Fig. 17 for the
deformed configurations at different values of θ̄ . For θ̄ = π , the ring is folded into a smaller
circular ring. Without axial strain, the radius of the deformed ring is R/3, which was first
theoretically investigated by Goto et al. [17]. With axial strain, the deformed configuration
is still a folded ring but has a different radius r∗ such that 2π · r∗ = �/3, where � denotes
the current total length. In the present paper, this example aims at the following:
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• Verify the capability of the present beam formulation to follow the correct equilibrium
path of the deformation by correcting the torsional stiffness through the enrichment of
higher-order cross-sectional strains.

• Investigate the effect of axial strain coupled with bending strain in the present beam for-
mulation. The coupled axial strain changes the total length �, and subsequently the ra-
dius of the deformed ring becomes r∗ = �/(6π) at θ̄ = π . This additional strain should
quadratically decrease with increasing slenderness ratio (Choi et al. [7, Sect. 6.2]). In
order to show this, we consider the following two different cases with cross-sectional
dimensions:
– Case 1: w = 1/3 m, and h = 1 m,
– Case 2: w = 1/30 m, and h = 1/10 m.
Note that, here, we always have a ratio h/w = 3, which is known to produce a deformed
configuration of a smaller ring by the prescribe rotation θ̄ = π (Goto et al. [17]).

• Verify the path-independence of the present beam formulation.

A St. Venant-Kirchhoff type isotropic hyperelastic material is considered, with Young’s
modulus E = 21 MPa, and Poisson’s ratio ν = 0.3. In order to account for the decreased
torsional stiffness due to the cross-sectional warping, we employ the following approaches:

• In the beam formulation [Δθ ], we correct the torsional stiffness by replacing the polar
moment of inertia with I ∗

p = K , see Appendix C.1. Note that K is much smaller than the
polar moment of inertia, Ip = I 11 + I 22. For example, in case of w = 1/3 m and h = 1 m,
we have I 11 ≈ 3.086 × 10−3 [m4] and I 22 ≈ 2.778 × 10−2 [m4], which gives the polar
moment of inertia much larger than the corrected value K = 9.753 × 10−3 [m4]. This
approach refers to Romero [33], Meier et al. [26], and references therein.

• For the present beam formulation, instead of directly adjusting the cross-sectional param-
eters, we enrich the polynomial basis functions up to degree m4 for the transverse shear
strains E13 and E23, and m1(= m2) for the in-plane strains E11, E22, and E12. Note that
the axial normal strain component E33 is not enriched, see Observation 1.

In Fig. 18, we compare the equilibrium paths from using the formulation [Δθ ] and the
present one [mix.glo]. The black solid curves represent the result from [Δθ ] using the cor-
rected torsional stiffness with I ∗

p = K . Note that, without this correction (i.e., with I ∗
p = Ip),

the torsional stiffness is significantly overestimated, see the much larger initial slope of the
black solid curves compared to the others. This eventually leads to the divergence in the
equilibrium iteration under the prescribed rotation. The black dashed curves represent the
equilibrium paths with the corrected torsional stiffness. In the results from the present beam
formulation [mix.glo], we first enrich the transverse normal strain components E11 and E22

by the maximum degree of basis m1 = 2 in order to obtain the correct bending stiffness due
to the nonzero Poisson’s ratio. Then, as we increase the maximum degree of enriched basis
for the transverse shear strain m4, the equilibrium path approaches the result from using
m4 = 8 (red curve). We have an analytical solution of the deformed center axis such that it
becomes a folded circular ring of radius rref = R/3 at θ̄ = π (Goto et al. [17]). However,
it turns out that additional axial compression can be induced by bending (Choi et al. [7,
Sect. 6.2.1]). In order to illustrate this, in Fig. 19, we compare the approximated total length
of the center axis at θ̄ = π between the results from the formulations [Δθ ] and [mix.glo]. It
is noticeable that, in the present beam solution (red curve), the beam is axially compressed,
in contrast to the result from using [Δθ ]. Further, it is seen that the amount of compres-
sive strain decreases by 10−2 times, with increasing the slenderness ratio by 10 times from
Case 1 to Case 2. This means that, as expected, the decrease of the coupled axial strain is in
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Fig. 17 Twisting of an elastic ring (case 1): Deformed configurations for four different values of θ̄

Fig. 18 Twisting of an elastic ring: Applied moment at point A due to the prescribed rotation θ̄ . In both
cases, we use p = 1 and p = 4 for the formulations [Δθ ] and [mix.glo], respectively. Further, for [mix.glo],
m1 = m2 = 2, and E33 has not been enriched (Color figure online)

quadratic order with respect to the slenderness ratio. Based on this, we introduce a corrected
reference solution for the deformed center axis at θ̄ = π , such that it is still a folded circular
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ring but with radius r∗
ref = �h/(6π), where the (approximated) total length �h is given by an

overkill solution from using the present beam formulation, [mix.glo] with p = 4. From this,
we can define a relative L2-difference of the center axis displacement field as

eϕ :=
√√√
√

∫ L

0

(
rh − r∗

ref

)2
ds

∫ L

0 r∗
ref

2 ds
, with rh := ∥∥ϕh − c∗

ref

∥∥ , (113)

where the reference center of the circle is given by c∗
ref := [−R + r∗

ref,0,0]T. Figure 20 shows
the convergence of the relative differences from two different beam formulations, [Δθ ] with
the degree of basis p = 1, and the present one [mix.glo] with a degree of basis p = 2,3,4. It
is seen that in both cases 1 and 2, the present beam solution from using [mix.glo] converges
toward the reference one (a folded circular ring with radius r∗

ref), with increasing number of
elements. In contrast, the beam formulation [Δθ ] yields a different solution, which deviates
from the reference one. This deviation is due to the inability to represent the axial strain
coupled with bending, and it should decrease quadratically with increasing slenderness ra-
tio. It is also noticeable that the results from [mix.glo] exhibit optimal convergence rates
(p + 1) or sometimes even faster, which can be clearly seen in both cases. In the results
from using the beam formulation [mix.loc-sr], deteriorated convergence is observed due to
numerical instability, except for the results from using p = 3. In Table C.1, we compared
the total number of load steps and equilibrium iterations between [mix.glo] and [mix.loc-sr].
The present formulation [mix.glo] shows stability in all cases. In Goto et al. [17], it is shown
that the deformed smaller ring at θ̄ = π can stay without any external load. Further, due to
the symmetry, the configuration should go back to the initial (undeformed) one at θ̄ = 2π by
either loading or unloading from the smaller ring at θ̄ = π . That is, if a formulation is path-
independent, the applied moment M should vanish at both θ̄ = π and 2π . Figures 21a and
21b plot the convergence of the moments M at θ̄ = π and 2π , respectively, with increasing
number of elements. It is seen that, for the formulation [Δθ ], the moments do not vanish,
which implies that the formulation suffers from path dependence. Note that this error de-
creases in quadratic order, which is consistent with the convergence rate of the displacement
field in Fig. 20. In contrast, from using the present beam formulation, the moments vanish
up to machine precision for any number of elements.

The next two examples deal with nonlinear transient dynamics to verify the present time-
stepping scheme.

6.5 Dynamics of a flying beam

We consider an initially straight beam of length L = 3 m which has a square cross-section
of dimension d = 0.3 m, see Fig. 22. A St. Venant-Kirchhoff type hyperelastic material with
Young’s modulus E = 21 MPa and Poisson’s ratio ν = 0.3 is considered. The initial mass
density is ρ0 = 1 kg/m3. We apply an initial velocity condition in X- and Y - directions along
the initial center axis as

v1
ϕ0 = − v̄1

ϕ

L
(X − L) , (114a)

v2
ϕ0 = v̄2

ϕ

{
X

L

(
X

L
− 1

)
+ 1

6

}
+ v̄1

ϕ

L

(
X − L

2

)
, (114b)

respectively, with v̄1
ϕ = 1 [m/s] and v̄2

ϕ = 150 [m/s], see also Fig. 23. The directors are as-
sumed to be initially stationary, which means that all the material points in each cross-section
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Fig. 19 Twisting of an elastic ring: Change of the ratio between the approximated total lengths of the center
axis in the initial (Lh) and deformed configuration at θ̄ = π (�h), for two different cases of (w,h). For
[mix.glo], we use m1 = m2 = 2, m4 = 4, and E33 has not been enriched

Fig. 20 Twisting of an elastic ring: Relative difference of the deformed radius from the reference solution
r∗
ref at θ̄ = π for two different cases of (w,h). In both beam formulations [mix.glo] and [mix.loc-sr], we use

m1 = m2 = 2, m4 = 4, and E33 has not been enriched

have the same initial velocity. The initial velocity component in Eq. (114a) leads to a trans-
lation in X-direction. In Eq. (114b), the quadratic Y - directional velocity by the first term
leads to the bending and transversal shear strains in the X–Y plane, as well as the transverse
normal strain due to the nonzero Poisson’s ratio. The second term in Eq. (114b) is intro-
duced to have a rotational motion in the X–Y plane. Therefore, the total linear and angular
momentum vectors may have nonzero components in X- and Z- directions, respectively.
Figure 24 shows the deformed configurations at selected time instants. In Fig. 25, we inves-
tigate the conservation of energy and momentum. It is seen that the standard trapezoidal rule
conserves the linear momentum but neither the angular momentum nor the total energy. For
the given time step size Δt = 0.1 s, the total energy blows up. The total angular momentum
initially has nonzero value due to the initial velocity condition and is maintained by both
the standard mid-point rule and the present EMC schemes. Initially, the total energy only
has a kinetic part, and it is exactly conserved by the present EMC scheme. This implies
the symmetry between the strain energy (U ) and the kinetic energy (K). In contrast, when
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Fig. 21 Twisting of an elastic ring: path-independence test. Comparison of the applied moments at θ̄ = π

and θ̄ = 2π . In [mix.glo], we use m1 = m2 = 2, m4 = 4, and E33 has not been enriched

Fig. 22 Flying beam: Initial
geometry

Fig. 23 Flying beam: Given initial velocity of the center axis, vϕ0 = vi
ϕ0ei , where v3

ϕ0 = 0

using the mid-point rule, the total energy is not conserved but blows up. Here, for all the
beam solutions, we use [mix.glo] with p = 2, nel = 10, and m1 = m2 = 2, m4 = 4, with no
enrichment for E33.

6.6 Slotted ring with a rectangular cross-section

An initially circular ring of radius R = 1.3 m with a slot of angle 1◦ is considered. It has a
rectangular cross-section of height h = 0.4 m and width w = 0.3 m, see Fig. 26. One end is
fixed, where no cross-sectional deformation is allowed, and a distributed force is applied in



An objective isogeometric mixed finite element formulation. . . 653

Fig. 24 Flying beam: Deformed
configurations at the selected
time t [s]. The result is from
using the present EMC scheme,
with the time step size Δt = 0.1 s
(Color figure online)

Fig. 25 Flying beam: Time history of the energy and momentum. In (a) and (b), the markers are plotted at
every five-time steps for clearer visualization. In all the results, we use the same time step size, Δt = 0.1 s. In
(c), the total energy E is obtained from the summation of the kinetic energy (K) and the strain energy (U )

Z-direction on the other end (cross-section at point A). In this example, we investigate two
different types of loading:

• Case 1 (elastostatics): A quasi-statically applied surface traction (force per unit unde-
formed area), T = F0 e3, where F0 = 5 × 104 N/m2,
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Fig. 26 Slotted ring:
Undeformed configuration and
boundary conditions. Dashed line
represents the initial center axis

• Case 2 (elastodynamics): A (piece-wise linearly) time-dependent surface traction, T (t) =
F(t) e3, where F(t) (force per unit undeformed area) is given by

F(t) =
{

F0 t/T0 if 0 ≤ t ≤ T
2 ,

F0 (T − t) /T0 if T
2 < t ≤ T .

(115)

Here, F0 = 5 × 104 N/m2, T0 = 1 s denotes a unit time, and T denotes the terminal time.

6.6.1 Case 1: comparison with the brick element solution

We consider a Neo-Hookean type isotropic hyperelastic material with Young’s modulus
E = 1.12 × 107 Pa, and Poisson’s ratio ν = 0.4. For the given load, the ring undergoes a
large deformation with torsion-induced cross-sectional warping. Here, we verify the cor-
rected stiffness by using the present EAS method. In Fig. 27, we compare the deformed
configurations between the present beam and the brick element solutions, where it is seen
that the cross-section contracts due to the positive Poisson’s ratio, except for the fixed end. It
is seen that the change of cross-sectional area can be properly represented by only two direc-
tors in the present beam formulation. Figures 28a and 28b show the X- and Z-displacements
of the ring at point A, which are denoted by uA and wA, respectively. In the beam formu-
lation, we compare different degrees of the polynomial basis m4 = 2,3,4 for the transverse
shear strains, E13 and E23. Note that we also use m1 = m2 = 2, and the axial normal strain
E33 has not been enriched. It is seen that without the enrichment of the transverse shear
strain, the beam solution (blue curve) deviates significantly from the brick solution (black
curve). It is noticeable that with increasing degree m4, the solution approaches the brick
solution (magenta and red marks). Further, a much larger load step is allowed in the present
beam formulation, compared to the displacement-based brick formulation, which can be
seen by the results of the beam element using six uniform load increments (cyan mark).

6.6.2 Case 2: verification of the consistency in the EMC scheme

In the second case, we investigate a transient dynamic response of the slotted ring, under the
time-dependent load given by Eq. (115). The total simulation time is T = 20 s. Figures 29
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Fig. 27 Slotted ring: Comparison
of the final deformed
configurations from the reference
brick and the present beam
formulations. The contour
represents the relative change of
the cross-sectional area, where A

and a denote the initial and
current cross-sectional areas,
respectively. For the brick
solution, we use deg. = (3,3,3),
and nel = 160 × 5 × 5. For the
beam solution, we use [mix.glo]
with p = 3, nel = 160, and
m1 = m2 = 2, m4 = 4, where
E33 has not been enriched (Color
figure online)

Fig. 28 Slotted ring: Comparison of the X and Z-directional displacements at the tip (point A) with increas-
ing applied force. In all the beam solutions, we use [mix.glo] with p = 3, m1 = m2 = 2, and E33 has not
been enriched (Color figure online)

and 30 investigate whether a time-stepping scheme satisfies the following identity

n+1E = n+1E∗, n = 0,1, . . . , (116)

which is recalled from Eq. (B.22). For constitutive laws, we consider two different models,
St. Venant-Kirchhoff (linear) and Neo-Hookean (nonlinear) types, with the same values of
the parameters E and ν as in case 1. The initial mass density is ρ0 = 1 kg/m3. From us-
ing the standard mid-point rule, it is seen that the total energy n+1E deviates from n+1E∗
for both linear and nonlinear constitutive laws. In contrast, the EMC scheme satisfies the
identity exactly (up to machine precision) for the linear constitutive law, see Fig. 29b. For
the nonlinear constitutive law, the EMC scheme has also lost consistency, but the relative
difference is much smaller than that from the mid-point rule, see Fig. 30b.
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Fig. 29 Slotted ring: Verification of the energy–consistency for a linear constitutive law (St. Venant-Kirchhoff
material). Missing data points (rectangles) in (b) are due to an exact zero difference in the numerator

Fig. 30 Slotted ring: Verification of the energy–consistency for a nonlinear constitutive law (Neo-Hookean
material)

7 Conclusions

We present a stable and efficient implicit isogeometric finite element method for geometri-
cally and materially nonlinear beams in transient dynamics. The superior numerical stability
of the developed method comes from the following aspects:

• Objectivity and path-independence of the isogeometric finite element formulation that
directly approximates the director field, which turns out to hold for any degree pd, which
is verified in several numerical examples. This formulation is based on the approximation
of the initial director field, which is, in the present paper, denoted by [D-disc.].

• An energy–momentum consistent (EMC) time-stepping scheme, which gives exact en-
ergy conservation property for linear constitutive laws.

• Employing the independent DOFs for the stress resultants in the mixed finite element
formulation based on the Hu-Washizu variational principle alleviates the overestimation
of the internal force, which improves the stability of the equilibrium iteration for larger
time (load) steps in the Newton-Raphson method.
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• In the isogeometric approach, we have observed numerical instabilities of the local ap-
proach [mix.loc-sr] in some cases. The present global approach [mix.glo] shows numeri-
cal stability in all those cases. Further, compared to the local approach, the present global
approach requires much fewer DOFs for the physical stress resultants and strains due to
the higher-order continuity of the B-spline basis functions.

Further, the developed method provides superior computational efficiency, compared to
brick element formulations, due to the following aspects:

• The present 9-DOF formulation with extensible (unconstrained) directors allows for an
efficient representation of a constant in-plane cross-sectional strain, e.g., the change of
cross-sectional area.

• The higher-order cross-sectional strains like torsion-induced warping have been further
enriched by an EAS method. Due to the allowed inter-element discontinuity in the en-
hanced strain field, one can eliminate those additional DOFs from the global system of
linear equations.

One can extend the present work in the following aspects:

• In the inertia terms, we have considered the cross-sectional deformation only up to the
constant strains, represented by two extensible directors.

• We have limited our scope of investigation to convex-shaped cross-sections like a rectan-
gular one.

• The present EAS method corrects stiffness very effectively; however, it is seen that the
enrichment of in-plane cross-sectional strains is limited.

Appendix A: Beam formulation

A.1 Objectivity of the geometric strain in continuous form

The invariance of the beam strain components under a superposed rigid body motion can
be analytically verified. We superpose an arbitrary constant rigid body rotation 𝚲θ ∈ SO(3)

and translation cϕ ∈ R
3 to the current configuration y as (Crisfield and Jelenić [11])

ϕ∗ = 𝚲θ

(
ϕ + cϕ

)
, (A.1a)

d∗
α = 𝚲θ dα, α ∈ {1,2} , (A.1b)

where SO(3) denotes a three-dimensional rotation group, defined as

SO(3) := {
𝚲 ∈R

3×3
∣∣𝚲T𝚲 = 1, and det𝚲 = 1

}
. (A.2)

By inserting Eqs. (A.1a) and (A.1b) into Eqs. (12a)–(12f), and using 𝚲θ,s = 0, cϕ,s = 0, and
𝚲T

θ 𝚲θ = 1, we have

ε(y∗) = ε(y). (A.3)

A.2 Objectivity of the geometric strain in discrete form

We investigate the invariance of the strain measures approximated by Eqs. (76) and (77)
under superposed rigid body translation and rotation. We superpose an arbitrary constant
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rigid body rotation 𝚲θ ∈ SO(3) and translation cϕI ∈ R
3 to the current control coefficients

ϕI and dαI , as

ϕh∗(ξ) =
ncp∑

I=1

N
p

I (ξ)𝚲θ

(
ϕI + cϕ

)

= 𝚲θ

(
ncp∑

I=1

N
p

I (ξ)ϕI + cϕ

)

= 𝚲θ

(
ϕh(ξ) + cϕ

)
, (A.4a)

and

dh∗
α (ξ) =

nd
cp∑

I=1

N
pd
I (ξ)𝚲θ dαI

= 𝚲θ

nd
cp∑

I=1

N
pd
I (ξ)dαI

= 𝚲θ dh
α(ξ), (A.4b)

α ∈ {1,2}, where we utilize the partition of unity property of the NURBS basis functions.
Therefore, substituting Eqs. (A.4a) and (A.4b) into Eqs. (12a)–(12f), and using 𝚲θ,s = 0,
cϕ,s = 0, and 𝚲T

θ 𝚲θ = 1, the beam strain at the superposed configuration yh∗, we have

ε
(
yh∗)= ε(yh), (A.5)

which represents the frame-invariance (objectivity) of the approximated beam strain.

A.3 Construction of warping basis functions

Here, we discuss the determination of the polynomial basis w1, w2, w3, and w4 in Eq. (21).
Note that this is a generalization of the formulation of Wackerfuß and Gruttmann [41] in
order to account for the higher order strains in Eq. (10) from the beam kinematics.

A.3.1 Orthogonality condition

Here, we construct a complete set of polynomials from degree m̄ + 1 to M that are or-
thogonal to an arbitrary polynomial of degree m̄. We first introduce the following arrays
(Wackerfuß and Gruttmann [42])

π0 := [
P(0,0)

]
,

π1 := [
P(1,0), P(0,1)

]
,

...

πM := [
P(M,0), P(M−1,1), . . . ,P(1,M−1), P(0,M)

]
, (A.6)
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with P(n,m) := (
ζ 1
)n(

ζ 2
)m

, (n,m) ∈ SM := P0 ∪P1 · · ·∪PM , where M denotes the maximum
degree, and we define

PM :=
{
(n,m) ∈ N0 ×N0

∣
∣∣n + m = M

}
.

Here, N0 denotes the set of positive integers, and the number of elements in PM is |PM | =
M + 1. Further, we introduce a modified polynomial basis from degree m̄ + 1 as

π∗
m̄+1 := [

P ∗
(m̄+1,0), P

∗
(m̄,1), . . . ,P

∗
(1,m̄), P

∗
(0,m̄+1)

]
,

π∗
m̄+2 := [

P ∗
(m̄+2,0), P

∗
(m̄+1,1), . . . ,P

∗
(1,m̄+1), P

∗
(0,m̄+2)

]
,

...

π∗
M := [

P ∗
(M,0), P

∗
(M−1,1), . . . ,P

∗
(1,M−1), P

∗
(0,M)

]
. (A.7)

Here, we define, for each (n,m) ∈ SM − Sm̄ = Pm̄+1 ∪ Pm̄+2 · · · ∪ PM ,

P ∗
(n,m) := P(n,m) +

m̄∑

k=0

π kβ
k
(n,m), (A.8)

with the coefficients βk
(n,m) ∈R

|Pk |,

β0
(n,m) :=

[
β

(0,0)

(n,m)

]T
,

β1
(n,m) :=

[
β

(1,0)

(n,m), β
(0,1)

(n,m)

]T
,

...

βm̄
(n,m) :=

[
β

(m̄,0)

(n,m), β
(m̄−1,1)

(n,m) , . . . , β
(0,m̄)

(n,m)

]T
, (A.9)

such that the following orthogonality to arbitrary polynomials up to degree m̄ is satisfied

∫

A
P(p,q)P

∗
(n,m) dA = 0, ∀(p, q) ∈ Sm̄, (A.10)

where Sm̄ := P0 ∪ P1 · · · ∪ Pm̄ whose number of elements is |Sm̄| = (m̄ + 1)(m̄ + 2)/2.
Equation (A.8) can be rewritten in the compact form

P ∗
(n,m) = P(n,m) + w̄β(n,m), (A.11)

with w̄ := [π0,π1, . . . ,π m̄] ∈ R
1×|Sm̄| and β(n,m) := [

β0 T
(n,m),β

1 T
(n,m), . . . ,β

m̄T
(n,m)

]T ∈ R
|Sm̄|.

Substituting Eq. (A.11) into Eq. (A.10), we obtain the following system of linear equations
to determine β(n,m) for each (n,m) ∈ SM − Sm̄

W̄β(n,m) = −
∫

A
w̄TP(n,m) dA, (A.12)
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where the system matrix is given by

W̄ :=
∫

A
w̄Tw̄ dA ∈R

|Sm̄|×|Sm̄|. (A.13)

Remark A.1 Since W̄ is invertible, the coefficients β(n,m) for each (n,m) ∈ SM − Sm̄ can
be uniquely determined by solving Eq. (A.12). It should be noted that Eq. (A.12) de-
pends solely on the cross-section’s initial shape and dimension. Therefore, this process
to construct a complete set of polynomial basis functions from degree m̄ + 1 to M ,
w := [

π∗
m̄+1,π

∗
m̄+2, . . . ,π

∗
M

]
can be done in pre-processing. For a given (fixed) value of

m̄, the total time for determining the whole coefficients β(n,m), (n,m) ∈ SM − Sm̄ is linearly
proportional to the number of elements in SM − Sm̄, |SM | − |Sm̄| = (M + 1)(M + 2)/2 −
(m̄ + 1)(m̄ + 2)/2, i.e., the time complexity of constructing w is O(M2).

A.3.2 Polynomial basis for enhanced strains

Here, we show the construction of polynomial basis w1, w2, w3, and w4 in Eq. (21), based
on the method in Sect. A.3.1. The enhanced basis can be expressed by

wi = [
π∗

m̄i+1,π
∗
m̄i+2, . . . ,π

∗
mi

]
, i ∈ {1,2,3,4}, (A.14)

where mi denotes the maximum degree of the polynomial, and m̄i < mi denotes the maxi-
mum degree in the corresponding compatible strain component, i.e., from Eq. (11), we have
m̄1 = m̄2 = 0, m̄3 = 2, and m̄4 = 1. We first show that the orthogonality condition in Eq. (18)
can be simplified to the form of Eq. (A.10). Since the orthogonality condition in Eq. (18)
should hold for all α ∈R

da , we obtain

∫

A
𝚪(ζ 1, ζ 2)TSp j0 dA = 0, (A.15)

where Sp :=
[
S11

p , S22
p , S33

p , S12
p , S13

p , S23
p

]T
, such that Sp = S

ij
p Gi ⊗ Gj . Further, we make

the following assumptions in the evaluation of the orthogonality condition in Eq. (A.15):

• S
ij
p has the same polynomial order in ζ 1 and ζ 2 as the conjugate strain component E

ij
p in

Eq. (19).
• j0 ≈ 1, which holds exactly only for initially straight beams or linear finite elements, see

Remark 2.1. This makes the orthogonality condition solely depend on the cross-section’s
initial shape.

Then, we obtain the following orthogonality condition: For each (n,m) ∈ Smi
− Sm̄i

, we
have

∫

A
P(p,q) P

∗
(n,m) dA = 0, ∀(p, q) ∈ Sm̄i

, i ∈ {1,2,3,4} , (A.16)

which has the same form as Eq. (A.10). Subsequently, from Eq. (A.12), we obtain

W̄i β(n,m) = −
∫

A
w̄T

i P(n,m) dA (A.17)
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to determine the unknown coefficients β(n,m) :=
[
β0 T

(n,m), . . . ,β
m̄i T
(n,m)

]T ∈ R

∣
∣
∣Sm̄i

∣
∣
∣ in

P ∗
(n,m) = P(n,m) + w̄i β(n,m), (n,m) ∈ Smi

− Sm̄i
, (A.18)

in each wi ∈ R
1×di , i ∈ {1,2,3,4}, where w̄i := [

π0, . . . ,π m̄i

] ∈ R
1×

∣
∣
∣Sm̄i

∣
∣
∣, and the system

matrix is given by

W̄i :=
∫

A
w̄T

i w̄i dA ∈ R

∣∣
∣Sm̄i

∣∣
∣×

∣∣
∣Sm̄i

∣∣
∣
. (A.19)

Here, di denotes the number of elements in the row array wi , and it is obtained by

di := ∣
∣Smi

∣
∣− ∣

∣Sm̄i

∣
∣= 1

2
(mi + 1)(mi + 2) − 1

2
(m̄i + 1)(m̄i + 2). (A.20)

Therefore, from Remark A.1, the time complexity to construct wi is O(mi
2), i ∈ {1,2,3,4}.

Appendix B: Time-stepping scheme

B.1 Verification of the energy–momentum conservation for continuous time

Here, we verify that energy–momentum conservation laws can be deduced from Eqs. (49a)–(49d)
under appropriate boundary conditions.

B.1.1 Total linear momentum

Let δy = [
cT

ϕ,0T,0T]T ∈ V̄ with a constant vector cϕ ∈ R
3, which describes a superposed

rigid body translation. Here, we assume no displacement boundary conditions, i.e., ΓD = ∅,
so that cϕ �= 0. Then, the internal virtual work vanishes, and from Eq. (49a), we obtain

cϕ ·
{

d

dt
L(V ) − f ext(t)

}
= 0, ∀cϕ ∈ R

3, (B.1)

with the time-dependent total external force,

f ext(t) :=
∫ L

0
n̄ds + n̄0 . (B.2)

Therefore, without any displacement boundary conditions, we have the balance of total
linear momentum

d

dt
L(V ) = f ext(t). (B.3)

This implies that the total linear momentum is conserved if no external force and displace-
ment boundary condition are applied.
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B.1.2 Total angular momentum

Let δy := [
(cθ × ϕ)T, (cθ × d1)

T, (cθ × d2)
T]T ∈ V̄ with a constant vector cθ ∈ R

3, which
represents a superposed (infinitesimal) rigid body rotation, and cθ represents the rotation
axis vector. Here, we also assume no displacement boundary conditions, i.e., ΓD = ∅, so
that cθ �= 0. Then, the internal virtual work vanishes, and from Eq. (49a), we obtain

cθ ·
[

d

dt
J (y,V ) − mext(y, t)

]
= 0, ∀cθ ∈R

3, (B.4)

with the total external moment defined by

mext(y, t) :=
∫ L

0

(
ϕ × n̄ + dα × ¯̃mα

)
ds +

[
ϕ × n̄0 + dα × ¯̃mα

0

]

s∈ΓN

. (B.5)

Therefore, without any displacement boundary conditions, we have the balance of total
angular momentum

d

dt
J (y,V ) = mext(y, t). (B.6)

B.1.3 Total energy

We define the total energy at an equilibrium solution of Eqs. (49a)–(49d), by

E(y,V ,εp,α, t) := K(V ) + U(εp,α) − Wext(y, t), (B.7)

where the internal energy can be evaluated, from Eq. (22), by

U(εp,α) :=
∫ L

0
ψ(εp,α)ds. (B.8)

We choose δy = ẏ ∈ V̄ , and have the compatibility condition V = ẏ from Eq. (50). Then,
from Eq. (49a), we obtain

d

dt
E(y,V ,εp,α, t) = − ∂

∂t
Wext(y, t). (B.9)

This means that the total energy is conserved unless the external load explicitly depends on
time. That is, for a conservative system, we have

d

dt
E(y,V ,εp,α) = 0, (B.10)

where the total energy is

E(y,V ,εp,α) = K(V ) + U(εp,α) + Uext(y). (B.11)

B.2 Verification of the energy–momentum conservation in discrete-time intervals

We show that the time-stepping scheme in Eqs. (58a)–(58d) preserves the conservation prop-
erties of the continuous form in Sect. B.1.
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B.2.1 Total linear momentum

Let δy = [
cT

ϕ,0T,0T]T ∈ V̄ with a constant vector cϕ ∈R
3. Here, we assume no displacement

boundary condition, i.e., ΓD = ∅, so that cϕ �= 0. Then, we obtain the discrete form of the
linear momentum balance from Eq. (58a) as

1

Δt

{
L
(
n+1V

)−L (nV )
}=f ext

(
tn + 1

2
Δt

)
, (B.12)

which is consistent with Eq. (B.1). Therefore, the total linear momentum is conserved if no
external force and displacement boundary conditions are applied.

B.2.2 Total angular momentum

We choose

δy =

⎧
⎪⎨

⎪⎩

cθ × n+ 1
2 ϕ

cθ × n+ 1
2 d1

cθ × n+ 1
2 d2

⎫
⎪⎬

⎪⎭
∈ V̄, (B.13)

with a constant vector cθ ∈ R
3, and assume no displacement boundary conditions, i.e., ΓD =

∅, so that cθ �= 0. Then, from Eq. (58a), we obtain

1

Δt

{
J
(
n+1y, n+1V

)− J (ny, nV )
}= mext

(
n+ 1

2 y, tn + 1

2
Δt

)
, (B.14)

which is consistent with Eq. (B.6). Therefore, the angular momentum is conserved if no
external loads and boundary conditions are applied. Note that this holds for both the con-
ventional mid-point rule and the present EMC scheme.

B.2.3 Total energy

We choose δy = n+1y − ny ∈ V̄ . Then, in Eq. (58a), using Eq. (56), we have

2

Δt
Giner

(
1

Δt

(
n+1y − ny

)− nV , n+1y − ny

)

= 1

2

∫ L

0

(
n+1V + nV

) ·M (
n+1V − nV

)
ds

= K(n+1V ) −K(nV ). (B.15)

Further, due to the linearity of the operator B(y) with respect to y, we can obtain

B

(
n+ 1

2 y
)

δy = ε
(
n+1y

)− ε(ny) . (B.16)

Then, from Eq. (26a), we have

G
y
int

(
n+ 1

2 y, n+ 1
2 rp,

n+1y − ny
)

=
∫ L

0

{
ε
(
n+1y

)− ε (ny)
} · n+ 1

2 rp ds. (B.17)
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By choosing δεp = n+1εp − nεp ∈ Vp and δα = n+1α − nα ∈ Va in Eqs. (58c) and (58d),
respectively, and combining the resulting equations, we obtain the identity,

∫ L

0

{
ψ
(
n+1εp,

n+1α
)− ψ

(
nεp,

nα
)}

ds =
∫ L

0

(
n+1εp − nεp

) · n+ 1
2 rp ds. (B.18)

Note that, here, we assume linear constitutive laws. Evaluating Eq. (58b) at time t = tn+1

and t = tn with δrp = n+ 1
2 rp ∈ Vp, we have

∫ L

0

n+ 1
2 rp · {ε (n+1y

)− n+1εp

}
ds = 0, (B.19a)

∫ L

0

n+ 1
2 rp · {ε (ny) − nεp

}
ds = 0, (B.19b)

respectively. Equations (B.19a) and (B.19b) imply that Eqs. (B.17) and (B.18) are the same
so that we obtain the identity

G
y
int

(
n+ 1

2 y, n+ 1
2 rp,

n+1y − ny
)

=
∫ L

0

{
ψ
(
n+1εp,

n+1α
)− ψ

(
nεp,

nα
)}

ds

= U(n+1εp,
n+1α) − U(nεp,

nα). (B.20)

Substituting Eqs. (B.15) and (B.20) into Eq. (58a), we have

K(n+1V ) + U(n+1εp,
n+1α) − Wext

(
n+1y, tn + 1

2
Δt

)

= K(nV ) + U(nεp,
nα) − Wext

(
ny, tn + 1

2
Δt

)
. (B.21)

This implies the following:

• If the applied load is (piece-wise) linearly proportional to time, we obtain the following
identity

n+1E = n+1E∗, n = 0,1, . . . , (B.22)

where we define

n+1E := E
(
n+1y, n+1V , n+1εp,

n+1α, tn+1

)
,

n+1E∗ := nE − ΔtWext ,

with

nE := E
(
ny, nV , nεp,

nα, tn
)
,

and

ΔtWext := 1

2

(
∂Wext

∂t

∣
∣∣
∣
y=n+1y, t=tn+1

+ ∂Wext

∂t

∣
∣∣
∣
y=ny, t=tn

)

Δt.
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Table C.1 Twisting of an elastic ring: Total number of load steps (nload) with uniform increments, and total
number of iterations (niter), for θ̄ = 2π in the results of Fig. 20. Here, the symbol × represents a failure in
convergence of the equilibrium iteration

p nel Case 1: w = 1/3, h = 1 Case 2: w = 1/30, h = 1/10

[mix.loc-sr] [mix.glo] [mix.loc-sr] [mix.glo]

nload niter nload niter nload niter nload niter

2 24 96 × 16 105 96 × 16 103

48 96 641 16 103 96 523 16 101

96 96 673 16 103 192 973 16 100

192 16 224 16 102 16 183 16 100

384 384 × 20 161 16 208 16 100

3 24 16 105 16 105 16 105 16 103

48 16 104 16 103 16 103 16 101

96 16 104 16 103 16 103 16 100

192 16 116 16 114 16 103 16 100

384 16 144 20 175 16 103 16 100

4 24 16 150 16 105 16 109 16 103

48 16 140 16 103 16 104 16 101

96 16 141 16 103 16 103 16 100

192 64 480 16 157 16 104 16 100

384 64 445 36 253 16 104 16 100

• If the external load has no explicit time-dependence, the total energy is conserved, i.e.,
n+1E = nE.

Appendix C: Numerical examples

C.1 An analytical solution for a pure torsion problem

We consider a pure torsion of a straight bar of length L and a shear modulus G = E/(2(1 +
ν)). In the isotropic linear elasticity, the torsional angle (radians) of the bar under a twisting
moment MT can be expressed by (Budynas and Sadegh [4, page 350])

θ = MTL

KG
, (C.1)

where K is a factor that depends on the cross-sectional shape and dimensions. For a circular
cross-section, the cross-section remains plane under the moment load, and K is equal to the
polar moment of inertia, Ip. For other cross-sections, the cross-section warps, and K is less
than Ip. For a (solid) rectangular cross-section of dimensions 2a and 2b (a ≥ b), we have a
solution for K in Budynas and Sadegh [4, page 366, Table 10.7],

K = ab3

{
16

3
− 3.36

b

a

(
1 − b4

12a4

)}
, (C.2)

obtained from a truncation of an infinite series solution of the St. Venant torsion prob-
lem, which can be found in Timoshenko and Goodier [40, page 288]. From Eq. (C.1),



666 M.-J. Choi et al.

KG/L = MT/θ represents the torsional stiffness of the bar. Note that Eq. (C.2) is based
on the assumptions (Budynas and Sadegh [4, page 349]): (i) The bar is straight, (ii) the ma-
terial is homogeneous, isotropic, and linearly elastic, (iii) the deformation is purely torsional
under equal and opposite twisting moments at the ends.

C.2 Total number of load steps in example 4

Here, we present total number of load steps and iterations in the results of Fig. 20. For
the formulation [Δθ ], we use in total 200 and 2000 load steps with uniform increments in
cases 1 and 2, respectively. Table C.1 shows the total number of load steps and iterations in
the results from using [mix.glo] and [mix.loc-sr]. We have observed that, using [mix.loc-sr]
with p = 2 and nel = 24, the ring does not deform into a smaller one, and the equilibrium
iteration eventually diverges.
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