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Abstract

The marvel of human walking is a complex combination of intricate control
strategies, but it can be disrupted by injuries and illnesses such as strokes.
The prevalence of the resulting gait disorders remains an acute global health
challenge affecting millions of people. Early and intensive rehabilitation is
crucial for recovery. Traditional rehabilitation methods require significant
financial and human resources, leading to an increased interest in rehabilitation
robotics. In addition, aging demographics will increase the need for home-based
care, fostering demand for rehabilitation robotics and ultimately promoting
greater autonomy for individuals. For optimal rehabilitation outcomes, it is
important that patients actively initiate movements themselves, as this kind
of motor learning is crucial for stimulating neuroplasticity. Exoskeletons that
prioritize patient-initiated actions and adapt in real-time to user intent could
benefit clinical and everyday settings. The realization requires precise sensing
of movement intention and utilizing advanced control strategies to support the
patient’s movement while prioritizing safety through hardware and software
solutions.

This dissertation explores methods to design and control lower limb exo-
skeletons to enhance robot-assisted rehabilitation. The proposed approach
designates the user as the central controller, underscoring the robot’s role in
responding to, rather than dictating, human movements. By estimating the
user’s joint torque in real-time through a coupled human-exoskeleton model for
both swing and stance phases, a novel human-cooperative controller is developed
to augment user movement. The control strategy has been validated on a newly
designed exoskeleton with variable stiffness actuators for hip and knee actuation.
Additionally, a control concept for the varying serial elasticity is proposed to
combine the advantageous high bandwidth of a stiff actuator with the patient
safety advantage of a compliant actuator in response to patient motion. Finally,
this thesis examines the potential of exoskeletons as both a diagnostic and
intervention tool for muscle fatigue – a prevalent and debilitating symptom
among individuals with gait disorders. For this purpose, a fatigue model is
formulated and parameterized based on a study involving healthy participants,
and the feasibility of modulating the exoskeleton’s assistance according to the
fatigue level is investigated.

The results of this dissertation highlight novel methodologies that enhance
the user-exoskeleton synergy by placing the user as the central controller of the
system. The findings are expected to aid in the design and control of future
exoskeletons to improve rehabilitation outcomes, reducing therapist workload
and enabling home-based training and consequently improving the patient’s
overall quality of life.

v





Contents

Acknowledgement iii

Abstract v

Abbreviations and symbols xi

1 Introduction 1

2 Background 5
2.1 Biomechanics and Human Locomotion . . . . . . . . . . . . . . 5

2.1.1 Anatomy of the Lower Limbs . . . . . . . . . . . . . . . 5
2.1.2 Physiology of Movement Generation . . . . . . . . . . . 8
2.1.3 Human Gait . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Gait Disorders . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Rehabilitation Robotics - Lower Limb Exoskeletons . . . . . . . 17
2.2.1 Rehabilitation Therapy . . . . . . . . . . . . . . . . . . 17
2.2.2 Actuation Principles . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Sensor Systems . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Control Strategies . . . . . . . . . . . . . . . . . . . . . 23

2.3 System Theoretical Fundamentals . . . . . . . . . . . . . . . . . 28
2.3.1 System Identification . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . 30
2.3.3 State Estimation . . . . . . . . . . . . . . . . . . . . . . 33

3 Design, Modeling and Human Torque Estimation 39
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Lower Limb Exoskeleton - Serial Elasticity . . . . . . . . . . . . 42

3.2.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Compliant Actuation . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Sensor System . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Actuation Model . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Inner Loop Torque Control . . . . . . . . . . . . . . . . 47
3.2.6 Walking Trial with the Exoskeleton . . . . . . . . . . . . 49

3.3 System and Subject Modeling . . . . . . . . . . . . . . . . . . . 50
3.3.1 Exoskeleton Modeling in Swing Phase . . . . . . . . . . 50
3.3.2 Stance Phase Model . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . 56

vii



Contents

3.4 Model-based Human Movement Intention Estimation . . . . . . 59
3.4.1 Torque Estimation during Swing Phase . . . . . . . . . 60
3.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 62

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Human-cooperative assistance control 69
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Cooperative Control Framework . . . . . . . . . . . . . . . . . 72

4.2.1 Swing Phase Assistance . . . . . . . . . . . . . . . . . . 73
4.2.2 Stance Phase Assistance . . . . . . . . . . . . . . . . . . 74
4.2.3 Phase Switching . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Stiffness Adaptation . . . . . . . . . . . . . . . . . . . . 76
4.2.5 Safety Mechanisms . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Swing Phase Assistance . . . . . . . . . . . . . . . . . . 82
4.3.3 Stance Phase Assistance and Sit-to-Stand . . . . . . . . 85
4.3.4 Safety Mechanism . . . . . . . . . . . . . . . . . . . . . 87
4.3.5 Full Gait Assistance with Varying Stiffness . . . . . . . 89

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Fatigue Assessment and Fatigue Control 95
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Fatigue Model Development . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Fatigue Model Selection . . . . . . . . . . . . . . . . . . 98
5.2.2 3CCr Fatigue Model . . . . . . . . . . . . . . . . . . . . 99
5.2.3 Muscle Activation . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 Parameter Estimation Study . . . . . . . . . . . . . . . 103
5.2.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . 107

5.3 Human-in-the-Loop Fatigue Control . . . . . . . . . . . . . . . 107
5.3.1 Reference Generation . . . . . . . . . . . . . . . . . . . 108
5.3.2 Fatigue Controller . . . . . . . . . . . . . . . . . . . . . 110
5.3.3 Allocation of Assistance . . . . . . . . . . . . . . . . . . 112

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 Results Fatigue Model . . . . . . . . . . . . . . . . . . . 112
5.4.2 Control Validation . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 Discussion of the Fatigue Model . . . . . . . . . . . . . 119
5.4.4 Discussion of Controller Performance . . . . . . . . . . . 123

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion and Outlook 125

viii



Contents

A Appendix 131

B Publications and Achievements 137

C Disclosure Statement 143

Bibliography 145

ix





Abbreviations and symbols

List of abbreviations

Abbrev. Meaning
ADP adenosine diphosphate
AP action potential
ARE algebraic riccati equation
ATP adenosine triphosphate
bpm beats per minutes
CAN controller area network
cHMI cognitive human-machine interface
CNS central nervous system
DoF degree-of-freedom
EE energy expenditure
EEG electroencephalography
EKF extended Kalman filter
EMG electromyography
FAC functional ambulation categories
FES functional electrical stimulation
FF feed-forward
FG fast glycolytic
FO fast oxidative
FSR force sensing resistor
FTS force-torque sensor
GM gluteus maximus
GRF ground reaction force
HiL human-in-the-loop
HR heart rate
HS hamstrings
IMU inertial measurement unit
IP iliopsoas
KF Kalman filter
LPV linear parameter varying
LQG linear quadratic Gaussian
LQGI LQG controller with integral behavior

xi



Abbreviations and symbols

Abbrev. Meaning
LQR linear quadratic regulator
L2Exo-SE lower limb exoskeleton with serial elastic actuators
MAE mean absolute error
MeRIA mechanical-rotary variable impedance actuator
MG muscle group
MU motor unit
MVC maximum voluntary contraction
PEA parallel elastic actuator
pHMI physical human-machine interface
PNS peripheral nervous system
QF quadriceps femoris
RC residual capacity
RMSE root-mean-square error
RoM range-of-motion
RPF ratings of perceived fatigue
SCI spinal cord injury
SD standard deviation
SEA serial elastic actuator
SO slow oxidative
SoF state of fatigue
SQP sequential quadratic programming
SR sarcoplasmic reticulum
SVF state variable filter
Sit2Stand sit-to-stand
TL target load
TVA torque-velocity-angle
UKF unscented Kalman filter
VSA variable stiffness actuator
3CC three-compartment controller

xii



List of Latin Symbols

The Latin and non-Latin symbols listed in the following two tables can be
specified using the indices given in the table thereafter. The use of a symbol in
combination with one or more indices is indicated by an asterisk ∗.

Symbol Unit Meaning
C muscle activation-deactivation drive
C N m s Coriolis matrix
d∗ N m s damping constant
D N m s damping matrix
Ekin J kinetic energy
Epot J potential energy
F s−1 rate of fatigue
F∗ N force
G N m torque vector caused by gravity
g N m2 kg−2 gravity constant
H Hessian
I∗ A current
J∗ kg m2 motor and gear inertia
k∗ assistance factor
K Kalman gain
Kemf N m A−1 back electromotive force constant
KI integral gain of controller
KP proportional gain of controller
l∗ m length
L J Lagrangian
LD development factor
LR relaxation factor
m∗ kg mass
M kg m2 mass inertia matrix
MA active motor units
MF fatigued motor units
MR resting motor units
q̈, q̇, q motion variables, e.g. angular acceleration, angular

velocity, and angle

xiii



Abbreviations and symbols

Symbol Unit Meaning
r rest recovery factor
R∗ s−1 rate of recovery
RC∗ %MVC residual capacity
SoF∗ % state of fatigue
T L∗ %MVC target load
x∗ m center of mass in x direction
y∗ m center of mass in y direction

List of Non-Latin Symbols

Symbol Unit Meaning

α duty cycle of active phase
β duty cycle of resting phase
γ∗ - gear transmission
σ∗ N m rad−1 actuator stiffness
σ̄∗ N m rad−1 max. actuator stiffness
σ∗ N m rad−1 min. actuator stiffness
Σ covariance
τ∗ N m joint torque
φ∗ rad joint angle
φ̇∗ rad s−1 joint’s angular velocity
φ̈∗ rad s−2 joint’s angular acceleration
ω rad s−1 circular frequency variable

xiv



List of Indices

Index Referring to

a active
blend blending between two phases
exo exoskeleton
F foot
FF feed-forward
GM gluteus maximus
GRF ground reaction forces
H hip
HS hamstrings
IP iliopsoas
K knee
MG muscle group
M1 motor 1, main drive
M2 motor 2, secondary motor
p passive
pat patient/human
QF quadriceps femoris
ref reference
rr rest recovery
S shank
St stance phase
Sw swing phase
T thigh
th threshold
To torso

xv





1 Introduction

The process of walking, which many of us take for granted, is a marvel of
natural control mechanisms. From infancy, we autonomously master intricate
control strategies, effortlessly coordinating every muscle and joint in harmonious
sequences that carry us through life. This subconscious process of human gait
is a reflection of our body’s resilience and adaptability. But, this sensitive
balance can suddenly be disrupted by events such as strokes or injuries. The
prevalence of gait disorders or disabilities of the lower extremities remains an
acute global health challenge. Annually, approximately 13.7 million people
experience a stroke, and there are around 80.1 million existing cases of stroke
worldwide, based on 2016 data [JNR+19]. Specifically, over 80% of stroke
survivors exhibit gait dysfunction [DZB+05]. In addition, patients with post-
polio, multiple sclerosis, and spinal cord injury (SCI) suffer from impaired motor
function [YF17]. For the affected people, limited mobility harms physical and
mental well-being and can reduce physical and psychological strength [IW14].

Comprehensive rehabilitation is essential for the optimal recovery of the
affected person. Notably, the most pronounced benefits, such as improved
walking independence and speed, are observed when interventions commence
promptly after a stroke [MP12]. Traditional rehabilitation methods often
demand significant financial and human resources. Device-assisted therapies,
such as those employing end-effector devices – guiding a patient’s feet – or
lower limb exoskeletons, present a promising alternative, alleviating the physical
strain on therapists [Reh20].

Exoskeletons, derived from the Greek words exo (’outside’) and skeletós
(’dried-up body’), are wearable devices designed to enhance human joint move-
ment, augmenting the user’s strength and endurance for various tasks. They
can be classified according to their mechanical structure, their support, and
their application. In the private sector, for example, exoskeletons promise
increased independence and a better quality of life for the elderly. In the
medical sector, exoskeletons offer a promising approach for rehabilitation af-
ter a SCI or paralysis due to a stroke, by restoring limited movement func-
tion [MKQ+07,ZWZ+12,ETPS12,HSJ+20].

One of the first active exoskeletons was developed between 1965 and 1971 by
the U.S. company General Electrics [Mos67]. The Hardiman provided the first
significant impetus for motion tracking and thus cooperative operator support.
However, the system was heavy, expensive, error-prone, and therefore unsuitable
for therapeutic purposes. In recent decades, active lower limb exoskeletons have
become an increasingly important tool in gait rehabilitation due to advanced
processing units, power management systems, actuation concepts, and control
strategies. However, patient-cooperative interaction, human-robot coupling, and
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1 Introduction

patient-centered support concepts remain major challenges in the development
of these systems. Therefore, this dissertation addresses three facets that are
barely addressed in existing exoskeleton designs.

The first aspect was underlined in a review by Mehrholz et al. in 2012 which
states that post-stroke patients demonstrate improved walking speeds after
undergoing end-effector gait training. In contrast, no such improvement was
observed when these patients were directed by an exoskeletal device [MP12].
Bingham’s 1988 proposition provides a potential explanation, suggesting that
active motor learning, where patients initiate movements themselves, is essen-
tial for stimulating neuroplasticity [Bin88]. This highlights the significance of
developing exoskeletons that are not only safe and reliable but also prioritize the
enhancement of patient-initiated movements. Unlike end-effector devices that
are primarily therapeutic, these patient-cooperative exoskeletons could be bene-
ficial both in clinical settings and everyday life. Facilitating home-based training
can maximize functional performance and increase safety, thereby enhancing
the overall life quality and mobility of patients while reducing caregiver’s re-
sponsibilities [GLG93]. Patient cooperation relies on the ability to accurately
sense the intent behind a patient’s movement. To be widely adopted in daily
activities, motion detection and assistance must be simple, immediate, seamless,
and error-free. While effective in ideal settings, electromyography (EMG) based
methods require laborious electrode placement and carry risks associated with
inconsistent conductivity [HK07,KH12]. In contrast, model-based techniques
for online prediction of movement intention are unaffected by these limitations.
However, so far, their use has mostly been limited to isolated movements such
as the swing motion or sit-to-stand (Sit2Stand) task [LLNM20,LHP+20] or to
the upper body [LHA+17, ZKF+20], thus missing continuous changes in the
environment, such as during the swing and stance phases of walking.

The second fundamental aspect in the design of an exoskeleton is intrinsic
safety, which can be achieved through compliant elements in the actuation
[XQ13,SVGVT+19]. Typically, exoskeletons are designed with rigid elements
connected through joints. However, when looking at nature’s blueprint, it
tends to use softer, more adaptable materials that can still function effectively
under the most challenging conditions. For example, although bones are hard
structures, they are surrounded by flexible tissues such as muscles and tendons.
While such rigid components provide increased precision and superior load
bearing and force transmission, compliant or elastic structures allow passive
adaptation to the environment, protecting the system from mechanical damage
and, more importantly, the user from injury. For this reason, the use of
compliant elements such as serial elastic actuators (SEAs), variable stiffness
actuators (VSAs) or artificial muscles in exoskeletons is steadily increasing
[WWM+14, JBG+14, GRGG+17, SVGVT+19, ZWCZ22]. However, existing
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solutions have neglected the potential that lies in adapting elasticity properties
to the motion and environment.

The third aspect to consider when using exoskeletons in rehabilitation or
everyday life is the extent to which the exoskeleton should support the user.
Typically, the therapist or user needs to manually set the assistance factor
based on the patient’s mobility and perceived fatigue. Fatigue is a common
experience in our daily activities, but a debilitating symptom for individuals
with hemiparesis who have compromised muscle function. Research shows
that up to 72% of stroke survivors experience fatigue, and 46% consider it
their most impairing symptom [KRG12]. In addition, patients with incomplete
SCI experience increased muscle fatigue during prolonged walking [DNG+20].
This finding suggests that fatigue management should be considered in their
rehabilitation process. Recognizing fatigue in daily life and during rehabilitation
can minimize the risk of falls, as fatigue can affect gait parameters and increase
the likelihood of falls [PL08,DNG+20]. However, fatigue management in purely
mechanical (non-functional electrical stimulation (FES)) assistive exoskeletons
has never been considered in the literature.

Aim of the Thesis

The primary goal of this thesis is to provide new methods for designing and
controlling lower limb exoskeletons to advance robotic-assisted rehabilitation
therapy in the future. This work emphasizes an approach where the user is not
only the recipient of robotic assistance but rather the central controller of the
exoskeleton. For this reason, the thesis focuses on the development, modeling,
and control of lower limb exoskeletons to improve human-robot interaction.
This is further clarified by exploring the following research questions:

1. What are the necessary actuator specifications for an exoskeleton to
accommodate dynamic adjustments of serial elasticity throughout various
phases of a gait cycle?

2. How viable is the real-time estimation of the torque produced by the user
in exoskeletons equipped with variable serial elasticities?

3. To what extent can the torque estimation strategy be utilized to formulate
individualized assistance control in exoskeletons?

4. How effective is the modulation of serial stiffness in an exoskeleton for
enhancing user safety?

5. Can muscle fatigue be diagnosed and quantified during the use of exoskele-
tons?

3



1 Introduction

6. Is it feasible to manage the user’s muscle fatigue levels by adjusting the
level of exoskeleton support?

Structure of the Thesis

This thesis is organized into six chapters, where chapters 3, 4, and 5 address the
main research contributions of this work. In detail, the remaining five chapters
are structured as follows:

Chapter 2: This chapter provides an introduction to the physiological and
technical background relevant to this book. The physiology and biomechanics
section includes a brief introduction to the anatomy of the lower extremities,
the physiology and mechanics behind motion and gait, simulations of both
forward and inverse dynamics, an introduction to gait disorders, and fatigue – a
debilitating symptom among patients with gait disorders. Then, a brief overview
of current concepts in lower limb rehabilitation robotics, focusing on sensors,
actuators, and control methodologies is presented. The chapter concludes
with the basic principles of systems theory by covering system identification,
parameter estimation, and state estimation.

Chapter 3: The design of a new lower limb exoskeleton featuring VSAs for
hip and knee assistance is presented in this chapter. Furthermore, a detailed
model and parameter identification process of the coupled exoskeleton-patient
system is derived. Lastly, a non-linear human joint torque estimation based
on an unscented Kalman filter (UKF) and a static model are presented for the
swing phase and stance phase, respectively.

Chapter 4: The design of a human-cooperative control strategy relying on the
previously derived human torque estimation is presented. The control strategy
assists the subject during all phases of the gait based on their intention to
move. Additionally, an automated stiffness selection for the VSAs dependent
on the human’s movement and the environment is presented. Furthermore,
possible safety mechanisms for lower limb exoskeletons are explored. Finally,
the developed control strategy is validated and discussed.

Chapter 5: The chapter starts with the design of a model to describe hu-
man muscle fatigue during exoskeleton walking. The model is parameterized
by conducting a study on healthy subjects. Subsequently, a controller that
automatically sets the exoskeleton’s assistance to manage muscle fatigue is de-
scribed. Finally, the results of the parameter identification study and controller
validation are shown and discussed.

Chapter 6: This chapter concludes the dissertation by summarizing the
most important findings with respect to the formulated research questions and
outlining further research opportunities.

4



2 Background

The interdisciplinary nature of this work requires certain background knowledge
of the physiological aspects of human motion generation and gait, the state of
the art in rehabilitation therapy, and some technical fundamentals. This chapter
begins with an introduction to biomechanics and gait physiology. This includes
a brief introduction to the anatomy of the lower extremities, the mechanics
behind motion and gait, simulations of both forward and backward dynamics,
and gait disorders, with a special emphasis on fatigue. Following this, a brief
overview of current concepts in lower extremity rehabilitation robotics, focusing
on sensors, actuators, and control methodologies is given. The chapter concludes
with the principles of systems theory by covering system identification, parameter
estimation, and state estimation.

2.1 Biomechanics and Human Locomotion

Biomechanics is the interdisciplinary study of the mechanical principles underly-
ing the structure and movement of living organisms. It integrates principles from
physics and engineering to analyze how biological systems respond to external
forces and how they generate internal forces themselves. The fundamentals of
biomechanics are essential for understanding and developing the interaction
between humans and robots. For this reason, the basics of biomechanics with
regard to human locomotion are explained in the following chapter.

2.1.1 Anatomy of the Lower Limbs

The musculoskeletal system is essential to provide stability for the upright stand
and allow gait movements. It consists of the skeletal system, which includes
the bones, joints, and supporting structures, as well as the muscular system
consisting of the muscles and tendons.

Joints

The human skeleton has over 200 bones, supported by cartilage, ligaments,
tendons, and muscles. Bones can be grouped into two types: axial bones in the
body’s center, and appendicular bones in the limbs and hips. The connection
between bones are joints. Joints allow various movements and can be sorted
into three types: fibrous, cartilaginous, and synovial. Synovial joints are the
most common and provide free movement due to the connecting joint cavity.
They can be classified into uniaxial, biaxial, and multiaxial joints depending on
their ability to move in one, two, or multiple directions [NGY21].

5



2 Background

Body movements are often described in relation to the neutral anatomical
position: standing upright with arms by the sides and palms facing forward. To
categorize movements, three primary planes can be defined. The sagittal plane
divides the body into left and right halves, the coronal plane into front and
back, and the transverse plane into top and bottom. Key movements of the
knee and hip include flexion, extension, abduction, and adduction as visualized
in Fig. 2.1. The first two describe movements in the sagittal plane, where flexion
reduces the angle between two bones, while extension increases it. The hip joint
can also perform abduction and adduction which are movements in the coronal
plane. Additional movements encompass external and internal rotations, tilting,
and complex motions involving several joints [DBJ+13].

Figure 2.1: Main movements of the hip, knee, and ankle joint.

The hip joint, a synovial joint, links the top of the femur to the hip bone.
Functioning as a multiaxial ball-and-socket joint, it permits movements like
flexion, extension, abduction, adduction, and both external and internal rotation
(see Fig. 2.1). Essential for bearing the body’s weight, the hip joint plays a
crucial role in stabilizing the human body when standing and walking [DBJ+13].

The knee joint is the body’s largest joint and links the bottom of the femur,
the top of the tibia, and the patella. Classified as a synovial joint, it functions
primarily as a hinge joint enabling flexion and extension through a combination
of rolling and gliding movements between the femur and tibia. Additionally,
the knee can undergo minor rotations under specific conditions [DBJ+13].
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2.1 Biomechanics and Human Locomotion

Muscular System

The muscular system in humans encompasses three primary muscle types: the
cardiac, smooth, and skeletal muscles. Voluntary control is possible with skeletal
muscles, driven by the somatic division of the nervous system. However, reflexes
might cause them to contract involuntarily. On the other hand, the autonomic
nervous system regulates both cardiac and smooth muscles, making their
actions involuntary. The fundamental roles of muscles include generating force,
maintaining posture, stabilizing joints, and producing heat [MHH13,NGY21].

Muscles associated with the hip are categorized into specific groups as vi-
sualized in Fig. 2.2. The primary hip flexor is the iliopsoas (IP), formed by
the psoas major and iliacus muscles. The gluteus maximus (GM), vital for
activities like stair-climbing and stabilizing the trunk during walking, serves as
the primary hip extensor. Along with the gluteus medius and gluteus minimus,
responsible for abduction, they constitute the gluteus group [DBJ+13].

Figure 2.2: Important muscles of the thigh and the hip. Modified from
[DBJ+13].

Thigh muscles are segregated into extensors, adductors, and flexors. The
quadriceps femoris (QF), encompassing the rectus femoris, vastus medialis,
vastus intermedius, and vastus lateralis, predominantly facilitates knee extension.
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The adductor group, which includes the adductor longus, adductor brevis, and
adductor magnus, aids in thigh rotation. Knee flexion is primarily controlled
by the hamstrings (HS), composed of the biceps femoris, semitendinosus, and
semimembranosus. It is noteworthy that since the quadriceps femoris and
hamstrings span both the hip and knee joints, their effects are interconnected.
For instance, the quadriceps femoris can function as a hip flexor to a degree,
while the hamstrings can act as hip extensors.

2.1.2 Physiology of Movement Generation

The intention to move has its origin in the central nervous system (CNS). The
CNS is composed of the brain and the spinal cord, whereas the peripheral
nervous system (PNS) consists of the nerves connecting different body parts
with the CNS. The primary motor cortex is located in the frontal lobe of the
brain and initiates the command for the intended movement. Motor neurons
transmit electrical impulses from the motor cortex along the spinal cord and
the peripheral nerves to the muscle. The connection of a motor neuron and all
innervated muscle fibers is called a motor unit [DBJ+13].

Force Generation

Muscle force is generated by contracting muscle fibers. The contraction results
from the interaction between actin and myosin proteins within the muscle
fiber’s sarcomere. This interaction is initiated by an electrical impulse, an
action potential (AP), which leads to a chain of events: neuron depolarization
due to ion transfer of K+ and Na+, Ca2+ release through channels in the
sarcoplasmic reticulum (SR), and the formation of cross-bridges between proteins.
Subsequently, a power stroke occurs while the myosin head pulls the actin
towards the center of the sarcomere. During that process, adenosine diphosphate
(ADP) and inorganic phosphate are released. The detachment of the myosin
head occurs while the adenosine triphosphate (ATP) bonds to the myosin. By
hydrolyzing ATP to ADP, the myosin head transforms to its initial position
allowing a new cross-bridge-cycle [MHH13].

The process of cross-bridge-cycling evokes muscle contraction resulting in a
force, also called muscle tension. Muscle contraction can be isometric (tension
without changing length) or isotonic (constant tension with changing length).
In isotonic contractions, the muscle can either shorten (concentric) or lengthen
(eccentric1), producing positive or negative power, respectively [Win09,MHH13].

1In eccentric movements, the muscle lengthens passively due to a counteracting force, as
observed when lowering a weight.
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2.1 Biomechanics and Human Locomotion

Motor Unit (MU)

The motor unit (MU) represents the muscle’s most basic controllable component.
It’s comprised of a motor neuron, its interconnected muscle fibers, and their
neuromuscular junctions - where the neuron’s axon terminals meet the muscle
fibers.

Each muscle consists of a finite number of MUs ranging from a few to several
hundred. The size of MUs depends on the task the muscle controls. For intricate
tasks, like finger or eye movements, smaller MUs are utilized. Whereas, muscles
responsible for bearing weight, such as those in the hip, are made up of larger
MUs. The process of MU recruitment adheres to the size principle. MUs
with thinner muscle fibers, which have a lower activation threshold, are called
upon first when less force is demanded. These smaller, slow-twitch MUs are
labeled as type I MUs. They offer low force output and slower contraction
rates but they are highly resistant to fatigue. Additionally, they produce ATP
aerobically, leading to the term slow oxidative (SO) muscle fibers. Due to their
attributes, Type I MUs are engaged during prolonged activities and posture
maintenance. On the other end, there are fast-twitch MUs, or type II MUs.
This type of MUs is less readily activated but delivers more substantial forces
and quicker contractions. Type II MUs are further categorized by their ATP
production methods into fast oxidative (FO) and fast glycolytic (FG) fibers.
fast oxidative fibers produce ATP in an oxygen-rich environment and resist
fatigue to a moderate extent. In contrast, fast glycolytic fibers rely on anaerobic
glycolysis for ATP and tire quickly. High-intensity, short-duration activities
call upon fast glycolytic MUs, while tasks of medium intensity, like walking or
sprinting, utilize fast oxidative units [MHH13].

In essence, a muscle’s force output is the collective force produced by all its
activated MUs. For peak force production, all MUs are engaged at once. But for
less force, MUs tend to activate in a staggered manner, allowing periods of rest
for some, which in turn postpones the onset of muscle fatigue [Win09,MHH13].

Movement Generation

Skeletal muscles are connected to the bone by tendons allowing muscles to
exert force in a lever system where bones act as rigid levers. The joint torque
results from combining the moments of all muscles spanning the joint with those
from passive structures. The primary muscle driving a movement is termed the
agonist or prime mover, while its opposing muscle is the antagonist. Movements
arise from the interplay of these muscles. A simultaneous contraction of both
muscles is called co-contraction and occurs during the stabilization of a joint.
More importantly, it is the main cause of inefficient movement generation in
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specific pathologies, such as hemiplegia. For certain movement patterns, the
collaboration of multiple joints, called motor synergy, is needed. One example
is the generation of the human gait. In this case, the support moment, which is
the integrated activity of the lower limb muscles, overcomes gravity and moves
the human body forward [Win09].

2.1.3 Human Gait

Human gait refers to the coordinated movement of the body while maintaining
balance, achieved through repetitive motions of the lower limbs. This movement
can be described as a stretch-shortening cycle, given the muscles’ continuous
cycle of expansion and contraction [BMA15]. Achieving this intricate motion re-
quires synergy among the skeletal, muscular, and neurological systems [BMA15].
A single gait cycle is marked by two repeated events, typically starting with the
moment the foot makes initial contact with the ground as visualized in Fig. 2.3.

Figure 2.3: The human gait cycle. Modified from [UD21].

The gait cycle is segmented into the stance and the swing phases. The stance
phase accounts for 60% of the cycle, signifying the duration the foot remains
grounded. Conversely, the swing phase represents the remaining 40% when
the foot is elevated. The gait phases can be categorized as single or double
support, depending on whether one foot or both feet are on the ground. For a
more detailed understanding, the gait cycle can be further categorized into sub-
phases. During the stance phase, these include initial contact, loading response,
mid-stance, terminal stance, and pre-swing; the swing phase is divided into the
initial, mid, and terminal swing.
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2.1 Biomechanics and Human Locomotion

The joint angles of the lower body throughout this cycle, depicted for three
distinct gait velocities, can be seen in Fig. 2.4.

Figure 2.4: Joint angles during one gait cycle. Data from [AHS+13], Fig.
redrawn from [UD21].

2.1.4 Dynamics

When evaluating human gait, both kinematics and kinetics are crucial. Kine-
matics deals with body movements without accounting for the forces involved,
encompassing the position, velocity, and acceleration of body parts and joints.
On the other hand, kinetics examines the forces and torques that drive these
motions. Computer simulations facilitate the estimation of unmeasurable pa-
rameters and enable predicting movements in theoretical situations.
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Forward Dynamic Simulation

The forward dynamic simulation depicted in Fig. 2.5 operates on the premise
of neural activation in one or multiple muscle groups, mirroring real movement
generation. Leveraging a musculoskeletal model, this simulation can forecast
muscle forces, joint torques, and the resulting movement. Experimental data
aids in validating the foundational mathematical models [UD21].

Figure 2.5: Concept of forward dynamic simulation. Fig. redrawn from [UD21].

Inverse Dynamic Simulation

Inverse dynamic simulation, on the other hand, utilizes body motion measure-
ments to determine joint torques or even muscle forces as visualized in Fig. 2.6.
The motion of the body segments can be captured by motion-capturing systems,
for example. Through inverse kinematics, joint movements can be derived,
followed by their corresponding angular velocities and accelerations. The joint
torques result from the sum of the external forces, e.g. the ground reaction
forces (GRFs) and gravitational forces, as well as internal forces produced
by muscle tension. The GRFs act during the stance phase opposite to the
body weight and must be measured to perform the inverse dynamic procedure.
Typical GRFs throughout a gait cycle are depicted in the appendix in Fig. A.1.

The estimated joint torques correspond to the muscular tension, composed
of the contraction force and the passive tension of the ligaments. Typical joint
torques during gait estimated by inverse dynamics are visualized in Fig. 2.7.
The muscle force leading to the observed motion can be assessed either by
measuring the muscular activation using electromyography or by solving an
optimization problem based on the calculated joint torques [Win09].
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Figure 2.6: Concept of inverse dynamic calculation. Fig. redrawn from [UD21].

Figure 2.7: Joint torques during one gait cycle. Fig. redrawn from [UD21].
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2.1.5 Gait Disorders

Gait disorders refer to any deviations from the standard walking pattern.
Various factors can contribute to these irregularities, ranging from neurological
conditions and musculoskeletal problems to age-related changes and physical
injuries. Each cause can lead to distinctive changes in gait.

For the purpose of this thesis, a particular emphasis is placed on gait disor-
ders resulting from neurological issues, especially those occurring post-stroke.
This focus is motivated by the statistic that every year, approximately 13.7
million strokes occur worldwide [JNR+19]. The most frequent side effect of
brain damage, such as a stroke, is paralysis and paresis (incomplete paraly-
sis) [Nel08]. Specifically, post-stroke leg paresis is prevalent, affecting 72.4% of
stroke survivors [LCD+01].

Such post-stroke paresis often manifests as a hemiplegic gait. Here, one
side of the body is weakened or entirely paralyzed, resulting in noticeable limb
dragging or circumduction. While strokes are a major contributor to these gait
abnormalities, other conditions like post-polio syndrome, multiple sclerosis, and
spinal cord injury (SCI) can also result in compromised walking abilities and
even paralysis.

Over time, paresis can lead to disuse or incorrect usage of the affected
limb. This neglect can induce structural changes in the muscles and joints.
More critically, it may also lead to chronic changes within the CNS. These
structural alterations can, in turn, exacerbate the paresis, forming a detrimental
feedback loop. The use and targeted training of the compromised limb is of high
importance to break this vicious circle. To address these challenges and offer
potential solutions, both classical and device-assisted rehabilitation therapies
will be further explored in Sec. 2.2.1.

The functional ambulation categories (FAC) allows classification of the severity
of the gait disorder [Mar14]. The scale divides the ability to walk into 6 levels:

0. Patient is unable to walk or requires the assistance of two or more thera-
pists.

1. The patient is dependent on the permanent assistance of a person who
helps to carry the weight and to maintain the balance.

2. The patient is dependent on continuous or intermittent assistance from a
person to ensure balance and coordination.

3. The patient is dependent on verbal support or accompaniment of a person
but not on physical help.
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4. The patient walks independently on flat ground and only requires assis-
tance, for example, when climbing stairs or on difficult surfaces.

5. The patient is able to walk independently in all respects.

2.1.6 Fatigue

Fatigue is a common symptom associated not only with post-stroke patients
but also with disorders like autoimmune conditions including multiple sclerosis,
cancer, and infectious disorders [Kru03]. Fatigue is commonly experienced as a
feeling of exhaustion, tiredness, and lack of energy. It leads to the reduction
of physical and physiological performance and is associated with many clinical
health issues. During daily activities, fatigue can lead to increased response
times, reduced awareness, diminished coordination, and a lack of attention
[Bab19]. If fatigue is not resolved, it can lead to severe health disorders like
chronic fatigue syndrome, which is characterized by cognitive impairment and
physical exhaustion resulting in the inability to perform daily tasks. Fatigue
can be classified as mental and physical fatigue. Mental fatigue is related to
cognitive and perceptual aspects and can be characterized as reduced cognitive
performance. Physical fatigue manifests as a decline in the performance of the
motor system.

Although Enoka et al. [ED16] suggested not to classify fatigue into muscle
fatigue and physical fatigue, many research groups continue to use this term to
describe the impairment of physical activity or force generation [Vøl97,ED08,
CMTO09].

Definition of Muscle Fatigue

Muscle fatigue can be defined as "any exercise-induced reduction in maximal
capacity to generate force or power output" [Vøl97]. It is often described as the
decline of maximum voluntary contraction (MVC), which is a measure of the
force generated by an individual believing to perform with maximal effort. The
reduction of strength depends on the type of contraction. Sustained maximal
contraction evokes an immediate onset of fatigue and a strict decline in force
output. In contrast, during repeated sub-maximal contractions, force can be
maintained for a longer time until the target force cannot be generated anymore.
This inability to generate the force output required to perform a specific task is
called exhaustion. Several mathematical fatigue models have been developed to
describe the strength reduction caused by muscle fatigue [Vøl97].
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Physiological Mechanism of Fatigue

Fatigue, as classified by Enoka et al., comprises performance and perceived
fatigability, influenced by factors like homeostasis, psychological state, muscle
function, and activation [ED16]. Modulating physiological factors, like blood
glucose, arousal, calcium kinetics, and voluntary activation contribute to fatigue
but also interact with each other. Central fatigue is caused by factors within the
CNS, affecting signal generation and transmission in the motor cortex [Vøl97].
Peripheral fatigue relates to factors at or distal to the neuromuscular junction
[WQW+17].

Muscle fatigue is caused by several ionic imbalances [MHH13]. During the
process of force generation (see Sec. 2.1.2), an imbalance of Na+ and K+

disturbs the membrane potential and causes an impaired Ca2+ release [MHH13].
Moreover, an increased amount of Mg2+ due to a lack of ATP also inhibits
Ca2+ release [WQW+17]. A reduced number of calcium ions results in less
cross-bridge cycling and consequently a lower force generation.

Muscle contraction needs ATP as a source of energy. The supply may be
maintained through anaerobic and aerobic metabolic pathways, depending on
the intensity of the task. During prolonged low-intensity tasks, ATP is generated
through aerobic respiration. Aerobic metabolism takes place in the presence of
oxygen, which is delivered via blood flow to the muscle. During contraction,
the arterial blood pressure increases, leading to a reduced net blood flow to the
muscle. Lower blood flow results in decreased removal of metabolic by-products
and inhibited O2 delivery to the working muscle [WQW+17]. Additionally,
fatigue during endurance tasks can develop due to damage of the sarcoplasmic
reticulum interfering with Ca2+ release [MHH13]. Aerobic generation is slow
and produces a large amount of ATP. Thus, healthy trained individuals are
able to maintain prolonged low-intensity tasks for many hours [MHH13]. Under
these conditions, fatigue develops slowly but recovery requires several hours.

During high-intensity work, ATP supply is maintained through anaerobic
metabolism, which is limited by the amount of glycogen. The glycogen content is
closely related to exercise endurance [WQW+17]. Moreover, anaerobic metabolic
by-products like lactate and inorganic phosphate contribute to changes in cross-
bridge activity and thus a decrease of force output [WQW+17]. Especially
the accumulation of lactate acids contributes to muscle aches and seems to
be important in provoking central fatigue [MHH13]. Intense exercises of short
duration provoke fatigue rapidly, which is followed by a rapid recovery. The
variations of fatigue development during high-intensity tasks and endurance
tasks underline the task-dependency of fatigue.
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2.2 Rehabilitation Robotics - Lower Limb Exoskeletons

Rehabilitation therapy is crucial for individuals with impaired muscle activation,
as it aids in restoring movement and daily functionality. Without timely
physiotherapy, these impairments can worsen, leading to increased disability.
Through consistent sessions, physiotherapy not only improves mobility but also
prevents further deterioration.

2.2.1 Rehabilitation Therapy
When the gait apparatus is compromised, for instance following a stroke,
rehabilitation treatment becomes essential to restore walking ability. Achieving
the ability to walk independently (FAC rating 4 or 5, see Sec. 2.1.5) can be
measured and improved through therapy [HSMW13]. This includes enhancing
gait distance, speed, leg strength, functional mobility, velocity, and balance.
Neuroplasticity and motor learning facilitate the enhancement of these gait
characteristics [Bin88]. Central to this recovery is the repetition of walking
movements, which can be facilitated through physiotherapy or specialized
equipment.

Classical Therapy Approaches

Traditional gait training involves working closely with one or more physio-
therapists, incorporating a range of strengthening exercises and gymnastics.
This is followed by hands-on gait training, where physiotherapists use orthoses
for passive support and stabilization. During the late 90s, treadmill training,
supplemented with partial body weight support, remained the benchmark tech-
nique, exhibiting notable success in improving gait for chronically immobilized
individuals post-stroke or SCI [Reh20]. Despite its effectiveness, this traditional
approach demands multiple sessions weekly and places significant physical strain
on the therapist, requiring extensive time and effort.

End-effector Assisted Therapy

Device-based training, using the end-effector principle, offers a solution to
alleviate some of these demands. End-effector devices, as shown in Fig. 2.8a,
come with adjustable foot plates where the patient’s feet are secured. These
plates follow a natural path, mimicking the stance and swing phases of walking.
The gait trainer GT1 and GT2 (Reha-Stim, Schlieren, Switzerland) are two
examples of such end-effector-based systems [HUO00, Reh20]. Additionally,
these systems reduce cardiac and metabolic requests by supporting a portion of
their body weight with a belt system and thus increase walking time duration
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(a) Gait trainer GT1 [DMS17]. (b) Lokomat [Rie16]. (c) ReWalk [TEB13].

Figure 2.8: Robotic rehabilitation devices.

during rehabilitation therapy of hemiplegic patients [MP12]. The body weight
support also enables the utilization of end-effector devices for patients as early
as FAC 0, for example, in the early rehabilitation phase after a stroke. The
support continues to be beneficial until the patient can walk with assistance
such as mild traumatic brain injury patients [Reh20].

While both conventional and device-assisted methods have proven effective,
device-based therapies offer advantages in efficiency and reduced demands on
personnel. Additionally, end-effector devices can increase the steps per training
session by up to ten times [SWB+07]. Consequently, contemporary guidelines
often favor device-assisted therapy over traditional methods [Nel08].

Exoskeleton Therapy Method

Exoskeletons are wearable devices designed to enhance human joint movement,
augmenting the user’s strength and endurance for various tasks. They can
be classified according to their mechanical structure, their support, and their
application. While rigid exoskeletons use stiff materials like metals or plastics,
soft exoskeletons typically employ textiles and flexible components [TA20,
XAG+21]. Both mechanical structures have advantages, including the increased
comfort and lighter weight of soft exoskeletons and a higher actuation level of
rigid exoskeletons. Additionally, exoskeletons can be classified as active, with
powered mechanisms, or passive, offering only stability through their structural
design. The application area of exoskeletons includes military, industrial, civilian,
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and clinical purposes. For military and industrial purposes, exoskeletons assist
healthy people during demanding tasks such as carrying heavy objects or
performing specialized motions. The augmentation of strength and endurance
time leads to reduced burden and minimized risk of musculoskeletal disorders.
Using exoskeletons for civilians, particularly the elderly, exoskeletons promise
enhanced independence and a better quality of life, easing pressures on care and
healthcare systems. In the medical field, they play a pivotal role in rehabilitating
patients with spinal cord injury (SCI) or post-stroke conditions, assisting those
with compromised muscle functions [BSA+17].

One of the first exoskeletons for rehabilitation therapy was the Lokomat
(Hocoma, Zurich, Switzerland) which is shown in Fig. 2.8b. Similar to end-
effector-based therapy, the patient exercises on a treadmill while being held by
a belt system. In addition, the patient experiences motorized support of the
hip and knee joints. The support is provided utilizing gait trajectories, and an
impedance controller [JCK+03]. The general effectiveness of this exoskeleton
training could already be proven in 2007 by a study with 16 stroke patients
[MKQ+07]. However, in a later study from 2019, worse effectiveness was
achieved in comparison with conventional treadmill training [HNP+09]. The
authors considered the cause to be the greater variety of the movement sequence
in treadmill training.

Another popular exoskeleton design is the ReWalk (see Fig. 2.8c) [ETPS12].
It is used both in rehabilitation and as a gait aid for patients with FAC 0
and FAC 1 or paraplegia. The ReWalk is a bilateral exoskeleton and consists
of motorized hip and knee joint support and passive support for the ankle
joint. The real-time computer and battery for power are stored in a backpack.
Crutches are part of the system as an additional gait aid and for balancing the
body. The exoskeleton is controlled by selected gait trajectories depending on
the current operating mode. The available movement patterns are: Walking,
standing up, sitting down, and climbing stairs [ZWZ+12]. The first two subject
studies with the ReWalk were published in 2012. The ReWalk was used by
6 and 12 patients who suffered from a SCI. The aim of each of the studies
was to investigate the safety and usability of the exoskeleton which could
be confirmed [ZWZ+12, ETPS12]. In a more recent study from 2020, the
effectiveness of the exoskeleton was investigated in comparison with a gait aid
and passive orthosis [HSJ+20]. The oxygen consumption of the test subjects
was measured as a criterion for the effect of the support. It was found that
training with the exoskeleton is less strenuous. However, in terms of ease of use
and general patient satisfaction, the orthosis was preferred to the exoskeleton.

In addition to developing exoskeletons with a fixed external structure, the
interest in so-called soft-robotic devices is growing. The joints of soft-robotic
devices are usually actuated through motor-driven construction hoists. The
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flexible structure of the devices allows higher mobility for the patient. How-
ever, this is at the expense of greater stability, which is why the systems are
particularly suitable for FAC 3 or FAC 4 patients or the elderly.

Furthermore, numerous commercial and research exoskeletons utilize diverse
actuation methods, sensing mechanisms, and control algorithms as visualized
in Fig. 2.9. An overview of these foundational principles is provided in the
subsequent sections.

2.2.2 Actuation Principles
Many different approaches exist in the literature to provide actuation of active
lower limb exoskeletons. The choice of actuation is pivotal in determining the
efficiency, safety, and performance of these wearable devices. The most common
principles using electrical motors are introduced in the following.

Stiff Actuators

Stiff actuators refer to a direct, stiff coupling between the exoskeleton’s frame
and the human joint as depicted in Fig. 2.10 a). Due to their rigidity, they can
provide high precision and force. However, this rigidity might compromise user

Figure 2.9: In a robot-assisted rehabilitation therapy sensors measure the pose
and movement of the coupled human-robot system. Control concepts derive
the required motor commands to assist the human in their movement based on
the sensor signals. The therapist monitors this process and changes the control
settings according to the user’s needs.
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comfort, and there is a potential risk of exerting unwanted forces on the user,
especially if there is a misalignment between the human and exoskeleton joint.

Parallel Elastic Actuators (PEAs)

PEAs, as the name suggests, integrate an elastic component in parallel with
the actuator (see Fig. 2.10, b)). This arrangement can reduce the energy
consumption of the system, especially in tasks that require the maintenance
of a position or posture. The inherent stiffness from the elastic element can
support the load, allowing the actuator to operate in a more energy-efficient
manner [PBL+21].

Serial Elastic Actuators (SEAs)

As visualized in Fig. 2.10 c) (in black) SEAs incorporate an elastic element
in series with the actuator. This design offers advantages like energy storage
and shock absorption. The elasticity provides compliant behavior, making
interactions with the user more safe and natural. It allows for better force
control and can protect the actuator as well as the user by absorbing mechanical
shocks [DSDB08].

Variable Stiffness Actuators (VSAs)

VSAs belong to the category of SEAs, but additionally they can adaptively
change their stiffness based on the requirements of a task or environment.
Various designs for stiffness adaptation exist including changing the effective
length of springs with a secondary motor (see Fig. 2.10 c), green part) [LKLM15],
changing the spring’s preload, e.g. using antagonistic springs with independent

Figure 2.10: Actuator principles. a) Stiff coupling between motor and human
joint b) Elasticity in parallel to motor c) Serial elasticity between motor and
human joint and variable elasticity using a second motor (green).
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motors, or by changing the physical properties of the elastic element, such as
pneumatic artificial muscles [VASB+13,HMT+21]. By adjusting the stiffness,
these actuators can optimize their performance for various conditions. For
instance, they can provide rigidity when high precision is required or become
compliant during interactions with dynamic environments. This adaptability
enhances energy efficiency, safety, and the ability to absorb external shocks.
Furthermore, VSAs can allow exoskeletons to adapt to different users or different
stages of rehabilitation, offering a personalized user experience.

Tendon Driven Systems

These systems mimic the human musculoskeletal design by using artificial ten-
dons. The tendons, driven by actuators located distant from the joints, e.g. in
a backpack, can produce joint motion [XAG+21]. This decentralized approach
reduces the weight on the limbs, enhancing wearability. The flexibility of the
tendons offers a more natural and compliant interaction, but the existence and
routing of the tendons induce non-linearities, high friction, and backlashes, thus,
making the control of these systems challenging and often imprecise. Addition-
ally, many designs, e.g. the Myosuit (MyoSwiss AG, Zurich, Switzerland) only
provide assistance in a bi-articular manner, that is the actuation of two joints
with one tendon [SDG+17]. For the Myosuit only the extension of the hip and
knee joint at the same time is actuated to provide assistance during the stance
phase.

2.2.3 Sensor Systems
Sensors play an integral role in the functionality of lower limb exoskeletons.
They are the "eyes and ears" of the system, enabling the exoskeleton to perceive,
interact with, and respond to its environment, including the person wearing
it. Various types of sensors can be integrated into a lower limb exoskeleton. A
comprehensive review of the usage of these sensors in exoskeletons was provided
by Tiboni et al. [TBV+22]. The information from the sensors introduced in the
following is fed into the exoskeleton’s control system, which processes the data
and adjusts the device’s movements in real-time, ensuring synchronized, safe,
and effective operation.

Encoders

Typically installed in the joints of the exoskeleton, encoders measure the position,
displacement, and rotation of the exoskeleton’s parts. This information is
essential for controlling the motion and ensuring the alignment with the user’s
movement.
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Force, Torque, and Pressure Sensors

These sensors detect forces applied by or to the user. For example, they can
determine the interaction force between the user and the robot. This information
can be vital in adjusting the support given by the exoskeleton during walking.

Inertial Measurement Unit (IMU)

IMUs consist of accelerometers, gyroscopes, and optionally of magnetometers.
They can determine the orientation, acceleration, and angular velocity of the
exoskeleton parts. These measures are essential for the knowledge of the posture
and for motion tracking.

Electromyography (EMG) Sensors

EMG measures muscle activity. By detecting which muscles are activated
and how intensely they are being used, the exoskeleton can assist the user’s
movement.

Electroencephalography (EEG) Sensors

While more common in brain-machine interface systems, EEG measures brain
activity. When integrated into an exoskeleton, they can help discern the wearer’s
intention to move or stop, thereby making the system more intuitive.

2.2.4 Control Strategies
The application areas of medical exoskeletons can be divided into two categories
depending on the type and severity of the patient’s paralysis. In the case of
hemi- or paraplegia (complete lateral or transverse paralysis), so-called walkers
are used, where the user "is being walked". In the case of hemi- or paraparesis
(partial lateral or transverse paralysis), the exoskeletons used are called assist
devices, which allow an interaction between user and robot. Both application
areas place different requirements on the human-machine interaction, the user
interface, and the control strategy of the exoskeleton.

From a technical point of view, the patient and the exoskeleton can be regarded
as interconnected subsystems, linked either through a cognitive human-machine
interface (cHMI) or a physical human-machine interface (pHMI) [Pon08]. The
cHMI receives the patient’s movement intention by measuring electrical body
signals almost instantaneously. These intentions can then translate into move-
ment instructions through auditory, visual, or tactile feedback. On the other
hand, the pHMI establishes a bidirectional interaction by physically connecting
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the patient and the device, enabling the transmission of forces and moments. In
specific scenarios, this mechanical connection can also help deduce a patient’s
intentions.

To determine a patient’s walking intention through a cHMI, it is possible to
measure brain activity using EEG or assess muscular activity with EMG. For
example, Kwak et al. demonstrated that an exoskeleton could be controlled by
interpreting a patient’s EEG signals [KML15]. In their experiment, five LEDs,
each flashing at distinct frequencies, were positioned in front of the participant.
By focusing on a specific LED, the EEG signals’ amplitude corresponding to
that frequency amplified, which was then translated into a movement command
for the exoskeleton. Healthy participants quickly adapted to this control
method in a few minutes. However, separating between interference and control
signals poses a technical difficulty making daily use of EEG-based control a
challenging proposition. Furthermore, the positioning of EEG sensors proves to
be exceedingly time-intensive, posing an additional barrier to their practical
application in everyday scenarios.

The Hybrid Assistive Limb (HAL, Cyberdyne Inc., Tsukuba, Präfektur
Ibaraki, Japan) exoskeleton employs EMG-based control and is currently in
practical use [HKS05]. Electrodes placed on the skin’s surface detect the
electrical signals from the extensor and flexor muscles. However, challenges
with this approach are that the relationship between electrical muscle activity
and muscle force is non-linear and that the measurement signal varies greatly
with skin and tissue conductivity.

Model-based control concepts use the interaction forces and moments of the
pHMI to infer the patient’s intention to move. The majority of the control
concepts is based on a model of the overall system (exoskeleton + patient) given
by a second-order differential equation as follows [YGZG17]:

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = τexo + τpat (2.1)

The patient’s joint torque vector τpat and the exoskeleton’s joint torque vector
τexo, e.g., in the hip and knee joint, are the input variables of the system, and
the motion variable vectors q̈, q̇, q denote the system’s outputs. The matrices
M, C, D convey the inertial, Coriolis term, and damping torques. The vector
g contains the weight torques caused by gravity. It should be noted that the
model in eq. (2.1) neglects the human’s joint elasticity. Therefore, the patient
input vector comprises active as well as passive (elastic) joint torques. A more
detailed deviation of the model in eq. (2.1) is given Sec. 3.3. The most common
model-based control strategies are exploited in the following.
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Position Control

PID controllers are widely used across different applications and industries due
to their easy-to-interpret adjustability and highly achievable control quality.
This form of feedback control is also used in exoskeletons, especially in position
tracking. The goal is to trace a fixed defined angular trajectory to enable the
leg’s locomotion.

A cascaded control loop consisting of two controllers for each joint actuator
is often implemented to realize position tracking as visualized in Fig. 2.11. The
inner control loop consists of a PI controller, which allows to set a target velocity
q̇ref(s) of the respective joint:

τexo(s) =
(

Kv,P + Kv,I
1
s

)
· (q̇ref(s) − q̇(s))︸ ︷︷ ︸

Velocity Error

(2.2)

The outer loop provides the velocity reference to follow the target position. A
PD structure is usually applied for this purpose. The integral component is
often neglected in order to avoid an impermissible increase in force with respect
to the patient as a result of a prolonged position deviation.

q̇ref(s) = (Kp,P + Kp,D · s) · (qref(s) − q(s))︸ ︷︷ ︸
Position Error

(2.3)

The cascaded structure has the advantage that the inner control can compensate
for friction effects and may thus be neglected in the outer loop.

Position control in exoskeletons allows for navigating the user’s legs according
to a specific trajectory without deviations. Conversely, this means that the user’s
own movements are neither detected nor supported. An integral component in
the controller can also lead to very high torques in the joints, which can either
cause injury to the user or damage to the hardware. Furthermore, pre-recorded,
standardized trajectories that do not correspond to the subject’s individual gait
are usually used as a reference.

Figure 2.11: Cascaded position control strategy consisting of a PI velocity and
a PD position controller.
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Impedance Control

Impedance control provides a solution for taking patient movement into account
and avoiding very high joint torques in the presence of trajectory deviations.
Formally, impedance control considers a physical system acting on the surround-
ing environment with a required behavior. According to [Hog84] [AOCPG07],
mechanical impedance describes the transfer behavior Gimp(s) of the physical
system with the motion as input and the torque as output variable:

Gimp(s) = τ(s)
q̇(s) . (2.4)

In the following, impedance control for an exoskeleton is provided according
to [AOCPG07]. The input variable of the equation of the total system in eq.
(2.1) is the total driving torque τ consisting of the exoskeleton torque τexo and
the patient torque τpat:

τ = τexo + τpat. (2.5)

The patient torque τpat is sometimes a response to the impressed motion of the
exoskeleton and should be described and constrained as an impedance. Here,
Md, Dd, and Kd are the matrices of the desired inertia, damping, and stiffness,
respectively.

τpat = Mdq̈ + Dd · (q̇ref − q̇) + Kd · (qref − q). (2.6)

Eq. (2.6) is solved for q̈ and substituted into the equation of the total system
given by eq. (2.1). From this, the exoskeleton torque is derived as follows:

τexo = MM−1
d (τpat −Dd ·(q̇ref −q̇)−Kd ·(qref −q))+C(q, q̇)q̇+Dq̇+g−τpat.

(2.7)
This equation provides the primary form of most impedance controls in exo-
skeletons [IS15] and it is visualized in Fig. 2.12 The matrices of damping Dd
and stiffness Kd are usually set empirically within the determined stability
bounds [GZG18].

A special variant of impedance control may be obtained by inserting M != Md
in eq. (2.7). This simplification removes the human torque τpat compensation
and makes the impedance control similar to the PD control approach presented
in the previous paragraph, which is why the PD control is also called the natural
impedance control:

τexo = −Dd · (q̇ref − q̇) − Kd · (qref − q) + C(q, q̇)q̇ + Dq̇ + g. (2.8)
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Figure 2.12: Common impedance control strategy. The human torque compen-
sation can be removed by setting M != Md. Modified from [IS15].

Force/Torque Feedback Control

Force/Torque feedback control provides the patient with the highest cooperation
among model-based control strategies. Measuring the interaction forces between
the exoskeletal structure and the human body provides information that can
be used to estimate the patient’s intention to move in terms of the torque
applied by the patient τpat. These control strategies require additional sensors,
such as force-torque sensor (FTS) as, for example, used in the HIT-LEX
exoskeleton [ZZL+16].

In turn, the measured interaction torque can be used to support the patient
in the moving direction. One possible control procedure is shown in Fig. 2.13;
the control approach is denoted by the blocks on the left of the dashed line.

Figure 2.13: Force/torque feedback control. Figure modified from [GZG18].
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A movement initiated by the patient leads to a displacement between the
exoskeleton’s position xexo and the human body xpat, e.g. through compliance
in the system. The displacement is converted into interaction forces fi via a
human-robot interaction model Gi, which can be measured, e.g., through FTS.
The human-robot interaction model can typically be described by a simple
spring or spring-damper model [GZG18]. The interaction forces fi measured
with the FTS are transformed to the joint interaction torques τi via the Jacobian
matrix of the exoskeleton JT to assist in the direction of the interaction torques
(see Fig. 2.13). In addition to this term of assistance, a second assistance term
can be added by the control law given as follows:

τamp = JT Kfi − Kdq̇ + g (2.9)

Here, the interaction forces fi are amplified by the gain K, which is also projected
onto the joints using JT . With the quantity Kd, the desired damping is set,
and with the gravity matrix g, the weight of the exoskeleton is compensated.

The control law in eq. (2.9) and the interaction torque τi = JT fi form the
desired assistance torque τexo = τamp + τi. This torque is induced to the
equation of the total exoskeleton system in eq. (2.1) as shown in Fig. 2.13:

Mq̈ + Cq̇ + (D + Kd)q̇ = JT (Kfi + fi) (2.10)

Thus, the weight compensation and the gain factor K are introduced into the
overall controlled system. Additionally, the exoskeleton follows the interaction
forces originating from the patient’s motion in a reinforcing manner.

2.3 System Theoretical Fundamentals

System theoretical concepts are applied in all parts of this thesis. The most
important principles, in particular of system identification and state estimation,
are presented in the following. The control of dynamic processes also belongs to
the field of systems theory. However, an overview of the most common control
concepts for lower limb exoskeletons has already been given in the previous
section and is therefore not discussed in more detail in this section.

2.3.1 System Identification

System identification plays a crucial role in the design and validation of technical
systems. This domain involves the design and choice of model, identification of
model parameters, design of experiments, selection of inputs, and the application
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of optimization techniques. For a more detailed explanation of these aspects,
refer to the books by Nelles [NEL20] and Isermann [IM11].

A model f(u, θ) is a mathematical representation of its physical process and
it is typically characterized by its input u, parameters θ, and output ŷ. The
main goal in the design of a model is its capability to produce an output that
closely mirrors the output of the actual physical process when the same input
is applied, thus minimizing the error between the process and model output
e = y − ŷ as depicted in Fig. 2.14. It should be noted that a perfect match
between the model and process is almost impossible as the process is usually
affected by noise n. When designing the model, the inputs, model complexity,
order, and linearity need to be considered. A guiding principle during this
design phase is the mantra: As simple as possible, as complex as necessary. This
principle underscores the need for a balance between simplicity for usability
and complexity for accuracy.

Figure 2.14: Components of system identification for static processes using
the output error. The objective is to configure a model that minimizes the
discrepancy between the actual process output and the predicted model output.
Modified from [NEL20].

Once the basic structure of the model is specified, the model parameters need
to be specified. This can be approached in three different ways: black box, white
box, and grey box modeling. In white box modeling, the model parameters are
directly extracted from measurable physical quantities and properties. It is an
approach rooted in known physical laws and principles. Black box modeling,
on the other hand, is more empirical. Here, the model parameters are derived
by solving an optimization problem, the objective of which is to minimize the
discrepancy or error between the model’s output and the actual process output.
Grey box modeling acts as a bridge between the white and black box methods

29



2 Background

by integrating the known physical parameters directly into the model, while
optimization techniques are employed to determine the unknown ones. One
notable optimization technique for linear systems is the well-known least squares
estimation, which is explained in more detail in the subsequent section.

2.3.2 Parameter Estimation

The model parameters can be estimated by solving an optimization problem.
In the choice of the optimization problem, it should be differentiated between
linear and non-linear optimization problems as well as parameter constraints.

Least Squares Estimation

When the error between the process and model output is linearly dependent on
the parameters, and the squared sum of errors is used as a loss function, the
optimization problem becomes linear as is the case in static processes or finite
impulse response filters. Furthermore, even if the error stems from a nonlinear
function of the parameters, a linear optimization problem can be formulated by
selecting the loss function as a sum of the inverse non-linearities associated with
the errors [NEL20]. In these cases, the least squares method can be used to
quantify the system’s parameters. The objective is to determine a model output
ŷ that closely mirrors the actual process output y, aiming for the smallest value
of the sum of squared error loss function [NEL20].

The input u =
[
u(1) . . . u(N)

]T and output y =
[
y(1) . . . y(N)

]T

vectors can be defined assuming the input u(i) and y(i) have been recorded
for i = 1, . . . , N data samples [NEL20]. Note that the model output y is being
subject to process noise n as depicted in Fig. 2.14. In combination with the
assumption of n model parameters θ =

[
θ1 . . . θn

]T the regressor X can be
formulated as:

X =




x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)

...
...

...
x1(N) x2(N) . . . xn(N)


 =

[
x1 x2 . . . xn

]
, (2.11)

where xi are functions of the input u. Please refer to [NEL20] for examples of
how to choose the regressor for different problems.

The model output ŷ =
[
ŷ(1) . . . ŷ(N)

]T can then be written as

ŷ = Xθ (2.12)
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and the cost function J to be minimized can be formulated as

J = 1
2eT e with e = y − ŷ = y − Xθ, (2.13)

where e is the error vector between process and model [NEL20]. The cost
function is parabolic in the parameter vector θ

J(θ) = 1
2θT Hθ + hT θ + 1

2h0 (2.14)

with

H = XT X, (2.15)
h = −XT y, (2.16)

h0 = yT y (2.17)

being the Hessian, a linear term, and a constant term, respectively [NEL20].
For the optimum of the minimization problem, it holds that the error e is
orthogonal to all regressor vectors xi leading to the least squares estimate of
the parameters:

θ̂ = (XT X)−1XT y. (2.18)
One special but important case is the least squares estimation for general

dynamic models of the form

G(z−1) = y(z)
u(z) = b0 + b1z−1 + . . . + bmz−m

1 + a1z−1 + . . . + amz−m
= B(z−1)

A(z−1) (2.19)

We note that, for this kind of process the assumption that the output is only
linearly dependent on the input u does not hold anymore. For this reason,
the generalized equation error is introduced by using the measured values y(k)
instead of the true output yu(k) and the estimated parameters âi and b̂i instead
of the true parameters [IM11]:

e(k) = y(k) + â1(k − 1)y(k − 1) + . . . + âm(k − 1)y(k − m)
− b̂1(k − 1)u(k − 1) − . . . − b̂m(k − 1)u(k − m)

(2.20)

The generalized equation error for the parameter estimation of dynamic systems
is visualized in Fig. 2.15. The regression matrix X for N measurements and
the parameter vector θ become in this case:

X =




u(m) . . . u(1) −y(m) . . . −y(1)
u(m + 1) . . . u(2) −y(m + 1) . . . −y(2)

...
...

...
...

u(N − 1) . . . u(N − m) −y(N − 1) . . . −y(N − m)


 (2.21)
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Figure 2.15: Components of system identification for discrete-time linear
processes using the generalized error. The objective is to configure a model that
minimizes the discrepancy between the actual process output and the predicted
model output. Modified from [NEL20].

θ =
[
b̂1 . . . b̂m â1 . . . âm

]T (2.22)

Note, that at least N = 2m equations are required to determine the 2m
parameters. In practice, typically N ≫ 2m is chosen to suppress the influence
of the disturbance in the measurements [IM11].

For more information, the reader is referred to [NEL20] and [IM11].

Parameter Estimation for Non-linear Systems

There exist several possibilities to optimize parameters when the optimization
problem is non-linear including batch and sample adaptation, direct search
algorithms and gradient-based algorithms such as Newton’s method. In general,
these approaches do not impose any requirements on the cost function except
for its smoothness [NEL20]. However, the most common cost function is a
weighted quadratic cost function:

J(θ) =
N∑

i=1

f2(i, θ) (2.23)

The function f usually refers to the residual (error). If f is a nonlinear function,
the optimization problem is a nonlinear least squares problem. The two most
popular algorithms to solve such a problem are the gradient-based methods of
Gauss-Newton and Levenberg-Marquardt. Both methods are iterative optimiza-
tion techniques that linearize the model by approximating the cost function
as a first-order Taylor series expansion. Secondly, the parameter estimation
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is iteratively refined until convergence is achieved. The Levenberg-Marquard
method additionally introduces a regularization term to better handle situ-
ations where the linearization may not be accurate or when the problem is
ill-conditioned, thus, making it more robust compared to the Gauss-Newton
method. For further detail, refer to [NEL20].

These two methods are not well suited when equality constraints h or in-
equality constraints g on the parameters need to be introduced. In this case,
the optimization problem can be formulated as

J() → min
θ

(2.24)

subject to

gi(θ) ≤ 0 i = 1, . . . , m, (2.25)
hj(θ) = 0 j = 1, . . . , l. (2.26)

Parameter constraints are especially useful for grey box modeling, for example,
to retain the physical meaning of specific parameters. The Gauss-Newton
method and Levenberg-Marquardt method can only incorporate parameter
constraints by introducing penalty or barrier functions in the cost function that
penalize violations of the constraints. A more powerful way to handle parameter
constraints in non-linear systems is to use sequential quadratic programming
(SQP). At each iteration, SQP constructs a quadratic approximation of the
objective function and a linear approximation of the constraints. The resulting
quadratic program is then solved to obtain a search direction. A line search
is then performed along this direction to determine the step size. For further
information, it is referred to [Van84].

2.3.3 State Estimation
State estimation refers to the process of estimating the internal states of a
dynamic system based on available measurements, typically when not all states
are directly measurable. Accurate knowledge of the system’s internal states is
pivotal for more effective control and decision-making.

One of the most famous filter methods for state estimation is the Kalman
filter (KF). This filter was designed to reduce errors in measurements and
to provide estimations for non-measurable state variables. The original KF
is rooted in the state-space formulation of linear dynamic systems [Hay04]
and was presented by R. Kalman in 1960 [Kal60]. The idea of a KF is to use
the state information xk−1 of a system at discrete time k − 1 in combination
with a linear system model and its inputs uk to predict the current state of
the system at time k. In a second step, measured system variables zk at the
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current time k are used to correct and improve this prediction. Both, measured
values and model-predicted state values, are expected to be subjected to zero
mean multivariate Gaussian noise. Therefore, the KF utilizes the mean and the
covariance in its update rules as a state representation [JU04]. The weighting
between the measured and the predicted value used for the update of the
state estimation is defined by the so-called Kalman gain. The disadvantage
of the KF is its consideration of only linear systems. This requires significant
simplifications for many systems which leads to errors in the estimation.

A further development of the linear KF is the extended Kalman filter (EKF).
The EKF is able to estimate states of nonlinear systems of the form

xk = f(xk−1, uk) + wk (2.27)
zk = h(xk) + vk, (2.28)

where xk, uk and zk denote the state, input and measurement vectors at
discrete time k, respectively. The idea is the same as for the KF but the
prediction of the new states is conducted by calculating the partial derivatives
of f(xk−1, uk) (Jacobian matrix) in order to linearize the model in every step.
The same has to be done for h(xk) when the predicted states are updated
by the new measurements. The EKF has become a standard approach in
state estimation of nonlinear systems and is probably the most widely used
algorithm in this area [JU04]. EKFs are used in the evaluation of radar signals,
in positioning and localization problems, including space travel applications,
but also in electrical feedback controllers and communication systems. However,
the EKF has some drawbacks that are not negligible. First, the EKF is difficult
to implement and to tune. Additionally, it is only reliable for systems that
are almost linear [JU04]. These drawbacks come from the linearization which
is done in every prediction and update step. Furthermore, this linearization
requires the computation of two Jacobians in every update step which can be
difficult, computationally intensive, and error-prone [JU04]. These drawbacks
motivated Julier and Uhlmann in 1997 to design a filter that can be applied to
nonlinear systems without the linearization steps required by the EKF, called
the unscented Kalman filter (UKF) [JU97].

Unscented Kalman Filter (UKF)

In order to apply the KF to nonlinear systems and omit the linearization step in
between, an approximation for an arbitrary nonlinear function of transformation
is needed. The UKF, on the other hand, does not try to approximate this
nonlinear function of transformation. Instead, it approximates a probability
distribution from a given set of points which is easier than approximating
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an arbitrary nonlinear function of transformation [Uhl94]. To perform this
approximation, the UKF uses a set of points (sigma points) with a certain mean
x̄ and covariance Σx [JU04]. The nonlinear function is then applied to each of
these points. Afterwards, a probability distribution of the transformed points
is calculated which represents an estimate of the mean and covariance obtained
by the nonlinearly transformed sigma points [JU04]. This principle is visualized
in Fig. 2.16.

covariance

mean

true
covariance

true
mean

linearized
covariance

sigma
points

transformed
sigma points

UT covariance UT mean

y = f(x) Linearized
transformation

y = f(x)
each sample

Figure 2.16: Nonlinear, linearized and unscented transformation. Modified
from [WV00].

Mathematically, this idea is described in [WV00]. In the first step, the sigma
points Xi, with i ∈ 0 . . . 2N , where N is the dimension of the system, are
generated as follows [WV00]:

X 0,k−1 = x̄k−1, (2.29)

X i,k−1 = x̄k−1 +
(√

(n + λ)Σx,k−1

)
i

, for i = 1 . . . N, (2.30)

X i,k−1 = x̄k−1 +
(√

(n + λ)Σx,k−1

)
i−n

, for i = N + 1 . . . 2N, (2.31)

where x̄i,k−1 and Σx,k−1 are the mean and the covariance of the Gaussian
distribution at time k − 1. How far the sigma points should be chosen from the
mean is denoted by the scaling factor λ = α2(N + κ) − N . The parameter α is
usually set to a small positive value denoting the spread of the sigma points
around x̄. The parameter β is equal to two for Gaussian distributions and κ = 0,
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which is a second scaling parameter [WV00]. To recalculate the distribution
after the nonlinear transformation, each sigma point obtains a weighting

W m
0 = λ

N + λ
, (2.32)

W c
0 = λ

N + λ
+ (1 − α2 + β), (2.33)

W m
i = W c

i = 1
2(N + λ) , for i = 1 . . . 2N. (2.34)

The second step is to transform the set of the given sigma points by instantiating
each point through the system model [JU97]

X i,k|k−1 = f (X i,k−1, uk) := f (X i) for i = 1 . . . 2N . (2.35)

The new predicted mean and covariance can then be calculated by using the
weightings in eqs. (2.32) to (2.34) and the nonlinearly transformed set of sigma
points

x̄−
k =

2N∑

i=0

W m
i X i,k|k−1, (2.36)

Σ−
x,k =

2N∑

i=0

W c
i

(
X i,k|k−1 − x̄−

k

) (
X i,k|k−1 − x̄−

k

)T . (2.37)

Subsequently, the difference between the predicted values and the values given
by measurements is computed. To do so, the predicted states are transformed
into the measurement space and their mean and covariance are calculated

Zi,k|k−1 = h (X i,k−1) , (2.38)

z̄−
k =

2N∑

i=0

W m
i Zi,k|k−1, (2.39)

Σz,k =
2N∑

i=0

W c
i

(
Zi,k|k−1 − z̄−

k

) (
Zi,k|k−1 − z̄−

k

)T
. (2.40)

At this point, in a normal KF or the EKF, the Kalman gain needs to be
calculated to estimate the error in the prediction process. Instead, for the UKF,
the cross-correlation between the sigma points in state space and the sigma
points in measurement space Σxz needs to be calculated

Σxz,k =
2N∑

i=0

W c
i

(
X i,k|k−1 − x̄−

k

) (
Zi,k|k−1 − z̄−

k

)T
. (2.41)
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Thus, the Kalman gain for the UKF can be calculated by

K = Σxz,kΣ−1
z,k. (2.42)

This gain is used to update the predicted mean and covariance with the mea-
surements

x̄k = x̄−
k + K

(
zk − z̄−

k

)
, (2.43)

Σx,k = Σ−
x,k − KΣz,kKT . (2.44)

The eqs. (2.43) and (2.44) provide an estimation of the states at time k
represented by their mean and covariance. If the previous procedure is repeated
for every discrete time step, a state estimation of a nonlinear system is obtained.
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Reliable, safe hardware is the core component in rehabilitation robotics. In
addition, a detailed model and the estimation of the patient’s movement intention
are essential for human-cooperative control of the hardware. Therefore, this
chapter presents the development of a lower limb exoskeleton with variable
stiffness actuators. Subsequently, a system identification of the human-robot
system and an estimation method for the human joint torque are presented. The
main content of this chapter has been published in the peer-reviewed journal
article [BLV+22] (© 2022 IEEE) while the stance phase model presented in this
chapter has been published in [BVLN23] (© 2023 IEEE).

3.1 Motivation

Especially in the rehabilitation therapy of patients with residual function, e.g.,
after a stroke, exoskeletons can bring great benefit for therapists and people
with paresis as described in Sec. 2.2.1. However, one of the challenges in
developing these systems is patient integration and human-robot coupling. As
described in Sec. 2.2.2, current research focuses on introducing soft or compliant
coupling between actuator systems and the patient to ensure safe physical
human-machine interface (pHMI) while taking the unknown and changeable
environment under consideration [DSDB08].

As described in Sec. 2.2.2, exoskeletons with compliant actuators such as
serial elastic actuators (SEAs) or variable stiffness actuators (VSAs) [WWM+14,
JBG+14,GRGG+17,SVGVT+19,ZWCZ22] are characterized by higher mass
and lower flexibility than soft robotic devices. However, they benefit from lower
friction, and more efficient actuation [VKH+07,WWM+14]. Additionally, the
fixed external structure of the exoskeleton offers a significant advantage in that
the position and movement of the subject can be determined more precisely.

Tab. 3.1 lists recent lower limb exoskeletons for rehabilitation therapy and
their specifications. Most of the actuators used in current exoskeletons are either
stiff or compliant with a fixed serial elasticity [WWM+14, BVZ+15, LFR20].
However, variable compliance allows changing the coupling behavior during the
gait phases. For example, a high torque control bandwidth and stiff coupling can
be provided for the stance phase, while high compliance can reduce resistance
during the swing phase [ZWCZ22]. Those exoskeletons in Tab. 3.1 which
provide a varying stiffness are either manually changeable or automatically
adjustable at a very low speed and, thus, cannot adjust the stiffness during
one gait cycle [JBG+14,GRGG+17]. For this reason, the VSA-EXO provides a
high rate of stiffness change, but only in the knee joint [ZWCZ22]. However,
coupling multiple VSAs imposes new requirements on state estimations and
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Table 3.1: Specifications of different lower limb exoskeletons. (© 2022 IEEE)
Exoskeleton Year Joints Compliance Nom. Weight

Type Stiffness Mech- Torque Total Joint
H/K/A [Nm/rad] anism [Nm] [kg] [kg]

MindWalker
[WWM+14] 2014 a/a/a SEA 800 fix 100 28 2.9

MIRAD
[JBG+14] 2014 a/a/a VSA [60, 150] manual 15 13 1.4

H2
[BVZ+15] 2015 a/a/a None - - 35 12 N/S

ALTACRO
[GRGG+17] 2017 a/a/a VSA [5, 110] auto. 40 N/S 2.4

VSA-EXO
[ZWCZ22] 2022 p/a/p VSA [60, 150] auto. N/S 7.6 N/S

H/K/A: Hip/Knee/Ankle; a/p: active/passive;
Nom.: Nominal; auto.: automatic; N/S: not specified

control approaches due to high nonlinearities.
Another key challenge that multi degree-of-freedom (DoF) exoskeletons face

is estimating the torque the participant is actively applying to the system in
different joints, corresponding to the patient’s motion intention. This knowledge
is essential, e.g., for patient cooperative control strategies or patient condi-
tion quantification. Several approaches in the literature address the human
joint torque estimation, e.g., using inverse dynamics [LDZ+18,QGCC21] (see
Sec. 2.1.4) or by learning the patient’s movements [QGCC21].

The model-based approach using inverse-dynamics has the advantage that
no additional electrodes are necessary, as is the case for electromyography
(EMG) based approaches. However, inverse dynamics requires an accurate
model of the considered system; in particular, the test subject’s mass, mass
distribution, inertia, and friction parameters are required. Another challenge in
the calculation of inverse dynamics is the calculation of the angular velocities
and accelerations of the joints by means of discrete derivatives of the encoder
signals in combination with low-pass filters [TM01]. This derivation leads to
either a high noise or a high time delay, which critically affects the subsequent
control. The goal for the design of the torque estimation is to cover the
dynamic range of human joints, which are 4 Hz and 5 Hz for the hip and knee,
respectively [Smi08].

Since the motion of the overall system results from a superposition of motor
and human joint torque, another requirement in the inverse dynamic approach is
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the determination of the interaction torque between the motor and the subject.
This requires additional force-torque sensor (FTS) (see Sec. 2.2.4) or complex
estimation algorithms since a high gear ratio in the actuator system often
leads to poor back-drivability of the actuation system [SLC19]. Hwang et al.,
for example, used an additional torque sensor at the output shaft of a rigid
actuator [HJ15]. Based on this, they applied the inverse dynamics approach to
derive the active human joint torques during the swing phase. SEAs or VSAs
can offer another solution to this challenge. The serial elasticity between the
gear and the human joint not only provides soft coupling but it can also be
used as a torque sensor. For example, Huo et al. utilized a SEA to measure
and estimate the interaction and human joint torque during the sit-to-stand
task [HMAK16].

In summary, to the best of the author’s knowledge, there are no VSA-based
exoskeletons capable of adapting both hip and knee stiffness during a gait cycle
to date. Moreover, new VSA-based methods for estimating patient motion
intention with low delay should be investigated in more detail. For this reason,
this chapter aims, first, to develop a lower limb exoskeleton with serial elastic
actuators (L2Exo-SE) and, second, to detect the subject’s movement intention
without equipping the human with additional sensors. The main contributions
of this chapter include:

1. the mechanical design and sensor setup of the L2Exo-SE based on the
mechanical-rotary variable impedance actuator (MeRIA) proposed in
[LLM16, LLNM20]. The compliant actuator is integrated for hip and
knee actuation and provides online stiffness adjustment during one gait
cycle (see Sec. 3.2). Furthermore, the effectiveness of the linear quadratic
Gaussian (LQG) torque controller proposed in [LLNM20] is verified in
the case of exoskeleton-assisted walking.

2. a new identification routine to quantify individual model parameters of
the exoskeleton’s wearer (see Sec. 3.3).

3. a new model-based, non-linear approach to estimate the joint torques the
user applies to the system. For this, the serial elasticity and an unscented
Kalman filter (UKF) are utilized during the swing phase and a static
model is used for the stance phase. The estimation method is applicable
over the entire stiffness range of the actuator and thus transferable to
other SEA and VSA designs.
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3.2 Lower Limb Exoskeleton - Serial Elasticity

In the following, the actuator, the structural design of the exoskeleton, including
the sensor system, and a model and low-level control of the individual joint
motors is presented.

3.2.1 Mechanical Design

The developed exoskeleton was designed to support patients with hemiplegia,
e.g., for rehabilitation after a stroke. For this purpose, it was equipped with
six DoF to allow for flexion and extension of both legs’ ankle, knee, and hip
joint in the sagittal plane as shown in Fig. 3.1. Active support is provided
unilaterally in the knee and hip joint. Passive support is provided for the ankle
joints through springs. Hard plastic shells achieve the fixation between the
exoskeleton and the human subject on the hip, thigh, and lower leg. The weight
is grounded via carbon footrests in the shoes allowing partial rolling of the
foot. Telescopic rails in the frame enable the exoskeleton to be adapted for
subjects with a leg length (from ground to the hip joint) between 82.8 cm and
101 cm. These lengths correspond to an approximated body height between
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Figure 3.1: Lower Limb Exoskeleton with VSAs in hip and knee joint. The
control is performed by a real-time computer and two motor controllers for the
hip and knee VSAs. The encoder, IMU, and FSR data are transmitted to the
computer via CAN bus. Motor 1 (M1) provides the assistance torque for the
respective joint, while Motor 2 (M2) varies the stiffness by changing the effective
length of the leaf springs. (© 2023 IEEE)
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158 cm and 192 cm1. The entire exoskeleton, including cables and shoes, weighs
14.4 kg. The power supply for the actuators and sensors is provided by a 48 V
battery with 30 A h, which was placed on a separate wheeled walker for weight
reduction. The walker ensures the mobility of the exoskeleton and provides
additional support and safety for the subject. In addition to the battery, two
motor controllers (Escon 70/10, Maxon Motor AG, Sachseln, Switzerland) have
been placed on the walker for the current control of the main motors of the
L2Exo-SE. A detailed description of the motorized walker including a hands-free
steering approach is given in [BHLN22].

3.2.2 Compliant Actuation

Actuation of the hip and knee joints is provided by the mechanical-rotary
variable impedance actuator (MeRIA) [LLM16, LLNM20]. Fig. 3.2a depicts
the design of the MeRIA for the hip/knee (H/K) joint. Each MeRIA actuator

1The body height was calculated using a lower limb to body height ratio of 0.525 as a
reference. However, it’s important to note that this ratio may vary significantly among
individuals.
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consists of two motors. Motor 1 (M1, EC60 Flat, 150 W, Maxon Motor AG,
Sachseln, Switzerland) generates the main torque τM1 for the joint actuation.
The torque is transferred to the human joint via a harmonic drive (Harmonic
Drive SE, Limburg a. d. Lahn, Germany) and two leaf springs (Hardened spring
band EN10132-4, C85S+QT). The gear transmission γ1,H/K varies between the
hip (1:160) and the knee (1:100) VSAs to account for the different torque and
velocity requirements during the gait. The task of the second motor (M2, BX4
Brushless DC, Faulhaber, Schönaich, Switzerland) is to adjust the effective
length lH/K of the leaf springs by moving the position of four cam followers
via the rotation of the slide screw with the velocity φ̇M2,H/K (see Fig. 3.2a).
The varying effective length results in a change of the coupling elasticity σ(l)
between M1 and the human joint. The serial elasticity is not only used for a
smooth coupling between the exoskeleton and the patient, but it also functions
as an integrated torque sensor (see Sec. 3.2.3).

3.2.3 Sensor System

To utilize the serial elasticity between harmonic drive and human joint as
a torque sensor, each actuated joint was equipped with two high-resolution
encoders. The first encoder (MILE Encoder, Maxon Motor AG, Sachseln,
Switzerland) is integrated into the primary motor M1 of the hip and knee
VSA φM1,H/K. The second encoder (Orbis true absolute rotary encoder, RLS,
Komenda, Slovenia) is placed at the output shaft of both MeRIAs φexo,H/K.
The interaction torque τexo,H/K between the exoskeleton and the human hip
or knee joint is linearly dependent on the deflection angle and the elasticity
σH/K(l) of the leaf springs according to Hooke’s law:

[
τexo,H
τexo,K

]
=


σH(lH) ·

(
φM1,H

γ1,H
− φexo,H

)

σK(lK) ·
(

φM1,K
γ1,K

− φexo,K

)

 . (3.1)

The coupling elasticity σH/K is dependent on the effective length lH/K of the leaf
springs. The relationship between effective length and elasticity was measured
in a test bench [LLM18] equipped with a torque sensor (DR-2477, Lorenz
Sensors, Alfdorf, Germany). Afterwards, the relation could be approximated by
a second-order regression as shown in Fig. 3.2b. The different stiffness ranges
between the knee and hip actuator are due to broader leaf springs in the hip
actuator to allow for higher torques for hip joint support. The exact values for
the maximum and minimum elasticity of the two different VSAs are provided in
Tab. 3.2. The stiffness values of the MeRIA are in the mid-range of the systems
presented in Tab. 3.1.
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Table 3.2: Actuator and torque measurement specifications. (© 2022 IEEE)
Parameter Hip Knee Unit

Motor Power 150 150 W
Nominal Output Torque 64.2 40.1 N m
Weight 2.2 2.1 kg
Max. Stiffness σ̄ 515 408 N m

radMin. Stiffness σ 265 196
Time from high to low Stiffness ∆t 0.8 1.75 s
Min. Resolution at max. Stiffness ∆τ(σ̄) 0.202 0.160 N m
Min. Resolution at min. Stiffness ∆τ(σ) 0.102 0.076 N m
Gear Ratio M1 γ1 1:160 1:100 -
Back Electromotive Force Con-
stant

Kemf,M1 0.0525 0.0525 N m
A

Motor and Gear Inertia JM1 3.46 · 10−4 3.46 · 10−4 kg m2

Bearing Resistance BM1 0.00391 0.00391 N m s
rad

Proportional Gain Velocity Ctr. KP 0.81 0.81 A s
rad

Integral Gain Velocity Ctr. KI 17 17 A
rad

The resolution of the torque measurement based on the spring deflection can
be determined by the resolution of the encoders on the input and output sides
and is provided in Tab. 3.2.

Furthermore, the exoskeleton is equipped with four force sensing resistors
(FSRs) in each sole of the shoes to estimate the ground reaction force (GRF),
as proposed in [PLB+21]. One FSR is placed underneath the heel, and three
more are placed in the front part of the foot (inside, outside, and under the big
toe, see Fig. 3.1). A calibration method was developed to account for the fact
that the in-sole FSR sensors cover only a fraction of the subject’s foot surface.
The method averages the data from the rear and the three front FSRs for 5 s
and calibrates them to the subject’s body weight while they stand on their
rear and front foot, respectively. In addition to the FSRs and angle sensors,
inertial measurement units (IMUs) were attached to the exoskeleton’s thighs to
determine the orientation of the legs in space. All sensors were sampled by an
individual microcontroller and the corresponding measurement signals sent via
a controller area network (CAN) to the real-time computer at a sample rate of
1 kHz (except for the IMU, which was updated at 100 Hz).
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3.2.4 Actuation Model
Following the system description in [LLM16], the dynamical equation for M1 of
the actuator is given as

dφ̇M1

dt
= Kemf,M1 · IM1

JM1
− BM1 · φ̇M1

JM1
− σ(l) · φM1

JM1 · γ2
1

, (3.2)

where Kemf,M1 is the back electromotive force constant of M1, BM1 is the
bearing resistance coefficient of M1, JM1 is the total inertia of M1, and γ1 is the
transmission coefficient of the harmonic drive. Note that the additional index
for the joints H/K in eq. (3.2) and in the following equations is omitted for
readability reasons. The actuators’ parameters were identified using grey box
modeling. The transmission gear and back electromotive force constant were
directly taken from the datasheet and the bearing resistance and inertia were
derived via least squares estimation (see Sec. 2.3.2). The identified parameters
are given in Tab. 3.2.

To analyze the interaction between the actuator and the exoskeleton, it was
assumed that the output side of the motor is fixed implying that the joints of
the exoskeleton φ = φ̇ = 0 remain in the same position and movement can only
occur through the deflection of the leaf springs. In this case, the output torque
(3.1) simplifies to:

τexo = σ(l) · φM1

γ1
. (3.3)

Note that in eq. (3.3) and in the following the differentiation between hip and
knee actuator is omitted for readability. Secondly, the dynamics of the MeRIA
were extended with a velocity controller KPI(s) with proportional and integral
action. The control law is given as

IM1 = (φ̇M1,ref − φ̇M1)KPI(s), (3.4)

where φM1,ref is the reference velocity and

KPI(s) = KP + KI

s
. (3.5)

By substituting eq. (3.5) into eq. (3.4), the input current IM1 can be reformu-
lated as:

IM1 = KP · φ̇M1,ref + KI · φM1,ref − KP · φ̇M1 − KI · φM1 . (3.6)

By substituting eq. (3.6) into eq. (3.2) and assuming the fixed output side
(eq. (3.3)), the dynamic behavior of φ̇M1 (including the PI controller) is obtained:

dφ̇M1

dt
= t1 · φ̇M1,ref + t2 · φM1,ref + t3 · φ̇M1 + t4 · φM1, (3.7)
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where

t1 = KP ·Kemf,M1
JM1

, t2 = KI ·Kemf,M1
JM1

t3 = − KP ·Kemf,M1+BM1
JM1

, t4(σ) = − KI ·Kemf,M1·γ2
1 +σ(l)

JM1·γ2
1

.
(3.8)

The coupled torque between the motor M1 and M2, which is caused by the
change of the deflection angle when adjusting the effective length l, can be
neglected, see e.g. [Jaf14]. Thus, a fully decoupled model between joint torque
assistance and stiffness variation is obtained.
For this reason, the dynamic model of M2 is not considered in the following con-
trol design of the output torque. Instead, the online changeable and measurable
stiffness σ(t) is treated as an exogenous input. Consequently, the differential
equations in eq. (3.7) can be rewritten as an linear parameter varying (LPV)
model in state-space form:

ẋ = A(σ(t))x + B(σ(t))u,
y = C(σ(t))x + D(σ(t))u.

(3.9)

Defining the output y = τexo and the input u = φ̇M1,ref, the state-space matrices
of eq. (3.9) in observable canonical form are given by

x =




t2
σ
γ1

φM1,ref

τ̇exo − t3τexo

τexo


 , A =

[0 0 0
1 0 t4(σ)
0 1 t3

]
,

B =
[

t2 · σ
γ1

t1 · σ
γ1

]
, C =

[
0 0 1

]
, D = 0.

(3.10)

The numerical values of the parameters of eq. (3.10) have been provided in
Tab. 3.2.

3.2.5 Inner Loop Torque Control
The proposed control concept of the VSAs for the hip and knee joints consists of
three cascaded loops as initially introduced in [LLM18]. The innermost control
involves a current controller, which is calculated on the motor controller at a
sampling frequency of 53.6 kHz. The dynamics of the current controller are
assumed to be sufficiently fast in comparison to the dynamics of the mechanical
system and are therefore neglected in the following. The second inner control
regulates the velocity φ̇M1 of M1 as described in the previous section and is
updated with a sampling frequency of 1 kHz.

A third controller is required to provide the reference velocity for the PI-
controller to control the interaction torque τexo between the VSA and the load.
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∫
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φ̇M1

IM1

x̂VSA

Figure 3.3: Torque control for hip and knee VSA consisting of a linear quadratic
regulator with Kalman filter (KF) and integral behavior as proposed in [LLM18].

This controller was introduced in [LLM18] and is based on a LQG controller
with integral behavior (LQGI) to prevent a steady state error (see Fig. 3.3).
To design the LQGI controller, in [LLM18] the system in eq. (3.9) was first
extended by an additional state containing the integral of the torque error.
Then, the classical linear quadratic regulator (LQR) optimization problem was
solved using the algebraic riccati equation (ARE) for the highest and lowest
stiffness values of the hip and knee MeRIA. Lastly, the control parameters of
the two derived controllers were interpolated based on the actuator’s stiffness
to obtain an optimal controller for every stiffness value. Additionally, a Kalman
filter (KF) was used to estimate the inner state vector x̂VSA required for the
LQG controller.

One drawback of the designed LQG method is that the change in velocity is
not taken into account due to the fixed load assumption in Sec. 3.2.4, which leads
to performance losses when the load is movable. Therefore, in this thesis, an
extension to this control scheme is introduced. It consists of an additional feed-
forward (FF) term based on the angular velocity of the joint φ̇, the transmission
ratio of the harmonic drive γ1, and a FF gain kff ∈ (0, 1) (see red arrow in
Fig. 3.3). Notably, the proposed feed-forward term takes into account the
influences of the swinging mass in the free-output case and achieves a shorter
rising time of the step response resulting in a similar performance as in the fixed
load case presented in [LLM18]. The entire torque control was implemented on
a real-time computer with a sampling frequency of 1 kHz (MicroAutoBox II,
dSpace, Paderborn, Germany).
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3.2.6 Walking Trial with the Exoskeleton

Setting the reference torque τexo,ref to zero for the hip and knee joint VSA allows
the exoskeleton to follow the human gait. To show this, a healthy subject (male,
27 years, 62 kg, 181 cm) walked with the exoskeleton on a treadmill at a speed of
1 km/h. The experimental protocol was reviewed by RWTH Aachen University
Hospital’s ethics committee (EK353-19) without concerns. The GRF measured
by the four in-sole FSRs (top), the joint angles (middle), and interaction torques
(bottom) are depicted in Fig. 3.4. The stance and swing phase of the gait can
be differentiated using a threshold on the GRF as shown by the grey (stance)
and white (swing) areas in Fig. 3.4. The sum of the GRF data during gait
matches the typical GRF curve consisting of two maxima at the beginning
and at the end of the single stance phase with values higher than the body
weight [BMA15]. Note that the interaction torque between the subject and
the exoskeleton remained in a 2 N m wide band (see Fig. 3.4). In comparison,
Bortole et al. and Veneman et al. achieved maximum torques of ±4 N m and
±1 N m, respectively, for the zero torque tracking [BDR+13,VKH+07] which at
that time were considered as low frictions not influencing the patient’s gait.
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and knee joint during zero-torque controlled gait (1 km/h). The swing phase is
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The implemented torque controller enables various opportunities to provide
assistance for the test subject. For example, by cascading the LQGI controller
with a PD position control, an impedance controller can be realized to guide
the subject within a specific gait trajectory as described in Sec. 2.2.4. In this
chapter, however, the focus lies on the detection of human movement intention,
which is why the torque control is mainly used for excitation trials, as shown in
Sec. 3.3.

3.3 System and Subject Modeling

Within this thesis, a new approach to obtain the subject’s movement intention
is presented. The idea of the approach is based on estimating the direction and
amplitude of the subject’s joint torque. At first, the focus lies on the swing
phase of the gait as it is the more challenging phase in terms of high dynamics.
For this, a dynamical model is derived to describe the exoskeleton-human
system. The estimation of the human joint torque in the swing phase was
then conducted by applying an UKF. Secondly, a static model is presented to
estimate the human torque during the gait’s stance phase.

3.3.1 Exoskeleton Modeling in Swing Phase
The swing phase of the unilateral exoskeleton, the subject’s leg, and the com-
bined system were modeled using the Euler-Lagrange formalism. As a simplifica-
tion, the exoskeleton and the leg of the subject were considered as driven double
pendulums. These double pendulums can be described individually but also as
a fixed coupled system. The coupled system is actuated by the torque provided
through the actuator and the human’s joint torque, which is a superposition of
the active muscle torque and the passive elastic torque. In this thesis, the focus
was on estimating the superimposed human’s joint torque; however, the active
muscle torque can be obtained by applying the double-exponential equations for
estimating the passive elastic torque derived by Riener et al. [RE99]. A further
simplification was made by neglecting the influence of the varying ankle angle.
This simplification seems acceptable because the angle only changes slightly
during the swing phase. Hence, its impact on the knee and hip is negligible.
In general, the double pendulum model has been widely used in exoskeleton
control and yielded good performance [GSK06].

First, the joint angles and model parameters need to be defined as shown
in Fig. 3.5. In particular, for the model, the hip φH and knee φK angles are
required. The resting position is achieved at φK = 0, φH = π, and an upright
posture of the torso with φTo = 0 . Additional parameters are the point mass
mT, location (xT, yT), inertia JT and length lT of the thigh. Parameters of the
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Figure 3.5: Reference frames (black), lengths and angles (blue), masses (orange),
and forces (green) to describe the swing (left) and stance phase (right). (© 2023
IEEE)

shank are indicated by the index ’S’ instead of ’T’. The index ’exo’ in Fig. 3.5
refers to the exoskeleton while the index ’pat’ refers to the pendulum of the
healthy subject or the patient.

To describe the dynamical behavior based on the Euler-Lagrangian formalism,
first the Lagrangian L is derived, which is given by the difference between the
kinetic energy Ekin = T and the potential energy Epot = V in the system:

L = Ekin − Epot = T − V. (3.11)

The kinetic energy consists of two parts: the energy of the translational and
the rotational motion. The translational velocity of the point masses for the
thigh and the shank to describe the kinetic energy are represented by vT and
vS in the observer reference frame:

vT = φ̇H

[
−yT cos(φTo + φH) − xT sin(φTo + φH)
yT sin(φTo + φH) − xT cos(φTo + φH)

]
(3.12)
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vS = φ̇H

[
−lT cos(φTo + φH)
lT sin(φTo + φH)

]
+ (φ̇H + φ̇K)·

[
−yS cos(φTo + φH + φK) − xS sin(φTo + φH + φK)
yS sin(φTo + φH + φK) − xS cos(φTo + φH + φK)

] (3.13)

Note that the observer reference frame is moving with the user’s torso. Thus, the
kinetic energy induced by the torso’s movement is neglected in eqs. (3.12) and
(3.13) therefore only holds for slow torso movements. Given the translational
velocity of the point masses and the moments of inertia JT and JS for the shank
and the thigh, the kinetic energy of the double pendulum can be described by:

Ekin = T = 1
2mTvT

TvT
︸ ︷︷ ︸

Translation Thigh

+ 1
2mSvT

S vS
︸ ︷︷ ︸

Translation Shank

+ 1
2JT (φ̇H)2

︸ ︷︷ ︸
Rotation Thigh

+ 1
2JS(φ̇H + φ̇K)2

︸ ︷︷ ︸
Rotation Shank

.

(3.14)

The potential energy V results from gravitation and can be derived from the
deviation of the pendulum from the resting position:

Epot = V = gmTyT cos(φTo + φH)︸ ︷︷ ︸
Thigh

+ gmS (lT cos(φTo + φH) + yS cos(φTo + φH + φK))︸ ︷︷ ︸
Shank

.
(3.15)

Given the Lagrangian, the Euler-Lagrange-formalism can be applied in the
next step:

d

dt

∂L
∂q̇ − ∂L

∂q = Qe (3.16)

with q = (φH, φK)T and Qe being the external torques of the double pendulum’s
equations of motion. The external torques Qe consist of the friction, the
actuation, and the human’s joint torques. With the joint torques τH and τK
and the assumption of linear friction at the joints with the friction parameters
dH and dK, the external torques are given by:

Qe =
[
τH − dHφH τK − dKφK

]T
. (3.17)

Solving the left side of the Euler-Lagrange-Formalism in eq. (3.16) and combining
this with the external torques from eq. (3.17) results in two second-order, non-
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3.3 System and Subject Modeling

linear system equations for the hip and the knee:

τH − dHφ̇H = φ̈H(JT + JS + mT(x2
T + y2

T)
+ mS(x2

S + y2
S + l2

T + 2lT(yS cos(φK) + xS sin(φK))))
+ φ̈K(JS + mS(x2

S + y2
S + ySlT cos(φK) + xSlT sin(φK)))

+ (2φ̇Hφ̇K + φ̇2
K)(mSlT(xS cos(φK) − yS sin(φK)))

+ gmT(xT cos(φTo + φH) − yT sin(φTo + φH))
+ gmS(xS cos(φTo + φH + φK)
− yS sin(φTo + φH + φK) − lT sin(φTo + φH))

(3.18)

τK − dKφ̇K = φ̈K · (JS + mS(x2
S + y2

S))
+ φ̈H · (JS + mS(x2

S + y2
S + ySlTcos(φK) + xSlTsin(φK)))

+ φ̇2
HmSlT · (xS cos(φK) − yS sin(φK))

+ gmS(cos(φTo + φH) · (xS cos(φK) − yS sin(φK))
− sin(φTo + φH) · (yS cos(φK) + xS sin(φK))).

(3.19)

By defining an auxiliary matrix A and the coordinate vector q =
[
φH φK

]T ,
the system equations can be written in a more compact way [YGZG17]:

A(q̇, q, t) = ∂Ekin

∂q̇ , M(q̇, q, t) = ∂A
∂q̇ , (3.20)

C(q̇, q, t) = ∂A
∂q

dq
dt

+ ∂A
∂t

− ∂Ekin

∂q , (3.21)

G(q) = ∂Epot

∂q . (3.22)

With the torque vector τ = (τH, τK)T and the damping matrix D = diag(dH, dK),
the resulting double pendulum equation is:

τ = M(q̇, q, t)q̈ + C(q̇, q, t) + Dq̇ + G(q). (3.23)

For a more detailed derivation, see [YGZG17]. The system equation given
in eq. (3.23) describes the dynamic behavior of the exoskeleton’s frame. By
changing the system’s parameters, the same model can be used to describe the
dynamics of the subject’s leg. Additionally, it can be extended by other joints
by additional rows in the coordinate vector q and torque vector τ . However, in
this case the focus is on the two DoF case with additional consideration of the
upper body posture φTo as given in eqs. (3.18) and (3.19).
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3 Design, Modeling and Human Torque Estimation

The combination of the human-exoskeleton system can be obtained by as-
suming a fixed coupling between the two double pendulums such that the
joint angles of the two pendulums align. In the real system, the angles may
differ because the connection between the exoskeleton and the human subject
is not ideal [NJR+18], but this assumption is made to achieve a reasonably
uncomplicated model, thereby following the paradigm As simple as possible, as
complex as necessary described in Sec. 2.3.1. Hence, the complete system is a
superposition of the two pendulums given by

[
τH,pat
τK,pat

]
+

[
τH,exo
τK,exo

]
=(Mexo(q̇, q, t) + Mpat(q̇, q, t))q̈

+ Cexo(q̇, q, t) + Cpat(q̇, q, t)
+ (Dexo + Dpat)q̇ + Gexo(q) + Gpat(q).

(3.24)

3.3.2 Stance Phase Model
The stance phase differs significantly from the swing phase of the leg due to
the forces between the foot and the ground. As a result, static forces have the
greatest influence on the total torque in the subject’s joints during the stance
phase. Meanwhile, dynamic forces resulting from the forward motion of the
gait play a minor role. To obtain a sufficiently accurate estimate of the hip and
knee torque in the stance phase, a static model is suggested. In contrast to
the dynamic model of the swing phase, the static model of the stance phase
requires only an algebraic rather than a differential equation, as the GRFs are
directly measurable using FSRs.
The following derivation refers to the lengths and angles given in the right
model of Fig. 3.5. Note that the stance phase model uses body segment angles
instead of joint angles. They describe the angular position of the thigh (T) and
shank (S) in space. The force acting on the knee joint in the perpendicular
direction to the straight line F′K is given by:

FK,⊥ = (FGRF − g(mS,exo + mS,pat︸ ︷︷ ︸
:=m⋆

S

)) sin(φ′
S). (3.25)

This results in a static torque at the knee joint of

τK = lF′K · FK,⊥

= lF′K sin(φ′
S)(FGRF − gm⋆

S).
(3.26)

The angle φ′
S is not directly measurable from the available sensors. To obtain

eq. (3.26) as a function of φS, the difference between the projection from the
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knee (Point K) joint to the center of the GRFs (Point F’) lF′K sin(φ′
S) and the

projection from the knee joint to the ankle joint directly (Point F) lS sin(φS)
need to be considered first. The difference is given by the length between F and
F′. That is

lF′K sin(φ′
S) = lS sin(φS) + lFF′ . (3.27)

The distance lFF′ can also be obtained by comparing the GRF measurement
on the forefoot with that on the heel. The relation is given by

lFF′ = lF
FForefoot

FForefoot + FHeel
if, FForefoot + FHeel > 0 , (3.28)

where lF = 0.159 cm is the distance between GRF sensors of the heel and the
hip in the designed setup. As a result, the total knee torque can be obtained by

τK =
(

lS sin(φS) + lF
FForefoot

FForefoot + FHeel

)
· (FGRF − gm⋆

S) . (3.29)

Similarly, the total torque acting on the hip joint can be derived. It can be
calculated by multiplying the force that is perpendicular to the straight line
F′H with the length lF′H:

τH =FH,⊥ · lF′H

=lF′H sin(φ′
T)(FGRF

− g(mT,exo + mT,pat + mS,exo + mS,pat︸ ︷︷ ︸
:=m⋆

TS

)) .
(3.30)

Using the relation of the length difference

lF′H sin(φ′
T) = lF′K sin(φ′

S) + lT sin(φT) (3.31)

and eq. (3.27), the total hip joint torque amounts to

τH =
(

lS sin(φS) + lT sin(φT) + lF
FForefoot

FForefoot + FHeel

)

· (FGRF − gm⋆
TS) .

(3.32)

The derived eqs. (3.29) and (3.32) describe the superimposed knee and hip
joint torque applied by the exoskeleton and the human. Since all quantities in
these equations are directly measurable by the available sensors, it is possible
- in contrast to the swing phase model - to directly estimate the human joint
torque (denoted by τ̂H,pat and τ̂K,pat) by subtracting the torque provided by
the exoskeleton: (

τ̂H,pat
τ̂K,pat

)
=

(
τH − τH,exo
τK − τK,exo

)
. (3.33)
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3 Design, Modeling and Human Torque Estimation

These equations are valid for the single as well as for the double stance phase.
However, the description of the joint torque in the stance phase using the
GRF measurement and an algebraic equation has some disadvantages. Firstly,
the GRF sensors are not capable of measuring lateral forces leading to model
inaccuracies, especially at higher gait speeds. Secondly, the coupling between
the test person and the exoskeleton is not ideal. Due to the fact that the
knee joint acts as a rolling-sliding joint, the rotational axes of the exoskeleton
knee and the human knee may get misaligned leading to inaccuracies in the
torque estimation, especially when the leg is extended. The first mentioned
disadvantage can be neglected because higher gait velocities can be excluded in
the considered application case of rehabilitation. However, the latter must be
accepted as a model inaccuracy for the sake of simplicity.

3.3.3 Parameter Estimation

Some parameters of the swing phase model in eqs. (3.19) and (3.18) and all
parameters of the stance phase model in eqs. (3.32) and (3.29) can be quantified
directly. These include the masses and lengths of the exoskeleton. According
to [DSS19, p. 5], the mass of the subject’s thigh and shank was assumed to
be 12% and 7% of body weight, respectively (see Tab. 3.3). To identify the
unknown parameters, i.e., inertia, the center of gravity, and friction of the
double-pendulum model for the exoskeleton and the subject, an offline least
squares parameter identification method was applied as introduced in Sec. 2.3.2.
For the low-pass filter, the Parks-McClellan algorithm was used with frequency
boundaries between 7.6 Hz and 10.1 Hz [MP05]. Least squares identification
yields the best results if the noisiest signal is chosen as the result vector y.
Because the derivation amplifies the noise despite the low-pass filter, the second
derivative φ̈H/K was selected as the output for the least squares algorithm.

Directly determining the parameters by exciting the entire system with a
single-step response is

1. not possible, because an underdetermined system of equations needs to
be solved,

2. likely to result in inaccurate or non-physical results for lumped parameter
estimation.

Therefore, the identification problem was divided into four sub-systems which all
have the properties of a single pendulum to obtain the parameters subsequently.
The four steps are
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a Determine the knee/shank parameters of the exoskeleton (dK,exo, JS,exo,
xS,exo, yS,exo) by applying torque steps to the knee joint only and keeping
the hip angle φH = π and torso angle φTo = 0 constant. In this case, the
eq. (3.19) reduces to:

τK =
(
JS,exo + mS,exo(x2

S,exo + y2
S,exo)

)
φ̈K + dK,exoφ̇K

+ gmS,exo (yS,exo sin(φK) − xS,exo cos(φK)) .
(3.34)

The results of the parameter fitted model are shown in Fig. 3.6 (upper
left).

b Determine the knee/shank parameters of the subject’s knee joint (dK,pat,
JS,pat, xS,pat, yS,pat) by applying torque steps to the knee joint only and
using the parameters derived in step a. The second-order differential
equation is similar to eq. (3.34) but extended by the inertia term of the
healthy subject or the patient and the additional knee joint friction. The
results of the model are shown in Fig. 3.6 (upper right).

c Determine the hip/thigh parameters of the exoskeleton (dH,exo, JT,exo,
xT,exo, yT,exo) by keeping the knee angle constant φK = 0 and using the
parameters derived in step a. For this case, eq. (3.18) simplifies to:

τH = (JT,exo + JS,exo + mT,exo(x2
T,exo + y2

T,exo)
+ mS,exo(x2

S,exo + (yS,exo + lT,exo)2))φ̈H + dH,exoφ̇H,exo

+ gmT,exo(−yT,exo sin(φH) + xT,exo cos(φH))
− gmS,exo((lT,exo + yS,exo) sin(φH) − xS,exo cos(φH)).

(3.35)

and the result is shown in Fig. 3.6 (lower left).

d Determine the hip/thigh parameters of the subject’s hip joint (dH,pat,
JT,pat, xT,pat, yT,pat) by keeping the knee angle constant φK = 0 and
using the parameters derived in step a, b and c. The dynamical equation
is similar to eq. (3.35) but with the additional term for the subject’s thigh
inertia and hip friction (see Fig. 3.6, lower right).

The actuator’s stiffness was varied during each identification step in Fig. 3.6 from
highest to lowest to account for the different torque measurement resolutions.
The root-mean-square error (RMSE) between measured and simulated angle in
Fig. 3.6 for all four cases can be calculated to RMSEa = 3.31◦, RMSEb = 3.51◦,
RMSEc = 2.38◦, and RMSEd = 2.63◦. For validation, the same experiment but
with 8 N m torque steps was conducted. In this case, the RMSEs were calculated

57



3 Design, Modeling and Human Torque Estimation

0

5

10 high low stiffness

H
ip

To
rq

ue
(N

m
)

0

5

10

15
high low stiffness

0 20 40 60
160

180

200

Time (s)

H
ip

A
ng

le
(d

eg
)

Measured Identified

0 20 40 60

180

190

200

Time (s)

Measured Identified

−6
−4
−2

0
2

high low stiffnessK
ne

e
To

rq
ue

(N
m

) Exoskeleton only

0

5

10

high low stiffness

Subject and Exoskeleton

0 20 40 60 80 100
−60

−40

−20

0

20

K
ne

e
A

ng
le

(d
eg

)

Measured Identified

0 20 40 60

0

20

40

Measured Identified

a

c

b

d

Figure 3.6: The identification process of the exoskeleton (left) and subject
(right) parameters consists of four subsequently executed swing tests: Actuation
of exoskeleton’s knee joint (a, upper left), of the subject’s knee joint with the
exoskeleton (b, upper right), of the exoskeleton’s hip joint (c, lower left), of the
subject’s hip joint with the exoskeleton (d, lower left). The system’s input (upper
graph) to the one DoF pendulums is the knee torque and the hip torque provided
by the hip and the knee joint VSA, respectively. The measured angle (lower
graph, blue) is regarded as the system’s output. The simulation results with the
identified parameters are shown in the lower graphs in green. (© 2022 IEEE)
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to similar values given by RMSEa = 3.45◦, RMSEb = 3.26◦, RMSEc = 2.45◦,
and RMSEd = 2.17◦, thus, verifying the good approximation of the model.

The identified optimal parameters, as listed in Tab. 3.3, are confined within
the physically feasible range.

Table 3.3: Identified parameters of the double pendulum model. (© 2022 IEEE)
Exoskeleton Subject

Name Parameter Value Parameter Value Unit

K
ne

e/
Sh

an
k

Inertia JS,exo 0.0053 JS,pat 0.0604 kg m2

Mass mS,exo 2.5 mS,pat 4.34 kg
CoM in x xS,exo 0.001 xS,pat 0.005 m
CoM in y yS,exo 0.247 yS,pat 0.341 m
Length lS,exo 0.523 lS,pat 0.523 m
Friction dK,exo 1.176 dK,pat 1.714 N m s

rad

H
ip

/T
hi

gh

Inertia JT,exo 0.1604 JT,pat 0.296 kg m2

Mass mT,exo 4.4 mT,pat 7.44 kg
CoM in x xT,exo -0.013 xT,pat -0.012 m
CoM in y yT,exo 0.19 yT,pat 0.021 m
Length lT,exo 0.427 lT,pat 0.427 m
Friction dH,exo 2.805 dH,pat 4.089 N m s

rad

3.4 Model-based Human Movement Intention Estimation

One essential challenge in the patient-cooperative control of exoskeletons is
determining the subject’s movement intention. To obtain this information,
the torque generated by the subject in the joints is estimated using a system
theoretical approach. As described in Sec. 2.1.4, one approach to obtain this
quantity is the calculation of the inverse dynamics using discrete differentiation
of the joint angles. However, this comes at the cost of amplified noise or high
time delays due to the second differentiation of the discrete angle encoder or its
low-pass filtered signal. To avoid direct differentiation, a filter method estimating
the subject’s joint torque directly is proposed. Due to the nonlinearities in
eqs. (3.18) and (3.19), a non-linear state estimation method, namely, the UKF
(see Sec. 2.3.3) is suggested. The use of an extended Kalman filter (EKF) would
also be possible. However, the UKF generally handles large nonlinearities better
than the EKF [JU04].
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3.4.1 Torque Estimation during Swing Phase

As described in Sec. 2.3.3, the UKF consists of a model-based prediction step
and a measurement-based update step. Contrary to the Kalman filter (KF) and
the EKF, the UKF uses the non-linear system model f(x, u) to approximate
a probability distribution from a given set of points instead of linearizing the
system and calculating the Jacobian. This is achieved by applying the un-
scented transformation, which calculates the mean and covariance of nonlinearly
transformed random variables. The UKF for estimating the subject’s hip and
knee joint was implemented in MATLAB/Simulink according to [JU04]. Here,
the unscented transformation is used during the prediction and measurement
steps of the KF to calculate the means and covariances. The states x of the
system undergo a nonlinear state transition f(x, u) while the mean x̄ and
the covariance Σx of the states undergo the unscented transformation. This
way, the a priori mean x̄−

k and covariance Σ−
x,k are calculated. During the

measurement step, the states undergo a second nonlinear transformation - the
measurement function h(x, u). Subsequently, the output sigma points, the a
priori mean ȳ and auto-covariance Σȳ,ȳ and cross-covariance Σx̄,ȳ are calcu-
lated and, as a result, the Kalman-gain K = Σx̄,ȳΣ−1

ȳ,ȳ. With the Kalman-gain,
the measurement update of the Kalman filter is performed.

One challenge in applying the UKF to the double pendulum for estimating
the subject’s joint torques is that the subject’s joint torque is regarded as
an input to the system. However, a UKF is only able to estimate internal
states. Therefore, two additional states are introduced in the state equations
of the double pendulum representing the angular acceleration of the joints
due to the human joint torque. The inputs of these states are driven by a
white noise process with zero mean w, because there is no prior information
about the patient torque available. This approach aims to determine an angular
acceleration caused by the known sources (exoskeleton torque) and then estimate
the remaining acceleration required to achieve the measured movement of the
coupled double pendulum. This remaining acceleration portion is then assigned
to the acceleration produced by the subject and thus to its torque.

Fig. 3.7 visualizes the idea of the UKF for estimating the human’s joint
torques. The continuous state transition function of the UKF is derived from
eq. (3.23). It has the joint angles q =

[
φH φK

]T and the joint velocities
q̇ =

[
φ̇H φ̇K

]T as well as the patient torques τpat =
[
τH,pat τK,pat

]T as
internal states and the exoskeleton torques τexo =

[
τH,exo τK,exo

]T and the
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h(x, u) & UT

φTo
τH,exo
τK,exo

φH
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x̂
[
x̂5
x̂6

] τH,pat

τK,pat

UKF

Figure 3.7: Block diagram of the Unscented Kalman Filter. (© 2022 IEEE)

torso angle φTo as inputs:

ẋ =




φ̇H
φ̇K
φ̈H
φ̈K

τ̇H,pat
τ̇K,pat




= f(x, u) + w = f







φH
φK
φ̇H
φ̇K

τH,pat
τK,pat




,

[
φTo

τH,exo
τK,exo

]



+ w

=




[
φ̇H φ̇K

]T

[
((Mexo + Mpat)−1(τpat + τexo + Cexo + ...
...Cpat + (Dexo + Dpat)q̇ + Gexo + Gpat))

]

[
0 0

]T


 + w.

(3.36)

In the UKF, the internal model is discretized using explicit Euler integration
with a sample time of ∆t = 1 ms for fast performance. The resulting discrete
state transition function is:

x(k + 1) = f(x(k), u(k)) · ∆t + x(k) + w(k). (3.37)

The measurement function h is linear as the outputs of the system are the joint
angles which are direct states of the UKF:

z(k) = h (u(k) + v(k)) =
[

φH(k)
φK(k)

]
+ v(k). (3.38)

The parameters w and v in eqs. (3.37) and (3.38) represent uncorrelated, zero-
mean white Gaussian noise processes. The expected value of these Gaussian
processes can be given by the corresponding covariance matrices Q and R and
the Kronecker delta function δij as follows:

E

{(
wi

vi

) (
wT

j vT
j

)}
=

[
Q 0
0 R

]
δij . (3.39)
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The measurement covariance matrix can be derived from the resolution of the
encoders for the measured joint angles. The variance of the measurement is equal
to the squared mean error resulting from the sensor resolution. The resolution is
14-bit which means the maximum error is emax = 2π/(214 − 1)/2. The resulting
errors are uniformly distributed between −emax and emax. However, since there
is an additional transmission delay due to the communication interfaces, a
Gaussian distribution is assumed. For the width of the distribution density, it
is assumed that 95% of all deviations are in the range of the quantization noise.
Thus, the maximum error emax is assumed to be two times the measurement
covariance σ2

m = (emax/2)2.
For the torque and state estimation, the noise covariances were identified

empirically to achieve optimal performance. Optimal performance refers to
a torque bandwidth large enough to track the fastest expected movement
dynamics of the human hip and knee joint while keeping a high signal-to-noise
ratio. In [Smi08], the maximum movement dynamics were reported to be 4 Hz
and 5 Hz for the hip and knee joints, respectively. These requirements were
met by the choice of the following covariances (validation see Sec. 3.4.2):

Q = diag
(
10−6, 10−5, 0.011, 10−6, 10−5, 0.011

)2
,

R = diag
(

π

2(214 − 1) ,
π

2(214 − 1)

)2

.
(3.40)

The design parameters required for the UKF as described in [JU04] are set
to α = 0.003, β = 2 and κ = 0 as recommended for practical use in [KFI08].

3.4.2 Results and Discussion
Simulation Validation

As described in the previous section, the covariance matrix for the state transi-
tion was selected such that the required bandwidth for tracking the hip and
knee movement is ensured. Although the double pendulum is a non-linear
system, it could be observed that the magnitude response of the UKF varies
little with the amplitude of the excitation signal. For this reason, a description
of the filter using the Bode plot is reasonable. Fig. 3.8 shows the simulated
magnitude and phase response for the subject’s hip and knee torque as a func-
tion of the excitation frequency. Here, the excitation signal has an amplitude of
10 N m. The information for this diagram was obtained by utilizing the function
frestimate in Matlab. From this, a cut-off frequency of 4.0 Hz and 13.7 Hz can
be derived for the tracking of the hip torque and knee torque, respectively.
The observation of the UKF by means of a Bode plot also allows a frequency-
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Figure 3.8: Simulated magnitude and phase response for the estimated subject’s
hip and knee torque given an excitation signal of the subject’s hip and knee
torque of 10 N m. The dotted lines represent the 3 dB cut-off frequency. (© 2022
IEEE)

dependent analysis of the coupling effects between hip and knee torque. The
Bode diagrams of the coupling effects are omitted at this point for the sake of
clarity. However, it could be observed that the most significant coupling from
knee torque to hip torque and vice versa occurs at a frequency of 5 Hz with a
coupling gain of −7.5 dB. For all other frequencies, the coupling is lower, e.g.,
at a frequency of 1 Hz or 23.5 Hz the coupling gain decreases to −20 dB. The
fast tracking and low coupling behavior is visualized in Fig. 3.9 in the time
domain. Here, 10 N m torque steps generated by the subject were simulated
with the derived model from Sec. 3.3 and estimated by the UKF. Both, the
tracking of the knee and hip torque have a rise time of about 137 ms. However,
for hip tracking, this fast rise time can only be achieved by an overshoot of
6.5%. For the knee tracking, the overshoot is less than 1%. The faster tracking
behavior of the knee torque compared to the hip torque supports the results
from the frequency analysis. Because the torque is determined based on the
joint angle, the higher inertia of the thigh can explain this behavior as the
same induced torque results in a lower angle change for the hip than for the knee.
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Figure 3.9: Simulation of UKF with torque steps applied by the subject. The
motor torque was kept to zero.

Experimental Validation

Experimental validation for estimating the subject’s active torque using the
UKF is not directly possible because a measurement of the actual active subject
torque is not available. For this reason, an experiment was performed in which
torque steps from the two VSAs actuated the subject’s hip and knee joint while
the subject’s leg was relaxed. Secondly, the motor torque was assumed to
be the torque applied by the subject and considered a motor torque of 0 N m
as the input to the UKF. The measured joint angles and torques, as well as
the estimated torques, are shown in Fig. 3.10. The experiment indicates that
the hip torque, in particular, is partly overestimated. This is mainly due to
unintentional muscle tensing of the test subject. In addition, the estimated hip
torque is noisier than the knee torque, which can be explained by the imperfect
fit between the exoskeleton and the subject’s torso. Despite all, the UKF shows
a fast-tracking behavior of the knee and hip torque. The experiment shown
in Fig. 3.10 was performed at the highest and lowest stiffness for both VSAs.
The lowest stiffness slightly reduces the RMSE of the subject torque estimated
with the UKF (see Tab. 3.4). On the other hand, the highest stiffness reduces
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Figure 3.10: Swing trial by the test subject. Top: Measured hip and knee angle.
Middle: Measured and estimated torques. Bottom: Error between measured
and estimated torques. The segment outlined in red is viewed in more detail in
Fig. 3.11. (© 2022 IEEE)

the maximum error that occurs during torque steps. These results suggest
that the human motion intention estimation approach can be applied to other
exoskeletons with compliant actuators. The only prerequisite is the accurate
measurement of the interaction torque between the actuator and the human
joint.

A comparison with the inverse dynamic calculation using low-pass filtered
encoder signals is depicted for the knee joint for a short segment in Fig. 3.11.
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Figure 3.11: Comparison of knee torque estimated using UKF and inverse
dynamics. (© 2022 IEEE)

Table 3.4: Error values of knee torque estimated using UKF and inverse
dynamics. (© 2022 IEEE)

High stiffness Low stiffness
Error Joint Inverse dynamics UKF Inverse dynamics UKF
RMSE
(Nm)

Hip 2.99 2.63 3.13 2.53
Knee 1.57 1.41 1.24 0.89

Max
(Nm)

Hip 17.85 9.74 20.72 11.45
Knee 7.04 4.27 9.07 5.9

The cut-off frequencies of the low-pass filters were adjusted to achieve the same
dynamic velocity as the UKF. It can be seen that both the overshoot and the
noise of the estimated torque are larger for the inverse dynamics than for the
UKF. This can be confirmed by the calculated error values in Tab. 3.4. In
summary, the RMSE and maximum error for the hip can be reduced by 15.7%
and 45.1% and for the knee by 18.1% and 36.9% using the UKF compared
to inverse dynamics. A drawback of the presented methodology is that the
accuracy of the UKF is highly dependent on the identified model and the
subject parameters. This means that for heavier subjects, the human joint
torques would be underestimated. However, this also applies to the estimation
via inverse dynamics. Thus, accurate fitting is only possible by re-identifying
individual subjects. However, a simple adjustment with acceptable accuracy
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may be possible by adapting the mass and length parameters based on the
subject’s body weight and height.

3.5 Summary

In this chapter, the design of a novel exoskeleton for the lower extremities
based on VSAs in hip and knee joints was presented. The serial elasticities
function as a torque sensor on the output side using high-resolution angular
encoders. Based on this measurement, a torque control was designed allowing
the exoskeleton to follow the human gait motion with interaction torques of less
than 2 N m. Using the Lagrange formalism, an accurate model for lower limb
exoskeletons was developed. In particular, the accurate parameter estimation of
the exoskeleton and subject parameters enabled the implementation of a UKF
to estimate the subject’s joint torque in the hip and knee during the swing
phase. The UKF can be applied over the entire stiffness range of the VSAs and
performs better than the common inverse dynamics approach. This suggests
that the developed motion intention estimation approach can also be applied
to other exoskeletons with serial elastic actuators or output-side torque sensors.
Lastly, a static model was applied to estimate the human joint torque during the
stance phase. The developed joint torque estimation opens up possibilities for
the design of new patient-cooperative control methods and the high changing
rates of the actuators’ stiffnesses allow for compliant adaptation within one gait
cycle.
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One of the biggest challenges in rehabilitation robotics control is to command
the current to the motors in such a way that the subject perceives the device as a
support to its movement and not as an additional burden. This chapter therefore
presents a human-cooperative control strategy that automatically supports the
subject’s motion while adapting the physical properties of the variable stiffness
to the motion and environment. The content of this chapter has been published
in the peer-reviewed journal article [BVLN23] (© 2023 IEEE).

4.1 Motivation

There are three main modes of exoskeleton-based rehabilitation training that
differ on the level of patient involvement: patient-passive, patient-active, and
resistance modes [CZZ+20]. The patient-passive mode imposes a fixed target
trajectory, which enables movement for patients with weak or no motor function.
A limitation of this approach is the suppression of voluntary movements of the
user. In contrast, the patient-active mode supports patients in performing their
desired movements by providing additional assistance. The resistance mode
aims to strengthen the patient’s muscles by counteracting their movements
during a training or rehabilitation task.

The implementation of patient-active control approaches requires the de-
tection of the timing and intensity of the patient’s voluntary movement to
determine the corresponding degree of assistance. In the literature, var-
ious solutions have been proposed, including position-based, force/torque,
impedance-based, neural network-based, or machine learning-based control
strategies [CZZ+20,WWM+14,MZD+23,VRV+22].

As described in Sec. 2.2.4, position-based and impedance-based control strate-
gies require either a pre-recorded gait trajectory or online gait prediction. For
example, Chen et al. presented a patient-cooperative control scheme based on
a disturbance observer that incorporates an impedance controller supporting
the user in the swing phase by providing hip and knee assistance [CZZ+20].
Furthermore, Taherifar et al. introduced an impedance-based assist-as-needed
control strategy that aims at maximizing the subject’s active contribution to
the movement [TVG18]. Both approaches require a pre-recorded trajectory to
generate user assistance.

However, pre-recorded trajectories limit the user’s movement, as generic rather
than personalized movement trajectories are often used. Additionally, these
approaches typically support only a limited range of pre-recorded movement
patterns, such as gait sequences or the sit-to-stand (Sit2Stand) movement, which
restricts patients’ freedom of movement. Li et al. overcame this problem by
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proposing a cooperative control algorithm that generates a trajectory based on
inverted pendulum approximation and uses virtual tunnels to achieve compliant
dynamics coupling [LRZ+20].

Another way to overcome these limitations is a torque or force feedback
control approach based on the patient’s movement intention (see Sec. 2.2.4).
This method has the advantage of supporting the user in any motion, constrained
only by the mechanical limitations of the exoskeleton. However, to provide
assistance in the right direction, the patient’s movement intention must be
determined. A new strategy on how to obtain this patient’s movement intention
by estimating the patient’s applied torque was given in Sec. 3. Based on such
a torque estimation, a torque control strategy can be implemented to assist
the user. However, most torque control approaches based on the estimation
of the user torque have only been implemented for upper limb exoskeletons
[ZKF+20] or for isolated movements such as the Sit2Stand or the leg swing
motion [LLNM20,LHP+20]. Thus, the continuous changes in the environment,
as is the case during the swing and stance phases of walking, were not considered.
Li et al. developed a hybrid phase torque control approach based on different
dynamic models in the stance and swing phases [LDW+18]. However, the
controller was only validated in a simulation environment.

This chapter aims to address this gap and presents a patient-cooperative con-
trol framework that is able to assist gait continuously in addition to other move-
ments such as the Sit2Stand task. For this purpose, the previously presented
unscented Kalman filter (UKF) and stance phase model will be incorporated
into the patient-cooperative control framework to generate a torque reference
based on the user’s movement intention. The idea of the control strategy,
incorporating the concept of the forward simulation presented in Sec. 2.1.4, is
visualized in Fig. 4.1.

Besides the assistance control of exoskeletons, safe human-robot interaction
plays a significant role in the development of lower limb exoskeletons. As
described in the previous chapter, one way to provide intrinsic safety is using
a compliant coupling between the actuator system and the patient [DSDB08].
In addition to intrinsic safety, compliant actuators achieve low impedance
rendering and increase the stability of torque control [CF16].

Additionally, a varying serial elasticity has several advantageous properties
compared to fixed elasticity. It overcomes the bandwidth limitations in the
actuation resulting from fixed compliance [LPCY18] and adapts the mechanical
compliance to the human’s joint stiffness, e.g., by changing the coupling behavior
during the gait phases [ZWCZ22]. This way, a high torque control bandwidth
and stiff coupling can be provided for the stance phase, while high compliance
reduces resistance during the swing phase.

Most existing exoskeletons with variable stiffness are only adjustable at
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Figure 4.1: Conceptual design of the human-cooperative control strategy based
on human joint torque estimation with respect to the forward simulation shown
in Fig. 2.5.

very low speeds, either manually or automatically, such that the stiffness
cannot be changed during one gait cycle (see Table 3.1). The VSA-EXO,
introduced in [ZWCZ22], overcomes this limitation by allowing stiffness change
at higher speed, however, only for one single joint with one variable stiffness
actuator (VSA). Assisting multiple joints, e.g., hip and knee, places new
demands on state estimation and control approaches due to high non-linearities.

Moreover, due to the low stiffness change rates, there are few control ap-
proaches that can both support the user and adapt physical stiffness to the gait.
Existing solutions for exoskeletons mainly include a constant [GRGG+17] or a
switchable stiffness trajectory between the gait phases [CSMAG15,JFWRC+18].
In prior research on other robots with independently configured VSAs, pre-
defined trajectories for stiffness control were utilized to address the challenge of
reproducing human-like dynamic motions [HHAS12,BPH+13], in addition to
controlling task-space stiffness [PDAS15].

In comparison to these studies, the approach presented in this chapter utilizes
human joint torque feedback to generate an adaptive stiffness trajectory for the
leg swing motion, as previously proposed in [LLNM20] for an impedance-based
control approach. In this thesis, a technique for stiffness generation based on
the human-joint torque is combined with a switching method based on the gait
phases to account for the varying stiffness requirements during different phases
of the gait.
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In summary, this chapter contributes a complete human-cooperative control
framework that includes automated stiffness adaptation based on the user’s
movement intention. The main contributions of this chapter include the follow-
ing:

1. A new control framework that is able to assist the user’s movement
without the need for a pre-recorded trajectory is presented. This is
achieved through the previously described human torque estimation. This
estimation is used to generate reference values for the torque controller
during the swing and stance phase. The reference trajectories of the stance
and swing phases are seamlessly switched through a blending approach
to provide continuous gait assistance.

2. A new online adaptation of the motor’s mechanical elasticity is presented
to optimize the actuator characteristics according to the environment.
The adaptation is based on the user torque estimation and gait phase
switching.

3. Lastly, the control framework is extended with a new safety mechanism
to reduce strain on the motor and the patient, when reaching the angular
limits of the exoskeleton.

The control framework is evaluated on the lower limb exoskeleton with serial
elastic actuators (L2Exo-SE). The results are expected to aid in the design and
control of future exoskeletons that utilize compliant actuators with a focus on
safe physical human-robot interaction.

4.2 Cooperative Control Framework

In cooperative control, support is provided based on the subject’s intention
of movement. It means that the subject’s muscle torque should be detected
and amplified by the motor with a pre-defined or adjustable degree of support.
For this purpose, the torque reference for the hip and knee joint controller
should consist of two parts: The first part compensates the additional inertia
and torque caused by the weight of the exoskeleton during the movement; The
second part amplifies the subject’s torque by a freely adjustable assistance
factor k. The generation of the reference torques for the hip and knee VSA
differs for the two gait phases based on the previously derived models. The
two torque references are switched smoothly between the gait phases to provide
assistance for the entire gait. In addition to the possibility of selecting a suitable
torque reference, VSAs in general and the L2Exo-SE, in particular, allow for
adaptation of the coupling stiffness between the exoskeleton and the test person.
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Figure 4.2: Proposed cooperative control framework for lower lower-limb
exoskeletons. Assistance for hip (H) and knee (K) joints is provided linearly
depending on the estimated patient’s joint torque in the swing (blue box) and
stance (green box) phase (see sections 4.2.1 and 4.2.2). The gait phase detection
and torque reference switching are based on the GRF measurement (see Sec. 4.2.3).
Subsequently, a safety mechanism ensures the user’s physical safety (see Sec. 4.2.5).
Lastly, the elastic coupling between the exoskeleton and the subject is adapted
based on the human’s torque and the gait phases (see Sec. 4.2.4). (© 2023 IEEE)

For the stiffness selection, a user torque and gait-phase-dependent approach to
optimize the actuator characteristics to the varying environment is proposed.
The entire control approach including the torque reference generation and the
stiffness adaptation is depicted in Fig. 4.2. In the following, all individual
components are explained in more detail.

4.2.1 Swing Phase Assistance

The assistance in the swing phase results from the estimated patient torque
τ̂H/K, which is amplified by a factor k. In addition, the exoskeleton’s influence
must be compensated by an additional torque τH/K,Comp,Sw to avoid imposing
any additional resistance on the user. As a result, the total reference torque
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assisting the user during the swing phase is given by:
(

τH,ref,Sw
τK,ref,Sw

)
=

(
τ̂H,pat
τ̂K,pat

)
· k +

(
τH,Comp,Sw
τK,Comp,Sw

)
(4.1)

The exoskeleton’s influence τH/K,Comp,Sw can be derived from the model of the
swing phase given in eq. (3.24) by considering only the exoskeleton:

(
τH,Comp,Sw
τK,Comp,Sw

)
=Mexo(q̇, q, t)q̈ + Cexo(q̇, q, t)

+ Dexoq̇ + Gexo(q).
(4.2)

The goal of this component is to compensate for the additional resistance from
the exoskeleton caused by mass, inertia, and friction. As visible in eq. (4.2),
the first and second derivatives of the joint angles are required to calculate the
compensation torque. These can be determined by differentiating the encoder
signal. However, the quantized signal of the encoder results in high noise when
differentiating.
For this reason, a State Variable Filter (SVF) was used to calculate the first and
second-order derivatives of the joint angles. As a first attempt, the SVF was
implemented according to the methodology described by Wolfram et al. and
Isermann et al. using a second-order Butterworth filter [WV02,IM11]. However,
tests showed that compensation for exoskeleton inertia and friction based on
the delayed angular velocity and angular acceleration signals is not beneficial.
In contrast, compensating the gravitational torque that results from the mass
of the exoskeleton body has provided better outcomes. For this reason, eq. (4.2)
was simplified to: (

τH,Comp,Sw
τK,Comp,Sw

)
=Gexo(q), (4.3)

where only the influence of gravitational torque of the exoskeleton’s weight is
considered.

By introducing the degree of support k and assuming a perfect torque control,
the controller theoretically reduces the user’s average absolute joint torque at a
certain assistance value |τk%| compared to the torque without assistance |τ0%|
by

|τk%|
|τ0%|

= 1
1 + k

. (4.4)

4.2.2 Stance Phase Assistance
The assistance in the stance phase is analogous to the approach in the swing
phase. The reference torque consists of a therapeutic assistance factor and a
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weight compensation of the exoskeleton in stance phase τH/K,Comp,St. Similar
to eq. (4.1), the reference of the stance phase is determined by:

(
τH,ref,St
τK,ref,St

)
=

(
τ̂H,pat
τ̂K,pat

)
· k +

(
τH,Comp,St
τK,Comp,St

)
. (4.5)

The difference is that in this case, the human torque is estimated based on the
static model of the stance phase given in eqs. (3.32) and (3.29). For the same
reason as in the swing phase, it is suggested that compensating the dynamics of
the exoskeleton is not beneficial. In addition, the exoskeleton is not subject to
high dynamics while standing on the ground during the stance phase. Due to
the ground contact, it is possible to compensate the exoskeleton’s own weight
using τH/K,Comp,St. The gravitational torques acting in the knee and hip joint
due to the exoskeleton’s mass can be obtained by considering the lever arm and
the mass of the femur frame and the torso parts of the exoskeleton. Therefore,
the compensation part in the stance phase can be derived from the masses and
lengths in Fig. 3.5:

(
τH,Comp,St
τK,Comp,St

)
=




sin(φTo)lTomTo
sin(φTo)mT(lT − yT) + . . .

. . .(lT sin(φT) − lTo sin(φTo))


 (4.6)

. All variables are directly measurable through the exoskeleton’s sensors.

4.2.3 Phase Switching
The gait phases are detected by the GRF measurement FGRF. If the GRFs
are larger than a threshold F TH > 40 N, the leg is assumed to be in the stance
phase. However, as the two torque references for the swing and stance phases
differ, a jump in the torque reference can occur during gait phase switching. To
overcome this challenge, linearly crossfading between the two reference values
τH,ref,St and τH,ref,Sw is suggested for the range between the lower threshold
force and an upper threshold force equaling 10% of the subject’s body weight
mbody plus the lower threshold F TH = 0.1mbodyg + F TH. For GRF values
above or below this value, only the stance or the swing phase reference are used
respectively. Thus, the following torque reference can be given:

τ⋆
H/K,ref =





τH/K,ref,Sw for FGRF < F TH

τH/K,ref,blend for F TH ≤ FGRF ≤ F TH

τH/K,ref,St for FGRF > F TH

with τH/K,ref,blend = FGRF − F TH

F TH − F TH
(τH/K,ref,St − τH/K,ref,Sw) + τH,ref,Sw.

(4.7)
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The cross-fading procedure has the advantage that no low-pass or similar
filtering has to be performed, which would result in a time delay. Instead, this
procedure enables a fast but smooth change between the two gait phases.

4.2.4 Stiffness Adaptation
As described in the introduction, a low-stiffness actuator provides low-impedance
rendering and increases the stability of force control. On the other hand, a
high-stiffness actuator yields a larger actuation bandwidth. For this reason, Liu
et al. proposed to use a low stiffness for the low impedance task [LLNM20].
The low impedance task describes the task in which the human is actively
moving and the actuator follows the movement to reduce the interaction torque.
In addition, they used a high stiffness for the high impedance task, in which
the actuator is guiding the human. In [LLNM20], the stiffness adaptation was
applied during the swinging motion of the lower leg in combination with an
impedance controller. For the human-cooperative assistance control, the low
and high impedance tasks can be translated to low and high human torques
in the presented free assistive control framework, as a low/high human joint
torque results in a low/high actuator torque.
Similar to [LLNM20], the desired behavior is achieved by choosing the stiffness
reference depending on the so-called active joint (hip/knee) torque denoted
by τa

H/K,pat. This torque can be derived from the estimated human torque by
subtracting the passive elastic torques τp

H/K,pat:

τa
H/K,pat = τH/K,pat − τp

H/K,pat . (4.8)

The passive elastic torque occurs due to visco-elastic effects in the tissues
surrounding the joints and can be described as a function of the hip, knee,
and ankle joint [RE99]. Based on the active joint torques, the hip and knee
stiffness reference for the swing phase are determined using the following linear
relationship as proposed in [LLNM20]:

[
σH,ref
σK,ref

]
=


σH

τa
H,pat−sat(|τa

H,pat|)
τa

H,pat−τa
H,pat

+ σH
sat(|τa

H,pat|)−τa
H,pat

τa
H,pat−τa

H,pat

σK
τa

K,pat−sat(|τa
K,pat|)

τa
K,pat−τa

K,pat
+ σK

sat(|τa
K,pat|)−τa

K,pat
τa

K,pat−τa
K,pat


 . (4.9)

Here, sat(·) denotes the saturation function and τa
H/K,pat and τa

H/K,pat the
maximum and minimum active joint torque, respectively. The idea of the
stiffness adaptation with respect to the user’s active torque is to provide high
stiffness when the user is being guided (high impedance task) and low stiffness
when the user is providing a high torque (low impedance task).
In contrast, for the stance phase, high bandwidth is required to counteract the
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high gravitational forces occurring in the leg joints. For this reason, the varying
stiffness approach is used during the swing phase while controlling the stiffness
constantly to the highest possible value during the stance phase with

[
σH,ref
σK,ref

]
=

[
σH
σK

]
. (4.10)

4.2.5 Safety Mechanisms

As a last step, a safety mechanism was developed to take the system’s electrical
and mechanical restrictions into account, and, more importantly, to assist the
test subject only in physiological movements, thus ensuring the user’s safety.
First, maximum reference torque for the hip and knee joint was limited to
30 N m. Subsequently, the dynamics of the reference signal in the swing phase
was restricted, because physiologically undesirable rapid changes in the refer-
ence torque might affect the stability of the system. The dynamic limitation
is directly taken into account in the choice of the UKF weightings. The UKF
ensures that a cutoff frequency of about 5 Hz is not exceeded. A limitation of
the dynamics within the gait phase change and during the stance phase is not
desired nor required.
To support the subject only within the physiological ranges of motion, the
angular ranges for the hip and knee joints were limited, e.g., to prevent hy-
perextension of the leg. However, instead of an abrupt assistance loss at the
motion boundaries, the usage of a spring-like transition region of the width
∆φSR = 10◦ is proposed. The idea of this transition region is depicted, exem-
plary for the knee joint, by the yellow area in Fig. 4.3. When the joint angle
reaches this transition region, the subject’s current movement intention is no
longer reinforced but instead pushed back into the physiologically permissible
range-of-motion (RoM) by a counter-torque that increases with the angle up to
a maximum of τSR = 15 N m.
The reference torque for the transition region can be obtained by linearly cross-
fading between the assistance torque and the repulsion torque. The reference
torque, taking into account the safety mechanism, is thus for the hip joint:

τH,ref =





τ⋆
H,ref(1 − φH

∆φSR
) + φH

∆φSR
τSR for − 20◦ − ∆φSR ≤ φH < −20◦

τ⋆
H,ref for − 20◦ ≤ φH < 85◦

τ⋆
H,ref(1 − φH

∆φSR
) − φH

∆φSR
τSR for 85◦ ≤ φH < 85◦ + ∆φSR

(4.11)
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τK,ref = 15 N m

τK,ref = −15 N m

τK,ref = τ⋆
K,ref

τH,ref = 15 N m

τH,ref = −15 N m

τH,ref = τ⋆
H,ref

Figure 4.3: Safety mechanism for the hip and knee joint. Green: Normal
operating range; Red: Counteraction torque; Yellow: Transition region (see
eqs. (4.11) and (4.12)).

and for the knee joint:

τK,ref =





τ⋆
K,ref(1 − φK

∆φSR
) + φK

∆φSR
τSR for − 80◦ − ∆φSR ≤ φK < −80◦

τ⋆
K,ref for − 80◦ ≤ φK < 0◦

τ⋆
K,ref(1 − φK

∆φSR
) − φK

∆φSR
τSR for 0◦ ≤ φK < ∆φSR.

(4.12)
The final limits (red region in Fig. 4.3) are additionally secured by mechanical

barriers in the exoskeleton.

4.3 Results and Discussion

All experiments were conducted by the same voluntary test person (male, 28
years, 181cm, 63kg). The experimental self-test was reported to the ethics
committee at the Medical Faculty of RWTH Aachen University under the
number EK353-19.

4.3.1 Simulation Results
Proof of stability of the low-level torque controller presented in Sec. 3.2.5 has
already been provided by Liu et al. in [LLM18]. The stability analysis of the
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upper-level overall control is challenging due to a changing, unknown environ-
ment and transitions between the swing and stance phase models. However,
it can be assumed that the highest accelerations and velocities occur during
the swing phase which makes this phase the most critical with regard to stabil-
ity. For this reason, the frequency-dependent transfer behavior of the support
control during the swing phase was investigated in a simulation.

Simulation

To analyze the transfer behavior from the subject torque (input) to the total
torque (output), the dynamic user exoskeleton system described in eq. (3.24)
was simulated for the knee joint only. This system was excited by a virtual,
sinusoidal subject torque (amplitude 3 N m, frequency sweep from 0.1 Hz to
20 Hz). The subject torque was estimated by the UKF described in Sec. 3.3.1
and (initially) ideally amplified according to eq. (4.1) without considering the
weight compensation component. Subsequently, the transmission behavior of
the mechanical-rotary variable impedance actuator (MeRIA) including the LQG
controller with integral behavior (LQGI) torque control at the highest and lowest
stiffness was considered in the overall system. That is, the reference torque from
eq. (4.1) does not directly actuate the subject/exoskeleton system but serves as
a reference for the LQGI controller described in Sec. 3.2.5, which controls the
interaction torque between the MeRIA and the exoskeleton.

Results

The frequency-dependent transfer behavior is depicted in terms of magnitude
and phase response in Fig. 4.4 for different support factors k ∈ [−40%, 100%].

It is apparent that at a subject torque frequency of up to approximately
2 Hz, an almost constant support magnitude is achieved for positive support
factors (blue graphs), whereby the absolute phase shift is smaller than 23.7◦.
For higher frequencies, the support gain decreases until it reverses to resistance
at about 4 Hz. For negative assistance factors (purple graphs), the behavior is
reversed. From approximately 1 Hz, the resistance behavior decreases (negative
magnitude) and becomes negative (positive magnitude, assistive behavior) at
3 Hz.

With regard to torque control and actuator dynamics (green and gray area
in Fig. 4.4), a similar response was obtained. However, here the inflection
point shifts to lower frequencies (1.5 Hz). Furthermore, the amplification’s
magnitude increases between 0.3 Hz and 0.9 Hz compared to the ideally actuated
system, reaching the peak at 0.62 Hz. The maximum magnitude depends on
the assistance factor. Fig. 4.4 shows that the maximum gain factor for the
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amplitude). The line graphs show the transmission behavior for ideal torque
control at different assistance factors k without taking actuator dynamics into
account. The grey and green areas visualize the change of the transmission behav-
ior considering the MeRIA actuator at highest and lowest stiffness, respectively.
(© 2023 IEEE)

MeRIA at the highest stiffness is significantly higher than for the actuator at
the lowest stiffness.

Discussion

The simulation demonstrated that assuming an ideal torque application to the
exoskeleton, the subject torque can be amplified through positive assistance
factors k up to a frequency of 3.5 Hz, where the amplification between 2 Hz and
3.5 Hz is slightly below the requested assistance. Frequencies in the subject’s
torque above 4.2 Hz are slightly suppressed. This behavior is particularly
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advantageous for patients undergoing rehabilitation, as it suppresses unplanned
rapid movements, providing additional safety.

To set the frequency in relation to walking speed, the cadence of healthy
subjects walking on level ground is considered first. Tudor-Locke et al. defined
a walking cadence of 60-79 steps/min as slow, 80-99 steps/min as normal, and
100-119 steps/min as fast walking [TLCL+11]. Furthermore, they found a linear
correlation between cadence and walking (r=0.97) [TLWRP02]. Linear regres-
sion results in ranges of walking speed with respect to the cadence of 0.7 km h−1

to 2.3 km h−1 for slow, 2.3 km h−1 to 3.9 km h−1 for normal and 3.9 km h−1 to
5.4 km h−1 for fast walking. Cadence can be converted to stride frequency by
dividing the number of steps per second by two. In repetitive movements, the
frequencies present will be multiples (harmonics) of the fundamental frequency
(stride frequency) [Win09]. Assuming this definition, the UKF approach is
able to amplify the first 5-7, 4-5, and 3-4 harmonics for slow, normal, and fast
walking, respectively. Higher harmonic frequencies will be slightly suppressed
or transmitted transparently.

The simulation demonstrates that the UKF used for estimating the subject
torque during the swing phase is generally suitable for control in exoskeletons.
However, when considering the dynamics of the torque controller and the
MeRIA actuator, the assistance gain and phase shift increase at low frequencies.
This suggests that high assistance factors should be chosen cautiously to avoid
unpleasant or uncontrollable support for the subject. Both the increased
magnitude and phase shift are significantly more pronounced in the VSA with
a higher stiffness than in the VSA with a lower stiffness. This supports the
approach of reducing the mechanical stiffness of the VSA during the swing
phase to optimize the physical human-robot interaction.

Furthermore, the frequency up to which subject torques are supported is
reduced, when the VSA dynamics are taken into account. Thus, only the first
3-4, 2-3, and 2 harmonic frequencies are amplified for slow, medium, and fast
walking. Since slow gait speeds are particularly relevant for rehabilitation
therapy, Sec. 4.3.5 investigates how the support of the 3-4 harmonics affects
the subject’s gait experimentally.

In general, the simulation results indicate that the high-level control is
generally stable and assists the user’s torque input. Additionally, for negative
support factors, an active resistance torque counteracts the subject torque.
The resistance is reduced at higher frequencies, which particularly facilitates
the onset of movements. Lastly, it should be noted that – independent of the
assistance factor – very high subject torques could cause the exoskeleton to
reach its mechanical limits, which is why the additional safety mechanisms
presented in Sec. 4.2.5 were incorporated.
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4.3.2 Swing Phase Assistance

Experiment

An experiment with repetitive knee joint motions at different assistance factors
k was conducted to validate the assistance control for the swing phase in the
L2Exo-SE. During this experiment, the test subject wore the exoskeleton and
sat on an elevated chair to allow free movement of the lower leg (see Fig. 4.5).
Subsequently, the test person moved the lower leg in a sinusoidal trajectory
while the assisting factor is increased every ten periods. For a quantitative
comparison of the applied torques, the test person was instructed to keep the
movement identical in all scenarios. To support the subject in following a
sinusoidal movement trajectory, a sine wave with constant amplitude (20◦) and
frequency (0.32 Hz) was visualized on a screen. During the entire experiment,
the serial elasticity of the knee actuator was set to the highest value (408 N m

rad ),
and the safety mechanism described in Sec. 4.2.5 was deactivated to allow
greater knee flexion.

φK

τK,exo +
τK,pat

Figure 4.5: Visualization of the experimental setup. Note: The definition of
the knee angle in the sitting position differs by 90◦ compared to the knee angle
introduced in Fig. 3.5. (© 2023 IEEE)

Results

The mean knee joint angle, measured motor torque and estimated subject torque
of the ten repetitions, and the standard deviation are visualized in Fig. 4.6
for seven different assistance settings. The subject moved his leg with a time
period of 3.1356 ± 0.1540 s. The low standard deviation of the repeated knee
movement (4.9% of the mean value) suggests the quantitative comparison of
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Figure 4.6: Knee Angle (top) and motor and subject torque (bottom) of periodic
lower leg swing motion with different assistance factors. The trajectory followed
has an amplitude of 20◦ and a period of 3.14 s (corresponds to 100%). Shadowed
areas represent the standard deviation of the repeated movement task. (© 2023
IEEE)

the different swing movements.
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The zero torque control (Fig. 4.6, 1st column) validates the compliant behavior
of the torque control strategy. The interaction torque between human and motor
does not exceed 0.61 ± 0.17 N m. The influence of the compensation control of
the exoskeleton’s weight can be observed by comparing the motor torque of the
zero torque case (1st column) with the 0% assistance case (2nd column, 1st row).
Here, the maximum absolute torque caused by the weight of the exoskeleton’s
lower leg amounts to 2.79 ± 0.26 N m. The weight compensation control reduces
the subject’s maximum absolute torque by 19.40 ± 0.26 %.
A further reduction of the estimated subject’s torque was achieved by increasing
the assistance factor k. It is noticeable that the subject’s torque decreases with
increasing assistance factor. The theoretically achievable reduction is given by
eq. (4.4) and visualized by the grey graph in Fig. 4.7. The actual reduction of
the absolute subject’s torque for the tested assistance factors k is depicted by
the green graph.
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Figure 4.7: Mean reduction of the absolute subject torque for different assisting
factors k compared to 0% assistance with exoskeleton compensation. (© 2023
IEEE)

Discussion

The experimental results validate the control system’s capability to follow the
user’s movement intention, which is crucial for providing effective assistance to
the user.
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Importantly, the experiment indicates that the user torque required to perform
a movement with the exoskeleton’s assistance is significantly reduced. The
results indicate that for all selected assistance values, the average user torque is
reduced slightly more than theoretically expected (see Fig. 4.7). For example,
for an assistance factor of k = 60%, the user can perform the same movement
with 46.9% (theoretical: 100% − 100

100+40 % = 37.5%) less torque compared to
no assistance (only exoskeleton weight compensation). This also supports the
simulation results in Sec. 4.3.1 that account for the VSA’s dynamics.
The proposed control approach of the positive feedback loop requires active user
input to be amplified which is simultaneously an advantage and a disadvantage.
The higher the amplification factor is, the lower the user torque is required
for the movement. However, when the user torque decreases, the estimation
of the user torque becomes difficult due to a low signal-to-noise ratio. Hence,
delays and noise in the measurements, estimation, and control action become
more apparent. This effect is noticeable for an assistance factor of k = 100%.
Here, small oscillations are detected as visible in the bottom right graph in
Fig. 4.6. These small oscillations can be sensed by the user. For optimal safety
and user experience, it is suggested to limit the assistance factor to a maximum
of k = 60%.

4.3.3 Stance Phase Assistance and Sit-to-Stand

The sit-to-stand (Sit2Stand) movement is a widely studied motion for exo-
skeleton research and development. During this movement, high torques occur
and patients with impaired mobility often find this task particularly challenging.
Therefore, many publications have been dedicated to developing control systems
for the Sit2Stand task. The proposed stance phase assistance control approach
can directly support the user during the stand-up and sit-down movement. The
stand-up movement, as an isolated and self-contained movement, provides a
concise way to validate the performance of the stance phase support control.

Experiment

The test person repeated the stand-up movement from a chair while wearing
the lower limb exoskeleton four times with an assistance factor of k = 0% and
four times with assistance of k = 40%. The measured hip and knee angles
and torques are visualized as the means of the average values and standard
deviations in Fig. 4.8.
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Results

The maximum hip joint torque is reduced from 39.05 N m for the k = 0% to
29.34 N m for k = 40%. These experimental values correspond to a 24.87 %
reduction, while the theoretically calculated reduction for a 40 % assistance
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Figure 4.8: From top to bottom: Hip angle, exoskeleton’s (blue) and subject’s
(green) hip joint torque, knee angle, and exoskeleton’s (blue) and subject’s
(green) knee joint torque in the Sit2Stand task. The data shows the mean values
and standard deviations of four repeated movements. The Sit2Stand task was
performed in 4.44 ± 0.26 s for the 0% assistance case and in 4.34 ± 0.12 s for the
40% assistance case. (© 2023 IEEE)
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factor is 28.57%. The reduction of the maximum knee joint torque from
30.86 N m to 20.72 N m during 40 % assistance is 32.88 %.

Discussion

The experiment indicates that the control system is capable of providing the
expected level of assistance during the Sit2Stand movement. However, the
subjective feeling of assistance varied among the different stand-up movements,
which may be caused by the limited number of ground reaction force sensors
in the sole of the exoskeleton. With only four force-sensing resistors, each
measurement has a significant impact on the reference torque value. To improve
the subjective experience, the number of ground reaction force sensors could be
increased to provide more accurate reference torque values.
Again, it is suggested to set the upper limit of the support factor to 60 %. In
this case, the purpose is to limit the maximum torque applied by the motor
rather than to avoid oscillations, as a static model is used.

4.3.4 Safety Mechanism
The safety mechanism presented in Sec. 4.2.5 aims to support the user in physi-
ologically permissible movements and to reduce the shock when the mechanical
limits are reached abruptly. The latter serves to protect both the user and the
mechanical system, including the motor.

Experiment

To test the effectiveness of the proposed safety mechanism, an experiment was
conducted, in which the test person repeatedly pushed his lower leg with a
high velocity into the mechanical limitation at φK = −90◦. As proposed in
Sec. 4.2.5, an angle-dependent, increasing torque was provided over a range of
10◦ before reaching the mechanical limitation to counteract the movement. The
experiment was conducted both at the highest and lowest stiffness of the VSA.

Results

The results of the experiment are visualized in Fig. 4.9 by means of the average
knee angle, angular velocity, and motor torque of 18 repetitions at the highest
(left) and lowest (right) actuator stiffness. Each movement takes approximately
1.1 s corresponding to 100 % progress of the movement. The knee angle attains
a minimum angle of −90◦ at which the exoskeleton’s lower leg is mechanically
restricted. The average maximum velocity, at which the lower leg reaches this
limitation, is −2.5 rad s−1 for the high and low stiffness case. The mean absolute
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Figure 4.9: Safety mechanism experiment. Knee angle, angular velocity, and
motor torque at high (left) and low (right) actuator stiffness while actively
pushing the lower leg into the mechanical limitation. The mechanical limitation
is set to -90◦. The movement is repeated 18 times for both stiffness cases. The
movement duration of each repetition is 1.09 ± 0.07 s and 1.13 ± 0.03 s for the
high stiffness and low stiffness case, respectively. (© 2023 IEEE)

error (MAE) between the angular velocities for the high and low stiffness case
is 0.14 rad s−1, which corresponds to 8.9% of the mean average signal.
After reaching a knee angle of −80◦ at around 40 % of the movement’s progress,
the reference torque increases to slow down the movement before reaching
the mechanical limits. The reference torque reaches the limit of 15 N m within
93.5 ms. Due to the high speed of the lower leg, the torque control can only reach
half of this value before the lower leg crashes into the limitation. Contact with
the mechanical limitation leads to a fast torque drop of 4.71 N m and 0.81 N m
on average for the high and the low stiffness case, respectively. Subsequently,
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the torque increases again, moving the leg forward and away from the limitation.

Discussion

The motion shown in Fig. 4.9 is induced by the test person. Therefore, direct
comparability of the results, especially the torque during the collision for high
and low stiffness is only permitted for similar motion profiles. The low MAE of
the velocity signal indicates that the two experiments are comparable.
For both cases of the experiment, the knee joint stayed within safe physiological
limits as the mechanical limitations ensure that the angle of −90◦ is not exceeded.
In addition, the motor torque counteracted the movement, reducing the impact
on the mechanical limits. As a result, the strain on the motor and the user’s
leg was reduced.
In this specific experiment, it could be observed that the sudden torque drop
during impact is 82.8 % lower for the low stiffness case than for the high
stiffness case. This indicates better absorption capabilities of the low-stiffness
actuator in comparison to the high-stiffness actuator, which means that the
low-stiffness actuator can better counteract shocks resulting from a sudden
change in environment or joint stiffness. This supports the proposition from
Sec. 4.2.4 to reduce the actuator stiffness during the swing phase depending on
the user’s torque.

4.3.5 Full Gait Assistance with Varying Stiffness

Gait consists of a sequence of swing and stance phases for each leg. The
following experiment aimed to validate the overall patient-cooperative control
during this sequential movement. This includes the support in the two different
phases, the transition in between, and the adjustment of the physical elasticity
of the VSAs. Furthermore, the active resistance of the exoskeleton was analyzed
by considering negative assistance values.

Experiment

To validate the assistance behavior of the proposed control strategy during gait,
the test subject walked on a treadmill at three different speeds of (0.8 km h−1,
1.1 km h−1 and 1.4 km h−1). For each pace, the assistance factor k for the hip
joint was varied from -40% to +60% in 20% intervals, while keeping the knee
assistance at 0%. The support was increased after every 20 steps walked. Then,
the knee’s assistance factor was varied while leaving the hip assistance constant.
Changing the support factors for each joint allows for determining the influence
of the respective assistance change.
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Results

The results of the gait experiment are presented in Fig. 4.10 by means of torque
and power reduction. The data was obtained from the experimental results
visualized in the appendix in Fig. A.2. In detail, the left graphs show the
reduction of the subject’s MAE for different assistance factors compared to the
0% assistance case for the hip and knee joint. On the right, the reduction of the
mean absolute power, as the product of the joint torque and angular velocity,
is visualized. For both – the torque and power – the reduction increases with
increasing assistance factors for all gait velocities. It is apparent that there
is no significant difference in the torque reduction between the three different
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Figure 4.10: Gait experiment results. Reduction of absolute mean torque (left)
and absolute mean power (right) for different assistance factors compared to 0%
assistance for hip (top) and knee (bottom) joints during treadmill walking at
different velocities. The grey line visualizes the theoretically calculated reduction
in the dependence on the assistance factor. (© 2023 IEEE)
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gait velocities. The mean torque reduction for the hip joint tends to be above
the theoretically calculated support, whereas that of the knee joint matches
the theoretically calculated support closely for positive support factors. The
deviation from the theoretically achievable torque reduction is highest at a
support factor of -40% for both joints. It is noticeable that in the hip, power
reduction decreases with higher gait velocities for large k. This trend is not
observed for the knee joint.
The course of the joint angles, torques, and VSA stiffnesses is shown exemplarily

for one gait speed (0.8 km h−1) and for three different assistance factors in
Fig. 4.11. Results for more assistance factors are given in the appendix in
Fig. A.2. As previously stated, the subject’s active knee and hip joint torque
(see eq. (4.8)) decreases with increasing assistance factor. Furthermore, it can
be seen that the stiffness values of the hip and knee actuator are reduced during
the swing phase based on the active subject torque - as described in Sec. 4.2.4.
Here, a noticeable discrepancy between the stiffness reference and the actual
set elasticity is apparent. The following discussion explains the reasons and
effects in more detail.

Discussion

The experiment indicated that the proposed control concept is capable of
reducing and increasing the subject’s hip and knee torque and power with
positive and negative assistance factors, respectively, at different gait speeds.
The reduction of the subject’s joint torque was within the expected range for a
wide range of support factors. Only for negative assistance factors, the control
provided less active resistance than required, which supports the findings of the
simulation.
The predictive value of these results is limited by the relatively low gait velocity
of 1.4 km h−1. However, for rehabilitation purposes, this velocity is expected
to be sufficient. In further tests, it could be determined that the knee support
functions reliably up to 3 km h−1, although the effectiveness of the support
decreases slightly with increasing velocity as suggested by the simulation results.
However, the hip support can only be used up to 2 km h−1, as the control was
tested on an exoskeleton prototype that has not yet been optimized for weight.
At a lower weight of the actuators and the frame, the exoskeleton would need
less torque to compensate for its own mass, enabling faster gait speeds.
Another reason for better performance of the knee joint than the hip joint
assistance is the partly elastic, non-optimal coupling of the hip motor to the
user’s waist. This makes the assumption of fixed coupling between the user and
the exoskeleton joint only partially valid. It was already compensated for this
misalignment by determining the hip angle based on two inertial measurement
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Figure 4.11: Gait experiment results. Hip and knee angle, hip and knee joint
torques, and hip and knee motor stiffness for three different assistance factors.
Solid lines are the average of ten steps, and the shaded areas are the standard
deviation. The vertical lines present the toe-off event, therefore the transition
from the stance to the swing phase. (© 2023 IEEE)

units (IMUs) attached to the user’s thigh and torso. However, this does not
compensate for the backlash that occurs between the hip shell and the motor
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when the direction of support changes. To solve this problem in the future, a
better hip fixation would need to be selected. Alternatively, the control strategy
could explicitly take the backlash into account.
In all previous evaluations, the change of the torque is considered with reference
to the 0% assistance case with exoskeleton compensation. The advantage of
this approach is that the torque and power reduction already take into account
the possible change in the user’s gait due to the assistance, the so-called human
motor adaptation. However, the presented evaluation does not take into account
the actual effects on the generation of human torque. For this purpose, in the
future, the muscle activity and metabolic cost of the subject could be measured
for different assistance factors.
The evaluation of the stiffness adaptation has shown that the mechanical design
of the variable stiffness cannot follow the fast torque changes of the knee and
hip joints. Instead, the resulting actuator stiffness corresponds to a low-pass
filtered behavior of the active subject torque during the swing phase.
Despite the non-optimal stiffness adjustment, the average stiffness during the
swing phase increases with the assistance factor. This behavior supports two
desired properties. First, a higher support factor also implies a higher required
motor torque, which is better achieved by a stiffer actuator (high impedance
task, see Sec. 4.2.4). On the other hand, with a lower support factor, a higher
subject torque can be expected (low impedance task). For this case, higher
elasticity is advantageous, as it ensures a higher disturbance rejection and higher
safety as shown in Sec. 4.3.4.

4.4 Summary

In this chapter, a novel human-cooperative control framework was presented
that is capable of assisting the user during the entire gait sequence and other
movements such as Sit2Stand. The control framework utilizes a UKF and
inverse kinematics to estimate the user’s joint torques during the swing and
stance phase, respectively. The control approach, which is generally transferable
to exoskeletons with compliant actuators, was validated using the L2Exo-SE.
The assistance is applied in accordance with a freely selectable parameter. The
average user’s joint torque during gait could be reduced by 63.6 % - 78.4 % for
the hip and 40.8 % - 50.2 % for the knee joint compared to unassisted walking.
Furthermore, an automated stiffness selection for the serial elasticity of the
VSA based on the human’s active joint torque was presented. The stiffness
adaptation increases the safety of the physical human-robot interaction during
the swing phase while maintaining a high control bandwidth during the stance
phase. In the future, the influence of human-cooperative control on the human
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body should be investigated by electromyography (EMG) and metabolic cost
measurements, and further tests should be performed not only on healthy
subjects but also on patients with hemiplegia. In addition, the question remains
of how to choose the assistance factor depending on the patient’s or user’s state
of health or fitness.
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5 Fatigue Assessment and Fatigue Control

In robotic-assisted rehabilitation therapy, the settings and assistance of the
exoskeleton is based on the physiotherapist’s estimation of the patient’s strength.
In this chapter, a new automated method based on real-time estimation and
control of muscle strength and fatigue is proposed. The content of this chapter
has been published in the peer-reviewed journal article [BHvP+24] (© 2024
IEEE).

5.1 Motivation

Fatigue is a common experience in our everyday activities. It poses a particularly
challenging obstacle for individuals with hemiparesis whose muscle function
are compromised. These patients often describe fatigue as an intense feeling of
tiredness, exhaustion, and a lack of physical and mental energy, which hinders
their daily tasks. Research shows that up to 72% of stroke survivors experience
fatigue, and 46% consider it their most debilitating symptom [KRG12]. Further-
more, patients with incomplete spinal cord injury (SCI) endure increased muscle
fatigue during extended periods of walking. This finding suggests that fatigue
management should be considered in their rehabilitation process [DNG+20].
By acknowledging fatigue in daily life and during rehabilitation, the risk of
falling can be minimized, as fatigue can affect gait parameters, increasing the
likelihood of falls [PL08,DNG+20].

As described in Sec. 2.1.6, fatigue can be classified as either mental or
physical, with mental fatigue being related to cognitive and perceptual aspects
and physical fatigue being expressed by decreased performance of the motor
system. Muscle fatigue is a type of physical fatigue that can be defined as
’any exercise-induced reduction in maximal capacity to generate force or power
output’ [Vøl97]. It is often characterized by a decline in maximum voluntary
contraction (MVC), which measures the force generated by an individual at
maximal effort. The reduction of strength depends on the type of contraction,
with sustained maximal contraction causing an immediate onset of fatigue and
a strict decline in force output, while repeated sub-maximal contractions allow
for force to be maintained for a longer time until exhaustion.

Several physiological and mathematical models have been developed to de-
scribe muscle fatigue. Physiological principles usually describe fatigue for a
single muscle stimulated by functional electrical stimulation (FES). For exam-
ple, Giat et al. investigated the relationship between muscle fatigue and the
intracellular pH value of a paralyzed quadriceps muscle under FES [GMLO93].
Additionally, Wexler et al. proposed a fatigue model based on the Ca2+ cross-
bridge mechanism [WDBM97], while Riener and Quintern introduced a muscle
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fitness function based on the recruitment of Motor Units (MUs) (see Sec. 2.1.2)
that takes fatigue and recovery into consideration [RQ97].

However, movements in everyday tasks or in rehabilitation therapy are
performed by the person’s voluntary movement and not by external stimulation
as during FES. For this reason, Liu et al. [LBY02] and Ma et al. [MBCZ08]
developed mathematical models describing the fatigue and recovery behavior
depending on the normalized force input, which were extended and modified by
other research groups.

Liu’s fatigue model, grounded in MU theory, uses differential equations to
illustrate muscle activation, fatigue, and recovery [LBY02]. Xia et al. expanded
this model to sub-maximal contractions and joint-level dynamic tasks, intro-
ducing the three-compartment controller (3CC) fatigue model [XL08]. Yet, the
model’s validity was mainly confirmed for isometric contractions of different
joints [FLLH12] and for intermittent isometric contractions [SP16, LHFL18].
Other modifications to the 3CC model include Sonne et al.’s scaled MU fatigabil-
ity [SP16] and Looft et al.’s resting recovery parameter (3CCr) representing the
hyperemia effect during rest [LHFL18]. Jang et al. integrated perceived exertion
and arm kinetics into the 3CC model for a continuous pointing task [JSAR17].

Ma et al., on the other hand, presented a framework for evaluating muscle fa-
tigue in ergonomic contexts to mitigate musculoskeletal disorder risks [MBCZ08].
This model assumes fatigue increases with load, task duration, and decreasing
muscle capacity. It was validated against other fatigue models [MCBZ09] and
enhanced to encompass joint-level fatigue and rest intervals [MCB+10]. Fayzi et
al. extended the model by simultaneous recovery and fatigue for cycling appli-
cations [FWL+13]. Dobrijevic at al. extended this approach to describe fatigue
during walking [DIDJ17]. However, the measurement of force was performed by
pulling a load cell forward that makes the subject lean forward varying slightly
from the actual walking position.

Despite the underlying mathematical model, the question remains of how to
accurately measure fatigue during a task. Typically, MVC and maximal power
output measurements are considered the "gold-standard" [GLK00,KANP02] and
"serve as the first choice of method" [Vøl97]. Other methods to assess fatigue are
the measurement of force and power output, endurance time, electromyography
(EMG), heart rate (HR), and subjective fatigue scales. MVC can be assessed
using a load cell or dynamometer. However, it is important to discern between
different contraction types. Estimating isometric contractions can be quantified
due to the known and unchanging force direction. In exercises involving dynamic
contractions, like walking and cycling, MVC estimation is more challenging.
This is because movements are produced by a group of muscles, making the effect
of the agonist and antagonist on force generation variable and unpredictable
[Vøl97].
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5.1 Motivation

Being able to assess the behavior of muscle fatigue, the question arises
of how to integrate fatigue models in control algorithms of assistive devices
to minimize the effect of fatigue. As fatigue is a prominent and impairing
symptom that hemiplegic patients experience during rehabilitation sessions,
the integration of a fatigue model into the control strategy of exoskeletons
might be beneficial. Such an integration would allow not only the tracking of
fatigue progression but also aid in fatigue management. Research groups have,
for example, incorporated fatigue models in the control of hybrid exoskeletons
[KBA+17,BMD+20,Ali17,LMP+23] and electrically powered bikes [BLGM21].

Kirsch et al. [KADS16,KBA+17] and Boa et al. [BMD+20] applied alloca-
tion control strategies, including the modeling of muscle fatigue for hybrid
exoskeletons. A hybrid exoskeleton combines muscle stimulation with FES and
a powered exoskeleton. Both research groups used the fatigue model of Riener
and Quintern [RQ97], describing the muscle fitness function during muscle
stimulation. One strategy to overcome the effect of muscle fatigue is a switching
control algorithm [KADS16]. The system switches between FES and the motor
according to the development of muscle fatigue. In case muscle fatigue develops
and the torque output during stimulation significantly decreases, the control
switches to the electrical motor allowing recovery of the muscle.

The modeling and control of an upper-limb exoskeleton considering muscle
fatigue was proposed by Ali [Ali17]. In this context, the modeling of the
exoskeleton, the human, and the muscle fatigue using the model of Ma et
al. [MCB+10] was performed in a virtual environment. The quasi-static fatigue
model on the joint level requires the torque trajectory, which was calculated
using inverse dynamics. The exoskeleton is activated as soon as the risk of
fatigue occurs. Apart from that, the incorporation of a fatigue model into the
control of lower limb exoskeletons without FES has not been investigated to
the best of the author’s knowledge.

The scientific contribution of this chapter is that
1. for the first time, a real-time quantification and control of physical fatigue

during walking was made possible. To achieve this, the 3CCr fatigue model
for the dynamic task of walking was adapted by considering alternating
muscle activation of the lower limb muscles. An experimental study was
performed to estimate individual model parameters that describe the
fatigue development of four muscle groups, responsible for hip and knee
movements. While performance fatigability was assessed using MVC
measurements to obtain the decline in muscle strength, a subjective scale
rates the perceived fatigability.

2. the developed fatigue model was integrated into the exoskeleton’s control
strategy to achieve a target fatigue level. The human-in-the-loop (HiL)
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control considers the linear relation between the subjective ratings of
fatigue and the MVC decline and uses a feed-forward (FF) controller in
combination with a proportional feedback controller to ensure a predefined
fatigue level throughout the training session. This study, conducted with
healthy subjects as an initial proof of concept, aimed to lay the groundwork
for future fatigue assessment and control in patients with hemiparesis.

5.2 Fatigue Model Development

To describe fatigue, a fatigue model from the literature was used as a starting
point and adapted for the gait wearing an exoskeleton. In the following, the
selection process, the basic model description, and the extension are presented.

5.2.1 Fatigue Model Selection
For the modeling of fatigue during walking in a purely mechanical powered (no
FES) exoskeleton, a mathematical model based on the user’s force/torque input
is used rather than a physiological one. The model of Fayazi et al. [FWL+13],
which has also been employed by Dobrijevic at al. [DIDJ17] for walking appli-
cations, requires a ’Maximal Effort’ approach for parametrization. This fact
makes the model unsuitable for patients with limited walking ability.

Thus, the question arises whether to use the MU-based fatigue model in-
troduced by Liu et al. [LBY02] or the model of Ma et al. [MBCZ08]. The
MU-based fatigue model considers simultaneous fatiguing and recovery of the
MUs, which represents the physiological fatigue mechanism of a muscle. While
simultaneous fatigue and recovery were also considered in some modifications
of the fatigue model of Ma et al. [MCBM12], it is not necessarily part of the
fatigue model. For example, the translation of the fatigue model to dynamic
tasks by Seth et al. did not consider recovery effects [SCB+16]. Accounting
for the available fatigue and recovery parameters, the MU-based 3CC and
3CCr fatigue models provide parameters for the knee joint for isometric and
intermittent contractions [FLLH12,LHFL18]. In contrast, the model of Ma et al.
was mainly applied for push and pull tasks, focusing on the fatigue parameters
of the shoulder and elbow joint, which has limited relevance for walking with
the exoskeleton. The availability of fatigue and recovery parameters of the knee
joint allows the discussion of the developed fatigue model by comparing the
estimated parameter with the literature. In summary, the decision to select
the 3CCr model for this application was influenced both by the availability of
pertinent model parameters and its successful validation for intermittent tasks,
which closely resemble dynamic tasks. Lastly, this approach also allows the
connection to perceived fatigue, as the relation between ratings of perceived
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fatigue (RPF) and the torque decline modeled by the 3CCr model has been
investigated by Whittaker et al. [WSP19] and applied by Jang et al. [JSAR17].

5.2.2 3CCr Fatigue Model
For the sake of completeness, the 3CCr model will be presented in this section,
based on the description in [LHFL18].

The dynamic behavior of muscle fatigue is modeled using a compartment-
based approach, dividing motor units into three activation states: resting
(MR), active (MA), and fatigued (MF ). In theory, motor units develop fatigue
continuously, and the force output decays over time. However, considering a
group of activated motor units that develop fatigue continuously is mathematical
equivalent to a mixture of activated motor units producing full tension and
fatigued motor units producing zero tension [XL08]. The dynamic behavior
between the states is described with the fatigue rate F , the recovery rate R,
and the bi-directional, time-varying muscle activation-deactivation drive C(t):

dMA

dt
= C(t) − F · MA(t), (5.1)

dMR

dt
= −C(t) + R · MF (t), (5.2)

dMF

dt
= F · MA(t) − R · MF (t). (5.3)

The three compartments, MA, MR, and MF , shown in Fig. 5.1, are given in
percentage of the maximal force capacity (%MVC) and sum up to 100 %MVC.
As MA represents the active force-generating motor units, it is proportional to
the force output. If all motor units are activated, the maximal force, denoted as
MVC, is generated and the compartment MA makes up 100 %MVC. If fatigue
occurs or a lower force is required, there are also resting and fatigued motor
units resulting in a lower MA and a lower force output.

The activation-deactivation drive C(t) describes the neuromuscular system
controlling the size of MA to produce the required force, which is denoted
as target load (TL), given in %MVC. Thus, C(t) is modeled as a bounded
proportional controller, as described by

C(t) =





LD(T L − MA) if MA < T L & MR > T L − MA

LDMR if MA < T L & MR < T L − MA (5.4)
LR(T L − MA) if MA ≥ T L,

to generate MA depending on the target load and the availability of MR. The
dimensionless development factor LD and relaxation factor LR ensure good
system behavior and are set to 10, as suggested in [XL08].
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Figure 5.1: 3CCr fatigue model adapted from [LHFL18]. (© 2024 IEEE)

The rest recovery factor r, representing muscle reperfusion, and hyperemia
effects, influences the recovery behavior during rest by scaling the recovery rate
R. This behavior depends on the target load as follows:

Rrr =
{

R, if T L > 0
r · R, if T L = 0

(5.5)

The remaining muscle strength is represented by the residual capacity (RC)
and can be expressed by:

RC(t) = MA + MR = 100 %MVC − MF . (5.6)

If the muscle is not fatigued and has full capacity to generate force, the residual
capacity is 100 %MVC. In contrast, an residual capacity of 0 %MVC indicates
no strength reserve. Muscle fatigue, characterized by a reduction in maximal
capacity to generate force, is directly described by the residual capacity. The
residual capacity is influenced by both the fatigue and recovery behavior of the
MUs and the associated target load.

Xia et al. described muscle fatigue on joint level and incorporated the complex
force-velocity and force-length relation of a muscle [XL08]. Modeling fatigue on
joint level overcomes the problem of muscle redundancies in synergistic muscle
groups as multiple muscles contribute to one specific joint movement, e.g., hip
extension. The target load input is generated by normalizing the task-specific
torques with the maximum joint torque.
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The maximum joint torque τmax is defined as the sum of passive torques τp

produced by tendons and ligaments and active torques τa produced by muscle
tension:

τmax = τp(φ) + τa(φ, φ̇) (5.7)

The passive torque only depends on the joint angle φ, while the active torque
depends on the joint angle, movement direction (sign of joint velocity φ̇),
and the contraction type. A positive velocity indicates concentric contraction
and a negative velocity indicates eccentric contraction. Anderson et al. have
mathematically described the force-velocity and force-length relation of the
muscles for the lower limbs [AMN07]. As an example, the resulting torque-
velocity-angle (TVA) surface for knee extension is illustrated in Fig. 5.2.
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Figure 5.2: TVA surface representing the maximal torque of the knee extension
depending on the joint angle and the angular velocity. Data from [AMN07]. (©
2024 IEEE)

The torque-velocity-angle relations differ not only for each joint and each joint
movement [AMN07] but also for each test subject. To obtain the individual
maximal torque for every test subject during the parameter estimation of the
study, the torque-velocity-angle surfaces were scaled based on the individually
measured MVC τMVC with the corresponding joint angles (Hip: φH = 0◦, Knee:
φK = 90◦) and a velocity of φ̇ = 0 ◦/s as visualized by the red arrow in Fig. 5.2.
It should be noted that the passive torque is neglected during the scaling
approach. However, this approximation is permissible as it is relatively small
compared to the active torque.
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The individual torque-velocity-angle surface allows the calculation of the
dynamic target load by normalizing the task-specific joint torque τtask with the
maximal torque τmax obtained by the torque-velocity-angle curve:

T L(t) = τtask(t)
τmax(φtask, φ̇task) . (5.8)

The joint torques τtask(t) during the walking task can be obtained, e.g., by
using inverse dynamics and can be mapped to the torque-velocity-angle curve
by taking the angle φtask and angular velocity φ̇task into account. The resulting
target load serves as the input to the fatigue model.

5.2.3 Muscle Activation
As described in Sec. 2.1.2, several muscle groups work together to perform
certain movements during dynamic tasks. As for walking, predominantly the
muscle groups responsible for the movements of the hip, knee, and ankle joints
contribute to the human gait. In this work, the focus is set on the hip and
knee joints because these joint torques can be assessed and actively supported
by many common lower limb exoskeletons. The main muscle groups (see
Fig. 2.2) contributing to the walking motion are the gluteus maximus (GM) (hip
extension), the iliopsoas (IP) (hip flexion), the quadriceps femoris (QF) (knee
extension), and the hamstrings (HS) (knee flexion). Muscle activation during
gait is a complex sequence of alternating concentric and eccentric contractions of
different muscle groups. As proposed in [SCB+16,CFLN+20], muscle activation
can be determined by splitting the joint torque into positive and negative
torques. In Tab. 5.1, the allocation of positive and negative joint torque and
the corresponding muscle groups, neglecting co-contraction, are shown.

Table 5.1: Muscle activation during gait depending on the joint torque.

Joint τ > 0 τ ≤ 0
Hip joint IP active GM active

Knee joint QF active HS active

This torque-movement dependency can be described by modeling fatigue
development separately for the GM, IP, QF, and HS muscle groups. During
phases of activation, the muscle group develops fatigue while it recovers during
inactivity and rest periods. As a consequence, the model parameters fatigue F ,
recovery R, and rest recovery r must be estimated for GM, IP, QF, and HS,
respectively.
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5.2.4 Parameter Estimation Study

The development of fatigue and recovery behavior is strongly dependent on
the task, as different types of motor units are recruited based on the inten-
sity [MHH13] (see Sec.2.1.2). Moreover, the development of fatigue and recovery
is joint-dependent because active muscle groups differ in size and their com-
position of motor unit types [FLLH12]. Thus, the 3CCr fatigue model needs
to be parameterized particularly for walking and cannot be adopted from the
literature.

Experimental Setup

The experimental setup for the parameter estimation consisted of the lower limb
exoskeleton with serial elastic actuators (L2Exo-SE), a treadmill, and a test
bench to measure the maximal torque of different joints. Moreover, physiological
sensors were used to measure the metabolic cost and the HR of the test subject.
The experimental setup is shown in Fig. 5.3.

All measurements were conducted using the L2Exo-SE introduced in Sec. 3.2.
The assistance factor k of the human-cooperative control strategy introduced
in chapter 4 is of special interest for this chapter, as it is later the manipulative
variable of the HiL control. As a reminder, this factor determines the extent
of the exoskeleton’s support as a percentage of the estimated human torque.
For instance, an amplification factor of k = 0.4 implies that the exoskeleton
contributes 40% of the total human’s estimated torque. Moreover, to enhance the
patient’s comfort during walking, the exoskeleton’s weight can be compensated.

MVC measurements were chosen as the assessment method for fatigue for
two reasons. Firstly, MVC measurements have been described as the ’gold-
standard’ [GLK00,KANP02] to assess muscle fatigue. Secondly, as the MVC is
generated voluntarily, it is an integration of all possible effects inducing fatigue.
Thus, central limitations such as reduced motivation or imbalanced homeostasis
responsible for perceived fatigability, as well as peripheral limitations such as
reduced blood flow and impaired calcium kinetics resulting in performance
fatigability are taken into account. The MVC test bench (Fig. 5.3, right) is
used to measure the maximum isometric torque of the hip and the knee joint.
It is equipped with a torque sensor (DR-2477-P, Lorenz Messtechnik GmbH,
Alfdorf, Germany) with a measuring range of ± 200 Nm. A fixed chair allows
the test person to sit while the torque of knee extension and knee flexion can
be measured. A vertical aluminum profile provides stability to the standing
person while the hip flexion and extension torque is measured. The other side
of the shaft is fixed to avoid a rotation of the shaft. Thus, movements of the
joints are restricted to measure the isometric MVC.
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Figure 5.3: Experimental setup. Left: Test subject during a fatiguing session
including the L2Exo-SE, treadmill, and physiological sensors. Right: Test bench
with torque sensor. (© 2024 IEEE)

Another method to assess fatigue is using subjective ratings. Although they
are characterized by low validity and reliability due to the influence of many
factors, they are important to estimate muscle fatigue correctly [MBCZ08].
Many authors state that If the person tells you that he/she is loaded and effortful,
then he/she is loaded and effortful whatever the behavioral and performance
measures may show [LB99]. Thus, combining subjective and objective measures
reduces the conflicting problem and also relates to the taxonomy of Enoka et
al. describing fatigue as a self-reported syndrome derived from perceived and
performance fatigability [ED16]. The linear relation between the decline in
MVC and the subjective ratings of perceived fatigue (scale from 0 to 10) shown
by Whittaker et al. [WSP19] and used by Jang et al. [JSAR17] to perform the
parameter estimation of the 3CC fatigue model gives an idea of how to combine
both methods. For this reason, the RPF scale was included in the measurement
protocol to evaluate fatigue on a subjective and objective level. The detailed
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RPF scale is given in the appendix in Tab. A.1.
Lastly, the measurement of the HR and energy expenditure (EE) was included

to evaluate the exertion of the test subjects during activity and rest. The test
subject’s HR was measured using the Garmin watch Forerunner 35, including
the HRM-Dual chest strap (Garmin, Schaffhausen, Switzerland). The oxygen
consumption (V̇ O2) and the carbon dioxide release (V̇ CO2) were measured
using the gas analyzer GANSHORN PowerCube-Ergo (GANSHORN Medizin
Electronic GmbH, Niederlauer, Germany). Oxygen consumption can be con-
verted to EE when taking body weight into account. For example, for a 70 kg
person, one liter of oxygen consumption is equal to 5 kcal, hence 1 W is equal
to 0.01435 kcal or 14 mL of oxygen [JSB90].

Subjects Description

The parameters were estimated in the context of a small study, in which
six healthy test subjects performed a fatigue and recovery protocol including
walking in the human-cooperative lower limb exoskeleton. The test subject
group consisted of three female and three male participants (28.7 (±2.7) years
old). The biometric data including a self-estimated level of fitness on a scale
from 0 to 10 (0 = not sportive, 10 = professional athlete) is provided in Tab. 5.2.
The experimental self-test was cleared by the ethics committee of the Medical
Faculty of RWTH Aachen University under the number EK264-21.

Table 5.2: Information of test subjects. (© 2024 IEEE)

Subject Gender Age Height (m) Weight (kg) Fitness level
1 male 28 1.81 62 7-8
2 male 32 1.79 72 7
3 male 30 1.70 66 7
4 female 24 1.68 56 6
5 female 29 1.65 62 3
6 female 29 1.70 65 4

Measurement Protocol

The experimental protocol was split into two days, including one day to fit
the exoskeleton and get used to walking with the exoskeleton and to the MVC
measurement test bench. On the second day, the fatigue and recovery experiment
was conducted. It consisted of a warm-up phase, four fatiguing sessions (each
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15 min), two recovery sessions (each 15 min), and MVC measurements between
the sessions. An overview of the measurement protocol is given in Fig. 5.4.

Figure 5.4: Measurement protocol for the parameter estimation. (© 2024 IEEE)

After completing the preparations, the subject was asked to perform resting
measurements for 3 min to assess the resting heart rate and the resting energy
expenditure while quietly standing. Ma et al. stated that a warming-up period of
3 min can increase the force capacity of one muscle group [MCBM12]. However,
Samaan et al. [SWH+16] proposed a warm-up of 10 min. As a trade-off, a 5 min
warm-up phase, composed of walking with zero-torque control and a speed of
1.3 km/h, was included in the beginning of the experiment. The same walking
speed was maintained throughout the experiment.

Inducing fatigue is fundamental for developing a fatigue model. Although
people with hemiplegia or other pathological disorders experience fatigue as a
symptom during daily activities and rehabilitation, healthy people are able to
maintain low-intensity tasks such as walking for several hours [MHH13]. To
accelerate the process of fatigue development during the experimental protocol,
the exoskeleton was used not as an assisting device but as a training device
by applying negative assistance factors k for the patient-cooperative control
resulting in increased resistance during walking. The exact assistance factors k
were chosen heuristically (Hip stance phase: 0; Hip swing: -0.2; Knee stance:
-0.1; Knee swing: -0.5) to allow resistance while maintaining the motor’s
control capabilities. Moreover, the weight of the exoskeleton and an additional
vest of an aging simulation suit (GERT, Produkt + Projekt Wolfgang Moll,
Niederstotzingen, Germany) weighing 10 kg contributed to the inducement of
fatigue and simulated the muscle weakness of people with hemiplegia.

The measurements of MVC were conducted on the test bench (see Fig. 5.3).
According to the developed fatigue model, each muscle group responsible for
movements of the hip and knee joint has its own fatigue and recovery parameter.
Thus, one MVC measurement phase consisted of four movements, measuring the
maximum force during hip and knee extension and flexion. All joint movements
were conducted on the same test bench during the MVC measurement phase
to save time and avoid any structural modifications. Thus, the hip extension
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and the hip flexion were measured while the subject was standing upright,
keeping balance by holding the vertical aluminum profile depicted in Fig. 5.3.
The misalignment of the hip joint and the rotational axis of the torque sensor
were compensated using the lever arm principle. The MVC measurements
were executed for each joint movement three times for 3 s to 5 s with a break
of 5 s to 10 s. The instructor gave the command to start and stop the MVC
while the test subject was verbally encouraged to exert the maximum force.
In [Vøl97], Vøllestad stated that central limitations can be reduced with verbal
encouragement. During the execution of the MVC measurements, the zero-
torque control of the exoskeleton was enabled.

5.2.5 Parameter Estimation

The fatigue and recovery parameters can be obtained by fitting the recorded
target load (model input) and MVC (measured output) with the fatigue model.
Frey-Law et al. described the process of solving for the model parameters with
numerical methods and investigated the use of fewer MVC assessments [FLSU21].
The fatigue model parameter for intermittent sub-maximal contractions can be
determined using, e.g, the Levenberg-Marquardt algorithm, which computes the
best-fit solutions for the minimal least squares difference between the measured
and modeled data as introduced in Sec. 2.3.2. The different methods to reduce
the number of MVC assessments, e.g., using only MVC measurements in the
beginning and at the end of the fatigue development, have proven effective if
later fatigue behavior is captured. For this case, the MVC assessments were
chosen to be distributed equally to capture the overall fatigue development
during the protocol as the later fatigue behavior cannot be guaranteed with
one hour of walking. The start parameters of F , R, and r were determined
heuristically based on parameters provided in [LHFL18]. The algorithm searched
for minimal error until the termination criterion (convergence with 0.0001
optimality tolerance or 100 iteration steps) was reached.

5.3 Human-in-the-Loop Fatigue Control

Leveraging the existent joint and subject-specific fatigue models, the possibility
of not only estimating but also controlling fatigue using the exoskeleton’s
assistance is proposed. To test this hypothesis, a control system for fatigue is
presented, which is an extension of the patient-cooperative exoskeleton control
described in chapter 4.

The proposed overall control is visualized in Fig. 5.5. The individual blocks
are explained in more detail in the following sections. The control system is

107



5 Fatigue Assessment and Fatigue Control

Figure 5.5: Control loop of the HiL control incorporating fatigue. (© 2024
IEEE)

designed and validated based on the fatigue model for subject 1 (parameters
see Tab. A.2).

5.3.1 Reference Generation

First, it is necessary to define the reference variable which is being controlled.
The residual joint strength, denoted as residual capacity, describes the de-
velopment of muscle fatigue. However, every muscle has a different residual
capacity threshold, at which it can theoretically maintain the force infinitely
long. Moreover, Enoka et al. define fatigue as a self-reported symptom derived
from an interaction of perceived and performance fatigability [ED16]. The
intensity of the objective measures, such as the MVC decline, can only be rated
by the perceived fatigue as, for example, one person experiences more fatigue
with the same MVC decline than another person. Additionally, it is more
intuitive to use the ratings of perceived fatigue to define the level of fatigue
than to define the reference residual capacity for every muscle group. Due to
these reasons, the state of fatigue (SoF) combined with the RPF is used to
generate the reference RP Fset.

The SoF was introduced by Fayazi et al. and is defined as the decline in force
capacity normalized with the threshold force capacity, at which the muscle
can maintain the force for a very long time [FWL+13]. The motor unit-based
fatigue model can be transformed to the SoF by:
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SoF = 100 %MV C − RC

100 %MV C − RCth
. (5.9)

The SoF index describes fatigue with an index between 0 and 1. An SoF of 1
(100%) indicates that the individual is maximally fatigued and can only exert a
force equal to the threshold residual capacity (RCth). An SoF of 0 indicates
that the muscle is not fatigued and has 100 % of its residual capacity. According
to Liu et al., the threshold residual capacity can be determined by [LBY02]:

RCth = Rrr

F + Rrr
· 100 % . (5.10)

However, the dynamic task of walking is seen as an intermittent muscle
activation with a different recovery factor during rest. For this reason, the rest
recovery factor r was integrated into the calculation of RCth by estimating
the duty cycle of muscle activity and rest periods during one gait cycle. The
active phase can be denoted as α = tactive/tcycle while the resting phase may be
expressed by β = trest/tcycle. The modified calculation of RCth during dynamic
tasks is:

RCth = α · R + β · rR

F + (α · R + β · rR) · 100 % . (5.11)

The variables α and β, expressing the duty cycle, were determined offline by
evaluating 60 gait cycles of subject 1 and taking the average of the active and
resting time intervals divided by the gait cycle time. In theory, it is also possible
to update the duty cycles online. The duty cycle values and the corresponding
RCth for subject 1 are presented in Tab. 5.3.

Table 5.3: Averaged duty cycles during one gait cycle and the corresponding
RCth of subject 1. (© 2024 IEEE)

Muscle group α β RCth [%MVC]
GM 0.2409 0.7691 18.45
IP 0.7938 0.2062 28.56
HS 0.5822 0.4178 28.21
QF 0.4750 0.5250 20.68

The SoF represents a comparable objective measure representing the devel-
opment of muscle fatigue. Additionally, the ratings of perceived fatigue can
rate the objective measure with the subjective feeling of fatigue, making the
reference value more intuitive. Whittaker et al. found a linear relationship
between the RPF, expressed by a modified Borg CR-10 scale, and the MVC
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decline [WSP19]. Thus, by linear regression between the RPF values and the
SoF values calculated from the residual capacity values, it is possible to provide
an RPF value as a set point (RP Fset) for this control strategy. The derived
linear relation enables the translation of a reference RPF into a reference SoF
for each muscle group (MG) through

SoFMG,set = mMG,set · RP Fset with MG ∈ (GM, IP, HS, QF) (5.12)

and mGM = 0.07, mIP = 0.09, mHS = 0.084, mQF = 0.093 for subject 1.

5.3.2 Fatigue Controller
The fatigue controller aims to control the SoF by changing the assisting factors
of the exoskeleton’s control during stance (kH,St, kK,St) and swing phase (kH,Sw,
kK,Sw) for the hip (H) and knee (K) joint. The goal is to reach a specific fatigue
level throughout the training session. Theoretically, this can be accomplished by
evaluating the steady-state of the system, which should approach the predefined
target SoF level. Changing the amplification factors allows to control the
patient’s effort and, thus, the fatigue development. A control strategy based on
a feed-forward (FF) control and a feedback proportional controller is suggested
as depicted in Fig. 5.6.

Figure 5.6: Fatigue controller for each muscle group (MG) consisting of a
feed-forward (FF) term and a feedback term. (© 2024 IEEE)

The feed-forward control uses the fatigue model, to estimate an ideal amplifi-
cation factor to reach the target SoF. In addition, the proportional controller
compensates for disturbances and model errors. An integral behavior is not
considered because the development of fatigue has a very slow dynamic behavior
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and large time constants. It is important to note that this choice can lead to
non-zero steady-state errors.

The feed-forward term uses the steady-state value of the inverse of the fatigue
model to obtain a required averaged target load (T Lmean), which results in
given residual capacity (RCset). For this, a transfer function of the fatigue
model was derived under the assumption that the required target load can
always be generated. In this case, the activation-deactivation drive C(t) in
eq. (5.4) can be reduced to:

C(t) = 10 · (T L − MA) . (5.13)

Furthermore, considering the fatigue model eqs. (5.1) - (5.3), (5.5), (5.6), the
following transfer function can be derived:

G(s) = RC(s)
T L(s) = −10 · F · s

s3 + s2 · (10 + F + Rrr) + s · Rrr · (10 + F ) . (5.14)

The initial condition of RC(t = 0) = RC0 = 1 (fully recovered) can be
incorporated by:

RC(s) = G(s) · T L(s) + RC0 . (5.15)
The required averaged target load to achieve a given residual capacity can

be obtained by calculating the steady-state of the inverse of this system using
the final limit theorem. Additionally, the rest recovery factor r was included
similarly as in the calculation of RCth (see eq. (5.11)). Thus, the inverse fatigue
model in steady-state for the dynamic task of walking is:

T L = 1
Fatigue Model |t→∞

= lim
s→0

s
1

G(s)
RCset − RC0

s

=−Rrr · (10 + F )
10 · F

(RCset − RC0)

Rrr≈======⇒
αR+βrR

T L ≈ −(α · R + β · rR) · (10 + F )
10 · F

(RCset − RC0) .

(5.16)

With the average target load T L for each muscle group1, that is necessary to
achieve a given residual capacity, the feed-forward amplification factor kFF can
be determined by

kMG, FF = 1 − T LMG

T LMG, k=0
, (5.17)

where T LMG, k=0 is the target load during walking with an amplification factor
of k = 0, which was obtained from experimental data for each muscle.

1The index for each muscle group in eq. (5.16) is neglected for readability.
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The additional proportional controller requires a negative gain, as a negative
error should lead to an increase in the amplification factor to increase the
assistance. The corresponding feedback amplification factor kMG,P is described
by:

kMG,P = −P · (SoFMG,set − SoFMG) . (5.18)

A gain of P = 5 was chosen heuristically as it provided amplification in a
reasonable range.

The sum of the feed-forward and feedback amplification factor results in the
assistance factor kMG = kMG, FF + kMG,P for each muscle group.

5.3.3 Allocation of Assistance

The assisting factor for each muscle group was forwarded to the exoskeleton’s
assistance control depending on the gait phases. Ideally, the assistance factor is
supposed to switch between the agonist and antagonist muscle depending on
the sign of the joint torque as described in Tab. 5.1. However, this might lead
to discomfort for the subject while walking. For that reason, the number of
different assisting factors was reduced in a second approach by calculating the
mean amplification factor for each joint, that is for the hip kH = kGM+kIP

2 and
the knee kK = kHS+kQF

2 . Note that the assisting factor might differ between the
stance and swing phases due to different lower and upper boundaries resulting
from hardware and control restrictions.

5.4 Results and Discussion

The results of the system identification study as well as the control validation
are presented in the following.

5.4.1 Results Fatigue Model

MVC measurements

The averaged and individual MVC measurements of all subjects during the
parameter identification experiments for all four considered muscle groups
are visualized in Fig. 5.7. On average, the MVC for the different muscle
groups decreased during the fatigue session by 17.5 (±12.5)% (GM), 14 (±12)%
(IP), 17.6 (±8)% (HS), and 19.8 (±12.2)% (QF), respectively. During the last
30 min of the experiment they recovered to 5.4 (±8.3)% (GM), 5 (±9.4)% (IP),
2.5 (±5.8)% (HS), and 7.9 (±7.5)% (QF) total MVC decline. The individual
MVC losses reached up to a maximum of -38.9% (subject 2, QF). However,
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Figure 5.7: Average and individual MVC decline during the experiment for
all subjects of the four different muscle groups: GM (left), IP (second left),
HS (second right), and QF (right). The time between two consecutive MVC
measurements was approximately 15 minutes. (© 2024 IEEE)

MVC increased of up to 22.3% (subject 6, QF) were also observed in a few
cases. Possible reasons for an increase in MVC are discussed in section 5.4.3.

Perceived Fatigue

The ratings of perceived fatigue values (on a scale from 0 to 10) reported by
the participants during the experiment are shown in Fig. 5.8. On average,
a maximum RPF of 3 (±0.9) was achieved during the fatigue session. The

113



5 Fatigue Assessment and Fatigue Control

0 15 30 45 60 75 900

1

2

3

4

5

Fatigue Recovery

Experiment progress (%)

R
PF

Mean Std. Dev. Subject 1 Subject 2
Subject 3 Subject 4 Subject 5 Subject 6

Figure 5.8: The RPF reported by the participants during the experimental
procedure. Note: The x-axis displays the experimental progress (%) as the total
time varied slightly between trials. (© 2024 IEEE)

maximum RPF of 4 was reported by three participants at the end of the fatigue
session. During the recovery session, the average RPF decreases to 0.5 (±0.8).

Physiological Measures

The energy expenditure during the fatigue session ranged from 153 W (subject
6) to 289 W (subject 1) with an average maximum of 206 W among all subjects.
On average, the EE was 3.03 (±0.49) times higher during walking than during
rest. During the fatiguing session, the HR increased on average by 17.6 (±7.3)%
with a minimum increase of 7.5 beats per minutes (bpm) for subject 2 and a
maximum increase of 21 bpm for subject 1.

Identified Model

The target load of the GM muscle group of subject 1 during the experiment
and the 7 MVC measurements are visualized in Fig. 5.9. Based on the target
load (input), recorded by the exoskeleton, and the MVC measurements the
fatigue model parameters could be identified for the GM of subject 1 and,
consequently, calculate the residual capacity of the GM for the entire time of
the experiment as visualized by the red curve in Fig. 5.9. The modeled residual
capacity decreases during the fatigue session and fully recovers at the end of
the experiment. The mean absolute error (MAE) between the modeled residual
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Figure 5.9: Measured MVC (blue) and calculated target load (TL, grey) for the
GM muscle of subject 1 for the entire experimental procedure including fatigue
and recovery session. Additionally, residual capacity (RC, red) based on the
fitted fatigue model.

capacity and the measured MVC in this particular case is 4.33 %MVC.
Similarly, the fatigue model parameters could be determined for all considered

muscle groups of all subjects. The mean model parameters including the
standard deviation among the participants are listed in Tab. 5.4. Additionally,
the table provides the average MAE between the modeled and measured residual
capacity in %MVC. The individual model parameters are provided in the
appendix in Tab. A.2.

5.4.2 Control Validation

The fatigue controller was validated both through simulation and experimental
testing.

115



5 Fatigue Assessment and Fatigue Control

Table 5.4: Averaged model parameters of all participants. (© 2024 IEEE)

Muscle F (/s) R (/s) r (-) MAE
(%MVC)

GM 0.00328 0.000047 18.34 5.61
(±0.00238) (±.000036) (±5.86) (±2.64)

IP 0.00103 0.000174 14.89 4.33
(±0.00081) (±0.000225) (±6.30) (±2.57)

HS 0.00158 0.000097 16.01 3.81
(±0.00078) (±0.000051) (±5.98) (±1.45)

QF 0.00262 0.001180 7.20 6.00
(±0.00201) (±0.002340) (±6.41) (±1.90)

Simulative Validation

The simulation aimed to validate the control concept under ideal conditions,
considering a 2-hour time frame. During the first hour, the ratings of perceived
fatigue reference value was set to RP Fset = 2, subsequently, it was increased to
RP Fset = 2.5 to observe the controller’s response to a reference value change.
These values were chosen to ensure reasonable amplification factors and rising
times for experimental validation in the next subsection.

The simulation did not consider the full dynamic model of the exoskeleton
and test subject. Instead, the input for the simulation was taken from a
repeating 1-minute walking sequence, which was amplified based on the selected
exoskeleton’s assistance factor to account for the varying target load. It should
be noted that the simulated data and averaged target load value for the FF
loop are only valid under the same conditions as in the parameter estimation.

Three simulations were conducted: One with amplification factors alternating
between agonist and antagonist muscles, the second one using the mean assisting
factor for each joint, and lastly the same simulation under the consideration
of the exoskeleton’s actuation limits. The simulation results for the knee joint
(HS and QF) are presented in Fig. 5.10.

Using eq. (5.12), the two RPF reference values translate to SoFHS,set =
16.8% and SoFQF,set = 18.6% for RP Fset = 2 and to SoFHS,set = 21% and
SoFQF,set = 24.5% for RP Fset = 2.5. To achieve these fatigue levels, the ideal
assistance factor kHS and kQF start at -0.6 and -1, respectively, and slowly
increase to almost 0 (transparent behavior) with increasing fatigue as depicted
in the top graph of Fig. 5.10. With the increasing reference value, the assistance
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Figure 5.10: Simulation results. Top: Ideally calculated assistance factor k
for HS (blue, dashed) and QF (green, dashed) and actual knee assistance factor
(orange, solid) calculated as the mean value from ideal assistance factors. The gray
area represents the experimental actuation limit. Bottom: SoF reference based
on a RPF reference of 2 and 2.5 for HS and QF (black). Additionally visualized
is the simulated SoF of the HS (blue) and the QF (green) using ideal assistance
(dashed), the actual assistance (solid), and the actual assistance considering
exoskeleton’s actuation limits (gray, dashed). (© 2024 IEEE)

factors drop by about 0.4.
The steady-state error for the HS using the ideal assistance factors (switching

between agonist and antagonist) becomes zero after approximately 40 min.
For the QF, an absolute steady-state error of 1% remains at the end of the
simulation. The simulation outcomes using the mean assistance factor for the
knee kK show slight differences compared to the first simulation. Specifically,
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the fatigue level of the QF is 2.6% lower than the reference value, while that of
the HS is 1.3% higher. This effect is increased for the QF under consideration
of a minimal assistance factor of kK = −0.4. The simulation outcomes for the
hip muscles are visualized in the appendix in Fig. A.3. They exhibit similar
trends with the only difference that the actuation limits (−0.25 ≤ kH ≤ 0.2)
for the hip motor cause a maximum error of up to 6%.

Experimental Validation

Fig. 5.11 shows the experimental validation procedure for the developed HiL
controller. Initially, a reference value of RP Fset = 2 was set for 35 min, followed
by an increase to RP Fset = 2.5 and 20 min of walking. As shown in Fig. 5.11,
the experimental protocol included warm-up phases and MVC measurements
between walking sessions, during which the fatigue controller and model were
paused. This was justified because MVC measurements consist of alternating
MVC and rest periods, assumed to cancel out fatigue and recovery effects,
as shown in Fig. 5.9. During the experimental validation, only the averaged
assisting factors (kH, kK) were applied.

Figure 5.11: Measurement protocol for the validation of the fatigue controller.
(© 2024 IEEE)

Fig. 5.12 (top graph, dashed lines) displays the ideal amplification factors
for each muscle group, showing similar behavior to the simulated k-factors.
However, the experimental amplification factors for the knee and hip (see
appendix Fig. A.4) were larger than the ones during the simulation. Notably,
during the second phase, kHS was significantly larger in the experiment than
in the simulation, creating a wider gap between HS and QF assistance. This
was due to the larger SoFHS values, leading to a more significant control
error. The difference in muscle assistance also affected the averaged assistance
value kK applied to subject 1 during the experiment, resulting in a higher
steady-state error (Fig. 5.12, bottom) compared to the simulation. A second
factor attributing to the increased steady-state error was the saturation limit
restricting positive support. Furthermore, it is essential to acknowledge the
inconsistency noted in the last MVC measurement of Fig. 5.12. Potential
explanations for this variance are discussed in the subsequent section.
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Figure 5.12: Experimental results. Top: Ideally calculated assistance factor k
for HS (blue, dashed) and QF (green, dashed) and actual knee assistance factor
(orange, solid) calculated as the mean value from ideal assistance factors and
considering actuation limits. Bottom: Calculated SoF reference based on a RPF
reference of 2 and 2.5 for HS and QF (black). Additionally visualized is the
model-based determined SoF of the HS (blue) and the QF (green) during the
experiment and the SoF for the HS (blue marks) and the QF (green marks)
determined via MVC measurements. (© 2024 IEEE)

5.4.3 Discussion of the Fatigue Model

The occurrence of significant fatigue in all subjects during walking with the
active exoskeleton resistance and the additional age suit vest is a key result of
this study. The fatigue is indicated by both MVC measurements and subjective
ratings of perceived fatigue and is further corroborated by increased HR and EE.
The identified fatigue model parameters and further challenges and limitations
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are described in the following.

Identified Model Parameters

The fatigue rates F of all muscle groups were found to range from F = 0.001/s
to F = 0.0033/s, which are approximately 10 times smaller than the knee’s
extension fatigue rate (F = 0.015/s) observed by Looft et al. [LHFL18]. The
recovery rates R of the GM, IP, and HS are around R = 0.0001/s, and, thus,
smaller than those investigated by Frew-Law et al. [FLLH12] and Looft et
al. [LHFL18], which included joints like the knee, trunk, and ankle but not hip
muscles.

The average recovery parameter of the QF responsible for knee exten-
sion was on average R̄QF = 0.00118/s, comparable to the literature value
of R = 0.00149/s [FLLH12, LHFL18]. However, this parameter might have
been influenced by subject 6’s unusually high recovery rate, leading to potential
inaccuracies in parameter estimation. The high recovery rate of subject 6 can
be explained by MVC increase after the first fatiguing session (see Fig. 5.7).

The estimated fatigue model’s parameters were generally smaller compared
to the literature, likely due to different muscle groups being investigated and
the literature focusing on high-intensity contractions (only 14% low-intensity
contractions) [LHFL18]. This highlights the need for new parameterization
specific to the walking task, which is considered a low-intensity activity and
may explain the lower fatigue rates observed in the conducted study.

The fatigue rates were also affected by the cycle time of muscle activation.
Rashedi and Nussbaum found that more frequent and shorter rests induce less
fatigue than the same force load with less frequent and longer rest periods [RN16].
The high frequent muscle activation during gait could contribute to the lower
fatigue development in the model.

Furthermore, fatigue development depends on the interaction between fatigue
and recovery rates, where higher fatigue rates combined with higher recovery
rates or lower fatigue rates with lower recovery rates yield comparable results.
The same holds for the rest recovery factor r. Looft et al. estimated the rest
recovery factor of the knee joint to be r = 15 (knee extension) [LHFL18]. The
estimated rest recovery rate in this thesis ranges from r = 7.2 to r = 18.34,
making it comparable to the literature.

On average, the MAE between the modeled and measured residual capacity
was approximately 5 %MVC, which aligns with findings in the literature. For
comparison, Looft et al. observed estimation errors ranging from 5.7% to 9.9%
torque decline, equivalent to the decline in %MVC [LHFL18]. Previous research
has shown that the rest recovery factor significantly reduces the prediction
error. Specifically, using the 3CC model, the prediction error for knee extensor
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muscles was 21 %MVC, whereas the modified 3CCr model reduced the error to
8.6 %MVC [LHFL18]. It was possible to confirm this finding by the results of
the presented study. Notably, some subjects’ prediction errors of the presented
study fall within a narrow range of 2 %MVC to 3 %MVC, which is relatively
small compared to the literature. The higher accuracy may be attributed to
the approach used in this study, where estimation errors were determined using
individual model parameters for each subject, whereas the literature may rely
on generalized model parameters, leading to higher prediction errors.

Experimental Challenges

This section discusses the practical challenges encountered in the experimental
study, their implications on the results, and the possibility of generalizing the
fatigue model for different populations.

Firstly, the posture during MVC measurements is crucial. However, defin-
ing the posture for hip extension and flexion is difficult compared to knee
measurements when using the same test bench as in the presented setup (see
Fig. 5.3). Bending and slight deviations occurred in the MVC test bench
and exoskeleton, affecting joint angles and torque output. Despite efforts to
standardize posture, variations in force output were observed among subjects.
The hip MVC results showed more variability than knee flexion, possibly due
to uncomfortable postures affecting maximal force exertion. The opportunity
to measure the MVC of the hip muscles while lying, as in [DSBB+09], or in
a more robust construction that needs to be reassembled to change between
hip and knee joint, is challenging because of the exoskeleton. Additionally, the
increase of MVC measurement time would result in more recovery during the
MVC measurements that would counteract the fatigue development.

Another challenge was the fixation between the exoskeleton and test subjects,
particularly due to anatomical differences among the test subjects. Misalign-
ments triggered safety thresholds, causing interruptions during walking, which
affected torque and fatigue estimation. Correct calibration of joint angles is
essential as it directly affects the human torque estimation and, thus, the target
load (model input). Additionally, the calculation of the target load is very
sensitive to the measured angle due to the high gradient of the torque-velocity-
angle surface at small angles (see Fig. 5.2), making the misalignment between
the exoskeleton and the joints more crucial. Therefore, precise calibration of
the target load and scaling of the TVA surface is essential to ensure consistent
inputs and improved fatigue estimation based on identified parameters when
integrating the fatigue model into the exoskeleton’s HiL control.

Adapting to the exoskeleton and the MVC test bench over time, as well as
warm-up effects, posed additional challenges. Warm-up can lead to an increase
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of up to 15 %MVC while fatigue can decrease it. The warm-up phase of 5
minutes seemed sufficient for most subjects, but some showed increased MVC
after the initial fatigue sessions (see Fig. 5.7), possibly due to adaptation or
discomfort with the exoskeleton. These factors need careful consideration during
experimentation.

Considering the study’s generalization, the small number of healthy, young
adult subjects raises questions about the model’s applicability to other pop-
ulations. On the one hand, influences, like motivation, homeostasis, or the
psychological state, contribute to variations of individual fatigue development.
On the other hand, patients with hemiplegia, incomplete SCI, and elderly
individuals exhibit different fatigue development. For example, Dorneles et al.
investigated the fatigue development of incomplete SCI patients after prolonged
walking and came to the conclusion that they develop higher muscle fatigue
than healthy control subjects [DNG+20]. Additionally, Knorr et al. found that
the origin of neuromuscular fatigue is shifted to central limitations which might
contribute to increased self-reported fatigue [KID+11]. For that reason, the
presented experimental study alone cannot develop a generalized fatigue model,
and repeating parameter estimations for various populations is recommended.

Despite these challenges, the adapted model and experimental protocol effec-
tively assessed and modeled fatiguing and recovery behavior during exoskeleton-
assisted walking.

Theoretical Limitations

The 3CCr model for walking with an exoskeleton has theoretical limitations
that deviate from real fatigue development. These limitations include simplified
muscle activation, neglecting co-contraction, and not considering muscle fiber
composition, perceived fatigue, and physiological factors like homeostasis.

The first limitation is that the model only considers four specific muscle
groups, excluding other contributing muscles like hip adductors and calf muscles.
Additionally, co-contraction, common in patients with gait disorders, is not
accounted for, potentially underestimating fatigue [Win09].

Secondly, muscle fiber composition, with Type I and Type II motor units,
is not considered. While walking might recruit mostly Type I motor units,
exoskeleton use could activate Type II motor units due to the resistive behavior,
affecting fatigue. However, individualized parameters represent active motor
units during exoskeleton walking, mitigating this concern.

Lastly, perceived fatigue and physiological mechanisms like homeostasis and
the psychological state of the person are neglected. According to the 3CCr
model, a muscle is able to maintain a force below a certain force limit infinitely
long [Roh60]. During walking (a low-intensity task), the model assumes no
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endurance time limit. However, in reality, after a couple of hours, homeostasis
becomes unbalanced, causing increased core temperature and the need for
hydration and food for energy. These effects are not considered by the fatigue
model but could be integrated with a slowly decreasing gain through longer
walking sessions. Additionally, the perceived fatigue has not been integrated
into the fatigue model, but it was considered in the HiL control design.

5.4.4 Discussion of Controller Performance
The simulation results show that the developed HiL controller effectively con-
trols the fatigue level with a maximal error of 1% under ideal conditions in
the simulation. It is important to note that the saturation limits strongly
influence the controller’s performance, as they restrict the control action. The
selected reference fatigue levels (RP Fset = 2 and RP Fset = 2.5) cause the
amplification factors to spread over a wide range, making control of higher or
lower ratings of perceived fatigue values more challenging. Using the mean of
the agonist and antagonist’s amplification factors results in higher steady-state
errors, as the fatigue model and controller are designed to account for different
dynamic behaviors for each muscle. However, tests have shown that using the
mean amplification factors provides a more comfortable walking experience,
while the switching k-factors lead to jerky support from the exoskeleton, po-
tentially increasing fatigue development as the body adapts constantly to the
switching amplification. Additionally, considering the high variations in the
MVC measurements during the parameter identification, an error of 2.6% or
6% - taking actuation limits into account - is comparatively small. Thus, the
simulation results justify the choice of the mean amplification factor used for
the experimental validation.

The experimental validation demonstrated that the HiL controller effectively
regulates the desired fatigue level by adjusting the exoskeleton’s assistance.
However, the controller’s performance is significantly influenced by the satu-
ration limits of the amplification factors and thus confirms the findings of the
simulative validation. The experimental validation showed that the GM and
QF muscles exhibit excellent control performance with minimal steady-state
errors, while the IP and HS muscles are more constrained by the saturation
limits, leading to steady-state errors of up to 15% relative to the SoF scale.
Incorporating an integral component in the feedback control might help reduce
the steady state error. However, tuning the integral gain is a challenge as even
a slight increase in the integral gain can quickly result in amplification beyond
the exoskeleton’s control capacity.

The first three MVC measurements conducted during the experiment (Fig. 5.12)
validate the intended fatigue in the two muscle groups. However, the last MVC
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measurement of the QF muscle suggests recovery despite an increased target
RPF. This discrepancy can be attributed to the higher support factor kK
compared to the ideal assistance kHS and the considerable variance in the MVC
measurements themselves (see Sec. 5.4.3).

Lastly, it is important to highlight that the controller was tested on only one
individual. For future studies, it is recommended to expand the controller’s
validation by including more participants. Nevertheless, the results highlight
the promising potential of integrating the developed fatigue model with the
HiL controller in effectively controlling fatigue levels.

5.5 Summary

In this chapter, a fatigue model for walking with an exoskeleton with a cor-
responding HiL control mechanism for regulating fatigue levels was success-
fully formulated and validated. Utilizing the 3CCr fatigue model of Looft et
al [LHFL18] and the torque-velocity-angle surface adaptations, the study cap-
tures intricate details of dynamic muscle activities. The experimental validation
of the model parameters confirmed its predictive accuracy for MVC decline.
Furthermore, the developed HiL control system, incorporating perceived fatigue
and fatigue level metrics (RPF and SoF), effectively regulated the fatigue level
within acceptable steady-state error ranges. However, the saturation limits of
the amplification factors influenced control performance, indicating areas for
further refinement. The integration of the fatigue model into the HiL control
system demonstrates the potential for improved management of fatigue levels
in patients using exoskeletons. This represents a promising advancement in
assistive technology, paving the way for enhanced, personalized user experiences
in exoskeleton applications.
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Traditional rehabilitation places significant demands on therapists and is typ-
ically limited to a therapeutic environment [Reh20]. However, for optimal
results, early and intensive rehabilitation, such as home-based training, is cru-
cial. A wide range of individuals, including the elderly, those with post-polio
syndrome, multiple sclerosis, and spinal cord injury (SCI), particularly benefit
from rehabilitative interventions in everyday life [YF17]. Given the undeni-
able importance of early and consistent rehabilitation, especially after a stroke
with paresis as a symptom, to restore mobility [MP12], novel approaches to
facilitate rehabilitation are urgently needed. Lower limb exoskeletons offer a
promising solution. Yet, existing exoskeletons suffer from limitations, especially
with regard to facilitating patient-initiated movements throughout the entire
gait cycle, which is critical for rehabilitation [Bin88,MP12]. Furthermore, the
integration of safety features, notably compliant actuators with varying serial
elasticity, is often restricted to isolated motion sequences.

To address these challenges, the first central contribution of this dissertation
is the development of a unilateral exoskeleton equipped with variable stiffness
actuators (VSAs) to support both the knee and the hip. The VSAs enable a
real-time modification of coupling properties to adapt to different gait phases
and environmental demands. Secondly, a new system identification process is
introduced to not only assess the device’s dynamic behavior but also derive the
individual’s lower limb model dynamics. The detailed knowledge of the subject’s
leg movements is employed to develop a real-time motion intention estimation
using an unscented Kalman filter (UKF), ensuring accuracy and reliability.
Furthermore, a novel patient-cooperative control strategy is formulated that
provides either assistance or resistance throughout the gait cycle and during
transitional movements such as sit-to-stand (Sit2Stand), depending on the
patient’s movement needs. Additionally, an automatic adjustment of the
actuator compliance based on the gait phases and the subject’s movement is
proposed, increasing safety during the swing phase and stability during the
stance phase. The final contribution of this thesis is the development of a muscle
fatigue model, parameterized from healthy subject data, that provides insight
into fatigue during exoskeleton-assisted walking. This model not only enables
the assessment of fatigue but also the automatic selection of the exoskeleton’s
assistance factor to manage fatigue.

To summarize the overall findings of this thesis and to give an outlook
for further improvements and research, the research questions introduced in
Chapter 1 are recapitulated in the following:

1. What are the necessary actuator specifications for an exoskeleton to ac-
commodate dynamic adjustments of serial elasticity throughout various
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phases of a gait cycle?
The lower limb exoskeleton with serial elastic actuators (L2Exo-SE) fea-
tures two VSAs, specifically the mechanical-rotary variable impedance
actuator (MeRIA), for hip and knee assistance. The hip acutator’s stiff-
ness values range from 265 N m rad−1 to 515 N m rad−1, while the knee
actuator’s values vary between 196 N m rad−1 and 408 N m rad−1, respec-
tively. By integrating high-resolution encoders at both ends of the elastic
component, the elasticities can serve as torque sensors even under chang-
ing stiffness values, thereby enabling force feedback control methods on
the L2Exo-SE.
It is crucial to consider the time required for adjusting the stiffness. For
instance, the time for the knee actuator to change from its highest to low-
est stiffness is approximately 1.75 seconds. Unfortunately, this duration
prevents the actuator from reaching its full potential within a single gait
cycle. A solution for this limitation is provided by using a faster motor
changing the stiffness as it is incorporated into the hip actuator. This
hardware change reduces the stiffness adjustment time to 0.8 seconds,
outclassing most current actuator models and ensuring comprehensive
stiffness modifications within a single gait cycle.
However, the scope of this work primarily focuses on slow gait veloci-
ties, which are suitable for rehabilitation applications. When considering
other potential applications, there is a necessity for even faster changing
velocities, which would likely require exploring alternative mechanical
mechanisms or exploiting the capabilities of pneumatic artificial muscles.

2. How viable is the real-time estimation of the torque produced by the user
in exoskeletons equipped with variable serial elasticities?
The developed subject torque estimation for the swing phase based on
the UKF is fast, reliable, and functions over the entire stiffness range of
the MeRIA. Thus, the approach is transferable to other serial elastic
actuators (SEAs) and VSAs. Simulations demonstrated that subject
torques can be reliably estimated up to rates of change of 13.7 Hz and
4 Hz for the knee and hip, respectively. These values exceed the cut-off
frequencies of the two joints and are thus considered sufficiently fast.
Experiments showed that the UKF based approach is more robust than
the conventional inverse dynamics approach.
The reduced performance of the hip joint compared to the knee joint results
primarily from the high backlash from the attachment of the exoskeleton
with the torso of the test person. The mechanical interface between robot
and human is generally considered to be a major challenge in rehabilitation
robotics, which is once again confirmed here. One example to address
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this problem with regard to the subject torque estimation would be to
consider the backlash in the UKF model.

3. To what extent can the torque estimation strategy be used to formulate
individualized assistance control in exoskeletons?
The developed patient torque estimation for the swing phase in combi-
nation with the static model for the detection of the subject torque in
the stance phase is suitable for the use in an assistance control, which
includes the entire gait cycle as well as other movements like standing
up and sitting down. The transition between the two phase-dependent
torque estimates is realized through a fading algorithm based on the
ground reaction forces (GRFs). Using the developed assistance control
strategy, the average user’s joint torque during gait is reduced by 63.6 %
- 78.4 % for the hip and 40.8 % - 50.2 % for the knee joint compared to
unassisted walking. Due to the individual model parameters dependent
on the subject anatomy, a system identification or at least an adjustment
of the mass values is necessary.
For the future, it is therefore proposed to perform an online parameter
identification, which allows a faster adaptation of the system to the sub-
ject. Additionally, the influence of the human-cooperative control on
the human body should be investigated by electromyography (EMG) and
metabolic cost measurements, and further tests should be performed not
only on healthy subjects but also on patients with hemiplegia.

4. How effective is the modulation of serial stiffness in an exoskeleton for
enhancing user safety?
The presented stiffness adaptation provides high/low stiffness for the
high/low impedance task, i.e. high/low human joint torques during
the assistance control, in the swing phase. For the stance phase, a
high stiffness is provided. Thus, the stiffness adaptation increases the
safety of the physical human-robot interaction during the swing phase
while maintaining a high control bandwidth during the stance phase.
Experiments have shown that applying the lowest stiffness in the knee
can reduce the sudden shocks resulting from a collision with a mechanical
barrier by 82.8%. Additionally, a virtual stiffness was introduced at the
end of the exoskeleton’s operating ranges gently pushing the user back
into more physiological ranges, which also slows down the user before
crushing into the mechanical limitations and thus lowering the strain on
the hardware as well as on the human body.

5. Can muscle fatigue be diagnosed during the use of exoskeletons?
Yes, the developed exoskeleton in combination with the serial elastic ele-
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6 Conclusion and Outlook

ments allowed an online torque estimation of the subject. The estimation
of the torque applied by the subject is essential for the assessment of
muscle fatigue. In conventional fatigue estimations, this parameter is
not available and has to be determined by muscle activity measurements
using electromyography (EMG). Exoskeletons for the lower extremities
are therefore predestined for fatigue estimation during walking. Using
the modified 3CCr model and a subject study with healthy subjects this
statement could be confirmed. The model parameters were experimentally
verified, demonstrating accurate prediction of maximum voluntary con-
traction (MVC) decline with an average mean absolute error of 4.9%MVC.
Up to now, the models have only been parameterized and tested with
healthy subjects. In impaired subjects, higher fatigue rates are to be
expected, which is why further studies should be conducted with more
participants and, above all, patients. In addition, the protocol used in
this work for parameter determination is impractical for everyday use in
rehabilitation therapy and should therefore be simplified or extended by
an online parameter estimation.

6. Is it feasible to manage the user’s muscle fatigue levels by adjusting the
level of exoskeleton support?
In this thesis, a human-in-the-loop (HiL) controller is proposed to manage
muscle fatigue by automatically adjusting the exoskeleton’s assistance
based on the current state of fatigue and a given reference ratings of
perceived fatigue (RPF). The presented control approach effectively regu-
lates fatigue levels within a 0 to 6%MVC steady-state error range during
simulations. Experimental validation confirmed this performance, how-
ever, with partly higher steady-state errors mainly due to the restrictions
of the exoskeleton’s assistance.
Higher assistance values could for example be reached by seamlessly
switching from the presented human-cooperative control to impedance or
even position-based control concepts if required. It should be emphasized
that the control validation was conducted with one healthy subject only.
In the future, studies with more subjects and impaired patients should be
considered.

In summary, this dissertation presents new approaches to the design and
control of lower limb exoskeletons, opening paths for enhanced, adaptable, and
patient-focused rehabilitation technology. Prioritizing the exoskeleton’s user as
the central part of the control system holds the potential to enhance patient
mobility and independence in future rehabilitation devices.

Lastly, the validation of the human joint torque estimation and cooperative
control strategy in studies with healthy participants suggest a promising foun-
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dation for enhancing other assistive devices, such as exoskeletons for industrial
applications or upper limb exoskeletons. Applying the estimation and control
methods to these devices could help improve worker endurance in production
settings and reduce fatigue. This extended applicability highlights the versatility
and potential of these control strategies, advancing exoskeleton technology for
both clinical and industrial applications.
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A Appendix

Ground Reaction Forces

Figure A.1: ground reaction force (GRF) during one gait cycle for three different
gait velocities. Data from [AHS+13], Fig. redrawn from [UD21].
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A Appendix

Assistance Control and Varying Stiffness
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Figure A.2: Gait experiment results. Hip and knee angle, hip and knee
joint torques, and hip and knee motor stiffness for six different assistance factors
averaged over 10 steps (solid lines) and including standard deviation (SD) (shaded
area). The vertical lines present the toe-off event.
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Ratings of Perceived Fatigue (RPF)

Table A.1: ratings of perceived fatigue (RPF) scale (adapted from [WSP19]).

Recovery process RPF Fatigue process
Completely Rested 0 No fatigue at all

0.5 Very light fatigue
1 Light fatigue
2 Fairly fatigued
3 Moderately fatigued
4 Fatigued

50 % Rested 5 Very fatigued
6
7 Nearly exhausted
8
9

Completely Fatigued 10 Absolutely exhausted
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A Appendix

Fatigue Model Parameters

Table A.2: Identified fatigue model parameters for all subjects.

Muscle Subject F (/s) R (/s) r (-) MAE (%MVC)

gl
ut

eu
s

m
ax

im
us

1 0.006019 0.000075 23.56 4.33
2 0.005059 0.000024 15.00 10.46
3 0.002212 0.000018 27.80 4.69
4 0.005000 0.000101 15.00 6.46
5 0.000500 0.000010 15.00 4.86
6 0.000889 0.000052 13.68 2.84

Mean 0.003280 0.000047 18.34 5.61
SD 0.002375 0.000036 5.86 2.64

ili
op

so
as

1 0.002019 0.000130 26.23 2.09
2 0.002000 0.000100 15.00 9.05
3 0.000506 0.000034 9.98 2.94
4 0.000562 0.000161 15.00 2.63
5 0.000105 0.000001 14.99 3.99
6 0.000969 0.000616 8.14 5.27

Mean 0.001027 0.000174 14.89 4.33
SD 0.000809 0.000225 6.30 2.57

ha
m

st
rin

gs

1 0.002031 0.000086 20.93 2.07
2 0.002390 0.000022 15.00 3.96
3 0.001649 0.000120 6.42 2.81
4 0.000780 0.000137 15.00 2.99
5 0.000491 0.000157 15.00 5.53
6 0.002170 0.000061 23.73 5.49

Mean 0.001585 0.000097 16.01 3.81
SD 0.000780 0.000051 5.98 1.45

qu
ad

ric
ep

s
fe

m
or

is

1 0.005837 0.000514 4.73 4.94
2 0.002500 0.000100 15.00 9.53
3 0.003337 0.000296 1.00 5.09
4 0.003000 0.000118 15.00 6.37
5 0.001000 0.000115 1.00 4.14
6 0.000075 0.005949 6.44 5.94

Mean 0.002620 0.001180 7.20 6.00
SD 0.002010 0.00234 6.41 1.90
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Control Validation of Hip

Simulation results (Fig. A.3) and experimental results (Fig. A.4) of the fatigue
control validation. The figures supplement the results shown in Sec. 5.4.2.
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Figure A.3: Simulation results. Top: Ideally calculated assistance factor k
for gluteus maximus (GM) (blue, dashed) and iliopsoas (IP) (green, dashed)
and actual knee assistance factor (orange, solid) calculated as mean value from
ideal assistance factors. Gray area represents the experimental actuation limit.
Bottom: state of fatigue (SoF) reference based on a RPF reference of 2 and 2.5
for GM and IP (black). Additionally, simulated SoF of GM (blue) and IP (green)
using ideal assistance (dashed), actual assistance (solid), and actual assistance
considering exoskeleton’s actuation limits (gray, dashed). (© 2024 IEEE)
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