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Abstract
An orthogonal representation of a finite group G is a homomorphism ρ : G→ GLn(K),
for a natural number n and a field K ⊆ R. Analogously, we say a character χ of G is
orthogonal if any corresponding representation is orthogonal.

Nebe (2022) showed that for an orthogonal character χ ∈ Irr(G) of even degree
(χ ∈ Irr+(G)), there exists a unique element

det(χ) := d ∈ Q(χ)×/(Q(χ)×)2,

such that for any representation ρ : G → GLn(K) affording χ over an arbitrary field
K/Q(χ) and all ρ(G)-invariant, non-degenerate bilinear forms β, it holds that

det(β) = d · (K×)2.

We say that det(χ) is the orthogonal determinant of χ.
As part of the classification of finite simple groups, the groups of Lie type form the

largest class among them. Examples of finite groups of Lie type include SLn(q),GLn(q)
and SUn(q) for q a prime power.

The goal of this thesis is to present methods for the calculation of the orthogonal
determinants of the finite groups of Lie type. Let G := G(q) be a finite group of Lie type
with parameter q and let χ ∈ Irr+(G). Given that q is odd, we show that there is some
sort of "Jordan decomposition" of det(χ) = det(χU) det(χT ), i.e., a decomposition into a
unipotent part det(χU) and a semisimple part det(χT ).

In contrary to the relatively easy determination of det(χU), the calculation of det(χT )
proves to be a challenge. For that, we apply the theory of Iwahori–Hecke algebras, which
are deformations of Coxeter groups, and extensions thereof.

The thesis consists of 6 chapters. After the introduction, the following two chapters
establish the theory of orthogonal determinants and finite groups of Lie type. Afterwards
we will consider Coxeter groups, where the orthogonal determinants of all Coxeter groups,
as well as the alternating groups and some Iwahori–Hecke algebras, are covered. In the
fifth chapter, we will describe orthogonal determinants of finite groups of Lie type, where
we will also consider some examples like SL3(q) and G2(q). In the final chapter, we
handle the groups GLn(q), where we accomplish a complete description of the orthogonal
determinants.
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Zusammenfassung
Eine orthogonale Darstellung einer endlichen Gruppe G ist ein Homomorphismus ρ :
G→ GLn(K), für eine natürliche Zahl n und einen Körper K ⊆ R. Analog nennen wir
einen Character χ von G orthogonal, falls eine zugehörige Darstellung orthogonal ist.

Nebe (2022) hat gezeigt, dass wenn χ ∈ Irr(G) ein orthogonaler Character von geradem
Grad ist (χ ∈ Irr+(G)), ein eindeutiges Element

det(χ) := d ∈ Q(χ)×/(Q(χ)×)2

existiert, sodass für alle Darstellungen ρ : G → GLn(K) mit Character χ über einen
beliebigen Körper K/Q(χ) und alle ρ(G)-invarianten, nicht-ausgearteten Bilinearformen
β gilt, dass

det(β) = d · (K×)2.

Wir nennen det(χ) die orthogonale Determinante von χ.
Im Rahmen der Klassifikation der endlichen einfachen Gruppen bilden die Gruppen

vom Lie-Typ die größte Klasse unter diesen. Beispiele von endlichen Gruppen vom
Lie-Typ beinhalten SLn(q),GLn(q) und SUn(q) für q eine Primzahlpotenz.

Das Ziel dieser Dissertation ist, Methoden zur Berechnung von den orthogonalen
Determinanten für endlichen Gruppe vom Lie-Typ vorzustellen. Sei G := G(q) eine
endliche Gruppe vom Lie-Typ mit Parameter q und χ ∈ Irr+(G). Wir zeigen, dass wenn
q ungerade ist, eine Art "Jordan-Zerlegung" von det(χ) = det(χU) det(χT ) existiert, also
eine Zerlegung in einen unipotenten Teil det(χU) und einen halbeinfachen Teil det(χT ).

Im Gegensatz zur relativ einfachen Berechnung von det(χU) erweist sich die Bestim-
mung von det(χT ) als eine Herausforderung. Hierfür verwenden wir die Theorie der
Iwahori–Hecke Algebren, was Deformationen von Coxeter-Gruppen sind, und Erweiterun-
gen hiervon.

Die Arbeit besteht aus 6 Kapiteln. Nach der Einleitung wird in zwei Kapiteln die
Theorie von orthogonalen Determinanten und der Gruppen vom Lie-Typ eingeführt.
Anschließend folgt ein Kapitel über Coxeter-Gruppen, wo die orthogonalen Determinan-
ten von allen Coxeter-Gruppen, als auch die der alternierenden Gruppen und einiger
Iwahori–Hecke Algebren, bestimmt werden. Im fünften Kapitel beschreiben wir dann die
orthogonalen Determinanten für die Gruppen vom Lie-Typ, wo wir auch einige Beispiele
wie SL3(q) und G2(q) betrachten. Abschließend behandeln wir im letzten Kapitel die
Gruppen GLn(q), wo wir eine komplette Beschreibung erreichen.
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1 Introduction
A common question in mathematics is: Given an object, what is its automorphism
group? Representation theory of (finite) groups flips the question around: Given a
(finite) group, what are the objects it acts upon? Let us fix a finite group G and a field
K. A K-representation of G is a pair (V, ρ) where V is a finite-dimensional K-vector
space and ρ is a homomorphism ρ : G → GL(V ). By abuse of notation, we will often
omit the homomorphism ρ and say that V is a representation of G. We say that the
representation (V, ρ) is reducible if there is a nontrivial subspace V ′ ⊊ V such that (V ′, ρ)
is a subrepresentation, i.e., ρ(g)v ∈ V ′ for all g ∈ G, v ∈ V ′, and say that ρ is irreducible
else. A K-representation V is absolutely irreducible if for any field extension L of K
the L-representation L⊗ V is irreducible. We will restrict ourselves to the case of the
characteristic of K being equal to 0, for multiple reasons.

On the one hand, by Maschke’s theorem, the group algebra KG is semisimple, i.e., for
any representation V and a subrepresentation V ′ ⊆ V , there exists a subrepresentation
V ′′ ⊆ V with V = V ′⊕V ′′.

On the other hand, the isomorphism type of (V, ρ) is characterized by its character,
which is the map

χρ : G→ K, g 7→ trace(ρ(g)).

We say that (V, ρ) affords the character χρ. The value of χρ does not depend on the
conjugacy class, i.e., χρ(C) is well-defined for C a conjugacy class of G.

If K is additionally algebraically closed, e.g., K = C, more can be said. Then, there is
a 1-to-1 correspondence between the conjugacy classes of G and

Irr(G) := {χρ | ρ : G→ GLn(C) is irreducible, n ≥ 1}.

We say that a character is irreducible if it is an element of Irr(G). If {C1, . . . , Cn} are the
conjugacy classes of G and Irr(G) = {χ1, . . . , χn} are its irreducible characters, we call
the square matrix (χi(Cj))1≤i,j≤n the (ordinary) character table of G. It is clear that any
character is a sum of irreducible ones. Moreover, there is an inner product of characters
given by

⟨ψ1, ψ2⟩G := 1
|G|

∑
g∈G

ψ1(g)ψ2(g) ∈ Z≥0

for characters ψ1, ψ2 such that ⟨χi, χj⟩G = δij. In particular, the decomposition of a
character into irreducible ones is fully computable with the character table.

We fix a character χ ∈ Irr(G). What can be said about a representation V affording
χ? The simplest available information is the dimension of V . Indeed, dim(V ) = χ(1),
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1 Introduction

which we will also call the degree of χ. A slightly more involved invariant is the field
generated by the values of χ, which we denote by

Q(χ) := Q({χ(g) | g ∈ G})

and call the character field of χ. It is not true that an irreducible character can be
afforded by a representation over the character field, the smallest counterexample is
the character of degree 2 of the quaternion group Q8, which has the character field Q
but can not be afforded by a representation over the real numbers, although there is a
representation over for instance Q(i) affording it. The minimal index [L : Q(χ)] of a field
extension L ⊇ Q(χ) such that there is a representation over L affording χ is called the
Schur index of χ. In general, the Schur index is hard to compute. The related question,
of whether a character with real values can be afforded by a representation over the real
numbers, has an elegant solution though. The Frobenius–Schur indicator is the value

ι(χ) := 1
|G|

∑
g∈G

χ(g2) ∈ {−1, 0, 1}

and we have that

ι(χ) =


1, if χ has real values and can be afforded by a real representation,
−1, if χ has real values and can not be afforded by a real representation,
0 if Q(χ) is not real.

We say that χ has indicator "+" (resp. "-", resp. "0") if ι(χ) = 1 (resp. ι(χ) = −1, resp.
ι(χ) = 0). If ι(χ) = −1, then 2χ can be afforded by a real representation, and if ι(χ) = 0,
then χ+ χ can.

Let us explore real representations a bit more thorougly. We let ψ be a character of
G, not necessarily irreducible. From the previous discussion it follows that ψ can be
afforded by a real representation if and only if it is of the form

ψ =
r∑
i=1

aiψ
(+)
i + 2

s∑
j=1

biψ
(−)
j +

t∑
k=1

ci(ψ(0)
k + ψk

(0)), (1.1)

where ψ(+)
i (resp. ψ(−)

j , resp. ψ(0)
k ) are irreducible characters of G with Frobenius–Schur

indicator "+" (resp. "-", resp. "0"), and ai, bj, ck are non-negative integers. The character
ψ is then also called an orthogonal character, which can be explained by the following
construction:

Let (W, ρ) be a K-representation affording the orthogonal character ψ with K ⊆ R,
and let β : W ×W → K be a positive-definite symmetric bilinear form. Then,

β′ : W ×W → K, β′(w,w′) =
∑
g∈G

β(ρ(g)w, ρ(g)w′)

is a positive-definite and therefore non-degenerate, symmetric, ρ(G)-invariant form, i.e.,

β′(ρ(g)w, ρ(g)w′) = β′(w,w′)

2



for all g ∈ G, w,w′ ∈ W . The other direction also holds, so ψ is afforded by a
representation (W, ρ) having a non-degenerate, symmetric, ρ(G)-invariant form if and
only if ψ can be afforded by a real representation. In particular, the property of a
character being orthogonal can be calculated with the character table. A new question
arises: Given an orthogonal character, what can we say about these bilinear forms?

Let w1, . . . , wn be a basis of W . The square class

det(β′) := det(β′(wi, wj)1≤i,j≤n) · (K×)2

is independent of the chosen basis and is called the determinant of β′. If we let a ∈ K×,
then also aβ′ is a non-degenerate, symmetric, ρ(G)-invariant bilinear form and det(aβ′) =
an det(β′). In particular, if n is odd, no meaningful determinant can be associated to
ψ. We call ψ orthogonally stable, if all the ψ(+)

j characters appearing in the sum 1.1
above have even degree. In [NP22] Nebe and Parker showed that if ψ is orthogonally
stable, there is a unique element det(ψ) := d ∈ Q(ψ)×/(Q(ψ)×)2, called the orthogonal
determinant of ψ, such that for any field extension L ⊇ Q(ψ), any L-representation (U, ρ)
affording ψ with any non-degenerate, symmetric, ρ-invariant bilinear form γ on U , it
holds that det(γ) = d · (L×)2.

We will thus assume that ψ is orthogonally stable. It can be shown that we can reduce
the computation of det(ψ) to the orthogonally simple components, i.e., the individual
summands of the form ψ

(+)
i , 2ψ(−)

j and ψ
(0)
k + ψ

(0)
k . Further,

det(2ψ(−)
j ) = 1 · (Q(2ψ(−)

j )×)2

and det(ψ(0)
k +ψ

(0)
k ) can be calculated by the character field. Thus, the case for det(ψ(+)

i )
remains. Let

Irr+(G) := {φ ∈ Irr(G) | φ is an indicator "+" character of even degree}.

The knowledge of the orthogonal determinants of the Irr+(G)-characters, together with
the character table, allows to compute the orthogonal determinants of all orthogonally
stable characters of G, making them interesting invariants to consider. This gives rise to
orthogonal character tables — meaning the ordinary character table, with the data of
det(χ) for every χ ∈ Irr+(G). In the sequel, to shorten the language, we will just say
that we calculate the orthogonal determinants of G, and mean that we calculate the
orthogonal determinants of the Irr+(G)-characters.

An important observation on how to calculate (and even define!) orthogonal determi-
nants is that for any representation ρ : G→ GLn(K) affording a χ ∈ Irr+(G) character,
there is some central simple Q(χ)-algebra

A := ⟨ρ(g) | g ∈ G⟩Q(χ)

with a natural involution ι : A→ A generated by ι(ρ(g)) := ρ(g−1). Involutions of central
simple algebras and their invariants such as determinants have been studied in more
generality by Knus, Merkurjev, Rost and Tignol in the "Book of Involutions" [Knu+98].
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1 Introduction

By choosing a basis and regarding A is a matrix algebra, we can define determinants of
the elements of A — it can now be shown that there is an element h ∈ A× such that
ι(h) = −h, i.e., h is skew-symmetric, and such that

det(χ) = det(h) · (Q(χ)×)2.

Since this can be defined in general for involutions on central simple algebras of even
dimension, this allows to define "orthogonal determinants" for also more general objects
than groups.

So far, we made no assumption on the group G. The building blocks of finite groups
are simple groups, and often, one is able to reconstruct a lot of information for G from the
normal subgroups and the quotients thereof. Instead of trying to calculate the orthogonal
determinants for all finite groups, the goal is to at first gather results for the finite simple
groups. In a recent and ongoing long term project, Thomas Breuer, Richard Parker, and
the author’s PhD advisor, Gabriele Nebe, aim to calculate the orthogonal discriminants
(which are orthogonal determinants, up to a sign) of the ordinary and Brauer characters
of all finite groups in the ATLAS [Con+85], which includes the "small" finite simple
groups, see [BNP24].

After the celebrated classification of finite simple groups, the finite simple groups
consist of

• the cyclic groups of prime order,

• the alternating groups An for n ≥ 5,

• the finite simple groups of Lie type and

• the 26 sporadic groups.

For G one of the cyclic groups, all irreducible characters have degree 1 so the set
Irr+(G) is empty. The case of symmetric groups was handled by James and Murphy
in their paper [JM79] in 1979. Given that, the alternating groups as index 2 normal
subgroups of the symmetric groups also become easy to handle. For more details, regard
Subsection 4.1.4. As there is only a finite number of the sporadic groups and thus a finite
amount of orthogonally simple characters, a "brute force" approach to the calculation
of the orthogonal determinants can thus be attempted. So far, with theoretical and
computational means, the orthogonal determinants for the sporadic groups up to the
Harada-Norton group HN have been calculated.

This leaves us with the biggest class, the finite simple groups of Lie type, which consists
of multiple infinite families of simple groups. Examples include PSLn(q), PSUn(q),G2(q)
for q a power of a prime p. In practice, one often considers the non-simple counterparts
like SLn(q). Since the different values of q give rise to an infinitude of groups, instead of
character tables, one considers generic character tables, which group some characters and
conjugacy classes together with some suitable parameters. While in the other classes of
finite simple groups all character values are known, the same can not be said for the finite
groups of Lie type. As an example, not all character values for the groups SL6(q) are
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known. Nevertheless, there are some groups where we have a full picture. The character
table of SL2(q) was already known to Jordan and Schur in the early 20th century, regard
for instance [Bon11] for a thorough modern treatment. Other examples include SL3(q)
and SU3(q) in [SF73] by Simpson and Frame in 1973, the groups Sp4(q) in [Sri68] by
Srinivasan in 1968 for q odd and in [Eno72] by Enomoto in 1972 for q even, and G2(pf )
in [CR74] by Chang and Ree in 1974 for p ≥ 5, in [Eno76] by Enomoto in 1978 for p = 3
and in [EY86] by Enomoto and Yamada in 1986 for p = 2. Furthermore, the character
tables of all the general linear groups GLn(q) are fully known by the work of Green in
1955, see [Gre55].

We now want to extend the generic character tables with the knowledge of the
orthogonal determinants of the Irr+(G)-characters for G a finite group of Lie type, so,
giving formulas for the orthogonal determinants in dependence of the parameters of the
character table. In conclusion, we want to end up with generic orthogonal character
tables. This has already been done by Braun and Nebe in their paper [BN17] for the
groups SL2(q).

The words "generic orthogonal character table" alone imply that there is some pattern
to the orthogonal determinants. Indeed, there is one observation easily made by looking
at the specific square classes of the orthogonal determinants of finite groups: If the
character field of an orthogonally stable character χ is equal to the rational numbers
(minor adjustments can be made in the case of the character field being a bigger number
field), then there always seems to exist an odd integer d such that

det(χ) = d · (Q×)2.

So in a certain sense, the orthogonal determinants seem to be "odd". This observation
lead to a conjecture of Richard Parker, where he conjectured this oddness pattern to
hold for all finite groups. This has been proven to hold for solvable groups, see [Neb22a].

This thesis has two main goals. First, we wish to extend the results in [BN17] to other
finite groups of Lie type, at least when the character table is known (and q is odd), and
present some general methods and results even when the generic character tables are
not (yet) known. This leads to the determination of all orthogonal determinants of for
instance the groups G2(q) and GLn(q), for all n, and q odd. Second, we wish to prove
Parker’s conjecture about the oddness of orthogonal determinants for some families of
groups — most importantly, the symmetric groups. As almost a corollary, we can extend
the results to the alternating groups, all finite Coxeter groups, and the groups GLn(q)
for odd q.

Outline
We will go through the structure of this thesis. In Chapter 2, we will give an introduction
to the main focus of this thesis, namely the orthogonal determinants for characters of
finite groups (and beyond). For these, we naturally first need some notions of bilinear
forms. Next, we will introduce what we call monomial algebras — these are algebras
H that behave a lot like group algebras, so for instance, they have some involution
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1 Introduction

† : H → H (think of taking the inverse of group elements) and some designated basis that
behaves well with that. These are algebras where we can talk about characters and also
about orthogonal stability. With the results of the "Book of Involutions" [Knu+98], we
can define orthogonal determinants for these algebras in Section 2.2. The main reason we
want to introduce orthogonal determinants for more general algebras is specialization, i.e.,
using maps between monomial algebras to translate information about the orthogonal
determinants between each other. We will finish this chapter by regarding the "special
case" of the orthogonal determinants for group algebras by discussing some specific
strategies and results for their computation, as well as presenting the conjecture of
Richard Parker about the oddness of orthogonal determinants. One important result
about the orthogonal determinants of finite groups, especially in the context of this thesis,
is that they can be easily calculated for the characters of p-groups.

Next, Chapter 3 provides some short overview of the theory of finite groups of Lie type
and some very basics of their representation theory. The finite groups of Lie type are
special finite subgroups of connected reductive groups defined over an algebraically closed
field in positive characteristic p. For every finite group of Lie type G in characteristic p,
there is an important class of subgroups, the Borel subgroups. Every Borel subgroup B
can be decomposed as a semidirect product B = U ⋊ T , where U is a p-Sylow subgroup
and T is a maximal torus, an abelian subgroup. One crucial class of groups in the theory
are the Coxeter groups; examples include the dihedral groups and the symmetric groups.
These are groups having an action on the subgroup T and give important information
about the structure of G. For the characters, one important class are the principal
series characters, which are characters χ of G appearing in IndGB(1B). Their behavior
is determined by the Iwahori–Hecke algebras, these are deformations of Coxeter groups
and examples of monomial algebras.

Chapter 4 is about the orthogonal determinants of the finite Coxeter groups (and some
Iwahori–Hecke algebras), as well as the alternating groups. The chapter is split into four
sections, each highlighting different types of Coxeter groups. For the classical types, as
well as the groups I2(m), there will be a quick reminder on the representation theory of
the corresponding groups, before the orthogonal determinants are being handled. We
start with type An (so, the symmetric groups) in Section 4.1. For these groups, James and
Murphy developed a combinatorial formula for the orthogonal determinants in [JM79].
The main ingredients of their formula are Young tableaux and the so called sequences
of β-numbers, which are sequences related to partitions. To show Parker’s conjecture
for the symmetric groups, we will associate a non-negative integer OddRank(λ) to every
partition λ which measures how "odd" a partition looks, with a partition having maximal
rank if and only if the degree of the character χλ ∈ Irr(Sn) is odd. The proof is then
done by induction on OddRank(λ). After this, we are going through some more classes
on groups that are closely related to the symmetric groups, namely the alternating groups
and the Coxeter groups of type Bn and Dn, where we are able to calculate the orthogonal
determinants in all cases. For the groups I2(m), there is an explicit description of all
irreducible representations in terms of matrices, which gives us an easy time calculating
the orthogonal determinants. Finally, for the exceptional groups, we used computer help
and existing tables. As a side effect, we are able to confirm Parker’s conjecture for the
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alternating groups and for all finite Coxeter groups.
In Chapter 5 we discuss some methods to calculate the orthogonal determinants for

finite groups of Lie type, at least if their defining characteristic is odd. Let G be such a
finite group of Lie type with Borel subgroup B = U ⋊ T . The reason why the group B
is important for us is threefold: For once, it is relatively big, meaning that for "most"
characters χ ∈ Irr+(G), the restriction to B remains orthogonally stable. We will say
that these characters are Borel-stable. Second, it is a semidirect product of a p-group and
an abelian group, which are both types of groups where we have a full understanding of
the orthogonal determinants. In conclusion, if χ is Borel-stable, then we can calculate
det(ResGB(χ)) and it holds that

det(χ) = det(ResGB(χ)) · (Q(χ)×)2.

Third, even if our character χ is not Borel-stable, we can reduce the calculation of
det(χ) to that of some related character χH of the Hecke algebras H = H(G,B) or
H = H(G,U ⋊ T 2), which are again monomial algebras. Now, the algebras H(G,B) are
Iwahori–Hecke algebras, for which we have covered some cases in the previous chapter,
or are (under some mild conditions) quotients of so called Yokonuma–Hecke algebras,
allowing some nice descriptions of the underlying algebras. In the last Section 5.3 of
this chapter, we apply the methods developed in this chapter to calculate some generic
orthogonal determinants of some finite groups of Lie type of small rank.

In the final Chapter 6 of this thesis, we will describe in more detail how the results
of the previous chapter allow for the calculation of the orthogonal determinants for the
general linear groups. In particular, we will show that Parker’s conjecture holds. We end
this thesis by giving tables for the Irr+(GL4(q))-characters for an odd q.

Notation
Throughout this thesis, there are numerous more or less common notations used. We
will provide a non-complete list here. Let n be a positive integer.

Important classes of groups:

Symbol Meaning

An Alternating group on n letters
Sn Symmetric group on n letters
Cn Cyclic group with n elements
D2n Dihedral group with 2n elements

Products of groups:

Let A, B be finite groups.
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1 Introduction

Symbol Meaning

A×B Direct Product of A and B

A⋊B Semidirect product of A and B with A normal
A ≀ C2 Wreath product, (A× A) ⋊ C2

Field theory:

Let A be an integral domain. Let K/L be fields. Let k be an arbitrary integer. Let p be
a prime and q be a power of p.

Symbol Meaning

ζn exp
(

2πi
n

)
, primitive complex n-th root of unity

ϑ(k)
n ζkn + ζ−k

n ∈ R

[L : K] Degree of field extension
A× Group of invertible elements in A

(A×)2 {x2 | x ∈ A×} ⊆ A×, subgroup of squares
Quot(A) Quotient field of A
Fq Finite field with q elements
εn Generator of F×

qn

Representation theory of finite groups:

Let G be a finite group with subgroups H and N , where N is a normal subgroup. Let A,
B be finite groups. Let χ, χ′ be characters of G. Let χ1, χ2, ψ and τ be characters of A,
B, H and G/N , respectively.
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Symbol Meaning

ι(χ) Frobenius–Schur indicator of χ, ι(χ) ∈ {−1, 0, 1}
Q(χ) Character field of χ

det(χ)
Orthogonal determinant of χ in (Q(χ)×)/(Q(χ)×)2, given that
χ is orthogonally stable

ResGH(χ) Restriction of χ from G to H
IndGH(ψ) Induction of ψ from H to G
InfGG/N(τ) Inflation of τ from G/N to G

Irr(G) Irreducible characters of G
Irr+(G) Irreducible characters of G of even degree and indicator "+"

Irr+
H(G)

Irreducible characters in Irr+(G) such that the restriction to
H is orthogonally stable

1G Trivial Character of G, 1G(g) = 1 for all g ∈ G.
χ1 ⊠ χ2 Outer product of χ1 and χ2; character of A×B
⟨χ, χ′⟩G Inner product of the characters χ and χ′

Finite groups of Lie type:

Let p be a prime, q be a power of p. Let G be a finite group of Lie type and let L ⊆ G
be a Levi subgroup. Let χ be a character of G and let θ be a cuspidal character of L.

Symbol Meaning

RG
L (θ) Harish-Chandra induction; character of G

∗RG
L (χ) Harish-Chandra restriction; character of L

χL
∗RG

L (χ)
Simp(G | (L, θ)) {χ ∈ Irr(G) | ⟨χ,RG

L (θ)⟩G ̸= 0}
IrrPSU(G) Principal series unipotent characters of G
Gn
m(q) F×

q × F×
q × · · · × F×

q , where F×
q appears n times

GLn(q), SLn(q), SUn(q), . . . GLn(Fq), SLn(Fq), SUn(Fq), . . .

Combinatorics:

Let λ be a partition of n.
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1 Introduction

Symbol Meaning

P Set of all partitions
Pn Set of partitions of n
B Set of all sequences of β-numbers
Bn Set of sequences of β-numbers of n
B(λ) Set of sequences of β-numbers for λ
[λ] Young diagram of λ
λ′ Conjugate partition of λ
χλ Irreducible character of Sn corresponding to λ
fλ χλ(1); degree of χλ
[n]x Gaussian polynomial 1 + x+ · · ·+ xn−1

Φn(x) n-th cyclotomic polynomial

Miscellaneous:

Let G be a group with H a subgroup. Let g ∈ G.

Symbol Meaning

diag(A1, . . . , An) Block-diagonal matrix with entries the matrices A1, . . . , An

en
Finite or infinite sequence (0, 0, . . . , 0, 1, 0, . . . ) with the 1
in position n

gH gHg−1
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2 Orthogonal Determinants
In this chapter, we will set the cornerstone for this thesis by introducing orthogonal
determinants of monomial algebras. To be more precise, we will talk about the orthogonal
determinants of the Irr+(LH)-characters for H a semisimple monomial algebra over some
integral domain A in characteristic 0 and L/Quot(A) a splitting field, as well as the
orthogonal determinants of the orthogonally stable characters of finite groups.

2.1 Bilinear and Hermitian Forms
In this short first section, we will give a basic introduction to the theory of bilinear and
Hermitian forms. Of course, there is some deep theory about these forms and also related
notions like quadratic forms, but it will for our purposes suffice to talk only about the
very basics. Virtually every book covering these topics could thus be named as a source,
we will name just two of them, the book Quadratische Formen by Kneser [Kne02], which
also handles bilinear forms for modules over general commutative rings, and the book
Quadratic and Hermitian Forms [Sch85] by Scharlau, which nicely introduces the theory
of Hermitian forms. We will also briefly talk about involutions and their relation to
bilinear forms. A good source for this is The Book of Involutions [Knu+98] by Knus,
Merkurjev, Rost and Tignol.

2.1.1 Bilinear Forms
Let A be an integral domain of characteristic unequal 2, n a positive integer and V be a
n-dimensional free A-module. Let K be the quotient field of A.

Definition 2.1.1. We call a function β : V × V → A a bilinear form, if for all
v1, v2, v3 ∈ V , a ∈ A, the following holds:

(i) β(av1 + v2, v3) = aβ(v1, v3) + β(v2, v3),

(ii) β(v1, av2 + v3) = aβ(v1, v2) + β(v1, v3).

We call the bilinear form β non-degenerate, if for any basis (e1, . . . , en) of V we have
that det(β(ei, ej)1≤i,j≤n) ̸= 0.

Definition 2.1.2. Let β : V × V → A be a bilinear form. We call β symmetric (resp.
alternating) if for all v, w ∈ V we have that β(v, w) = β(w, v) (resp. β(v, v) = 0).
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2 Orthogonal Determinants

Let from now on β be a symmetric, non-degenerate bilinear form on V . We say that
two elements v, w ∈ V are orthogonal, if β(v, w) = 0. Further, let U,U ′ ⊆ V be subspaces.
We say that U and U ′ are orthogonal, if β(u, u′) = 0 for all u ∈ U, u′ ∈ U ′. We define

U⊥ := {v ∈ V | β(v, u) = 0 for all u ∈ U}.

Definition 2.1.3. Let (e1, e2, . . . , en) be a basis of V . We call the square class

det(β) := det(β(ei, ej)1≤i,j≤n) · (A×)2 ∈ A/(A×)2

the determinant of β. It is independent of the choice of basis. We will call

disc(β) := (−1)n(n−1)/2 det(β) ∈ A/(A×)2

the discriminant of β.

Let VK := K ⊗A V and βK be the associated extension of β to VK . We fix a basis
(e1, e2, . . . , en) of V , which we will also consider as a basis of VK . Given this basis, we
will define B ∈ An×n to be the matrix corresponding to β, i.e., vtrBw = β(v, w) for all
v, w ∈ V . We will associate EndA(V ) (resp. EndK(VK)) with the matrix rings An×n

(resp. Kn×n).

Definition 2.1.4. (i) Let M be a set. An involution is a function ϵ : M → M such
that ϵ2 = id.

(ii) Let H be a finite-dimensional associative A-algebra. An involution on H is a
A-linear map † : H → H such that (h†)† = h for all h ∈ H and (hh′)† = (h′)†h†

for all h, h′ ∈ H. Note that an involution is nothing more than an isomorphism
† : H → Hop, the opposite algebra of H.

Definition 2.1.5. The adjoint involution ιβ : EndK(VK)→ EndK(VK) is the involution
such that

βK(α(v), w) = βK(v, ιβ(α)(w))
for all v, w ∈ VK.

It is clear that the adjoint involution is well-defined. We have a matrix version,
according to the association of the endomorphism algebra with the ring of matrices; we
will thus define ιB : Kn×n → Kn×n,

ιB(C) := B−1AtrB

for C ∈ Kn×n.
For our ease, we will from now on only work with matrices. We define

E−(B) := {C ∈ Kn×n | C = −ιB(C)}.

Lemma 2.1.6. (cf. [Neb22b, Proposition 2.2]) Assume that dim(VK) is even. Then
there is a matrix C ∈ E−(B) with det(C) ̸= 0. For any such matrix, we have that
det(βK) = det(C) · (K×)2.
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2.2 Monomial Algebras

2.1.2 Hermitian Forms
We fix a field K of characteristic unequal 2 and a field extension L/K of degree 2.
As the characteristic is not 2, there is a δ ∈ K such that L = K[

√
δ]. We have that

Gal(L/K) = 2 and we let σ : L→ L be the nontrivial element of Gal(L/K) with

σ(a+ b
√
δ) = a− b

√
δ

for a, b ∈ K.
Let n be a non-negative integer and V be a n-dimensional vector space.

Definition 2.1.7. We call a function γ : V × V → L a Hermitian form, if for all
v1, v2, v3 ∈ V , a ∈ L, the following holds:

(i) γ(av1 + v2, v3) = aγ(v1, v3) + γ(v2, v3),

(ii) γ(v1, av2 + v3) = σ(a)γ(v1, v2) + γ(v1, v3),

(iii) γ(v1, v2) = σ (γ(v2, v1)).

We call the Hermitian form γ non-degenerate, if for any basis (e1, . . . , en) of V we have
that det(γ(ei, ej)1≤i,j≤n) ̸= 0.

Lemma 2.1.8. (cf. [Sch85, Chapter 10, Remark 1.4]) Let γ be a non-degenerate
Hermitian form on V . Let (e1, . . . , en) be a basis of V . We can regard V as a 2n-
dimensional K-vector space with basis

(e1, . . . , en,
√
δe1, . . . ,

√
δen)

and γ gives rise to a non-degenerate, symmetric bilinear form β over K on that space.
Then

disc(β) = δn · (K×)2.

2.2 Monomial Algebras
In this section, we will define the monomial algebras, which are algebras with "nice
enough" properties to comfortably define orthogonal determinants. We are here stressing
the word comfortably — one can create a more general setup. For instance, we are only
working in characteristic 0, so orthogonal discriminants for Brauer characters of finite
groups in the context of modular representation theory, as is done in [NP22], are not
covered by our approach. Nevertheless, monomial algebras in characteristic 0 still cover
a wide enough range of cases to be very useful for us. Monomial algebras are a special
case of symmetric algebras, and have already appeared (without being called that) in
the paper [Gec14], although we do not assume our algebras to be split. We will need
some theory of symmetric algebras which we will recall here, where we have used the
book [GP00] by Geck and Pfeiffer as a source.
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2 Orthogonal Determinants

Definition 2.2.1. Let A be an integral domain and let H be a finite-dimensional
associative A-algebra. An A-linear map τ : H → A such that τ(hh′) = τ(h′h) is called
a trace function. We say that the pair (H, τ) is a symmetric algebra if the symmetric
bilinear form

H ×H → A, (h, h′) 7→ τ(hh′)
is non-degenerate.

Definition 2.2.2. Let A be an integral domain and (H, τ) be a symmetric A-algebra.
We call H a monomial A-algebra if the following are satisfied:

(i) There is an involution † : H → H such that τ(h†) = τ(h) for all h ∈ H.

(ii) There is a finite set W and an A-basis {bw | w ∈ W} of H such that there is an
involution ϵ : W → W with b†

w = bϵ(w) and

τ(bwb†
w′) =

aw if ϵ(w) = w′,

0 if ϵ(w) ̸= w′,

where aw = aϵ(w) ∈ A is invertible.

Example 2.2.3. (i) Let K be a field with and let V be a n-dimensional vector space
over K for some positive integer n. Then H := EndK(V ) is a semisimple monomial
algebra: We will fix a basis e1, e2, . . . , en of V and regard the entries of H as matrices
with respect to the chosen basis. We define the trace function τ : H → K be the
regular trace of matrices. It is clear that then (H, τ) is a semisimple symmetric
algebra with τ(id) = n.
We let † : H → H be the usual matrix transpose. The set W = {(i, j) | 1 ≤ i, j ≤ n}
gives rise to the K-basis given by the matrices E(i,j) which have a 1 in the (i, j)-
position and a 0 everywhere else. Finally, we let

ϵ : W → W, (i, j) 7→ (j, i)

and a(i,j) = 1 for all (i, j) ∈ W .

(ii) Let G a finite group and let K be a field. Then KG is a natural monomial algebra
with the basis given by the elements of G. We define the trace function by τ(1) = 1
and τ(g) = 0 for all 1 ̸= g ∈ G. Finally we let g† = ϵ(g) = g−1. We have ag = 1
for all g ∈ G. The algebra is semisimple if and only if the order of G is invertible
in K.

(iii) Let (W,S) be a Coxeter system and let A be a commutative ring with invertible
elements {as, bs | s ∈ S} ⊆ A such that at = at and bs = bt when s and t are
conjugate in W . Let H = HA(W,S, {as, bs | s ∈ S})) be an Iwahori–Hecke algebra
with basis {Tw | w ∈ W} and multiplication

TsTw =
Tsw if ℓ(sw) > ℓ(w),
asTsw + bsTw if ℓ(sw) < ℓ(w),
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2.2 Monomial Algebras

for all s ∈ S,w ∈ W . We now set τ(T1) = 1 and τ(Tw) = 0 for all 1 ̸= w ∈ W .
Finally we let ϵ(w) = w−1 and b†

w = bw−1. Then H becomes a monomial algebra
and aw = as1 · · · ask if w = s1 · · · sk is a reduced expression for w ∈ W, si ∈ S,
cf. [GP00, Proposition 8.1.1]. For a criterion of semisimplicity, regard [GP00,
Theorem 7.2.6], and also Tits’ Deformation Theorem 2.2.15.

We will quickly go through our basic setup and notations used throughout this section.
Assume from now on that A is an integral domain in characteristic 0 and let H be a
monomial A-algebra. Let K be the quotient field of A. For any ring homomorphism
ϕ : A → M for M a field we will write MH := M ⊗A H, where we regard M as an
A-module. We assume that KH is semisimple and that there is an extension field L of
K such that LH is split. We will fix an extension field M with K ⊆M ⊆ L. Naturally,
MH is a semisimple monomial M -algebra by linearly extending τ and †.

We will assume that any MH-module V is finitely generated. The representation
afforded by V is then the natural homomorphism ρV : MH → EndM(V ). The character
of V is defined to be the trace

χV : MH →M,h 7→ trace(ρV (h)).

The degree of a character is defined to be deg(χV ) := dim(V ).
The (finite) set Irr(LH) will be the set of characters of the isomorphism classes of

simple LH-modules.
For every χ ∈ Irr(LH) there is an element cχ ∈ L, called the Schur element, such that

τ =
∑

χ∈Irr(LH)
c−1
χ χ.

Let V be a MH-module. Then V̂ := HomM(V,M) also becomes a MH-module by
setting

(h · ϕ)(v) := ϕ(h† · v)
for all h ∈MH,ϕ ∈ V̂ and v ∈ V . We will write χV for χV̂ . It is clear that

χV (h) = χV (h†)

for all h ∈ MH. We say that a non-degenerate bilinear form β : V × V → M is
MH-invariant if

β(hv, v′) = β(v, h†v′)
for all v, v′ ∈ V, h ∈MH and call (V, β) an orthogonal (resp. symplectic) MH-module
if β is symmetric (resp. alternating). Further, we will say that a MH-module V ′ is
orthogonal (resp. symplectic) if there exists a bilinear form β′ on V ′ such that (V ′, β′) is
orthogonal (resp. symplectic).

Proposition 2.2.4. (cf. [Gec14, Proposition 2.5]) Let χ ∈ Irr(LH) and let V be a
simple LH-module affording χ. Define the Frobenius–Schur indicator

ι(χ) := 1
cχ deg(χ)

∑
w∈W

1
aw
χ(b2

w).
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2 Orthogonal Determinants

Then ι(χ) ∈ {−1, 0, 1} and

ι(χ) =


1, if χ = χ and V is orthogonal,
−1, if χ = χ and V is symplectic,
0 if χ ̸= χ.

Remark 2.2.5. The argument in [Gec14] does not require us to work over L. More
concretely, assume χ ∈ Irr(LH) and that there is a field M with K ⊆M ⊆ L such that
there is a simple MH-module V affording χ. Now, if ι(χ) = 1 (resp. ι(χ) = −1), then
V is orthogonal (resp. symplectic).

Note that for any LH-module V , the LH-module (V ⊕ V̂ , β) with

β((v1, ϕ1), (v2, ϕ2)) = ϕ1(v2) + ϕ2(v1)

is orthogonal. It follows that V is orthogonal if and only if its character is of the form

χ =
r∑
i=1

aiχ
(+)
i + 2

s∑
j=1

biχ
(−)
j +

t∑
k=1

ci(χ(0)
k + χk

(0)),

where χ(+)
i (resp. χ(−)

j , resp. χ(0)
k ) are elements of Irr(LH) with Frobenius-Schur indicator

1 (resp. −1, resp. 0), and ai, bj, ck are non-negative integers. If additionally, all χ(+)
i

characters have even degree, we say that V is orthogonally stable.
We say that V is orthogonally simple if it has no orthogonal subrepresentation, i.e., if

its character is of the form χ(+), 2χ(−) or χ(0) + χ(0) for irreducible characters with the
evident Frobenius–Schur indicators.

The same terminology will be applied to the characters, so we say that the character
χ is orthogonal (resp. orthogonally stable, resp. orthogonally simple) if and only if V is.

We will set

Irr+(LH) := {χ ∈ Irr(LH) | ι(χ) = 1 and deg(χ) ∈ 2Z}.

Definition 2.2.6. Let χ be a character of LH. We define the character field of χ by

K(χ) := K({χ(bw) | w ∈ W}).

2.2.1 Involutions of Central Simple Algebras
After introducing monomial algebras, we will define determinants of involutions of central
simple algebra, as was done in [Knu+98].

Let K be a field of characteristic not equal to 2.

Definition 2.2.7. A finite-dimensional associative K-algebra A is a central simple
algebra if the only two-sided ideals are {0} and A, and the center of A is equal to K.
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2.2 Monomial Algebras

Example 2.2.8. (i) For n a positive integer, the matrix ring Kn×n is a central simple
algebra.

(ii) Let a, b ∈ K×. Define the algebra Q = (a, b)K with basis {1, i, j, k} and relations
i2 = a, j2 = b, ij = k = −ji. Then Q is a central simple algebra. It is an example
of a quaternion algebra.

Lemma 2.2.9. (cf. [Knu+98, Theorem 1.1]) A finite-dimensional associative K-algebra
A is a central simple algebra if and only if there is a field extension L of K such that
L⊗K A ∼= Ln×n. We call such a field a splitting field of A.

Lemma 2.2.10. (cf. [Rei75, Theorem 9.3]) Let A be a central simple K-algebra and
L be a splitting field of A. Since L ⊗K A ∼= Ln×n, we can regard the elements of A
as matrices in Ln×n. Then for all a ∈ A it holds that det(a) ∈ K and the value is
independent of the choice of splitting field. We call this map the reduced norm and denote
it by Nrd : A→ K.

The importance of the next theorem in the context of this thesis can not be understated,
as it is the key of defining orthogonal determinants of characters later on.
Theorem 2.2.11. (cf. [Knu+98, Corollary 2.8, Proposition 7.1]) Let A be an even-
dimensional central simple K-algebra with an involution ι : A → A. Then there is an
element h ∈ A× such that ι(h) = −h. Moreover, for any other h′ ∈ A× with that property,
we have that

Nrd(h) ≡ Nrd(h′) mod (K×)2.

We denote
det(ι) := Nrd(h) · (K×)2 ∈ K×/(K×)2

and call it the determinant of ι.

Example 2.2.12. Regard the dihedral group

D12 := ⟨s, t | s2 = t2 = 1, (st)6 = 1⟩.

Let ρ : D12 → GL2(Q) be given by

ρ(s) =
(
−1 0
1 1

)
, ρ(t) =

(
1 1
0 −1

)
.

This is an irreducible representation of D12, see for instance [GP00, Theorem 8.3.1]. Then
A := ⟨ρ(g) | g ∈ D12⟩Q = Q2×2 is a central simple Q-algebra and we got an involution
ι : A→ A given by ι(ρ(g)) := ρ(g−1). Let g = st. We calculate that

ρ(g)− ρ(g−1) =
(
−3 −6
6 3

)
with

det(ρ(g)− ρ(g−1)) = 27 = 3 · 9,
thus

det(ι) = 3 · (Q×)2.
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2 Orthogonal Determinants

2.2.2 Orthogonal Determinants of Monomial Algebras over Fields
We will now finally define orthogonal determinants. This was first done for group algebras
in [Neb22b], so we will have some slightly more general notion.

Let K be a field in characteristic 0, H be a semisimple monomial K-algebra, and L a
splitting field for H.

We will fix a character χ ∈ Irr+(LH) of degree n, afforded by an orthogonal MH-
module (V, β) for a field M sandwiched between K and L. We will choose a basis of
V and consider the associated morphism ρ : H →Mn×n and let the matrix B ∈Mn×n

represent β with respect to the chosen basis. By definition, we have that

ιB(ρ(h)) = ρ(h†).

As a direct consequence from the Artin–Wedderburn theorem on semisimple algebras,
we have that

⟨ρ(h) | h ∈MH⟩M = Mn×n.

It follows that
E−(B) = ⟨ρ(h)− ρ(h†) | h ∈MH⟩M .

In particular, the space E−(B) is independent of the choice of β.
We will regard the algebra

A := ⟨ρ(h) | h ∈MH⟩K(χ).

Lemma 2.2.13. A is a central simple K(χ)-algebra of dimension n2.

Proof. This follows by Lemma 2.2.9, since M ⊗K(χ) A = Mn×n.

Theorem 2.2.14. There is a unique δ ∈ K(χ)×/(K(χ)×)2 such that for all orthogonal
MH-modules (V, β) affording χ over all fields M with L/M/K(χ), we have that det(β) =
δ(M×)2. We define

det(χ) := δ ∈ K(χ)×/(K(χ)×)2

and call it the orthogonal determinant of χ.

Proof. We have an involution ι : A→ A given by

ι(ρ(h)) := ρ(h†)

for all h ∈ H. By Theorem 2.2.11, there is thus an element g ∈ A× with ι(g) = −g. In
particular, g ∈ E−(B). We will denote

δ := det(ι) = det(g) · (K(χ)×)2,

which does not depend on the choice of g. By Lemma 2.1.6, we now have that det(β) =
δ · (M×)2, which by the previous discussion does not depend on the particular choice of
the MH-invariant bilinear form.
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2.2 Monomial Algebras

2.2.3 Specialization
Let H be a monomial algebra over A := Q[u, u−1] for some indeterminate u. Let K be
the quotient field of A. We will follow [GP00, Section 7.4], where a more general picture
is presented.

The idea is that the algebra H gives rise to a whole family of Q-algebras Hq for any
nonzero integer q ∈ Q, where we specialize u 7→ q.

Let’s make this more formal. We will fix an element q ∈ Z\{0}. In our applications, q
will either be equal to 1 or be a power of an odd prime. We define the projection map
φ : A→ Q, u 7→ q and set Hq := QH via the map φ. We assume that Hq is semisimple.

Let L be a number field. We denote AL := L[u, u−1] with quotient field L(u). There is
a surjective ring homomorphism φL : AL → L, u 7→ q that extends φ. Accordingly, we
arrive at the L-algebra

LHq := L⊗AL ALH = L⊗Q Hq.

Informally, this algebra just corresponds to replacing every instance of u with q in ALH,
and there is a surjective map

ALH → LHq, h 7→ 1⊗ h.

Let now V be a L(u)H-module. Let p ⊆ AL be the prime ideal generated by the
element u− q, and let

O := {f/g ∈ L(u) | f, g ∈ AL, g /∈ p}

be the localization of p in AL. Then O is a discrete valuation ring, and there is a
corresponding extension φ′

L : O → L of φL, again generated by u 7→ q.
By standard results of representation theory, there is a basis of V such that the

corresponding homomorphism into the matrix ring is given by ρ : ALH → On×n. We
can now elementwise apply the map φ′

L and arrive at a representation Vq of LHq.
We will from now on assume that L is a splitting field, i.e., that LHq and L(u)H are

split algebras. For each irreducible character χ ∈ Irr(L(u)H), we get a character χq of
LHq coming from the representation Vq , which we do not know a priori to be irreducible.
This turns out to be true, which is the content of the famous Tits’ deformation theorem:

Theorem 2.2.15 (Tits’ Deformation Theorem). The algebra KH is semisimple. Further,
the specialization map χ 7→ χq induces a bijection between Irr(L(u)H) and Irr(LHq).

Next, we will take a closer look at the algebras Hq. We want to talk about orthogonal
determinants, so we still want Hq to have the natural structure of a monomial algebra,
inherited from H. We let τ, †,W, . . . be the data of H as in Definition 2.2.2. Let
π : H → Hq be the projection map.

Proposition 2.2.16. Let h ∈ H. We define the following maps:

(i) τq : Hq → Q, π(h) 7→ φ(τ(h)),

(ii) †q : Hq → Hq, π(h) 7→ π(h†).
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2 Orthogonal Determinants

Then (Hq, τq) is a symmetric algebra and †q is an involution such that τq(h†q
q ) = τq(hq)

for all hq ∈ Hq. Hq has a Q-basis given by {π(bw) | w ∈ W} and

τq(π(bw)π(bw′)†q) =
φ(aw) if ϵ(w) = w′,

0 if ϵ(w) ̸= w′.

In particular, Hq is a monomial algebra.

Proof. Almost everything is a straightforward calculation, except maybe the fact that τq
is non-degenerate. But this follows since {π(bw) | w ∈ W} is an orthogonal basis and
since the aw ∈ A were defined to be invertible, φ(aw) ̸= 0. So indeed, the determinant of
the Gram matrix is nonzero.

Corollary 2.2.17. The specialization map at the level of characters induces a bijection
between Irr+(L(u)H) and Irr+(LHq).

Proof. It holds clearly that deg(χ) = deg(χq) for all χ ∈ Irr(L(u)H). It is thus left to
show that ι(χ) = ι(χq), which follows since the formula for the Frobenius–Schur indicator
in 2.2.4 clearly behaves well with specialization.

What is left is now to compare the orthogonal determinants of the Irr+(L(u)H)-
characters and the Irr+(LHq)-characters. We immediately run into some issues: Assume
for instance that χ ∈ Irr+(L(u)H) and that det(χ) = u · (K(χ)×)2. What we then expect
is

det(χq) = φQ(χq)(u) · (Q(χq)×)2 = q · (Q(χq)×)2,

and indeed, this will turn out to be the case. The representative we have chosen for
the square class is only unique up to a square though, so u(u − q)2 is another valid
representative. But φQ(χq)(u(u − q)2) = 0, so one can not just carelessly choose any
representative.

The above problem is easily fixed. Since AQ(χq) is a unique factorization domain, we
can choose a squarefree polynomial dχ(u) ∈ AQ(χq) in the square class of det(χ) for every
χ ∈ Irr+(G).

Theorem 2.2.18. Let χ ∈ Irr+(L(u)H). Let det(χ) = dχ(u)·(K(χ)×)2 for dχ(u) ∈ AQ(χq)
squarefree. Then

det(χq) = φQ(χq)(dχ(u)) · (Q(χq)×)2 = dχ(q) · (Q(χq)×)2.

Proof. Let M ⊆ L be a field such that there is a representation ρ : M(u)H → On×n

affording the character χ, for a discrete valuation domain O ⊆M . Let ρq : MHq →Mn×n

be the corresponding specialized representation. We write ψ : On×n → Mn×n for the
evident map that applies φ′ : O → M elementwise. It is clear that for every element
D ∈ On×n, it holds that φ′(det(D)) = det(ψ(D)).

Since χ is irreducible,

⟨ρq(hq) | hq ∈MHq⟩M = Mn×n,
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2.3 Orthogonal Determinants of Finite Groups

so we choose an element
xq :=

∑
w∈W

cwπ(bw) ∈MHq

with cw ∈ Q(χq) such that Cq := ρq(xq)− ρq(x†q
q ) is invertible. Recall that by Theorem

2.2.14,
det(χq) = det(Cq) · (Q(χq)×)2.

The idea now is to lift xq to M(u)H. For that, define

x :=
∑
w∈W

cwbw ∈M(u)H.

Further we let C := ρ(x)− ρ(x†). Clearly, ψ(C) = Cq and by what we have concluded
earlier,

φ′(det(C)) = det(ψ(C)) = det(Cq) ̸= 0,

so in particular, det(C) ̸= 0. So again by Theorem 2.2.14,

det(χ) = det(C) · (K(χ)×)2.

Thus by choosing a squarefree representative of the square class of det(C) · (K(χ)×)2,
one arrives at the statement of the theorem.

2.3 Orthogonal Determinants of Finite Groups
In the last section, we have defined orthogonal determinants for monomial algebras. In
this section, we are looking at a special case, namely the orthogonal determinants of
characters of group algebras over a field of characteristic 0. In short, we will just say that
we are considering orthogonal determinants of finite groups. Of course, much more can
be said here than in the more general picture, as we have the full and rich representation
theory of finite groups at our disposal. So, subgroups will play a big role, as well as
certain important properties a group can enjoy, like being solvable or abelian. We will
talk about some techniques that will come in handy for the calculations later on, giving
an emphasis on the theory of condensation. At the end of this section, we will discuss a
conjecture by Richard Parker about the "oddness" of orthogonal determinants of finite
groups. Virtually all of this section is due to the results of Nebe, Parker and Breuer,
which can be found in the papers [Neb22b], [Neb22a], [NP22] and [BNP24].

Let G be a finite group. As already mentioned in Example 2.2.3, the algebra QG
is a semisimple monomial algebra with splitting field C. We denote Irr(G) := Irr(CG)
and Irr+(G) := Irr+(CG). By abuse of notation, for L ⊆ C a subfield and (V, β) an
orthogonal LG-module, we may also simply say that the bilinear form β is G-invariant.

With Theorem 2.2.14 in mind, we now understand orthogonal determinants of Irr+(G)-
characters. We can generalize the result to all orthogonally stable characters, so let us
now fix an orthogonally stable character χ. Let K := Q(χ).
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2 Orthogonal Determinants

Lemma 2.3.1. (cf. [Tur93, Theorem B]) Assume χ = 2ψ is orthogonally simple for
ψ ∈ Irr(G) with ι(ψ) = −1. Let (V, β) be an orthogonal LG-module affording χ for a
real-valued field L/K. Then

det(β) = 1 · (L×)2.

We will define the orthogonal determinant

det(2χ) := 1 · (K×)2.

The following is a corollary of Lemma 2.1.8:

Lemma 2.3.2. Assume χ = ψ + ψ is orthogonally simple for ψ ∈ Irr(G) with ι(ψ) = 0.
Let L := Q(ψ), we can choose 0 < δ ∈ K such that K[

√
−δ] = L. Let (V, β) be an

orthogonal MG-module affording χ for a real-valued field M/K. Then

det(β) = δψ(1) · (M×)2.

We will define the orthogonal determinant

det(χ) := δψ(1) · (K×)2.

For the case that the field L in the notation of the last lemma is cyclotomic, there is
an easy choice for the number δ.

Corollary 2.3.3. Assume we are in the situation of Lemma 2.3.2. Let m be a positive
integer and let

ζm := exp
(2πi
m

)
be a primitive complex m-th root of unity and let for any integer j

ϑ(j)
m := ζjm + ζ−j

m ⊆ R.

Assume that L = Q(ζjm). Then K = Q(ϑ(j)
m ). We can thus choose

δ = −(ζjm − ζ−j
m )2 = 2− ϑ(2j)

m

and arrive at
det(χ) = (2− ϑ(2j)

m )ψ(1) · (Q(ϑ(j)
m )×)2.

Definition 2.3.4. (cf. [NP22, Section 5.5]) Let ψ be an orthogonally simple constituent
of χ. Let L := Q(ψ) and let Γψ := Gal(L/(L ∩K)). We define

ψK :=
∑
σ∈Γψ

σ · ψ,

which is clearly again a constituent of χ with Q(ψK) ⊆ K. Let δ ∈ L be a representative
of det(ψ) ∈ L×/(L×)2. We then set

NK(det(ψ)) :=
∏
σ∈Γψ

σ(δ) · (K×)2.

22
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Lemma 2.3.5. (cf. [NP22, Proposition 5.17, Remark 5.21]) With the notation of
Definition 2.3.4 we write χ = ∑k

i=1(ψi)K for orthogonally stable constituents ψi of χ. Let
(V, β) be an orthogonal LG-module affording χ for some real valued field L/K. Then

det(β) =
k∏
i=1

NK(det(ψi)) · (L×)2.

We will define the orthogonal determinant

det(χ) :=
k∏
i=1

NK(det(ψi)) ∈ K×/(K×)2.

Remark 2.3.6. By definition, the class function 0 : G→ C, g 7→ 0 is orthogonally stable.
It is convenient to set

det(0) := 1 · (Q×)2.

We will summarize the results in the following main theorem:

Theorem 2.3.7. Let (V, β) be an orthogonal LG-module affording the character χ for
some real-valued field L/K. Then

det(β) = det(χ) · (L×)2.

Remark 2.3.8. Assume we have the following information about our group G:

(i) The full character table, in particular we have the knowledge about all the Frobenius–
Schur indicators and the character fields.

(ii) The orthogonal determinants det(χ) for each χ ∈ Irr+(G).

Then with the statements above, we can calculate the orthogonal determinants of every
single orthogonally stable character of G.

Thus we will need to find methods on how to handle the Irr+(G)-characters. First, we
can use representation theoretic methods like restriction and induction of subgroups of
G.

Lemma 2.3.9. Let H be a subgroup of G. Assume that ResGH(χ) is an orthogonally stable
character of H. We will also say that χ is H-stable. Then det(χ) = det(ResGH(χ)) · (K×)2.
We denote

Irr+
H(G) := {ψ ∈ Irr+(G) | ResGH(ψ) is orthogonally stable}

to be the set of H-stable Irr+(G)-characters.

Lemma 2.3.10. Let H be a subgroup of G and ψ be an orthogonal character of H such
that χ = IndGH(ψ) is orthogonally stable with Q(ψ) = K. Then the following holds:

(i) If the index of H in G is even, then det(χ) = 1 · (K×)2.
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2 Orthogonal Determinants

(ii) If the index of H in G is odd, then ψ is orthogonally stable and det(χ) = det(ψ).
Proof. Let (V, β) be an orthogonal LH-module affording ψ for a real valued field L/K.
Let x1, . . . , xN be representatives of the cosets G/H and let

W =
n⊕
i=1

xiV

be the induced representation. Then we can construct a G-invariant non-degenerate
symmetric bilinear form γ on W by letting the individual summands be orthogonal to
each other, and choosing the bilinear form β on xiV ∼= V . Then det(γ) = det(β)N from
which the statement follows.

If the character field of an induced character becomes smaller, then the above lemma
fails. There is a special case that can be easily handled though:
Lemma 2.3.11. (cf. [Neb22b, Theorem 4.3]) Assume G = H ⋊ C2 for a normal
subgroup H of G. Let α : H → H be the automorphism of order 2 induced by the action
of C2. Assume that χ ∈ Irr+(G) such that χ = IndGH(ψ), with ψ ∈ Irr(G) an odd-degree
indicator "+" character such that ψ ̸= ψ ◦ α. Choose a δ ∈ K such that K[

√
δ] = Q(ψ).

Then
det(χ) = δ · (K×)2.

Lemma 2.3.12. Let N be a normal subgroup of G and let ψ be an orthogonally stable
character of G/N . Let π : G → G/N be the projection. The inflation InfGG/N(ψ) is
defined to be the character ψ ◦ π of G. Then

det(ψ) = det(InfGG/N(ψ)).

Proof. Let L/Q(ψ) be a field extension and assume that there is an orthogonal L(G/N)-
module V affording the character ψ with a homomorphism ρ : L(G/N)→ End(V ). Let
h ∈ L(G/N) be an element such that

det(ψ) = det
(
ρ(h)− ρ(h†)

)
· (Q(ψ)×)2.

We will denote π′ : LG→ L(G/N) to be the surjective algebra homomorphism coming
from the projection map π. Then we get an according orthogonal LG-module given by
the map ρ′ := ρ ◦ π′. Let h′ ∈ LG be any lift of h. Then ρ(h) = ρ′(h′) and thus

det(InfGG/N(ψ)) = det
(
ρ′(h′)− ρ′((h′)†)

)
· (Q(InfGG/N(ψ))×)2

= det
(
ρ(h)− ρ(h†)

)
· (Q(ψ)×)2 = det(ψ),

which we wanted to show.

Next, we will regard special classes of groups where we have simple formulas for the
orthogonal determinants.

Recall that if G1, G2 are finite groups, then

Irr(G1 ×G2) = {χ1 ⊠ χ2 | χ1 ∈ Irr(G1), χ2 ∈ Irr(G2)},

where (χ1 ⊠ χ2)(g1, g2) := χ1(g1)χ2(g2).
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Lemma 2.3.13. Let G1, G2 be finite groups, χ1 ∈ Irr(G1), χ2 ∈ Irr(G2). Let G = G1×G2
and χ = χ1 ⊠ χ2. Then χ ∈ Irr+(G) if and only if one of the following holds:

(i) We have ι(χ1) = ι(χ2) = 1 and at least one of the characters has even degree.
Assume without loss of generality that χ1(1) is even. Then

det(χ) = det(χ1)χ2(1) · (K×)2.

(ii) We have ι(χ1) = ι(χ2) = −1 and at least one of the characters has even degree.
Then

det(χ) = 1 · (K×)2.

Proof. It is clear by the definition of the Frobenius–Schur indicator given in Proposition
2.2.4 that we have that ι(χ) = ι(χ1)ι(χ2). Let us assume that χ ∈ Irr+(G). In particular,
it has even degree and we can assume without loss of generality that χ1 is a character
of even degree. Then ResGG1×{1}(χ) = χ2(1)χ1 and the statement follows by Lemma
2.3.9.

Lemma 2.3.14. (cf. [Neb22b, Corollary 2.5]) Assume there is an element g ∈ G such
that χ(g2) = −χ(1). Then

det(χ) = 1 · (K×)2.

Proposition 2.3.15. (cf. [Neb22a, Theorem 4.7]) Assume that G is a 2-group. Then

det(χ) = 1 · (K×)2.

Proposition 2.3.16. (cf. [Neb22a, Theorem 4.3]) Assume that G is a p-group for an
odd prime p. Define for d ≥ 1 the cyclotomic field Zd ⊆ C generated by the complex pd-th
roots of unity. Let Z+

d ⊆ R be the biggest real subfield of Zd. Let δp > 0 be such that
Z+

1 (
√
−δp) = Z1. Let f be minimal with the property that K ⊆ Z+

f . Then [Zf : K] is
even and divides (p− 1) and χ(1). Furthermore, the following holds:

det(χ) =
(
NZ+

f
/K(δp)

)χ(1)/[Zf :K]
· (K×)2.

If p ≡ 3 mod 4, then det(χ) = pχ(1)/2 · (K×)2. If K = Q and p ≡ 1 mod 4, then
det(χ) = pχ(1)/(p−1) · (K×)2.

Corollary 2.3.17. Assume that G is a p-group for an odd prime p. Let q = pr be a
power of p for some positive integer r such that q − 1 | χ(1). Assume that Q(χ) = Q.
Then

det(χ) = qχ(1)/(q−1) · (Q×)2.
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2 Orthogonal Determinants

2.3.1 Hecke Algebras and Condensation
Let G be a finite group and let B be a subgroup. Oftentimes, we will be presented with
the following problem: Let χ ∈ Irr+(G) and assume that

ResGB(χ) = ψ + c · 1B,

where c is some (small) non-negative integer and ψ is an orthogonally stable character of
B. Assume that we know det(ψ). If c = 0, then of course, by Lemma 2.3.9, we know
also det(χ). This subsection deals with the case of c > 0, which will introduce the Hecke
algebras which are certain monomial algebras.

Hecke algebras are well understood and will appear frequently in this thesis. Some nice
sources that cover these are [CR81, §11D] and [GP00, Section 8.4]. They also appear in
the context of condensation in computational representation theory, regard for instance
[MR99]. We also refer to [BNP24] for an application to orthogonal determinants.

Definition 2.3.18. Let
eB := 1

|B|
∑
h∈B

h ∈ QG,

which is an idempotent in the group algebra. The Hecke algebra H(G,B) is defined to be
the subalgebra eBQGeB of QG. If the context is clear, we will just write H = H(G,B).
For any field extension K/Q, we define the K-algebra KH := K ⊗Q H = eBKGeB.

Proposition 2.3.19. (cf. [CR81, Proposition 11.34] Let D(G,B) = {x1, . . . , xN} ⊆ G
be a set of representatives of the double cosets B\G/B, where we assume that x1 = 1.
We set Di := BxiB for any xi ∈ D(G,B) and define

Ti := 1
|B|

∑
h∈Di

h ∈ H.

These form a Q-basis of H, called the Schur basis, as we run over all elements of D(G,B).
The element T1 = eB is the identity element of H. For any 1 ≤ i, j ≤ N , we have that

TiTj =
N∑
k=1

µi,j,kTk,

where
µi,j,k := 1

|B|
|Di ∩ xkD−1

j |.

It holds that H is a semisimple algebra. Further, it has the structure of a monomial
algebra: As a subalgebra of QG, it inherits many properties of such. Let

τ : QG→ Q,
∑
g∈G

agg 7→ a1
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for ag ∈ Q, be the trace function on Q, as in Example 2.2.3. Then the restriction of
τ on H makes the pair (H, τ) a symmetric algebra, see [CR81, Proposition 11.30(iii)].
Similarly to the trace function on the group algebra, we get that

τ

(
N∑
i=1

aiTi

)
= a1,

for ai ∈ Q. We define an involution on the set D(G,B): For any x ∈ D(G,B), define
ι(x) ∈ D(G,B) such that Bι(x)B = Bx−1B. By now setting

† : H → H, T †
x = Tι(x),

we get an involution on H which makes H into a monomial algebra with ax = |BxB/B|
for x ∈ D(G,B). Note that the involution on H is just the restriction of the involution
of QG to H as a subalgebra.

The character IndGB(1B) is afforded by the left QG-module QGeB. Note that we have
an isomorphism H → EndQG (QGeB) given by

h 7→ (v 7→ vh†),

for h ∈ H, v ∈ QGeB.
We will now investigate the irreducible characters of CH, see also [CR81, Theorem

11.25]. Let K/Q be a field extension and V be an absolutely irreducible KG-module
such that χV appears in IndGB(1B), i.e.,

⟨χV , IndGB(1B)⟩G ̸= 0.

Then
U := StabKB(V ) = {v ∈ V | hv = v for all h ∈ B}

is nontrivial, as dim(U) = ⟨χV , IndGB(1B)⟩G. In particular, U is a KH-module: For any
x ∈ KG, v ∈ V and h ∈ B, we calculate that

h · (eBxeB) · v = (eBxeB) · v,

since heB = eB. In fact, U is an absolutely irreducible KH-module, and all such modules
arise in that way.

Analogously, if χ ∈ Irr(G) is the irreducible character of V , we denote χH ∈ Irr(CH)
to be the irreducible character of U and all irreducible characters of CH arise that way.
It is now also clear that if L/Q is a field extension such that the LG-module LGeB splits,
then L is a splitting field for H. The degree of χH can be easily calculated from χ: It
holds that

deg(χH) = ⟨χ, IndGB(1B)⟩G.
Theorem 2.3.20. Let χ ∈ Irr+(G) such that ⟨χ, IndGB(1B)⟩G ̸= 0 and let χH ∈ Irr(CH)
be the corresponding irreducible character. Assume that deg(χH) is even and that

ψ := ResGB(χ)− deg(χH)1B
is an orthogonally stable character of B. Then χH ∈ Irr+(CH) and

det(χ) = det(ψ) det(χH) · (Q(χ)×)2.
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Proof. Let K be a real-valued field such that there is an orthogonal KG-module (V, β)
affording χ. Let U := StabKB(V ) be the associated KH-module; then (U, β|U) is an
orthogonal KH-module. Indeed, β|U is non-degenerate because K is real-valued, and it’s
KH-invariant as KH is a subalgebra of KG. So χH ∈ Irr+(CH).

Let W ⊆ V be the KB-submodule affording the character ψ, so V = U ⊕W . We
choose a basis (v1, . . . , vn) of V with respect to this decomposition, so we get a morphism
ρ : KG → Kn×n with character χ, where n is the K-dimension of V and the vectors
(v1, . . . , vk) are a basis of W for k = dim(W ). Accordingly, we also get morphisms
ρKB : KB → Kk×k and ρKH : KH → K(n−k)×(n−k) representing the modules W and U
respectively. Let

A = ⟨ρ(h) | h ∈ KG⟩Q(χ),

we similarly define AKB and AKH with ρKB and ρKH respectively. On each of these, we
get an involution ι (resp. ιKB, resp. ιKH) generated by the involution † on KG (resp.
the restriction of † to the subalgebras KB and KH).

So by Theorem 2.2.11, there are invertible elements gKB ∈ AKB, gKH ∈ AKH such
that

ιKB(gKB) = −gKB, ιKH(gKH) = −gKH.

We now set g := diag(gKB, gKH) ∈ A to be the block diagonal matrix with the blocks
gKB and gKH. Then clearly ι(g) = −g and det(g) = det(gKB) det(gKH). The statement
now follows by Theorem 2.2.14.

2.3.2 Parker’s Conjecture
Let G be a finite group. If G is small, one can explicitly construct the irreducible
representations of G and thus calculate the orthogonal determinants of the Irr+(G) by
"brute force", as well as the methods discussed in the previous sections (and more). To
give a feel on how the orthogonal determinants behave, the reader can for instance take a
quick look at Section 4.4, where the orthogonal determinants of the orthogonally stable
characters of six finite groups are listed. One quickly observes a pattern, namely, in the
listed groups (and for all finite groups investigated so far), for any character χ ∈ Irr+(G)
such that Q(χ) = Q, the unique squarefree integer that represents det(χ) ∈ Q×/(Q×)2

always seems to be odd.
Richard Parker conjectured that this is always the case, for all finite groups G, also

see [Neb22a]. In this subsection, we will present a generalization of this conjecture which
we will appropriately call "Parker’s Conjecture", for which we will follow the before
mentioned paper [Neb22a]. In that paper, Nebe showed Parker’s conjecture to hold for
all solvable groups. One of the main goal of this thesis is to confirm the conjecture for
other families of groups, in particular, it will be shown that Parker’s conjecture holds for
all finite Coxeter groups in Chapter 4, and for all groups GLn(q) for all positive integers
n and odd powers of primes q = pr in Chapter 6.

Definition 2.3.21. Let K be a number field. A discrete valuation is a non-zero function
ν : K× → Z such that for all for a, b ∈ K× we have that
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(i) ν(ab) = ν(a) + ν(b),

(ii) ν(a+ b) ≥ min{ν(a), ν(b)}.

We say that ν is dyadic if ν(2) > 0.

We will always assume that our discrete valuations are surjective, i.e., ν(K×) = Z. It
is a standard fact of algebraic number theory that there is a bijection between discrete
valuations of K and non-zero prime ideals of its ring of integers. We will quickly recall
the necessary theory. So let K be a number field, O be its ring of integers and let p ⊆ O
be a non-zero prime ideal. Recall that the localization of O by p is defined by

Op := {a
b
| a, b ∈ O, b /∈ p}.

It holds that Op is a discrete valuation ring (and therefore a principal ideal domain) with
unique prime ideal

pOp = πOp

for some element π ∈ O, called the uniformizer. Now, for any non-zero ideal I ⊆ Op,
there is a unique non-negative integer n such that I = (π)n. The p-adic valuation νp(a)
of an element a ∈ O\{0} is then defined to be the unique non-negative integer such that

aOp = (π)νp(a).

We extend this to the p-adic valuation νp : K× → Z by setting

νp

(
a

b

)
:= νp(a)− νp(b)

for a, b ∈ O\{0}.
It follows that the dyadic valuations correspond exactly to the prime ideals that lie

above 2. We will give some examples.

Example 2.3.22. (i) Let K = Q. The 2-adic valuation ν2 of a non-zero integer
number a is then given by a = 2ν(2)a′, where a′ is not divisible by 2. For instance,

ν2

(5
8

)
= −3

and ν2(2) = 1.

(ii) Let K = Q[i]. Then O = Z[i] and 2 ramifies, i.e., 2 = −i(1+i)2. Let p := (1+i)Z[i]
be the prime ideal lying over 2. Then νp is the unique dyadic valuation of K and
νp(2) = 2.

(iii) Let K = Q[
√

17]. Then O = Z[1+
√

17
2 ] and 2 splits, i.e.,

2 =
√

17 + 3
2 ·

√
17− 3

2 .
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2 Orthogonal Determinants

Let
p1 :=

√
17 + 3

2 O, p2 :=
√

17− 3
2 O

be the corresponding prime ideals lying over 2. We therefore have two dyadic
valuations νp1 and νp2, and νp1(2) = νp2(2) = 1.

Definition 2.3.23. Let Let K be a number field and δ ∈ K×. Then we say that δ(K×)2

is odd, if and only if ν(δ) ∈ 2Z for all dyadic discrete valuations ν on K.

For instance, let K = Q and let ν2 be the unique dyadic valuation on Q. Assume that
δ ∈ Q× such that δ(Q×)2 is odd. This is equivalent for there being an a ∈ δ(Q×)2 such
that ν2(a) = 0, i.e., a being an odd integer. Thus a square class in the rationals is odd if
and only if there is an odd integer in that square class, justifying the name "odd".

Lemma 2.3.24. Let L/K be two number fields, δ ∈ K×. If δ(K×)2 is odd, then also
δ(L×)2 is odd.

Proof. This follows from the well-known fact that discrete valuations can be extended to
field extensions, see for instance [Neu92, Chapter II, §8].

Note that the converse of this statement is false as can be seen from Example 2.3.22,
since the square class of 2 is clearly not odd in Q, but the square class of 2 in Q[i]
becomes odd.

We can now formulate the conjecture by Richard Parker about the orthogonal deter-
minants of orthogonally stable characters of finite groups:

Conjecture 2.3.25 (Parker). Let G be a finite group and χ be an orthogonally stable
character of G. Let K = Q(χ). Then det(χ) ∈ K×/(K×)2 is odd.

Let now G be a finite group. We will see that Parker’s conjecture can be simplified by
only needing to verify it for the Irr+(G)-characters:

Proposition 2.3.26. (cf. [Neb22a, Corollary 2.12]) Let G be a finite group and assume
that for all orthogonally stable constituents ψ of χ it holds that det(ψ) is odd. Then
det(χ) is odd.

So we only need to check the conjecture for orthogonally simple orthogonally stable
characters χ of G. There are three possibilities of such characters. If χ = 2ψ for some
ψ ∈ Irr(G) and ι(ψ) = −1, then det(χ) = 1 · (K×)2 by Lemma 2.3.1. The next possibility
is handled by the following proposition.

Proposition 2.3.27. (cf. [Neb22a, Lemma 3.2]) Assume χ = ψ + ψ for ψ ∈ Irr(G)
and ι(ψ) = 0. Then det(χ) is odd.

Thus, Parker’s conjecture can be reduced to the following:

Conjecture 2.3.28. Let G be a finite group and χ ∈ Irr+(G). Let K = Q(χ). Then
det(χ) ∈ K×/(K×)2 is odd.
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The following is known:

Theorem 2.3.29. (cf. [Neb22a, Theorem 1.5]) Parker’s conjecture holds for solvable
groups.

So, how could one try to prove Parker’s conjecture? Certainly, one idea is to somehow
show that the oddness of the orthogonal determinants of the Irr+(G)-characters behaves
well with normal subgroups, i.e., to reduce the conjecture to a statement about finite
simple groups (or maybe quasisimple groups). Then, by the classification of finite simple
groups, one "just" would have to verify the conjecture for each of the (infinitely many!)
cases. This approach has shown success for deep conjectures about finite groups, recently
Brauer’s Height Zero Conjecture was proven with this strategy, see [Mal+24].

While the reduction to finite simple groups has not been proven yet for Parker’s
conjecture, a proof of the following special case of the conjecture is certainly a big step
towards a general solution:

Conjecture 2.3.30. Let G be a finite simple group and χ ∈ Irr+(G). Let K = Q(χ).
Then det(χ) ∈ K×/(K×)2 is odd.

In Subsection 4.1.4, we will show that Parker’s conjecture holds for the alternating
groups, thus confirming it for the first non-trivial infinite class of finite simple groups.
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3 Finite Groups of Lie Type
In this chapter, we will introduce the main objects of this thesis, the finite groups of Lie
type, as well as some theory about their structure and representation theory that will
become essential in the later chapters. Furthermore, we will talk Coxeter groups, which
are in a close relationship with the finite groups of Lie type.

3.1 Reductive Algebraic Groups
We assume some basic knowledge in algebraic geometry. There is a vast amount of
literature about affine algebraic groups with from time to time conflicting notions, e.g., if
a variety is assumed to be irreducible or not. We refer the reader to the standard books
[Hum81], [Bor91] and [Spr98], which all have the same title Linear Algebraic Groups.

Throughout we fix a prime p and let K = Fp be an algebraically closed field in
characteristic p. We let An

K be the affine n-dimensional space. An affine K-variety will
always be X = Spec(A) for A a (commutative) finitely-generated and reduced K-algebra,
which we can regard as a closed subvariety of An

K for some n. In particular, we do not
assume varieties to be irreducible. We let X(K) be the set of K-points of X.
Definition 3.1.1. An affine algebraic group G over K is an affine K-variety, together
with morphisms µ : G × G → G and ι : G → G such that the set G(K) with the
multiplication given by µ and the inverse given by ι is an abstract group.

Let G be an affine algebraic group and let H be a closed subvariety. We say that
H is a closed subgroup of G if additionally, H(K) is a subgroup of G(K) and write
H ⊆ G. We say that H is a normal or solvable closed subgroup if the same holds for the
corresponding groups. If N is a normal closed subgroup of G, then G/N has again the
structure of an affine algebraic group. Also the normalizer NG(H) is a closed subgroup
of G. An isomorphism of algebraic groups is an isomorphism of varieties, which is also
an isomorphism of the corresponding groups.
Example 3.1.2. We will give some important examples.

(i) We define

GLn := {(a11, . . . , ann, b) ∈ An2+1
K | b det(aij)1≤i,j≤n = 1}

with the obvious multiplication and inversion morphisms to be the general linear
algebraic group. We have GLn(K) ∼= GLn(K). In the sequel, we will thus identify
the algebraic group GLn with the group GLn(K). By a standard theorem of algebraic
groups, see for instance [Hum81, Theorem 8.6], any affine algebraic group is a
closed subgroup of GLn for some n.
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3 Finite Groups of Lie Type

(ii) We set
SLn := {(a11, . . . , ann, 1) ∈ GLn}

to be the special linear algebraic group.

(iii) We set Gm := GL1 to be the multiplicative group. We have that Gm(K) ∼= K×. A
torus will be an affine algebraic group isomorphic to Gr

m for some r.

(iv) We set Ga := A1
K to be the additive group. We have that Ga(K) ∼= K+.

As any affine algebraic group is a closed subgroup of GLn for some n, we can regard
which matrices elements of G(K) correspond to. The closed subgroup H if G will be
called unipotent, if all elements in H(K) correspond to unipotent matrices. Equivalently,
H is unipotent if and only if every element of H(K) has order a power of p.

A class of subgroups of utmost importance are the Borel subgroups - these are maximal
closed connected solvable subgroups. Let U ⊆ G be a maximal closed connected unipotent
subgroup. Then B = NG(U) is a Borel subgroup, and all Borel subgroups arise this way.
Any Borel subgroup is a semidirect product of a maximal closed connected unipotent
subgroup and a maximal torus. Furthermore, all Borel subgroups are conjugate, and
every maximal torus is contained in a Borel subgroup. The non-negative integer r such
that T ∼= Gr

m, where T ⊆ G is a maximal torus, is called the rank of G. We say that a
closed subgroup P ⊆ G is a parabolic subgroup, if it contains a Borel subgroup.
Example 3.1.3. For GLn, a Borel subgroup Bn ⊆ GLn is given by the upper triangular
matrices, while the maximal closed connected unipotent subgroup Un contained in Bn is
given by the unipotent upper triangular matrices. We denote Tn to be the diagonal, it
is clear that it is a maximal torus and Bn = Un ⋊ Tn. Further, Tn

∼= Gn
m and so the

rank of GLn is equal to n. We can further describe all the parabolic subgroups containing
Bn. For this, let (a1, . . . , am) be positive integers that sum to n and consider the closed
subgroup

L := GLa1 × · · · ×GLam ⊆ GLn,

where we take the diagonal embedding. Then the group generated by L and Bn is clearly
parabolic, and all parabolic subgroups containing Bn arise that way. In particular, there
are 2n many.

Definition 3.1.4. The unipotent radical Ru(G) is the maximal closed connected normal
unipotent subgroup of G. We call G reductive if the unipotent radical is trivial.

We will from now assume that G is a connected reductive group. We say that G
is semi-simple, if Z(G)0 = {1}, where Z(G)0 is the identity component of the center
of G. Note that the derived subgroup G′ = [G,G] is semi-simple, and it holds that
G = Z(G)0G′. We further say that G is simple, if G has no nontrivial closed connected
normal subgroups. In particular, every simple connected reductive group is semi-simple.
Example 3.1.5. We have that GLn is a connected reductive group, while Bn is not
reductive, as it has Un as a maximal closed connected normal unipotent subgroup. The
group GLn is not semi-simple, as Z(GLn)0 ∼= Gm is the group of scalar matrices. It is
not hard to see that GL′

n = SLn. Further, SLn is a simple algebraic group.
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3.2 Coxeter Groups

Definition 3.1.6. Let G be a connected reductive group and let T ⊆ G be a maximal
torus. The group W (T) := NG(T)/T is called the Weyl group of G with respect to T. It
is a finite group and the isomorphism class is independent of the maximal torus chosen.
Note that there is a natural action of W (T) on T by w · t = ẇtẇ−1 for w ∈ W (T), t ∈ T
for any ẇ ∈ NG(T) representing w.

Example 3.1.7. For GLn, we have that NG(Tn) is given by the monomial matrices,
i.e., the n× n matrices that have exactly one non-zero entry in every row and column.
Then NG(Tn)/Tn

∼= Sn, the symmetric group of n letters.

Much of the structure of G is inherited from its Weyl group. This can mostly be
boiled down to the Bruhat decomposition: Let T ⊆ B be a Borel subgroup containing
the maximal torus T. Then

G =
⋃

w∈W (T)
BwB

is a disjoint union of double cosets.

3.2 Coxeter Groups
The Weyl group of a connected reductive group is a special case of a Coxeter group.
Coxeter groups have proven to be an essential part of representation theory and enjoy a
very deep and rich theory. Examples include the dihedral groups D2n of order 2n and
the symmetric groups Sn. The theory of Coxeter groups is essential for the theory of
finite groups of Lie type, and in a very informal way, they can be thought of as "groups
of Lie type in characteristic 1". For more details concerning Coxeter groups, regard for
instance [GP00] and [BB05].

Definition 3.2.1. Let S be a set and m : S×S → Z>0∪{∞} such that m(s, s′) = m(s′, s)
for all s, s′ ∈ S and that m(s, s′) = 1 if and only if s = s′. The group with the presentation

W := ⟨S | s2 = 1 for all s ∈ S, (ss′)m(s,s′) = 1 for all s, s′ ∈ S with m(s, s′) ∈ Z>0⟩

is called a Coxeter group and the tuple (W,S) is called a Coxeter system. The relations

ss′s · · · = s′ss′ . . . ,

where m(s, s′) many terms appear on each side, are called the braid relations.

Example 3.2.2. (i) Take the symmetric group Sn for n > 1. We take

S := {(i, i+ 1) | 1 ≤ i ≤ n− 1}

to be the set of simple transpositions. Then (Sn, S) is a Coxeter system. We denote
si := (i, i + 1) ∈ S. Then s2

i = 1 for all i, sisi+1 has order 3 for i < n − 1, i.e.,
sisi+1si = si+1sisi+1, and sisj = sjsi for |i− j| > 1.
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3 Finite Groups of Lie Type

(ii) The dihedral group
D2n = ⟨s, t | s2 = t2 = 1, (st)n = 1⟩

of order 2n is a Coxeter group with Coxeter system (D2n, {s, t}).

We will now fix a Coxeter system (W,S). Coxeter groups enjoy a variety of nice
properties. For once, the order of ss′ for s, s′ ∈ S is exactly m(s, s′). There is a well-
defined length function on W : For any w ∈ W , the length ℓ(w) is the minimum number
k of generators s1, . . . , sk ∈ S such that w = s1 · · · sk. A reduced expression of w means
writing w = s1 · · · sk for any si ∈ S such that ℓ(w) = k. We will now gather some
fundamental theorems about Coxeter groups.

Theorem 3.2.3. Let w = s1 · · · sk ∈ W for si ∈ S be a reduced expression.

(i) (Deletion property) Assume ℓ(w) < k. Then there are indices i < j such that

w = s1 · · · ŝi · · · ŝj · · · sk

where the hats mean that we leave these indices out.

(ii) (Exchange property) Let s ∈ S. Then ℓ(sw) = ℓ(w)± 1 and if ℓ(sw) < ℓ(w) then
there is an index i such that

sw = s1 · · · ŝi · · · sk.

(iii) If ℓ(w) = k, i.e., the expression above is reduced, then the set {s1, . . . , sk} ⊆ S is
uniquely determined by w.

(iv) If W is finite, there is a unique element w0 ∈ W of maximal length, called the
longest element of W . It holds that w2

0 = 1 and ℓ(ww0) = ℓ(w0)− ℓ(w).

(v) (Matsumoto’s Theorem) Let w = s′
1 · · · s′

k be another reduced expression. Then the
two reduced expression can be transformed into each other by braid relations.

There is a set related to S, which is the set T := {wsw−1 | s ∈ S,w ∈ W}. For
W = Sn, the set T corresponds to the set of transpositions, i.e., the permutations (i, j)
for 1 ≤ i < j ≤ n. We will quickly go over some important partial orders on Coxeter
groups.

Definition 3.2.4. Let w,w′ ∈ W .

(i) (Bruhat order) We say that w ≤ w′ in the Bruhat partial order if there is a
sequence w = w1, w2, . . . , wk = w′ of elements in W such that ℓ(wi) < ℓ(wi+1) and
wi+1 = witi for some ti ∈ T .

(ii) (Weak right order) We say that w ≤R w′ in the weak right partial order if w′ =
ws1s2 · · · sk for si ∈ S such that ℓ(ws1s2 · · · si) = ℓ(w) + i for all 1 ≤ i ≤ k.

36



3.2 Coxeter Groups

(iii) (Weak left order) We say that w ≤L w′ in the weak left partial order if w′ =
s1s2 · · · skw for si ∈ S such that ℓ(s1s2 · · · siw) = ℓ(w) + i for all 1 ≤ i ≤ k.

For any subset I ⊆ S, there is a group generated by the elements of I, denoted by WI .
These groups are called the parabolic subgroups of W , and (WI , I) are themselves again
Coxeter systems.

We are for our purposes only interested in finite Coxeter groups, so we will from now
assume that S is finite and m(s, s′) ∈ Z>0 for all s, s′. There is a complete classification
of finite Coxeter groups, given by so called Coxeter diagrams. A Coxeter diagram for
the Coxeter system (W,S) is the graph with vertices the set S where we put an edge
between two vertices s, s′ if m(s, s′) ≥ 3. If m(s, s′) ≥ 4, we label that edge with m(s, s′).
If the Coxeter graph is disconnected with connected components S1, . . . , Sk, then

W ∼= WS1 ×WS2 × · · · ×WSk

so we can focus on the case where the Coxeter graph is connected. The groups with
connected Coxeter graph are also called irreducible.

We will now give a list of all finite irreducible Coxeter groups, as well as their orders
and naming conventions. For a reference, regard for instance [BB05, Appendix A1].

Name Coxeter Diagram Group Order
An, n ≥ 1 1 2 3 n (n+ 1)!
Bn, n ≥ 2 1

4
2 3 n 2nn!

Dn, n ≥ 4 2

1

3 4 n 2n−1n!

E6 1

2

3 4 5 6 27 · 34 · 5

E7 1

2

3 4 5 6 7 210 · 34 · 5 · 7

E8 1

2

3 4 5 6 7 8 214 · 35 · 52 · 7
F4 1

4
2 3 4 1152

H3 1
5

2 3 120
H4 1

5
2 3 4 14400

I2(m),m ≥ 3 1
m

2 2m

The index here shows the number of elements in S of the Coxeter system (W,S). The
Coxeter groups of type An are the symmetric groups Sn+1, and the Coxeter groups of
type I2(m) are the dihedral groups D2m.

There is a representation of finite Coxeter groups which will become important later
on, which we will quickly introduce.
Definition 3.2.5. The sign representation is the homomorphism

sgn : W → {−1, 1}, w 7→ (−1)ℓ(w).
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3.3 Root Systems
The Weyl group of a connected reductive group can be realized as the group generated
by reflections of a certain finite subset of real vector space, called a root system. Root
systems are also the key for the classification of connected reductive groups by so called
root data. They appear in a multitude of algebraic situations, for instance they are also
crucial for the theory of Lie algebras. For a reference, see for instance [DM20, Chapter
2.2] or [FH91, Lecture 21].

Let V be a finite-dimensional real vector space with V ∗ = Hom(V,R) its dual. Let
α ∈ V \{0} be a vector and let α∨ ∈ V ∗ such that α∨(α) = 2. For each such pair, there
is a unique element sα ∈ GL(V ) of order 2, called a reflection for the pair (α, α∨), such
that sα fixes the hyperplane ker(α∨) and sα(α) = −α.

Definition 3.3.1. A root system is a finite subset Φ ⊆ V , together with a finite subset
Φ∨ ⊆ V ∗ and a bijective function Φ→ Φ∨, α 7→ α∨, such that for all α ∈ Φ, α∨(α) = 2,
the reflection sα for the pair (α, α∨) stabilizes Φ and

Φ ∩ Rα = {−α, α}.

The elements of Φ are called roots and the elements of Φ∨ are called coroots. The root
system is called crystallographic if α∨(β) ∈ Z for all α, β ∈ Φ.

Let now Φ ⊆ V be a root system. We will fix a linear form ϕ ∈ V ∗ such that Φ does
not vanish on ϕ. We get a partition Φ = Φ+ ∪Φ−, called the positive and negative roots,
where ϕ(α) > 0 (resp. ϕ(α) < 0) for all α ∈ Φ+ (resp. α ∈ Φ−). There is a unique
minimal subset Π ⊆ Φ, called a basis of Φ, such that Φ+ = Φ ∩ R≥0Π. The elements of
Π are called simple roots and the cardinality of Π is called the rank of the root system.
It holds that all α ∈ Φ+ that α ∈ Z≥0Π.

Let
W := ⟨{sα | α ∈ Φ}⟩, S := {sα | α ∈ Π}.

Then (W,S) is a Coxeter system, called the Weyl group of the corresponding root system.
The group W acts transitively on the roots Φ.

It is easy to see that there is a W -invariant inner product (·, ·) on V ; we will fix such
an inner product. This inner product allows for an equivalent approach for root systems
by identifying each α∨ with the element 2α

(α,α) ∈ V . It follows that a root system is
crystallographic if and only if 2(α,β)

(α,α) ∈ Z for all α, β ∈ Φ. Any crystallographic root
system can thus be realized in a vector space over the rational numbers.

We will from now on assume that Φ is crystallographic. For any two s, s′ ∈ S, the
order of ss′ is in {2, 3, 4, 6}. This is equivalent with the angle between two elements
α, α′ ∈ Π being in {π2 ,

2π
3 ,

3π
4 ,

5π
6 }.

Similarly to the Coxeter diagrams for Coxeter systems, we will now describe Dynkin
diagrams for crystallographic root systems. It is the graph with vertices Π, where we put
the edges between two vertices as follows:

(i) No edge, if the angle between the roots is π
2 .
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3.3 Root Systems

(ii) 1 edge, if the angle between the roots is 2π
3 . Note that here, the two roots have the

same length.

(iii) 2 edges, if the angle between the roots is 3π
4 , with an arrow pointing from the longer

to the shorter root.

(iv) 3 edges, if the angle between the roots is 5π
6 , with an arrow pointing from the longer

to the shorter root.

If the Dynkin diagram is disconnected with connected components Π1, . . . ,Πk, then
there is a corresponding partition Φ = Φ1 ∪Φ2 ∪ · · · ∪Φk into nonempty disjoint subsets,
such that (αi, αj) = 0 for αi ∈ Φi, αj ∈ Φj, i ≠ j. If the Dynkin diagram is connected,
we also say that the root system is irreducible. Note that the root system is irreducible
if and only if its Weyl group is irreducible.

We will now give a full list of all irreducible, crystallographic root systems.

Name Dynkin Diagram Type of Weyl Group
An, n ≥ 1 1 2 3 n An

Bn, n ≥ 2 1 2 3 n Bn

Cn, n ≥ 3 1 2 3 n Bn

Dn, n ≥ 4 2

1

3 4 n Dn

E6 1

2

3 4 5 6 E6

E7 1

2

3 4 5 6 7 E7

E8 1

2

3 4 5 6 7 8 E8

F4 1 2 3 4 F4

G2 1 2 I2(6)

Example 3.3.2. (i) The following is the root system A2, with simple roots α and β.
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α

β α + β

−α

−α− β −β

(ii) The following is the root system B2, with simple roots α and β.

α

β α + β 2α + β

−α

−2α− β −α− β −β

3.3.1 Classification of Connected Reductive Groups
We will now describe how root systems can be used to completely classify connected
reductive groups, via so called root data. We will follow [DM20, Sections 2.3, 2.4].

We will fix a prime p and let K = Fp be an algebraically closed field in characteristic
p. Let G be a connected reductive group over K and let T ∼= Gr

m ⊆ G be a maximal
torus, where r is the rank of G.

Definition 3.3.3. (i) We let X(T) := Hom(T,Gm) be the character group of T. We
have that X(T) ∼= Zr. There is a natural action of the Weyl group W (T) on X(T)
given by (w · χ)(t) = χ(w−1 · t) for w ∈ W (T), χ ∈ X(T) and t ∈ T.

(ii) We let Y (T) := Hom(Gm,T) be the cocharacter group of T. We have that Y (T) ∼=
Zr.

(iii) Note that there is an isomorphism τ : Hom(Gm,Gm) ∼= Z given by

τ : (t 7→ tn) 7→ n

for any t ∈ Gm. Let χ ∈ X(T), ϕ ∈ Y (T). There is a perfect pairing X(T) ×
Y (T)→ Z given by

(χ, ϕ) 7→ τ(χ ◦ ϕ).

40



3.3 Root Systems

A root subgroup is a non-trivial minimal closed unipotent subgroup U ⊆ G that is
normalized by T. For any root subgroup, there is an isomorphism u : Ga → U. We
define a root α ∈ X(T) by the property that

tu(x)t−1 = u(α(t)x)

for t ∈ T, x ∈ Ga. We write U = Uα, and let

Φ = {α | Uα root subgroup of G}.

Note that different root subgroups give rise to different roots.
It now holds that Φ = −Φ. Let α ∈ Φ be a root. Then there is a surjective map

ϕα : SL2 → ⟨Uα,U−α⟩ such that

ϕα

((
1 ∗
0 1

))
= Uα, ϕα

((
1 0
∗ 1

))
= U−α.

We then define the coroot α∨ ∈ Y (T) by

α∨(x) = ϕα

((
x 0
0 x−1

))

for x ∈ Gm. The element α∨ is unique and we let Φ∨ = {α∨ | α ∈ Φ} be the set of
coroots. Note that the map ϕα is either an isomorphism or has kernel {I2,−I2}.

With the perfect pairing we have defined in Definition 3.3.3(iii), it holds that α∨(α) = 2
for all α ∈ Φ. Let V = X(T)⊗ R. Then (Φ,Φ∨) is a crystallographic root system. The
action of W (T) on X(T) translates to a faithful representation ι : W (T) → GL(V )
which gives an isomorphism between W (T) and the Weyl group W of the root system.
The reflection sα ∈ W then corresponds to the element

ϕα

((
0 1
−1 0

))
∈ NG(T).

Let us now fix a Borel subgroup B = NG(U) for some maximal closed connected
unipotent subgroup U ⊆ G. This gives rise to a partition Φ = Φ+ ∪ Φ− by

U =
∏
α∈Φ+

Uα

and thus to a set of simple roots Π ⊆ Φ and a corresponding subset S ⊆ W such that
(W,S) is a Coxeter system. By the isomorphism ι, also now W (T) is a Coxeter system.

We call the tuple (X(T), Y (T),Φ,Φ∨) the root datum of G. In the other direction,
every abstract root datum gives rise to a unique connected reductive group:

Definition 3.3.4. Let n be a non-negative integer. A lattice X is a free Z-module of
rank n. A dual lattice to X is another lattice Y of rank n such that there is a perfect
pairing X × Y → Z.
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Definition 3.3.5. A root datum is a tuple (X, Y,Φ,Φ∨), such that X and Y are dual
lattices, Φ ⊆ X, Φ∨ ⊆ Y and that (Φ,Φ∨) is a root system in the vector space X ⊗ R.
Here, the isomorphism Y ⊗ R ∼= Hom(X,R) is achieved via the perfect pairing of X and
Y . We call the root datum crystallographic if the root system (Φ,Φ∨) is.

(i) We call the root datum semisimple if Φ spans the Q-vector space Q⊗X. We call it
simple if it further holds that the root system is irreducible.

(ii) If X = ZΦ we call the root datum adjoint.

(iii) If Y = ZΦ∨ we call the root datum simply connected.
Theorem 3.3.6. For every algebraically closed field k and every crystallographic root
datum (X, Y,Φ,Φ∨), there is an up to isomorphism unique connected reductive group
over k with the given root datum.

We call a connected reductive group simple, semisimple, adjoint, or simply connected,
if and only if the corresponding root datum has that property.
Remark 3.3.7. It is well known that a group being simply connected implies that the
maps ϕα are an isomorphism for any α ∈ Φ, see for instance [Ste16, p. 31].
Example 3.3.8. We will now give examples of some connected reductive groups cor-
responding to certain irreducible root systems. For simplicity, we will assume that p is
odd.

(i) Type An: GLn+1, SLn+1, PGLn+1. The group SLn+1 is simple simply connected
and the group PGLn+1 is simple adjoint.

(ii) Type Bn: SO2n+1, the closed subgroup of GL2n+1 that preserves a given non-
degenerate symmetric bilinear form.

(iii) Type Cn: Sp2n, the closed subgroup of GL2n that preserves a given symplectic
bilinear form.

(iv) Type Dn: SO2n, the closed subgroup of GL2n that preserves the non-degenerate
symmetric bilinear form given by the matrix (aij)1≤i,j≤2n, where aij = 1 if i+ j =
2n+ 1, and aij = 0 else.

(v) Type G2: G2, the closed subgroup of GL8 of automorphisms of an 8-dimensional
non-associative octonion algebra over K. Since G2 fixes the 7-dimensional subspace
of pure octonions, we can also regard G2 as a closed subgroup of SO7. Regard for
instance [SW15, Section 3] for a more explicit construction.

To conclude this section, we will say a bit about the structure of parabolic subgroups.
Definition 3.3.9. Let P ⊆ G be a parabolic subgroup containing B. Then there is a
closed reductive subgroup L ⊆ P such that P = Ru(P) ⋊ L. We have that Ru(P) ⊆ U
and T ⊆ L. We call this product a Levi decomposition and L a Levi subgroup of G.

Let I ⊂ S. Then PI := BWIB is a parabolic subgroup containing B and all such
subgroups arise that way. Here we identified WI with the corresponding subgroup of
W (T). It holds that the Weyl group of L with respect to T is isomorphic to WI .
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3.4 Frobenius Maps and Finite Groups of Lie Type
In this section, we will finally introduce the finite groups of Lie type as fixed points of
connected reductive groups by some map F . We refer the reader to the sources [Car85],
[DM20] and [GM20]. Note that all three books differ slightly in their naming conventions
of the maps F involved.

Let q be a power of a prime p and let K = Fp be the algebraic closure of Fp. For any
power q of p we define the map

Fq : GLn → GLn, (aij)1≤i,j≤n 7→ (aqij)1≤i,j≤n.

Let G be an affine K-variety. We will regard G as a closed subgroup of GLn for some n,
i.e., there is some inclusion map i : G→ GLn. We say that a morphism F : G→ G is a
Frobenius map, if i(F (g)) = Fq(i(g)) for some q and all g ∈ G. Further, we say that F is
a Frobenius root if some power of it is a Frobenius map. Any Frobenius root is bijective
and

GF = {g ∈ G | F (g) = g}

is a finite group.

Definition 3.4.1. A finite group of Lie type is a group G = GF where G is a connected
reductive group over K and F : G→ G is a Frobenius root. We will say that the group
G is defined in characteristic p.

We will now fix a connected reductive group G over K and a Frobenius root F : G→ G
and let G := GF be the finite group of Lie type associated with the data. For any closed
subgroup H ⊆ G we say that H is F -stable if F (H) = H. There are pairs (T,B) of a
maximal torus T and Borel subgroup B with T ⊆ B that are both F -stable; any such
pair is conjugate over G. We fix such a pair and let T := TF , B := BF , and call T a
quasi-split torus and B a Borel subgroup of G. The order of T is coprime to p. Let
U ⊆ B be the unipotent radical; it holds that the group U := UF is a p-Sylow subgroup
of G and we have a semidirect product B = U ⋊ T .

We will now discuss the Weyl group of a finite group of Lie type.

Definition 3.4.2. Let (W,S) be the Coxeter system associated to G with W ∼= W (T).
The subgroup NG(T) ⊆ G is F -stable, we thus get a natural action of F on W which also
acts on S. Let S/F denote the set of orbits of the action of F on S. We set N := NG(T)F .
Then W F := N/T = W (T)F is called the Weyl group of G and (W F , {wI}I∈S/F ) is a
Coxeter system, where we let wI be the longest element of WI .

As in the case of connected reductive groups, there is a Bruhat decomposition of G: It
holds that

G =
⋃

w∈WF

BwB

is a disjoint union of double cosets.
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Any subgroup P ⊆ G containing a G-conjugate of B is called a parabolic subgroup;
for any such parabolic subgroup, there is a F -stable parabolic subgroup P ⊆ G such
that P = PF . This behaves well with the Levi decomposition: If

P = Ru(P) ⋊ L

is the Levi decomposition of P, then also

P = Ru(P)F ⋊ LF ,

which we will again call the Levi decomposition and say that LF is a Levi subgroup of G.
Note that the F -stable parabolic subgroups of G containing B are exactly the PJ for
J ⊆ {wI}I∈S/F .

Definition 3.4.3. Recall that X(T) = Hom(T,Gm). Then F acts on X(T) by

F · α := α ◦ F

for α ∈ X(T). Let n be the smallest positive integer such that the action of F n on X(T)
equals k · id for some positive integer k. It holds that k is a power of p. We define the
number q ∈ R>0 attached to F by q := n

√
k and say that the pair (G, F ) is split if n = 1.

Note that if (G, F ) is split, then W F = W . Also, then T ∼= Gr
m(q), where r is the rank

of G.
We will now see a nice formula on the order of finite groups of Lie type: It holds that

|G| = qℓ(w0)|T |
∑

w∈WF

qℓ(w),

where w0 is the longest element in the Coxeter system (W,S) and ℓ is the length function
of W .

Example 3.4.4. We will give some examples of finite groups of Lie type. Let q be a
power of p, and let F = Fq be the (standard) Frobenius map.

(i) Tori: Gn
m(q) := (Gn

m)F ∼= F×
q × F×

q × · · · × F×
q .

(ii) Type An: GLn+1(q) := GLF
n+1
∼= GLn+1(Fq), SLn+1(q) := SLF

n+1
∼= SLn+1(Fq). We

take the subgroup B of either GLn+1 or SLn+1 to be the subgroup of upper triangular
matrices. Then B is F -stable and we take B := BF . The quasi-split torus of either
GLn+1(q) or SLn+1(q) then just equals the subgroup of diagonal matrices.
The orders are

|GLn+1(q)| = qn(n+1)/2(q − 1)(q2 − 1) · · · (qn+1 − 1),
|SLn+1(q)| = |GLn+1(q)|/(q − 1).

(iii) Type Bn: SO2n+1(q) := SOF
2n+1. If q is odd, SO2n+1(q) is isomorphic to the subgroup

of SL2n+1(q) that fixes a given non-degenerate symmetric bilinear form on F2n+1
q .
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(iv) Type Cn: Sp2n(q) := SpF2n. The group Sp2n(q) is isomorphic to the subgroup of
SL2n(q) that fixes a given non-degenerate symplectic bilinear form on F2n

q .

(v) Type Dn: SO2n(q) := SOF
2n. If q is odd, the group SO2n(q) is isomorphic to the

subgroup of SL2n(q) that fixes a given non-degenerate symmetric bilinear form β on
F2n
q such that disc(β) = 1 · (F×

q )2.

(vi) Type G2: G2(q) := GF
2 .

Example 3.4.5. Type 2An: We will now regard a non-split pair (SLn+1, F ). Let q be a
power of p. We define the matrix

Ωn+1 :=


0 . . . 0 1
0 . . . 1 0
... . .

. ...
...

1 . . . 0 0


with 1s on the antidiagonal. Consider the morphism

F : SLn+1 → SLn+1, g 7→ Ωn+1(Fq(g)tr)−1Ωn+1.

It is clear that F 2 = Fq2, so F is a Frobenius root. We set SUn+1(q) := SLF
n+1. This

group equals the set of matrices in SLn+1(q2) that fix the Hermitian form on Fn+1
q2 given

by the matrix Ωn+1.
Let B ⊆ SLn+1 be the Borel subgroup of upper triangular matrices and let T ⊆ B be

the subgroup of diagonal matrices, which is a maximal torus. Then both B and T are
F -stable; we denote B := BF , T := TF to be a Borel subgroup and quasi-split torus of
SUn+1(q).

It is clear that F 2 is the smallest power of F such that the action on X(T) is a multiple
of the identity, for which we get that it acts as q2 · id. Therefore the number q attached
to F is exactly q, so there is no confusion there.

Let W ∼= Sn be the Weyl group of SLn+1. Then W F is isomorphic to a Coxeter group
of type B⌈n/2⌉. We have that

T ∼=

G(n−1)/2
m (q2)×Gm(q), if n+ 1 is even,

Gn/2
m (q2), if n+ 1 is odd.

The order is given by

|SUn+1(q)| = qn(n+1)/2(q2 − 1)(q3 + 1) · · · (qn+1 − (−1)n+1).

3.5 Representation Theory of Finite Groups of Lie Type
One almost cannot talk about the representation theory of finite groups of Lie type without
at least slightly diving into Deligne–Lusztig theory, which uses the étale cohomology
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of certain varieties to construct characters. In the context of this thesis, we are in
a privileged position though: It is almost trivially easy to calculate the orthogonal
determinants of the characters that are the hardest to construct! In the other direction,
the most "basic" characters in the theory, the principal series characters and even more
so, the principal series unipotent characters, will be the ones that will give us the most
troubles. We will briefly touch upon two important concepts in the overarching theory.
First, we will talk about Harish-Chandra theory, which divides the irreducible characters
into certain series, the Harish-Chandra series. These arise by inducing certain characters
from parabolic subgroups. This is also where the principal series characters appear, these
are characters appearing in the induced characters from a Borel subgroup. Second, we
want to introduce Iwahori–Hecke algebras. These are deformations of Coxeter groups
and appear as the Hecke algebras with respect to Borel subgroups. We will refer to the
same sources as in the last section, so [Car85], [DM20] and [GM20].

3.5.1 Harish-Chandra Theory
Let p be a prime, and let G := GF be a finite group of Lie type, where G is a connected
reductive group over Fp and F is a Frobenius root on G.

Let L ⊆ G be a F -stable Levi subgroup contained in a F -stable parabolic subgroup P.
We denote L = LF , P = PF and assume that we have a Levi-decomposition P = U ⋊ L.
The idea of Harish-Chandra theory is to use certain "maximal" (called cuspidal) characters
of L to partition the characters of G into so called Harish-Chandra series. If L is a
quasi-split torus, these characters will be especially important for us; they will be denoted
the principal series characters.

Definition 3.5.1. Let θ ∈ Irr(L), χ ∈ Irr(G) be irreducible characters.

(i) By the natural projection P → L, the character θ lifts to the character InfPL(θ) ∈
Irr(P ). In the sequel, we will regard θ ∈ Irr(P ) as a character of P . The Harish-
Chandra induction RG

L⊆P of θ is then defined by

RG
L⊆P (θ) := IndGP (θ) .

(ii) Regard the character ResGP (χ). This character is in general not irreducible, we
decompose ResGP (χ) = χL +χU , where χL is the largest constituent of ResGP (χ) such
that its restriction to U is trivial, i.e.,

ResPU(χL) = ⟨ResGU (χ),1U⟩U · 1U .

We define the Harish-Chandra restriction ∗RG
L⊆P by

∗RG
L⊆P (χ) := ResPL(χL).

It is not obvious, but it turns out that the functors defined above do not depend on
the choice of parabolic subgroup P :
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Proposition 3.5.2. Let P′ be another F -stable parabolic subgroup containing L, and set
P ′ = (P′)F . Then for any θ in Irr(L), χ ∈ Irr(G), we have that

RG
L⊆P (θ) = RG

L⊆P ′(θ), ∗RG
L⊆P (χ) = ∗RG

L⊆P ′(χ).

We will thus from now on write RG
L and ∗RG

L for the Harish-Chandra induction and
restriction. In the sequel we will denote

χL := ∗RG
L (χ)

for χ ∈ Irr(G).

Definition 3.5.3. Let θ ∈ Irr(L). We say that θ is a cuspidal character of L and that
(L, θ) is a cuspidal pair, if for any Levi subgroup L′ ⊆ L, it holds that ∗RL

L′(θ) = 0.

Definition 3.5.4. Let θ be a cuspidal character of L. We denote

Simp(G | (L, θ)) := {χ ∈ Irr(G) | ⟨χ,RG
L (θ)⟩G ̸= 0}

and call it the Harish-Chandra series associated to the cuspidal pair (L, θ).

Note that the group G acts on the set of cuspidal pairs by conjugation, i.e., g ·L := gL,
and (g · θ)(glg−1) := θ(l) for any g ∈ G, l ∈ L.

Theorem 3.5.5. The following hold:

(i) The functors RG
L and ∗RG

L are adjoint, i.e., for any θ ∈ Irr(L), χ ∈ Irr(G), it holds
that

⟨RG
L (θ), χ⟩G = ⟨θ, ∗RG

L (χ)⟩L.

(ii) Let (L, θ), (L′, θ′) be two cuspidal pairs. Then the sets Simp(G | (L, θ)) and
Simp(G | (L′, θ′)) have a non-empty intersection if and only if there is a g ∈ G such
that g · (L, θ) = (L′, θ′). If this is the case, then the sets are equal and furthermore,
RG
L (θ) = RG

L′(θ′).

(iii) All irreducible characters of G are contained in some Harish-Chandra series.

Let now T ⊆ G be a quasi-split torus. Since T is abelian, all its irreducible characters
have degree 1 and are especially easy to understand. In particular, for any character
θ ∈ Irr(T ), the pair (T, θ) is cuspidal. We say that the characters in Simp(G | (T, θ)) for
any such θ are in the principal series. If θ = 1T , we denote IrrPSU (G) := Simp(G | (T, 1T ))
and call the characters appearing in that set the principal series unipotent characters.
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3.5.2 Iwahori–Hecke Algebras and Principal Series Unipotent
Characters

Let (W,S) be a finite Coxeter system. We denote ℓ : W → Z>0 to be the length function
of the Coxeter system (W,S).

Definition 3.5.6. Let {cs | s ∈ S} be positive integers such that cs = ct whenever s
and t are conjugate. Let A = Q[u, u−1] where u is an indeterminate. We define the
generic Iwahori–Hecke algebra H = HA(W,S, {cs | s ∈ S}) to be the A-algebra with basis
{Tw | w ∈ W} and generating set {Ts | s ∈ S}, together with the relations

TsTw =
Tsw, if ℓ(sw) > ℓ(w),

(ucs − 1)Tw + ucsTsw, if ℓ(sw) < ℓ(w)

for s ∈ S and w ∈ W .

So let now H = HA(W,S, {cs | s ∈ S}) be a generic Iwahori–Hecke algebra. Let
K = Q(u) be the quotient field of A. Then KH is a semisimple algebra, see [DM20,
Remark 6.2.13]. We can also explicitly describe a splitting field for KH.

Theorem 3.5.7. (cf. [DM20, Theorem 6.2.10]) Assume L ⊆ C is a splitting field for W .
Then L(

√
u) is a splitting field for H.

The above theorem is not optimal, indeed, in all our applications, a splitting field for
H will actually already be equal to L(u) for L a splitting field of Q. Note that then we
are in the situation of Subsection 2.2.3.

We want to now apply Iwahori–Hecke algebras to the theory of finite groups of Lie
type, so we fix a prime p and let G = GF be a finite group of Lie type for a connected
reductive group G over Fp and F : G → G a Frobenius root. We let B ⊆ G be a
Borel subgroup and let T ⊆ B be a quasi-split torus. Let (W,S) be the Coxeter system
associated with G and let q be the real number attached to F . Recall that (W F , S/F )
is a Coxeter system, so there are two possible length functions on W F , the one coming
from W and the one coming from W F . We will always be using the length function
coming from W .

As we have seen in the last subsection, we can divide the characters of G into Harish-
Chandra series, given by the cuspidal pairs (L, θ) of G. We will now take a closer look at
the principal series unipotent characters IrrPSU(G), i.e., all the irreducible characters χ
of G appearing in IndGB(1B). Let

eB := 1
|B|

∑
h∈B

h ∈ QG

be the idempotent corresponding to B. We let Hq := eBQGeB be the corresponding
Hecke-algebra. This algebra will exactly correspond to the specialization of an Iwahori–
Hecke algebra, with the appropriate chosen parameters. As we have already seen, there
is an isomorphism Hq

∼= EndQG(IndGB(1B)) and a 1-to-1 correspondence between

IrrPSU(G)←→ Irr(CHq)).
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Recall the Bruhat decomposition

G =
⋃

w∈WF

BwB

of G into a disjoint union of double cosets. We thus have a Q-basis of Hq given by
{Tw | w ∈ W F}. Further, it can be shown that the set {TwI | I ∈ S/F} is a generating
set, together with the relations

TwITw =
TwIw, if ℓ(wIw) > ℓ(w),

(qℓ(wI) − 1)Tw + qℓ(wI)TwIw, if ℓ(wIw) < ℓ(w)

for I ∈ S/F and w ∈ W F .
This now allows us to define the Iwahori–Hecke algebra corresponding to a finite group

of Lie type, by informally replacing the q in the above relations with an u.

Definition 3.5.8. Let A = Q[u, u−1]. The Iwahori–Hecke algebra for G is defined to be
the algebra

HG := HA(W F , S/F, {l(wI) | I ∈ S/F}).

The algebra Hq corresponds to the specialization u 7→ q, and the algebra QW F

corresponds to the specialization q 7→ 1. Since now both the irreducible characters of
W F and the principal series characters of G arise from the same Iwahori–Hecke algebra,
there now is a 1-to-1 correspondence between the sets Irr(W F ) and IrrPSU(G). For any
character χ ∈ IrrPSU(G), we let χ̃ ∈ Irr(W F ) be the corresponding character of W F .
This interacts nicely with induction from parabolic subgroups, which is known as the
Howlett–Lehrer Comparison Theorem:

Theorem 3.5.9. (cf. [DM20, Lemma 7.2.11]) Let J ⊆ S/F be a subset of simple
roots. Let W F

J ⊆ W F , resp. PJ ⊆ G, be the respective parabolic subgroups. Then for any
χ ∈ IrrPSU(G)), it holds that

⟨IndGPJ (1PJ ), χ⟩G = ⟨IndWF

WF
J

(1WF
J

), χ̃⟩WF .
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In this chapter, we will explore the orthogonal determinants of the finite Coxeter groups.
The orthogonal determinants of the symmetric groups have already been fully determined
by James and Murphy in [JM79]. Given that result we will be able to give a nice showcase
of some of the techniques we learned about in Section 2.3 and obtain the orthogonal
determinants of the alternating groups, as well as the Coxeter groups of type Bn and Dn.
The remainder of the Coxeter groups will be handled by direct calculations.

For all of the groups considered here, we will also prove Parker’s conjecture, where the
proof for the symmetric groups will turn out to be the most difficult.

4.1 Type An

Let n be a positive integer. To start of, the title of this section is slightly misleading: We
will talk about the symmetric groups Sn, which is a Coxeter group of type An−1 with
standard generating set S = {s1, . . . , sn−1} of simple transpositions.

Of course, the symmetric groups can be defined as the permutation group on the set
of the first n numbers, so

Sn := Aut ({1, 2, . . . , n}) .

They can also be constructed as a subgroup of GLn(K) for K any field: It holds that
Sn is isomorphic to the group of permutation matrices, i.e., the group of matrices with
entries in {0, 1} such that there is a single 1 in every row and every column. More
concretely, the simple transposition si corresponds to the matrix

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...
. . .

...
0 0 . . . 0 1 . . . 0
0 0 . . . 1 0 . . . 0
...

...
. . .

...
...
. . .

...
0 0 . . . 0 0 . . . 1


,

where the 2× 2-block is in the rows and columns i and i+ 1.
This approach will be important for the construction of the Coxeter groups of type Bn

and Dn in Section 4.2.
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As sources, we want to point out the book [JK81] by James and Kerber, which gives
a very thorough treatment of the symmetric groups, with a focus on its combinatorics
and representation theory. In particular, it contains a nice writeup about the orthogonal
determinants of the symmetric groups in [JK81, Section 7.3]. The importance of this
result in the context of this thesis can not be stressed enough.

Other sources that should be named are [FH91, Lecture 4] and [BB05].

4.1.1 Representation Theory of the Symmetric Groups
Let n be a positive integer. Let us begin by introducing some crucial notions about the
combinatorics of symmetric groups.

Definition 4.1.1. A partition is a sequence λ = (a1, . . . , am) of non-negative integers
such that a1 ≥ a2 ≥ · · · ≥ am. We identify partitions that only differ by a string of zeros
at the end. We say that λ is a partition of n if

|λ| :=
m∑
i=1

ai = n.

We may combine repeated elements in a partition, e.g., we may also write (5, 4(3), 2(0), 1(2))
for (5, 4, 4, 4, 1, 1), if convenient. If µ = (c1, . . . , cl) is another partition of n, we write
λ ⊴ µ and say that λ proceeds µ in the dominance (partial) order if and only if

a1 + · · ·+ ai ≤ c1 + · · ·+ ci

for all i ≥ 1. We denote by Pn the set of partitions of n and by

P :=
∞⋃
i=0

Pi

the set of all partitions.

For instance,

P5 = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1(3)), (1(5))}.

We now introduce some fundamental combinatorial objects.

Definition 4.1.2. Let λ = (a1, . . . , am) be a partition.

(i) We denote
[λ] = {(i, j) | (i, j) ∈ Z× Z, 1 ≤ i ≤ m, 1 ≤ j ≤ am}

to be the Young diagram of λ. The elements of a Young diagram are called cells.
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(ii) Put
rim(λ) := {(i, j) ∈ [λ] | (i+ 1, j + 1) /∈ [λ]}.

The rim of a cell c = (i, j) ∈ [λ] will be the set of cells in the rim that are "between"
its head and foot cells, i.e.,

rimλ(c) = {(i′, j′) ∈ rim(λ) | i′ ≥ i, j′ ≥ j}.

It is clear that rim(λ) = rimλ((1, 1)).

(iii) Let c = (i, j) ∈ [λ]. We define hλ(c) := |rimλ(c)| to be the hook length of c.
Equivalently, it is the number of cells to the right and below c, including itself.

(iv) We say that λ is q-core for some integer q if there is no c ∈ [λ] such that q divides
hλ(c).

There is a convenient way to depict Young diagrams.

Example 4.1.3. Let λ = (6, 4, 3) be a partition of 13. Its Young diagram [λ] then has
the following form:

.

Next, the rim rim(λ) consists of the cells at its border:

Let c = (1, 3) ∈ [λ]. The rim of c, rimλ(c), consists of the following cells:

c

Since its rim consists of 6 cells, we have that hλ(c) = 6. The hook diagram consists of
the Young diagram, where we fill each cell with the corresponding hook length. So the
hook diagram of λ is

8 7 6 4 2 1
5 4 3 1
3 2 1

.

Finally λ is not 8-core, since there is a cell (1, 1) with hook length equal to 8.

Definition 4.1.4. Let λ be a partition of n.
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(i) A Young tableau is a bijective mapping of {1, . . . , n} to [λ]. It may also be seen as
filling the cells of the Young diagram with the numbers from 1 to n such that every
number appears exactly once. There is an obvious regular group action of Sn on
the set of Young diagrams by permuting the entries.

(ii) A Young tableau is called standard if the entries in the cells read from left to right
and from top to bottom are always increasing. We write Tλ for the set of standard
Young tableaux.

(iii) Let t be a Young tableau. We denote by {t} the equivalence class of t where two
Young tableaux of λ are equivalent if they have the same rows up to reordering. We
call these equivalence classes the Young tabloids of λ. There is again an obvious
group action of Sn on the set of Young tabloids; we denote by Mλ the permutation
Q-representation of Sn with basis the Young tabloids of λ.

(iv) Let t be a Young tableau. We define the group

Vt := {σ ∈ Sn | σ fixes every column of t}

and
et :=

∑
σ∈Vt

sgn(σ){σt} ∈Mλ.

We define the Specht module Sλ to be the subrepresentation of Mλ given by the
Q-span of the et, where t runs through the Young tableaux of λ.

Example 4.1.5. There are exactly 5 standard Young tableaux of (3, 2), given by

t1 = 1 2 3
4 5

, t2 = 1 2 4
3 5

, t3 = 1 2 5
3 4

, t4 = 1 3 4
2 5

, t5 = 1 3 5
2 4

.

A non-trivial element of the Specht module S(3,2) is for instance

et4 = 1 3 4
2 5

− 2 3 4
1 5

− 1 5 4
2 3

+ 2 5 4
1 3

.

We are now ready to talk about the irreducible characters of the symmetric groups.

Theorem 4.1.6. (cf. [JK81, Theorem 7.1.8, Theorem 7.2.7]) The Specht modules Sλ,
as λ varies over the set Pn, give a complete list of non-isomorphic absolutely irreducible
representations of Sn. We denote χλ ∈ Irr(Sn) to be the character of Sλ. The standard
basis of Sλ is given by {et | t ∈ Tλ}.

There is a convenient way to find the degree of an irreducible character of Sn.

Proposition 4.1.7. (cf. [JK81, Theorem 2.3.21]) Let λ be a partition of n. Then

fλ := χλ(1) = n!∏
c∈[λ] hλ(c)

.

54



4.1 Type An

It is convenient to also define f(0) := 1.

Example 4.1.8. As we have seen, there are 5 standard Young tableaux of the partition
(3, 2), so f(3,2) = 5. The hook diagram of (3, 2) has the form

4 3 1
2 1

.

So with Proposition 4.1.7 we also get that

f(3,2) = 5!
4 · 3 · 2 · 12 = 5.

4.1.2 James–Murphy Determinant Formula
In this subsection, we will discuss the formula found by James and Murphy in [JM79]
for the orthogonal determinants of the symmetric groups. Their description relies on so
called sequences of β-numbers; these are sequences of integers that are in close relation
to partitions. We will give a quick introduction on their main properties as well as some
explicit examples. While we use our own notation, none of the results in here are original.
For more information, we refer the reader to [JK81, Sections 2.7, 7.3]. Let n be a positive
integer.

Definition 4.1.9. Let λ be a partition of n. Let γ be the symmetric bilinear form on the
permutation representation Mλ where we take the Young tabloids of λ as an orthonormal
basis. It is clear that γ is non-degenerate and Sn-invariant. We define det(λ) to be the
determinant of the Gram matrix of γ|Sλ with respect to the standard basis of the Specht
module Sλ.

Example 4.1.10. Consider the partition λ = (3, 2) of 5. We have determined the
standard Young tableaux of (3, 2) in Example 4.1.5. An easy calculation leads us to

det(λ) = det


4 2 1 1 −1
2 4 2 2 1
1 2 4 1 2
1 2 1 4 2
−1 1 2 2 4

 = 162 = 2 · 34.

Remark 4.1.11. Let λ be a partition such that the degree of its character fλ is even.
Clearly, (Sλ, γ|Sλ) is an orthogonal QSn-module affording the character χλ ∈ Irr+(Sn).
So Theorem 2.3.7 gives us

det(χλ) = det(λ) · (Q×)2.

James and Murphy found a more combinatorial way to calculate det(λ) involving so
called β-numbers. We will give a quick introduction on their main properties.
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Definition 4.1.12. (i) A sequence of integers β = (b1, . . . , bm) is called a sequence of
β-numbers if bi ≥ 0 for all i and the entries are pairwise distinct. For each such
sequence, there is a unique σ ∈ Sm such that β = (bσ(1), . . . , bσ(m)) is a decreasing
sequence, i.e., bσ(1) > bσ(2) > · · · > bσ(m). We set sgn(β) = sgn(σ). We define the
partition

Part(β) := (bσ(1) −m+ 1, bσ(2) −m+ 2, . . . , bσ(m) −m+m)

and say that β is a sequence of β-numbers for Part(β). Further, we say that
ℓ(β) := m is the length of β and define |β| := |Part(β)|.
Let B be the set of all sequences of β-numbers. We define the subsets

Bn := {β ∈ B | |β| = n}

of the sequences of β-numbers of n.

(ii) Let λ = (a1, . . . , am) be a partition where we assume that ai > 0 for all i. We set

Beta(λ) := (hλ((1, 1)), hλ((2, 1)), . . . , hλ((m, 1))) ∈ Bn

to be a sequence of β-numbers for λ. We define

B(λ) := {β ∈ B | Part(β) = λ}.

Example 4.1.13. Let λ = (6, 4, 3) as in Example 4.1.3. The first column of its hook
diagram consists of the sequence (8, 5, 3), so (8, 5, 3) is a sequence of β-numbers for λ.
Further sequences of β-numbers for λ include (9, 6, 4, 0), (10, 7, 5, 1, 0) and (11, 8, 6, 2, 1, 0).

We are introducing some geometric notion on Young diagrams: Given some Young
diagram, we can remove the rim of an arbitrary cell and and up with another Young
diagram of a partition of a smaller integer.

Definition 4.1.14. Let λ be a partition and let c ∈ [λ] be any cell. We let λc be the
partition such that

[λc] = [λ]\rimλ(c).

We will introduce some notation. Let ei := (0, 0, . . . , 0, 1, 0, . . . ) be the sequence that
has a 1 at position i and 0 everywhere else. If β = (b1, . . . , bm) ∈ Zm, h ∈ Z and
1 ≤ i ≤ m, we define β + hei ∈ Zm to be the sequence that only differs from β in the
i-th position, where that entry is bi + h.

The following lemma now hints at the power of the sequences of β-numbers: They
allow us to translate the geometric operations of Young diagrams, e.g., removing the rim
of a cell, to arithmetic operations on sequences of β-numbers.

Lemma 4.1.15. (cf. [JK81, Lemma 2.7.13]) Let λ be a partition of n.

(i) For any cell c = (i, j) ∈ [λ] it holds that

Beta(λ)− hλ(c)ei ∈ B(λc).
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(ii) In the other direction, if there is a positive integer h and an index i such that

β := Beta(λ)− hei ∈ B,

then there is a cell c = (i, j) ∈ [λ] with hλ(c) = h such that β ∈ B(λc).

Example 4.1.16. We are again looking at the example of λ = (6, 4, 3) as in Example
4.1.3. Let again c = (1, 3) ∈ [λ]; recall that rimλ(c) has the following form:

c
.

We see easily that if we remove the rimλ(c) from [λ], we end up with the partition
λc = (3, 2, 2) with the following hook diagram:

5 4 1
3 2
2 1

In the language of sequences of β-numbers, we have that Beta(λ) = (8, 5, 3). As c is in
the first row and hλ(c) = 6, by Lemma 4.1.15 we end up with

(8, 5, 3)− 6 · e1 = (2, 5, 3) ∈ B((3, 2, 2)).

Removing the rim of a cell therefore only changes the sequence of β-numbers in one
position, meaning that for a partition λ and a cell c ∈ [λ], the two partitions λ and λc
for c ∈ [λ] are "close". This motivates the following definition.

Definition 4.1.17. (i) Let m > 0 be an integer and let β = (b1, . . . , bm), β′ =
(b′

1, . . . , b
′
m) ∈ Zm. Let dm : Zm × Zm → Z≥0 be defined by

dm(β, β′) = #{i | 1 ≤ i ≤ m, bi ̸= b′
j for all 1 ≤ j ≤ m},

i.e., dm(β, β′) is the number of mismatches of β and β′.

(ii) Let λ, µ be partitions. We choose the integer m > 0 large enough such that there
are sequences of β-numbers βλ ∈ B(λ), βµ ∈ B(µ) such that ℓ(βλ) = ℓ(βµ) = m.
We define the distance d : P ×P → Z>0 by

d(λ, κ) := dm(βλ, βκ).

It is clear that the distance of two partitions is well-defined.

Example 4.1.18. Let λ = (2, 1(5)), µ = (3, 3, 1) be two partitions of 7. We choose
βλ := Beta(λ) = (7, 5, 4, 3, 2, 1) ∈ B(λ). It is easy to see that βµ = (8, 7, 4, 2, 1, 0) ∈ B(µ).
Comparing the two sequences, we see that there are two mismatches, so d(λ, µ) =
d6(βλ, βµ) = 2.

57
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The following is an easy corollary of Lemma 4.1.15.

Corollary 4.1.19. Let λ, µ be partitions.

(i) (P, d) is a metric space.

(ii) If |λ| > |µ|, then d(λ, µ) = 1 if and only if there is a cell c ∈ [λ] such that λc = µ.

Thus if λ ̸= µ are both partitions of n, the smallest distance between those can be
2. Then it is clear that either λ ⊴ µ or µ ⊴ λ. The following gives a characterization
of this situation occurring, which also involves some key notions of the James–Murphy
determinant formula:

Lemma 4.1.20. Let λ, µ be partitions of n such that λ ⊴ µ. The following are equivalent:

(i) d(λ, µ) = 2.

(ii) There are unique cells c1 = (k1, j), c2 = (k2, j) ∈ [λ] with k1 < k2 such that

d(λ, λci) = 1 = d(µ, λci) for i = 1, 2.

We define
hiλ(µ) := hλ(ci) for i = 1, 2

and
h1,2
λ (µ) := (h1

λ(µ), h2
λ(µ)).

We set
sgnλ(µ) := sgn (Beta(λ) + hλ(c2)ek1 − hλ(c2)ek2) .

We will write λ⊴̇µ if any of these apply. Further, we define the set

Pλ := {κ ∈Pn | λ⊴̇κ }.

Remark 4.1.21. Let λ⊴̇µ be partitions of n. There is another way to define h1,2
λ (µ)

in terms of sequences of β-numbers. Since d(λ, µ) = 2, there are βλ ∈ B(λ) (resp.
βµ ∈ B(µ)) with

βλ = (b1, b2, b3, . . . , bm),
βµ = (c1, c2, b3, . . . , bm),

such that b1 > b2, c1 > c2. Then

h1
λ(µ) = b1 − c2 = c1 − b2,

h2
λ(µ) = b2 − c2 = c1 − b1.
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Example 4.1.22. We will revisit Example 4.1.18, so let again λ = (2, 1(5)), µ = (3, 3, 1)
be two partitions of 7. Since λ ⊴ µ and d(λ, µ) = 2, it holds that λ⊴̇µ. We choose the
sequences of β-numbers

βλ = (5, 3, 7, 4, 2, 1),
βµ = (8, 0, 7, 4, 2, 1).

We now calculate

h1
λ(µ) := 5− 0 = 8− 3 = 5,
h2
λ(µ) := 3− 0 = 8− 5 = 3.

We know by 4.1.20(iii) that these correspond to the hook lengths of cells c1 = (k1, j), c2 =
(k2, j) ∈ [λ]. We will therefore investigate the hook diagram of λ:

7 1
5
4
3
2
1

So c1 = (2, 1), c2 = (4, 1). These two cells now tell us what’s "really going on", as these
tell us how to go from [λ] to [µ]:

[λ] =
c1

c2

−→ [λc2 ] =
c1

−→ [µ] = c3

c1

(7, 5, 4, 3, 2, 1) −→ (7, 5, 4, 0, 2, 1) −→ (7, 8, 4, 0, 2, 1)

This gives us a more geometric way to think about λ⊴̇µ: It tells us to take a cell c2 ∈ [λ],
to remove its rim, and then to wrap it around the row of the cell c1 to finally end up with
[µ]. Further, there is a unique cell c3 ∈ [µ] with hµ(c3) = hλ(c2) (in our case c3 = (1, 2))
such that µc3 = λc2.

For the sign it holds that sgnλ(µ) = sgn((7, 8, 4, 0, 2, 1)) = −1.

We can now formulate the James–Murphy determinant formula.
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Theorem 4.1.23. (cf. [JK81, Theorem 7.3.20]) Let λ be a partition. The following
holds:

det(λ) =
∏
µ∈Pλ

(
h1
λ(µ)
h2
λ(µ)

)sgnλ(µ)fµ

.

Example 4.1.24. Let λ = (3, 2). We have seen earlier in Example 4.1.10 that det(λ) =
2 · 34. Let us now use the James–Murphy determinant formula to reconfirm this:

Recall that the hook diagram of λ has the following form:

4 3 1
2 1

.

It is clear that there are two partitions lying above λ in the dominance order, (5) and
(4, 1). Also the distance of these partitions to λ is equal to 2, so Pλ = {(5), (4, 1)}. There
are therefore two factors we have to calculate:

(i) Let µ = (5). The picture then looks like the following:

[λ] = c1

c2

−→ [λc2 ] = c1 −→ [µ] = c1

(4, 2) −→ (4, 0) −→ (6, 0)

So h1,2
λ (µ) = (4, 2), fµ = 1 and sgnλ(µ) = 1.

(ii) Let µ = (4, 1). The picture then looks like the following:

[λ] = c1

c2

−→ [λc2 ] = c1 −→ [µ] = c1

(4, 2) −→ (4, 1) −→ (5, 1)

So h1,2
λ (µ) = (3, 1), fµ = 4 and sgnλ(µ) = 1.

So all in all we end up with

det(λ) =
∏
µ∈Pλ

(
h1
λ(µ)
h2
λ(µ)

)sgnλ(µ)fµ

=
(4

2

)+1
·
(3

1

)+4
= 2 · 34 = 162.

Remark 4.1.25. Let λ be a partition such that fλ is even. With Remark 4.1.11 and the
James–Murphy determinant formula we can simplify

det(χλ) =
∏
µ∈Pλ

(
h1
λ(µ)
h2
λ(µ)

)sgnλ(µ)fµ

· (Q×)2 =
∏

µ∈Pλ,
fµ odd

h1
λ(µ)
h2
λ(µ) · (Q

×)2.
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4.1.3 Parker’s Conjecture for the Symmetric Groups
We fix a positive integer n. Let r be the integer such that 2r ≤ n < 2r+1. In this
subsection, we want to confirm Parker’s conjecture for the symmetric group Sn. The key
is of course the James–Murphy determinant formula in Theorem 4.1.23. The following
definition will be useful:

Definition 4.1.26. Let M ⊆Pλ be any subset. We say that M is odd if the square class

∏
µ∈M

h1
λ(µ)
h2
λ(µ) · (Q

×)2

is odd.

Taking a closer look at the formula in Remark 4.1.25, our plan is simply put the
following:

(i) Understand when fλ is odd for a partition λ.

(ii) For any partition λ with fλ even, find a suitable set partition

{µ ∈Pλ | fµ odd} = M1 ∪M2 ∪ · · · ∪Mk

such that each of the Mi is odd.

For the first point, there is a criterion of the parity of fλ for a partition λ due to
MacDonald:

Proposition 4.1.27. (cf. [Mac71]) Let λ be a partition of n. The following hold:

(i) If there is a c ∈ [λ] with hλ(c) = 2r, it is unique.

(ii) fλ is odd if and only if there is a cell c ∈ [λ] with hλ(c) = 2r and fλc is odd.

Corollary 4.1.28. Let λ be a partition of n and let β ∈ B(λ). There is at most one
index i such that β − 2rei ∈ Bn−2r .

Let us regard some examples.

Example 4.1.29. (i) Let n = 7, so 2r = 4. Let λ = (5, 2) with the following hook
diagram:

6 5 3 2 1
2 1

We see that λ is 4-core, i.e., there is no cell c ∈ [λ] such that hλ(c) = 4. So by
Proposition 4.1.27, fλ is even.
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(ii) Let n = 15, so 2r = 8. Let λ = (4(3), 1(3)) with the following hook diagram:

9 5 4 3
8 4 3 2
7 3 2 1
3
2
1

So c = (2, 1) ∈ [λ] is the unique cell such that hλ(c) = 8 and we see that λc = (4, 3).
Let us continue the algorithm, so let µ = (4, 3) with the following hook diagram:

5 4 3 1
3 2 1

So we have a cell c′ = (1, 2) ∈ [µ] such that hµ(c′) = 4 and µc′ = (2, 1).
We let now κ = (2, 1) with the following hook diagram:

3 1
1

So κ is 2-core and thus fκ is even. It follows now by Proposition 4.1.27 that then
fµ and fλ are also even.

(iii) Let λ = (3) with the following hook diagram:

3 2 1

Let c = (1, 2) ∈ [λ] be the cell such that hλ(c) = 2 and λc = (1).
Let now µ = (1) with the following hook diagram:

1

So there is a cell c′ = (1, 1) ∈ [µ] such that hµ(c′) = 1. Now, µc′ = (0). By
definition, f(0) = 1. So by Proposition 4.1.27, also fµ and fλ are odd.

This motivates the following definition:

Definition 4.1.30. Let λ be a partition of n. We set D : P →P to be the following
function:
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(i) We set D((0)) := (0).

(ii) If λ is 2r-core, set D(λ) := λ.

(iii) Assume λ is not 2r-core. Let c ∈ [λ] be the unique cell such that hλ(c) = 2r. We
set D(λ) := λc.

Denote D0(λ) := λ and Dm(λ) := D(Dm−1(λ)) for any integer m > 0. We define the
oddness rank of the partition λ by

OddRank(λ) = min{m ∈ Z≥0 | Dm+1(λ) = Dm(λ)}.

Corollary 4.1.31. Let λ be a partition of n. Let

n =
r∑
i=0

ai2i

for ai ∈ {0, 1} be the decomposition of n in binary. Then fλ is odd if and only if

OddRank(λ) =
r∑
i=0

ai.

Example 4.1.32. Reconsider the partitions we saw in Example 4.1.29. It is easy to see
that OddRank((5, 2)) = 0, OddRank((4(3), 1(3))) = 2 and OddRank((3)) = 2.

So we understand pretty well now when fλ is odd for a partition λ of n. We are now
searching for a suitable set partition of

Podd
λ := {µ ∈Pλ | fµ odd} = {µ ∈Pλ | OddRank(µ) =

r∑
i=0

ai}.

As it turns out, this is not the best approach — there is a related set that is better
behaved:

Definition 4.1.33. Let λ be a partition of n. We define

P>0
λ := {µ ∈Pλ | OddRank(µ) > 0}.

We set an equivalence relation on P>0
λ and say that µ1 ∼ µ2 if and only if D(µ1) = D(µ2)

for µ1, µ2 ∈P>0
λ . For any µ ∈P>0

λ we denote with (µ)∼ the equivalence class of µ. We
may also write D((µ)∼) := D(µ).

Example 4.1.34. Let λ = (6, 4, 3) be a partition of 13 with the hook diagram

8 7 6 4 2 1
5 4 3 1
3 2 1

.

The set P>0
λ consists of 8 partitions that fall into the following 5 equivalence classes:
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(i) M1 = {(11, 2), (9, 4)} with hook diagrams

12 11 9 8 7 6 5 4 3 2 1
2 1

,
10 9 8 7 5 4 3 2 1
4 3 2 1

.

It holds that
D(M1) = (3, 2)

and
h1,2
λ ((11, 2)) = (8, 5), h1,2

λ ((11, 2)) = (8, 3).

(ii) M2 = {(8, 4, 1), (7, 4, 2)} with hook diagrams

10 8 7 6 4 3 2 1
5 3 2 1
1

,
9 8 6 5 3 2 1
5 4 2 1
2 1

.

It holds that
D(M2) = (3, 1, 1)

and
h1,2
λ ((8, 4, 1)) = (7, 2), h1,2

λ ((7, 4, 2)) = (6, 1).

(iii) M3 = {(10, 2, 1), (7, 3, 3)} with hook diagrams

12 10 8 7 6 5 4 3 2 1
3 1
1

,
9 8 7 4 3 2 1
4 3 2
3 2 1

.

It holds that
D(M3) = (2, 2, 1)

and
h1,2
λ ((10, 2, 1)) = (7, 4), h1,2

λ ((7, 3, 3)) = (4, 1).

(iv) M4 = {(6, 5, 2)} with hook diagram

8 7 5 4 3 1
6 5 3 2 1
2 1

.

It holds that D(M4) = (4, 1) and h1,2
λ ((6, 5, 2)) = (3, 1).
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(v) M5 = {(6, 6, 1)} with hook diagram

8 6 5 4 3 2
7 5 4 3 2 1
1

.

It holds that D(M5) = (5) and h1,2
λ ((6, 6, 1)) = (4, 2).

Remark 4.1.35. Let λ be a partition of n and let µ ∈P>0
λ . Then d(λ, µ) = 2. Since d

is a distance function, it follows that d(λ,D(µ)) ∈ {1, 2, 3}).

The next few lemmas will be quite technical and go over the three possible cases of
d(λ,D(µ)) in the above remark.

Lemma 4.1.36. Let λ be a partition of n with OddRank(λ) > 0. Let µ ∈P>0
λ . Then

d(λ,D(µ)) = 1, i.e., D(λ) = D(µ), if and only if hiλ(µ) = 2r for either i = 1 or i = 2.

Proof. Let βλ := (b1, b2, . . . , bm) ∈ B(λ). Since OddRank(λ) > 0, we can after some
reordering assume that (b1 − 2r, b2, . . . , bm) ∈ B(D(λ)).

Let us now assume that D(λ) = D(µ). So after another reordering

(b1 − 2r, b2 + 2r, . . . , bm) ∈ B(µ).

The statement follows now by the definition of the hiλ(µ).

Example 4.1.37. In the situation of Example 4.1.34, the equivalence class M1 has the
property described in the above lemma. Indeed, D(λ) = (3, 2) and we see that h1

λ(µ) = 8
for both µ ∈M1.

Lemma 4.1.38. Let λ be a partition of n. Let µ ∈P>0
λ . Assume that d(λ,D(µ)) = 3.

Then |(µ)∼| = 1, OddRank(λ) > 0 and D(µ) ∈PD(λ). Further,

h1,2
λ (µ) = h1,2

D(λ)(D(µ)).

Proof. Let βλ := (b1, b2, b3, . . . , bm) ∈ B(λ). After reordering we can assume that there
are h1, h2, h3 ∈ Z\{0} such that

βD(µ) := (b1 − h1, b2 − h2, b3 − h3, . . . , bm) ∈ B(D(µ)).

We know that there is an index i such that βD(µ) + 2rei ∈ B(µ). Since d(λ, µ) = 2, it
follows that i ∈ {1, 2, 3}, so assume without loss of generality that i = 3. It follows that
h3 = 2r. Further, since d(λ,D(µ)) = 3, the entry b3 − h3 = b3 − 2r cannot appear in βλ.
So

βλ − 2re3 = (b1, b2, b3 − 2r, . . . , bm) ∈ Bn−2r .

By Corollary 4.1.28 it follows that βλ − 2re3 ∈ B(D(λ)). The corollary also tells us that
h1, h2 ̸= 2r and thus |(µ)∼| = 1.
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The final statement is easy to see: For the calculation of h1,2
λ (µ), we compare the

sequences

(b1, b2,b3, . . . , bm),
(b1 − h1, b2 − h2,b3, . . . , bm).

For the calculation of h1,2
D(λ)(D(µ)), we compare the sequences

(b1, b2,b3 − 2r, . . . , bm),
(b1 − h1, b2 − h2,b3 − 2r, . . . , bm).

So they clearly coincide. This concludes the proof.
Example 4.1.39. In Example 4.1.34, the above situation occurs precisely with the
equivalence classes M4 and M5.

Let’s investigate this a bit more thoroughly: We again set λ = (6, 4, 3). Let µ1 :=
(6, 5, 2), µ2 = (6, 6, 1). The situation becomes clear by regarding the hook diagrams and
by coloring the hook of the cell (1, 1):

[λ] = 8 7 6 4 2 1
5 4 3 1
3 2 1

,

[µ1] = 8 7 5 4 3 1
6 5 3 2 1
2 1

,

[µ2] = 8 6 5 4 3 2
7 5 4 3 2 1
1

.

We see that the white cells exactly depict the behavior of the partition D(λ) = (3, 2),
compare with Example 4.1.24.
Lemma 4.1.40. Let λ be a partition of n. Let µ ∈P>0

λ . Assume that d(λ,D(µ)) = 2.
The following hold:

(i) |(µ)∼| ≤ 4.

(ii) There is a partition κ ∈ (µ)∼, which we call a distinguished representative of (µ)∼,
such that the following holds: Let

βλ :=(b1, b2, b3, . . . , bm) ∈ B(λ),
βκ :=(b′

1, b
′
2, b3, . . . , bm) ∈ B(κ)

such that b1 > b2 and b′
1 > b′

2.
Then

βκ − 2re1 = (b′
1 − 2r, b′

2, b3, . . . , bm) ∈ B(D(µ)).
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Proof. Let βλ := (b1, b2, . . . , bm) ∈ B(λ). We will assume that bi > 0 for all i. After
reordering we can assume that there are h1, h2 ∈ Z\{0} such that

βD(µ) := (b1 − h1, b2 − h2, . . . , bm) ∈ B(D(µ)).

Assume without loss of generality that b1 > b2 and b1 − h1 > b2 − h2.
An upper bound for |(µ)∼| is the number of indices i such that

dm(βλ, βD(µ) + 2rei) = 2.

There are at most four possibilities for i: Either i = 1, or i = 2, or if there is an index
j (resp. k) such that bj = b1 − 2r (resp. bk = b2 − 2r), then i could also be equal to j or
k. Thus, |(µ)∼| is at most 4.

For the next claim, first observe that h2 > 0. Indeed, h1 + h2 = 2r, so h2 < 0 implies
that h1 > 2r. Then

(b1 − |h2|, b2 + |h2|, . . . , bm) ∈ B(µ).
But since b1 > b2, it would follow that µ ⊴ λ which is absurd.

Next, we regard the sequence

α := βD(µ) + 2re1 = (b1 − h1 + 2r, b2 − h2, . . . , bm).

If α ∈ Bn, then by setting κ := Part(α) we have found a distinguished representative
κ ∈ (µ)∼.

So assume that α ̸∈ Bn. This means that the entry b1 − h1 + 2r appears twice in α, in
position 1 and in another position i. Since b1 − h1 > b2 − h2, we know that i ̸= 2. After
a reordering we can assume that i = 3, i.e.,

βλ = (b1, b2, b1 − h1 + 2r, . . . ).

Consider the sequence

γ := (b2 − h2 + 2r, b1 − h1, b1 − h1 + 2r, . . . ).

First, since b3 = b1 − h1 + 2r < 2r+1, it holds that b1 − h1 < 2r. Clearly b2 − h2 ≥ 0, it
follows that

b2 − h2 + 2r > b1 − h1.

Assume now there is an index j ≥ 4 such that bj appears in the first or second entry
of γ. Since βD(µ) is a sequence of β-numbers, it follows that bj ̸= b1 − h1. So then
bj = b2 − h2 + 2r. But then both βλ − 2re3 and βλ − 2rej are sequences of β-numbers
which contradicts Corollary 4.1.28.

We conclude that γ ∈ Bn. Finally, we can now set κ := Part(γ) to be a distinguished
representative of (µ)∼.

Example 4.1.41. We go yet again back to Example 4.1.34. The two equivalence classes
M1 and M2 fulfill the requirements of the above lemma. In these two classes, all elements
µ ∈ Mi for i = 1, 2 are distinguished representatives. In particular, a distinguished
representative is in general not unique.
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The following definition gives us a setup to handle the classification of the distance 2
cases.

Definition 4.1.42. Let λ be a partition of n. Let µ ∈P>0
λ . Assume that d(λ,D(µ)) = 2.

We further assume that µ is a distinguished representative in its equivalence class. Let
h(1), h(2) be the integers such that h1,2

λ (µ) = (h(1), h(2)). We choose the sequences of
β-numbers

βλ :=(b1, b2, b3, . . . , bm) ∈ B(λ),
βµ :=(b1 + h(2), b2 − h(2), b3, . . . , bm) ∈ B(µ)

with bi > 0 for all i, b1 > b2 and

βµ − 2re1 = (b1 + h(2) − 2r, b2 − h(2), b3, . . . , bm) ∈ B(D(µ)).

Define the sequence

αµ := βµ − 2re1 + 2re2 = (b1 + h(2) − 2r, b2 − h(2) + 2r, b3, . . . , bm).

Lemma 4.1.43. Assume we are in the situation of Definition 4.1.42. Further assume
that h(2) > 2r.

(i) Assume that αµ ∈ Bn. Then |(µ)∼| = 4. Further, (µ)∼ is odd.

(ii) Assume that αµ ̸∈ Bn. Then |(µ)∼| = 3. Further, OddRank(λ) > 0, D(µ) ∈PD(λ)
and (µ)∼ is odd if and only if {D(µ)} ⊆PD(λ) is odd.

Proof. First note that both b1, b2 > 2r. It follows that neither

βλ − 2re1 = (b1 − 2r, b2, b3, . . . , bm)

nor
βλ − 2re2 = (b1, b2 − 2r, b3, . . . , bm)

are sequences of β-numbers. Indeed, if for instance βλ − 2re1 were a sequence of β-
numbers, then there would be a cell c ∈ [D(λ)] with hD(λ)(c) = b2 > 2r which contradicts
the assumption on n.

So there are indices i, j > 2 with bi = b1 − 2r, bj = b2 − 2r. In other words, after a
reordering, we have that

βλ = (b1, b2, b1 − 2r, b2 − 2r, b5, . . . , bm).

We define

γ1 := (b1, b2 + (h(1) − 2r), b1 − 2r − (h(1) − 2r), b2 − 2r, b5, . . . , bm) ∈ Bn

and

γ2 := (b1 + (h(2) − 2r), b2, b1 − 2r, b2 − 2r − (h(2) − 2r), b5, . . . , bm) ∈ Bn.
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Let κ1 := Part(γ1), κ2 := Part(γ1). It is clear that both γ1 − 2re1 and γ2 − 2re2 are
sequences of β-numbers for D(µ). Thus κ1, κ2 ∈ (µ)∼.

If αµ is a sequence of β-numbers, then also αµ − 2re2 is a sequence of β-numbers for
D(µ) and thus κ3 := Part(αµ) ∼ µ. So

(µ)∼ = {µ, κ1, κ2, κ3}

with ∏
ν∈(µ)∼

h1
λ(ν)
h2
λ(ν) = h(1)

h(2) ·
h(2)

h(1) − 2r ·
h(1)

h(2) − 2r ·
h(1) − 2r
h(2) − 2r =

(
h(1)

h(2) − 2r

)2

and so (µ)∼ is odd.
If on the other hand αµ is not a sequence of β-numbers, then after reordering, βλ is of

the form
(b1, b2, b1 − 2r, b2 − 2r, b2 − h(2) + 2r, . . . , bm).

Thus OddRank(λ) > 0 and

βλ − 2re5 = (b1, b2, b1 − 2r, b2 − 2r, b2 − h(2), . . . , bm) ∈ B(D(λ)).

Further,
(µ)∼ = {µ, κ1, κ2}

and it is clear that D(µ) ∈Pλ with

h1,2
D(λ)(D(µ)) = (h(1) − 2r, h(2) − 2r)

from which the statement follows.

Example 4.1.44. (i) Let λ = (4, 4, 2, 2, 1, 1, 1) and let µ = (13, 1, 1). Then µ ∈P>0
λ

with d(λ,D(µ)) = 2 and µ is a distinguished representative. Further,

(µ)∼ = {µ, (5, 5, 2, 2, 1), (5, 4, 2, 2, 1, 1), (5, 3, 2, 2, 1, 1, 1)}

and we are in the situation of Lemma 4.1.43(i).

(ii) Let λ = (2, 1(5)) and let µ = (7). Then µ ∈ P>0
λ with d(λ,D(µ)) = 2 and µ is a

distinguished representative. Further,

(µ)∼ = {µ, (3, 3, 1), (3, 1(4))}

and we are in the situation of Lemma 4.1.43(ii).

The proofs of the following two lemmas go similarly to the proof of Lemma 4.1.43 and
just involve going through all the cases.

Lemma 4.1.45. Assume we are in the situation of Definition 4.1.42. Further assume
that h1

λ(µ) < 2r.
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(i) Assume that αµ ∈ Bn. Then |(µ)∼| = 2. Further, (µ)∼ is odd.

(ii) Assume that αµ ̸∈ Bn. Then |(µ)∼| = 1. Further, OddRank(λ) > 0, D(µ) ∈PD(λ)
and (µ)∼ is odd if and only if {D(µ)} ⊆PD(λ) is odd.

Proof. One sees easily that the assumption implies that |(µ)∼| ≤ 2. Thus, if αµ ∈ Bn

then
(µ)∼ = {µ,Part(αµ)}

with ∏
ν∈(µ)∼

h1
λ(ν)
h2
λ(ν) = h(1)

h(2) ·
2r − h(2)

2r − h(1)

and thus (µ)∼ is odd.
So assume now that αµ ̸∈ Bn. We can now argue as in Lemma 4.1.43 and see that

D(λ) > 0 and D(µ) ∈PD(λ). Further, (µ)∼ = {µ} and

h1,2
D(λ)(D(µ)) = (2r − h(2), 2r − h(1)),

which shows the claim.

Example 4.1.46. (i) The equivalence classes M2 and M3 from Example 4.1.34 are
examples of the situation of Lemma 4.1.45(i).

(ii) Let λ = (10, 8, 6, 3, 2, 1, 1) and let µ = (17, 11, 2, 1) be partitions of 31. Then
µ ∈P>0

λ with d(λ,D(µ)) = 2 and µ is a distinguished representative. Further,

(µ)∼ = {µ}

and we are in the situation of Lemma 4.1.45(ii).

Lemma 4.1.47. Assume we are in the situation of Definition 4.1.42. Further assume
that h(1) > 2r, h(2) < 2r.

(i) If there is an index i ≥ 3 with b1 − bi = 2r, then |(µ)∼| = 2. Further, (µ)∼ is odd.

(ii) If there is no index i with b1 − bi = 2r, then |(µ)∼| = 1. Further, OddRank(λ) > 0,
D(µ) ∈PD(λ) and (µ)∼ is odd if and only if {D(µ)} ⊆PD(λ) is odd.

(iii) If b1 − b2 = 2r, then |(µ)∼| = 1. Further, (µ)∼ is odd.

Proof. First we argue that |(µ)∼| ≤ 2. Indeed, unlike in Lemma 4.1.43 and 4.1.45, there
is no partition in (µ)∼ that can come from αµ. Assume for a moment that αµ ∈ Bn.
Then b1 > b1 + h(2) − 2r since h(1) > 2r and b1 > b2 − h(2) + 2r since h(2) < 2r. It thus
follows that Part(αµ) ⊴ λ, so indeed, Part(αµ) ̸∈ P>0

λ . Next, it is easy to see that
b2 < 2r or else b1 + h(2) > 2r+1. So |(µ)∼| ≤ 2 now follows by the discussion in the proof
of Lemma 4.1.40(i).
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Let us now discuss the case of |(µ)∼| = 2. For this to occur, there has to be an index
i ≥ 3 such that b1 − bi = 2r. Assume this is the case; after some reordering we can
assume that i = 3. So

βλ = (b1, b2, b1 − 2r, b4, . . . , bm).

Let
γ := (b1, b2 − h(2), b1 + h(2) − 2r, b4, . . . , bm) ∈ Bn.

Let κ := Part(γ). It is easy to see that κ ∈P>0
λ and that (µ)∼ = {µ, κ}. If b2 > b1 − 2r,

then
h1,2
λ (κ) = (h(2), h(1) − 2r).

If b2 < b1 − 2r, then
h1,2
λ (κ) = (h(1) − 2r, h(2)).

In both cases, (µ)∼ is odd.
So in all other cases, |(µ)∼| = 1. Assume now that b1 − b2 = 2r. Then

h1,2
λ (µ) = (h(1), h(2)) = (2r + h(2), h(2))

and so (µ)∼ is odd.
Finally, assume that there is no index i such that b1 − bi = 2r. Then OddRank(λ) > 0

and
(b1 − 2r, b2, . . . , bm) ∈ B(D(λ)).

Further, we see that D(µ) ∈ PD(λ). We have the same case distinction as before: If
b2 > b1 − 2r, then

h1,2
D(λ)(D(µ)) = (h(2), h(1) − 2r).

If b2 < b1 − 2r, then
h1,2
D(λ)(D(µ)) = (h(1) − 2r, h(2)).

The statement now follows.

Example 4.1.48. (i) Let λ = (4, 2(4), 1(3)) and let µ = (5, 2(4), 1, 1). Then µ ∈P>0
λ

with d(λ,D(µ)) = 2 and µ is a distinguished representative. Further,

(µ)∼ = {µ, (4, 2(5), 1)}

and we are in the situation of Lemma 4.1.47(i).

(ii) Let λ = (12, 2) and let µ = (13, 1). Then µ ∈P>0
λ with d(λ,D(µ)) = 2 and µ is a

distinguished representative. Further,

(µ)∼ = {µ}

and we are in the situation of Lemma 4.1.47(ii).
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(iii) Let λ = (2, 1(5)) and let µ = (5, 1, 1). Then µ ∈P>0
λ with d(λ,D(µ)) = 2 and µ is

a distinguished representative. Further,

(µ)∼ = {µ}

and we are in the situation of Lemma 4.1.47(iii).

To summarize the previous lemmas: We have gone through all possible cases and
understood pretty well what the parities of the equivalence classes of P>0

λ for a partition
λ look like. There have been some cases where we reduced the parities to certain one-
element subsets of PD(λ). To finally prove Parker’s conjecture for the symmetric groups,
we will need to show that the map D allows us to take suitable preimages of PD(λ).

Lemma 4.1.49. Assume OddRank(λ) > 0 and let κ ∈PD(λ). Then there is a partition
µ ∈P>0

λ such that D(µ) = κ and (µ)∼ is odd if and only if {κ} ⊆PD(λ) is odd.

Proof. Let
βλ := (b1, b2, b3, . . . , bm) ∈ B(λ)

and assume that, after a suitable reordering,

(b1 − 2r, b2, b3, . . . , bm) ∈ B(D(λ)).

There are two indices i, j and a positive integer h such that

βλ − 2re1 + hei − hej ∈ B(κ)

and bi > bj. There are three possibilities: Either 1 /∈ {i, j}, or i = 1, or j = 1. We will
regard

α := βλ + hei − hej.

Assume first that 1 /∈ {i, j}. After a reordering we can assume that i = 2, j = 3. There
are three further possibilities: Either α ∈ Bn, or b1 = b3 − h, or b1 = b2 + h.

If α ∈ Bn, then it is clear that we can set µ := Part(α) with µ ∈ P>0
λ and that

d(λ, κ) = 3. We are thus in the situation of Lemma 4.1.38 and we are done.
Assume now that b1 = b3 − h. Then

γ := (b1 − 2r, b2 + h+ 2r, b3 − h, b4, . . . , bm) ∈ Bn.

If we now set µ := Part(γ), then clearly µ ∈ P>0
λ and d(λ, κ) = 2. Further, µ is a

distinguished representative of its equivalence class and

h1,2
λ (µ) = (b2 − b3 + h+ 2r, h+ 2r)

so we are in the case of Lemma 4.1.43(ii).
Assume now that b1 = b2 + h. Here, we can set

γ := (b1 − 2r, b2 + h, b3 − h+ 2r, b4, . . . , bm) ∈ Bn.
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We again set µ := Part(γ) and again, d(λ, κ) = 2 and µ is a distinguished representative
of its equivalence class. We calculate that

h1,2
λ (κ) = (2r − h, 2r − (b2 − b3 + h))

so we are in the case of Lemma 4.1.45(ii).
Being done with that case, we can now assume that either i = 1 or j = 1. After

reordering, we have

(b1 − 2r + δh, b2 − δh, b3, . . . , bm) ∈ B(κ)

for

δ =
1, if i = 1,
−1, if j = 1.

We set
γ := (b1 − 2r + δh, b2 − δh+ 2r, b3, . . . , bm) ∈ Bn

and let µ := Part(γ) be the corresponding partition. It is easy to see that d(λ, κ) = 2
and µ is a distinguished representative of its equivalence class. We quickly confirm that
we are in the case of Lemma 4.1.47(iii). This concludes the proof.

We are now finally able to harvest the fruits of our work:

Theorem 4.1.50. Parker’s conjecture holds for the symmetric groups.

Proof. Let λ be a partition of n such that fλ is even. Recall by Remark 4.1.25 that

det(χλ) =
∏

µ∈Podd
λ

h1
λ(µ)
h2
λ(µ) · (Q

×)2.

We will show that det(χλ) is odd by induction on the oddness rank of λ.
So assume first that OddRank(λ) = 0. By the lemmas 4.1.36 and 4.1.38 we know

that for all µ ∈Podd
λ it holds that d(λ,D(µ)) = 2. So the statement now follows by the

lemmas 4.1.43, 4.1.45 and 4.1.47.
Assume now OddRank(λ) > 0 and assume that we know the result to hold for D(λ).

We define the set
M = D−1(Podd

D(λ)) ⊆Podd
λ ,

where the subset relation holds by Proposition 4.1.27.
We decompose

Podd
λ = M ∪M ′

for some other set M ′ ⊆ Podd
λ into a disjoint union. Lemma 4.1.49 tells us that M is

odd if and only if Podd
D(λ) is odd, which we know by the induction hypothesis. Further,

the oddness of the set M ′ follows the same as in the oddness rank 0 case. So the theorem
follows.
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4.1.4 Orthogonal Determinants of Alternating Groups
In this subsection, we will describe how to calculate the orthogonal determinants of the
alternating groups. Most characters of the alternating groups arise by the restriction of
the characters of the symmetric groups; the corresponding orthogonal determinants are
therefore known by the James–Murphy determinant formula 4.1.23 and Lemma 2.3.9. For
those characters that split, we will give methods to calculate the orthogonal determinants
in all cases. This allows us to confirm Parker’s conjecture also for the alternating groups.

We recall the basics of the representation theory of the alternating groups. For more
information, regard for instance [FH91, Section 5] and [JK81, Section 2.5].

We fix a positive integer n ≥ 2. Let r be the integer such that 2r ≤ n < 2r+1.

Definition 4.1.51. Let λ = (a1, a2, . . . , am) be a partition of n. We define the conjugate
partition λ′ by

λ′ := Part ((hλ((1, 1)), hλ((1, 2)), . . . , hλ((1, a1))) .
Equivalently, the Young diagram [λ′] is obtained by the Young diagram of [λ] by flipping
along the main diagonal.

For instance, the conjugate partition of (3, 2) is (2, 2, 1):

Theorem 4.1.52. Let λ be a partition of n.

(i) If λ is not equal to its conjugate partition λ′, then

ϕλ := ResSnAn (χλ) = ResSnAn (χλ′)

is an irreducible character of An.

(ii) If λ = λ′, then there are two irreducible characters ϕ(1)
λ and ϕ

(2)
λ of An, each of

degree fλ/2, such that
ResSnAn (χλ) = ϕ

(1)
λ + ϕ

(2)
λ .

Let m be the biggest integer such that (m,m) ∈ [λ]. Then

Q(ϕ(1)
λ ) = Q(ϕ(2)

λ ) = Q
(√

(−1)1/2(n−m)hλ((1, 1)) · · ·hλ((m,m))
)
.

(iii) The abovementioned characters give a full list of all irreducible characters of An.

The theorem also implies that if µ is any partition with µ = µ′, then fµ is odd if and
only if µ = (1).

We will need one further result, known as the branching theorem for the symmetric
groups.
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Proposition 4.1.53. (cf. [JK81, Theorem 2.4.3]) Let λ be a partition of n. Then

ResSnSn−1(χλ) =
∑

µ∈Pn−1,d(µ,λ)=1
χµ,

IndSn+1
Sn

(χλ) =
∑

ν∈Pn+1,d(ν,λ)=1
χν .

Example 4.1.54. Take the partition (3, 2, 1) with Young tableau

.

Then
ResS6

S5(χ(3,2,1)) = χ(2,2,1) + χ(3,1,1) + χ(3,2)

and
IndS7

S6(χ(3,2,1)) = χ(4,2,1) + χ((3,3,1) + χ(3,2,2) + χ(3,2,1,1).

Since we know how to calculate the orthogonal determinants of the symmetric groups,
what is left are the orthogonal determinants of the characters ϕ(i)

λ ∈ Irr+(An) for i = 1, 2,
i.e., for partitions λ = λ′ with 4 | fλ and Q(ϕ(i)

λ ) ⊆ R. We will fix such a partition λ of n
and let m be the biggest integer such that (m,m) ∈ [λ]. The idea is now very simple:
We will restrict the character ϕ(i)

λ to An−1 and hope that the restriction turns out to
be orthogonally stable. In the few cases that it isn’t, we will find some other way to
calculate its orthogonal determinant. By induction we then know how to calculate all
the orthogonal determinants of the alternating groups.

Lemma 4.1.55. Assume that hλ((1, 1)) > 2r + 1. Then ResAnAn−1(ϕ(i)
λ ) is an orthogonally

stable character of An−1.

Proof. Note that hλ((1, 2)) = hλ((2, 1)) < 2r. Indeed, if m = 1, then n = 1 + hλ((1, 2)) +
hλ((2, 1)) < 2r+1. If m ≥ 2, then

hλ((1, 2)) + hλ((2, 1)) = hλ((1, 1)) + hλ((2, 2)) ≤ n.

Let µ ∈Pn−1 with d(µ, λ) = 1. Then 2r ≤ |µ| < 2r+1 and by the previous discussion
there is no cell c ∈ [µ] with hµ(c) = 2r. By Proposition 4.1.27 we then know that fµ is
even. This already implies that ResSnSn−1(χλ) is orthogonally stable. So if µ ≠ µ′ for all
such µ, we are thus done.

If not, then necessarily hλ((m,m)) = 1. But since ϕ(i)
λ (1) is even, then also ϕ(i)

λ(m,m)
(1)

has to be even since ϕ(i)
λ(m,m)

is the only split character appearing in ResAnAn−1(ϕ(i)
λ ). So the

statement holds.

Lemma 4.1.56. Assume that hλ((1, 1)) ≤ 2r − 1. Then ResAnAn−1(ϕ(i)
λ ) is an orthogonally

stable character of An−1.
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Proof. If n > 2r, then we can argue just as in the previous lemma. So assume now
that n = 2r. The only way that the restriction of ϕ(i)

λ to An−1 could potentially not be
orthogonally stable is if there already is a cell c ∈ [λ] with hλ(c) = 2r−1. This occurs
precisely when

(hλ((1, 1)), hλ((2, 2))) = (2r − k, k)
for some odd k < 2r−1. We calculate that 1/2(2r − 2) is an odd number, so by Theorem
4.1.52(ii) Q(ϕ(i)

λ ) is not real and we are done.

Lemma 4.1.57. Assume that hλ((1, 1)) = 2r + 1. Then m ≥ 2. If hλ((2, 2)) > 1, then
ResAnAn−1(ϕ(i)

λ ) is an orthogonally stable character of An−1.

Proof. Assume that m = 1. This implies that [λ] consists of a single hook and that
hλ((1, 2)) = hλ(2, 1)) = 2r−1. Then

fλ = (2r + 1)!
(2r + 1)((2r−1)!)2 =

(
2r

2r−1

)

and it is clear that 4 ∤ fλ so ϕ(i)
λ (1) is odd.

So assume now that m ≥ 2 and that hλ((2, 2)) > 1. If

ResAnAn−1(ϕ(i)
λ )

were not orthogonally stable, then there is a partition µ of n− 1 such that d(µ, λ) = 1
and fµ is odd. So there is a cell c ∈ [µ] with hµ(c) = 2r. The only possibility is c = (1, 1).
Without loss of generality we can take c′ := (1, 2r−1 + 1) ∈ [λ] and let µ = λc′ .

Then D(µ) = D(µ)′ with

hD(µ)((j, j)) = hλ((j + 1, j + 1))

for 1 ≤ j ≤ m − 1. But then hD(µ)((1, 1)) > 1 and thus fD(µ) is even, since the only
self-conjugate partition of odd degree is (1). So by Proposition 4.1.27 fµ is even.

Example 4.1.58. To illustrate the argument in the above lemma, take for instance the
partition λ = (5, 4, 2, 2, 1) of 14. We have λ = λ′ and

(hλ((1, 1)), hλ((2, 2))) = (9, 5).

Let c′ = (1, 5) ∈ [λ] and set µ := λc′ = (4, 4, 2, 2, 1). Then hµ((1, 1)) = 8 and D(µ) =
(3, 1, 1). Below is the hook diagram of λ where [D(µ)] is colored white.

9 7 4 3 1
7 5 2 1
4 2
3 1
1
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Lemma 4.1.59. Assume that m = 2, hλ((1, 1)) = 2r + 1 and hλ((2, 2)) = 1, i.e.,

λ = (2r−1 + 1, 2, 1(2r−1−1)).

Assume additionally that 2r ≥ 8. Then

det(ϕ(i)
λ ) = 1 · (Q(

√
2r + 1)×)2.

Proof. It is easy to see that

IndAn+1
An

(ϕ(i)
λ ) = ϕν1 + ϕν2 ,

where [ν1] (resp. [ν2]) has the extra cell (2r−1 + 2, 1) (resp. (2, 3) ) compared to [λ], i.e.,

ν1 = (2r−1 + 1, 2, 1(2r−1)), ν2 = (2r−1 + 1, 3, 1(2r−1−1)).

Then hνj((1, 1)) > 2r and

hνj((2, 1)) = hνj((1, 2)) + 1 = 2r−1 + 2

for j = 1, 2. Since 2r ≥ 8 we have that 2r−1 +2 < 2r. So OddRank(ν1) = OddRank(ν2) =
0 and both ϕν1 and ϕν2 have even degree and are orthogonally stable. Since n is even,
the index of An in An+1 is odd and therefore by Lemma 2.3.10

det(ϕ(i)
λ ) = det(ϕν1) · det(ϕν2) · (Q(

√
2r + 1)×)2 = det(χν1) · det(χν2) · (Q(

√
2r + 1)×)2.

We will now calculate the determinants of these characters individually, with the results
gathered in Subsection 4.1.3.

(i) Consider the partition ν1. Then P>0
ν1 = M1∪M2 consists of two equivalence classes.

The first one is

M1 = {(2r + 3), (2r−1 + 1, 4, 1(2r−1−2))}, D(M1) = (3).

Since fD(M1) = 1 is odd, we regard

∏
κ∈M1

h1
ν1(κ)
h2
ν1(κ) = 2r + 2

2r−1 + 2 ·
2r−1 + 2

2 = 2r−1 + 1.

The second one is

M2 = {(2r, 2, 1), (2r−1 + 1, 2(3), 1(2r−1−4))}, D(M2) = (1, 1, 1).

Since fD(M2) = 1 is odd, we regard

∏
κ∈M2

h1
ν1(κ)
h2
ν1(κ) = 2r + 2

2r−1 − 1 ·
2r−1 − 1

2 = 2r−1 + 1.

Thus by the James–Murphy determinant formula,

det(χν1) = 1 · (Q×)2.
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4 Orthogonal Determinants of Finite Coxeter Groups

(ii) Consider the partition ν2. Then P>0
ν2 = M1∪M2 consists of two equivalence classes.

The first one is

M1 = {(2r + 3), (2r−1 + 1, 4, 1(2r−1−2))}, D(M1) = (3).

Since fD(M1) = 1 is odd, we regard

∏
κ∈M1

h1
ν2(κ)
h2
ν2(κ) = 2r + 1

2r−1 + 2 ·
2r−1 + 2

1 = 2r + 1.

The second one is

M2 = {(2r, 3), (2r−1 + 1, 3, 2, 1(2r−1−3))}, D(M2) = (2, 1).

Since fD(M2) = 2 is even, M2 does not contribute to the orthogonal determinant.
Thus by the James–Murphy determinant formula,

det(χν2) = (2r + 1) · (Q×)2.

All in all, det(ϕ(i)
λ ) = 1 · (2r + 1) · (Q(

√
2r + 1)×)2 = 1 · (Q(

√
2r + 1)×)2.

We are left to show a single case:

Lemma 4.1.60. Let n = 6. It holds that det(ϕ(i)
(3,2,1)) = 1 · (Q(

√
5)×)2.

Proof. Note that ϕ(i)
(3,2,1)(1) = 8. It is well known that A6 ∼= PSL2(9) and we can thus

regard the associated characters of SL2(9). We will later see in Theorem 5.3.3 that
all characters of degree 8 of SL2(9) have a square as an orthogonal determinant, so
det(ϕ(i)

(3,2,1)) = 1 · (Q(
√

5)×)2.

Remark 4.1.61. Let us summarize what we have learned. First of, there are no
orthogonally stable characters of A2 ∼= {1}. Second, let λ be any partition of n. There
are three possibilities for orthogonally simple characters of An:

(i) If λ ̸= λ′ and fλ is even, then we know that

det(ϕλ) = det(χλ) · (Q×)2

which we can calculate with the James–Murphy determinant formula. In particular,
by Theorem 4.1.50, Parker’s conjecture holds here.

(ii) If λ = λ′ and Q(ϕ(i)
λ ) is not real for i = 1, 2, then

ϕ
(1)
λ + ϕ

(2)
λ = ResSnAn (χλ)

is orthogonally stable and

det(ϕ(1)
λ + ϕ

(2)
λ ) = det(χλ) · (Q(ϕ(1)

λ + ϕ
(2)
λ )×)2.

Parker’s conjecture holds in that case. Note that we do not need Theorem 4.1.50
here since it already follows by Proposition 2.3.27.
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4.1 Type An

(iii) If λ = λ′, Q(ϕ(i)
λ ) is real and the degree of ϕ(i)

µ is even for i = 1, 2, then either
the restriction of this character to An−1 is orthogonally stable or its orthogonal
determinant is a square. By induction, Parker’s conjecture also holds here.

We thus arrive at the following main result:

Theorem 4.1.62. Parker’s conjecture holds for the alternating groups.

4.1.5 Orthogonal Determinants of Iwahori–Hecke Algebras of Type
An

Let n be a positive integer. We will first recall the definition of Iwahori–Hecke algebras
of type An−1. For this, let S = {s1, . . . , sn−1} be the standard generating set of Sn. Let
u be an indeterminate over Q. We let A = Q[u, u−1] and let K = Quot(A) = Q(u) be
the quotient field of A. Let H := H(An−1) be the free associative A-algebra with basis
{Tw | w ∈ Sn}, together with the relations

TsTw =
Tsw, if ℓ(sw) = ℓ(w) + 1,
uTsw + (u− 1)Tw, if ℓ(sw) = ℓ(w)− 1,

for any s ∈ S,w ∈ Sn.
It is well known that K is a splitting field for H and that the irreducible modules

are parameterized by the partitions of n. For each partition λ of n, there is an explicit
construction of an irreducible KH-module which we will denote by S ′

λ, see [DJ86]. In
fact, the modules can be constructed over H, together with a standard basis

{e′
t ∈ H | t ∈ Tλ}.

So we will from now on regard S ′
λ as an H-module. We denote χ′

λ to be the irreducible
character afforded by S ′

λ. Note that by specializing A → Q, u 7→ 1, the character χ′
λ

becomes the character χλ ∈ Irr(Sn), Sλ′ becomes the Specht module Sλ and the standard
basis element e′

t gets specialized to et for each standard Young tableau t ∈ Tλ.
Recall that we have an involution † on H given by T †

w = Tw−1 . With that involution
in mind, we can again again talk about the orthogonal determinants of the Irr+(KH)-
characters. As in the case of the symmetric groups, S ′

λ is a submodule of a "permutation
module" (M ′

λ, γ
′), with a "canonical" symmetric, non-degenerate, H-invariant bilinear

form γ′. The restriction of γ′ to Sλ now makes (S ′
λ, γ

′
|S′
λ
) into an orthogonal H-module.

We denote det(λ)′ to be the Gram matrix of γ′
|S′
λ

with respect to the standard basis.
We have discussed in detail the James–Murphy determinant formula for the symmetric

groups. There is a generalization of this formula for det(λ)′ due to Dipper and James
in [DJ87, Theorem 4.11]. This has been further generalized and simplified in [DJM97],
where the authors presented explicit formulas for orthogonal determinants of Iwahori–
Hecke algebras of type Bn, which contains the orthogonal determinants of Iwahori–Hecke
algebras of type An as a special case. We will present some of their results now:
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4 Orthogonal Determinants of Finite Coxeter Groups

So let λ = (c1, . . . , cm) be a partition of n. Recall that the group Sn acts on a standard
Young tableau t ∈ Tλ by permuting its entries. We define the standard Young tableau tλ
by putting the numbers {1, . . . , c1} in the first row, the numbers {c1 + 1, . . . , c1 + c2} in
the second row, and so on. For instance,

t(4,3,2) = 1 2 3 4
5 6 7
8 9

.

Definition 4.1.63. We put a partial order on the set Tλ by saying that

t1 = w1 · tλ < t2 = w2 · tλ,

if and only if w1 ≤L w2, for any t1, t2 ∈ Tλ and w1, w2 ∈ Sn.

We shall need the Gaussian polynomials:

Definition 4.1.64. Let a, b be non-negative integers with 0 ≤ b ≤ a. Let x be a variable
or an integer. We define the Gaussian polynomials

(i)

[a]x :=
0, a = 0,

1 + x+ . . . xa−1, a > 0.

(ii)

[a]x! :=
1, a = 0,

(1)x · (2)x · · · (a)x, a > 0.

(iii) (
a

b

)
x

:= [a]x!
[b]x! · [a− b]x!

.

As we are not interested in the exact value of det(λ)′ but only its square class in
K×/(K×)2, we can slightly simplify the statement given by the authors.

Theorem 4.1.65. (cf. [DJM97, Section 3]) Assume that χ′
λ ∈ Irr+(KH). We set

atλ := 1. Inductively we now define for each t ∈ Tλ the elements at ∈ A by the following
condition:

Let t1, t2 ∈ Tλ with t1 < t2 and assume there is a simple transposition s = (k, k+1) ∈ S
such that s · t1 = t2. If (i1, j1) (resp. (i2, j2)) are the positions of k (resp. k + 1) in t1,
define r1 := uj1−i1 and r2 := uj2−i2. We set

at2 = (ur1 − r2)(r1 − ur2)
(r1 − r2)2 at1 .

Then the at are well-defined and

det(χ′
λ) =

∏
t∈Tλ

at · (K×)2.
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4.2 Type Bn and Type Dn

We can make further simplifications, for instance, the denominator, as it is a square,
can be safely disregarded in actual computations.

Example 4.1.66. (i) Assume that λ = (2, 2). Then there are two standard Young
tableaux:

t1 := tλ = 1 2
3 4

, t2 := 1 3
2 4

.

We have that s2 · t1 = t2 with the positions (1, 2) and (2, 1) getting swapped. So
r1 = u, r2 = u−1, and

at2 = (u2 − u−1)(u− 1) · (K×)2 = u(u2 + u+ 1) · (K×)2,

and we arrive at

det(χ′
λ) = at1at2 · (K×)2 = u(u2 + u+ 1) · (K×)2.

By specializing (or with the James–Murphy determinant formula) we see that for
S4,

det(χλ) = 3 · (Q×)2.

While we could maybe have guessed a term like u2 + u+ 1 to appear, the factor of u
gets completely lost in the specialization.

(ii) Let λ = (3, 1, 1). There are 6 standard Young tableaux of λ; the following diagram
depicts each of these, as well as the simple transpositions that transform them into
each other:

1 3 4
2
5

1 2 3
4
5

1 2 4
3
5

1 3 5
2
4

1 4 5
2
3

1 2 5
3
4

s4

s3

s2

s4

s3

s2

An easy calculation now gives us the result

det(χ′
λ) = (u4 + u3 + u2 + u+ 1) · (K×)2.

4.2 Type Bn and Type Dn

We will follow [GP00, Section 1.4] for the description of the Coxeter groups of type Bn

and Dn.
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4 Orthogonal Determinants of Finite Coxeter Groups

Let n ≥ 2 be an integer and let (W,S) be a Coxeter system of type Bn. We denote
S = {t, s1, . . . , sn−1} and recall that W is generated by the set S, with the following
relations:

(i) t2 = s2
i = 1 for all 1 ≤ i ≤ n− 1,

(ii) (ts1)4 = 1 and tsi = sit for 2 ≤ i ≤ n− 1,

(iii) (sisi+1)3 = 1 for 1 ≤ i ≤ n− 2, sjsk = sksj for 1 ≤ j, k ≤ n− 1 and |k − j| ≥ 2.

Note that we have a parabolic subgroup isomorphic to Sn, generated by the set
{s1, . . . , sn−1}, so we will write Sn ⊆ W from now on. We have a normal subgroup

N := {wtw−1 | w ∈ W},

and W = N ⋊Sn decomposes as a semidirect product.
Similar to the construction of the symmetric groups as the group of permutation

matrices, there is an explicit construction of W as a subgroup of GLn(R) as the set of
monomial matrices, i.e., the matrices that have exactly one non-zero entry in every row
and column, where every entry is in {−1, 0, 1}. Here, t = diag(−1, 1, 1, . . . , 1) and the
si are defined just as in Section 4.1. With this embedding in mind, the subgroup Sn

corresponds to the set of permutation matrices and N corresponds to the intersection of
W with the set of diagonal matrices. Accordingly, N is an abelian group with |N | = 2n
and we recover the fact that |W | = 2nn!.

We will now describe a construction of Coxeter groups of type Dn. Let N ′ ⊆ N be the
subgroup of index 2 of diagonal matrices with an even number of −1s, in other words,
N ′ = N ∩ SLn(R). Define W ′ = N ′ ⋊Sn. Then W ′ ⊆ W is a subgroup of index 2 and is
in fact a Coxeter system of type Dn. Indeed, let v := ts1t = s1 · diag(−1,−1, 1, . . . , 1).
Then S ′ = {v, s1, s2, . . . , sn−1} makes (W ′, S ′) to a Coxeter system of type Dn, with the
additional relations

(i) v2 = 1,

(ii) vsi = siv for 1 ≤ i ≤ n− 1, i ̸= 2,

(iii) vs2v = s2vs2.

4.2.1 Representation Theory of Coxeter Groups of Types Bn and Dn

The irreducible characters of a semidirect product of the form G = A⋊H, where A is an
abelian group and H is any finite group, can be completely described in term of characters
of subgroups of H. In [GP00, Section 5.5], this construction is explicitly applied to the
case of Coxeter groups of type Bn, as we have a semidirect product W = N ⋊Sn, and
N is abelian. This will also be applied to the Coxeter group W ′ = N ′ ⋊Sn of type Dn,
but here there is also another approach: As a subgroup of index 2 of W , we have that
W ′ is a normal subgroup of W and so we can apply Clifford theory.
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4.2 Type Bn and Type Dn

We will first describe the general theory of characters of a semidirect product G = A⋊H
with a normal abelian subgroup A. We have a natural action of H on Irr(A), given by

(h · θ)(a) := θ(h−1ah)

for h ∈ H, θ ∈ Irr(A), a ∈ A. Let {θ1, . . . , θN} ⊆ Irr(A) be a set of representatives of the
action of H on Irr(A). We define

Hi := StabH(θi) = {h ∈ H | h · θi = θi}

for each i = 1, . . . , N . Let Gi := A⋊Hi ⊆ G. Then θi can be considered an irreducible
character of Gi, given by

θi(ah) = θi(a)

for any a ∈ A, h ∈ Hi. By abuse of notation, we regard any character ρ ∈ Irr(Hi) as a
character ρ ∈ Irr(Gi) by the natural projection.

Theorem 4.2.1. (cf. [Ser77, Proposition 25]) There is a 1-to-1-correspondence⋃
1≤i≤N

Irr(Hi)↔ Irr(G),

given by
ρ 7→ χρ := IndGGi(ρ · θi)

for all ρ ∈ Irr(Hi) and all i.

We now want to apply the above theorem to the Coxeter groups of type Bn. A system
of representatives of Irr(N) with the action of Sn is given by {θ0, . . . , θn} ⊆ Irr(N) with

θi (diag(a1, . . . , an)) =
i∏

j=1
aj,

for aj ∈ {−1, 1}, 0 ≤ i ≤ n. Then

StabSn(θi) = Si ×Sn−i,

with the evident generating set {s1, s2, . . . , sn−1}\{si}. Now,

N ⋊ (Si ×Sn−i) = Wi ×Wn−i,

where Wi and Wn−i are again Coxeter groups of type Bi and Bn−i, respectively. We can
now describe all irreducible characters of W :

Theorem 4.2.2. [GP00, Theorem 5.5.6] Let 0 ≤ i ≤ n, λ ∈Pi, µ ∈Pn−i. We define

χ(λ,µ) := IndWWi×Wn−i
((χλ ⊠ χµ) · θi) ,
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4 Orthogonal Determinants of Finite Coxeter Groups

where χλ, χµ are the corresponding irreducible characters of Si, Sn−i as described in
Section 4.1. As we run over all i and all partitions, we get a complete list of all irreducible
characters of W without repeats. It further holds that

χ(λ,µ)(1) =
(
n

i

)
· fλfµ,

where fλ = χλ(1) and fµ = χµ(1). All characters of W can be realized by representations
over the rational numbers.

The proposition above gives us, as a by-product, a characterization of all irreducible
characters of W ′, similar to the case with the alternating groups in Theorem 4.1.52.

Theorem 4.2.3. [GP00, Section 5.6] Let 0 ≤ i ≤ n, λ ∈Pi, µ ∈Pn−i.

(i) If λ ̸= µ, then
χ′

(λ,µ) := ResWW ′(χ(λ,µ)) = ResWW ′(χ(µ,λ))
is an irreducible character of W ′. In particular, χ′

(λ,µ) = χ′
(µ,λ).

(ii) If λ = µ, then there are two irreducible characters χ′
(λ,+) and χ′

(λ,−) of W ′, each of
degree χ(λ,λ)(1)/2, such that

ResWW ′(χ(λ,λ)) = χ′
(λ,+) + χ′

(λ,−).

(iii) The abovementioned characters give a full list of all irreducible characters of W ′ and
all characters of W ′ can be realized by representations over the rational numbers.

By Theorem 4.2.1, all characters of W ′ are induced characters by certain subgroups.
We wish to understand the split characters χ′

(λ,+) and χ′
(λ,+) in this way. So let now

n = 2k be even. For the split characters, we need to understand the stabilizer of θk in
W ′. Let σ ∈ Sn be the permutation of order 2 defined by

σ(i) =
i+ k, if 1 ≤ i ≤ k,

i− k, if k ≤ i ≤ n.

Then it is easy to verify that

H := StabSn(θk) = (Sk ×Sk) ⋊ ⟨σ⟩ ∼= Sk ≀ C2,

where Sk ≀ C2 is the wreath product of Sk with C2. As is now routine, Clifford theory
gives us the following:

Lemma 4.2.4. Let λ be a partition of k. Then there are irreducible characters ψ(λ,+),
ψ(λ,−) of H, each of degree f 2

λ, such that

ResHSk×Sk
(ψ(λ,+)) = ResHSk×Sk

(ψ(λ,−)) = χλ ⊠ χλ,

and
IndW ′

N ′⋊H(ψ(λ,+) · θk) = χ′
(λ,+), IndW ′

N ′⋊H(ψ(λ,−) · θk) = χ′
(λ,−).
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4.2 Type Bn and Type Dn

Note that in the notation of the above lemma, the characters ψ(λ,+) and ψ(λ,−) both
take values in the rational numbers and have Schur index 1. If we take ϕ ∈ Irr(⟨σ⟩) to
be the nontrivial character with ϕ(σ) = −1, then

ψ(λ,+) = ψ(λ,−) · ϕ.

4.2.2 Orthogonal Determinants of Coxeter Groups of Types Bn and
Dn

Let again n be an integer. We let W and W ′ be the Coxeter groups of types Bn and Dn

respectively. The statements of the previous subsection now give us a very easy way to
get all orthogonal determinants of these two groups:

Theorem 4.2.5. Let 0 ≤ i ≤ n, λ ∈ Pi, µ ∈ Pn−i such that χ(λ,µ) ∈ Irr(W ) is
orthogonally stable. The following hold:

(i) If
(
n
i

)
is even, then det(χ(λ,µ)) = 1 · (Q×)2. If

(
n
i

)
is odd, then

det(χ(λ,µ)) = det(χλ ⊠ χµ) =


1 · (Q×)2, if fλ, fµ are even,
det(χλ), if fλ is even, fµ is odd,
det(χµ), if fµ is even, fλ is odd.

(ii) If λ ≠ µ, then det(χ′
(λ,µ)) = det(χ(λ,µ)). Assume now that λ = µ and that χ′

(λ,+) is
orthogonally stable. Then

det(χ′
(λ,+)) = det(χ′

(λ,−)) = 1 · (Q×)2.

Proof. Recall that
χ(λ,µ) = IndWWi×Wn−i

((χλ ⊠ χµ) · θi) .

It holds that
|W/(Wi ×Wn−i)| =

(
n

i

)
.

So if the index is even, then by Lemma 2.3.10, det(χ(λ,µ)) = 1 · (Q×)2. Assume now that
the index is odd, so now (χλ ⊠ χµ) · θi has to be orthogonally stable. We have that

ResWi×Wn−i
Si×Sn−i

((χλ ⊠ χµ) · θi) = χλ ⊠ χµ.

So again by Lemma 2.3.10,

det(χ(λ,µ)) = det((χλ ⊠ χµ) · θi) = det(χλ ⊠ χµ).

Then (i) now follows by the rules of orthogonal determinants of direct products of groups
by Lemma 2.3.13.
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For (ii), it suffices to regard the case of λ = µ with χ′
(λ,+) orthogonally stable and to

just show the result for that character, as it follows analogously for χ′
(λ,−). We will again

denote H := StabSn(θk), in the notation of the previous subsection. The statement is
clear if |W ′/(N ′ ⋊H)| is even, yet again by Lemma 2.3.10. Assume now that the index
is odd. It follows by Lemma 4.2.4 that

ResN ′⋊H
Sk×Sk

(ψ(λ,+) · θk) = χλ ⊠ χλ,

so it has orthogonally stable restriction to Sk ×Sk. Now by the rules of the orthogonal
determinants of direct products of groups, det(χλ ⊠ χλ) = 1 · (Q×)2. Bringing everything
together, we end up with

det(χ(λ,+)) = det(ψ(λ,+) · θk) = det(χλ ⊠ χλ) = 1 · (Q×)2,

which we wanted to show.
Corollary 4.2.6. Parker’s conjecture holds for Coxeter groups of types Bn and Dn.
Proof. This is a direct consequence of the previous theorem and the proof of Parker’s
conjecture for the symmetric groups in Theorem 4.1.50.

4.3 Type I2(m)
We recall the presentation of the dihedral groups. Let m ≥ 3 be an integer and (W,S)
be a Coxeter system of type I2(m). Then S = {s, t} and we have the relations

(i) s2 = t2 = 1 ,

(ii) (st)m = 1.
We recall the definition of the generic Iwahori–Hecke algebra of type I2(m):

Definition 4.3.1. Let u be an indeterminate over Q. We define the Iwahori–Hecke
algebra H := H(I2(m)) to be the free associative A := Q[u, u−1]-algebra with basis
{Tw | w ∈ W}, together with the relations

(i) TwTw′ = Tww′ for w,w′ ∈ W , if ℓ(ww′) = ℓ(w) + ℓ(w′),

(ii) T 2
s = uT1 + (u− 1)Ts, T 2

t = uT1 + (u− 1)Tt.
Since H(I2(m)) is an Iwahori–Hecke algebra, it is a semisimple monomial algebra and

we can talk about orthogonal determinants. Let K := Quot(A) be the quotient field of
A and let L be an algebraic closure of K.

We set
ζm := exp

(2πi
m

)
to be a primitive complex m-th root of unity. We further set

ϑ(k)
m := ζkm + ζ−k

m ∈ R

for any integer k.
We now describe how to explicitly construct representations for all Irr+(LH)-characters.
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Proposition 4.3.2. (cf. [GP00, Theorem 8.3.1]) It holds that

|Irr+(LH)| =
(m− 2)/2, if m is even,

(m− 1)/2, if m is odd,

all of which have degree 2. Let j be an integer with 1 ≤ j ≤ (m− 1)/2. We define the
representation ρj of K(ϑ(j)

m )H by

ρj(Ts) :=
(
−1 0
u u

)
, ρj(Tt) :=

(
u 2 + ϑ(j)

m

0 −1

)
.

Let χ′
j be the character of ρj. As we run over all values of j, the χ′

j give a list of all
Irr+(LH)-characters.

Recall that we have an involution † on H given by T †
w = Tw−1 for w ∈ W . So, T †

st = Tts.
We will use these two elements to determine the orthogonal determinants of the Irr+(LH)-
and the Irr+(W )-characters:

Theorem 4.3.3. Let j be an integer with 1 ≤ (m− 1)/2. Then

det (ρj(Tts)− ρj(Tst)) = u(2 + ϑ(j)
m )(u2 − ϑ(j)

m u+ 1).

The following now hold:

(i) For the character χ′
j ∈ Irr+(LH), it holds that

det(χ′
j) = u(2 + ϑ(j)

m )(u2 − ϑ(j)
m u+ 1) · (K(ϑ(j)

m )×)2.

(ii) With the specialization A→ Q, u 7→ 1, we get irreducible characters χj ∈ Irr+(W ).
Then

det(χj) = (2− ϑ(2j)
m ) · (Q(ϑ(j)

m )×)2.

Proof. The proof is a basic calculation. We calculate that

ρj(Tts) =
(

(1 + ϑ(j)
m )u (2 + ϑ(j)

m )u
−u −u

)
, ρj(Tst) =

(
−u −(2 + ϑ(j)

m )
u2 (1 + ϑ(j)

m )u

)
,

so
ρj(Tts)− ρj(Tst) =

(
(2 + ϑ(j)

m )u −(2 + ϑ(j)
m )(u+ 1)

−u(u+ 1) −(2 + ϑ(j)
m )u

)
.

The determinant is thus

det (ρj(Tts)− ρj(Tst)) = u(2 + ϑ(j)
m )(u2 − ϑ(j)

m u+ 1).

The rest is a basic consequence of Theorem 2.2.18.

Again, Parker’s conjecture holds here. This also follows by Theorem 2.3.29, since the
dihedral groups are solvable. We will capture this result in a corollary:

Corollary 4.3.4. Parker’s conjecture holds for Coxeter groups of types I2(m).
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4 Orthogonal Determinants of Finite Coxeter Groups

4.4 Exceptional Groups
There are in total 6 exceptional Coxeter groups: H3, H4, F4, E6, E7 and E8. Since this is
a finite list of finite groups, we will use the aid of a computer to determine the orthogonal
determinants of these groups. With the exception of the group H4, all characters of
these groups have rational values and Schur index equal to 1. Now, for the group H4,
theoretical methods can be used to determine the orthogonal determinant of the singular
character 48rr of Schur index 2 and of the characters with character field Q(

√
5). We

will now assume that W is a finite Coxeter group of type H3, H4, F4, E6, E7 or E8, and
that χ ∈ Irr+(W ) is an orthogonally stable character with Schur index equal to 1. The
basic idea of the algorithm to determine det(χ) now goes like this:

(i) Construct a QG-module V that affords the character χ with homomorphism
ρ : QG→ End(V ).

(ii) Denote † to be the natural involution of QG. Construct random elements h ∈ QG
and calculate det

(
ρ(h)− ρ(h†)

)
.

(iii) If det
(
ρ(h)− ρ(h†)

)
= 0, construct a new random element h′, until

det
(
ρ(h′)− ρ((h′)†)

)
̸= 0.

(iv) Let d := det
(
ρ(h′)− ρ((h′)†)

)
∈ Q×. Give out the unique squarefree integer d′

that is in the same square class as d.

Recall that by Theorem 2.2.14, such elements always exist and give us the orthogonal
determinant.

We thank our colleague Tobias Braun for providing the necessary code, which took
care of all exceptional groups except H4 (here, only the characters with character field Q
were covered) and E8 (due to the sheer size). For the orthogonal determinants in the case
of E8, we made use of the calculations of Gabriele Nebe, Richard Parker and Thomas
Breuer, see [BNP24] for an overview of their methods. In particular, the orthogonal
determinants of the Irr+(G)-characters for G = GO+

8 (2) (or, in ATLAS notation, O+
8 (2).2)

were already determined. For the groups H4 and E8, also CHEVIE (cf. [Mic15]) was
used, we will indicate on where exactly.

For the notation of the irreducible characters, we will use the one used in [GP00,
Appendix C]. The structure of the exceptional Coxeter groups can be found in [Wil09,
Section 3.12.4].

Without further ado, we will now give the orthogonal determinants of all Irr+(W )-
characters:

Type H3

For H3, there are only two Irr+(W )-characters, both of degree 4:
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4.4 Exceptional Groups

χ det(χ) ∈ Q×/(Q×)2

4τ , 4′
τ 5

Type H4

Let W be a Coxeter system of type H4. Recall that H4 is generated by reflections
s1, s2, s3, s4 with a corresponding Coxeter diagram

1
5

2 3 4.

Let w0 be the longest element of W . It holds that the center of W is given by
Z(W ) = {1, w0}. From [Wil09, Section 3.12.4] we gather that

W/Z(W ) ∼= (A5 × A5) ⋊ C2 = A5 ≀ C2.

By [GP00, Appendix C, Table C2], all characters of W with a label of r or s correspond to
characters of A5 ≀C2. By Lemma 2.3.12, it suffices to calculate the orthogonal determinants
of these characters in that group. Since A5 ≀ C2 has a normal subgroup A5 × A5 of index
2, almost all of its orthogonal determinants can be gotten by restricting and inducing to
and from that subgroup. The only character of Irr+(A5 ≀ C2) that can not be calculated
in that way is 18t — it is equal to the induced character

IndA5≀C2
A5×A5

(
ϕ

(1)
(3,1,1) ⊠ ϕ

(2)
(3,1,1)

)
.

but note that we can not use Lemma 2.3.10 here, since Q
(
ϕ

(1)
(3,1,1) ⊠ ϕ

(2)
(3,1,1)

)
= Q(

√
5)

and Q(18r) = Q. But, the conditions of Lemma 2.3.11 hold here, so

det(18r) = 5 · (Q×)2.

Let us now regard the characters that do not come from A5 ≀ C2. On any of these
characters χ, we have that χ(w0) = −1. With the help of CHEVIE we now construct an
element w ∈ W such that w2 = 1. More explicitly, the element is given by the list

[1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 4, 3, 2, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4],

meaning that w = s1s2s1s2s1s3 . . . . By Lemma 2.3.14, we arrive that

det(χ) = 1 · (Q(χ)×)2

for all these characters. In total, the orthogonal determinants of the Irr+(W )-characters
are the following:

χ det(χ) ∈ Q(χ)×/(Q(χ)×)2

18r 5

All other Irr+(W )-characters 1
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4 Orthogonal Determinants of Finite Coxeter Groups

Type F4

The orthogonal determinants of the Irr+(W )-characters for W of type F4 are the following:

χ det(χ) ∈ Q×/(Q×)2

21, 22, 23, 24 3

All other Irr+(W )-characters 1

Type E6

The orthogonal determinants of the Irr+(W )-characters for W of type E6 are the following:

χ det(χ) ∈ Q×/(Q×)2

6p, 6′
p 3

10s 3

20p, 20′
p, 20s 1

24p, 24′
p 5

30p, 30′
p 3

60p, 60′
p, 60s 1

64p, 64′
p 1

80s 1
90s 3

Type E7

The orthogonal determinants of the Irr+(W )-characters for W of type E7 are the following:
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4.4 Exceptional Groups

χ det(χ) ∈ Q×/(Q×)2

56a, 56′
a 1

70a, 70′
a 3

84a, 84′
a 5

120a, 120′
a 1

168a, 168′
a 5

210a, 210′
a 1

210b, 210′
b 3

216a, 216′
a 105

280a, 280′
a, 280b, 280′

b 1

336a, 336′
a 1

378a, 378′
a 15

420a, 420′
a 1

512a, 512′
a 105

Type E8

We can argue similarly as in the case of H4. Let W be a Coxeter group of type E8. Then
W is generated by elements s1, s2, . . . , s8 with Coxeter diagram

1

2

3 4 5 6 7 8.

Let w0 be the longest element in W . Again, the center is given by Z(W ) = {1, w0}.
Again by [Wil09, Section 3.12.4] we get that

W/Z(W ) ∼= GO+
8 (2),

all of which orthogonal determinants have been calculated by Nebe, Parker and Breuer.
For all of the remaining χ ∈ Irr+(W ), we have that χ(w0) = −χ(1). To use Lemma

2.3.14, we need to find an element w ∈ W such that w2 = w0. With the help of CHEVIE,
we see that such an element exists and is given by the list

[1, 2, 3, 1, 4, 2, 3, 1, 4, 3, 5, 4, 2, 3, 4, 5, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 7, 6, 5,
4, 2, 3, 1, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7],
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4 Orthogonal Determinants of Finite Coxeter Groups

meaning that w = s1s2s3s1s4 . . . . So all of these characters have determinant equal to
1 and we arrive at the following table of the orthogonal determinants of the Irr+(W )-
characters:

χ det(χ) ∈ Q×/(Q×)2

50x, 50′
x 3

84x, 84′
x 5

210x, 210′
x 3

300x, 300′
x 21

840x, 840′
x 5

972x, 972′
x 5

1050x, 1050′
x 3

2268x, 2268′
x 5

4096x, 4096′
x 105

All other Irr+(W )-characters 1

By looking through the tables, we see that Parker’s conjecture holds for all the groups
considered in the section:

Corollary 4.4.1. Parker’s conjecture holds for the exceptional Coxeter groups.

To conclude this chapter, we have checked Parker’s conjecture for every irreducible
finite Coxeter group. Every finite Coxeter groups is just a direct products of irreducible
finite Coxeter groups, and we know that orthogonal determinants behave well with direct
products, compare with Lemma 2.3.13. Thus, we have shown that the following theorem
holds:

Theorem 4.4.2. Parker’s conjecture holds for every finite Coxeter group.
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5 Orthogonal Determinants of Finite
Groups of Lie Type

In this chapter, we will discuss methods for the calculation of the orthogonal determinants
of the Irr+(G)-characters for G a finite group of Lie type defined over a field in odd
characteristic, i.e., the corresponding connected reductive group is defined over a field with
odd characteristic. Many Irr+(G)-characters are Borel-stable, i.e., have an orthogonally
stable restriction to a Borel subgroup. For those that aren’t, we will use condensation
techniques to get a hold on the orthogonal determinants. We will finish this chapter with
some explicit examples.

5.1 Borel-Stability
Let p be an odd prime and let G be a finite group of Lie type in characteristic p with Borel
subgroup B = U ⋊ T for a quasi-split torus T and unipotent radical U . Let W = N/T
be the Weyl group of G. In this section, we will consider the orthogonal determinants of
the Irr+

B(G)-characters of G, i.e., the Irr+(G)-characters that have an orthogonally stable
restriction to B. We will in the sequel also say that these characters are Borel-stable.

Definition 5.1.1. Let χ ∈ Irr(G). Recall the Harish-Chandra restriction χT from
Definition 3.5.1. By inflation we will consider χT to also be a character of B. We define

χU := ResGB(χ)− χT .

Definition 5.1.2. Let θ ∈ Irr(T ). Define

GalW(θ) = {σ ∈ Gal(Q(θ)/Q) | σ · θ = w · θ for some w ∈ W}.

Proposition 5.1.3. Let θ ∈ Irr(T ), χ ∈ Simp(G | (T, θ)). The following hold:

(i) Let StabW (θ) := {w ∈ W | w · θ = θ}. Then

χT = ⟨ResGB(χ), θ⟩B
|StabW (θ)|

∑
w∈W

w · θ.

(ii) Q(χT ) = Q(θ)GalW(θ).

(iii) Q(IndGB(θ)) = Q(χT ).
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5 Orthogonal Determinants of Finite Groups of Lie Type

Proof. By Theorem 3.5.5 and Frobenius reciprocity, we have for all w ∈ W that

⟨ResGB(χ), w · θ⟩B = ⟨ResGB(χ), θ⟩B ̸= 0.

This already shows that χT is a multiple of ∑w∈W w · θ. It is also easy to get the
multiplicity right: It clearly holds that

⟨
∑
w∈W

w · θ, θ⟩T = |StabW (θ)|,

so dividing by that amount makes sure that the irreducible constituents appear exactly
once in the sum. Now we just multiply with ⟨ResGB(χ), θ⟩, i.e., the amount each character
"should appear" and the first statement follows.

For the second statement, we first observe by a routine calculation that the actions of
W and Gal(Q(θ)/Q) on Irr(T ) commute. Let σ ∈ Gal(Q(θ)/Q). Then

σ ·
∑
w∈W

w · θ =
∑
w∈W

w · (σ · θ).

Thus σ leaves the sum invariant if and only if σ · θ = w′ · θ for some w′ ∈ W , which shows
the statement.

Let us move on to the last statement. Let x1, . . . , xN be representatives of the cosets
G/B. Then for g ∈ G, by for instance [FH91, 3.18],

IndGB(θ)(g) =
∑

x−1
i gxi∈B

θ(x−1
i gxi).

Since for any w ∈ W it holds that IndGB(θ) = IndGB(w · θ), we can extend the formula
above to

IndGB(θ)(g) = 1
|W |

∑
x−1
i gxi∈B

∑
w∈W

(w · θ)(x−1
i gxi).

If no conjugate of g is in B, then IndGB(θ)(g) = 0. Assume now that some conjugate of
g is in B, without loss of generality we can even assume that g ∈ B.

So let g = tu ∈ B for t ∈ T, u ∈ U . Let xi be such that x−1
i gxi ∈ B. Then

x−1
i gxi = (x−1

i txi)(x−1
i uxi) with x−1

i txi ∈ T , x−1
i uxi ∈ U . Also, there is a w ∈ W such

that w · t = x−1
i txi. We conclude that there is an integer a such that

IndGB(θ)(g) = a ·
∑
w∈W

(w · θ)(t)

and the statement follows.

Remark 5.1.4. In the above proposition, we have described the field Q(χT ). This leaves
open the question about the field Q(χU ). It holds that in many cases Q(χU ) = Q, see also
[TZ04] for more information.

Lemma 5.1.5. Let χ ∈ Irr+(G). The following hold:
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5.1 Borel-Stability

(i) Both Q(χT ) and Q(χU) are subfields of Q(χ).

(ii) ResBU (χU) is orthogonally stable.

Proof. Assume for a contradiction that Q(χT ) ̸⊆ Q(χ). Since Q(χT + χU ) ⊆ Q(χ), there
have to be irreducible constituents ϕT of χT and ϕU of χU such that ϕT and ϕU are
Galois-conjugates over Gal

(
Q(χT ,ResGB(χ))/Q(ResGB(χ))

)
, which is absurd since

ϕU(t) = ϕU(1) ∈ Q

for all t ∈ T . This settles for first statement.
For the second statement, recall that for any p-group with p odd, all irreducible

characters except the trivial character have Frobenius–Schur indicator "0". Since
Q(ResGU (χU)) ⊆ R and

⟨ResGU (χU)),1U⟩U = 0
by definition, it is orthogonally stable.

Corollary 5.1.6. Let χ ∈ Irr+
B(G). Then

det(χ) = det(χT ) · det(χU) · (Q(χ)×)2.

If further Q(χU) = Q and q − 1 | χU(1) for q a power of p, then by Corollary 2.3.17

det(χ) = det(χT ) · qχU (1)/(q−1) · (Q(χ)×)2.

Almost all Irr+(G)-characters are Borel-stable. We can make precise when a character
is not:

Proposition 5.1.7. Let χ ∈ Irr+(G). Then χ ∈ Irr+
B(G) if and only if χ ̸∈ Simp(G|(T, θ))

for some θ ∈ Irr(T ) of order at most 2.

Proof. Assume that χ ∈ Irr+
B(G). Thus χT + χU is orthogonally stable. By Lemma 5.1.5

also χT is orthogonally stable. Since T is an abelian group, all irreducible characters of T
have degree 1 and this implies that χT does not have any constituents with values in R.
The only irreducible characters of any abelian group that have values in R are characters
with values in either {1} or {−1, 1} and are of order 1 or 2. The other direction is
clear.

Remark 5.1.8. Note that we can also consider parabolically stable characters, i.e., char-
acters χ such that there is a proper parabolic subgroup P ⊆ G with ResGP (χ) orthogonally
stable. This is a generalization of being Borel-stable, as there do exist orthogonally stable
characters that are parabolically stable but not Borel-stable.

As an example, regard the group G = SO7(q) for q a power of p. Let χ be the principal
series unipotent character of degree 1/2q(q + 1)2(q2 − q + 1). We have that Q(χ) = Q
and that χ ∈ Irr+(G). It is clear that χ is not Borel-stable by Proposition 5.1.7. By the
Dynkin diagram of type B3, we see that G has a Levi subgroup of type A2; let L ⊆ G be
the Levi subgroup isomorphic to GL3(q) and let P be a parabolic subgroup containing L.
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5 Orthogonal Determinants of Finite Groups of Lie Type

Accordingly, we have a Levi decomposition P = U ⋊ L for a p-group U . We have the
Harish-Chandra restriction χL and as in Definition 5.1.1 the character χU of P such that

ResGP (χ) = χL + χU ,

where we regard χL as a character of P by inflation.
With the computer algebra system CHEVIE [Mic15] we see that χL(1) = q(q + 1) and

so it corresponds to a unipotent Irr+(L)-character. In Lemma 5.3.6 we will see that
det(χL) = (q2 + q + 1) · (Q×)2.

We have that χU (1) = 1/2q(q − 1)(q + 1)(q2 + q + 1). This character has orthogonally
stable restriction to U , so Corollary 2.3.17 now gives us

det(χU) =
q · (Q×)2, if q ≡ 1 mod 4,

1 · (Q×)2, if q ≡ 3 mod 4.

All in all we now arrive at

det(χ) = det(χL) det(χU) =
q(q2 + q + 1) · (Q×)2, if q ≡ 1 mod 4,

(q2 + q + 1) · (Q×)2, if q ≡ 3 mod 4.

There is another way we can arrive at the result: We have that G2(q) ⊆ SO7(q) and
ResGG2(q)(χ) remains an orthogonally stable character; in fact it is again a principal series
unipotent character which is denoted by X15 in [His90]. Later in Subsection 5.3.3 we will
rediscover the result for G2(q) with different methods.

5.2 Orthogonal Determinants of Non-Borel-Stable
Characters

We fix an odd prime p. Let G be a connected reductive group over Fp and let F be
Frobenius root. We will, unless otherwise stated, always assume that the pair (G, F )
is split and that G is simple. Let T ⊆ B be a F -stable maximal torus contained in
a F -stable Borel subgroup, N = NG(T) and let (W,S) = W (T) = N/T be the Weyl
group. Let G = GF be the corresponding finite group of Lie type, with Borel subgroup
BF = U ⋊ T F and the unipotent radical U . Let N = NF . Then N/T ∼= W as (G, F )
is split. Let q be the integer power of p associated to G. We fix some generator ε1 of
Gm(q).

In the last section we have seen how to calculate the orthogonal determinants of all
characters χ ∈ Irr+

B(G), i.e., all irreducible orthogonally stable characters such that the
restriction to B stays orthogonally stable. This leaves the question on how to calculate
the orthogonal determinants of the characters χ ∈ Irr+(G)\Irr+

B(G). We will fix such a
character χ.

By Proposition 5.1.7, there is a character θ ∈ Irr(T ) of order 1 or 2 such that χ appears
in IndGB(θ). First assume that θ = 1T . Thus, χ ∈ IrrPSU(G). We let A := Q[u, u−1] for u
an indeterminate and let K = Q(u) be the quotient field of A. We arrive at the following
important theorem:
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Theorem 5.2.1. Let HG be the generic Iwahori–Hecke algebra of G over A. Assume
that Q(χ) = Q and that K is a splitting field for KHG. Denote χ′ ∈ Irr+(KHG) to be
the character associated to χ. We choose a squarefree dχ′(u) ∈ A such that

det(χ′) = dχ′(u) · (K×)2.

Then
det(χ) = dχ′(q) · qχU (1)/(q−1) · (Q×)2.

Proof. Let Hq := H(G,B) and let χq be the character associated to χ. Then Theorem
2.3.20 tells us that

det(χ) = det(χq) · det(χU) · (Q×)2.

Now, Corollary 2.3.17 gives us det(χU ). The rest now follows since Hq is the specialization
of HG via the map φ : A→ Q, u 7→ q, and by Theorem 2.2.18.

Remark 5.2.2. Note that an analogous statement holds for the case that the pair (G, F )
is not split or G not simple. We have assumed further that Q(χ) = Q. This turns out to
hold for almost all IrrPSU(G)-characters, except some special cases when G is of type E7
or E8, see also [GM20, Corollary 4.5.6] for a precise statement.

We will now assume that the order of θ is equal to 2. It is clear that

ResTT 2(θ) = 1T 2 .

By Frobenius reciprocity, χ appears in IndGT 2U(1T 2U). Our goal is to have a similar
statement as the above theorem to our new situation. We will have to regard extensions
of Coxeter groups by certain abelian groups, which also come up in the context of so called
pro-p-Iwahori–Hecke algebras in the representation theory of p-adic groups. In [Vig16],
the author describes certain generic algebras that generalize both generic Iwahori–Hecke
algebras and pro-p-Iwahohi–Hecke algebras. We will only describe a very special case.

Theorem 5.2.3. (cf. [Vig16, Theorem 4.7]) Let (W,S) be a finite Coxeter system and
let Z be a finite abelian group. Let W (1) be an extension of W by Z, i.e., there is a short
exact sequence

1 Z W (1) W 1.γ

By abuse of notation, we define the length function ℓ : W (1)→ Z to be ℓ(w) := ℓ(γ(w))
for all w ∈ W (1). Let S(1) be the preimage of the set S by the map γ. We write s ∼ s′

for elements s, s′ ∈ S(1) if γ(s) and γ(s′) are conjugate in W .
Assume there are pairs (as, cs) ∈ A× AZ for all s ∈ S(1) with invertible as, such that

the following holds:
For all s, s′ ∈ S(1) such that s ∼ s′, i.e., there is an element w ∈ W (1) such that

ws′w−1s−1 ∈ Z, and all t ∈ Z, the following conditions hold:

• as = ast = as′,
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5 Orthogonal Determinants of Finite Groups of Lie Type

• cst = cst,

• w·cs′ = cws′w−1, where we take the action of W (1) on AZ generated by w·t := wtw−1.

Then there is a unique A-algebra Hu(as, cs) with basis {Tw | w ∈ W (1)} with the following
relations:

(i) TwTw′ = Tww′ for all w,w′ ∈ W (1) such that ℓ(ww′) = ℓ(w) + ℓ(w′).

(ii) T 2
s = asTs2 + csTs for all s ∈ S(1), where we identify an element cs = ∑

t∈Z cs(t)t
with ∑t∈Z cs(t)Tt, for cs(t) ∈ A.

Proposition 5.2.4. Let Hu(as, cs) be a generic algebra as in the above theorem.

(i) Define the function τ : Hu(as, cs) → A by τ(T1) := 1, τ(Tw) = 0 for all 1 ̸= w ∈
W (1). Then (Hu(as, cs), τ) is a symmetric algebra. Furthermore, define aw :=
as1 · · · ask if π(w) = π(s1) · · · π(sk) is a reduced expression, for w ∈ W (1), si ∈ S(1).
Then

τ(TwTw′) =
aw, if w−1 = w′,

0, if w−1 ̸= w′.

(ii) With the involution † on Hu(as, cs) defined by T †
w := Tw−1 for w ∈ W (1), the algebra

Hu(as, cs) becomes a monomial algebra.

(iii) The algebra KHu(as, cs) is semisimple.

Proof. The proof in [GP00, Proposition 8.1.1] for the statement (i) for generic Iwahori–
Hecke algebras works here with almost no changes. The semisimplicity follows by Tits’
Deformation Theorem, since (Hu(as, cs), τ) is a deformation of the group algebra QW (1),
which is clearly semisimple.

The above proposition thus allows us to talk about orthogonal determinants of these
generic algebras.

We will now see that the above setup naturally comes up in our situation. Let
H ⊆ T be a normal subgroup of N . Then BH := U ⋊H is a subgroup of B; we define
HH := H(G,BH) to be the Hecke-algebra of the subgroup BH as in Definition 2.3.18.
We define the group WH := N/H. Note that there is a short exact sequence

1 T/H WH W 1.

Thus, the group WH corresponds to the group W (1) from Theorem 5.2.3; let ℓ be the
length function of WH induced by the one of W .

There are two special cases of H that are named in the literature: Of course, when
H = T , then BH = B and the algebra HT is an Iwahori–Hecke algebra. There is another
special case that we want to point out, the other extreme of H = {1}. Then BH = U
and the algebra H(G,U) is called a Yokonuma–Hecke algebra. These were introduced in
[Yok67] for the case of G simple and the pair (G, F ) being split, see also [Juy98] and
[JK01].
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Lemma 5.2.5. There is a 1-to-1 correspondence between the elements of WH and double
cosets BH\G/BH , given by sending w ∈ WH to BHwBH .

Proof. Recall the Bruhat decomposition

G =
⋃
w∈W

BwB,

which is a disjoint union. We will fix a w ∈ W and some ẇ ∈ N representing w. Let
w1, . . . , wm ∈ WH be the elements lying above w with respect to the natural projection
WH → W and let again ẇi ∈ N represent wi.

The result follows if we can show that

BwB =
m⋃
i=1

BHwiBH

and the union is again disjoint. Let x ∈ BwB. Then there are b1, b2 ∈ B such that
x = b1ẇb2. There is a unique factoring b1 = u1t1, b2 = t2u2 with t1, t2 ∈ T , u1, u2 ∈ U .
So

x = u1(t1ẇt2)u2.

Since t1ẇt2 ∈ N , there is a unique index i and an element t3 ∈ H such that t1ẇt2 = ẇit3.
So

x = u1ẇit3u2 ∈ BHwiBH .

In the other direction, it is clear that BHwiBH ⊆ BwB and so the equality of the two
sets follows.

Let now i, j with i ̸= j be two indices; we want to show that BHwiBH ≠ BHwjBH .
Assume for a contradiction that the two double cosets coincide. This is equivalent to
there existing some b = tu ∈ BH for some t ∈ H, u ∈ U such that ẇibẇ−1

j ∈ BH . We
consider the projection to H and arrive at

ẇitẇ
−1
j = ẇiẇ

−1
j t ∈ H.

But this is a contradiction since ẇiẇ−1
j ∈ T\H.

Lemma 5.2.6. Let H ′ ⊆ H be another normal subgroup of N . Let π : N/H ′ → N/H be
the projection map. Then there is a projection map ψ : HH′ → HH , given by Tw 7→ Tπ(w)
for any w ∈ WH′.

Proof. Let
e := 1

|BH |
∑
h∈BH

h, e′ := 1
|BH′|

∑
h′∈BH′

h′ ∈ QG

be the idempotents corresponding to the algebras HH and HH′ . We claim that the map

HH′ → HH , e
′ge′ 7→ ee′ge′e
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for g ∈ G is equal to ψ. This map is clearly a homomorphism of algebras. First, note
that ee′ = e′e = e; this follows since BH′ ⊆ BH and be = eb for all b ∈ BH . It remains to
show that eTwe = Tπ(w) for w ∈ W . By [CR81, Proposition 11.30],

Tw = |BH′/ (wBH′ ∩BH′) |e′we′,

so it is left to show that

|BH′/ (wBH′ ∩BH′) | = |BH/ (wBH ∩BH) |.

Since H is normal in N ,
wBH = w(HU) = wH ⋊ wU = HwU.

In particular, it follows that

|BH/ (wBH ∩BH) | = |U/ (wU ∩ U) |.

An analogous statement holds for for BH′ . This proves the statement.

So if we know the algebra structure for the Yokonuma–Hecke algebra H{1}, we can
deduce the algebra structure of HT 2 . We will follow [Juy98] for the description of the
Yokonuma algebra, we denote Y(G) := H1 = H(G,U).

Let Φ be the root system of G and let Π be the set of simple roots. Recall from
Subsection 3.3.1 that we have surjective maps ϕα : SL2 → ⟨Uα,U−α⟩ for each α ∈ Π
and that we have coroots α∨ ∈ Y (T) given by

α∨(x) = ϕα

((
x 0
0 x−1

))

for x ∈ Gm. Since (G, F ) is split, there is by restriction a corresponding map ϕ′
α :

SL2(q)→ G. We set

sα := ϕ′
α

((
0 1
−1 0

))
∈ N.

Note that the elements sα satisfy the braid relations: Let α, β ∈ Π and let m(sα, sβ) be
the order of the image of sαsβ in W . Then it holds that

sαsβsα · · · = sβsαsβ . . .

where we take m(sα, sβ) products on each side.
Define for any α ∈ Π the element

I(α) :=
∑

x∈Gm(q)
Tα∨(x) ∈ Y(G).

Theorem 5.2.7. (cf. [Juy98, Théorème 2.2]) The basis {Tw | w ∈ N} for Y(G) has
the following relations:
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(i) TwTw′ = Tww′ for all w,w′ ∈ N such that ℓ(ww′) = ℓ(w) + ℓ(w′). In particular,
TtTw = Ttw = Tw(w−1tw) = TwTw−1tw

for t ∈ T .

(ii) T 2
sα = qTα∨(−1) + TsαI(α) for all α ∈ Π.

Lemma 5.2.8. Let S(1) be the preimage of the set S in N . Let (as, cs) ∈ Q×QT for
s ∈ S(1) be the parameters of Y(G), i.e.,

T 2
s = asTs2 + csTs for s ∈ S(1).

Then (as, cs) fulfill the requirements of Theorem 5.2.3.
Proof. It is clear that as = q for all s ∈ S(1) by Theorem 5.2.7, so there is nothing to
show there.

Let now s ∈ S, t ∈ T . Then
T 2
st = T 2

s Ts−1tsTt = qT(st)2 + csTsTs−1tsTt = qT(st)2 + csTtTst,

so indeed, cst = cst.
Assume now that s, s′ ∈ S(1) such that s ∼ s′. We can without loss of generality

assume that s = sα, s′ = sβ for some elements α, β ∈ Π. Then clearly there is some
w ∈ N such that

w⟨UF
β ,UF

−β⟩ = ⟨UF
α ,UF

−α⟩.
Thus wsβw−1 = sαt for some t ∈ ⟨UF

α ,UF
−α⟩ ∩ T . In QT , we calculate that

w ·
∑

x∈Gm(q)
β∨(x) =

∑
x∈Gm(q)

α∨(x),

from which it now follows that w · cs′ = cws′w−1 .

Putting the above statements together, we have a system of generators and relations
for the algebra HT 2 , given by the map Y(G) → HT 2 generated by the projection
π : N → N/T 2. The above lemma then later allows us to regard generic versions of the
algebras HT 2 . We set s′

α := π(sα), t′α := π(α∨(ε1)) for α ∈ Π. Let ST 2 be the preimage
of S in WT 2 .
Example 5.2.9. (i) Let n ≥ 2 be an integer and let G = SLn(q). In particular, G is

simply connected. There are n− 1 simple roots, so Π = {α1, α2, . . . , αn−1}. We fix
an integer i with 1 ≤ i ≤ n− 1. We have maps

ϕ′
i : SL2(q)→ SLn(q),

(
a b
c d

)
7→



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . a b . . . 0
0 0 . . . c d . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1


,
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5 Orthogonal Determinants of Finite Groups of Lie Type

where the entry a is in position (i, i). We have corresponding elements

s′
1, . . . , s

′
n−1, t

′
1, . . . , t

′
n−1 ∈ N/T 2.

Define the projection map ψ : Y(G)→ H(G, T 2U).
We see that

ψ(I(αi)) =
∑

x∈Gm(q)
Tπ(α∨(x)) = q − 1

2
(
T1 + Tt′i

)
.

The following discussion depends on the value of q mod 4. We will first assume
that q ≡ 1 mod 4. This implies that −1 is a square in Fq, so π(α∨(−1)) = 1. It
thus follows that

T 2
s′
i

= qT1 + q − 1
2 Ts′

i

(
T1 + Tt′i

)
.

In particular, we see that N/T 2 with the generating set {t′1s′
1, s

′
1, s

′
2, . . . , s

′
n−1} is a

Coxeter system of type Dn. So H(G, T 2U) is a deformation of a Coxeter group of
type Dn, just like the Iwahori–Hecke algebra of type Dn with the parameter q. In
fact, via Tits’ Deformation Theorem, they are isomorphic. They differ in their
natural involutions and thus their orthogonal determinants differ in general.
Assume now that q ≡ 3 mod 4. Then −1 is no longer a square and it holds that

−1 ≡ ε1 mod (F×
q )2.

So π(α∨(−1)) = ti and we get the square relation

T 2
s′
i

= qTt′i + q − 1
2 Ts′

i

(
T1 + Tt′i

)
.

So N/T 2 is not a Coxeter system anymore. For instance, for n = 2, the group
N/T 2 is generated by the element s′

1 of order 4 and so is isomorphic to the cyclic
group C4.

(ii) Let n ≥ 2 be an integer and let G = PGLn(q). Again, there are n− 1 simple roots
Π = {α1, . . . , αn−1}. We will argue that α∨(x) ∈ T 2 for all α ∈ Π and x ∈ Gm(q).
It is enough to show it for PGL2(q); it holds that(

x 0
0 x−1

)
=
(

1 0
0 x−2

)
=
(

1 0
0 x−1

)2

.

Thus the algebra HT 2 has the relations given by the braiding relations and the square
relations

T 2
s′
i

= qT1 + (q − 1)Ts′
i

for all 1 ≤ i ≤ n− 1.

(iii) We will now regard the group G = SU4(q) with the Borel subgroup B and quasi-
split torus T defined as in Example 3.4.5. Recall that the underlying connected
reductive group is SL4 with a Frobenius root F where the pair (SL4, F ) is not split,
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5.2 Orthogonal Determinants of Non-Borel-Stable Characters

so Theorem 5.2.7 can not be applied. Nevertheless, the algebra HT 2 has a nice set
of relations and generators.
It holds that the Coxeter group W F is of type B2, so we have two simple roots
Π = {α1, α2}. We define the two homomorphisms

ϕ′
α1 : SL2(q2)→ G,

g 7→ diag(g, F (g))

and

ϕ′
α2 : SU2(q)→ G,

(
a b
c d

)
7→


1 0 0 0
0 a b 0
0 c d 0
0 0 0 1

 .
Let ε2 be a generator of Gm(q2). We define the elements

s1 =
((

0 1
−1 0

))
=


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


and

s2 := ϕ′
α2

((
0 ε

(q+1)/2
2

−ε−(q+1)/2
2 0

))
=


1 0 0 0
0 0 ε

(q+1)/2
2 0

0 −ε−(q+1)/2
2 0 0

0 0 0 1

 .

Further, we define the elements of the torus

t1 := ϕ′
α1

((
ε2 0
0 ε−1

2

))
,

t2 := ϕ′
α2

((
εq+1

2 0
0 ε

−(q+1)
2

))
.

Define the projection map π : N → N/T 2. We regard the elements s1, s2, t1, t2 as
elements in N/T 2. It is clear that they are generators.
We have the following relations for HT 2:

a) TwTw′ = Tww′ for all w,w′ ∈ N/T 2 such that ℓ(ww′) = ℓ(w) + ℓ(w′).
b) The square relations are

T 2
s1 = q2T1 + q2 − 1

2 Ts1(T1 + Tt1),

T 2
s2 = qTs2

2
+ q − 1

2 Ts2(T1 + Tt2).
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The parameters µsi,si,w for i = 1, 2 and w ∈ N/T 2 were calculated by easy explicit
calculations. Note that s2

2 ∈ T is an element of T 2 if and only if −1 is a square in
Fq, meaning that the structure of the algebras differ again on whether q ≡ 1 mod 4
or q ≡ 3 mod 4.

Remark 5.2.10. Consider the generic algebras Hu(as, cs) corresponding to the extension
of W by T/T 2, i.e., we have a short exact sequence

1 T/T 2 WT 2 W 1.

We are looking for suitable choices of the parameters (as, cs) such that the algebras
generalize to HT2. It is enough to explicitly write out T 2

s′
α

for all α ∈ Π.
We will begin by investigating the group structure of WT 2. Since (G, F ) is split, it

holds that T ∼= Gr
m(q), where r = |Π| is the rank of G. Thus, T/T 2 ∼= Cr

2 .
The main cases for the generic algebra specializing to HT 2 are the following:

(i) Assume that α∨(−1) ∈ T 2 for all α ∈ Π; in particular, the above short exact
sequence splits. For instance, this is the case if q ≡ 1 mod 4 or when the kernel of
ϕ′
α is equal to {I2,−I2} for all α ∈ Π.

• If t′α = 1 for all α ∈ Π, we have the square relations

T 2
s = u+ (u− 1)Ts for all s ∈ ST 2

in Hu(as, cs).
• If t′α ̸= 1 for all α ∈ Π, we have the square relations

T 2
s′
α

= u+ u− 1
2 Tsα(T1 + Tt′α) for all α ∈ Π

in Hu(as, cs).

(ii) Assume that α∨(−1) /∈ T 2 for all α ∈ Π. By Remark 3.3.7, this for instance
happens if G is simple simply connected and q ≡ 3 mod 4, as then the maps ϕ′

α

are isomorphisms and −1 is not a square in Fq. Note that then T/T 2 is generated
by {(s′

α)2 | α ∈ Π}. In particular, t′α = (s′
α)2.

We have the square relations

T 2
s′
α

= uTt′α + u− 1
2 Tsα(T1 + Tt′α) for all α ∈ Π

in Hu(as, cs).

Note that if we can calculate the orthogonal determinants of these generic algebras,
we can, with the adjusted version of Theorem 5.2.1, finally calculate the orthogonal
determinant det(χ). Unfortunately, we do not currently know how to calculate these in
general. For instance, there are characters χ ∈ Irr+(SL6(q)) for which we do not know
how to handle the corresponding characters of the associated generic algebra, so further
work is needed.
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5.3 Examples
After all this theory building, let us finally regard some actual examples where we
calculate the orthogonal determinants of some finite groups of Lie type. We will restrict
ourselves to groups of small rank, for multiple reasons.

First, the bigger the rank, the less known the character theory of the group in general
becomes. In fact, for all of the groups we will regard, the character tables have been
completely determined.

Second, and that is a big point, the orthogonal determinants of the (quotients) of the
Yokonuma algebras and the Iwahori–Hecke algebras are in general not known, and one
would need either new computational or theoretical tools to handle these in general. So
for all groups considered here, all the orthogonally stable irreducible characters that are
not Borel-stable are already in the principal series and the corresponding Weyl groups
of the groups of Lie type are of type either An or I2(6), where explicit formulas for the
orthogonal determinants of the Iwahori–Hecke algebras are known.

We will use some common parameters and notation throughout this section. Let p
be an odd prime and let q be a power of p. Let ε1 be a generator of Gm(q) and ε2 be a
generator of Gm(q2), such that

εq+1
2 = ε1.

Let m be a positive integer. We define the primitive complex m-th root of unity

ζm := exp
(2πi
m

)
and for any integer j the real numbers

ϑ(j)
m := ζjm + ζ−j

m .

Further, we define for k ∈ {1, 2} the characters αqk−1 ∈ Irr(Gm(qk)) by

αqk−1(εk) = ζqk−1.

It is clear that
Irr(Gm(qk)) = {αjqk−1 | 0 ≤ j ≤ qk − 2}.

5.3.1 SL2(q)
We first want to point out that the results of this subsection are not new. The character
table of SL2(q) is very well known and can be found in numerous standard books about
the representation theory of finite groups. We want to emphasize one particular source
[Bon11], which gives an excellent introduction into the representation theory of finite
groups of Lie type. For completeness, we will also list the irreducible characters of
SL2(q), where we will follow the notation of [Bon11, Section 5.3], slightly adjusted to our
notation.

105



5 Orthogonal Determinants of Finite Groups of Lie Type

The determination of the orthogonal determinants of the characters of SL2(q) can
already be found in [BN17], where the authors also calculate another invariant of the
associated bilinear forms, namely the Clifford invariant.

Let G = SL2(q). We let

B :=
{(

a b
0 a−1

)
∈ G

}
be the Borel subgroup of G. Let B = U ⋊ T be the Levi decomposition with

T :=
{(

a 0
0 a−1

)
∈ G

}

the quasi-split torus and

U :=
{(

1 b
0 1

)
∈ G

}
the unipotent radical. It is clear that T ∼= Gm(q) and thus

Irr(T ) = {αjq−1 | 0 ≤ j ≤ q − 2}.

We set

δ =
1, if q ≡ 1 mod 4,
−1, if q ≡ 3 mod 4.

Theorem 5.3.1. The following gives the character field, Frobenius–Schur indicator, the
degree and a character θ ∈ Irr(T ) such that χ appears in IndGB(θ) (if such a character
exists) for all irreducible characters χ of SL2(q).

χ Q(χ) ι(χ) Principal Series Degree

1G Q 1 1T 1
StG Q 1 1T q

R(αk1),
1 ≤ k ≤ q−3

2
Q(ϑ(k)

q−1)
1, for k even
−1, for k odd αk1 q + 1

Rσ(sgnq−1),
σ ∈ {1,−1} Q(

√
δq) 1, if q ≡ 1 mod 4

0, if q ≡ 3 mod 4 α
(q−1)/2
1

1
2(q + 1)

R′(α(q−1)j
2 ),

1 ≤ j ≤ q−1
2

Q(ϑ(j)
q+1)

1, for j even
−1, for j odd Not in principal series q − 1

R′
σ(sgnq+1),

σ ∈ {1,−1} Q(
√
δq) −1, if q ≡ 1 mod 4

0, if q ≡ 3 mod 4 Not in principal series 1
2(q − 1)

Proof. For the Schur indicators and character fields regard [Tur01], where these data are
explicitly given for all characters of SLn(q) for all n and q.
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Remark 5.3.2. The first two characters in the table above, 1G and StG, are the principal
series unipotent characters of SL2(q). As we have seen in Subsection 3.5.2 they are in a
1-to-1 correspondence with the characters of the corresponding Weyl group of G, which
in our case is S2. The character StG is called the Steinberg character; these characters
exist for any finite group of Lie type and play an important role in the theory, see [DM20,
Chapter 7] for more information.

For the characters χ = R(αk1) it holds that

R(αk1) = IndGB(αk1) = IndGB(α−k
1 ).

By Frobenius reciprocity and in the notation of Section 5.1, we can decompose

ResGB(χ) = χT + χU , χT = αk1 + α−k
1 .

This will allow us to easily calculate det(χ) in the case of k even.
Similarly, it holds that

IndGB(α(q−1)/2
1 ) = R1(sgnq−1) +R−1(sgnq−1).

The splitting of the induced characters coming from the (certain) sign characters is a
general phenomenon, see [Leh73] for more details. While in the case of SL2(q) these
characters are not orthogonally stable, there are orthogonally stable characters arising
in that way for SLn(q) for n ≥ 6. For the calculation of the orthogonal determinants of
these characters, the calculation of the orthogonal determinants of the (quotients of the)
Yokonuma algebras becomes absolutely necessary.

The last remaining characters are not in the principal series. As we have seen, the
orthogonal determinants of these characters are easy to compute as they have orthogonal
stable restriction to the unipotent radical U , so a p-group, of G.

We see that Irr+(G) consists of the characters R(αk1) and R′(α(q−1)j
2 ) for k, j even. We

will now give the orthogonal determinants of these characters.

Theorem 5.3.3. The following table gives the orthogonal determinants of the Irr+(G)-
characters:

χ Description det(χ) ∈ Q(χ)×/(Q(χ)×)2

R(αk1),
1 ≤ k ≤ q−3

2 , k even
B-stable q(2− ϑ(2k)

q−1)

R′(α(q−1)j
2 ),

1 ≤ j ≤ q−1
2 , j even

U-stable q

Proof. First we see, for instance by a look at the character tables, that for all χ ∈ Irr+(G)
it holds that Q(χU) = Q. The degree χU(1) is equal to q − 1 in all cases, so we end up
with

det(χU) = q · (Q×)2
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by Corollary 2.3.17. This already settles the orthogonal determinants of the characters
R′(α(q−1)j

2 ) for some even j.
Let now χ = R(αk1). By Remark 5.3.2 it holds that χT = αk1 + α−k

1 . Now by Corollary
2.3.3 it holds that

det(χT ) = (2− ϑ(2k)
q−1) · (Q(ϑ(k)

q−1)×)2.

Since det(χ) is the product of det(χU) and det(χT ) by Corollary 5.1.6, the result now
follows.

5.3.2 SL3(q) and SU3(q)
The complete character tables of the groups SL3(q) and SU3(q) were first determined
by Simpson and Frame in [SF73]. We will follow their notation. The reason these two
different groups were able to be handled at the same time is because of the "Ennola
duality": By formally replacing every q with a −q, one can (up to some signs) switch
from the character table of SL3(q) to the one of SU3(q) (so, in a way, SU3(q) = SL3(−q)),
see also [Enn63] and [Kaw85]. The statement and proof is there only given for GLn(q)
and GUn(q), but nevertheless the statement applies here.

The results of this subsection have already appeared in the paper [HN23] by the
author of this thesis and Gabriele Nebe. The author of this thesis contributed fully to all
mathematical ideas of the abovementioned paper.

We will begin as in the previous subsection by first defining the relevant subgroups.
Recall by Example 3.4.5 that we can define the group SUn(q) by choosing a suitable
Hermitian form on F3

q2 and letting SU3(q) be the subgroup of SL3(q2) that fixes that form.
Let F : F3×3

q2 → F3×3
q2 be the Frobenius map that applies the map x 7→ xq elementwise.

We will make the standard choice for the Hermitian form, i.e., we let

Ω =

0 0 1
0 1 0
1 0 0


and define

SU3(q) = {A ∈ SL3(q2) | F (A)tr · Ω · A = Ω}.

Let G be now equal to either SL3(q) or SU3(q). We let

B :=


a b c

0 d e
0 0 f

 ∈ G


be the Borel subgroup of G. Let B = U ⋊ T be the Levi decomposition with

T :=


a 0 0

0 d 0
0 0 f

 ∈ G

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the quasi-split torus and

U :=


1 b c

0 1 e
0 0 1

 ∈ G


the unipotent radical.
Unlike the subgroups B, T and U , the Weyl group W does not allow for such a nice

uniform description for the two groups. Since SL3(q) is of type A2, its Weyl group
is isomorphic to S3. As we have seen in Example 3.4.5, the Weyl group of SU3(q) is
isomorphic to the cyclic group C2. So we will denote

W :=
S3, if G = SL3(q),
C2, if G = SU3(q).

The isomorphism type of T (and therefore its set of irreducible characters) also depends
on the particular group, we have

T ∼=

G2
m(q), if G = SL3(q),

Gm(q2), if G = SU3(q).

Accordingly,

Irr(T ) =
{α

j
1 ⊠ αk1 | 0 ≤ j, k ≤ q − 2}, if G = SL3(q),

{αj2 | 0 ≤ j ≤ q2 − 2}, if G = SU3(q).

It will be clear from context if we talk about the subgroups of either SL3(q) or SU3(q).

Theorem 5.3.4. The following gives the character field, the degree, and a corresponding
character of T if the character is in the principal series for all χ ∈ Irr+(SL3(q)) and
ψ ∈ Irr+(SU3(q)).

(i) G = SL3(q):

χ Q(χ) Principal Series Degree

χqs Q 1T q(q + 1)

χ
(k)
st ,

1 ≤ k ≤ q−3
2 ,

k ̸= q−1
3

Q(ϑ(k)
q−1) αk1 ⊠ α−k

1 (q + 1)(q2 + q + 1)

χ
(l)
st′,

0 ≤ l ≤ 2
Q α

(q−1)/3
1 ⊠ α

2(q−1)/3
1

1
3(q + 1)(q2 + q + 1)

χ
((q−1)j)
rt ,

1 ≤ j ≤ q−1
2

Q(ϑ(j)
q+1) Not in principal series (q − 1)(q2 + q + 1)
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(ii) G = SU3(q):

ψ Q(ψ) Principal Series Degree

ψ
(k)
st ,

1 ≤ k ≤ q−1
2 ,

k ̸= q+1
3

Q(ϑ(k)
q+1) Not in principal series (q − 1)(q2 − q + 1)

ψ
(l)
st′,

0 ≤ l ≤ 2
Q Not in principal series 1

3(q − 1)(q2 − q + 1)

ψ
((q+1)j)
rt ,

1 ≤ j ≤ q−3
2

Q(ϑ(j)
q−1) α

(q+1)j
2 (q + 1)(q2 − q + 1)

Note that the characters χ(l)
st′ (resp. ψ(l)

st′) only exist if 3 | q − 1 (resp. 3 | q + 1).

Remark 5.3.5. There are three partitions of the number 3, namely (3), (2, 1) and (1, 1, 1).
So there are three principal series unipotent characters of SL3(q), of degrees 1, q(q+1) and
q3 respectively. We will soon use the results in Subsection 4.1.5 to calculate the orthogonal
determinant of the character χqs, so keep in mind that that character corresponds to the
partition (2, 1).

We note that almost all Irr+(G)-characters of SL3(q) correspond to orthogonally stable
characters of SU3(q), with the exception of χqs. There is a corresponding character ψqs of
degree q(q − 1), but it holds that ι(ψqs) = −1. The characters ψqs is one of the smallest
examples of a so called cuspidal unipotent character. These also can be constructed from
the trivial character of some maximal torus of SU3(q) — just not a quasi-split one. The
construction of these characters is described by Deligne–Lusztig theory, which we do not
cover in this thesis.

Lemma 5.3.6. It holds that

det(χqs) = (q2 + q + 1) · (Q×)2.

Proof. We will give two separate proofs of this fact. The first one already appeared in
[HN23, Theorem 4.7] and uses the fact that χqs comes from a permutation representa-
tion. The second proof uses Theorem 5.2.1 and the explicit formula for the orthogonal
determinants of generic Iwahori–Hecke algebras of type A2.

We are in the situation that G = SL3(q). Note that G acts double transitively on the
projective space P(F3

q), i.e., the set of 1-dimensional subspaces in F3
q. It is not hard to

see that |P(F3
q)| = q2 + q + 1. Let

V = ⟨

1
0
0

⟩ ∈ P(F3
q).
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The stabilizer of V is given by the parabolic subgroup

P :=


a b c

0 d e
0 f g

 ∈ G
 .

Let M(2,1) be the Q-representation of G with the basis given by the set P(F3
q) and the

natural action of G on the basis elements. Then the induced character IndGP (1P ) equals
the character of the representation M(2,1). As the action is double transitive, the induced
character consists of exactly two irreducible ones and we can decompose

IndGP (1P ) = 1G + χqs.

We have a suitable G-invariant bilinear form β on M(2,1) by letting the set P(F3
q) be an

orthonormal basis. We have a one-dimensional subrepresentation with corresponding
determinant given by

V1 := ⟨
∑

Q∈P(F3
q)
Q⟩, det(β|V1) = (q2 + q + 1) · (Q×)2.

Thus χqs is the character of the orthogonal complement V ⊥
1 and we calculate that

det(χqs) = det(β|V ⊥
1

) = det(β) det(β|V1) = (q2 + q + 1) · (Q×)2.

We will now calculate the same result with Theorem 5.2.1. Let λ = (2, 1) be the
partition corresponding to the character χqs. Let A := Q[u, u−1] and let H := HG be the
generic Iwahori–Hecke algebra of type A2 over A. Let K = Q(u) be the quotient field of
A and let χ′ ∈ Irr+(KH) be the corresponding irreducible character of KH. There are
two standard Young tableaux of λ,

t1 := tλ = 1 2
3

, t2 := 1 3
2

.

With Theorem 4.1.65 we calculate that

det(χ′) = u(u2 + u+ 1) · (K×)2.

So we now choose dχ′(u) := u(u2 + u+ 1) ∈ A to be the squarefree representative of the
orthogonal determinant.

Let us now quickly handle det(χU). We know by Lemma 5.1.5 that ResBU (χU) is
orthogonally stable and has character field equal to Q. Since the degree of χ′ is equal to
2, it follows that

det(χU) = q((q(q+1)−2)/(q−1) · (Q×)2 = qq+2 · (Q×)2 = q · (Q×)2.

We now conclude that

det(χqs) = dχ′(q) det(χU) · (Q×)2 = (q2 + q + 1) · (Q×)2.
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Theorem 5.3.7. The following tables give the orthogonal determinants of all Irr+(G)-
characters for G = SL3(q) and SU3(q).

(i) G = SL3(q):

χ Description det(χ) ∈ Q(χ)×/(Q(χ)×)2

χqs unipotent q2 + q + 1

χ
(k)
st B-stable q(2− ϑ(2k)

q−1)

χ
(l)
st′ B-stable 3q

χ
((q−1)j)
rt U-stable q

(ii) G = SU3(q):

ψ Description det(ψ) ∈ Q(ψ)×/(Q(ψ)×)2

ψ
(k)
st U-stable q

ψ
(l)
st′ U-stable q

ψ
((q+1)j)
rt B-stable q(2− ϑ(2j)

q−1)

Proof. Since we have already handled the character χqs, the rest of the characters are
Borel-stable and we can apply the results of Section 5.1. So let χ be any of the other
remaining characters appearing in the tables in Theorem 5.3.4. Either by looking at
the character tables or by [TZ04, Theorem 1.9], it holds that Q(χU) = Q, allowing us
to easily calculate det(χU) with Corollary 2.3.17, once we know its degree. This on the
other hand is easily done with Proposition 5.1.3.

Let us now assume that
χ ∈ {χ(k)

st , χ
(l)
st′ , ψ

((q+1)j)
rt },

i.e., χT is nonzero and orthogonally stable.
If χ = χ

(k)
st for some k, then

χT = (αk1 ⊠ α−k
1 + α−k

1 ⊠ αk1) + (α2k
1 ⊠ αk1 + α−2k

1 ⊠ α−k
1 ) + (αk1 ⊠ α2k

1 + α−k
1 ⊠ α−2k

1 ).

With Lemma 2.3.5 and Corollary 2.3.3, we compute

det(χT ) = (2− ϑ(2j)
q−1) · (Q(ϑ(k)

q−1)×)2.

So let now χ = χ
(l)
st′ for some l. Then

χT = α
(q−1)/3
1 ⊠ α

2(q−1)/3
1 + α

2(q−1)/3
1 ⊠ α

(q−1)/3
1 .

So by Corollary 2.3.3,

det(χT ) = (2− ϑ(2(q−1)/3)
q−1 ) · (Q×)2 = (2− (−1)) · (Q×)2 = 3 · (Q×)2.
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Finally, let χ = ψ
((q+1)j)
rt for some j. Then

χT = α
(q+1)j
2 + α

−(q+1)j
2

and again by Corollary 2.3.3,

det(χT ) = (2− ϑ(2j)
q−1) · (Q(ϑ(j)

q−1)×)2.

This finishes the proof.

5.3.3 G2(q)
Let p be an odd prime and let q be a power of p. Recall that G2 ⊆ SO7 over Fp is a
simple reductive group with Dynkin diagram

1 2

and corresponding Coxeter group

W := I2(6) = ⟨wa, wb | w2
a = w2

b = 1, (wawb)6 = 1⟩.

Let Fq : G2 → G2 be the standard Frobenius map. Then

G := G2(q) = GFq
2

is the corresponding finite group of Lie type. In particular, the pair (G2, Fq) is split.
The ordinary character tables of G are known for all possible values of q, by Chang

and Ree for p > 3 in [CR74] and Enomoto for p = 3 in [Eno76]. We will also refer to the
habilitation thesis of Hiss [His90] where the character tables for p > 3, as well as many
other useful pieces of information, are given. In the sequel, we will use the notation used
in Hiss’ thesis for the irreducible characters of G.

As usual, we let B = U ⋊ T ⊆ G be a Borel subgroup with unipotent radical U and
quasi-split torus T . The rank of G2 is equal to 2, so

T ∼= G2
m(q), Irr(T ) = {αj1 ⊠ αk1 | 0 ≤ j, k ≤ q − 2}.

The action of W on Irr(T ) is explicitly given in [His90, Anhang A.3], it holds that

wa · (αj1 ⊠ αk1) = αj1 ⊠ αj−k1 ,

wb · (αj1 ⊠ αk1) = αk1 ⊠ αj1.

From the available character tables, we see that there are only two characters that do
not have real values, namely X19(k) for k = 1, 2. Furthermore, the Schur indices of all
characters of G is equal to 1, see [Ohm85]. In particular, the Irr+(G) characters are very
easily determined, as these are all characters of even degree that are not equal to X19(k).

As with the characters in the previous subsections, the characters of G also come with
parameters. For the orthogonal determinants, the values of the parameters mostly don’t
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matter, so we decided to only include these when necessary. For the explicit conditions on
the parameters, we refer to [His90, Anhang B.1]. We also decided to omit the character
fields.

For a character χ ∈ Irr+(G), we again decompose

ResGB(χ) = χT + χU ,

as in Definition 5.1.1.

Theorem 5.3.8. The following gives information about the principal series and degree
of all χ ∈ Irr+(G)-characters.

χ q χT (1) Principal series χ(1)

X15 all 2 1T 1/2q(q + 1)2(q2 − q + 1)

X16 all 2 1T 1/6q(q + 1)2(q2 + q + 1)

X1a(k)
X ′

1a(k) all 6 αk1 ⊠ α−k
1

q(q + 1)(q2 + q + 1)(q2 − q + 1)
(q + 1)(q2 + q + 1)(q2 − q + 1)

X1b(k)
X ′

1b(k) all 6 αk1 ⊠ 1T
q(q + 1)(q2 + q + 1)(q2 − q + 1)
(q + 1)(q2 + q + 1)(q2 − q + 1)

X1(j, k) all 12 αj1 ⊠ αk1 (q + 1)(q2 + q + 1)(q3 + 1)

X31
3 | q + 1
3 | q − 1

0
2 α

(q−1)/3
1 ⊠ α

(q−1)/3
1

q3(q − 1)(q2 + q + 1)
q3(q + 1)(q2 − q + 1)

X32
3 | q + 1
3 | q − 1

0
2 α

(q−1)/3
1 ⊠ α

(q−1)/3
1

(q − 1)(q2 + q + 1)
(q + 1)(q2 − q + 1)

X33
3 | q + 1
3 | q − 1

0
4 α

(q−1)/3
1 ⊠ α

(q−1)/3
1

q(q − 1)2(q2 + q + 1)
q(q + 1)2(q2 − q + 1)

X2 all 0 (q − 1)(q2 − q + 1)(q3 − 1)

X2a, X2b all 0 q(q − 1)(q2 + q + 1)(q2 − q + 1)

X ′
2a, X

′
2b all 0 (q − 1)(q2 + q + 1)(q2 − q + 1)

X3 all 0 (q − 1)(q2 − 1)(q3 + 1)

X6 all 0 (q + 1)(q2 − 1)(q3 − 1)

Xa, Xb all 0 q6 − 1

X17 all 0 1/2q(q − 1)2(q2 + q + 1)

X18 all 0 1/6q(q − 1)2(q2 − q + 1)

We will now calculate the orthogonal determinants of the characters above.
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Lemma 5.3.9. The following hold:

det(χ15) =
q(q2 + q + 1) · (Q×)2, if q ≡ 1 mod 4,

(q2 + q + 1) · (Q×)2, if q ≡ 3 mod 4,

det(χ16) =
3q(q2 − q + 1) · (Q×)2, if q ≡ 1 mod 4,

3(q2 − q + 1) · (Q×)2, if q ≡ 3 mod 4.

Proof. It holds that X15, X16 ∈ IrrPSU(G) and both characters have rational character
fields. So Theorem 5.2.1 allows us to calculate the orthogonal determinant. So let now χ
be either χ15 or χ16.

We will first calculate det(χU). The only information we need is the degree of χU ,
which we get by Theorem 5.3.8. A quick calculation now leaves us with

det(χU) =
1 · (Q×)2, if q ≡ 1 mod 4,
q · (Q×)2, if q ≡ 3 mod 4.

Let A := Q[u, u−1] and let H := HG be the generic Iwahori–Hecke algebra of type
I2(6) over A. Let χ′ ∈ Irr+(Q(u)H) be the character corresponding to χ. Recall from
Proposition 4.3.2 that there are two Irr+(Q(u)H)-characters, namely χ′

1 and χ′
2. We

can for instance use CHEVIE (cf. [Mic15]) to see that χ′
2 (resp. χ′

1) corresponds to the
character χ15 (resp. χ16).

By Theorem 4.3.3, we get that

det(χ′
2) = u(u2 + u+ 1) · (K×)2,

det(χ′
1) = 3u(u2 − u+ 1) · (K×)2.

We thus choose the evident representatives

dχ′
2
(u) = u(u2 + u+ 1),

dχ′
1
(u) = 3u(u2 − u+ 1)

in A. The statement now easily follows with Theorem 5.2.1.

Theorem 5.3.10. The following table gives the orthogonal determinants of the Irr+(G)-
characters:
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χ Description q det(χ) ∈ Q(χ)×/(Q(χ)×)2

X15 unipotent
q ≡ 1 mod 4
q ≡ 3 mod 4

q(q2 + q + 1)
q2 + q + 1

X16 unipotent
q ≡ 1 mod 4
q ≡ 3 mod 4

3q(q2 − q + 1)
3(q2 − q + 1)

X1a(k), X ′
1a(k),

X1b(k), X ′
1b(k) B-stable all q(2− ϑ(2k)

q−1)

X1 B-stable all 1

X31, X32
U-stable
B-stable

q ≡ −1 mod 3
q ≡ 1 mod 3

q

3q

X33
U-stable
B-stable

q ≡ −1 mod 3
q ≡ 1 mod 3

1
1

X2, X3, X6,

Xa, Xb

U-stable all 1

X2a, X
′
2a,

X2b, X
′
2b

U-stable all q

X17, X18 U-stable
q ≡ 1 mod 4
q ≡ 3 mod 4

1
q

Proof. Let χ be any of the remaining characters, i.e., χ ∈ Irr+(G) and χ is not equal to
χ15 or χ16. Then χ is Borel-stable, it further holds that Q(χU ) = Q and that q−1 | χU (1).
By Corollary 5.1.6 it holds that

det(χ) = det(χT )qχU/(q−1) · (Q(χ)×)2.

This already solves the cases of χ being U -stable.
We will now assume that χT (1) ̸= 0. By Proposition 5.1.3 it follows that

χT =
χT (1)/2∑
j=1

θj + θj

for certain characters θj ∈ Irr(T ) and all irreducible characters in that sum are in the
same W -orbit. Since Q(w · θj) = Q(θj) for all w ∈ W , it follows by Lemma 2.3.5 that

det(χT ) = det
(
θj + θj

)χT (1)/2
· (Q(χT )×)2

for any j. In particular, if 4 | χT (1), then

det(χT ) = 1 · (Q(χT )×)2.

The rest of the theorem now follows by Corollary 2.3.3 and Theorem 5.3.8.
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This final chapter is in a way a continuation of Section 5.3, as we are describing the
orthogonal determinants of the general linear groups. We will begin by describing the
representation theory of these groups; many notions here are just generalizations of the
representation theory of the symmetric groups. We will then see how every possible case
we have talked about in Chapter 5 does occur here. Since the general linear groups have
a particular easy structure, we will be able to give a complete solution. Further, we are
able to show that Parker’s conjecture holds for the general linear groups — this can yet
again be seen as a corollary of the statement for the symmetric groups in Theorem 4.1.50.
At the end of this chapter we will regard the example of GL4(q).

6.1 Representation Theory of the General Linear Groups
Let p be a prime and q be a power of p. Let n be a positive integer. The general linear
groups over a finite field are in a way the easiest groups of Lie type; in contrary to most
groups of Lie type, the characters of the groups GLn(q) have been fully determined by
Green in 1955 in [Gre55]. For a more modern approach, also regard [Mac98]. We will not
need the full construction of all irreducible characters, so we will just recall the for our
purposes necessary information like the character fields and the Harish-Chandra series
the irreducible characters belong to. For this, we will follow [Leh73] and [Tur01].

Let us introduce some notation. We define generators εd of Gm(qd) for any positive
integer d such that for any d′|d,

ε
[d]q/[d′]q
d = εd′ .

where [d]q and [d′]q are the Gaussian polynomials as in Definition 4.1.64. We define the
complex numbers

ζm := exp
(2πi
m

)
for any positive integer m and

ϑ(j)
m := ζjm + ζ−j

m ⊆ R

for any integer j. We define the element αd ∈ Irr(Gm(qd)) by

αd(εd) := ζqd−1.

It is clear that
Irr(Gm(qd)) = {1d, αd, α2

d, . . . , α
qd−2
d },
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where 1d is the trivial character of Gm(qd). Further, we define

σk : Irr(Gm(qd))→ Irr(Gm(qd)), σk(θ) = θk

for any integer k. We will now define an equivalence relation on Irr(Gm(qd)).

Definition 6.1.1. We say that two characters θ, θ′ ∈ Irr(Gm(qd)) are conjugate, if there
is an integer k such that σqk(θ) = θ′. A d-simplex s is a conjugacy class of size d in
Irr(Gm(qd)). If θ ∈ s, we also write s = ⟨θ⟩. The degree of a d-simplex s is d(s) = d. We
let Gd be the union of all d-simplexes and G = ∪∞

d=1Gd.

Example 6.1.2. Assume that q = 5 and d = 4. Then

⟨α4⟩ = {α4, α
5
4, α

25
4 , α

125
4 }

is a 4-simplex. On the other hand,

⟨α26
4 ⟩ = {α26

4 , α
130
4 }

is not a 4-simplex.

It is not hard to see which elements in Irr(Gm(qd)) give rise to d-simplexes. Indeed,
⟨αkd⟩ is a d-simplex if and only if for all d′|d with d′ < d we have that

[d]q
[d′]q

∤ k.

Definition 6.1.3. Let F to be the set of functions λ : G →P such that λ(θ) = (0) for
almost all θ ∈ G and λ(σq(θ′)) = λ(θ′) for all θ′ ∈ G , i.e., we require that λ is constant
on conjugacy classes. The degree of λ ∈ F is defined to be

deg(λ) =
∑
θ∈G

|λ(θ)|.

We define Fn to be set of λ ∈ F of degree n.

Theorem 6.1.4. (cf. [Tur01, Theorem 2.2]) For any positive integer n, there is a
bijection λ 7→ χλ between Fn and Irr(GLn(q)).

Remark 6.1.5. Much more can be said, in the following we will describe how this
bijection describes the Harish-Chandra theory of GLn(q) for some positive integer n.
In particular, we will see that many characters can be constructed by induction from
parabolic subgroups, allowing inductive reasoning.

For λ ∈ F , we write

λ = (⟨θ1⟩λ(θ1), ⟨θ2⟩λ(θ2), . . . , ⟨θk⟩λ(θk))

where the ⟨θi⟩ are all the pairwise disjoint non-empty simplices with λ(θi) ̸= (0). Denote

li := d(⟨θi⟩)|λ(θi)|.
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By the bijection, each ⟨θi⟩λ(θi) describes an irreducible character of GLli(q). We define
the Levi subgroup

Lλ := GLl1(q)×GLl2(q)× · · · ×GLlk(q) ⊆ GLn(q);

we get an irreducible character

χLλλ := χ(⟨θ1⟩λ(θ1)) ⊠ χ(⟨θ2⟩λ(θ2)) ⊠ · · ·⊠ χ(⟨θk⟩λ(θk)).

Let Pλ be a parabolic subgroup of GLn(q) containing Lλ. Then

χλ = R
GLn(q)
Lλ

(χLλλ ) = IndGLn(q)
Pλ

(χLλλ ).

Further, a character χλ is in the principal series if and only if d(⟨θi⟩) = 1 for all i. It
is a unipotent character if and only if λ = (⟨11⟩µ), where µ is a partition of n. We will
denote this unipotent character by χGL

µ .
There are explicit formulas for the degrees of the unipotent characters of the finite

groups of Lie type, which can be found in [Car85, Section 13]. For the special case of
general linear groups, we will use the formula found in [GM20, Proposition 4.3.1], as this
formula is close in spirit to the one we had for the symmetric groups in Proposition 4.1.7.
Combining this with the explicit formula for the degrees of the irreducible characters of
the general linear groups in [His11, 3.3.5], we arrive at the following:
Proposition 6.1.6. We define the following polynomials:

(i) Let µ = (a1, . . . , ak) be a partition of a positive integer n with ak > 0. Let
a(µ) := ∑k

i=1(i− 1)ai. Define

fµ(x) := qa(µ) [n]x!∏
c∈[µ][hµ(c)]x

.

Then χGL
µ (1) = fµ(q) and fµ = χµ(1) = fµ(1), where χµ ∈ Irr(Sn).

(ii) Let
λ = (⟨θ1⟩λ(θ1), ⟨θ2⟩λ(θ2), . . . , ⟨θm⟩λ(θm)) ∈ Fn.

Let di = d(θi) and ni = |λ(θi)|. We define

fλ(x) := (x− 1)(x2 − 1) · · · (xn − 1)∏m
i=1[(xdi − 1)(x2di − 1) · · · (xnidi − 1)] ·

m∏
i=1

(fλ(θi)(x))di .

Then χλ(1) = fλ(q).
Definition 6.1.7. Let λ = (⟨θ1⟩λ(θ1), ⟨θ2⟩λ(θ2), . . . , ⟨θk⟩λ(θk)) ∈ Fn. We set Q(λ) =
Q(θ1, . . . , θk). Note that Q(λ) is generated by a single primitive complex root of unity.
For σ ∈ Gal(Q(λ)/Q), define σ · λ ∈ Fn by

(σ · λ)(θ) =
λ(σ−1 ◦ θ), if Q(θ) ⊆ Q(λ),

(0) else.

We set
Galg(λ) = {σ ∈ Gal(Q(λ)/Q) | σ · λ = λ}.
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Proposition 6.1.8. (cf. [Tur01, Proposition 2.8]) Let λ ∈ Fn. Then

Q(χλ) = Q(λ)Galg(λ) = {a ∈ Q(λ) | σ(a) = a for all σ ∈ Galg(λ)}.

In particular, Q(χλ) ⊆ R if and only if λ = λ, where λ is the complex conjugation of λ.

Example 6.1.9. Let λ = (⟨αq−1
2 ⟩(1)). Thus

Q(λ) = Q(ζq−1
q2−1) = Q(ζq+1).

The underlying simplex contains two characters:

⟨αq−1
2 ⟩ = {αq−1

2 , α
q(q−1)
2 }.

Note that αq(q−1)
2 = α

−(q−1)
2 . So Galg(λ) ∼= {id, σ} where σ is complex conjugation. In

conclusion, the character field is equal to

Q(χλ) = Q(ζq+1)Galg(λ) = Q(ϑ(1)
q+1).

The only thing missing to describe all the Irr+(GLn(q)) characters is the Frobenius–
Schur indicator. Luckily, for the general linear groups the situation is as nice as one
could hope for.

Proposition 6.1.10. (cf. [Zel81, Proposition 12.6]) The Schur index of all characters
of GLn(q) is equal to 1.

If q is odd, we set sgn := α
(q−1)/2
1 to be the unique character of Gm(q) of order 2.

Example 6.1.11. The irreducible characters of GL2(q) are the following:

λ Real Characters Degree

(⟨αk1⟩(2)),
0 ≤ k ≤ q − 2

(⟨11⟩(2)),
(⟨sgn⟩(2))

1

(⟨αk1⟩(1,1)),
0 ≤ k ≤ q − 2

(⟨11⟩(1,1)),
(⟨sgn⟩(1,1))

q

(⟨αk1⟩(1), ⟨αl1⟩(1)),
0 ≤ k < l ≤ q − 2

(⟨αk1⟩(1), ⟨α−k
1 ⟩(1)),

(⟨11⟩(1), ⟨sgn⟩(1))
q + 1

(⟨αk2⟩(1)),
1 ≤ k ≤ q2 − 2,
(q + 1) ∤ k

(⟨α(q−1)k
2 ⟩(1)) q − 1

Example 6.1.12. The irreducible characters of GL3(q) are the following:
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6.2 Orthogonal Determinants of GLn(q)

λ Real Characters Degree

(⟨αk1⟩(3)),
0 ≤ k ≤ q − 2

(⟨11⟩(3)),
(⟨sgn⟩(3))

1

(⟨αk1⟩(2,1)),
0 ≤ k ≤ q − 2

(⟨11⟩(2,1)),
(⟨sgn⟩(2,1))

q(q + 1)

(⟨αk1⟩(1,1,1)),
0 ≤ k ≤ q − 2

(⟨11⟩(1,1,1)),
(⟨sgn⟩(1,1,1))

q3

(⟨αk1⟩(2), ⟨αl1⟩(1)),
0 ≤ k, l ≤ q − 2,
k ̸= l

(⟨11⟩(2), ⟨sgn⟩(1)),
(⟨sgn⟩(2), ⟨11⟩(1))

q2 + q + 1

(⟨αk1⟩(1,1), ⟨αl1⟩(1)),
0 ≤ k, l ≤ q − 2,
k ̸= l

(⟨11⟩(1,1), ⟨sgn⟩(1)),
(⟨sgn⟩(1,1), ⟨11⟩(1))

q(q2 + q + 1)

(⟨αk1⟩(1), ⟨αl1⟩(1), ⟨αm1 ⟩(1)),
0 ≤ k < l < m ≤ q − 2

(⟨11⟩(1), ⟨αl1⟩(1), ⟨α−l
1 ⟩(1)),

(⟨sgn⟩(1), ⟨αl1⟩(1), ⟨α−l
1 ⟩(1))

(q + 1)(q2 + q + 1)

(⟨αk2⟩(1), ⟨αl1⟩(1)),
1 ≤ k ≤ q2 − 2,
(q + 1) ∤ k,
0 ≤ l ≤ q − 2

(⟨α(q−1)k
2 ⟩(1), ⟨11⟩(1)),

(⟨α(q−1)k
2 ⟩(1), ⟨sgn⟩(1))

(q − 1)(q2 + q + 1)

(⟨αk3⟩(1)),
1 ≤ k ≤ q3 − 2,
(q2 + q + 1) ∤ k

No real characters (q − 1)2(q + 1)

6.2 Orthogonal Determinants of GLn(q)
In this section, we want to describe how to calculate all orthogonal determinants of the
Irr+(G)-characters. Further, we will see that Parker’s conjecture holds for the general
linear group. We first do the usual setup, so let p be an odd prime and q be a power of p.
Let n be a positiver integer and let G = GLn(q). We let B ⊆ G be the Borel subgroup of
upper triangular matrices and let B = U ⋊ T be the Levi decomposition, with T be the
subgroup of diagonal matrices and U being the subgroup of unipotent upper triangular
matrices.

Let us fix a character χ ∈ Irr+(G). Denote K := Q(χ), for which we know an explicit
formula by Proposition 6.1.8. Let

λ = (⟨θ1⟩λ(θ1), ⟨θ2⟩λ(θ2), . . . , ⟨θk⟩λ(θk))
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6 Orthogonal Determinants of GLn(q)

be the corresponding element of Fn. Let ResGB = χT + χU be the decomposition as in
Section 5.1. Note that Q(χU ) = Q , by either the explicit formula for the character field
in Proposition 6.1.8 or by [TZ04, Theorem 1.9].

There is a convenient way to calculate χT (1):

Lemma 6.2.1. It holds that χT (1) = fλ(1).

Proof. From the construction of the irreducible characters of the general linear groups, it
follows that χT (1) only depends on the "type" of λ, i.e., the information d(θi) and λ(θi)
for all 1 ≤ i ≤ k. In particular, it is independent of q. So we can choose q > n! + 1 and
show it there.

It follows by the Mackey formula for Harish-Chandra induction and restriction that
χT (1) ≤ |Sn| = n!, see for instance [DM20, Theorem 5.2.1]. Since q − 1 | χU , it now
follows that

χT (1) ≡ χ(1) mod q − 1.

Since χ(1) = fλ(q), we can also regard the residue of fλ(x) modulo x− 1, which is equal
to fλ(1) by the assumption on q, from which the result follows.

Remark 6.2.2. There are the following four possible cases:

i) χ is U-stable, i.e., χ is not in the principal series. This is equivalent to d(θi) > 1
for at least one entry i.
Since q − 1 | χ(1), the orthogonal determinant is thus really easy to calculate by
Corollary 2.3.17, it holds that

det(χ) = qχ(1)/(q−1) · (K×)2.

ii) χ is B-stable and not U-stable. Then χ is in the principal series and λ gives us a
character θ ∈ Irr(T ) such that χ appears in IndGB(θ). Recall that

det(χ) = det(χT )qχU (1)/(q−1) · (K×)2.

Now, here is to calculate χT in general. With Lemma 6.2.1 and Proposition 5.1.3,
we can easily decompose

χT =
k∑
i=1

θi

into its irreducible components, given λ. Let L := Q(θ + θ). It follows again by
Proposition 5.1.3 that K = Q(χT ). Note that it does not always hold that L = K.
The result now follows by Corollary 2.3.3 and Lemma 2.3.5.

iii) χ is unipotent. Then Theorem 5.2.1 tells us how to calculate det(χ). Since we also
know explicitly the orthogonal determinants of the generic Iwahori–Hecke algebra
of type An−1 by Theorem 4.1.65, det(χ) can be calculated.
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6.2 Orthogonal Determinants of GLn(q)

iv) χ is neither B-stable nor unipotent. Then there is a character θ ∈ Irr(T ) such that
the order of θ is equal to 2 and that χ appears in IndGB(θ). There is thus an integer
k with 0 ≤ k ≤ n− 1 and partitions µ of k, κ of n− k such that

λ = (⟨11⟩µ, ⟨sgn⟩κ).
Then Lλ = GLk(q)×GLn−k(q) and

χLλ = χGL
µ ⊠ (sgn · χGL

κ ).
If χGL

κ ∈ Irr+(GLn−k(q)), then clearly
det(sgn · χGL

κ ) = det(χGL
κ ).

Let Pλ ⊇ Lλ be a parabolic subgroup, then we know that
χ = IndGPλ(χ

Lλ).
Since we can calculate the orthogonal determinants of unipotent characters, det(χ)
can then easily be calculated with Lemma 2.3.10 and Lemma 2.3.13.

All in all, the mentioned methods allow us to calculate the orthogonal determinant of
any orthogonally stable character of G.

We will now tackle Parker’s conjecture for the general linear groups. Since we know
Parker’s conjecture to hold for solvable groups, see Theorem 2.3.29, it holds for all
Borel-stable characters. If χ is as in Remark 6.2.2(iv), its orthogonal determinant is
either a square (if the index of the corresponding parabolic subgroup is even) or we can
reduce the calculation of det(χ) to the calculation of the orthogonal determinant of a
unipotent character. In either case, we conclude that Parker’s conjecture holds for the
general linear groups if and only if it holds for all its unipotent characters.

We will need some well-known statements about cyclotomic polynomials. A source is
for instance [Nag51, §46, §48].
Definition 6.2.3. The cyclotomic polynomials Φn(x) for positive integers n can be
inductively defined by the condition

xn − 1 =
∏
d|n

Φd(x).

In particular,

[n]x =
∏
d|n Φd(x)
x− 1 .

The first few cyclotomic polynomials are
Φ1(x) = x− 1,
Φ2(x) = x+ 1,
Φ3(x) = x2 + x+ 1,
Φ4(x) = x2 + 1,
Φ5(x) = x4 + x3 + x2 + x+ 1,
Φ6(x) = x2 − x+ 1.

The following gives some very basic properties of cyclotomic polynomials.
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6 Orthogonal Determinants of GLn(q)

Lemma 6.2.4. Let n be a positive integer.

i) Φn(x) ∈ Z[x].

ii) Φn(x) is irreducible.

iii) Φ2n(x) = x2n−1 + 1.

iv) Φn(1) =


s, if n = sk for some prime s,
0, if n = 1,
1, else.

So in conclusion, the cyclotomic polynomials are exactly the irreducible factors of the
Gaussian polynomials.

Lemma 6.2.5. Let c be a positive integer. Then the square classes c(c+ 2) · (Q×)2 and
[c]q[c+ 2]q · (Q×)2 have the same parity.

Proof. Note that since q is odd, for any polynomial f(u) ∈ Z[u] it holds that

f(1) ≡ f(q) mod 2.

Let f(u) := [c]u[c+2]u. If c is odd, then clearly both f(1) = c(c+2) and f(q) = [c]q[c+2]q
are odd integers.

Let us now assume that c is even. Then exactly one of c/2 and (c+ 2)/2 is odd. Let
2k be the biggest power of 2 such that c(c+ 2) = 2 · 2k ·m for m an odd integer. Clearly
k ≥ 2. By Lemma 6.2.4 we can now write

f(u) = [c]u[c+ 2]u = (u+ 1)2 ∏
d|c
d≥3

Φd(u)
∏

d′|c+2
d′≥3

Φd′(u) = (u+ 1)2
(

k∏
l=2

Φ2l(u)
)
· f ′(u),

where f ′(u) ∈ Z[u] is the product of all cyclotomic polynomials Φd(u) for the divisors d
of either c or c+ 2 that are not powers of 2.

We will now go through the three factors of f on the right hand side. Since we regard
square classes, we can disregard the term (u+ 1)2. For the second term, observe that
for any l ≥ 2, by Lemma 6.2.5(iii), it holds that Φ2l(q) = q2l−1 + 1 = 2 · r for some odd
integer r. So, clearly

k∏
l=2

Φ2l(1) · (Q×)2 = 2k · (Q×)2

and
k∏
l=2

Φ2l(q) · (Q×)2

have the same parity. Finally, by Lemma 6.2.4(iv), it holds that f ′(1) is an odd integer,
and therefore f ′(q) is also an odd integer. This concludes the proof.
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6.2 Orthogonal Determinants of GLn(q)

Theorem 6.2.6. Let χ ∈ Irr+(G) ∩ IrrPSU(G). Then det(χ) is odd.

Proof. Let A = Q[u, u−1] and let H = HG the generic Iwahori–Hecke algebra of G over
A as in Definition 3.5.8.

Let χ′ ∈ Irr+(Q(u)H) be the character corresponding to χ. Let dχ′(u) ∈ A be a
squarefree representative of det(χ′). Recall by Theorem 5.2.1 that then

det(χ) = dχ′(q) · qa · (Q×)2

for some integer a. So it suffices to show that dχ′(q) · (Q×)2 is odd.
Let µ be the partition corresponding to χ. Since the generic Iwahori–Hecke algebra

specializes to the group algebra QSn for the map A→ Q, u 7→ 1, we know that

det(λ) · (Q×)2 = dχ′(1) · (Q×)2

is odd by Theorem 4.1.50. The idea now is to show that dχ′(1) · (Q×)2 and dχ′(q) · (Q×)2

have the same parity.
By Theorem 4.1.65, it holds that det(χ′) is a product of terms of the form

(ub1+1 − ub2)(ub1 − ub2+1)
(ub1 − ub2)2 = u[b1 − b2 + 1]u[b1 − b2 − 1]u

[b1 − b2]2u

for some integers b1, b2 with b1 > b2 + 1. By now setting u := b1 − b2 − 1 and by
disregarding the square denominator and the term u (since both q and 1 are odd), the
statement follows if we can show that c(c+ 2) · (Q×)2 and [c]q[c+ 2]q · (Q×)2 have the
same parity. That is exactly the statement of Lemma 6.2.5 and so we are done.

Corollary 6.2.7. Parker’s conjecture holds for the groups GLn(q) for odd q.

6.2.1 Example: Orthogonal Determinants of GL4(q)

Let p be an odd prime and let q be a power of p. In this final subsection, the orthogonal
determinants of the Irr+(G)-characters of G = GL4(q) will be calculated. This will go
relatively easily, given that we have already done most of the work.

For completion, we will first give a list of all irreducible characters of G, which easily
follows from the discussion in Section 6.1.

Theorem 6.2.8. Let k, l,m, r be suitable integers. The following gives a list of all
irreducible characters χ of G in terms of the elements λ ∈ F4, as well as their degrees
and the degree of χT .
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6 Orthogonal Determinants of GLn(q)

χ λ (χλ)T (1) Degree

χ1(k) (⟨αk1⟩(4)) 1 1
χ2(k) (⟨αk1⟩(3,1)) 3 q(q2 + q + 1)
χ3(k) (⟨αk1⟩(2,2)) 2 q2(q2 + 1)
χ4(k) (⟨αk1⟩(2,1,1)) 3 q3(q2 + q + 1)
χ5(k) (⟨αk1⟩(1,1,1,1)) 1 q6

ψ1(k, l) (⟨αk1⟩(3), ⟨αl1⟩(1)) 4 (q + 1)(q2 + 1)
ψ2(k, l) (⟨αk1⟩(2,1), ⟨αl1⟩(1)) 8 q(q + 1)2(q2 + 1)
ψ3(k, l) (⟨αk1⟩(1,1,1), ⟨αl1⟩(1)) 4 q3(q + 1)(q2 + 1)

ψ4(k, l) (⟨αk1⟩(2), ⟨αl1⟩(2)) 6 (q2 + 1)(q2 + q + 1)
ψ5(k, l) (⟨αk1⟩(2), ⟨αl1⟩(1,1)) 6 q(q2 + 1)(q2 + q + 1)
ψ6(k, l) (⟨αk1⟩(1,1), ⟨αl1⟩(1,1)) 6 q2(q2 + 1)(q2 + q + 1)

ψ7(k, l,m) (⟨αk1⟩(2), ⟨αl1⟩(1), ⟨αm1 ⟩(1)) 12 (q2 + 1)[2]q[3]q
ψ8(k, l,m) (⟨αk1⟩(1,1), ⟨αl1⟩(1), ⟨αm1 ⟩(1)) 12 q(q2 + 1)[2]q[3]q
ψ9(k, l,m, r) (⟨αk1⟩(1), ⟨αl1⟩(1), ⟨αm1 ⟩(1), ⟨αr1⟩(1)) 24 (q2 + 1)[2]2q[3]q
π1(k, l) (⟨αk2⟩(1), ⟨αl1⟩(2)) 0 (q − 1)(q2 + 1)[3]q
π2(k, l) (⟨αk2⟩(1), ⟨αl1⟩(1,1)) 0 q(q − 1)(q2 + 1)[3]q
π3(k, l,m) (⟨αk2⟩(1), ⟨αl1⟩(1), ⟨αm1 ⟩(1)) 0 (q − 1)(q2 + 1)[2]q[3]q
π4(k) (⟨αk2⟩(2)) 0 (q − 1)2[3]q
π5(k) (⟨αk2⟩(1,1)) 0 q2(q − 1)2[3]q
π6(k, l) (⟨αk2⟩(1), ⟨αl2⟩(1)) 0 (q − 1)2(q2 + 1)[3]q
π7(k, l) (⟨αk3⟩(1), ⟨αl1⟩(1)) 0 (q − 1)2(q2 + 1)[2]2q
π8(k) (⟨αk4⟩(1)) 0 (q − 1)3[2]q[3]q

Recall that [2]q = q + 1, [3]q = q2 + q + 1. Note that the principal series consist of the
characters χi and ψi.

Remark 6.2.9. We will omit explicitly describing the character fields, as these can
involve some case-by-case distinctions which we do not want to get into. For instance,
regard the character ψ9 = ψ9(k, l,m, r). Assume for a moment that q = s2 is a square.
Then ψ9(k,−k, sk,−sk) ∈ Irr+(G) for any 1 ≤ k < q − 1 with k not a multiple of s+ 1
or s− 1. If λ is the corresponding element of F4, then clearly Q(λ) = Q(ζkq−1). Then

Galg(λ) = {σ ∈ Gal(Q(λ)/Q)} = ⟨σ−1, σs⟩ ∼= C2
2 ,
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6.2 Orthogonal Determinants of GLn(q)

where σ−1 is complex conjugation and σs(ζkq−1) := ζskq−1. Thus,

Q(ψ9(k,−k, sk,−sk)) = Q(ϑ(k)
q−1 + ϑ

(sk)
q−1, ϑ

(k)
s−1, ϑ

(k)
s+1).

We will now go through all four different classes of the Irr+(G)-characters we have
talked about in the previous section.

Lemma 6.2.10. The following gives a list of all Irr+(G)-characters that are U-stable,
as well as their orthogonal determinants.

χλ Parameters det(χ) ∈ Q(χ)×/(Q(χ)×)2

π1(k(q − 1), 0),
π1(k(q − 1), (q − 1)/2) 1 ≤ k ≤ q−1

2 1

π2(k(q − 1), 0),
π2(k(q − 1), (q − 1)/2) 1 ≤ k ≤ q−1

2 1

π3(k(q − 1), 0, (q − 1)/2) 1 ≤ k ≤ q−1
2 1

π3(k(q − 1), l,−l) 1 ≤ k ≤ q−1
2 , 1 ≤ l ≤ q−3

2 1

π4(k(q − 1)) 1 ≤ k ≤ q−1
2 1

π5(k(q − 1)) 1 ≤ k ≤ q−1
2 1

π6(k,−k)
1 ≤ k ≤ q2 − 2,
(q − 1) ∤ k, (q + 1) ∤ k 1

π6(k(q − 1), l(q − 1)) 1 ≤ k < l ≤ q−1
2 1

π8(k(q2 − 1)) 1 ≤ k ≤ q2−1
2 1

Proof. As was discussed in the previous section, it holds that

det(χ) = qχ(1)/q−1) · (Q(χ)×)2

for all U -stable characters χ ∈ Irr+(G). We easily see from the list of the character
degrees in Theorem 6.2.8 that even after dividing with q − 1, the characters degree stay
even, so the orthogonal determinant is a square in every case.

In fact, by the degrees, it is easy to confirm that for any χ ∈ Irr+(G), it holds that

det(χU) = 1 · (Q(χU)×)2,

so we will tacitly disregard this term in the following calculations.

Lemma 6.2.11. The following gives a list of all Irr+(G)-characters that are Borel-stable
and are in the principal series, as well as their orthogonal determinants.
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χλ Parameters det(χ) ∈ Q(χ)×/(Q(χ)×)2

ψ4(k,−k) 1 ≤ k ≤ q−3
2 2− ϑ(2k)

q−1

ψ6(k,−k) 1 ≤ k ≤ q−3
2 2− ϑ(2k)

q−1

ψ7(0, k,−k),
ψ7((q − 1)/2, k,−k) 1 ≤ k ≤ q−3

2 1

ψ8(0, k,−k),
ψ8((q − 1)/2, k,−k) 1 ≤ k ≤ q−3

2 1

ψ9(0, (q − 1)/2, k,−k) 1 ≤ k ≤ q−3
2 1

ψ9(k,−k, l,−l) 1 ≤ k < l ≤ q−3
2 1

Proof. Let χ be any of the above characters. Recall that

det(χ) = det(χT ) det(χU) · (Q(χ)×)2.

Since the determinant of χU is a square, we are left to calculate det(χT ). Denote
K = Q(χ) = Q(χT ). We let θ be one of the irreducible components of χT , then ψ := θ+θ
is orthogonally simple. Denote L = Q(ψ). There are two cases that occur: L = K and
[L/K] = 2. Recall the character

ψK :=
∑

σ∈Gal(L/K)
σ · ψ,

as given in Definition 2.3.4. It follows by Lemma 2.3.5 that

det(χT ) = NK(det(ψK))χT (1)/ψK(1) · (K×)2.

In particular, if χT (1)/ψK(1) is even, then det(χT ) is a square. By definition, it holds
that

ψK(1) =
2, if L = K,

4, if [L/K] = 2.

For all characters in the table above, except possibly the characters ψ9(k,−k, l,−l), it
holds that L = K. There thus are only two cases where χT (1)/ψK(1) is not even, namely
the characters ψ4(k,−k) and ψ6(k,−k), for which we easily calculate with Corollary 2.3.3
that

det(χT ) = (2− ϑ(2k)
q−1) · (K×)2.

This proves the statement.

Lemma 6.2.12. The orthogonal determinant of the only unipotent Irr+(G) character
χ3(0) = χGL

(2,2) is equal to

det(χGL
(2,2)) = q(q2 + q + 1) · (Q×)2.
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6.2 Orthogonal Determinants of GLn(q)

Proof. Let us abbreviate χ = χGL
(2,2). Similarly to Lemma 5.3.6, we will give two different

proofs. First, we will use Theorem 5.2.1, where we actually have already done all the
necessary work. In Example 4.1.66 we have calculated the orthogonal determinant of the
corresponding character χ′ of the generic Iwahori–Hecke algebra for G, which was equal
to

det(χ′) = u(u2 + u+ 1) · (Q(u)×)2,

where u is the indeterminate used. So by specializing, we end up with

det(χ) = q(q2 + q + 1) · (Q×)2.

Let us now regard a more geometrical proof. Let F(1) be the set of 1-dimensional
subspaces of F4

q and F(2) be the set of 2-dimensional subspaces of F4
q. Clearly, G acts

transitively on these sets and we can regard the associated permutation representation
M(1) (resp. M(2)) over Q of F(1) (resp. of F(2)). We have that dim(M(1)) = (q+1)(q2+1)
and dim(M(2)) = (q2 + 1)(q2 + q + 1). We denote ϕ(1) (resp. ϕ(2)) to be the characters of
the representations M(1) (resp. M(2)). We have a decomposition

ϕ(1) = 1G + χGL
(3,1),

ϕ(2) = 1G + χGL
(3,1) + χGL

(2,2).

The idea now is to use the permutation representations above to construct an explicit
G-invariant bilinear form of a representation affording χGL

(2,2).
We define

f : M(1) →M(2), P 7→
∑
L⊇P

L

where we map any one-dimensional subspace P to the sum of the two-dimensional
subspaces L that contain P . This map is clearly a homomorphism of G-modules.

We further argue that f is injective. For that, consider the standard G-invariant
bilinear form β on M(2), where the basis given by the set F(2) is an orthonormal basis.
We regard the pullback β′ := f ∗β on M(1), defined by

β′(P, P ′) := β (f(P ), f(P ′)) .

This bilinear form is clearly again G-invariant. Now, the map f being injective is
equivalent to the bilinear form β′ being non-degenerate, so it suffices to calculate the
Gram determinant with respect to the standard basis of M(1).

Since every one-dimensional subspace P is contained in exactly q2+q+1 two-dimensional
subspaces and two different one-dimensional subspaces P, P ′ are only both contained in
the two-dimensional subspace P + P ′, we arrive at

β′(P, P ′) =
q2 + q + 1, if P = P ′,

1, if P ̸= P ′.
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6 Orthogonal Determinants of GLn(q)

Thus,

det(β′) = det


q2 + q + 1 1 . . . 1

1 q2 + q + 1 . . . 1
...

...
. . .

...
1 1 . . . q2 + q + 1

 · (Q×)2 = q(q2 + q + 1) · (Q×)2.

So in fact, f is injective and by the decomposition of the characters we see that the
orthogonal complement of the image of M(1) in M(2) is isomorphic to a representation
that affords the character χGL

(2,2). Since the Gram determinant of β is equal to 1 with
respect to the standard basis, we finally arrive at

det(χ) = q(q2 + q + 1) · (Q×)2.

We now handle the last remaining characters.
Lemma 6.2.13. The following gives a list of all the Irr+(G)-characters for which χT ̸= 0
and for which any θ ∈ Irr(T ) appearing in χT have order 2, as well as their orthogonal
determinants.

χλ det(χ) ∈ Q(χ)×/(Q(χ)×)2

χ3((q − 1)/2) q(q2 + q + 1)

ψ1(0, (q − 1)/2),
ψ1((q − 1)/2, 0) 1

ψ2(0, (q − 1)/2),
ψ2((q − 1)/2, 0) 1

ψ3(0, (q − 1)/2),
ψ3((q − 1)/2, 0) 1

ψ4(0, (q − 1)/2) 1

ψ5(0, (q − 1)/2),
ψ5((q − 1)/2, 0) 1

ψ6(0, (q − 1)/2) 1

Proof. It holds that
χ3((q − 1)/2) = sgn · χGL

(2,2),

where we set sgn ∈ Hom(G,C×) to be the unique character of order 2. Clearly then
det(χ3((q − 1)/2)) = det(χGL

(2,2)).
For the rest of the characters, note that by Remark 6.1.5 these are induced from

certain orthogonal characters with rational character fields. As the index of all nontrivial
parabolic subgroups of G is even, it follows by Lemma 2.3.10 that the orthogonal
determinant of the induced character χ is a square, thus showing the statement.
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