h1

h2

h3

h4

h5
h6


001     1000113
005     20250507122821.0
024 7 _ |2 ISSN
|a 0956-7925
024 7 _ |2 ISSN
|a 1469-4425
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-105002049517
024 7 _ |2 WOS
|a WOS:001352655200001
024 7 _ |2 doi
|a 10.1017/S0956792524000706
037 _ _ |a RWTH-2025-00171
041 _ _ |a English
082 _ _ |a 510
100 1 _ |0 P:(DE-82)IDM04643
|a Fiedler, Christian Martin
|b 0
|u rwth
245 _ _ |a Recent kernel methods for interacting particle systems: first numerical results
|h online
260 _ _ |a Cambridge
|b Cambridge Univ. Press
|c 2025
260 _ _ |c 2024
300 _ _ |a 1-26
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
500 _ _ |a Published online by Cambridge University Press: 11 November 2024
536 _ _ |0 G:(GEPRIS)500873292
|a DFG project G:(GEPRIS)500873292 - SPP 2410: Hyperbolische Erhaltungssätze in der Fluidmechanik: Komplexität, Skalen, Rauschen (CoScaRa) (500873292)
|c 500873292
|x 0
536 _ _ |0 G:(GEPRIS)462234017
|a DFG project G:(GEPRIS)462234017 - Meanfield Theorie zur Analysis von Deep Learning Methoden (462234017)
|c 462234017
|x 1
536 _ _ |0 G:(GEPRIS)390621612
|a DFG project G:(GEPRIS)390621612 - EXC 2023: Internet of Production (IoP) (390621612)
|c 390621612
|x 2
536 _ _ |0 G:(GEPRIS)333849990
|a GRK 2379 - GRK 2379: Hierarchische und hybride Ansätze für moderne inverse Probleme (333849990)
|c 333849990
|x 3
536 _ _ |0 G:(GEPRIS)320021702
|a GRK 2326 - GRK 2326: Energie, Entropie und Dissipative Dynamik (320021702)
|c 320021702
|x 4
536 _ _ |0 G:(GEPRIS)442047500
|a DFG project G:(GEPRIS)442047500 - SFB 1481: Sparsity und singuläre Strukturen (442047500)
|c 442047500
|x 5
536 _ _ |0 G:(GEPRIS)504291427
|a SFB 1481 B04 - Sparsity fördernde Muster in kinetischen Hierarchien (B04) (504291427)
|c 504291427
|x 6
536 _ _ |0 G:(GEPRIS)504292598
|a SFB 1481 B05 - Sparsifizierung zeitabhängiger Netzwerkflußprobleme mittels diskreter Optimierung (B05) (504292598)
|c 504292598
|x 7
536 _ _ |0 G:(GEPRIS)504292976
|a SFB 1481 B06 - Kinetische Theorie trifft algebraische Systemtheorie (B06) (504292976)
|c 504292976
|x 8
536 _ _ |0 G:(EU-Grant)101072546
|a DATAHYKING - Data-driven simulation, uncertainty quantification and optimization for hyperbolic and kinetic models (101072546)
|c 101072546
|f HORIZON-MSCA-2021-DN-01
|x 9
536 _ _ |0 G:(GEPRIS)441826958
|a DFG project G:(GEPRIS)441826958 - SPP 2298: Theoretische Grundlagen von Deep Learning (441826958)
|c 441826958
|x 10
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
700 1 _ |0 P:(DE-82)IDM00024
|a Herty, Michael
|b 1
|u rwth
700 1 _ |0 P:(DE-82)843541
|a Segala, Chiara
|b 2
|e Corresponding author
|u rwth
700 1 _ |0 P:(DE-82)IDM03985
|a Trimpe, Johann Sebastian
|b 3
|u rwth
770 _ _ |a From integro-differential models to data-oriented approaches for emergent phenomena / Seung-Yeal Ha; Qin Li; Andrea Tosin; Mattia Zanella
773 _ _ |0 PERI:(DE-600)2002906-8
|a 10.1017/S0956792524000706
|n 2
|p 464-489
|t European journal of applied mathematics
|v 36
|x 1469-4425
|y 2024
909 C O |o oai:publications.rwth-aachen.de:1000113
|p VDB
|p ec_fundedresources
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM04643
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM00024
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)843541
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM03985
|a RWTH Aachen
|b 3
|k RWTH
914 1 _ |y 2024
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b EUR J APPL MATH : 2022
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2023-08-23
|w ger
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-08-23
920 1 _ |0 I:(DE-82)422610_20200514
|k 422610
|l Lehrstuhl für Data Science im Maschinenbau
|x 0
920 1 _ |0 I:(DE-82)111410_20170801
|k 111410
|l Lehrstuhl für Angewandte Mathematik und Institut für Geometrie und Praktische Mathematik
|x 1
920 1 _ |0 I:(DE-82)110000_20140620
|k 110000
|l Fachgruppe Mathematik
|x 2
920 1 _ |0 I:(DE-82)120000_20140620
|k 120000
|l Fachgruppe Informatik
|x 3
920 1 _ |0 I:(DE-82)114620_20140620
|k 114610
|l Lehrstuhl für Numerische Mathematik
|x 4
980 _ _ |a I:(DE-82)110000_20140620
980 _ _ |a I:(DE-82)111410_20170801
980 _ _ |a I:(DE-82)114620_20140620
980 _ _ |a I:(DE-82)120000_20140620
980 _ _ |a I:(DE-82)422610_20200514
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21