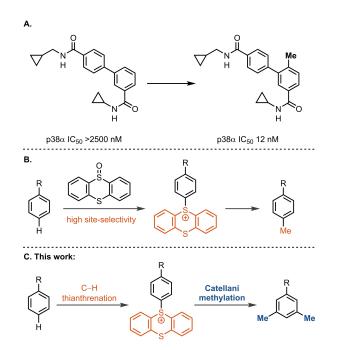


Communication

C-H Activation

How to cite: Angew. Chem. Int. Ed. 2025, 64, e202419472 doi.org/10.1002/anie.202419472

Meta-Dimethylation of Arenes via Catellani Reaction from Aryl Thianthrenium Salts


Michał Mrozowicz, Sagnik Chatterjee, Markella Aliki Mermigki, Dimitrios A. Pantazis, and Tobias Ritter*

Abstract: Here we report the reaction of aryl thianthrenium salts that allows selective functionalization of the *meta* position of arenes. The combination of a site-selective thianthrenation with a Catellani reaction provides access to 3,5-dimethylated arenes. The developed reaction is complementary to the previously discovered reductive *ipso*-alkylation of aryl thianthrenium salts and extends the possibilities for late-stage methylation of arenes with a single aryl thianthrenium salt

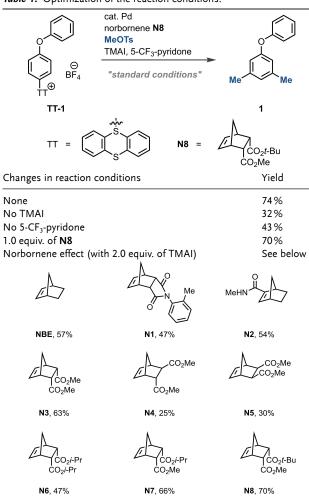
Late-stage methylation is a transformation of interest for drug development[1,2] because installation of methyl groups in drug candidates can lead to an increase of potency. [1,3] One of the strategies for late-stage methylation relies on aryl thianthrenium salts as intermediates, which can be synthesized directly from arenes with high site-selectivity.^[4] In addition to late-stage methylation, aryl thianthrenium salts have been useful as intermediates in other transformations for small molecule modifications^[5-7] as well as fragment couplings.^[4,8] However, transformations of aryl thianthrenium salts only allow to functionalize the para position of monosubstituted arenes without the demonstrated possibility of selective functionalization at ortho or meta positions in monosubstituted arenes. Here we report a Catellani reaction with arvl thianthrenium salts that allows for selective functionalization in the meta position. For monosubstituted arenes, the reaction affords 3,5-dimethylated arenes in a two-step sequence. The process is complementary to the previously reported reductive ipsoalkylation reaction of aryl thianthrenium salts and extends the possibilities for functionalization of arenes via a single aryl thianthrenium salt.

The "magic methyl effect" refers to the enhancement of biological activity of molecules that can result from adding a methyl group (-CH₃), often increasing potency, selectivity, or metabolic stability (Scheme 1A).^[1,3] This subtle structural change can shift molecular conformation, affect binding interactions, or improve lipophilicity, making it a powerful approach in drug design and structure optimization. The recognition of the "magic methyl effect" in drug development has prompted scientific research focused on late-stage C–H methylation. For example, Baran has reported a radical C(sp²)–H methylation of various heteroarenes.^[9]

Regioselectivity in direct arene C–H methylation can be controlled when directing groups are present. For example, cobalt-catalyzed *ortho*-methylation has been accomplished with a variety of suitable directing groups,^[10] and rhodium-catalyzed *ortho*-methylation has been accomplished with the aid of mechanochemistry,^[11] to name just a few modern examples for methylation reactions. Previously, our group

Scheme 1. (A) The "magic" methyl effect in the drug development. (B) Site-selective thianthrenation for late-stage functionalization of arenes including *para*-methylation. (C) **This work**: Catellani reaction on aryl thianthrenium salts for *meta*-dimethylation of arenes.

Max-Planck-Institut für Kohlenforschung


Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany E-mail: ritter@mpi-muelheim.mpg.de

M. Mrozowicz, S. Chatterjee Institute of Organic Chemistry RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany

© 2024 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

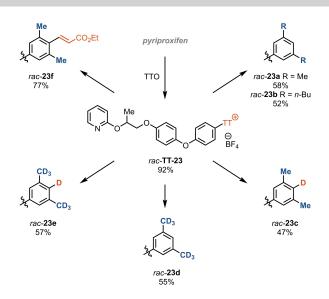

^[*] M. Mrozowicz, S. Chatterjee, M. Aliki Mermigki, Dr. D. A. Pantazis, Prof. Dr. T. Ritter

Table 1: Optimization of the reaction conditions.

Reaction conditions: TT-1 (0.1 mmol), MeOTs (3.0 equiv.), Pd(OAc)₂ (10 mol%), P(2-fur)₃ (22 mol%), **N8** (2.0 equiv.), sodium formate (2.0 equiv.), Cs₂CO₃ (2.5 equiv.), TMAI (0.5 equiv.), 5-CF₃-pyridone (20 mol%), THF (0.1 M), 70 °C, 18 h. Yields were determined by ^1H NMR spectroscopy with CH₂Br₂ as an internal standard.

has reported a two-step C-H methylation of arenes via the intermediacy of arylthianthrenium salts.[4,12] Although the positional selectivity of thianthrenation is high, [13] only ipso substitution reactions of complex arylthianthrenium salts have been accomplished (Scheme 1B). To address the challenge we sought to combine C-H thianthrenation with the Catellani reaction. Catellani reactions are useful for rapid multifunctionalization of arenes using the ability of norbornene (NBE) to reversibly engage in migratory insertion into arylpalladium species and serve as a traceless directing group for ortho C-H functionalization.[14] Since a catalytic version of the reaction was achieved, [15] many variations of the process have been developed allowing to insert different functional groups in $ortho^{[16-\hat{20}]}$ and $ipso^{[16,21,22]}$ positions of the corresponding aryl halides. Catellani reactions of arylthianthrenium salts for olefination-alkylation sequences have been published in 2024;[23,24] the pharmacologically meaningful introduction of methyl groups, with a hydride capping has not vet been accomplished.

Scheme 2. Late-stage functionalization of pyriproxifen including deuterium labelling. Reaction conditions: Standard conditions, *n*-BuOTs was used as *n*-Bu source, CD₃OTs was used as CD₃- source, DCOONa was used as D- source, ethyl acrylate was used instead HCOONa for 23 e.

Combination of aryl thianthrenium salts with the Catellani reaction would bring complementary site-selectivity to all ipso- substitutions of thianthrenyl moiety that have been already developed. The desired reaction would require a convenient source of a methyl group for ortho-C-Hfunctionalization and a readily available hydride source as an ipso-termination reagent. So far, there have been a few methods developed for ortho-C-H alkylation in Catellanitype reactions using various sources of hydride in order to close the catalytic cycle with ipso-hydrogenation. [25-27] We studied the reaction of thianthrenium salt TT-1 with methyl tosylate and sodium formate as source of hydride, and identified that the reaction proceeds most efficiently, when tetramethylammonium iodide (TMAI) and 5- CF₃-pyridone were added in addition to norbornene derivative N8 (Table 1, for further details, see SI, Table S1 and S8). We hypothesized that addition of an external ligand such as iodide would allow to trap and stabilize cationic palladium-(II) complexes because thianthrene only binds weakly to Pd(II), if at all, as well as reduce side reactions. [28-30] 2-Pyridone and its derivatives are known for promoting C-H activation proceeding via concerted metalation-deprotonation (CMD) and their electronic properties can be readily tuned. [27,31-35] There was a significant influence of the norbornene derivative on the yield of the reaction, for example, 5,6-disubstituted norbornene diesters were the best choice for the most efficient methylation, while both stereochemistry and the size of the alkyl group were important (Table 1, the bottom Figure). Previously used by Zhou, [25] norbornene derivative **N1** did not improve reaction yield, when compared to norbornene, leading to 47 % yield. The norbornene derivative N2, developed by Dong^[27] to facilitate ortho-C-H activation did not improve the reaction yield either. The use of 5,6-endo-cis-dimethyl ester N3 improved the reaction yield from 57%, obtained with

15213737, 2025, 5, Downloaded from https://onlinebltary.wiley.com/doi/i0/10/1002/aine.2024/1972 by Rwth Aachen University Zentraler Rechnungseingang, Wiley Online Library on [03/07/2025]. See the Terms and Conditions (https://onlinebltary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

unsuccessful examples:

CI

Me

CO₂t-Bu

CO₂t-Bu

Fac-21

(88%) 78%e

from fenofibrate

CI

Me

CI

Me

CO₂t-Bu

Fac-22

(73%) 63%e

from tianeptine intermediate

Figure 1. Substrate scope of Catellani methylation on aryl thianthrenium salts. Thianthrenation conditions: arene (1.0 equiv.), TTO (1.0 equiv.), TFAA (3.0 equiv.), TfOH or $HBF_4 \cdot Et_2O$ (1.2 equiv), MeCN (0.25 M), 0°C to 25°C, 16 h. Standard conditions: aryl thianthrenium salt (0.5 mmol), MeOTs (3.0 equiv.), $Pd(OAc)_2$ (10 mol%), $P(2-fur)_3$ (22 mol%), N8 (2.0 equiv.), sodium formate (2.0 equiv.), CS_2CO_3 (2.5 equiv.), TMAI (0.5 equiv.), CS_2CO_3 (2.5 equiv.), THF (0.1 M), CS_3CO_3 (3.5 equiv.), CS_3CO

unsubstituted norbornene, to 63 %. Larger size of both alkyl groups of the esters resulted in a lower yield, for example 47 % for *endo-cis*-diisopropyl ester **N6**, employed previously

by Ding^[36] for alkylation of phenylalanine derivatives. Change of only one ester alkyl group for a bulkier *tert*-butyl group resulted in a slightly higher yield of methylation,

5213773, 2025, 5, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/anie.202419472 by Rwth Aachen University Zentraller Rechnungseingang, Wiley Online Library on [03/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

reaching 70 %. The unsymmetrical norbornene N8 was identified as optimal catalyst, leading to a 74 % yield of the dimethylated product 1 when 0.5 eq. of TMAI was used. The excess of norbornene N8 can be recovered from the reaction mixture. Furthermore, the amount of N8 used can be reduced to 1.0 equiv., resulting in only a slight decrease in yield (70 % instead of 74 %).

The dimethylation of aryl thianthrenium salts with methyl tosylate occurred efficiently on thianthrenium salts obtained from mono substituted arenes. Various functional groups are tolerated, such as esters (2, 7, 18, 19, 20), amides (13, 14, 15, 17), sulfonamides (8, 15, 16), imide (20), halides (3, 4, 5, 9, 10, 18), nitriles (3), carbamates (6), nitro groups (13, 16) as well as a cyclopropane (2) and a pyridine ring (12, 21). Although base is used, the stereocenters that were probed remained intact. For example compound 6 and the protected L-phenylalanine 20 retained high enantiopurity after methylation (for 6: 99.6 % ee, for 20: 94.4 % ee). Chemoselective engagement of the thianthrene substituent in the presence of an aryl bromide allows for further functionalizations (compound 9). Functionalization of arenes with more complex substitution patterns than monosubstituted arenes was accomplished as well, for example as shown for compounds 10, 11, and napropamide 14. Latestage methylation of complex molecules was further substantiated with examples such as derivatives of probenecid 15, nimesulide 16, cis-pinonic acid 17, flurbiprofen 18, fenoprofen 19 and L-phenylalanine 20. The reaction does not tolerate functional groups that are readily alkylated, such as sulfonamides with N-H bonds. Additionally, a "meta-constraint" was observed, when methylation of thianthrenium salts derived from fenofibrate and tianeptine were attempted, leading to side products with incorporated norbornene N8 (compounds 21 and 22, Figure 1). The developed method is applicable to transformations beyond dimethylation, allowing the introduction of other alkyl groups such as n-butyl (23b, (Scheme 2)). Moreover, other coupling partners such as ethyl acrylate (23f) could be used (Scheme 2). Deuterium labelling can also readily accomplished as shown for pyriproxifen, allowing the orthodi(trideutero)methylation or ipso-deuteration of the corresponding aryl thianthrenium salt (compounds 23 c-e).

A DFT computational study on the crucial initial steps post oxidative addition to the aryl thianthrenium salt of the catalytic cycle using Orca 5^[37] with the r²SCAN-3c^[38] level of theory (full computational details are provided in the SI, see the Computational Data part) is consistent with conventional Catellani reactivity. The first C-H functionalization step was simulated in order to investigate the electronic and steric effects of the intermediates shown in Figure 3. The first ligand exchange step is thermodynamically favorable $(\Delta G = -3.9 \text{ kcal/mol})$. The resulting Int 2 with the coordinated pyridone, undergoes a concerted metalation-deprotonation (CMD) step (TS) with a barrier of $\Delta G^{\ddagger} = 17.9 \text{ kcal/}$ mol. This step is consistent with previous computational studies on a similar system with a different ligand framework.[27] The next stable intermediate that is formed is the Int 3 with the pyridone protonated and 5-membered metallacycle fully formed. Notably, the C–H activation proceeds without the de-coordination of pyridone.

To understand why pyridone is beneficial during the CMD process, another substituted intermediate was computationally investigated. When a protonated carbonate is acting as the proton acceptor directly coordinated to the Pd^{II} metal center, the energy barrier for the CMD step (ΔG^{i}) increases by 1.5 kcal/mol. The increase suggests that pyridone is a more effective proton acceptor, facilitating the progression of the reaction.

It is conceivable that it may contribute to the prevention of the generation of byproducts resulting from the early reduction of species formed subsequent to the migratory insertion step (presented in the Figure 2). The early

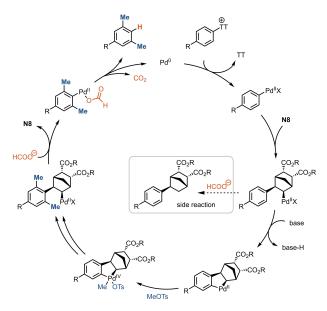


Figure 2. Simplified mechanism of Catellani-type dimethylation on aryl thianthrenium salts.

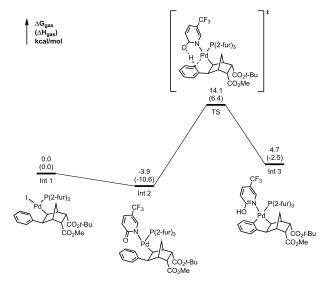


Figure 3. The computed reaction profile for the CMD step.

Angewandte
International Edition Chemie

termination of the reaction is more likely to occur when the C—H activation exhibits a higher energy barrier, which may be attributed to the electronic properties of the system or steric hindrance, as evidenced by compounds **21** and **22**.

In conclusion, we report the Catellani reaction of aryl thianthrenium salts as substrates, leading to a selective *meta*-functionalization of arenes. Our two-step strategy enables the 3,5-dimethylation of arenes, including from complex molecules, starting from arenes. The developed reaction is complementary to previously reported *ipso*-methylation of aryl thianthrenium salts and expands the possibilities of latestage functionalization of complex molecules using aryl thianthrenium salts as intermediates.

Acknowledgements

We thank the MPI für Kohlenforschung for funding. We thank the NMR spectroscopy, mass spectrometry, and chromatography departments of the MPI für Kohlenforschung for their help. We thank Prof. Guangbin Dong, Dr. Xin Liu (University of Chicago), Dr. Yuan Cai, Dr. Beatrice Lansbergen, Tim Schulte, Aboubakr Hamad and Dilgam Ahmadli (Max-Planck-Institut für Kohlenforschung) for helpful discussions. We thank Yuanhao Xie (Max-Planck-Institut für Kohlenforschung) for providing 2-fluoroanisole derived thianthrenium salt. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: methylation \cdot late-stage functionalization \cdot aryl thianthrenium salt \cdot Catellani reaction \cdot C—H activation

- [1] H. Schönherr, T. Cernak, Angew. Chem. Int. Ed. 2013, 52, 12256–12267.
- [2] T. Cernak, K.D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–576.
- [3] E. J. Barreiro, A. E. Kümmerle, C. A. M. Fraga, *Chem. Rev.* 2011, 111, 5215–5246.
- [4] B. Lansbergen, P. Granatino, T. Ritter, J. Am. Chem. Soc. 2021, 143, 7909–7914.
- [5] R. Sang, S. E. Korkis, W. Su, F. Ye, P. S. Engl, F. Berger, T. Ritter, Angew. Chem. Int. Ed. 2019, 58, 16161–16166.
- [6] J. Li, J. Chen, R. Sang, W.-S. Ham, M. B. Plutschack, F. Berger, S. Chabbra, A. Schnegg, C. Genicot, T. Ritter, *Nat. Chem.* 2020, 12, 56–62.
- [7] F. Ye, F. Berger, H. Jia, J. Ford, A. Wortman, J. Börgel, C. Genicot, T. Ritter, *Angew. Chem. Int. Ed.* **2019**, *58*, 14615–14619.

- [8] F. Berger, T. Ritter, Synlett 2022, 33, 339-345.
- [9] J. Gui, Q. Zhou, C.-M. Pan, Y. Yabe, A. C. Burns, M. R. Collins, M. A. Ornelas, Y. Ishihara, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 4853–4856.
- [10] S. D. Friis, M. J. Johansson, L. Ackermann, *Nat. Chem.* 2020, 12, 511–519.
- [11] S. Ni, M. Hribersek, S. K. Baddigam, F. J. L. Ingner, A. Orthaber, P. J. Gates, L. T. Pilarski, *Angew. Chem. Int. Ed.* 2021, 60, 6660–6666.
- [12] F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank, T. Ritter, *Nature* 2019, 567, 223–228.
- [13] F. Juliá, Q. Shao, M. Duan, M. B. Plutschack, F. Berger, J. Mateos, C. Lu, X.-S. Xue, K. N. Houk, T. Ritter, J. Am. Chem. Soc. 2021, 143, 16041–16054.
- [14] J. Wang, G. Dong, Chem. Rev. 2019, 119, 7478-7528.
- [15] M. Catellani, F. Frignani, A. Rangoni, Angew. Chem. Int. Ed. Engl. 1997, 36, 119–122.
- [16] Z. Dong, G. Dong, J. Am. Chem. Soc. 2013, 135, 18350–18353.
- [17] R. Li, Y. Zhou, K.-Y. Yoon, Z. Dong, G. Dong, Nat. Commun. 2019, 10, 3555.
- [18] X. Liu, Y. Fu, Z. Chen, P. Liu, G. Dong, Nat. Chem. 2023, 15, 1391–1399.
- [19] Y. Huang, R. Zhu, K. Zhao, Z. Gu, Angew. Chem. Int. Ed. 2015, 54, 12669–12672.
- [20] J. Wang, L. Zhang, Z. Dong, G. Dong, Chem 2016, 1, 581–591.
- [21] H. Shi, D. J. Babinski, T. Ritter, J. Am. Chem. Soc. 2015, 137, 3775–3778.
- [22] W. Jiang, M. Xu, S. Yang, X. Xie, B. Xiao, Angew. Chem. Int. Ed. 2020, 59, 20450–20454.
- [23] D. Dupommier, M. Vuagnat, J. Rzayev, S. Roy, P. Jubault, T. Besset, *Angew. Chem. Int. Ed.* 2024, 63, e202403950.
- [24] C. Chen, X.-X. Zhang, Z.-Y. Wang, C. Ni, B. Zhu, Org. Chem. Front. 2024, 11, 3333–3340.
- [25] Q. Gao, Y. Shang, F. Song, J. Ye, Z.-S. Liu, L. Li, H.-G. Cheng, Q. Zhou, J. Am. Chem. Soc. 2019, 141, 15986–15993.
- [26] T. Wilhelm, M. Lautens, Org. Lett. 2005, 7, 4053-4056.
- [27] J. Wang, Y. Zhou, X. Xu, P. Liu, G. Dong, J. Am. Chem. Soc. 2020, 142, 3050–3059.
- [28] D. Zhao, R. Petzold, J. Yan, D. Muri, T. Ritter, *Nature* 2021, 600, 444–449.
- [29] X. Qi, J. Wang, Z. Dong, G. Dong, P. Liu, Chem 2020, 6, 2810– 2825.
- [30] Z. Dong, G. Lu, J. Wang, P. Liu, G. Dong, J. Am. Chem. Soc. 2018, 140, 8551–8562.
- [31] P. Wang, G.-C. Li, P. Jain, M. E. Farmer, J. He, P.-X. Shen, J.-Q. Yu, J. Am. Chem. Soc. 2016, 138, 14092–14099.
- [32] P. Wang, M. E. Farmer, J. Yu, Angew. Chem. 2017, 129, 5207–5211
- [33] P. Wang, M. E. Farmer, X. Huo, P. Jain, P.-X. Shen, M. Ishoey, J. E. Bradner, S. R. Wisniewski, M. D. Eastgate, J.-Q. Yu, J. Am. Chem. Soc. 2016, 138, 9269–9276.
- [34] P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao, S. Tao, P. T. W. Cheng, M. A. Poss, M. E. Farmer, K.-S. Yeung, J.-Q. Yu, *Nature* 2017, 551, 489–493.
- [35] J. Wang, Z. Dong, C. Yang, G. Dong, *Nat. Chem.* **2019**, *11*, 1106–1112.
- [36] J. Liu, Q. Ding, W. Fang, W. Wu, Y. Zhang, Y. Peng, J. Org. Chem. 2018, 83, 13211–13216.
- [37] F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.
- [38] S. Grimme, A. Hansen, S. Ehlert, J.-M. Mewes, J. Chem. Phys. 2021, 154, 064103.

Manuscript received: October 11, 2024 Accepted manuscript online: November 21, 2024 Version of record online: November 25, 2024