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Abstract
A new coupling rule for the Lighthill–Whitham—Richards model at merging
junctions is introduced that imposes the preservation of the ratio between inflow
from a given road to the total inflow into the junction. This rule is considered
both in the context of the original traffic flow model and a relaxation setting
giving rise to two different Riemann solvers that are discussed for merging 2-
to-1 junctions. Numerical experiments are shown, suggesting that the relaxation
based Riemann solver is capable of suitable predictions of both free-flow and
congestion scenarios without relying on flow maximization.

1 INTRODUCTION

Traffic flowhas been described by fluid dynamics-likemacroscopicmodels since the 1950s. Themodeling of road networks
by means of hyperbolic equations coupled on a graph has only been an active research field in recent years, see, for
example, refs. [1, 2]. The modeling of the junctions requires that a certain set of rules is fixed, such that both, the coupling
problem is well posed and typical driver behavior is reflected [3]. Recently, also data-driven approaches to the modeling of
junctions have been considered [4]. Moreover, relaxation, see, for example, ref. [5], and kinetic approaches [6] have been
used to derive suitable coupling conditions. In this work, we consider a new coupling condition for merging junction and
embed it in a networked traffic model and a relaxation model.
Wemodel road networks using a directed graphwith nodes representing the junctions and edges representing the roads.

On each edge the Lighthill–Whitham–Richards (LWR) model

𝜕𝑡𝜌
𝑘 + 𝜕𝑥

(
𝜌𝑘𝑉𝑘(𝜌𝑘)

)
= 0, (𝑡, 𝑥) ∈(0,∞) × 𝑘 (1.1)

proposed in refs. [7, 8] determines the time and space evolution of the vehicle density 𝜌. In (1.1) we indicate the corre-
sponding edge by 𝑘 and assume a parametrization in physical space over the interval 𝑘 ⊂ ℝ. For simplicity, we limit this
study to networks consisting of a single node/junction. This allows us to partition all edges within a set of incoming and
a set of outgoing edges and hence to use the notations 𝛿− ⊔ 𝛿+ = 𝛿∓ = {1, 2, … ,𝑚}. On each road 𝑘 the velocity 𝑉𝑘 is a
function of the vehicle density, a relation referred to as fundamental diagram. It is typically chosen such that the flux
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𝑓𝑘(𝜌𝑘) ∶= 𝜌𝑘𝑉𝑘(𝜌𝑘) is a strictly concave function in 𝜌𝑘. A classical choice is due to ref. [9] and assumes the linear relation

𝑉𝑘(𝜌𝑘) = 𝑣𝑘
max

(
1 −

𝜌𝑘

𝜌𝑘
max

)
(1.2)

for suitable parameters 𝜌𝑘
max and 𝑣𝑘

max representing the stagnation density and the maximal velocity, respectively. For a
better fit to measurement data on the roads, various more detailed fundamental diagrams that require further parameters
have been proposed; see, for example, ref. [10].

2 COUPLING CONDITIONS FOR THE NETWORKED LWRMODEL

In this section, we recall common coupling conditions for the network model (1.1) at the node and propose a new one for
merging roads.

Mass conservation
We assume initial data 𝜌𝑘

0
for 𝑘 ∈ 𝛿∓ being given. To define weak solutions we introduce the smooth test functions Φ𝑘 ∶

(0,∞) × 𝑘 → ℝ for all roads 𝑘 ∈ 𝛿∓ that are smooth across the junction, that is, it holdsΦ𝑘(⋅, 𝑏𝑘) = Φ𝓁(⋅, 𝑎𝓁) for 𝑘 ∈ 𝛿−

and 𝓁 ∈ 𝛿+ assuming that the road parametrizations take the form 𝑘 = (𝑎𝑘, 𝑏𝑘). A weak solution (𝜌𝑘)𝑘∈𝛿∓ then must
satisfy

∫
𝑇

0
∫𝑘

𝜌𝑘𝜕𝑡Φ
𝑘 + 𝑓𝑘(𝜌𝑘)𝜕𝑥Φ

𝑘 𝑑𝑥 𝑑𝑡 = ∫𝑘

𝜌𝑘
0
Φ𝑘(0, 𝑥)−𝜌𝑘(𝑇, 𝑥)Φ𝑘(𝑇, 𝑥) 𝑑𝑥. (2.1)

This weak formulation implies that the mass is conserved in the junction and hence the Kirchhoff conditions∑
𝑘∈𝛿−

𝑓𝑘(𝜌𝑘(𝑡, 𝑏−
𝑘
)) =

∑
𝓁∈𝛿+

𝑓𝓁(𝜌𝓁(𝑡, 𝑎+
𝓁
)) for a. e. 𝑡 > 0 (2.2)

hold. Here the terms 𝑏−
𝑘
and 𝑎+

𝓁
refer to the limit from the left and the right as 𝑥 approaches the corresponding boundary

of the road.

Outgoing roads
To determine the traffic on the outgoing roads, a traffic distribution matrix with entries {𝑎𝓁𝑘}𝓁∈𝛿+,𝑘∈𝛿− is fixed, which
satisfy the property ∑

𝓁∈𝛿+

𝛼𝓁𝑘 = 1 ∀𝑘 ∈ 𝛿−,

see, for example, ref. [2]. The entry 𝑎𝓁𝑘 determines the ratio of the inflow from road 𝑘 that is distributed to the outgoing
road 𝓁 and consequently the nodal conditions

𝑞𝓁𝑘(𝑡) = 𝛼𝓁𝑘𝑓
𝑘(𝜌𝑘(𝑡, 𝑏−

𝑘
)) for a. e. 𝑡 > 0 and ∀𝑘 ∈ 𝛿−, 𝓁 ∈ 𝛿+, (2.3)

where 𝑞𝓁𝑘 denotes the flow from road 𝑘 into road 𝓁 so that∑
𝑘∈𝛿−

𝑞𝓁,𝑘(𝑡) = 𝑓𝓁(𝜌𝓁(𝑡, 𝑎+
𝓁
)) ∀𝓁 ∈ 𝛿−,

∑
𝓁∈𝛿+

𝑞𝓁,𝑘(𝑡) = 𝑓𝑘(𝜌𝑘(𝑡, 𝑏+
𝑘
)) ∀𝑘 ∈ 𝛿+.

Wenote that forwell-posedness of the coupling problem the distributionmatrix needs to satisfy some technical conditions,
see, ref. [3] for details.
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Incoming roads
Similar to outgoing roads, the states on the outgoing roads can be determined by imposing right of way parameters to
which the outgoing fluxes are to be proportional [3, 11]. In this work we propose a new rule motivated from ref. [12,
Section 4.2.1] that considers the ratio between the influx from a selected road to the total influx, that is,

𝑟𝑘(𝑡, 𝑥) =
𝑓𝑘(𝜌𝑘(𝑡, 𝑥))∑

𝑘∈𝛿− 𝑓𝑘(𝜌𝑘(𝑡, 𝑥))

Assuming a positive total influx
∑

𝑘∈𝛿− 𝑓𝑘(𝜌𝑘(𝑡, 𝑏𝑘)) into the junction we stipulate a vanishing first spatial derivative of
this influx ratio at the interface:

𝜕𝑥𝑟
𝑘(𝑡, 𝑏𝑘) = 0 ∀𝑘 ∈ 𝛿−. (2.4)

As this condition reflects a preservation of the influx ratio at the junction, it can be compared to dynamic right of way
parameters that are inherited from the incoming streets. Note that, by similar arguments as in ref. [12], condition (2.4)
needs to be imposed for only |𝛿−| − 1 roads; the condition for the final road then follows from a summation argument.
Since we only allow for nonnegative flows continuity of the zero-influxes is imposed in the case that the total influx

is zero.

Demand and supply conditions
To obtain admissible entropy solutions of the conservation law (1.1) a half Riemann problem needs to be solved on each
road. In case of the networked LWR model this is equivalent to the demand and supply conditions proposed in ref. [13]
that read

0 ≤ 𝑓𝑘(𝜌𝑘(𝑡, 𝑏−
𝑘
)) ≤ 𝑑𝑘(𝜌𝑘(𝑡, 𝑏−

𝑘
)) ∀𝑘 ∈ 𝛿−, 0 ≤ 𝑓𝓁(𝜌𝓁(𝑡, 𝑎+

𝓁
)) ≤ 𝑠𝓁(𝜌𝓁(𝑡, 𝑎+

𝓁
)) ∀𝓁 ∈ 𝛿+ for a. e. 𝑡 > 0. (2.5)

Denoting on all roads the unique maximizer of 𝑉𝑘 by 𝜎𝑘 demand and supply are given by the functions

𝑑𝑘(𝜌𝑘) =

{
𝜌𝑘𝑉𝑘(𝜌𝑘) if𝜌𝑘 ≤ 𝜎𝑘

𝜎𝑘𝑉𝑘(𝜎𝑘) if𝜌𝑘 > 𝜎𝑘
∀𝑘 ∈ 𝛿−, 𝑠𝓁(𝜌𝓁) =

{
𝜎𝓁𝑉𝓁(𝜎𝓁) if𝜌𝓁 ≤ 𝜎𝓁

𝜌𝓁𝑉𝓁(𝜌𝓁) if𝜌𝓁 > 𝜎𝓁
∀𝓁 ∈ 𝛿+.

Condition (2.5) gives rise to an admissible region of solutions. Out of all admissible solution the one that maximizes the
total flow in the junction is selected, that is, the maximizer of

max
∑
𝑘∈𝛿−

𝑓𝑘(𝜌𝑘(𝑡, 𝑏−
𝑘
)) (2.6)

constrained by the nodal conditions in this section.

Remark 2.1. The flow maximization (2.6) as well as the demand and supply conditions (2.5) are not required for the
relaxation based coupling introduced in the next section. From a numerical point of view, this reduces the complexity of
the nodal solver as no optimization problem needs to be solved.

3 A RELAXATION BASED RIEMANN SOLVER

Following the approach in ref. [14] we formulate the Jin-Xin relaxation system [15] for the networked model (1.1) and
obtain

𝜕𝑡𝜌
𝑘
𝜀 + 𝜕𝑥𝑣

𝑘
𝜀 = 0,

𝜕𝑡𝑣
𝑘
𝜀 + 𝜆𝑘𝜕𝑥𝜌

𝑘
𝜀 =

1

𝜀
(𝑣𝑘

𝜀 − 𝜌𝑘
𝜀 𝑉

𝑘(𝜌𝑘
𝜀 )).

(3.1)
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In this system, the flux of the original system is replaced by the new variable 𝑣𝜀, which in turn is given by a balance law
that involves the relaxation rate 𝜀 and the relaxation speed 𝜆𝑘. In the limit 𝜀 → 0 the original system (1.1) is recovered. We
follow the approach in ref. [14] and construct a nodal solver for (3.1), which after taking the system to the relaxation limit
serves as a nodal solver for the original system (1.1).
A Riemann solver at the junction is a map of the form

 ∶ (𝜌1
𝑜, 𝑣

1
0
, … , 𝜌𝑚

𝑜 , 𝑣𝑚
0
) ↦ (𝜌1

𝑅
, 𝑣1

𝑅
, … , 𝜌𝑚

𝐿
, 𝑣𝑚

𝐿
), 𝑚 = |𝛿−| + |𝛿+| (3.2)

assigning trace data near the junction from a numerical solution to coupling data that serves as Dirichlet boundary data in
the following time step. The coupling data is chosen such that it solves𝑚 half Riemann problems with respect to system
(3.1) and the trace data. Due to the simple structure of the relaxation system it follows that on all roads the trace and
coupling states are connected via the linear relations

𝜌𝑘
𝑅

= 𝜌𝑘
0
− 𝜎𝑘, 𝑣𝑘

𝑅
= 𝑣𝑘

0
+ 𝜎𝑘𝜆 ∀𝑘 ∈ 𝛿−, 𝜌𝓁

𝐿
= 𝜌𝓁

0
+ 𝜎𝓁, 𝑣𝓁

𝐿
= 𝑣𝓁

0
+ 𝜎𝓁𝜆 ∀𝓁 ∈ 𝛿+ (3.3)

for some parameters 𝜎𝑘, 𝜎𝓁 ∈ ℝ. Thus, there are 𝑚 degrees of freedom that are determined by adopting the coupling
conditions from Section 2 as follows.
We impose the Kirchhoff conditions (2.1) for the relaxation states 𝜌𝑘

𝜀 and note that the consistency with the networked
LWR model, see, ref. [14], implies a similar condition for the states 𝑣𝑘. Together, the following conditions are set.∑

𝑘∈𝛿−

𝜌𝑘
𝑅
𝑉𝑘(𝜌𝑘

𝑅
) =

∑
𝓁∈𝛿+

𝜌𝓁
𝐿
𝑉𝓁(𝜌𝓁

𝐿
), (3.4)

∑
𝑘∈𝛿−

𝑣𝑘
𝑅

=
∑

𝓁∈𝛿+

𝑣𝓁
𝐿
. (3.5)

In addition, we impose condition (2.3) for all 𝓁 ∈ 𝛿+ and condition (2.4) for all 𝑘 ∈ 𝛿−. As the states 𝑣𝑘
𝜀 represent the fluxes

in the relaxation limit these conditions are imposed substituting

𝑓𝓁(𝜌𝓁(𝑡, 𝑎+
𝓁
)) = 𝑣𝓁

𝐿
∀𝓁 ∈ 𝛿+, 𝑓𝑘(𝜌𝑘(𝑡, 𝑏+

𝑘
)) = 𝑣𝑘

𝑅
∀𝑘 ∈ 𝛿−. (3.6)

It is easy to verify that in total 𝑚 independent conditions are obtained. Due to (3.4), an overall nonlinear system in the
parameters 𝜎1, … , 𝜎𝑚 is obtained. If this system has a unique solution in ℝ𝑚, this solution determines the coupling data
of (3.2). In case of multiple solutions inℝ𝑚, the one that minimizes the distance from the trace data, that is, |∑

𝑘∈𝛿∓(𝜎
𝑘)2|

is selected. By its design, the new Riemann solver clearly is consistent as it satisfies

(𝜌1
𝑅
, 𝑣1

𝑅
, … , 𝜌𝑚

𝐿
, 𝑣𝑚

𝐿
) = (𝜌1

𝑅
, 𝑣1

𝑅
, … , 𝜌𝑚

𝐿
, 𝑣𝑚

𝐿
)

if coupling data is already given by 𝜌1
𝑅
, 𝑣1

𝑅
, … , 𝜌𝑚

𝐿
, 𝑣𝑚

𝐿
.

4 MERGING 2-to-1 JUNCTIONS

In this section, we consider the case of a junction with two incoming and a single outgoing road as shown in Figure 1. We
assume that on each of the roads the velocity is given by a fundamental diagram of the form (1.2). We study an application
of the Riemann solver derived in Section 3 to this case in Section 4.1 and also provide a Riemann solver for the original
networked LWR model in Section 4.2.

4.1 The relaxation based Riemann solver at merging junctions

The Riemann solver (3.2) at the merging junction in Figure 1 assigns the states 𝜌1
𝑅
, 𝑣1

𝑅
, 𝜌2

𝑅
, 𝑣2

𝑅
, 𝜌3

𝐿
, and 𝑣3

𝐿
to the data 𝜌1

0
, 𝑣1

0
,

𝜌2
0
, 𝑣2

0
, 𝜌3

0
, and 𝑣3

0
. Let 𝐺0 ∶= 𝜌1

0
𝑉1(𝜌1

0
) + 𝜌1

0
𝑉2(𝜌2

0
) − 𝜌3

0
𝑉3(𝜌3

0
) and 𝐺1 ∶= 𝑣1

0
+ 𝑣2

0
− 𝑣3

0
then the conditions (3.4) and (3.5)
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F IGURE 1 Merging junction with two incoming and one outgoing road.

recast as

𝐺0 + 𝑑1(𝜎
1) + 𝑑2(𝜎

2) = 𝑑3(𝜎
3), (4.1)

𝜆
(
𝜎3 − 𝜎1 − 𝜎2

)
= 𝐺1, (4.2)

where in (4.1) we employ the expressions

𝑑𝑘(𝜎
𝑘) = (𝜌𝑘

0
− 𝜎𝑘)𝑉𝑘(𝜌𝑘

0
− 𝜎𝑘) − 𝜌𝑘

0
𝑉𝑘(𝜌𝑘

0
) 𝑘 ∈ {1, 2}, 𝑑3(𝜎

3) = (𝜌3
0
+ 𝜎3)𝑉3(𝜌3

0
+ 𝜎3) − 𝜌3

0
𝑉3(𝜌3

0
).

In addition, we obtain from the influx ratio preservation (2.4) the relation

𝑣2
0

𝑣1
0
+ 𝑣2

0

𝜎1 =
𝑣1
0

𝑣1
0
+ 𝑣2

0

𝜎2 (4.3)

assuming 𝑣1
0
+ 𝑣2

0
> 0. Equations (4.3) and (4.2) allow us to write both 𝜎1 and 𝜎2 as linear functions of 𝜎3 =∶ 𝜎 and the

system reduces to the nonlinear equation

𝐺0 + 𝑑1

(𝑟1
𝜆

(𝜆𝜎 − 𝐺1)
)

+ 𝑑2

(𝑟2
𝜆

(𝜆𝜎 − 𝐺1)
)

= 𝑑3(𝜎), 𝑟1 =
𝑣1
0

𝑣1
0
+ 𝑣2

0

, 𝑟2 =
𝑣2
0

𝑣1
0
+ 𝑣2

0

. (4.4)

The following results discuss the solvability of (4.4). If solutions exists the one with minimal absolute value determines
the coupling data of the Riemann solver.

Lemma 4.1. Let the fundamental diagram be given by (1.2) for 𝑘 ∈ {1, 2, 3}. Suppose that 𝑣1
0
+ 𝑣2

0
> 0 as well as the bounds

𝑟2
1

𝐺2
1
𝑣1
𝑚𝑎𝑥

𝜆2 𝜌1
𝑚𝑎𝑥

+ 𝑟2
2

𝐺2
1
𝑣2
𝑚𝑎𝑥

𝜆2 𝜌2
𝑚𝑎𝑥

≤ 𝐺0 +
𝐺1

𝜆

(
𝑟1(𝑓

1)′(𝜌1) + 𝑟2(𝑓
2)′(𝜌2)

)
, (4.5)

𝑣3
𝑚𝑎𝑥

𝜌3
𝑚𝑎𝑥

≤ 𝑣1
𝑚𝑎𝑥

𝜌1
𝑚𝑎𝑥

𝑟2
1
+

𝑣2
𝑚𝑎𝑥

𝜌2
𝑚𝑎𝑥

𝑟2
2

(4.6)

hold then (4.4) has at least one real solution. The same consequence follows if the converse inequalities of both, (4.5) and
(4.6) hold.

Proof. If we write 𝑑1

(
𝑟1

𝜆
(𝜆𝜎 − 𝐺1)

)
, 𝑑2

(
𝑟2

𝜆
(𝜆𝜎 − 𝐺1)

)
, and −𝑑3(𝜎) as polynomials in 𝜎 with coefficients 𝑑𝑘0, 𝑑𝑘1 and 𝑑𝑘2

for 𝑘 ∈ {1, 2, 3} we observe that the discriminant of (4.4) takes the form

−4(𝐺0 + 𝑑10 + 𝑑20 + 𝑑30)(𝑑12 + 𝑑22 + 𝑑32) + (𝑑11 + 𝑑21 + 𝑑31)
2. (4.7)

A computation of the coefficients then shows that (4.5) ensures that𝐺0 + 𝑑10 + 𝑑20 + 𝑑30 is nonnegative and (4.6) ensures
that 𝑑12 + 𝑑22 + 𝑑32 is nonpositive. Hence, the conditions imply nonnegativity of the discriminant. □
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Remark 4.2. The signs of 𝐺0 and 𝐺1 are not known a priori. In the context of the relaxed scheme introduced in the next
section, it holds 𝐺0 = 𝐺1, which allows for better control over the sign of the right hand side in (4.5). Even in cases in
which the assumptions of Lemma 4.1 are not satisfied, an analysis of (4.7) shows that at least one real solution exists if

𝑟1(𝑓
1)′(𝜌1

0
) + 𝑟2(𝑓

2)′(𝜌2
0
) + (𝑓2)′(𝜌2

0
)

does not vanish and both, |𝐺0| and |𝐺1| are sufficiently small.
4.2 An influx ratio preserving Riemann solver for the unrelaxed model

In this section, we discuss a Riemann solver for (1.1) on the junction in Figure 1. As in this setting demand and supply
conditions need to be imposed to obtain an admissible entropy solution we make the following assumptions about the
prioritization of the coupling conditions.

Assumption 4.3. Flow maximization (2.6) under demand and supply conditions (2.5) is prioritized over the ratio
preserving condition (2.4).

For simplicity we consider here a Riemann solver mapping the traces at the junction to coupling fluxes at the interface,
that is,

∗
∶ (𝜌1

𝑜, 𝜌
2
𝑜, 𝜌

3
𝑜) ↦ (𝑓1

𝑅
, 𝑓2

𝑅
, 𝑓3

𝐿
). (4.8)

Indeed, this formulation is equivalent to the more common one, which maps to coupling states, compare, ref. [4].
Given the states 𝜌1

0
, 𝜌2

0
, and 𝜌3

0
the coupling fluxes are determined by the following procedure: There are two cases

that can occur. In the case of free flow, where 𝑑1(𝜌
1
0
) + 𝑑2(𝜌

2
0
) ≤ 𝑠3(𝜌

3
0
), we take 𝑓1

𝑅
= 𝑑1(𝜌

1
0
), 𝑓2

𝑅
= 𝑑2(𝜌

2
0
) and 𝑓3

𝐿
=

𝑑1(𝜌
1
0
) + 𝑑2(𝜌

2
0
). This choice satisfies the demand and supply condition and maximizes the flow in the junction. In the

complimentary congestion case we set 𝑓3
𝐿

= 𝑠3(𝑢
3
0
) and employ the influx ratios to set 𝑓1

𝑅
= 𝑟1𝑠3(𝑢

3
0
) and 𝑓2

𝑅
= 𝑟2𝑠3(𝑢

3
0
). If

this leads to a violation of (2.5) for either 𝑓1
𝑅
or 𝑓2

𝑅
the affected coupling flux is chosen as the respective upper bound and

its counterpart is computed from the Kirchhoff condition.

5 NUMERICAL EXPERIMENTS

In this section, we consider numerical experiments for the LWR model on the merging junction shown in Figure 1. In
particular, we employ the influx ratio preserving coupling condition and compare theRiemann solver based on the entropy
admissible coupling condition for the nonlinear system (4.8) to the relaxation based Riemann solver (3.2).
We employ a variant of the scheme from ref. [12] that has been derived by taking an asymptotic preserving numerical

method for the networked relaxation system (3.1) to its relaxation limit. This way the scheme naturally offers a discretiza-
tion of the networked LWRmodel employing the relaxation based Riemann solver. The roads and their parametrizations
that for simplicity we assume to be (−1, 0) on the incoming and (0, 1) on the outgoing road are discretized over𝑀 equidis-
tant cells of length Δ𝑥. By 𝜌

𝑘,𝑛
𝑗

we denote an approximate average of 𝜌𝑘 over the cell 𝐼𝑗 = [(𝑗 − 1∕2)Δ𝑥, (𝑗 + 1∕2)Δ𝑥] at

time instance 𝑡𝑛. In addition we introduce the time increment Δ𝑡 satisfying the CFL condition Δ𝑡 = CFL
Δ𝑥

𝜆
. The scheme

then has the conservative form

𝜌
𝑘,𝑛+1
𝑗

= 𝜌
𝑘,𝑛
𝑗

−
Δ𝑡

Δ𝑥

(
𝐹

𝑘,𝑛

𝑗+1∕2
− 𝐹

𝑘,𝑛

𝑗−1∕2

)
. (5.1)

The index 𝑗 in (5.1) is taken 𝑗 = −𝑀,… ,−1 for 𝑘 = 1, 2 or 𝑗 = 0, 1, … ,𝑀 for 𝑘 = 3. The numerical fluxes are given by

𝐹
𝑘,𝑛

𝑗−1∕2
=

⎧⎪⎪⎨⎪⎪⎩

1

2
(𝑓𝑘(𝜌

𝑘,𝑛
𝑗

) + 𝑓𝑘(𝜌
𝑘,𝑛
𝑗−1

)) −
𝜆

2
(𝜌

𝑘,𝑛
𝑗

− 𝜌
𝑘,𝑛
𝑗−1

) if 𝑗 ≠ 0

𝑓
𝑘,𝑛
𝑅

if 𝑗 = 0 and 𝑘 ∈ {1, 2}

𝑓
3,𝑛
𝐿

if 𝑗 = 0 and 𝑘 = 3

, (5.2)
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F IGURE 2 Numerical solutions to Experiments 1 and 2 showing the incoming vehicle densities 𝜌1 (blue lines) and 𝜌2 (red lines) on the
left and the outgoing vehicle density 𝜌3 on the right at the final time (𝑇 = 0.75 in Experiment 1 and 𝑇 = 1 in Experiment 2). In Experiment 2,
the solution obtained by the relaxation based Riemann solver is shown using dotted lines.

where the coupling fluxes are obtained applying the Riemann solver (3.2) to the numerical trace states:

(𝜌
1,𝑛
𝑅

, 𝑓
1,𝑛
𝑅

, 𝜌
2,𝑛
𝑅

, 𝑓
1,𝑛
𝑅

, 𝜌
3,𝑛
𝐿

, 𝑓
3,𝑛
𝑅

) = (𝜌
1,𝑛
−1

, 𝑓1(𝜌
1,𝑛
−1

), 𝜌
2,𝑛
−1

, 𝑓2(𝜌
2,𝑛
−1

), 𝜌
3,𝑛
0

, 𝑓3(𝜌
3,𝑛
0

)).

Alternatively, the nonlinear Riemann solver introduced in Section 4.2 can be used in the scheme by taking

(𝑓
1,𝑛
𝑅

, 𝑓
1,𝑛
𝑅

, 𝑓
3,𝑛
𝑅

) = ∗
(𝜌

1,𝑛
−1

, 𝜌
2,𝑛
−1

, 𝜌
3,𝑛
0

).

In our numerical experiments we take CFL = 0.9 and employ𝑀 = 1000mesh cells per road.
We consider two numerical experiments with results shown in Figure 2. The basic setting is adopted from ref. [12]: two

roads of the same size merge into a third one with slightly higher capacity, which is reflected in the velocity functions

𝑉1(𝜌) = 𝑉2(𝜌) = 1 − 𝜌, 𝑉3(𝜌) = 1 −
𝜌

1.2
.

Weuse Riemann initial data and impose outgoing boundary condition, that is, zero-flux conditions for the incoming roads
and homogeneous Neumann boundary conditions for the outgoing road. In Experiment 1, we set 𝜌1,0 ≡ 0.15, 𝜌2,0 ≡ 0.2,
and 𝜌3,0 ≡ 0.3. The setup results in free flow of the vehicles through the junction as the outgoing road has sufficient
capacity for the incoming traffic. This behavior is recovered by our numerical simulations using bothRiemann solverswith
results shown in the first row of Figure 2. In this experiment, both Riemann solvers yield the same numerical results; the
relative difference of the corresponding numerical results at the final time has reached machine accuracy. We emphasize
that the relaxation approach yields the expected dynamics without flow maximization.
For Experiment 2, we consider inititial data 𝜌1,0 ≡ 0.5, 𝜌2,0 ≡ 0.8, and 𝜌3,0 ≡ 0.6, which causes congestion in the junc-

tion. Note that those initial densities yield maximal flow on road 1 and road 3. In the numerical results we see backwards
propagating congestion waves forming on both, road 1 and road 2. In this experiment, our two Riemann solvers yield
different results. In particular, the relaxation based Riemann solver predicts a small drop in vehicle densities on road 3
close to the junction and thus does not maximize the flow through the junction. The new Riemann solver thus introduces
inefficiencies in traffic flow in case of complex congestion cases at the junction, as can also be expected in real traffic. We
note that throughout our numerical simulation the vehicle densities have stayed within [0, 𝜌𝑘

𝑚𝑎𝑥] at the respective roads
and no boundary layers have been obtained.
To validate the new coupling approaches, we investigate the behavior of the numerical solution as the grid is refined.

Therefore, we compute solutions of the two experiments on various grids and compute the discrete 𝐿1 error at final time
𝑇 = 1 over the three roads by comparing solutions on 𝑀 cells per road with reference solutions on 2𝑀 cells per road.
Table 1 shows these errors on various grids for both the nonlinear approach (4.8) and the relaxation based approach (3.2)
along with the experimental order of convergence (EoC)1. The computed EoC, which does not significantly vary with
the mesh resolution, indicates convergence of the scheme under both coupling approaches. Due to the discontinuities
occurring in the experiments, the EoC is partly below order one, in particular, in Experiment 1.

1 The EoC is computed by the formula EoC = log2(𝐸1∕𝐸2) with 𝐸1 and 𝐸2 denoting the error in two consecutive lines of the table.
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KOLBE 8 of 8

TABLE 1 Discrete 𝐿1 errors over the three roads at time 𝑇 = 1 under grid refinement.

N Exp. 1 EoC Exp. 2 EoC Exp. 1 relaxation EoC Exp. 2 relaxation EoC

500 3.092 × 10−3 5.732 × 10−3 3.116 × 10−3 6.664 × 10−3

1000 1.828 × 10−3 0.759 2.852 × 10−3 1.007 1.839 × 10−3 0.761 3.503 × 10−3 0.928
2000 1.058 × 10−3 0.789 1.375 × 10−3 1.052 1.063 × 10−3 0.790 1.760 × 10−3 0.993
4000 6.139 × 10−4 0.785 6.853 × 10−4 1.005 6.165 × 10−4 0.786 8.788 × 10−4 1.002

Abbreviation: EoC, experimental order of convergence.
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