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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Battery quality classification and life
time prediction only using formation 
data.

• Data-driven framework with machine 
learning for quality control in battery 
production.

• Over 100 features extracted from for
mation data for enhanced ageing 
analysis.

• Achieved 89.74% accuracy in classifi
cation and 5.45% error in lifetime 
prediction.

• Potential to reduce costly end-of-line 
testing in battery production processes.
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A B S T R A C T

Accurate classification of battery quality and prediction of battery lifetime before leaving the factory would bring 
economic and safety benefits. Here, we propose a data-driven approach with machine learning to classify the 
battery quality and predict the battery lifetime before usage only using formation data. We extract three classes 
of features from the raw formation data, considering the statistical aspects, differential analysis, and electro
chemical characteristics. The correlation between over 100 extracted features and the battery lifetime is analysed 
based on the ageing mechanisms. Machine learning models are developed to classify battery quality and predict 
battery lifetime by features with a high correlation with battery ageing. The validation results show that the 
quality classification model achieved accuracies of 89.74% and 89.47% for the batteries aged at 25◦C and 45◦C, 
respectively. Moreover, the lifetime prediction model is able to predict the battery end-of-life with mean per
centage errors of 6.50% and 5.45% for the batteries aged at 25◦C and 45◦C, respectively. This work highlights the 
potential of battery formation data from production lines in quality classification and lifetime prediction.
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Introduction

In recent years, gasoline and diesel vehicles have been recognised as 
major contributors to air pollution and global warming, prompting a rise 
in the popularity of electric vehicles. Lithium-ion batteries (LIBs) are 
favoured for electric vehicles due to their affordability, high power and 
energy density, and long lifespan [1]. However, concerns about battery 
quality, particularly regarding energy and power density, lifespan, and 
safety, remain prevalent. As a result, quality control is a crucial aspect of 
battery production. Monitoring parameters related to battery quality 
helps prevent defective or substandard battery products from leaving 
the production lines and provides essential information for battery sci
entists and engineers to make necessary adjustments for product opti
misation. Currently, state-of-the-art methods, e.g., capacity test and 
resistance measurement measurements, are widely used during the 
end-of-line test in battery production [2]. These tests provide insights 
into the electrical behaviour of batteries but require additional testing 
equipment and time, and they often do not yield comprehensive infor
mation about battery ageing and lifespan. To reduce costs and time 
associated with end-of-line tests while increasing the accuracy of quality 
classification and lifespan prediction, there is a growing focus on ana
lysing and utilising data from production processes like battery 
formation.

There are typically three fundamental processes in battery 
manufacturing: electrode production, cell production, and cell condi
tioning. Cell conditioning begins with the formation process, which 
directly affects the quality of solid electrolyte interphase (SEI) and, 
consequently, the lifetime and the safety of LIBs [3,4]. During formation, 
the battery cell is charged for the first time, and several electrical cycles 
are performed to form the SEI. After formation, the battery cells are 
stored for several days or weeks before undergoing end-of-line testing 
and cyclic testing for capacity grading. Zhang et al. [5] identified two 
stages of SEI formation: the first happens at graphite electrode voltages 
above 0.25 V, and the second stage occurs between 0.25 V and 0.04 V. A 
well-formed SEI facilitates smooth electrochemical reactions by allow
ing lithium ions (Li+) to pass through while blocking electrons [6]. This 
selective permeability prevents unwanted reactions between the nega
tive electrode and the electrolyte [7]. Additionally, Zhang et al. noted 
that the SEI can block the co-intercalation of solvents. An ideal SEI is 
passivating, electrochemically inert, thin, electronically resistive and 
Li+ conductive [8]. SEI growth directly influences battery lifetime and is 
one of the dominating ageing mechanisms for LIBs in applications, 
which can be modelled based on kinetic limitations [9,10] and solvent 
diffusion [11,12]. SEI models can also predict the end of life (EOL) of 
LIBs [13]. Therefore, the data acquired during the formation process 
potentially contains crucial information about the quality of LIBs. This 
data can be used to extract various features to predict the lifetime of 
LIBs, thereby reducing or eliminating the need for extensive end-of-line 
testing and preventing further processing of cells already identified as 
faulty.

To successfully correlate the data collected during formation to 
battery quality and lifetime performance, it is crucial to understand the 
ageing processes of battery cells. In general, battery degradation modes 
can be categorised into three types: loss of lithium inventory (LLI), loss 
of active material in the positive electrode (LAMPE), and loss of active 
material in the negative electrode (LAMNE) [14]. Many researchers have 
proposed mechanisms- or physics-based models to predict the lifetime of 
LIBs. For instance, Safari et al. [15] discussed the potential for lifetime 
prediction using a mechanical fatigue model, while Yang et al. [16] 
developed an ageing model that considers both SEI growth and lithium 
plating. Lui et al. introduced a physics-based approach for remaining 
useful life (RUL) prediction based on LLI, LAMPE, and LAMPE [17]. With 
the availability of large battery datasets, advancements in computa
tional power, and the mechanism-free characteristics of machine 
learning, data-driven approaches are increasingly being used for battery 
lifetime prediction [18]. For example, Xue et al. applied support vector 

regression (SVR) to predict the RUL of LIBs [19]. Pang et al. combined 
incremental capacity analysis and Gaussian process regression (GPR) for 
RUL prediction [20]. Richardson et al. employed GPR to predict the 
battery lifetime in fast-charging scenarios, demonstrating a reduction in 
testing time [21]. Other neural networks, such as recurrent neural net
works (RNN) [22,23], long short-term memory neural networks (LSTM) 
[24], convolutional neural networks (CNN) [25,26], 
sequence-to-sequence models [27] and multi-task learning models [28] 
have also been widely used for ageing prediction.

To further reduce the time needed for ageing evaluation, some 
studies aim to predict the battery lifetime using minimal data, such as 
the first 100 cycles [29], a quarter of the ageing curves [30], or even just 
one cycle [31]. However, quality control and lifetime prediction using 
only formation data remain challenging because formation data covers 
only the initial charge-discharge cycles in battery manufacturing. Weng 
et al. introduced a method for battery lifetime prediction with demon
strated capabilities using formation data [32]. However, their model 
primarily relies on resistance signals at low states of charge (SOC), 
which do not directly originate from the formation process data. Uti
lising only formation data results in a predictive error of around 15%.

The significance of formation data lies in its potential to serve as an 
early prognosticator of battery health and lifespan. Unlike studies that 
focus on data collected well into the battery’s life, our work emphasises 
the predictive value of formation data. This approach is novel and pre
sents a stark contrast to existing literature that predominantly relies on 
post-manufacture test data for battery assessment. The challenge, 
however, lies in extracting meaningful features from the formation data 
that can reliably predict battery performance over its entire lifecycle. To 
address the research gaps in battery quality control and lifetime pre
diction using formation data, we propose a data-driven framework to 
understand the correlation between raw formation data and battery 
lifetime. This framework includes two machine learning models for 
quality classification and lifetime prediction. Initially, we extracted 
various features from raw electrical measurements—voltage, current, 
capacity, and energy—during the formation process. We then conducted 
a correlation analysis between these features and battery lifetime to 
identify those with high correlation, rationalising our findings based on 
ageing mechanisms, particularly SEI formation. Additionally, we 
reduced the dimensionality of the selected features using machine 
learning techniques. Given the limitations in data size and the need to 
avoid overfitting, we selected Ridge regression to predict battery life
time, achieving good performance across different formation protocols. 
For quality classification, we employed the K-Nearest Neighbors (KNN) 
model, which demonstrated high accuracy. This work demonstrates the 
potential of data-driven methods to enhance quality assessment in bat
tery manufacturing and reduce end-of-line testing costs.

Methodology

During the formation process, voltage and current are measured, and 
these measurements typically vary between different batteries due to 
differences in chemical composition. These measurements indirectly 
reflect the stability of the SEI film, which is directly related to the bat
tery’s quality and lifetime. The overall framework proposed in this work 
for battery quality classification and lifetime prediction using formation 
data is illustrated in Fig. 1. To identify the differences between batteries 
after the formation process, we extracted various features from the raw 
formation data, which can be roughly divided into three categories: 
statistical data, differential voltage analysis (widely used in ageing 
analysis [33]) and electrochemical characteristics. In total, over 100 
features were extracted from the raw formation data.

We analysed the correlation between extracted features and battery 
lifetime, focusing on their relationship with ageing mechanisms and 
explaining the possible reasons behind high correlations. After the cor
relation analysis, features with low correlation to battery lifetime were 
filtered out. Due to the limited size of data samples, it was necessary to 
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reduce the number of model inputs further to avoid overfitting. Instead 
of directly filtering out features with low correlation, we used principal 
component analysis (PCA) to reduce the dimensionality of the model 
inputs without losing valuable information. Since the battery samples 
were from the same production batch, their quality and characteristics 
were similar, making the classification task particularly challenging. We 
used the KNN model for battery quality classification, which considers 
the proximity and similarity between data points to assign them to the 
most similar clusters. For battery lifetime prediction, we used a regu
larised linear regression model, which achieved high prediction accu
racy while avoiding overfitting.

Dataset description

The dataset used in this work, obtained from [32], comprises 40 
NMC/graphite LIB pouch cells each with a nominal capacity of 2.36 Ah. 
These 40 cells were divided into two groups, each subjected to a 
different formation protocol. The formation process, which typically 
occurs after the assembly of the cells, is shown in Fig. 2(a). In this study, 
the two formation protocols are referred to as ’baseline formation’ and 
’fast formation’. As shown in Fig. 2(b), the baseline formation protocol 
consists of two C/10-C/10 charge-discharge cycles. In contrast, the fast 
formation protocol consists of five C/5-C/5 cycles at the beginning, 
limited to a voltage range of 3.9V to 4.2V. At the end of both formation 
protocols, a diagnostic cycle is carried out, which includes a six-hour 
relaxation stage. After the formation process, the battery cells were 
further divided into two groups and aged with cyclic ageing tests at 45◦C 
and 25◦C, as shown in Fig. 2(c). The cycling conditions for the ageing 
tests included a 1C, constant current (CC) charge to 4.2 V with a constant 
voltage (CV) hold to 10mA and 1 C discharges to 3.0 V. Diagnostic tests 
such as reference performance tests (RPTs) and hybrid pulse power 
characterisation (HPPC) were conducted to assess the cells’ low-rate 
capacity and internal resistances. RPTs involved C/3 and C/20 
charge-discharge cycles, while HPPC provided insights into the resis
tance at various states of charge (SOC). These tests were performed 
periodically to monitor the cells’ health throughout the ageing process. 
Interruptions in the dataset correspond to these checkup procedures, 
which are crucial for evaluating the cells’ performance and resistance 
changes over time.

Feature extraction

Before the feature extraction, the prediction targets of the machine 
learning models must be determined. EOL is a well-known indicator 
marking the end of safe operation, beyond which batteries may no 
longer meet requirements and pose higher safety risks [34]. In this 
study, the prediction targets are set at 80% of the initial capacity 

(EOL80) [35] and 70% of the initial capacity (EOL70) [36], corre
sponding to the EOL for the first and second life of batteries, respec
tively. As illustrated in Fig. 3(a), the life cycles at which batteries reach 
EOL80 and EOL70 are considered for ageing analysis. In addition to the 
life cycles reaching EOLs, the remaining capacity at specific life cycles 
delivers significant information about battery ageing. We defined three 
retention of cycle (ROC) points at 300, 350 and 400 cycles for further 
analysis, as shown in Fig. 3(a). Another important ageing indicator is the 
degradation knee point, which marks the point in the degradation curve 
where ageing begins to accelerate abruptly [37]. Identification of knee 
points has been explored in the literature [38,39] and we used the kneed 
package in Python [40] to identify the knee points in the ageing dataset, 
as shown in Figs. 3(a) and S1.

Based on the analysis of the raw data characteristics, we extracted 
features using various approaches. First, we employed an automatic 
feature extraction method [41] to derive statistical features. For 
example, we counted the time each battery cell spent within specific 
voltage ranges during formation, such as the accumulated time in a 
voltage range greater than 3.5 V during the first charge-discharge cycle. 
Another key feature is the total formation time spent in a voltage range 
greater than 3.9 V throughout the entire formation cycle, as shown in 
Fig. 3(b). Similarly, all possible accumulated times in different voltage 
ranges were extracted as statistical features to investigate the influence 
of formation voltage, as summarised in Table S1.

Second, we extracted new features from the raw formation data 
using differential analysis, as shown in Fig. 3(c). In addition to the 
commonly analysed relationship between capacity (Q) and charge 
voltage (V), we expanded our analysis to include charge energy (E) and 
charge voltage (V) measurements during the final diagnostic cycle of the 
formation process. This allowed us to calculate dE/dV, representing the 
rate of change of energy with respect to voltage. By examining the dE/ 
dV versus V curve, we identified peaks and their corresponding locations 
as a kind of feature using the scipy.signal package for peak detection 
algorithms [42]. Moreover, we also calculated dV/dE and performed 
similar smoothing operations to dV/dQ (DV) and dQ/dV (IC) analyses, 
as shown in Fig. S2.

The peaks and corresponding locations from the IC and DV analyses 
are recognised as strong indicators for estimating the State-of-Health 
(SOH) of the battery. Bloom et al. established a connection between 
DV analysis and physical mechanisms of LIBs, suggesting it provides 
insights into side reactions at the anode, which can lead to capacity 
degradation [33]. By incorporating dE/dV analysis as a complementary 
approach, we aim to gain a more comprehensive understanding of bat
tery degradation processes. This novel approach expands our diagnostic 
capabilities and potentially offers unique insights into the underlying 
mechanisms affecting battery health and lifespan.

Finally, we extracted features based on the electrochemical 

Fig. 1. A data-driven framework to do the quality classification and lifetime prediction.
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mechanisms of LIBs during formation, as shown in Fig. 3(d). This figure 
illustrates the consumed Li/Li+ as a feature where lithium loss is asso
ciated with the growth of the SEI layer [43,44]. SEI growth serves as a 
model for the battery ageing mechanism, considering kinetic limitation 

[9,10] and solvent diffusion [11,12]. Assessing the SEI layer offers a 
measurable parameter to predict the EOL of LIBs, providing valuable 
insights for battery management systems and replacement strategies. 
Utilising consumed lithium as a feature of SEI growth enhances 

Fig. 2. Battery formation process and dataset description. a) Main process in battery production. b) Two formation protocols in the dataset, i.e., baseline and fast 
formation protocols. c) Battery ageing performance in 45◦C ageing test and 25◦C ageing test.

Fig. 3. Typical feature extractions from the raw data. (a) Connotation of prediction targets. (b) Accumulated duration at a specified voltage range in the formation 
process. (c) Relationship between incremental energy and voltage. Peaks and corresponding locations are recognised. (d) Consumed lithium in the formation process. 
"ROC" denotes battery retention of a certain cycle number.
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predictive capabilities and deepens the understanding of LIB ageing. 
This feature is supported by extensive empirical data and theoretical 
foundations, highlighting the intricate relationship between lithium 
consumption, SEI development, and overall battery degradation. Addi
tionally, features based on measurements during the diagnostic cycle’s 
relaxation stage, such as the voltage after 1s/10s/60s of the final charge 
in the formation process, are included. In summary, Table 1 presents the 
three categories of descriptive features and their extraction methods.

Correlation analysis

After feature extraction, over 100 features are available. Correlation 
analysis helps prioritise the most significant features, which is crucial for 
understanding the ageing mechanisms of LIBs. This process also reduces 
computation costs and enhances prediction performance by selecting 
key features [45]. Recent studies employ various methods for feature 
selection, categorised into three main approaches: wrapper, filter, and 
embedded method [46].

The wrapper method involves multiple training iterations, adjusting 
the subset of features in each iteration. For example, genetic algorithms 
are commonly used in this context [47,48]. Despite its effectiveness, the 
wrapper method’s black-box nature limits our ability to explain the 
correlation between selected features and ageing mechanisms. In 
contrast, the filter method ranks features, often using heatmaps to 
display correlation coefficients [49]. This approach allows for compar
ison among features and provides initial insights into their correlation 
with ageing mechanisms, as it ranks all features at once. The embedded 
method combines aspects of both wrapper and filter methods, sharing 
the wrapper methods’s limitations in explaining ageing mechanisms. 
Thus, this work employs the filter method for correlation analysis of 
features extracted from formation data, offering a balance between 
interpretability and effectiveness.

Various coefficients can describe the correlation of features, such as 

the Pearson coefficient [50–52], Spearman coefficient [53], and grey 
relation coefficient [54,55]. According to Greenbank et al., the perfor
mance of these methods shows little difference [41]. In this work, the 
Pearson coefficient is chosen for correlation analysis due to its compu
tational efficiency and the availability of the two-tailed P-value. The 
Pearson coefficient is calculated as follows: 

ρ =

∑
(Fi − F)

(
Zj − Z

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Fi − F)2 ∑(
Zj − Z

)2
√ (1) 

where Fi is the descriptive feature, Zj is the target value, F is the mean of 
the descriptive feature, and Z is the mean of the target values. This 
equation represents the covariance of F and Z divided by the product of 
their standard deviations.

In statistical analysis, the P-value is the probability of observing data 
as extreme as, or more extreme than, the current data under the null 
hypothesis [56]. It assesses the statistical significance of the association 
between a feature and the target variable. Specifically, a low P-value 
indicates that the observed Pearson correlation coefficient, or one more 
extreme, would be unlikely if we incorrectly assumed no relationship 
between the feature and the target. Therefore, a lower P-value provides 
stronger evidence of a statistically significant association. In this work, a 
P-value of 0.05 is used as the threshold for statistical significance in 
feature filtering [57]. This conventional threshold demarcates the 
boundary between decisive results and random variation. Consequently, 
any features with a P-value at or below this threshold are considered 
candidates for further analysis.

Dimensionality reduction

Dimensionality reduction is a crucial preprocessing step for model
ling, especially given the large number of features remaining after 
feature filtering. This work employs PCA due to its simplicity and 
effectiveness in handling the challenges posed by a limited number of 
samples. PCA reduces the dimensionality of the dataset by computing 
linear combinations of features while retaining the most relevant in
formation [58]. This method is widely adopted in battery research for 
feature engineering [59–61]. Given the small dataset size and the po
tential risk of overfitting, PCA is particularly suitable. By extracting 
principal components that capture the maximum variance in the original 
feature space, PCA enables dimensionality reduction while preserving 
key patterns and structures in the data. This results in a more concise 
representation without compromising the model’s predictive capacity.

While other methods such as Multi-Dimensional Scaling (MDS) [62], 
t-distributed Stochastic Neighbor Embedding (t-SNE) [63], and 
Autoencoder [64,65] offer alternative approaches to dimensionality 
reduction, they have limitations. These include the need for pairwise 
comparisons, computational complexity, and potential instability due to 
small sample sizes. In contrast, PCA strikes a balance between simplicity 
and performance, making it an optimal choice for our research objec
tives. Therefore, PCA is selected as the primary dimensionality reduction 
method to extract the most informative features from our dataset. The 
Python Scikit-learn framework [66] is utilised for the implementation of 
PCA, enabling efficient processing and analysis of the data.

Machine learning models

In this section, we utilise the dimensionality-reduced features ob
tained through the aforementioned techniques and apply machine 
learning algorithms for battery quality classification and lifetime pre
diction. Due to the limited number of samples, deep learning is unsuit
able for this work, as it requires a much larger dataset to train and 
accurately estimate all predictor parameters. For the classification task, 
KNN is chosen due to its robustness and suitability for smaller datasets. 
KNN operates on an instance-based learning approach, where 

Table 1 
Categories and definitions of extracted features from the formation cycles.

Source Subclass Definition

Raw data (Feature Class A) All cycles of 
formation

Cumulative time from Vi to Vj

First cycle of 
formation

Cumulative time from Vi to Vj

Differential analysis 
(Feature Class B)

dV - dQ Peaks in y vs. x plot (x = Q, V; y =
dV/dQ, dQ/dV)
Locations of peaks in y vs. x plot

dV - dE Peaks in y vs. x plot (x = E, V; y =
dV/dE, dE/dV)
Locations of peaks in y vs. x plot

Electrochemical 
characteristics (Feature 
Class C)

During 
relaxation

Voltage 1s/10s/60s after last 
charge
Voltage difference between time 
point i and time point j after the 
battery starts the relaxation
Difference between the maximum 
voltage and the voltage after 6 
hours of relaxation during the 
formation process
Daily voltage decrease calculated 
based on the voltage drop over the 
last 2 hours
Voltage decrease per second 
calculated based on the initial 15 
minutes

Others Total consumed lithium
First charge capacity
First discharge capacity
First discharge capacity / First 
charge capacity
Final discharge capacity
Final discharge capacity / First 
charge capacity

J. Zou et al.                                                                                                                                                                                                                                      Energy and AI 18 (2024) 100451 

5 



classification decisions are based on the similarity between new in
stances and existing data points. This simplicity makes KNN an effective 
choice for our supervised learning task. Moreover, like many in early- 
stage battery research, our dataset may not be evenly distributed 
across all classes, especially since the battery samples were from the 
same production batch. KNN is less sensitive to such imbalances 
compared to more complex models that might overfit dominant classes. 
For the regression task, regularised linear regression is selected. This 
method imposes constraints on the model complexity, making it well- 
suited to handle the limitations of a smaller dataset. Regularised linear 
regression balances capturing relevant patterns in the data while mini
mising the undue influence of noise, thereby enhancing the model’s 
predictive accuracy. In summary, KNN and regularised linear regression 
are employed for classification and regression tasks, respectively, to 
leverage the reduced features and achieve reliable predictions in battery 
quality and lifetime assessment. As for implementing the models, we 
employed well-established libraries from scikit-learn, a widely-used 
Python module for machine learning. Specifically, we utilised sklearn. 
neighbors for the KNN algorithm and sklearn.linear_model for regu
larised linear regression.

Quality classification
In the KNN algorithm, we compute the distances between the feature 

vectors of the test sample and its neighbours, then assign the test sample 
to the class label most commonly observed among its nearest neigh
bours. However, determining the optimal value of K, representing the 
number of nearest neighbours to consider, is not straightforward.

The choice of K is critical as it directly influences the classification 
results. A low value of K puts more weight on nearby instances and may 
result in overfitting due to increased sensitivity to noise in the data. 
Conversely, a high value of K introduces higher computational 
complexity and may lead to the blending of different classes, compro
mising the effectiveness of KNN [67]. While there is no universal method 
to determine the best K value, empirical guidelines suggest using K = 5 
or the square root of the number of samples.

In this work, we validated our choice of K through the validation 
results, ensuring that the selected value was optimal for our training 
dataset and generalisable to unseen data. By evaluating the performance 
metrics and comparing the classification results, we determined K = 5, 
which yields the most accurate and reliable battery quality 
classification.

Lifetime prediction
Respecting the combination features from the dimension reduction 

section as the input, three regularised linear regression models, namely 
Ridge regression, Lasso regression, and Elastic Net regression, are used 
for lifetime prediction using formation data. Unlike simple linear 
regression, the three regularised models add penalty terms to the end of 
the simple linear predictor. Ridge regression redefines the error function 
as follows [68]: 

LD(w) =
1
2
(y − Xw)

T
(y − Xw) (2) 

LR(w) =
1
2
‖ w ‖

2
2 (3) 

Then ridge regression considers the regression problem as: 

argmin(LD(w)+ λLR(w)) (4) 

where X, y, and w represent the feature matrix, target vector and weight 
vector, respectively. LD(w) is the standard error function of the least- 
squares (LS) problem, while LR(w) is the penalty term. λ represents the 
regularisation parameter that controls the trade-off between fitting the 
training data and keeping the coefficients small. A larger λ means greater 
regularisation, which can prevent overfitting but may lead to under
fitting if it is too large.

For Lasso regression [69], the regularised term is changed to: 

LR(w) =
1
2
‖ w‖1 (5) 

Ridge regression, distinguished by its L2 regularisation term, in
troduces a penalty proportional to the square of the magnitude of 
regression coefficients. This regularisation technique, unlike Lasso 
regression, allows for the simultaneous inclusion of multiple features by 
penalising their contributions without necessarily driving coefficients to 
absolute zero. The intrinsic advantage of Ridge regression lies in its 
ability to mitigate multicollinearity among predictor variables, a com
mon concern in datasets with numerous features. By constraining the 
coefficients and preventing them from reaching extreme values, Ridge 
regression effectively stabilises the model against the adverse effects of 
collinearity, thereby enhancing the generalisation capability of the 
predictive model.

The Elastic Net [70] combines the L1 and L2 norms into the error 
function, providing a balance between feature selection and handling 
multicollinearity. The penalty of the Elastic Net is shown as follows: 

LR(w) =
1 − α

2
‖ w ‖

2
2+α ‖ w‖1 (6) 

However, given the specific characteristics of our dataset, the addi
tional flexibility offered by Elastic Net to drive some coefficients to 
absolute zero might not be advantageous. With a relatively small sample 
size and a considerable number of features, the risk of discarding 
potentially relevant predictors is a concern. Elastic Net’s feature selec
tion capability might excessively prune variables that could hold pre
dictive value, potentially leading to an oversimplified model that 
disregards important contributing factors. Therefore, in our pursuit of a 
robust and reliable predictive model for battery life estimation, Ridge 
regression was deemed more suitable. It maintains a balance between 
model complexity and predictive accuracy, addressing the multi
collinearity issue without risking the exclusion of potentially valuable 
predictors. Hence, Ridge regression was chosen as the preferred algo
rithm for the prediction task in our study.

To evaluate the performance of the predictors, we used mean per
centage error (MPE) and standard deviation (Std), which can be calcu
lated as follows: 

MPE =
1
N

⃒
⃒
⃒
⃒
ypred − ytrue

ytrue

⃒
⃒
⃒
⃒× 100% (7) 

Std =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(MPEi − MPE)2

K

√

(8) 

where ypred and ytrue represent the predicted and observed values, 
respectively. N is the number of cells in each temperature case, and K 
comes from the repeated random subsampling validation. MPE and Std 
represent the prediction accuracy and robustness, respectively. In this 
work, repeated random subsampling validation is used rather than K- 
fold cross-validation because it does not depend on the order of the data, 
and the results can be more convincing. Specifically, we conducted a 
comprehensive validation process where we randomly selected 4 out of 
the 20 available cells as the test dataset in each iteration. Given the small 
dataset size, we exhaustively considered all possible combinations of 
selecting 4 cells from 20, which amounts to a total of 4845 unique 
combinations. In the dataset at room temperature, these 4 batteries were 
used as test data for a total of 4845 experiments, which is equivalent to 
generating 19380 samples. As there are only 19 batteries in the data 
under high-temperature conditions, 4 batteries will be extracted from 
the 19 batteries each time, resulting in 15504 samples. This result will 
have the highest reliability in classification problems. This approach 
allowed us to evaluate the model’s performance across all potential test 
scenarios.
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Results and discussion

Feature selection and dimensionality reduction

Fig. 4 presents the three class features and the correlation co
efficients with the six prediction targets, using the Pearson coefficient to 
display the correlation results. The Pearson coefficient ranges from 0 to 

1, with greater absolute values, indicating stronger correlations. Fig. 4
(a) illustrates the correlation results for formation features in the 25◦C 
case, while Fig. 4(b) shows the results for the 45◦C case. In Fig. 4(a), we 
specifically focus on the correlation analysis results for 40 features 
related to feature class A (FA). These selected FA features exhibit similar 
patterns and have been grouped together for clarity and concise repre
sentation. Comprehensive definitions and explanations of the remaining 

Fig. 4. Correlation results of features extracted from formation data. a) 25◦C ageing test. b) 45◦C ageing test. FA/FB/FC means feature Class A/B/C and all features 
extracted from the formation process can be found in Tables S1–S3."c300" denotes cycle 300 and "cap." signifies capacity.
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FA features are summarised in Table S1. The first two features with the 
highest correlations with battery ageing, as measured by the Pearson 
correlation coefficient, are FA75 and FA73. FA75 represents the cumu
lative time that the battery voltage exceeds 3.9 V, while FA73 denotes 
the cumulative time spent between 3.9 V and 4.0 V during the formation 
process. These findings suggest that the duration of high voltage expo
sure during the formation process is a significant predictor of battery 

lifespan.
Fig. 4(b) presents a compelling comparison of the correlation anal

ysis at an elevated temperature of 45◦C, offering insights into the 
temperature-dependent dynamics of battery ageing. When juxtaposing 
the findings from the 45◦C scenario with those from the 25◦C condition, 
it is evident that FA features continue to demonstrate robust correlations 
with ageing indicators. This underscores the resilience of these features 

Fig. 4. (continued).
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as predictive markers across a range of temperatures. This consistency 
suggests that FA features, which encapsulate various cumulative time 
metrics at different voltage thresholds during the formation process, 
may hold universal significance in predicting battery lifespan.

Additionally, Fig. 4 reveals significant insights into the predictive 
capabilities of Feature Classes B (FB) and C (FC) on LIBs. These features, 
derived from differential operation analyses and electrochemical char
acteristics, show strong potential in forecasting battery ageing 
behaviour.

The FB features, particularly those related to the peaks observed in 
the dV/dQ and dV/dE plots, exhibit correlation coefficients ranging 
from 0.7 to 0.9 with the battery ageing indicators. This suggests a strong 
linear relationship between these parameters and the ageing process. 
Notably, the amplitude and coordinates of these peaks at various charge 
states provide a quantitative measure of the electrochemical reactions 

occurring within the battery, which are crucial for understanding the 
underlying ageing mechanisms. For instance, the sharpening of a dV/dQ 
peak at the LiC12 stage is not related to anode degradation but is strongly 
related to the intercalation content in the graphite anode [71]. The 
nearly identical results from both dV-dE and dV-dQ analyses imply that 
the interplay between energy and voltage during the charge and 
discharge cycles holds equivalent predictive power for LIB lifetime 
estimation. This finding is significant, as it indicates that either energy 
or voltage alone can serve as a reliable proxy for assessing the battery’s 
health and RUL.

Furthermore, the FC features, which pertain to voltage measure
ments taken during the relaxation phase post-charge, show significant 
correlations with battery ageing. The relaxation phase is a critical period 
where the battery’s internal state stabilises, and any voltage changes 
during this time can indicate the battery’s internal resistance and its 

Fig. 5. Correlation analysis of feature FA75. FA75 means the cumulative time greater than 3.9V in the formation process. (a) Correlation analysis of the feature with 
various targets in 25◦C case. (b) Correlation analysis of the feature with various targets in 45◦C case.
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propensity for lithium deposition (LD). Voltage measurement during this 
relaxation phase can be considered a form of pseudo-impedance, which, 
as suggested by Katzer et al. [72], can be related to the detection of LD. 
Since LD is a known factor that can compromise battery performance 
and safety, the ability to predict its occurrence through the analysis of 
FC features is of considerable practical importance.

Fig. 5 shows the correlation results between FA75 and various pre
diction targets. Two data points were chosen as the validation set and 
not used to calculate the correlation scores, making the results more 
statistically convincing. The correlation scores for Class A features are 
about 0.8 concerning targets of cycles to EOL70 and cycles to EOL80, 
indicating a strong relationship. For targets related to retention at a 
specific cycle number, the correlation is slightly lower than for the target 
cycles at EOL (cycles to EOL70, cycles to EOL80). This is likely due to the 
influence of long-term ageing factors not fully captured by the formation 
process data.

Attia et al. found that ethylene carbonate (EC) loss does not passivate 
the electrode if the negative electrode potential is around 0.5 - 1.2 V 
during the first charging [73]. This implies the total voltage should be 
below 3.5 V for the cells, suggesting that extending the high voltage 
duration can help create a more passivating interface. However, Fig. 5
illustrates a negative correlation between high voltage duration and the 
prediction targets, suggesting that extended high voltage periods may 
not necessarily lead to improved passivation. It is important to note that 
feature FA75 was obtained considering all charge-discharge cycles in the 
formation, not just the first charge process.

Das et al. modelled the electrochemical kinetics of SEI growth and 
measured SEI thickness, proposing that SEI growth is restrained during 
delithiation and promoted during lithiation [74]. Therefore, using the 
duration of voltage range across all formation cycles as a feature effec
tively represents the interaction of lithiation and delithiation for SEI 
growth. As observed in the anode, the non-uniform SEI growth can lead 
to inhomogeneous lithium-ion flux and stress distribution across the 
electrode, affecting battery performance and lifespan. Additionally, the 
mechanical properties of the SEI layer, including its response to volume 
changes during lithiation and delithiation, can influence its stability and 
overall battery health.

In light of these insights, the negative correlation between high 
voltage duration and prediction targets might indicate the SEI layer’s 
vulnerability to over-voltage conditions, which could accelerate its 
degradation and compromise battery life. Therefore, optimising voltage 
strategies and understanding the SEI’s mechano-electrochemical 
behaviour are essential for enhancing battery quality and lifespan.

As mentioned earlier, several high-correlation features serve as in
puts to the predictor, necessitating further dimensionality reduction. In 
this work, PCA was used to generate two new features that encapsulate 
the information from the extracted features. PCA captures the linear 
relationships between the features while maintaining the robustness 
required to represent the primary information of the dataset. After 
applying PCA, two features were obtained, along with two 2 × 20 
matrices, representing the two temperature cases and two different 
dimensionality reduction methods. The effectiveness of PCA will be 
evaluated based on the final model prediction results in the next section.

Quality classification

We classified the quality of the batteries based on their lifetime into 
Class A and Class B using the KNN algorithm, where Class A represents 
higher quality than Class B. The dataset contained only functional cells; 
in a real factory setting, an additional category of completely rejected 
cells would be present, which can be identified without the advanced 
methods suggested in this work.

The prediction task was treated as a classification task in machine 
learning. The quality classification results are shown with the confusion 
matrix in Fig. 6. We used the same rigorous subsampling validation 
method as previously described, ensuring the robustness of the results 

despite the small sample size. The values in the table come from the 
subsampling validation. For instance, out of 20 batteries, 4,845 itera
tions of subsampling validation were performed, each selecting a subset 
of 4 batteries for validation. This process culminated in a total of 19,380 
predictions. The classification results are composed of four subclasses: 
TP (True Positive), FN (False Negative), FP (False Positive), and TN 
(True Negative), where Class A is considered positive and Class B 
negative. For instance, TP means the true class is Class A and was 
correctly predicted as Class A, while FP means the true class is Class B 
but was incorrectly predicted as Class A. The larger the number of TP 
and TN, the better results. We achieved a classification accuracy of 
89.74% for the 25◦C ageing case and 89.47% for the 45◦C ageing case. 
This shows a significant performance improvement compared to the 
control group, which used only the final discharge capacity of the for
mation as the basis for judgment and obtained accuracies of 55.04% for 
the 25◦C ageing case and 57.75% for the 45◦C ageing case.

FN can be understood as an economic waste problem because high- 
quality batteries (Class A) are used in applications that require only 
Class B cells. If Class A cells could be sold at higher prices than Class B 
cells, FN cases lower potential revenue. Conversely, if low-quality bat
teries (Class B) are assigned to applications requiring higher-quality cells 
(Class A), performance or warranty issues might emerge, referred to as 
the specificity in machine learning. In this study, we found the speci
ficity to be 85.79% for the 25◦C ageing case and 88.89% for the 45◦C 
ageing case. This means the classifier has high confidence in selecting 
low-quality batteries among all Class B batteries. These results demon
strate the reliability and high potential of using formation data for 
battery quality classification.

Lifetime prediction

The prediction results of the battery lifetime using formation data 
with the regularised regression model are shown in Fig. 7. The true 
values of EOL80 were measured in both temperature cases, ranging from 
300 to 500 cycles. Prediction performance for EOL70, retention at cycle 
300/350/400, and knee points can be found in Figs. S4–S8. Table 2
presents the mean prediction percentage error for various prediction 
targets across two different aging tests at 25◦C and 45◦C. We utilised 
common high-correlation features for both temperature cases and for
mation protocols, reducing the dimensionality to two. We assumed that 
these two features could represent almost all the information from the 
extracted dataset features. Notably, the model exhibits a uniformly 

Fig. 6. Classification results of EOL80 using ridge regression. (a) 25◦C ageing 
test. (b) 45◦C ageing test.
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lower error rate across all prediction targets in the 45◦C case. Interest
ingly, the Retention at cycle 300 prediction stands out with the lowest 
error rate of only 1.05%, implying that the model maintains a high level 
of accuracy even under the accelerated ageing conditions of higher 
temperatures. The EOL80 prediction also shows a robust performance 
with an MPE of 5.45%, further underscoring the model’s reliability in 
anticipating end-of-life under thermal stress. However, the retention at 
cycle 400 is associated with the highest error rate of 12.64%, suggesting 
that predicting battery capacity at this advanced ageing stage presents a 
more significant challenge.

Subsampling validation was performed for each combination prob
ability, ensuring maximum reliability but resulting in relatively high 
computation costs. This rigorous methodology generated an extensive 
dataset comprising 969 unique prediction values per cell, derived from a 
comprehensive sampling process. Specifically, out of 20 batteries, a 
staggering 4,845 iterations of subsampling validation were performed, 
each selecting a subset of 4 batteries for validation. This process 

culminated in a total of 19,380 predictions, averaging 969 predictions 
per battery. The resultant boxplots eloquently map the dispersion of 
these predictions across the entire spectrum of test groups. This vari
ability may stem from measurement errors in the true values. However, 
the narrow range of predictions and their close proximity to the actual 
values underscore the robustness and reliability of our predictive 
framework. The mean predicted values, nestled within the error bars, 
consistently approach the true values, reinforcing the validity of our 
model. This method, which culminated in an MPE of 6.50% for the 25◦C 
case and a slightly lower MPE of 5.45% for the 45◦C case, underscores 
the efficacy of utilising formation data as a pivotal input for crafting 
battery lifetime prediction models. The consistency and tight clustering 
of predictions around the true values highlight the model’s remarkable 
ability to generalise and predict battery lifespan with high fidelity, even 
when subjected to the rigours of the subsampling validation.

Outlook and applications

The formation process, while critical, generates data that is limited in 
scope, capturing only the initial charge-discharge cycles. This early- 
stage data may not fully encapsulate the long-term degradation mech
anisms that unfold over the battery’s lifecycle. Additionally, the vari
ability in formation conditions and the inherent noise in the data can 
complicate the extraction of robust, predictive features. Despite these 
limitations, the formation data holds significant value when carefully 
analysed. Efficient generation and usage of battery production data offer 
significant potential in the digitalisation of battery production and ac
celeration of battery ageing evaluation. Looking forward to the future of 
battery quality control and lifetime prediction in battery production, 
several key areas present opportunities for exploration and improve
ment. First, efficient data extraction using various sensing technologies, 
such as pressure and temperature sensors during the battery formation 
process, is crucial for enhancing the predictive capabilities of battery 
lifetime models. Second, integrating formation data representing elec
trical, thermal and mechanical behaviours will pose challenges for data- 
driven and physics-based models. Developing a model structure that can 
effectively handle multi-dimensional datasets from the formation pro
cess will further enhance quality classification and lifetime prediction 
performance. Third, the data-driven approaches proposed in this work 
can be used in the closed-loop optimisation process to improve forma
tion protocols while reducing the time needed for battery performance 
evaluation, significantly accelerating the optimisation of formation 
parameters.

This work provides a proof-of-concept for data-driven battery quality 
classification and lifetime prediction. Due to the limitations of the 
dataset size, deep learning models have not been used in this work. 
However, in large-scale production at giga factories, deep learning 
models are expected to perform better quality control and lifetime 
prediction, which need validation with industrial partners. Additionally, 
the physical interpretation of data-driven models should be further 
explored to support the understanding and physics-based modelling of 
the formation process, accelerating the scaling up of the battery pro
duction capabilities. Improving the transferability of models will further 
reduce the time and cost required to develop new models for the new 
battery cells, including updates in chemistry.

Conclusion

This work proposed a data-driven framework for classifying battery 
quality and predicting the battery lifetime using only the formation data 
from 40 NMC/graphite batteries. To the best of our knowledge, this is 
the first study to achieve high classification and prediction accuracy for 
battery ageing solely based on formation data. The new framework in
cludes extracting various features from raw formation data, feature 
engineering to reduce feature dimensionality, and applying two ma
chine learning models for quality classification and lifetime prediction. 

Fig. 7. Prediction results of EOL80 using ridge regression. (a) 25◦C ageing test. 
(b) 45◦C ageing test.

Table 2 
Mean prediction percentage error of different prediction targets in 25◦C ageing 
test and 45◦C ageing test

Ageing temperature Prediction target Mean percentage error (%)

25◦C EOL80 6.50
EOL70 6.91
Retention at cycle 300 2.74
Retention at cycle 350 6.79
Retention at cycle 400 9.65
Knee point 6.98

45◦C EOL80 5.45
EOL70 7.79
Retention at cycle 300 1.05
Retention at cycle 350 4.29
Retention at cycle 400 12.64
Knee point 5.03
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The feature extraction combines different methods to extract over 100 
features, including statistical features from electrical measurements, 
peaks and locations in differential analysis, and electrochemical fea
tures, covering the most critical information from the formation process. 
Correlation analysis revealed that high voltage duration is one of the 
features with the highest correlation with ageing. Using PCA with Ridge 
regression, the dimensionality of the features was successfully reduced 
with low computational burden and high robustness. As a result, we 
obtained an accuracy of 89.74% for the 25◦C ageing case and 89.47% for 
the 45◦C ageing case in the quality classification task. For the lifetime 
prediction task, we achieved a test error of 6.50% in the 25◦C ageing 
case and 5.45% in the 45◦C ageing case, validating the high performance 
of the proposed data-driven approach.

This study highlights the significant potential of using data collected 
during the formation process in battery production to support quality 
assurance tasks. By successfully applying machine learning methods, we 
demonstrate that it is possible to predict the lifetime of LIBs from the 
same manufacturing batch with high accuracy. The suggested frame
work can introduce an additional quality gate between formation and 
ageing in the battery production process, potentially reducing or 
replacing portions of the costly end-of-line testing procedures.
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