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Abstract
Friction stir welding is a solid-state joining process that operates below the material’s melting point commonly used to join 
aluminum parts, avoiding the drawbacks of fusion-based methods. These resulting advantages have accelerated growth and 
are increasing the number of applications across a range of industrial sectors, many of which are safety–critical. Along with 
the increase in applications and rise in productivity the need for reliable and cost-effective, non-destructive inline quality 
monitoring is rapidly growing. This publication is based on the research group’s ongoing efforts to develop a capable gener-
alized inline-monitoring solution. To detect and classify FSW defects, convolutional neural networks (CNNs) based on the 
DenseNet architecture are used to evaluate recorded process data. The CNNs are modified to include weld and workpiece-
specific metadata in the classification. These networks are then trained to classify transient weld data over a wide range of 
welding parameters, three different Al alloys, and two sheet thicknesses. The hyperparameters are incrementally tuned to 
increase weld defect detection. The defect detection threshold is tuned to prevent false negative classifications by adjusting 
the cost function to fit the needs of a force-based detection system. Classification accuracies > 99% are achieved with multiple 
neural network configurations. System validation is provided utilizing a newly recorded weld dataset from a different weld-
ing machine with previously used parameter/workpiece combinations as well as parameter combinations and alloys as well 
as sheet thicknesses outside the training parameter range. The generalization capabilities are demonstrated by the detection 
of > 99.9% of weld defects in the validation data.
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1  Introduction

The presented research is embedded within the framework 
of the interdisciplinary, collaborative Cluster of Excellence 
“Internet of Production” of RWTH Aachen University. The 
research collaboration is aimed at the digitalization of pro-
duction chains [1]. As a part of this extensive research pro-
ject, this publication is a continuation of efforts in developing 
a generalized defect detection solution with a wide applica-
tion range. The new developments are based upon previous 
insights, developments, and achieved results by the research 

group. The experimental methodology has been established 
before, allowing for direct comparison of results. The major 
new developments in this paper relate to the customization 
of the neural network used for FSW classification and the 
resulting increase in classification accuracy to 99.77%. Fur-
thermore, the validation steps, including variations in meth-
odology, welding machine, and welding task, are described. 
The results of the validation and achieved generalization are 
shown and related to industrial applications for defect detec-
tion. The fundamental motivation of the project and used 
methodology are constant along the development path and 
accompanying publications, which therefore overlap in the in 
the chapters regarding introduction, motivation, state of the 
art, and experimental setup [2–6]. Prior analysis approaches 
and results that build the base for the described developments 
can be found in previous publications by the same research 
group [2–6]. Since the last publication, the dataset has been 
increased to include further alloys and sheet thicknesses. 
The performed optimizations improved the defect detection 
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accuracy by 1.40% to 99.77% through hyperparameter tun-
ing. Furthermore, the detection threshold was tuned to better 
fit the application of process monitoring by replacing the 
cost function to successfully prevent false negative classifi-
cations. To provide system validation, the development was 
successfully tested on a completely new dataset from dif-
ferent machines, new alloys, and plate thicknesses, showing 
applicability by detecting > 99.9% of defects and challenges 
for further research [2, 6].

Friction stir welding (FSW) was patented by The Weld-
ing Institute (TWI) in 1991 [7]. It is a modern solid-state 
welding process that produces high-quality welds through 
intermixing in the plastic state and dynamic recrystalliza-
tion, using frictional heat and pressure generated by a rotat-
ing, non-consumable tool. The challenges associated with 
conventional fusion welding processes of aluminum alloys 
are mainly avoided due to the solid-state nature of the pro-
cess, and a fine microstructure is achieved. In conjunction 
with the reduced specific energy input, this yields superior 
mechanical and technological properties, as well as high pro-
cess energy efficiency, making FSW a sought after joining 
process in the aerospace and rolling stock industries [8]. Fur-
thermore, the growth of electromobility as well as increased 
efforts in lightweight vehicle construction has increased the 
number of FSW applications in the transportation indus-
try. Many new developments and applications are centered 
around battery trays, heat exchangers, and mixed material 
joints of copper and aluminum for electrical power systems 
[9, 10]. In industrial production, quality assurance is pro-
vided through testing methods conducted after the joining 
process, which necessitate additional production steps and 
increase production time and cost. The increase and diversi-
fication of applications and the associated growth of produc-
tion volume motivate the need for reliable and cost-efficient, 
non-destructive inline quality monitoring, which is easily 
applicable to the individualized production environment by 
the growing number of FSW applicants [11].

Specialized FSW welding machines capable of highly 
automated welding with closed loop axial force control to 
adaptively control the welding process are mostly used in 
current serial production. To utilize force control during the 
process, the machines are equipped with sensors to monitor 
axial force and often further welding parameters. However, 
between different manufacturers and machines, the sensors 
vary in their accuracy, recording frequency, and latency and 
do not provide sufficient process force feedback for high-
quality monitoring of the processes’ dynamic behavior. Due 
to the shortcomings of direct measurements and internal sen-
sor systems, external sensors have been used to establish 
relationships between the weld process dynamic, recorded 
data, and weld seam quality, for example [2, 12–15]. These 
approaches generally utilize the analysis of cyclical occur-
rences of the dynamic force components of the in-plane 

welding force feedback or variation analysis of axial force 
and torque graphs. The cited sources generally achieve the 
goal of defect detection, despite varying sensors and analysis 
methods. However, the given examples are limited in their 
applicability as they are developed for a fixed joining task 
(single alloy, single sheet thickness, single welding tool) 
sometimes with a single parameter set.

Within this work, the generalization of quality monitor-
ing between different FSW welding tasks is addressed by 
supplementing the recorded welding force and torque data 
with specific meta-data to enhance categorization accuracy. 
This demonstrates the generalization capabilities of densely 
connected neural networks across different alloys, sheet 
thicknesses, and a wide range of welding parameters. To fur-
ther improve the applicability of the inline capable quality 
monitoring, the detection threshold is shifted to prevent false 
defect-free determinations by adjusting the network’s cost 
function. The generalization of the quality monitoring capa-
bility is achieved by training deep learning networks based on 
DenseNet [16] architecture to analyze recorded weld data and 
locate subsurface volumetric defects. These voids are the most 
common defect in FSW and cannot be identified or located by 
visual inspection [17]. Therefore, detection requires destruc-
tive testing, or inspection by phased-array ultrasound or radio-
graphic testing methods [8, 18]. The final development is then 
validated through further experiments, classifying weld data 
recorded on a different welding machine, using further alloys, 
sheet thicknesses, and welding parameters.

1.1 � Material transport and defect formation 
during FSW

In industrial production environments, the FSW process is 
regarded as a comparably stable and well-controllable joining pro-
cess, allowing for efficient implementation and reliable joining of 
components. However, the process is susceptible to a high number 
of external disturbances and variations in process conditions that 
can result in weld seam defects. Some of these defects are not 
detectable by the most widespread quality monitoring approaches, 
e.g., axial force monitoring and visual inspection [19].

The factors causing process disturbances can be divided 
into welding parameter–based factors, welding machine 
influences, and workpiece irregularities. When investigat-
ing weld quality, the machine-based influence factors can 
be regarded as constant and only need to be analyzed when 
developing generalized solutions, as these are fixed for the 
combination of machine, workpiece, fixture, and used weld-
ing tool [20]. Regarding influences, the welding tool is a 
special case, as tool wear needs to be monitored closely in 
long-term analysis and production environments, as wear 
significantly influences process forces and their dynamic 
behavior [21, 22]. In production environments, the main 
welding parameters, spindle speed, feedrate, and axial force 
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for each welding task are generally developed empirically 
and fixed for that task. As a result, significant disturbances 
are not caused by those, but by the interaction with the work-
piece, which causes defect-inducing deviations. Gap toler-
ances, thickness variations, hardness gradients, and surface 
condition changes are the most common workpiece irregu-
larities [23]. Changes in hardness, thickness variations, and 
gap tolerances influence the material volume underneath 
the welding tool and thereby the heat input and transport of 
plasticized material during weld seam formation, leading to 
process instabilities [23]. The surface condition of the work-
piece and tool as well as tool wear have an impact on the 
interface contact condition, heat input, and material trans-
port through wear, adhesion, and friction coefficient [24]. 
A deviation from the steady cyclical state can be caused by 
each factor or combination of these. The deviation can lead 
to a process state in which the employed quality control can-
not detect defects occurring during the weld seam formation.

Related to the detailed influences, two main defect ini-
tiation mechanisms have been described. Plunge depth is a 
main factor in heat generation and process material trans-
port and can be monitored through machine parameters 
and related to weld quality. Change can be caused by a 
variety of factors, leading to either increased or reduced 
tool plunge depth, resulting in incomplete penetration and 
decreased weld properties [25]. Increased depth can result 
in close proximity or contact of tool and backing plate, 
causing adhesion between workpiece and backing, tool 
failure, or further defects induced by excessive tempera-
ture and abnormal material transport.

The second identified defect initiation mechanism is 
significantly more difficult to detect by current quality 
monitoring solutions, as it is caused by irregular material 
flow in the stir zone. The periodically oscillating process 
condition and resulting intermittent material transport 
around the tool can be influenced by changes in the spe-
cific energy input due to changes in surface condition, 
workpiece strength/thickness, interface condition, or tool 
wear, thereby disrupting the weld seam formation [26, 27]. 
Insufficient material transport can cause local or prolonged 
internal volumetric defects in FSW weld seams, such as 
voids, cavities, or surface defects. Due to these occur-
rences, FSW production using current process control 
and quality monitoring requires further quality inspection 
of the FSW weld seams. The additional quality control 
measures add complexity, time, and cost to the production.

1.2 � State of FSW process monitoring developments 
and weld seam quality assessment

Heating through friction at the tool-workpiece interface and 
translational movement of the tool through the plasticized 
material result in comparatively high process forces, which 

are often used to characterize the FSW process. During the 
steady welding state, process forces consist of static and 
dynamic components present in all three spatial directions 
in an oscillating cyclical manner corresponding to the rota-
tional speed of the welding tool and its higher harmonics 
[28]. The cyclical oscillation of the spatial forces at the 
frequency imprinted by the spindle is widely accepted; 
however, many further influence factors, interdependen-
cies, and relations to force magnitude, the occurrence of 
higher harmonics, material transport, and dependence on 
welding parameters, tools, and workpiece properties are not 
fully understood or quantified. Many publications have been 
centered around establishing correlations between these 
oscillations, their deviation, and FSW weld seam quality, 
despite their unclear origin. Multiple different approaches to 
relate weld quality to force deviations and torque oscillation 
have been published, e.g., [3, 6, 12, 13, 29–31]. The cited 
works are based on the proven assumption that all major pro-
cess influences can be summarized in the recorded process 
force feedback and thereby a representation of the process 
dynamic behavior and introduced deviations and instabili-
ties can be drawn. From this compounded representation of 
the process state, an indication towards weld quality can be 
derived.

Multiple publications show the possibility of empiri-
cal anomaly detection based on welding force evaluation. 
These evaluations are mostly based on extracted incremen-
tal features or gradual force changes within the recorded 
process data. The majority utilizes changes in the dynamic 
components or combinations of changes in the static and 
dynamic force compounds. The successful correlation of 
weld defects by Jene is however based on the mean aver-
age lateral force [29]. Further research into the empirical 
evaluation of process forces [12, 31] proves the feasibility 
of the evaluation of dynamic components, but also por-
trays the limitations and the need to adjust the evaluation 
and selected features for every change in welding condi-
tions, limiting applicability. Analytical correlations can 
also be formed in the frequency domain, evaluating fre-
quency spectra. Internal void defects can be indicated by 
high amounts of low-frequency oscillation, according to 
Gebhard [20].

Frequency domain data was also used by Boldsaikhan 
et al. in the first application of artificial neural networks 
(ANNs) to detect internal welding defects in FSW [32]. 
Torque data recorded at 51.2 Hz was transformed into the 
frequency domain and served as the feature vectors to train 
fully connected neural networks (FCNNs). The dataset 
used was heavily biased towards defect-free welds, and the 
FCNN was able to correctly identify internal weld defects 
in the test dataset. Based upon the results, subsequent work 
by the main authors shows the use of wavelet transforma-
tions of the in-plane forces to evaluate weld quality with 
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ANNs [33]. The trained FCNN reached an accuracy on the 
test dataset of 95% for internal defects > 0.08 mm. Further 
developments of AI technology and especially deep learn-
ing techniques allowed Hartl et al. [34] to classify welds 
through weld surface images and weld force data using 
convolutional neural networks (CNNs). The highest classi-
fication accuracy of 79.2% was achieved with a CNN based 
on Alex-Net [35], when evaluating the lateral force (Fy).

While different ways to correlate the dynamic process 
behavior to weld quality have been proven successful, none 
of the published works thus far can generalize the qual-
ity prediction across different workpiece materials, thick-
nesses, and multiple welding tools. Most investigations 
limit the ranges of feedrate and spindle speed to values 
oftentimes not applicable to efficient industrial production. 
However, the possibility of detecting internal weld defects 
through force feedback analysis was proven. The published 
progress thus far does not provide an applicable solution 
for industrial production requirements. The necessary 
training datasets for each welding task require extensive 
effort to produce, prepare, and label through a large num-
ber of test welds with sufficient amounts of variation, due 
to the inability to generalize across different welding tasks.

In this study, the application range and applicability of 
inline defect detection is increased by using deep learn-
ing densely connected CNNs (DenseNet) to examine the 
transient temporal sequences of FSW process forces and 
axial torque. The force recordings are supplemented with 
weld meta-data to promote generalization and feature scal-
ing and thereby enable the classification of welds with 
internal defects. Furthermore, the CNN cost function is 
adjusted to prioritize false defect detection to prevent non-
detection of defects. A dataset of classified weld segments 
of full penetration welds over a wide range of feedrates 
and spindle speeds, five Al alloys, and four sheet thick-
nesses is established for the neural network training and 
testing. Micro-focus radiographic testing (µ-RT) pictures 
are analyzed to classify the welds and label the weld data. 
Subsequently, DenseNet-CNNs are trained to extract fea-
tures and classify the welds based on force measurements, 
torque recordings, and the supplemented weld meta-data. 
The generalization and limited extrapolation capabilities 
of the developed solution are then successfully validated 
using weld data recorded on a different FSW machine with 
an extended range of alloys, sheet thicknesses, and weld-
ing parameters.

2 � Experimental setup and data acquisition

The welding experiments were performed on two differ-
ent welding machines. Welds for the training dataset were 
executed on a moving table portal type FSW machine Type 

345C, built by Precision Technology Group Ltd (PTG). 
Due to its design and fabrication, it provides position-
independent low static compliance. The vibration excita-
tion response is comparably low, minimizing the influ-
ence on the process dynamic behavior [36]. Weld data for 
the validation dataset was recorded of welds performed 
on a console stand design FSW machine by Aerospace 
Engineering Equipment (AEE), type HT-JC06 × 08. The 
build type has position-dependent compliance and overall 
lower stiffness [36]. On both welding machines, the work-
pieces were clamped using the same fixture. The back-
ing plate was made from 8-mm mild steel that had been 
ground and subsequently artificially oxidized to prevent 
workpiece adhesion. The workpieces are 135 × 300 mm2, 
allowing for 260 mm weld length. For the training data-
set, workpieces of 1.5 mm AA5754-H22, 3 mm AA5754-
H22, 1.5 mm AA7075-T6, and 1.5 mm AA6082-T6 were 
used. For the validation dataset, workpieces made from 
1.5 mm AA5754-H22, 1.5 mm AA7075-T6, and addition-
ally 1 mm AA2017-T651 and 2 mm AA5083-H111 were 
used. To prevent the influence of edge shape and gaps 
between plates, the welds were performed as full penetra-
tion seam on plate welds. The geometric tool parameters 
were adjusted to the workpiece thickness. The tools were 
fabricated from H13 tool steel as monolithic components 
and hardened for the experiments. The tool geometry and 
relevant dimensions are shown in Fig. 1 and Table 1. A 
tool tilt angle of 1.5° was used during all welds.

The investigated parameter ranges of welding feedrate 
and spindle speed (RPM) were set to evaluate a wide range 
of industrially applicable parameters within the bounds of 
the measurement device range and machine capabilities. 
The weld parameter combinations were chosen to inves-
tigate the driving variables of measured force feedback 
and resulting deviations in welds containing defects for 
the range of combinations of sheet thicknesses and alloys. 
The main force excitation at the frequency of the tool rota-
tion speed is mainly driven by the superposition of radial 
tool runout and discontinues material transport, as well as 

Fig. 1   Rendering and cross-section drawing with relevant dimensions 
of used tools (cf. Table 1)
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potential tool pin features [37]. The amplitude of the oscil-
lation is driven by the temperature-dependent material 
resistance to the extrusion of the welding zone by the tool, 
as well as the tool path and parameter-dependent extrusion 
volume. The welding parameter combinations of the train-
ing dataset were chosen to investigate these influences. A 
total of 13 parameter combinations was set in three groups 
of five combinations each with different governing vari-
ables, intersecting another group in one combination. For 
the validation experiments, four parameter combinations 
from the training data were chosen and two combinations, 
one within the training parameter window and one outside 
of it, were added. The parameter combinations in their 
distinctive sets are shown in Fig. 2. The first set has a fixed 
pitch, the relation between feedrate and tool revolution, to 
allow the analysis of increasing feed and axial force due 
to increased feedrate and thereby reduced thermal soften-
ing in front of the weld. Sets 2 and 3 are centered around 
fixed spindle speeds with increasing feedrates to retain the 
main excitation frequency across the set with increasing 
amplitude and deviations.

A total of 1200 RPM is the chosen spindle speed for 
set 2. It offers a high number of measurements per tool 
revolution (125 as detailed below) and allows for a wide 
range of feedrates without defects. This enables the accu-
rate measurement of welding forces over a wide range 

of parameter combinations. The spindle speed of 1800 
RPM was chosen for set 3 according to the dynamic fre-
quency response of the used PTG FSW machine [36]. 
The first higher harmonic of the 1800 RPM is 60 Hz, 
which is equal to the lowest identified natural frequency 
and should thereby increase force oscillation in lateral 
direction and detectable variations within the force sig-
nal, despite the pre-tensioning through the axial weld-
ing force. The range of the feedrate was determined by 
the capability of producing defect-free welds. The lower 
limit was set to 600 mm/min so that no overheating or 
surface galling occurred. The upper limit was set by the 
feed-force limit of the measuring device used to record 
the weld data. For set 1, the minimum feedrate could be 
lowered due to lower spindle speed, and the maximum 
feedrate was limited by the machine’s maximum spindle 
speed of 3000 RPM.

FSW is generally performed with closed-loop force 
control in industrial production environments to enable 
the compensation of workpieces and fixture variance. 
For these welds, position control mode was chosen, as 
it allows for reliable and reproducible plunge depth rela-
tive to the machine coordinates, eliminating the influence 
of depth variations from the recorded data. It further-
more prevents the influence of lag, set force deviation, 
machine control imprinted z-axis oscillation, and drift 
on the recorded data by eliminating the closed loop force 
control system. This decrease in systemic variance ena-
bles reliable and reproducible production of defect-free 
welds and welds with inner volumetric defects for each 
parameter combination. To achieve defect-free and defec-
tive welds, two plunge depths were determined for each 
parameter combination and alloy during pre-trials. The 
reduced plunge depth was set to decrease heat input and 
forging pressure to produce welds with inner volumetric 
defects, but without any detectable surface defects. Each 
parameter combination of the training set was repeated 
three times with each plunge depth to provide a suffi-
ciently large dataset with statistical validation. For the 
welds of the validation set, two plunge depths were deter-
mined, one to result in defect-free welds and the other 
to produce inner defects. For the validation experiments, 
the plunge depths were not used for individual welds, 

Table 1   Relevant dimensions of 
welding tools

Parameter Tool 1.0 mm Tool 1.5 mm Tool 2 mm Tool 3 mm

Probe radius, rp 2 mm 2 mm 2.5 mm 2.5 mm
Shoulder radius, rs 6.0 mm 6.0 mm 6.0 mm 7.0 mm
Conical probe angle, b 10° 10° 10° 10°
Probe length. hp 0.92 mm 1.42 mm 1.92 mm 2.85 mm
Concave shoulder angle, g 7° 7° 7° 7°
Pin feature Metric thread Metric thread Metric thread Metric thread

Fig. 2   Welding parameter combinations of sets 1–3 and validation 
experiments
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but rather combined through a plunge depth ramp within 
each weld. For each combination, both ramp directions 
were repeated twice. Figure 3 shows the plunge depth 
ramps and the resulting axial forces for a weld performed 
at 1200 mm/min in 1.5 mm AA7075. This methodology 
was chosen for the system validation dataset, as it resem-
bles the defect initiation of production environments more 
closely than the previous method which produced mainly 
uniform defective or defect-free welds.

The force and axial torque data is recorded during the 
welding process for analysis by a sensor unit integrated 
into the tool holder, Spike® mobile. The positioning of 
the measurement system within the tool holder makes the 
recording independent from the workpiece fixture; how-
ever, the forces in all spatial directions, Fx, Fy (in welding 
plane), and Fz, are recorded relative to the welding tool 
and not the machine axis. Fx and Fy are calculated from 
the bending moment and lever length between the tool 
shoulder and measuring point. Torque and axial force are 
measured directly by strain gauges placed at a tapered 
part of the tool holder. The signal of each data channel is 
logged at 2.5 kHz and wirelessly transmitted to a receiver 
integrated into the machine control system and the pro-
cess control. The data is then transmitted within a wired 
network containing edge devices and servers for storage, 
processing, evaluation, classification, and decision sup-
port. The signal measurement and data processing chain 
are shown in Fig. 4. The tool position in the machine 
coordinate system and process data is logged and stored 
at 500 Hz, besides the process force and torque measure-
ments. Furthermore, at the start of each weld, the welding 
program and its parameters are recorded to amend weld 
meta-data to the process recordings.

3 � Results and discussion

3.1 � Welding results, classification, and datasets

The welds were performed on two different welding 
machines as described above and shown in Fig. 2 and Fig. 3. 
Some weld parameter and alloy combinations could not be 
welded without surface defects or exceeding the force limit 
of the measuring device; therefore, the total number of welds 
and corresponding measurement data for the investigations 
was reduced to 281 welds for the training dataset and 99 
welds for the validation dataset. After welding, all welds 
accepted to the datasets passed visual inspection without 
identification of surface flaws. The welds were analyzed by 
radiographic testing (rt) to quantify the welding results and 
determine and localize internal weld seam defects. Radio-
graphic testing was performed on a micro-focus computed 
tomography machine (µ-ct), Type Viscom XT9225. In 
micro-focus tomography, the X-rays originate in a single 
spot source on the target with opening ray paths towards the 
detector. The magnification of the specimen is achieved by 
placing it in the opening ray path between the source and 
detector, and the rate of magnification is determined by the 
chosen distances and is directly proportional to the detect-
able defect size [38, 39]. In order to acquire high-resolution 
images with a low defect detection threshold on the com-
parably long and narrow welds, two pictures were taken of 
each weld, one for the first half and one for the second. The 
digital images were then compounded using the added wire 
indicator as a reference. A duplex wire indicator was used 
in accordance with ISO 19232–5 to accurately determine 
the detectable size of volumetric defects [40]. The detection 
threshold for voids and tunnel defects (internal volumetric 

Fig. 3   Axial-force graph with 
plunge depth ramps within the 
measuring duration for a weld 
performed at 1200 mm/min
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defects) was determined to be 0.063 mm (D12) for 1-mm 
and 1.5-mm thickness plates and 0.08 mm (D11) for 2-mm 
and 3-mm plates. Thereby, the set detection thresholds 
exceed those commonly achieved by quality control meas-
ures in industrial applications, excluding microsections, 
which only allow for local determination. To achieve the 
low detection threshold, the brightness and contrast of the 
pictures were adjusted in image post-processing. For weld 
classification, the adjusted images were manually analyzed 
to detect, locate, and mark internal weld defects. During 
analysis, the plunge and tool exit locations were excluded. 
The analysis showed 127 welds (45,20%) with defects and 
154 welds (54,80%) without defects for the training dataset 
and 93 of 99 (93,94%) welds containing defects in the vali-
dation dataset, thereby showing slightly less defects than tar-
geted in the training data welds and some defect-free welds 
despite the plunge depth ramp in the validation experiments. 
The rt-image analysis was validated through the analysis 
of micro-sections. Multiple cross-sections were taken from 
different locations including defective and defect-free areas. 
The validation was in perfect accordance with the rt-image 
analysis and is therefore used for the weld categorization of 
both datasets.

For the data analysis, the development of an inline qual-
ity monitoring solution, and the capability of localizing 
defects through data analysis, the welds and their recorded 
process data are split into shorter sections. For each sec-
ond of recorded data, a new section starts, lasting for 3 s of 
data. The sections thereby overlap the previous and subse-
quent sections by 1 s each. The segmentation is shown in 
Fig. 5 for a weld performed at the maximum welding speed 
of 2000 mm/min. The overlapping segmentation increases 
training data and allows the same data to be evaluated in 
multiple data contexts, generating better generalization in 
feature and threshold determination.

The 3-s long sections of data result in 7500 measurements 
for each spatial force direction and tool torque at the meas-
urement frequency of 2.5 kHz, giving 30,000 data points for 
analysis per segment. The weld length and highest feedrate 
were used as references to determine the maximum number 
of sections for each weld, resulting in five sections per weld. 
At lower feedrates, the sections were taken from the end of 
the weld sparing the last second of the weld as well as the 
tool exit location, as shown in Fig. 3.

According to the rt-images and the defect identification 
and localization, the individual sections of the welds of the 
training and validation set were classified. Classes were 
determined based on the existence of internal void defects 
in the section (NOK) and sections without any detectable 
defects (OK). The classification according to the identified 
threshold is shown in for the training dataset and in for the 
validation dataset. For the NN training and evaluation, the 
class determination was transferred to a weld segment clas-
sification in which class 1 corresponds to NOK welds, sig-
nifying the detection of a defect, and class 0 corresponds to 
OK welds, determining that no defect exists within the weld 
seam segment. The final dataset sizes and determinations are 
given in Table 2 for the training dataset and Table 3 for the 
validation dataset.

3.2 � Selection, modelling, training, and testing 
of neural networks

Through an increase in understanding of machine learn-
ing approaches and development for numerous applica-
tions, many new and efficient deep learning neural network 
architectures have been developed. The economical access 
to high-performance computing and network architectures 
adapted to various tasks increases the benefits of recording 
production process data and eases the advantageous analysis 

Fig. 4   Weld data measurement, processing, recording, and visualization
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for manufacturers [41]. Based on previous developments, 
densely connected CNN (DenseNet) has been chosen for 
this work [6]. The dense connections of the teachable lay-
ers allow for the detection, extraction, and classification of 
low-, mid-, and high-level features during network training 
and inferencing [16], matching the dynamic behavior and 
defect-induced variations of FSW weld data. Deep learn-
ing eliminates the brittle, time-consuming, and not scalable 
hand-engineered feature extraction of empirical analysis and 
other AI methods based on manual feature input. Empirical 
solutions for FSW quality monitoring have been disproven 
by using different datasets. The versatile architecture of 
DenseNet combined with automated feature detection allows 
for the classification of diverse input data [42]. DenseNets 
detect all complexity levels of features by propagating each 
convolutional layer output feature map to all consecutive 
layers. This “collective knowledge” from all preceding lay-
ers enables the classifier to evaluate all complexity-level 
features and enhances feature reuse. The propagation and 
stacking of feature maps as input for the next convolution 
are shown in Fig. 6. The advantages of using all feature 

complexity levels for data evaluation have been proven in 
computer vision problems and transfers to FSW data, as it 
contains multiple channels of oscillating data with multi-
ple excitation frequencies and irregularities related to weld 
defects.

The recorded process forces in all three spatial direc-
tions and the tool torque were used as the main inputs for 
training and evaluation of the generated and labeled data-
set, allowing for supervised learning considering the weld 
classification illustrated above. Weld force response data 
was chosen for evaluation, as it summarizes all influence 
factors and accurately depicts the FSW process dynamics 
and resulting weld seam quality in a limited number of data 
streams. The generated dataset, described as training data, 
was used to train the deep neural networks to generate fea-
ture maps and detect characteristic features to classify the 
welding force response data to identify internal weld seam 
defects. Deep learning was chosen to automatically detect 
features that exceed manually identified and engineered 
features. Deep learning replaces the manual feature detec-
tion through multiple layers that weigh the inputs, sum the 

Fig. 5   Segmentation of weld data at maximum welding speed (2000 mm/min)

Table 2   Classification of weld seam segments of the training dataset

Training data Full set AA5754 1.5 mm AA7075 1.5 mm AA6082 1.5 mm AA5754 3 mm

OK: defect-free segments 788
56.09%

243
60.75%

211
51.46%

233
59.74%

101
49.27%

NOK: volumetric defect segment 617
43.91%

157
36.25%

199
48.54%

157
40.26%

104
50.73%

Sum 1405 400 410 390 205

Table 3   Classification of weld seam segments of the validation dataset

Validation data Full set AA5754 1.5 mm AA7075 1.5 mm AA5083 2 mm AA2017 1 mm

OK: defect-free segments 184
37.17%

78
65.00%

34
28.33%

8
6.40%

64
49.23%

NOK: volumetric defect segment 311
62.82%

42
35.00%

86
71.67%

117
93.60%

66
50.77%

Sum 495 120 120 125 130
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weighted input, and apply non-linear activation functions to 
generate an output [42]. The shared weight architecture of 
the convolutional filters makes the detection of classifica-
tion relevant features space and orientation invariant allow-
ing for recognition and categorization across the evaluated 
data. For this analysis, a densely connected neural network 
with 716 layers was chosen, based on DenseNet201 [16]. 
The dense connections enable the classification of all feature 
complexities and furthermore aid in error backpropagation, 
allowing for faster convergence. The network consists of 
several “DenseBlocks,” which are densely connected and 
control the growth rate of the network. The blocks are made 
up of 6–48 repetitions of the sub-block centered around the 
convolution. The blocks are connected with transition lay-
ers in between, which reduce the width of the network. All 
convolutional layers use pre-activation batch norm to apply 
normalization to enhance performance. The base architec-
ture of DenseNet201 was modified to increase the generali-
zation capabilities and allow the CNN to extrapolate beyond 
its training parameters. In order to expand on the capabili-
ties, additional feature inputs were used. The feature inputs 
used meta-data of the welding task, including the welding 
parameters (spindle speed, feedrate) and workpiece param-
eters (sheet thickness, flow stress at 450 °C) to accurately 
scale the detected features according to the current state of 
the evaluated weld data. The welding parameter input was 
chosen, as it represents the two most important set welding 
parameters for the weld and drives the oscillation frequency 
and force level. The sheet thickness input allows the features 
to be scaled according to the required process forces. The 
flow stress at 450 °C scales the forces required for material 
transport at or around the working temperature of the pro-
cess. It is also widely available for Al alloys as it is required 
knowledge for extrusion production processes. The amended 
form of the used CNN is shown in Fig. 7.

For the DenseNet training, the recorded data (Fx, Fy, Fz, 
Torque) of each segment was used as the input feature vec-
tor, along with the weld meta-data. Different configurations 
for the data input were investigated, as well as a variety of 

growth rates, bottleneck width, and transition layers. For 
these, the hyperparameters were incrementally tuned result-
ing in > 100 configurations. The investigated parameter 
ranges are given in Table 4.

Besides the network configuration and the hyperparam-
eters, the cost function, calculating error values and there-
fore network updates, was also adjusted to match the objec-
tive of the application. Generally, in classification tasks, the 
network is optimized to minimize the number of resulting 

Fig. 6   Representation of dense 
connectivity. a Propagation of 
inputs and feature maps with 
channel-wise concatenation. b 
Concatenation of feature maps 
to all previous as input to the 
next layer

Fig. 7   Network architecture of the modified DenseNet-CNN
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classification errors, by applying equal penalties to false posi-
tive and false negative classifications and thereby moving the 
network towards optimization. The system developed within 
this paper aims to serve as quality control for FSW; therefore, 
the even distribution between false positive and false negative 
errors reduces applicability, by passing defective welds as 
non-defective. In order to prevent the false classification of 

defective welds as defect-free, the cost function is adjusted 
to strongly penalize this classification category and thereby 
adjust the generalized defect detection threshold of the net-
work. The original and adjusted cost functions for the net-
work outputs y and targets t are given below.

(1)Original cost function: d(t, y) = −
t

y
+

(1−t)

(1−y)

(2)New cost function: d(t, y) = −(t − y) ∗
(

y ∗ a1
)

− (t − y) ∗
(

t ∗ b1
)

+ 1 − t − y

a1 ≪≪ b1

The given formula shows the addition of two new hyper-
parameters, which optimize the proportion of network penalty 
and error value between the categories of false classification 
and thereby the defect classification threshold. The results of 
the change of the cost function and the influence of the new 
hyperparameters on the calculated error values are shown in 
Table 5. To determine the success of the threshold modifica-
tion for process quality evaluation, the positive factor ( Pf  ) is 
introduced, and it relates the number of false negative clas-
sifications to the number of false positive classifications. It is 
established this way, as division by the targeted number of 0 
false negatives is not possible.

Different data input configurations had a substantial influ-
ence on the training duration and accuracy. It was deter-
mined that 4 separate nets, 1 for each data stream, concat-
enated before the fully connected layer, overfit to the data for 
all hyperparameter configurations. A 2-D representation of 
the data as a 7500 × 4 matrix, whereas the data was normal-
ized by channel prior to the merge, vastly increases compu-
tational time due to the second iteration dimension for the 
applied filters. The best input configuration was determined 
to be 7500 × 1 × 4, giving 4 separate channels of 7500 by 1 
data into the network per segment. For this configuration, 
different network growth rates (k) and transition layer width 
(T) were tested and the hyperparameters were incrementally 
tuned. Their interdependencies were monitored during tun-
ing, and overfitting was reduced by tuning momentum and 
L2 regularization. A major improvement was achieved by 
tailoring learn rate and learn rate decay to the training data-
set and number of training iterations.

Network training was performed on a consumer work-
station PC with a GPU for training acceleration. On a last-
generation consumer GPU (Nvidia RTX 3090 with 24 GB 
VRam), each training iteration for the full dataset took 
0.75–1.5 h, depending on network setup. Each network 
configuration and hyperparameter combination was repeated 
five times, and the top 3 results were used for evaluation. 

(3)Positive factor: Pf =
number of false negative

number of false positive
=

t−y=1

t−y=−1

This was done to prevent bias due to unbalanced datasets 
and unfavorable initialization. For each training iteration, the 
training dataset was split randomly into 80% training data, 
10% validation data, and 10% testing data. The training data 
is used by the network to detect classifying features by cal-
culating and updating weights and biases. The test set data 
is exempt from the network training and afterwards used to 
test the classification accuracy of the fully trained network. 
The resulting classification accuracies can vary with the ran-
dom allocation of data to the sets and the weight initializa-
tion. During training, four different network configurations 
were found to consistently achieve the highest classification 
accuracies. These were built around the two lowest network 
growth rates and different transition-layer widths. The net-
work configurations and the average resulting test set clas-
sification accuracy and positive factor for n = 3 iterations are 
given in Table 6, relating to Fig. 7.

The achieved accuracies show the best results for the 
network configuration with the lowest number of learnable 
parameters (growth rate, transition-layer width), at 99.77% 
(n = 6) classifying 844 of 846 test set segments correctly, 
without a single false negative classification ( Pf = 0 ). 
The wider networks showing slightly lower accuracies are 
believed to result from slight overfitting and the spread of 
features across an increased number of feature maps.

Overall, the six iterations of each of the four network 
configurations (24) misclassify 21 segments of weld data, 
with 20 false positive and 1 false negative classification. This 
proves the success of the cost function adjustment. A closer 
analysis of the segments shows that during training, only 
18 different segments were misclassified, with 3 segments 
being misclassified by two separate training iterations. The 
incorrect classifications are also seam-dependent, with two 
consecutive segments of the same seam from three different 
seams being incorrectly classified as containing a defect. 
The challenge of permanent correct classification with a pre-
cise definition of the defect detection threshold for a wide 
range of applications can also be seen from the misclassifica-
tions. Despite the low variance within the weld seams, 4 of 
the 21 misclassified segments (19.05%) are at the transition 
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point between defect and no defect, i.e., to one side of the 
relevant segment is a segment with a defect, and to the other 
side is a segment without defects. Further analysis of the 
graphed data gives no indication for the misclassifications. 
Analysis of the welding parameters, alloys, and sheet thick-
nesses does not provide helpful insight for improvement, as 
it matches the distribution within the training dataset. The 
only exemption is the “coldest” weld parameter combination 
(1200 RPM, 2000 mm/min), from which segments of three 
alloys were misclassified. This highlights the limitation of 
the NN at the extreme limits of the training parameter win-
dow and emphasizes the challenge of extrapolation to higher 
forces and force variations outside the field of training data, 
without additional scaling of features.

3.3 � Validation through extended welding 
experiments

To validate the intended generalization ability of the 
developed weld quality monitoring solution and prove the 
enhanced extrapolation ability, contrary to inherent NN 

limitations, enabled by the meta-data feature input, the 
above-described validation dataset of 99 welds with new 
alloys, sheet thicknesses, and welding parameter sets, welded 
on a different welding machine with new tools, is used. The 
welds are segmented like before, discarding the last second 
of weld data and utilizing 5 segments per weld seam for the 
dataset. Inferencing is performed with all trained network 
configurations and iterations shown in Table 6. The average 
results of the six iterations of each configuration are shown 
in the final row and column of Table 7. Within the table, the 
results are separated by alloy/sheet thickness and position of 
the weld parameter combination relative to the combinations 
of the training dataset (see Fig. 2).

The classification accuracy drops significantly 
(6.28–8.59%) compared to the network training, when 
inferencing the validation set data with the DenseNets suc-
cessfully trained on the training dataset. The highest clas-
sification accuracy is achieved by the K16T + configura-
tion at 93.13%. Individual iterations of the same network 
configuration show high reproducibility and low standard 
deviation across all network configurations. Contrary to the 
initial network training, a higher filter count and number 
of feature maps result in better classification accuracies for 
both investigated network growth rates. Both wider networks 
show more reliable, better generalization. This is based on 
the higher number of detectable features for classification 
and the wider spread of individual features over multiple 
feature maps due to the increased linearization in the wider 
networks.

The differentiation of the inferencing by parameter class 
shows some unexpected results. Especially, the high clas-
sification accuracy of AA5083, which was not part of the 

Table 4   Ranges of 
hyperparameters and no. 
of filters during network 
optimization

Parameter Value range

Data input configuration 7500 × 1 × 4, 7500 × 4 × 1, 7500 × 1 × 1 in 
4 separate Nets

Input data scaling [0, 1], none
No. epochs 15–40
Mini batch size 8–60
Learn rate 0.0000005–0.01
Learn rate reduction 0–0.75
Learn rate reduction period 2, 3, 4, 5, 10, 14
Momentum 0.1–0.85
L2 regularization 1 × 10–6–0.9
Network growth rate (k) 16–64
Size initial convolution 3 × 3, 4 × 4, 7 × 7
No. intial filters 64–4096
No. channels bottleneck (P) 64–2048
No. channels transition layer (T) T1, 64–512; T2, 128–1024; T3, 448–3584
No. neurons in FC1 100–1000
Cost function Cross entropie, custom

Table 5   Results of the cost function

Cost function ( t, y) Cost (old): target, discrete value Cost (new): 
discrete 
value

Cost (0, 0) 1, 1 1
Cost (1, 1)  − 1, − 1  − 1
Cost (0, 1) ∞,4.5036 × 10

15 a1

Cost (1, 0)  − ∞, − 4.5036 × 10
15 −b1
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training dataset, is surprising. However, it proves the influ-
ence of feature scaling, as sheet thickness and high-tem-
perature flow stress are within the bounds of the training 
dataset. For AA2017, with flow stress within the bounds 
of the training parameters, but sheet thickness outside of 
the training data range, the accuracy of parameter class 
1 is comparably low. This is assumed to be related to the 
lower process forces of the thinner material, outside the 
training force range. The conclusion is supported by the 
classification of classes 2 and 3 that is ≥ 94.5%, as the 
feedrate of classes 2 and 3 is 1800 mm/min and process 
forces therefore are higher. For the alloy used within the 
training dataset, a comparably low accuracy is received. 
However, the parameter-based generalization of classes 2 
and 3 works well, resulting in accuracies comparable to 
class 1.

Based on the significant number of misclassifications in 
the validation inferencing, the misclassified segments are 
analyzed closer. Depending on the alloy, the source for a 
large group of misclassifications can be identified. Espe-
cially for the alloys used in the test set, most misclassi-
fied welds are positioned at the defect initiation site or the 
end of a defect. The sum of all segments misclassified by 
all iterations of the same network configuration (n = 6) is 
given in Table 8, separated by network configuration and 
alloy. Furthermore, the sum and fraction of segments of the 
defect transition area, where the segment borders on segment 
including defects and another without defects, are given.

A large proportion (avg. 79.71%) of the comparatively 
high classification inaccuracy of the validation dataset can be 
explained by the analysis above. The fraction of misclassified 
segments that lie within the plunge depth ramp and are sur-
rounded by a segment with a defect and a segment without a 
defect is high. This means that the area of defect initiation or 
defect end lies within the misclassified segment, and it includes 
sections of both classifications. Thus, a minimal shift of the 
features used for defect detection causes the misclassification 

of the segment. This is clearly recognizable, as the described 
network classification behavior occurs predominantly in the 
alloys used during network training. For these, 77.78–92.11% 
of the misclassified segments are assigned to this transition 
area. For AA2017, this is only 54.44–74.14%.

Furthermore, a second major influence on the classifica-
tion accuracy can be determined when evaluating AA5754 
misclassified segments. For the validation experiments, a 
new tool, with the same major geometry, but individual 
production tolerances, was used and showed significant 
influence on the process force dynamics, especially on the 
slowest feedrate welds (300 mm/min, 600 RPM). This can 
be identified when comparing the data of defective and 
defect-free segments of the same parameter combination 
from the training and validation set, and it leads to the incor-
rect classifications of a high number of AA5754 segments 
for the given parameter set. The slow welds account for up 
to 48.19% (K32) of the misclassified AA5754 segments 
(K16T32, 27.66%; K16T + , 36.1%; K32T + , 21.53%). 
This emphasizes the influence of the welding tool geom-
etry and tolerances as well as the welding machines’ static 
and dynamic behavior. It also offers an area of improvement 
for the generalization, where the developed system can be 
further enhanced by implementing additional feature inputs 
relating to the welding machine and distinct tool geometry.

Both identified major drivers for misclassification show 
the complexity of determining a generalized threshold for 
defect detection. It is shown that classification close to the 
threshold is a major challenge, that, given the welding state, 
can be detrimentally influenced by tool production tolerance. 
A further increase in dataset size should stabilize the deter-
mined detection threshold and refine classification features. 
Furthermore, based on the observations regarding network 
configuration, wider networks with features spread over a 
multitude of feature maps should increase generalization and 
support extrapolation through features scaled by additional 
meta-data inputs.

Table 6   Best network 
configurations and resulting 
average classification accuracy 
(n = 3)

Network configuration K16T32 K16T +  K32 K32T + 
Initial convolution 512

3 × 3
512
3 × 3

512
3 × 3

512
3 × 3

Transition layer T1, T2, T3 128, 256, 896 512, 512, 1024 128, 256, 896 512, 512, 1792
Bottleneck width (P) 128 128 128 128
Training duration (min) 41 49 57 80
Positive factor ( Pf ) 0/2 0/4 0.5 0/2
Classification accuracy (%) 99.53 99..05 99.29 99.53
Repetition of training
Positive factor ( Pf ) 0/0 0/1 0/4 0/5
Classification accuracy (%) 100.00 99.76 99.05 98.82
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4 � Application for inline quality control

The resulting network classification accuracies of the train-
ing dataset vastly eclipse industrially applied defect detec-
tion methods such as ultrasonic testing, radiographic testing, 
and visual inspection, in not only detection accuracy and size 
of detectable defects but also in cost and required produc-
tion time [11, 43–46]. However, the initial impression of the 
validation shows the developed system as non-applicable 
due to classification accuracies on the generalized task of 
90–94%. For the application of inline quality monitoring, 
the defect detection rate is vastly higher than the classifica-
tion accuracy, resulting from the repeated evaluation of data 
in multiple contexts due to the overlapping segments. As 

most misclassified segments are in defect transition zones 
and only individual segments of welds are incorrectly clas-
sified, the average defect detection rate of all iterations 
(n = 6) exceeds 99.9% for 3 of 4 network configurations (4: 
99.87%). The number of occurrences when three consecu-
tive segments of the same weld are misclassified as false 
negative (defect not detected) is given in Table 9; addition-
ally, the number of three consecutive false positives (ROI 
where no defect is present) is given in brackets.

When evaluating 594 weld seams in 2970 segments (6 itera-
tions × 99 weld seams × 5 segments), the configuration with the 
lowest defect detection rate, K32, misses 4 defects. These are 
spread out over welds in three different alloys. The best net-
work configuration of the training dataset, K16T32, achieves a 

Table 7   Average classification 
accuracy of the validation 
dataset, subdivided by network 
configuration, workpiece 
material, and weld parameter 
combination

Parameter class 1: Welding parameters equal to training-data welding parameters
Parameter class 2: Parameter combination within the field of training-data parameter combinations
Parameter class 3: Parameter combination outside the field of training-data parameter combinations

N = 6 Param No. of seg-
ments per 
iteration

K16T32 K16T +  K32 K32T +  Avg. Acc

Acc. AA2017 1.5 mm (%) 1 85 87.60 88.82 85.49 91.57 88.38
2 25 95.33 96.00 93.33 93.33 94.50
3 20 90.83 95.00 95.00 95.83 95.87

Acc. AA7075 1.5 mm (%) 1 80 88.33 93.13 88.13 89.58 89.79
2 25 91.33 91.33 86.67 91.33 90.17
3 20 89.17 87.50 83.33 84.17 86.04

Acc. AA5083 2 mm (%) 1 80 99.79 99.58 98.33 98.75 99.11
2 25 100.00 100.00 100.00 100.00 100.00
3 20 96.67 100.00 95.83 99.17 97.72

Acc. AA5754 1.5 mm (%) 1 80 85.21 87.29 86.04 87.71 86.56
2 20 89.17 98.33 92.50 94.17 93.54
3 20 91.67 92.50 87.50 91.67 90.84

Avg. classification accuracy 91.18 93.13 90.20 92.50 91.75

Table 8   Sum of misclassified segments by 6 iterations of network configuration and number and fraction of segments from the defect transition 
area

N = 6 K16T32 K16T +  K32 K32T + 

Misclass. 
segments

Transition area Misclass. 
segments

Transition area Misclass. 
segments

Transition area Misclass. 
segments

Transition area

AA2017 81 50
61.73%

69 50
72.46%

90 49
54.44%

58 43
74.14%

AA7075 82 74
90.24%

61 55
90.16%

97 86
88.66%

82 72
87.80%

AA5083 5 1
20%

2 1
50%

13 9
69.23%

7 4
57.14%

AA5754 94 83
88.30%

72 56
77.78%

83 69
83.13%

76 70
92.11%

Total no./Avg. Trans 262 208
79.39%

204 162
79.41%

283 213
75.27%

223 189
84.75%
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detection rate of 99.93% missing 2 defects, with one of them 
being missed by two different iterations and one of those itera-
tions also accounting for the third miss, resulting in 4 of 6 itera-
tions detecting all defects. K16T + and K32T + , the wider con-
figurations of the respective network growth rate, both achieve 
defect detection accuracies of 99.96%, with the former missing 
the same defect twice. Thereby, 5 of 6 iterations of the widest 
network configuration, K32T + , accurately detect all defects and 
do not pass any defective welds through their quality inspection.

At the shown defect detection rates, the developed sys-
tem again surpasses all current industrial quality control for 
inner volumetric defects in FSW in terms of detectable defect 
size and detection accuracy. Furthermore, the system can be 
implemented on edge devices at the machine level and used as 
inline quality monitoring with ROI determination for further 
local, intensified quality investigation or defect localization. 
The recorded process data, amended with meta-data relating 
to the weld, its workpieces and parameters, and localized qual-
ity information can fulfill the customer requirements of pro-
duction traceability. In a next step, the system can be updated 
in the context of a fully connected production workshop to not 
only deliver localized quality data to downstream processes, 
but also utilize data from upstream processes to adjust the 
utilized meta-data to local workpiece properties and up-to-
date tool and machine quality information.

5 � Conclusions

Within this work, convolutional neural networks based on 
DenseNet201 were modified and amended with weld and 
workpiece meta-data. The networks were trained to classify 
FSW weld data in order to detect and localize inner volu-
metric defects (tunnel defects, voids). For a training dataset 
of 1405 weld seam segments from 3 different alloys, 2 sheet 
thicknesses, and 13 weld parameter combinations, 4 different 

network configurations and hyperparameter combinations 
were found that resulted in test set (846 segments) classifi-
cation accuracies > 99%. The classification accuracies of the 
trained networks, as well as their ability to generalize over new 
parameter combinations within the training data and extrapolate 
beyond the training data, were validated. A validation dataset of 
495 weld segments, executed on a different welding machine, 
including training set and new weld parameter combinations 
and alloys inside and outside the training parameter range, was 
used. An average validation accuracy of ~ 92% was achieved, 
with wider network configurations that spread the weights over 
a larger number of detectable features, outperforming narrower 
networks that emphasize a lower number of detection features, 
which provided better accuracy in classifying the training data. 
The major factor for misclassification was identified as the 
defect detection threshold, which is generalized for all welding 
conditions, resulting in defect initiation locations and defect end 
locations being misclassified at rates exceeding the average. 
Misclassifications of the defect initiation or defect end location 
account for 79.71% of the misclassifications. Furthermore, the 
machine and weld tool (geometry) influence, that are not yet 
part of the network meta-data enhancement, showed significant 
influence on the weld process dynamics and thereby the result-
ing weld data classification.

Despite the resulting classification accuracy below indus-
trial quality monitoring application levels, the developed 
system already vastly outperforms the state of the art, due 
to the overlapping segmentation of the recorded data and the 
significantly reduced defect detection size of 0.063 mm for 
1-mm and 1.5-mm thickness plates and 0.08-mm for 3-mm 
plates. The multi-contextual data evaluation of the overlap-
ping segments results in a defect detection accuracy of 100% 
for all network configurations when classifying the reserved 
test sets of the training dataset and defect detection rates of 
99.87–99.96% for the classification of the validation set data. 
For the best network configuration, 5 of 6 iterations detect 
100% of the defects in 495 weld segments of the validation 
dataset, while the last iteration misses to flag one defect.

The developed system can be deployed on edge devices 
as an inline quality monitoring tool to determine critical ROI 
for further inspection, as inferencing is about 2/100 of the 
duration between new segments. It can also provide a subse-
quent evaluation step for quality determination and process 
traceability by recording process dynamics and amending 
joining task and workpiece meta-data.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – 
EXC 2023 Internet of Production – 390621612.

Table 9   Total number of three consecutive false negative (false posi-
tive) classified segments for n = 6 iterations

*2 × same 3 segments
**All 3 × same 3 segments

N = 6 K16T32 K16T +  K32 K32T + 

No. segments, AA2017 1 mm 0
(3*)

2*
(0)

2
(2)

0
(1)

No. segments, AA7075 1.5 mm 3*
(0)

0
(0)

1
(3*)

1
(1)

No. segments, AA5083 2 mm 0
(0)

0
(0)

1
(0)

0
(0)

No. segments, AA5754 1.5 mm 0
(3*)

0
(3**)

0
(3*)

0
(2)

Average Detection Accuracy 
(%)

99.93 99.96 99.87 99.96
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