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Keywords: Accurate classification of battery quality and prediction of battery lifetime before leaving the factory would bring
Battery economic and safety benefits. Here, we propose a data-driven approach with machine learning to classify the
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battery quality and predict the battery lifetime before usage only using formation data. We extract three classes
of features from the raw formation data, considering the statistical aspects, differential analysis, and electro-
chemical characteristics. The correlation between over 100 extracted features and the battery lifetime is analysed
based on the ageing mechanisms. Machine learning models are developed to classify battery quality and predict
battery lifetime by features with a high correlation with battery ageing. The validation results show that the
quality classification model achieved accuracies of 89.74% and 89.47% for the batteries aged at 25°C and 45°C,
respectively. Moreover, the lifetime prediction model is able to predict the battery end-of-life with mean per-
centage errors of 6.50% and 5.45% for the batteries aged at 25°C and 45°C, respectively. This work highlights the
potential of battery formation data from production lines in quality classification and lifetime prediction.
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J. Zou et al.
Introduction

In recent years, gasoline and diesel vehicles have been recognised as
major contributors to air pollution and global warming, prompting a rise
in the popularity of electric vehicles. Lithium-ion batteries (LIBs) are
favoured for electric vehicles due to their affordability, high power and
energy density, and long lifespan [1]. However, concerns about battery
quality, particularly regarding energy and power density, lifespan, and
safety, remain prevalent. As a result, quality control is a crucial aspect of
battery production. Monitoring parameters related to battery quality
helps prevent defective or substandard battery products from leaving
the production lines and provides essential information for battery sci-
entists and engineers to make necessary adjustments for product opti-
misation. Currently, state-of-the-art methods, e.g., capacity test and
resistance measurement measurements, are widely used during the
end-of-line test in battery production [2]. These tests provide insights
into the electrical behaviour of batteries but require additional testing
equipment and time, and they often do not yield comprehensive infor-
mation about battery ageing and lifespan. To reduce costs and time
associated with end-of-line tests while increasing the accuracy of quality
classification and lifespan prediction, there is a growing focus on ana-
lysing and utilising data from production processes like battery
formation.

There are typically three fundamental processes in battery
manufacturing: electrode production, cell production, and cell condi-
tioning. Cell conditioning begins with the formation process, which
directly affects the quality of solid electrolyte interphase (SEI) and,
consequently, the lifetime and the safety of LIBs [3,4]. During formation,
the battery cell is charged for the first time, and several electrical cycles
are performed to form the SEI. After formation, the battery cells are
stored for several days or weeks before undergoing end-of-line testing
and cyclic testing for capacity grading. Zhang et al. [5] identified two
stages of SEI formation: the first happens at graphite electrode voltages
above 0.25 V, and the second stage occurs between 0.25 V and 0.04 V. A
well-formed SEI facilitates smooth electrochemical reactions by allow-
ing lithium ions LiH to pass through while blocking electrons [6]. This
selective permeability prevents unwanted reactions between the nega-
tive electrode and the electrolyte [7]. Additionally, Zhang et al. noted
that the SEI can block the co-intercalation of solvents. An ideal SEI is
passivating, electrochemically inert, thin, electronically resistive and
Li* conductive [8]. SEI growth directly influences battery lifetime and is
one of the dominating ageing mechanisms for LIBs in applications,
which can be modelled based on kinetic limitations [9,10] and solvent
diffusion [11,12]. SEI models can also predict the end of life (EOL) of
LIBs [13]. Therefore, the data acquired during the formation process
potentially contains crucial information about the quality of LIBs. This
data can be used to extract various features to predict the lifetime of
LIBs, thereby reducing or eliminating the need for extensive end-of-line
testing and preventing further processing of cells already identified as
faulty.

To successfully correlate the data collected during formation to
battery quality and lifetime performance, it is crucial to understand the
ageing processes of battery cells. In general, battery degradation modes
can be categorised into three types: loss of lithium inventory (LLI), loss
of active material in the positive electrode (LAMpg), and loss of active
material in the negative electrode (LAMyg) [14]. Many researchers have
proposed mechanisms- or physics-based models to predict the lifetime of
LIBs. For instance, Safari et al. [15] discussed the potential for lifetime
prediction using a mechanical fatigue model, while Yang et al. [16]
developed an ageing model that considers both SEI growth and lithium
plating. Lui et al. introduced a physics-based approach for remaining
useful life (RUL) prediction based on LLI, LAMpg, and LAMpg [17]. With
the availability of large battery datasets, advancements in computa-
tional power, and the mechanism-free characteristics of machine
learning, data-driven approaches are increasingly being used for battery
lifetime prediction [18]. For example, Xue et al. applied support vector
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regression (SVR) to predict the RUL of LIBs [19]. Pang et al. combined
incremental capacity analysis and Gaussian process regression (GPR) for
RUL prediction [20]. Richardson et al. employed GPR to predict the
battery lifetime in fast-charging scenarios, demonstrating a reduction in
testing time [21]. Other neural networks, such as recurrent neural net-
works (RNN) [22,23], long short-term memory neural networks (LSTM)
[24], convolutional neural networks (CNN) [25,26],
sequence-to-sequence models [27] and multi-task learning models [28]
have also been widely used for ageing prediction.

To further reduce the time needed for ageing evaluation, some
studies aim to predict the battery lifetime using minimal data, such as
the first 100 cycles [29], a quarter of the ageing curves [30], or even just
one cycle [31]. However, quality control and lifetime prediction using
only formation data remain challenging because formation data covers
only the initial charge-discharge cycles in battery manufacturing. Weng
et al. introduced a method for battery lifetime prediction with demon-
strated capabilities using formation data [32]. However, their model
primarily relies on resistance signals at low states of charge (SOQC),
which do not directly originate from the formation process data. Uti-
lising only formation data results in a predictive error of around 15%.

The significance of formation data lies in its potential to serve as an
early prognosticator of battery health and lifespan. Unlike studies that
focus on data collected well into the battery’s life, our work emphasises
the predictive value of formation data. This approach is novel and pre-
sents a stark contrast to existing literature that predominantly relies on
post-manufacture test data for battery assessment. The challenge,
however, lies in extracting meaningful features from the formation data
that can reliably predict battery performance over its entire lifecycle. To
address the research gaps in battery quality control and lifetime pre-
diction using formation data, we propose a data-driven framework to
understand the correlation between raw formation data and battery
lifetime. This framework includes two machine learning models for
quality classification and lifetime prediction. Initially, we extracted
various features from raw electrical measurements—voltage, current,
capacity, and energy—during the formation process. We then conducted
a correlation analysis between these features and battery lifetime to
identify those with high correlation, rationalising our findings based on
ageing mechanisms, particularly SEI formation. Additionally, we
reduced the dimensionality of the selected features using machine
learning techniques. Given the limitations in data size and the need to
avoid overfitting, we selected Ridge regression to predict battery life-
time, achieving good performance across different formation protocols.
For quality classification, we employed the K-Nearest Neighbors (KNN)
model, which demonstrated high accuracy. This work demonstrates the
potential of data-driven methods to enhance quality assessment in bat-
tery manufacturing and reduce end-of-line testing costs.

Methodology

During the formation process, voltage and current are measured, and
these measurements typically vary between different batteries due to
differences in chemical composition. These measurements indirectly
reflect the stability of the SEI film, which is directly related to the bat-
tery’s quality and lifetime. The overall framework proposed in this work
for battery quality classification and lifetime prediction using formation
data is illustrated in Fig. 1. To identify the differences between batteries
after the formation process, we extracted various features from the raw
formation data, which can be roughly divided into three categories:
statistical data, differential voltage analysis (widely used in ageing
analysis [33]) and electrochemical characteristics. In total, over 100
features were extracted from the raw formation data.

We analysed the correlation between extracted features and battery
lifetime, focusing on their relationship with ageing mechanisms and
explaining the possible reasons behind high correlations. After the cor-
relation analysis, features with low correlation to battery lifetime were
filtered out. Due to the limited size of data samples, it was necessary to
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reduce the number of model inputs further to avoid overfitting. Instead
of directly filtering out features with low correlation, we used principal
component analysis (PCA) to reduce the dimensionality of the model
inputs without losing valuable information. Since the battery samples
were from the same production batch, their quality and characteristics
were similar, making the classification task particularly challenging. We
used the KNN model for battery quality classification, which considers
the proximity and similarity between data points to assign them to the
most similar clusters. For battery lifetime prediction, we used a regu-
larised linear regression model, which achieved high prediction accu-
racy while avoiding overfitting.

Dataset description

The dataset used in this work, obtained from [32], comprises 40
NMC/graphite LIB pouch cells each with a nominal capacity of 2.36 Ah.
These 40 cells were divided into two groups, each subjected to a
different formation protocol. The formation process, which typically
occurs after the assembly of the cells, is shown in Fig. 2(a). In this study,
the two formation protocols are referred to as *baseline formation’ and
*fast formation’. As shown in Fig. 2(b), the baseline formation protocol
consists of two C/10-C/10 charge-discharge cycles. In contrast, the fast
formation protocol consists of five C/5-C/5 cycles at the beginning,
limited to a voltage range of 3.9V to 4.2V. At the end of both formation
protocols, a diagnostic cycle is carried out, which includes a six-hour
relaxation stage. After the formation process, the battery cells were
further divided into two groups and aged with cyclic ageing tests at 45°C
and 25°C, as shown in Fig. 2(c). The cycling conditions for the ageing
tests included a 1C, constant current (CC) charge to 4.2 V with a constant
voltage (CV) hold to 10mA and 1 C discharges to 3.0 V. Diagnostic tests
such as reference performance tests (RPTs) and hybrid pulse power
characterisation (HPPC) were conducted to assess the cells’ low-rate
capacity and internal resistances. RPTs involved C/3 and C/20
charge-discharge cycles, while HPPC provided insights into the resis-
tance at various states of charge (SOC). These tests were performed
periodically to monitor the cells’ health throughout the ageing process.
Interruptions in the dataset correspond to these checkup procedures,
which are crucial for evaluating the cells’ performance and resistance
changes over time.

Feature extraction

Before the feature extraction, the prediction targets of the machine
learning models must be determined. EOL is a well-known indicator
marking the end of safe operation, beyond which batteries may no
longer meet requirements and pose higher safety risks [34]. In this
study, the prediction targets are set at 80% of the initial capacity
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(EOL80) [35] and 70% of the initial capacity (EOL70) [36], corre-
sponding to the EOL for the first and second life of batteries, respec-
tively. As illustrated in Fig. 3(a), the life cycles at which batteries reach
EOLB80 and EOL70 are considered for ageing analysis. In addition to the
life cycles reaching EOLs, the remaining capacity at specific life cycles
delivers significant information about battery ageing. We defined three
retention of cycle (ROC) points at 300, 350 and 400 cycles for further
analysis, as shown in Fig. 3(a). Another important ageing indicator is the
degradation knee point, which marks the point in the degradation curve
where ageing begins to accelerate abruptly [37]. Identification of knee
points has been explored in the literature [38,39] and we used the kneed
package in Python [40] to identify the knee points in the ageing dataset,
as shown in Figs. 3(a) and S1.

Based on the analysis of the raw data characteristics, we extracted
features using various approaches. First, we employed an automatic
feature extraction method [41] to derive statistical features. For
example, we counted the time each battery cell spent within specific
voltage ranges during formation, such as the accumulated time in a
voltage range greater than 3.5 V during the first charge-discharge cycle.
Another key feature is the total formation time spent in a voltage range
greater than 3.9 V throughout the entire formation cycle, as shown in
Fig. 3(b). Similarly, all possible accumulated times in different voltage
ranges were extracted as statistical features to investigate the influence
of formation voltage, as summarised in Table S1.

Second, we extracted new features from the raw formation data
using differential analysis, as shown in Fig. 3(c). In addition to the
commonly analysed relationship between capacity (Q) and charge
voltage (V), we expanded our analysis to include charge energy (E) and
charge voltage (V) measurements during the final diagnostic cycle of the
formation process. This allowed us to calculate dE/dV, representing the
rate of change of energy with respect to voltage. By examining the dE/
dV versus V curve, we identified peaks and their corresponding locations
as a kind of feature using the scipy.signal package for peak detection
algorithms [42]. Moreover, we also calculated dV/dE and performed
similar smoothing operations to dV/dQ (DV) and dQ/dV (IC) analyses,
as shown in Fig. S2.

The peaks and corresponding locations from the IC and DV analyses
are recognised as strong indicators for estimating the State-of-Health
(SOH) of the battery. Bloom et al. established a connection between
DV analysis and physical mechanisms of LIBs, suggesting it provides
insights into side reactions at the anode, which can lead to capacity
degradation [33]. By incorporating dE/dV analysis as a complementary
approach, we aim to gain a more comprehensive understanding of bat-
tery degradation processes. This novel approach expands our diagnostic
capabilities and potentially offers unique insights into the underlying
mechanisms affecting battery health and lifespan.

Finally, we extracted features based on the electrochemical
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mechanisms of LIBs during formation, as shown in Fig. 3(d). This figure
illustrates the consumed Li/Li+ as a feature where lithium loss is asso-
ciated with the growth of the SEI layer [43,44]. SEI growth serves as a
model for the battery ageing mechanism, considering kinetic limitation

[9,10] and solvent diffusion [11,12]. Assessing the SEI layer offers a
measurable parameter to predict the EOL of LIBs, providing valuable
insights for battery management systems and replacement strategies.
Utilising consumed lithium as a feature of SEI growth enhances
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predictive capabilities and deepens the understanding of LIB ageing.
This feature is supported by extensive empirical data and theoretical
foundations, highlighting the intricate relationship between lithium
consumption, SEI development, and overall battery degradation. Addi-
tionally, features based on measurements during the diagnostic cycle’s
relaxation stage, such as the voltage after 1s/10s/60s of the final charge
in the formation process, are included. In summary, Table 1 presents the
three categories of descriptive features and their extraction methods.

Correlation analysis

After feature extraction, over 100 features are available. Correlation
analysis helps prioritise the most significant features, which is crucial for
understanding the ageing mechanisms of LIBs. This process also reduces
computation costs and enhances prediction performance by selecting
key features [45]. Recent studies employ various methods for feature
selection, categorised into three main approaches: wrapper, filter, and
embedded method [46].

The wrapper method involves multiple training iterations, adjusting
the subset of features in each iteration. For example, genetic algorithms
are commonly used in this context [47,48]. Despite its effectiveness, the
wrapper method’s black-box nature limits our ability to explain the
correlation between selected features and ageing mechanisms. In
contrast, the filter method ranks features, often using heatmaps to
display correlation coefficients [49]. This approach allows for compar-
ison among features and provides initial insights into their correlation
with ageing mechanisms, as it ranks all features at once. The embedded
method combines aspects of both wrapper and filter methods, sharing
the wrapper methods’s limitations in explaining ageing mechanisms.
Thus, this work employs the filter method for correlation analysis of
features extracted from formation data, offering a balance between
interpretability and effectiveness.

Various coefficients can describe the correlation of features, such as

Table 1
Categories and definitions of extracted features from the formation cycles.

Source Subclass Definition

Raw data (Feature Class A)  All cycles of
formation
First cycle of
formation

dv - dQ

Cumulative time from V; to V;
Cumulative time from V; to V;

Differential analysis
(Feature Class B)

Peaksiny vs.x plot x=Q, V;y =
dv/dQ, dQ/dv)

Locations of peaks in y vs. x plot
Peaks iny vs. x plot x =E, V; y =
dv/dE, dE/dV)

Locations of peaks in y vs. x plot
Voltage 1s/10s/60s after last
charge

Voltage difference between time
point i and time point j after the
battery starts the relaxation
Difference between the maximum
voltage and the voltage after 6
hours of relaxation during the
formation process

Daily voltage decrease calculated
based on the voltage drop over the
last 2 hours

Voltage decrease per second
calculated based on the initial 15
minutes

Total consumed lithium

First charge capacity

First discharge capacity

First discharge capacity / First
charge capacity

Final discharge capacity

Final discharge capacity / First
charge capacity

dv - dE

Electrochemical
characteristics (Feature
Class C)

During
relaxation

Others

p:
JVEFE - FPY (7 - 2
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the Pearson coefficient [50-52], Spearman coefficient [53], and grey
relation coefficient [54,55]. According to Greenbank et al., the perfor-
mance of these methods shows little difference [41]. In this work, the
Pearson coefficient is chosen for correlation analysis due to its compu-
tational efficiency and the availability of the two-tailed P-value. The
Pearson coefficient is calculated as follows:

where F; is the descriptive feature, Z; is the target value, F is the mean of

the descriptive feature, and Z is the mean of the target values. This
equation represents the covariance of F and Z divided by the product of
their standard deviations.

In statistical analysis, the P-value is the probability of observing data
as extreme as, or more extreme than, the current data under the null
hypothesis [56]. It assesses the statistical significance of the association
between a feature and the target variable. Specifically, a low P-value
indicates that the observed Pearson correlation coefficient, or one more
extreme, would be unlikely if we incorrectly assumed no relationship
between the feature and the target. Therefore, a lower P-value provides
stronger evidence of a statistically significant association. In this work, a
P-value of 0.05 is used as the threshold for statistical significance in
feature filtering [57]. This conventional threshold demarcates the
boundary between decisive results and random variation. Consequently,
any features with a P-value at or below this threshold are considered
candidates for further analysis.

Dimensionality reduction

Dimensionality reduction is a crucial preprocessing step for model-
ling, especially given the large number of features remaining after
feature filtering. This work employs PCA due to its simplicity and
effectiveness in handling the challenges posed by a limited number of
samples. PCA reduces the dimensionality of the dataset by computing
linear combinations of features while retaining the most relevant in-
formation [58]. This method is widely adopted in battery research for
feature engineering [59-61]. Given the small dataset size and the po-
tential risk of overfitting, PCA is particularly suitable. By extracting
principal components that capture the maximum variance in the original
feature space, PCA enables dimensionality reduction while preserving
key patterns and structures in the data. This results in a more concise
representation without compromising the model’s predictive capacity.

While other methods such as Multi-Dimensional Scaling (MDS) [62],
t-distributed Stochastic Neighbor Embedding (t-SNE) [63], and
Autoencoder [64,65] offer alternative approaches to dimensionality
reduction, they have limitations. These include the need for pairwise
comparisons, computational complexity, and potential instability due to
small sample sizes. In contrast, PCA strikes a balance between simplicity
and performance, making it an optimal choice for our research objec-
tives. Therefore, PCA is selected as the primary dimensionality reduction
method to extract the most informative features from our dataset. The
Python Scikit-learn framework [66] is utilised for the implementation of
PCA, enabling efficient processing and analysis of the data.

Machine learning models

In this section, we utilise the dimensionality-reduced features ob-
tained through the aforementioned techniques and apply machine
learning algorithms for battery quality classification and lifetime pre-
diction. Due to the limited number of samples, deep learning is unsuit-
able for this work, as it requires a much larger dataset to train and
accurately estimate all predictor parameters. For the classification task,
KNN is chosen due to its robustness and suitability for smaller datasets.
KNN operates on an instance-based learning approach, where
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classification decisions are based on the similarity between new in-
stances and existing data points. This simplicity makes KNN an effective
choice for our supervised learning task. Moreover, like many in early-
stage battery research, our dataset may not be evenly distributed
across all classes, especially since the battery samples were from the
same production batch. KNN is less sensitive to such imbalances
compared to more complex models that might overfit dominant classes.
For the regression task, regularised linear regression is selected. This
method imposes constraints on the model complexity, making it well-
suited to handle the limitations of a smaller dataset. Regularised linear
regression balances capturing relevant patterns in the data while mini-
mising the undue influence of noise, thereby enhancing the model’s
predictive accuracy. In summary, KNN and regularised linear regression
are employed for classification and regression tasks, respectively, to
leverage the reduced features and achieve reliable predictions in battery
quality and lifetime assessment. As for implementing the models, we
employed well-established libraries from scikit-learn, a widely-used
Python module for machine learning. Specifically, we utilised sklearn.
neighbors for the KNN algorithm and sklearn.linear model for regu-
larised linear regression.

Quality classification

In the KNN algorithm, we compute the distances between the feature
vectors of the test sample and its neighbours, then assign the test sample
to the class label most commonly observed among its nearest neigh-
bours. However, determining the optimal value of K, representing the
number of nearest neighbours to consider, is not straightforward.

The choice of K is critical as it directly influences the classification
results. A low value of K puts more weight on nearby instances and may
result in overfitting due to increased sensitivity to noise in the data.
Conversely, a high value of K introduces higher computational
complexity and may lead to the blending of different classes, compro-
mising the effectiveness of KNN [67]. While there is no universal method
to determine the best K value, empirical guidelines suggest using K = 5
or the square root of the number of samples.

In this work, we validated our choice of K through the validation
results, ensuring that the selected value was optimal for our training
dataset and generalisable to unseen data. By evaluating the performance
metrics and comparing the classification results, we determined K = 5,
which yields the most accurate and reliable battery quality
classification.

Lifetime prediction

Respecting the combination features from the dimension reduction
section as the input, three regularised linear regression models, namely
Ridge regression, Lasso regression, and Elastic Net regression, are used
for lifetime prediction using formation data. Unlike simple linear
regression, the three regularised models add penalty terms to the end of
the simple linear predictor. Ridge regression redefines the error function
as follows [68]:

Lp(w) = %(y —xw)"(y — Xw) 2
1 2
Lr(w) = EH w3 3)

Then ridge regression considers the regression problem as:

argmin(Lp(w) + ALz (W)) (€]

where X, y, and w represent the feature matrix, target vector and weight
vector, respectively. Lp(w) is the standard error function of the least-
squares (LS) problem, while Lg(w) is the penalty term. / represents the
regularisation parameter that controls the trade-off between fitting the
training data and keeping the coefficients small. A larger 1 means greater
regularisation, which can prevent overfitting but may lead to under-
fitting if it is too large.
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For Lasso regression [69], the regularised term is changed to:

1
Le(w) = 5| wlh ®)

Ridge regression, distinguished by its L2 regularisation term, in-
troduces a penalty proportional to the square of the magnitude of
regression coefficients. This regularisation technique, unlike Lasso
regression, allows for the simultaneous inclusion of multiple features by
penalising their contributions without necessarily driving coefficients to
absolute zero. The intrinsic advantage of Ridge regression lies in its
ability to mitigate multicollinearity among predictor variables, a com-
mon concern in datasets with numerous features. By constraining the
coefficients and preventing them from reaching extreme values, Ridge
regression effectively stabilises the model against the adverse effects of
collinearity, thereby enhancing the generalisation capability of the
predictive model.

The Elastic Net [70] combines the L1 and L2 norms into the error
function, providing a balance between feature selection and handling
multicollinearity. The penalty of the Elastic Net is shown as follows:

l1-a
2

Lr(w) = | w3+a || wih 6)

However, given the specific characteristics of our dataset, the addi-
tional flexibility offered by Elastic Net to drive some coefficients to
absolute zero might not be advantageous. With a relatively small sample
size and a considerable number of features, the risk of discarding
potentially relevant predictors is a concern. Elastic Net’s feature selec-
tion capability might excessively prune variables that could hold pre-
dictive value, potentially leading to an oversimplified model that
disregards important contributing factors. Therefore, in our pursuit of a
robust and reliable predictive model for battery life estimation, Ridge
regression was deemed more suitable. It maintains a balance between
model complexity and predictive accuracy, addressing the multi-
collinearity issue without risking the exclusion of potentially valuable
predictors. Hence, Ridge regression was chosen as the preferred algo-
rithm for the prediction task in our study.

To evaluate the performance of the predictors, we used mean per-
centage error (MPE) and standard deviation (Std), which can be calcu-
lated as follows:

1 red — e
MPE = — M x 100% @)
N y true
MPE,; — MPE)*
Std = —Z ( ) 8)

K

where yprq and ym.e represent the predicted and observed values,
respectively. N is the number of cells in each temperature case, and K
comes from the repeated random subsampling validation. MPE and Std
represent the prediction accuracy and robustness, respectively. In this
work, repeated random subsampling validation is used rather than K-
fold cross-validation because it does not depend on the order of the data,
and the results can be more convincing. Specifically, we conducted a
comprehensive validation process where we randomly selected 4 out of
the 20 available cells as the test dataset in each iteration. Given the small
dataset size, we exhaustively considered all possible combinations of
selecting 4 cells from 20, which amounts to a total of 4845 unique
combinations. In the dataset at room temperature, these 4 batteries were
used as test data for a total of 4845 experiments, which is equivalent to
generating 19380 samples. As there are only 19 batteries in the data
under high-temperature conditions, 4 batteries will be extracted from
the 19 batteries each time, resulting in 15504 samples. This result will
have the highest reliability in classification problems. This approach
allowed us to evaluate the model’s performance across all potential test
scenarios.
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Results and discussion
Feature selection and dimensionality reduction
Fig. 4 presents the three class features and the correlation co-

efficients with the six prediction targets, using the Pearson coefficient to
display the correlation results. The Pearson coefficient ranges from 0 to
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Fig. 4. Correlation results of features extracted from formation data. a) 25°C ageing test. b) 45°C ageing test. FA/FB/FC means feature Class A/B/C and all features
extracted from the formation process can be found in Tables S1-S3."c300" denotes cycle 300 and "cap." signifies capacity.
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1, with greater absolute values, indicating stronger correlations. Fig. 4
(a) illustrates the correlation results for formation features in the 25°C
case, while Fig. 4(b) shows the results for the 45°C case. In Fig. 4(a), we
specifically focus on the correlation analysis results for 40 features
related to feature class A (FA). These selected FA features exhibit similar
patterns and have been grouped together for clarity and concise repre-
sentation. Comprehensive definitions and explanations of the remaining
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Fig. 4. (continued).

FA37

FA38

FA39
FA features are summarised in Table S1. The first two features with the
highest correlations with battery ageing, as measured by the Pearson
correlation coefficient, are FA75 and FA73. FA75 represents the cumu-
lative time that the battery voltage exceeds 3.9 V, while FA73 denotes
the cumulative time spent between 3.9 V and 4.0 V during the formation
process. These findings suggest that the duration of high voltage expo-
sure during the formation process is a significant predictor of battery

lifespan.

Fig. 4(b) presents a compelling comparison of the correlation anal-
ysis at an elevated temperature of 45°C, offering insights into the
temperature-dependent dynamics of battery ageing. When juxtaposing
the findings from the 45°C scenario with those from the 25°C condition,
it is evident that FA features continue to demonstrate robust correlations
with ageing indicators. This underscores the resilience of these features
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as predictive markers across a range of temperatures. This consistency
suggests that FA features, which encapsulate various cumulative time
metrics at different voltage thresholds during the formation process,
may hold universal significance in predicting battery lifespan.

Additionally, Fig. 4 reveals significant insights into the predictive
capabilities of Feature Classes B (FB) and C (FC) on LIBs. These features,
derived from differential operation analyses and electrochemical char-
acteristics, show strong potential in forecasting battery ageing
behaviour.

The FB features, particularly those related to the peaks observed in
the dV/dQ and dV/dE plots, exhibit correlation coefficients ranging
from 0.7 to 0.9 with the battery ageing in