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The primary applications of wire EDM are found in tool and die manufacturing, as well 
as in engine and medical technology. It is predominantly used for producing high-value 
components and often serves as the final critical manufacturing step. Consequently, 
process reliability and repeatability are of utmost importance and can be ensured through 
intelligent control and automation solutions. In this context, the growing digitalization 
of manufacturing processes, driven by Industry 4.0, highlights the need for data-driven 
approaches in wire EDM. 
The aim of this work was to develop a data-driven model for evaluating the wire EDM 
process, primarily based on continuously recorded electrical process data to ensure the 
model’s transferability and general validity. Machine learning models were trained on 
this process data to enable real-time evaluation of the process based solely on electrical 
signals. The objective was to achieve this by developing a regression model to assess 
quality and a classification model to evaluate productivity. The scientific framework of this 
study is shaped by the data analysis methods and techniques employed, and the structure 
of the work is accordingly aligned with the development of data-driven models. 
A system was first developed to enable the real-time recording of temporally and 
spatially resolved individual discharges within the continuous wire EDM process. 
Following systematic data processing, including data reduction and feature extraction, 
characteristic values were subsequently correlated with process productivity and product 
quality. Building on these initial process data insights, a regression model was created to 
predict product quality. For this purpose, a neural network was trained to estimate the 
component‘s curvature based on continuously recorded data, achieving high prediction 
accuracy and explaining a significant portion of the data variability. Process productivity 
was assessed through a classification model using a deep learning approach, where 
various neural network architectures were explored. The results demonstrated high 
accuracy, particularly noteworthy given that all evaluations were conducted using entirely 
unseen data. The findings were applied to develop a Digital Twin in an industrial context, 
capable of visualizing the real-time curvature of the workpiece on a dashboard using 
continuously processed data.
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Abstract 

Abstract 
The main areas of application for wire EDM are in tool and die making, as well as in 
engine and medical technology. It is mainly used in the production of high-priced prod-
ucts and is often the last decisive manufacturing technology. The process reliability 
and repeatability of this technology are therefore particularly important and can be 
guaranteed by correspondingly intelligent control and automation solutions. This, along 
with the digitalization of manufacturing processes in the context of Industry 4.0, re-
quires the use of data-driven approaches in wire EDM.  

The objective of the present work was therefore to develop a data-driven model for the 
evaluation of the wire EDM process. This was to be based primarily on continuously 
recorded physical respectively electrical process data in order to ensure the transfera-
bility and general validity of the model. Machine learning models were trained with 
process data to evaluate the process solely based on the electrical process signals 
evaluated in real-time. This goal was to be achieved by developing a regression model 
to evaluate quality and a classification model to evaluate productivity. The scientific 
design framework in this work is determined in particular by the methods and tech-
niques used in data analysis and the structure of the work is designed accordingly for 
the development of data-driven models. 

To this end, a system was first developed for the real-time recording of time and spa-
tially resolved characterized individual discharges in the continuous process. After data 
processing, including systematic data reduction and feature extraction, characteristic 
values were correlated with process productivity and product quality in the following 
step. 

Based on the initial findings from the process data, a regression model was developed 
to evaluate product quality. For this purpose, a neural network was trained that predicts 
the curvature of the component based on continuously recorded data. The model 
shows good prediction accuracy and explains a significant part of the data variability. 
The productivity of the process was evaluated using a classification model. A deep 
learning approach was used, in which various forms of neural networks were used for 
the model architecture. The results showed high accuracy, especially considering that 
all tests were performed with completely unknown data. 

Finally, it was shown how the findings can be transferred to the development of a Dig-
ital Twin in an industrial setting. In cooperation with an AI software manufacturer and 
a wire EDM user, a Digital Twin was developed that can map the generated curvature 
of the workpiece in a dashboard using data processed in real-time. 

 





Kurzfassung 

Kurzfassung 
Die Hauptanwendungsgebiete der Drahtfunkenerosion liegen im Werkzeug- und For-
menbau sowie in der Triebwerks- und Medizintechnik. Dort kommt sie vor allem bei 
der Fertigung von hochpreisigen Produkten zum Einsatz und wird oft als letzte maß-
gebende Fertigungstechnologie eingesetzt. Daher sind die Prozesssicherheit und Wie-
derholbarkeit dieser Technologie besonders wichtig und können durch entsprechend 
intelligente Regelungen und Automatisierungslösungen gewährleistet werden. Dies 
und die Digitalisierung von Fertigungsprozessen im Kontext von Industrie 4.0 erfordern 
daher den Einsatz von datengetriebenen Lösungen in der Drahtfunkenerosion. 

Die Zielsetzung der vorliegenden Arbeit bestand demnach darin, ein datengetriebenes 
Model zur Bewertung des Drahtfunkenerosionsprozesses zu entwickeln. Dieses sollte 
vor allem auf kontinuierlich aufgezeichneten physikalischen bzw. elektrischen Pro-
zessdaten beruhen, um eine Übertragbarkeit und Allgemeingültigkeit des Modells zu 
gewährleisten. Mit den Prozessdaten wurden KI-Modelle trainiert, um den Prozess nur 
auf Basis der in Echtzeit ausgewerteten elektrischen Prozesssignale zu bewerten. Die-
ses Ziel sollte durch die Entwicklung eines Regressionsmodells zur Bewertung der 
Qualität und eines Klassifikationsmodells zur Bewertung der Produktivität realisiert 
werden. Der wissenschaftliche Gestaltungsrahmen wird in dieser Arbeit besonders 
durch die Methoden und Techniken in der Datenanalyse bestimmt, und der Aufbau der 
Arbeit ist entsprechend für die Entwicklung datengetriebener Modelle ausgelegt. 

Zu diesem Zweck wurde zunächst ein System zur echtzeitfähigen Erfassung von zeit- 
und ortsaufgelösten charakterisierenden Einzelentladungen im kontinuierlichen Pro-
zess entwickelt. Nach der Datenaufbereitung mit systematischer Datenreduktion und 
Merkmalsextraktion wurden im nächsten Schritt charakteristische Prozesskennwerte 
mit der Prozessproduktivität und der Produktqualität korreliert. 

Basierend auf den ersten Erkenntnissen der Prozessdaten wurde ein Regressionsmo-
dell zur Bewertung der Produktqualität entwickelt. Dazu wurde ein neuronales Netz 
trainiert, das die Wölbung des Bauteils anhand kontinuierlich aufgezeichneter Daten 
vorhersagt. Das Modell zeigt eine gute Vorhersagegenauigkeit und erklärt einen er-
heblichen Teil der Datenvariabilität. Die Produktivität des Prozesses wurde mithilfe ei-
nes Klassifikationsmodells bewertet. Es wurde ein Deep-Learning-Ansatz angewandt, 
bei dem verschiedene Formen neuronaler Netze für die Modellarchitektur verwendet 
wurden. Die Ergebnisse zeigten eine hohe Genauigkeit für die Teilmodelle, insbeson-
dere unter Berücksichtigung, dass alle Validierungen mit völlig unbekannten Daten 
durchgeführt wurden.  

Abschließend wurde im letzten Kapitel gezeigt, wie die Erkenntnisse in die Entwicklung 
eines Digitalen Zwillings in einem industriellen Umfeld überführt werden können. In 
kooperativer Arbeit mit einem KI-Software Hersteller und einem Drahtfunkenerosions-
anwender konnte ein Digitaler Zwilling entwickelt werden, der durch in Echtzeit verar-
beitete Daten die erzeugte Kontur des Werkstücks in einem Dashboard abbilden kann. 
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1 Introduction 1 

1 Introduction  
The demand for companies to achieve climate neutrality in the future among the regu-
lar competition is driving them to continuously improve the efficiency of the products 
they manufacture on the one hand and to make production as efficient as possible on 
the other [BUND21]. In addition, there are economic challenges, especially in high-
wage countries such as Germany, which require not only an increase in productivity 
and product quality but also a reduction in costs in order to remain competitive as a 
production location compared to low-wage countries [BREC11]. In addition, many sec-
tors need to find solutions to the growing shortage of skilled workers in the manufac-
turing industry [BURS24]. In order to achieve this in production, individual production 
technologies or entire process chains are being optimized and automated. Automation 
requires stable and adaptive processes that no longer require manual intervention. 
However, the flexibility of individual processes, which is required in many areas, poses 
major challenges due to continuously changing conditions [BREC11]. 

In the context of Industry 4.0, data-driven automation systems are required and seen 
as an enabler for high competitiveness of manufacturing companies in high-wage 
countries. In order to develop such systems and implement them in a holistic ecosys-
tem, so-called Digital Twins (DTs) are being developed due to the increasing possibil-
ities of digitalization. In this work, the definition by Bergs et al. [BERG20c, BERG21] is 
applied, which describes a DT in the context of manufacturing technology as follows: 
“The digital twin of an asset is the virtual representation of its physical state - state 
changes are described by models and supported by data.” These could, for example, 
include process-related changes in the state of a workpiece. According to Shao et al. 
[SHAO20], a Digital Twin differs from a traditional simulation model through its regular 
connection to the real physical object in the sense of monitoring. According to the CIRP 
Encyclopedia of Production Engineering, the DT is a virtual image of a real device, 
object, machine, service or intangible asset that describes its properties and behavior 
using models, data and information within its life cycle [STAR19]. An up-to-date and 
comprehensive overview of the DT methodology in all areas of production technology 
can be found in [JONE20]. 

The implementation of Digital Twins for individual manufacturing technologies is nec-
essary in order to digitalize production holistically. Electrical discharge machining 
(EDM) is usually used as an alternative manufacturing process for high-priced products 
[KLOC14a]. Advantages over other manufacturing technologies include the high flexi-
bility and accuracy. Due to the increasing demand for materials with high thermome-
chanical strength, wire EDM is increasingly being used for a variety of applications, 
e.g. in tool and die making as well as in the aerospace industry [BOOS18, HEID21]. In 
particular, monitoring and automation of the EDM process results in the need for inte-
gration into networked adaptive production in the context of Industry 4.0. However, the 
use of process data in wire EDM represents a major challenge for the development of 
a DT. Due to a high amount of data generated by millions of individual discharges in 
the single-digit microsecond range and a stochastic process behavior, a valid data 
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acquisition and processing system must first be developed and implemented. A sub-
sequent analysis should link existing expert knowledge and existing physical models 
with the data in order to generate new insights into the process and to relate a data-
driven system for process monitoring and optimization to improve productivity and 
quality. The use of artificial intelligence (AI) methods is a promising approach for this.  

The performance of AI and the potential to solve complex problems have increased 
rapidly in recent years. At the latest since the introduction of the chatbot ChatGPT from 
the company OpenAI, the whole topic of AI has taken on a much more practical char-
acter in society [RAY23]. AI methods have played a role in people's everyday lives for 
much longer and the use of AI in manufacturing companies is also increasing [JAVA23, 
PART24, ROCK24]. The most important prerequisite for a well-functioning AI model is 
a sufficiently large amount of data with high data quality, which can be evaluated on 
the basis of various factors as named in [ASKH13].  

Even though the application of AI methods in wire EDM has already been dealt with in 
many works, it has not yet been possible to develop valid models that have been 
trained on the basis of sufficiently large amounts of data and retain their validity even 
under changed process conditions. For this reason, in this thesis a system is initially 
developed and implemented in this work, with which physical process data can be 
continuously recorded. By processing the data in real time, a memory for the high data 
volumes is realized. However, it is systematically validated that no irrelevant infor-
mation is lost by reducing the amount of data; on the contrary, the density of infor-
mation is increased.  

In practice, wire EDM typically involves a main cut followed by one or more trim cuts, 
which sequentially enhance accuracy and surface quality. Since the main cut has a 
significant impact on productivity and contour accuracy, the main cut machining is ex-
amined in this thesis. 

Based on the data, AI-based models are developed in this thesis, which enable both 
quantitative predictions regarding component quality and qualitative predictions re-
garding process performance. These predictions are realized in regression and classi-
fication models using various AI methods. To this end, the relevant input and output 
parameters are first systematically identified and evaluated. Subsequently, a suffi-
ciently high number of experiments are carried out with defined process conditions and 
data is generated in order to train, validate and test the models. Finally, the findings 
are transferred to a concept that enables machine users to digitize, monitor and opti-
mize their processes using external software simply by equipping a data acquisition 
system without data science expertise. For this purpose, the findings are transferred 
to the development of a DT in an industrial environment. 
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Einleitung 
Die Forderung nach Klimaneutralität im regulären Wettbewerb treibt die Unternehmen 
dazu an, zum einen den Wirkungsgrad der hergestellten Produkte kontinuierlich zu 
verbessern und zum anderen auch die Fertigung möglichst effizient zu gestalten 
[BUND21]. Hinzu kommen insbesondere in Hochlohnländern wie Deutschland wirt-
schaftliche Herausforderungen, die neben einer Steigerung der Produktivität und Pro-
duktqualität auch die Reduzierung der Kosten erfordern, um als Produktionsstandort 
weiterhin konkurrenzfähig gegenüber Niedriglohnländern zu bleiben [BREC11]. Zu-
sätzlich müssen viele Branchen Lösungen für den wachsenden Fachkräftemangel in 
der produzierenden Industrie finden [BURS24]. Um dies in der Fertigung zu realisieren, 
werden einzelne Fertigungstechnologien oder ganze Prozessketten optimiert und au-
tomatisiert. Die Automatisierung setzt stabile und adaptive Prozesse voraus, die keine 
manuellen Eingriffe mehr benötigen. Die Flexibilität einzelner Prozesse, die in vielen 
Bereichen gefordert wird, stellt jedoch aufgrund sich kontinuierlich verändernder Be-
dingungen große Herausforderungen dar [BREC11]. 

Im Kontext von Industrie 4.0 werden datengetriebene Automatisierungssysteme gefor-
dert und als Enabler für eine hohe Konkurrenzfähigkeit der produzierenden Unterneh-
men in Hochlohnländern gesehen. Um solche Systeme zu entwickeln und in ein ganz-
heitliches Ökosystem zu implementieren, werden durch die zunehmenden Möglichkei-
ten der Digitalisierung sogenannte Digital Twins (DT) entwickelt. In dieser Arbeit findet 
die Definition von Bergs et al. [BERG20c, BERG21] Anwendung, die einen DT im Kon-
text der Fertigungstechnologie wie folgt beschreibt: „Der digitale Zwilling eines Assets 
ist das virtuelle Abbild seines physikalischen Zustands - Zustandsänderungen sind be-
schrieben durch Modelle und gestützt durch Daten.“ Diese könnten zum Beispiel pro-
zessbedingte Zustandsänderungen eines Werkstücks sein. Nach Shao et al. 
[SHAO20] unterscheidet sich ein DT von einem traditionellen Simulationsmodell durch 
seine regelmäßige Verbindung zum realen physikalischen Objekt im Sinne eines Mo-
nitorings. Nach der CIRP Enzyklopädie der Produktionstechnik ist der DT ein virtuelles 
Abbild eines realen Geräts, Objekts, einer Maschine, einer Dienstleistung oder eines 
immateriellen Assets, das dessen Eigenschaften und Verhalten anhand von Modellen, 
Daten und Informationen innerhalb seines Lebenszyklus beschreibt [STAR19]. Einen 
aktuellen und umfassenden Überblick über die Methodik des DT in allen Bereichen der 
Produktionstechnik gibt [JONE20]. 

Die Implementierung von DTs für einzelne Fertigungstechnologien ist notwendig, um 
die Produktion ganzheitlich zu digitalisieren. Die Funkenerosion (EDM) wird meist als 
alternatives Fertigungsverfahren für hochpreisige Produkte eingesetzt [KLOC14a]. Die 
Vorteile gegenüber anderen Fertigungstechnologien sind die hohe Flexibilität und 
Genauigkeit. Aufgrund der steigenden Nachfrage nach Werkstoffen mit hoher 
thermomechanischer Festigkeit wird die Drahtfunkenerosion zunehmend für eine 
Vielzahl von Anwendungen eingesetzt, z. B. im Werkzeug- und Formenbau sowie in 
der Luftfahrtindustrie [BOOS18, HEID21]. Dabei ergibt sich insbesondere aus der 
Überwachung und Automatisierung des Erodierprozesses die Notwendigkeit der 
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Einbindung in eine vernetzte adaptive Produktion im Kontext von Industrie 4.0. Die 
Nutzung von Prozessdaten in der Drahtfunkenerosion stellt dabei jedoch eine große 
Herausforderung für die Entwicklung eines DT dar. Aufgrund der prozessbedingt 
hohen Datenmenge durch Millionen von einzelnen Entladungen im einstelligen 
Mikrosekundenbereich und des stochastischen Prozessverhaltens muss zunächst 
eine valide Datenerfassung und -verarbeitung entwickelt und implementiert werden. 
Eine anschließende Analyse soll vorhandenes Expertenwissen und bestehende 
physikalische Modelle mit den Daten verknüpfen, um zum einen neue Erkenntnisse 
über den Prozess zu generieren und zum anderen ein datengetriebenes System zur 
Prozessüberwachung und -optimierung zur Verbesserung von Produktivität und 
Qualität zu realisieren. Dazu ist die Anwendung von Methoden der Künstlichen 
Intelligenz (KI) ein vielversprechender Ansatz.  

Die Leistungsfähigkeit von KI und das Potential komplexe Probleme zu lösen sind in 
den vergangenen Jahren rasant gestiegen. Spätestens seit der Einführung vom Chat-
bot ChatGPT der Firma OpenAI hat das ganze Thema KI einen wesentlich praxisnä-
heren Charakter in der Gesellschaft erhalten [RAY23]. Dabei haben KI-Methoden 
schon wesentlich länger eine Rolle im Alltag der Menschen eingenommen und auch 
der Einsatz von KI in produzierenden Unternehmen wird zunehmend größer [JAVA23, 
PART24, ROCK24]. Die wichtigste Vorrausetzung für ein gut funktionierendes KI-Mo-
dell ist eine hinreichend große Datenmenge mit hoher Datenqualität, welche anhand 
unterschiedlicher Faktoren bewertet werden kann, wie in [ASKH13] beschrieben.  

Auch wenn schon in vielen Arbeiten die Anwendung von KI-Methoden in der Drahtfun-
kenerosion behandelt wurde, konnten noch keine validen Modelle entwickelt werden, 
die auf Basis ausreichend großer Datenmengen trainiert wurden und auch bei verän-
derten Prozessbedingungen ihre Gültigkeit behalten. Daher wird in dieser Arbeit zu-
nächst ein System entwickelt und implementiert, mit dem sich kontinuierlich physikali-
sche Prozessdaten aufzeichnen lassen. Durch eine Datenverarbeitung in Echtzeit wird 
ein Speichern der hohen Datenmengen ermöglicht. Dabei wird kontrolliert, dass durch 
die Reduktion der Datenmenge keine relevanten Informationen verloren gehen, son-
dern im Gegenteil, die Informationsdichte erhöht wird. In der Praxis werden beim 
Drahterodieren in der Regel ein Hauptschnitt und ein oder mehrere Nachschnitte nach-
einander ausgeführt, um die Genauigkeit und Oberflächenqualität zu erreichen. Da der 
Hauptschnitt einen erheblichen Einfluss auf die Produktivität und Konturgenauigkeit 
hat, wird in dieser Arbeit die Hauptschnittbearbeitung untersucht.  

Basierend auf den Daten werden KI-Modelle entwickelt, die sowohl quantitative Prog-
nosen bezüglich der Bauteilqualität als auch qualitative Prognosen bezüglich der Pro-
zessperformance ermöglichen. Dies wird in Regressions- und Klassifikationsmodellen 
unter Anwendung verschiedener KI-Methoden realisiert. Dazu werden die relevanten 
Input- und Output-Parameter zunächst systematisch identifiziert und bewertet. Nach-
folgend werden unter definierten Prozessbedingungen eine hinreichend hohe Anzahl 
an Experimenten durchgeführt und Daten erzeugt, um die Modelle zu trainieren und 
zu testen. Abschließend werden die Erkenntnisse für die Entwicklung eines DT in ei-
nem industriellen Umfeld übertragen. 
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2 State of the Art  
Increasing use of wire Electrical Discharge Machining (EDM) as an alternative manu-
facturing process for high-cost products in tool and die as well as aerospace industry 
require the integration of this technology into a networked production in the context of 
Industry 4.0. For this purpose, the process must be digitized. The following section 
therefore examines recent research about digitalization of wire EDM. 

First, the fundamentals of EDM are introduced. Second, the wire EDM process variant 
is detailed and studies dealing with the use of data are presented. In addition to statis-
tical analysis the use of machine learning in wire EDM is focused. Thereto, the funda-
mentals of machine learning methods are described and use cases in wire EDM are 
examined. Finally, a conclusion summarizes this chapter, and a research deficit is 
pointed out. 

2.1 Fundamentals of Wire EDM  
Physical Principles  

Non-mechanical subtractive manufacturing processes are divided substantially into 
thermal, chemical, and electrochemical erosion based on their removal principle. Elec-
trical discharge machining is a manufacturing process with an essentially thermal op-
erating principle, and is therefore classified as such in DIN 8590 [DIN03, KLOC07]. 
EDM has established itself as one of the key technologies, especially in the machining 
of high-strength materials, compared to conventional manufacturing processes. It is 
mainly used in tool and die making as well as in the aerospace industry [KLOC13, 
HENS17, WELL15].  

The removal mechanism in EDM is based on the conversion of electrical energy into 
thermal energy. This principle lays the fundamental advantage of EDM over conven-
tional manufacturing processes. Materials can be machined regardless of their thermo-
mechanical properties like hardness or high temperature strength [KLOC07, MAYR16, 
KUNI05]. The electro-thermal machining process in EDM is only coupled to a minimum 
electrical conductivity of the materials. According to various investigations the mini-
mum required conductivity is approximately  = 10 S/m [BRAN10, PANT90]. This even 
enables the processing of ceramic materials that are doped with a conductive phase 
[OLIV23].  

During EDM, the workpiece electrode and tool electrode are immersed in a non-con-
ductive liquid known as the dielectric. An electrical potential difference, generated by 
a generator, exists between these two electrodes, which are not in direct contact. They 
are separated by the working gap, filled with the dielectric, which surrounds both elec-
trodes and serves to electrically insulate them from each other [MOEL10]. Various liq-
uids such as deionized water, aqueous solutions, organic solutions, or hydrocarbon-
based dielectrics are suitable for EDM [HO03, KLIN14, KLOC07, KUNI05].  

The electrical discharge generates a localized, high-energy plasma channel. This is 
achieved by ionizing the working gap until the dielectric strength is exceeded. Dielectric 
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strength denotes the maximum electric field a material can withstand without experi-
encing a decline in insulating efficacy within its volume. The voltage that leads to an 
electrical breakdown is also called breakdown voltage. The corresponding field 
strength is defined as the breakdown field strength, which in turn is often referred to as 
the dielectric strength [HOFM13]. While researching the exact physical phenomenon 
of the discharge process, different explanations arose based on the literature but has 
not been conclusively clarified yet [BERO93, HOCK67, WATS85]. However, there is 
an agreement that the electrical discharge mechanism occurs in three different phases 
which are defined as “plasma channel formation”, “discharge phase” and “end of pulse” 
[KLOC07].  

During the process, discharges lead to material removal of both surfaces. However, 
EDM is still economical because of the different rates of material removal on the elec-
trodes, resulting from the different distribution of the discharge energies [HENS84, 
SCHN21]. Since the removal rate of a single discharge is very small, the discharge 
process is repeated at a high frequency up to millions of discharges per second, so the 
geometry of the tool electrode is reproduced in the workpiece electrode. This creates 
a surface characterized by craters, which determine the quality of the surface in addi-
tion to the shape accuracy due to the volume removed [KLIN17].  

Wire Electrical Discharge Machining  

Various configurations for the EDM process have been innovated to effectively man-
age the machining of hard materials featuring complex geometries and precise toler-
ances [VDI94]. One of these is sinking EDM finding extensive application in the tool 
and die making industry and turbomachinery manufacturing, particularly with the use 
of high-strength materials such as tool steels, nickel-based alloys, and titanium alloys 
[HOLS18, KLOC07, KUNI05].  

Another configuration is wire EDM with material removal mechanism very similar to 
that of sinking EDM. Both processes involve the removal effect produced by electrical 
discharges. In wire EDM, a wire is used as an electrode and ever since the commercial 
introduction in the early 1970s, the achievable machining speeds and surface qualities 
have rapidly increased [YAN96]. The high degree of flexibility offered by the possibility 
of relative movement between the tool and the workpiece means that prisms and ap-
ertures of any cylindrical or conical shape can be produced with maximum precision 
using this process variant [KLOC07].  

As a result, wire EDM is an alternative manufacturing process that is often used for 
high-value products. As the demand for materials with high thermo-mechanical 
strength grows, wire EDM is increasingly being used in a wide range of applications, 
such as tool and die making and the aerospace industry. The manufacturing share in 
the tool and die industry has already increased to nearly 25% in 2017 [BOOS18]. In 
addition, an increasing number of studies show the potential of using wire EDM to 
produce fir tree slots in turbine disks. The basic technological feasibility showed that 
wire EDM can meet the requirements for fir tree slots [WELL15, BERG20d]. A com-
parison of different machining technologies showed the technological and economic 
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advantages of wire EDM [HEID21, KÜPP22a]. In addition, special variants such as 
wire EDM turning [BERG20a, QU02, WEIN12, WEIN13] are becoming important and 
are used not only for machining rotationally symmetrical components but are also in-
creasingly applied for dressing grinding wheels [KLIN09]. 

Ensuring good gap conditions is key for a productive and precise process, hence the
dielectric fluid is continuously fed to the machining zone [KLOC07, KUNI05]. However, 
wire EDM processes are commonly carried out on workpieces that are totally sub-
merged in the dielectric fluid. This method promotes process temperature stabilization. 
Moreover, it also improves flushing, especially in cases where the workpiece has var-
ying thicknesses [HO03]. The flushing is of the utmost importance for the process per-
formance evaluation. On the one hand, the removal of debris and decontamination of 
the working gap ensures optimal conditions for igniting discharges. Worsened flushing 
can lead to poor removal of debris resulting in short circuits, a local accumulation of 
discharges and finally to a wire break. On the other hand, it can lead to wire vibrations 
and wire lag caused by wire deflection. For this reason, many studies have dealt with 
flushing both experimentally and simulatively [BERG18a, EBIS18, FUJI12, IWAI20, 
KIMU22, OKAD15, OKAD09].

Figure 2.1 shows a schematic of a wire EDM machine. The workpiece is securely held 
in place on the machine bench using an appropriate clamping system to prevent any 
slippage during the machining process. The fresh roll of wire is in the wire storage 
compartment. From there, it is fed through wire guides, through the upper nozzle and 
to the workpiece. From the workpiece, the used wire passes through the lower nozzle 
and wire guides to a separate wire storage. The upper and lower wire guides can be 
moved relative to each other. The lower wire guide can be moved along the illustrated
x- and y-axes and the upper wire guide can be moved along the u- and v-axes. This 
feature allows the guides to achieve a wide range of contours, resulting in a high de-
gree of process flexibility. In addition, the upper guide can be moved along the z-axis, 
making it possible to process workpieces with different heights while ensuring good 
flushing conditions [KLOC07].

Figure 2.1: Schematic of a wire EDM machine according to [HENS17]
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In wire EDM, two primary dielectric groups are utilized: deionized water and hydrocar-
bon-based (CH-based) dielectrics. CH-based dielectrics allow low discharge energies, 
improving surface quality, but are less common in high productivity scenarios. Deion-
ized water is predominantly used due to its cooling and flushing capabilities, enabling 
higher cutting rates, despite residual conductivity leading to corrosion and larger work-
ing gaps. Dielectric units supply the working gap, equipped with pumps, filters, and ion 
exchangers to maintain electrical conductivity and cool the water [KLOC07, OLIV23]. 

The choice of wire electrode significantly influences productivity and machining out-
comes. Initially, copper wires were used, but brass electrodes (CuZn37) proved more 
efficient due to lower conductivity, leading to faster plasma channel formation 
[HENS84]. The presence of zinc components in brass electrodes promotes oxide layer 
formation, preventing particle adhesion on the workpiece surface. Wires with a copper 
core and zinc-rich cover layer are now common, combining copper's conductivity with 
zinc's ignition properties [HENS17, KLOC07, WELL15]. Quantitative analysis by 
Welschof et al. [WELS22] of discharge energy and removal volume for various wire 
electrodes reveals that coated wires yield significantly higher energy-specific removal. 
However, the small cross-section of wire electrodes limits their thermal and mechanical 
strength. 

The increase of the cutting rate by using coated wires has been shown in several stud-
ies [KUNI05, SCHA04, WELL15]. In addition to the core material and coating, the di-
ameter of the wire electrode has a significant impact on the process [SCHA04, 
WELL15]. Coatings and the wire diameter influence electrical resistance and thus the 
gap contamination. Hada et al. [HADA13] investigated the impedances of the wire and 
the workpiece using electromagnetic field analysis. It was discovered that the re-
sistance is more dominant than the reactance in the impedance. It was also shown that 
the total resistance is mainly determined by the wire resistance. This resistance de-
creases as the diameter of the wire increases. Reduced resistance allows for higher 
currents, resulting in higher discharge energy. In addition, a larger diameter allows for 
greater wear of the wire and creates a larger gap. Furthermore, the expanded shell 
surface reduces the probability of local accumulation of discharges, which could lead 
to wire breaks [WANG23]. The limitation of the wire thickness is only determined by 
the geometry to be produced. To date, there are no validated studies that address with 
the maximum thickness of wire electrodes. 

Currently, only high-performance wires with a maximum diameter of d = 0.35 mm are 
commonly used in the industry. Küpper et al. [KÜPP21b, KÜPP24] showed that the 
use of brass and coated wire electrodes with a diameter of d = 0.4 mm not only 
achieves the highest possible cutting rates, but also reduces the machining costs, con-
sidering the wire consumption, without reducing the machined surface quality. These 
results show the potential for wire electrodes with larger diameters and will be focused 
on in the future to increase the productivity.  

Evaluation of main cut's quality can be achieved by considering the curvature of ma-
chined gap as geometrical feature, see Figure 2.2 [SIEG94]. The extent of these quality 
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characteristics depends on the discharge and flushing conditions as well as the wire 
properties such as material, diameter and pre-tension. These factors interact strongly 
with each other, so a worsened flushing can lead to an accumulation of discharges or 
wire lag that all result in a produced curvature [KLOC07, PURI03]. The causes and 
effects of different forces acting on the wire throughout the process and finally leading 
to wire lag have been discussed in many studies, e.g. [CHEN15, COND16, COND18a, 
DEKE89, MURP00, OBAR95, OKAD15, TOMU09]. 

 
Figure 2.2: Geometrical dimensions of the working gap in wire EDM [KLOC07] 

Electrical Process Parameters in Wire EDM 

As the production conditions in EDM are influenced by many different factors (temper-
ature, machine design, material thickness…), the process must be specifically de-
signed for different conditions. Therefore, manufacturers of modern wire EDM ma-
chines offer standard machining technologies, which are adapted to different basic 
conditions such as workpiece height and material, but also to the desired surface qual-
ity. The machining parameters adapted for an individual process are summarized by 
the term "machining technology" [KLOC07].  

An optimal EDM process requires the selection of an appropriate set of machining 
parameters. Among these parameters, some of the most important parameters for 
identification and evaluation are described in Figure 2.3 according to [KLOC07]. Two 
successive discharge pulses are shown schematically. As pulse generator initiates a 
first pulse, the voltage then rises abruptly and remains constant throughout the so-
called ignition delay time td. The voltage drops again suddenly as soon as the current 
begins to flow through the plasma channel. The current then rises steadily and the 
electrical discharge takes place [KLOC07]. 

The discharge duration te is the time during which the current flows through the working 
gap after breakdown. The so-called pulse duration ti is the duration of the voltage 
pulses supplied to the working gap. It is the sum of the ignition delay time td and the 
discharge duration te [KLOC07]. 

The current flow ends as soon as the plasma channel breaks down. At the same time, 
the voltage drops back to its initial level. Before the next discharge is initiated, the 
working gap needs to be deionized as well be flushed of debris from the previous 
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discharge. The time during which this occurs, is called pulse interval time t0 and it is 
defined as the time between two successive voltage pulses. Therefore, one complete 
cycle is composed of one pulse ti and a pulse interval time t0. This duration is called 
the pulse cycle time tp [KLOC07]. 

 
Figure 2.3: Schematic current and voltage curves in EDM [KLOC07] 

For the classification of the periodic sequence of discharge pulses, further process 
relevant parameters are defined [KLOC07]. These parameters include the pulse fre-
quency fp, the effective pulse frequency fe and the frequency ratio . The pulse fre-
quency describes the number of voltage pulses built up per unit time. A typical EDM 
process consists of a mixture of normal discharges and so-called abnormal discharges. 
These abnormal discharges will be discussed in more detail in the following. In contrast 
to the pulse frequency fp, the effective pulse frequency fe considers only the number of 
ignited discharges occurring per unit time. The relationship between the effective pulse 
frequency and the pulse frequency is called the frequency ratio  [KLOC07]. 

Of course, the characteristics of a discharge are determined not only by its duration 
but also by the corresponding current and voltage values during the discharge. These 
electrical parameters are differentiated between maximum and averaged values, as 
they are highly time dependent. During the plasma channel formation phase, the max-
imum attained voltage is called the open circuit voltage ui. This open circuit voltage 
supplied by the generator can directly be preset. Among others, this parameter is re-
sponsible for the gap width at which discharges are ignited. After the ignition of the 
discharge, the maximum discharge voltage ue occurs. However, this voltage drops 
throughout the discharge and hence the arithmetic average discharge voltage ue is 
often used [KLOC07].  

As opposed to the course of the voltage, the current reaches its highest value at the 
beginning of the discharge phase. This value is characterized as the maximum dis-
charge current ie and is limited by the performance of the generator. Analogous to the 
average discharge voltage, the discharge current rises and falls during the discharge, 
thereto the average discharge current ie is defined. The discharge energy We, supplied 
by the electric energy to the working gap during a discharge, can be obtained from the 
time integral of the discharge current and voltage or as a first approximation as the 
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product of the discharge duration and average electrical parameters. The material re-
moval per discharge and the resulting surface modification are thus linked to the dis-
charge energy which is defined as follows [KLOC07]: 

 We = ue(t)  ie(t) dt  ue 
te

 ie te (2.1) 

The discharge energy was taken into consideration for many investigations. A high 
discharge energy also generates a high removal volume, but also results in a high heat 
input into the workpiece [LUO95]. This depends on many factors such as the workpiece 
material [LIAO04b, LIAO04a]. However, the individual discharge parameters can also 
produce different results with the same energy [MARA20]. 

The feed rate is the relative velocity between the workpiece and the wire electrode in 
the cutting direction. By the product of the feed rate vf and the workpiece height h the 
cutting rate Vw can be obtained, which is another important parameter as an assess-
ment characteristic for the removal efficiency. It is calculated as follows [KLOC07]: 

 VW = vf h (2.2) 

It is controlled by the feed control system for accurately following the wire movement 
to accommodate material removal, wear and gap conditions. Its primary goal is to pre-
vent short circuits, incorrect discharges, or open-circuit pulses. The ignition delay time 
td, proportional to the working gap, serves as the controlled variable. This parameter is 
determined either through voltage curve analysis using comparators or by evaluating 
changes in voltage and current.  

The aforementioned process parameters result from a large number of factors influ-
encing the EDM process which can be classified in groups according to [KLOC07] 
considering the workpiece and tool characteristics, the generator and machine as well 
as the environment. The generator is a crucial component of wire EDM machines, re-
sponsible for supplying electrical energy with the required waveform for the machining 
process [GINZ02, KUNI05]. Generators significantly impact both the quality of the final 
products and the productivity of the machining operation. Two main types of generators 
exist: relaxation and pulse generators. Among these, the pulse generator has gained 
widespread acceptance over the relaxation generator due to its advantages. Pulse 
generators allow for pre-setting of essential electrical pulse parameters. This wide 
range of setting parameters enables the realization of various machining tasks, con-
tributing to the versatility and efficiency of wire EDM operations [KLOC07, KUNI05].   

The control system is a key part of the wire EDM process, continuously monitoring and 
adjusting process parameters to match conditions within the working gap. This capa-
bility facilitates unattended multi-shift machining of workpieces [KLOC07]. Two main 
control systems are distinguished based on process parameters: iso-frequency and 
iso-energetic pulse control. The iso-frequency system maintains constant pulse dura-
tion ti and pulse interval time t0, whereas the iso-energetic system keeps discharge 
duration te and pulse interval time t0 constant [KLOC07]. Additionally, the machine con-
trol system allows for the implementation of various process modifications aimed at 
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achieving different machining objectives. These objectives include high-speed cutting, 
fine cutting, and conical cutting. During high-speed cutting, technologies are utilized to 
achieve high cutting rates, albeit with secondary importance placed on surface quality. 
This process subjects the wire to high thermal loads due to the transmission of high 
pulse energies. The main cut or roughing cut and the first trim cut primarily establish 
desired contours, while a secondary trim cut is employed to enhance surface quality. 
Achieving maximum surface quality may necessitate multiple trim cuts, with the dis-
charge energy and lateral infeed reduced with each subsequent cut. If conical cuts are 
made on components, such as in the production of workpieces with conical recesses 
or clearance angles on cutting tools, a process variant called taper cutting can be used. 
By overlapping the upper and lower wire guides, taper angles of up to  = 30° can be 
achieved [HENS17, KLOC07]. 

Pulse Classification 

Beside process improvements, EDM machine manufacturers and operators still face 
certain challenges like electromagnetic interferences, wire breaks, geometrical inaccu-
racies, which till today, are not completely solved. Therefore, the further development 
of wire EDM machines lies primarily in the improvement of generator technology. For 
instance, modern generators can achieve pulse durations in the range 
tp = 50 ns - 1000 ns and this under full control of the pulse shape, hence enabling cut-
ting rates up to VW = 500 mm²/min for the roughing process of steel materials to be 
attained [KLOC07].  

To achieve zero-defect in wire EDM, an online process monitoring system is necessary 
for the detection and prevention of anomalies. Usually, process parameters like the 
average discharge current and average discharge voltage are used for monitoring pur-
poses, as the parameters are directly linked to the realized material removal rate, sur-
face roughness and geometrical accuracies [ÇPUN90, DAUW86]. Beside these pa-
rameters, the discharge type is also very important.  

Discharge pulses can be generated with different shapes and there is no standardized 
shape that is applied by all machine manufacturers. For example, while modern GFMS 
machines generate sinusoidal pulses [BERG20d], the machine manufacturer Makino 
from Japan uses trapezoidal pulse shapes [BERG18b]. Clear advantages and disad-
vantages of each are not yet known, but Li et al. [LI16] identified differences between 
rectangular waveform and triangular in their studies. The comparison experiment found 
that rectangular waveforms excelled in processing speed and cutting efficiency over 
triangular waveforms, while triangular waveforms produced superior surface quality. 
Pulse groups of narrow triangular waveforms were effective for achieving both pro-
cessing speed and surface quality in fine machining. Additionally, employing a dual 
waveform strategy, utilizing rectangular for rough cutting and triangular for trim cutting, 
demonstrated favorable processing outcomes according to experimental results. 

Klocke et al. [KLOC07] categorized discharge pulses into five groups, as depicted in 
Figure 2.4, aligning closely with the classification outlined by Kunieda et al. [KUNI05]. 
These diverse pulse shapes exhibit specific current and voltage characteristics based 
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on the generator switching pattern. An open circuit pulse occurs when voltage is ap-
plied, but the gap between the tool (T) and workpiece (W) is too large or the conduc-
tivity of the working medium is insufficient, resulting in no discharge as shown in Figure 
2.4 (a). Delayed ignition is comparable to open circuit pulse but with a longer ignition 
delay time, leading to minimal material removal, see Figure 2.4 (b). Discharge pulse 
describes ideal material removal when the workpiece and electrode are at an optimum 
distance, see Figure 2.4 (c). Abnormal discharges occur when the distance between 
the workpiece and tool is insufficient, as illustrated in Figure 2.4 (d), causing significant 
tool wear and potential wire break. Short circuit pulses occur when electrical contact is 
established between the workpiece and tool, causing no material removal but risking 
mechanical damage to the electrode or machine components, as shown in Figure 
2.4 (e). The electrical contact does not necessarily have to be caused by contact be-
tween the electrode and the tool but can also be caused by particle bridges. These 
discharge types are mainly applicable to sinking EDM and represent one method of 
classifying discharge phenomena [KLOC07]. 

 
Figure 2.4: Schematic of different discharge types [KLOC07] 

However, discharge types have been investigated in various works. Dekeyser et al. 
[DEKE88] developed a so-called ‘EDM pulse discriminating system’ which detected up 
to 13 different discharge forms based on the current and voltage signals. Ginzel 
[GINZ02] presented subdivisions of the discharge forms, some of which differentiate 
between 15 various types. There is no generally valid definition for different types of 
discharges in wire EDM. For this reason, a classification of the discharge forms must 
be specified depending on the generator technology.  

2.2 Use of Data in Wire EDM  
The use of data has long been applied to optimize EDM processes. Both simulation 
and process data are used to make correlations or develop models to describe or im-
prove the EDM process. The concept for using data in EDM and the approaches that 
combine both simulations and process data to develop Digital Twins are presented in 
[GUO23, HOLS19]. Such Digital Twins in wire EDM by combining physical models and 
real process data have not been realized yet. However, Digital Twins enable real-time 
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monitoring and automation of the EDM process. These developments are necessary 
in order to integrate the process into networked adaptive production in the context of 
Industry 4.0 [KÜPP22b].  

Using simulation data or process data to develop models for process evaluation have 
different challenges. While simulations are highly complex in terms of their exact phys-
ical description, the acquisition and evaluation of process data is a major challenge 
due to the high frequency process dynamics in EDM. This is also the reason why, on 
the one hand, most EDM simulations have specific boundary conditions and are not 
generic. On the other hand, due to discharge frequency, no continuously recorded pro-
cess data was employed over a longer processing period to apply it for statistical or 
data-driven models. In this chapter, several studies are presented that deal with the 
use of process data to optimize EDM, particularly the wire EDM process. By analyzing 
mainly electrical parameters the EDM process is evaluated regarding its performance 
and quality. Especially, the correlation of process data with the occurrence of wire 
breaks, the workpiece quality and optimized machining parameters are focused on. 
However, the correlation analyses are conducted with process data collected in sta-
tionary conditions respectively quasi-stationary conditions and do not consider chang-
ing process conditions or longer processing periods.  

Using Data to Prevent Wire Break  

Process control and optimization are aimed at either increasing the cutting rate or im-
proving the surface quality, depending on the selection of the setting variables. In par-
ticular, the control must ensure the stability of the process. Unstable conditions reduce 
the removal rate and can lead to wire breaks and thus limit the process productivity, 
worsening the surface quality of the workpiece and impairing manufacturing accuracy. 
Most relevant examples can be found in [CABA08b, LIAO97b, RAJU91, RAJU93, 
SAHA04].  

Wire break is the most critical condition in wire EDM, as it leads directly to process 
interruption. Gamage et al. [GAMA16] analyzed the effects of wire breaks on the pro-
cess energy utilization in wire EDM. The event can cause a significant energy wastage 
and the energy consumption is dependent on the machine tool control algorithm's abil-
ity to restore machining. An environmental impact study indicates a substantial 48% 
increase in the impact value of energy usage due to wire failure, emphasizing the im-
portance of wire material despite the primary focus on process energy, ultimately high-
lighting the adverse effects of wire failures on production economics.  

Various reasons for wire break are assumed, which is why many studies have dealt 
with finding the causes experimentally and through simulation [ARUN01]. The study 
by Saha et al. [SAHA04] utilizes a spatial heat distribution profile of the wire at any 
moment, examining points along the wire's trajectory through various heat zones. Em-
ploying a finite element model and optimization algorithm, the research concludes that 
the critical factor leading to wire break is the amount of generated heat.  
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Wang et al. [WANG23] developed a comprehensive thermal model incorporating latent 
heat and flushing efficiency through the observation of wire discharges and finite ele-
ment method simulations. The model facilitated the simulation of wire craters. The heat 
partition ratio to the wire was determined as 47% through inverse fitting based on sim-
ulation and experimental results. In a wire break experiment, it was observed that 34% 
of discharges leading to break occurred within a 2 mm range, resulting in a minimum 
remaining wire cross-sectional area of 42% compared to the original wire. 

Okada et al. [OKAD15] analyzed the influence of flushing conditions on wire breaks, 
which represents a typical cause for wire breaks in application. Besides experiments, 
simulations were conducted to numerically analyze the flow fields and debris residence 
time in the kerf, hydrodynamic stress distributions acting on the wire and wire deflec-
tions.  

Fedorov et al. [FEDO18] investigated the impact of the Rehbinder effect, electrical 
discharge and wire tension on wire breaks. This is the first study considering the 
Rehbinder effect, which refers to alterations in the mechanical characteristics of solids, 
such as a reduction in strength or strain values, attributed to a decrease in surface 
interfacial energy. These changes occur during physicochemical processes at the 
interface between solids and liquids [TRAS09]. Following the conducted studies, it was 
established that the Rehbinder effect, tension force, and erosive damage to the wire 
do not exert a significant influence on its break.  

Various factors can lead to wire breaks, but the cause cannot be clearly determined 
physically. These include the accumulation of discharges, especially short circuits, in-
efficient particle removal and other stochastic phenomena during the wire EDM pro-
cess [CABA08b, HAN08a, LIAO97b, OKAD15, WANG23]. Different approaches and 
parameters were used to prevent wire breaks by analyzing process data. In the follow-
ing some of the studies are presented.  

Kinoshita et al. [KINO82] presented one of the earliest investigations into the detection 
of wire breaks using electrical signals. Based on their experimental findings, the au-
thors discovered that there is an increase in the pulse frequency immediately before a 
wire break. Following on from this, they developed a system that recorded the pulse 
frequency in real time and switched off the power supply when it increased. The pro-
cess was only continued when the working gap was completely deionized. However, 
according to recent research, this method is considered critical, as switching off the 
power supply causes a considerable loss of processing speed [YAN96].  

In addition, Dekeyser et al. [DEKE85] found in their research work that the pulse fre-
quency depends on a variety of process influences and is therefore not a reliable factor 
for evaluating and controlling the stochastic wire EDM process. This finding was con-
firmed by Rajurkar et al. [RAJU91]. Their method is based on the investigations of 
Kinoshita et al. [KINO82]. The pulse frequency was also monitored during the series 
of experiments. However, the pulse interval time was used to control the pulse fre-
quency and thus to induce wire breaks in a targeted manner. No deviation in the fre-
quency at high pulse frequencies before the wire break was determined. As a result, 
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contrary to the findings of Kinoshita et al. [KINO82], they described the change in pulse 
frequency as the cause and not as an indicator of a wire break [RAJU91]. 

Dekeyser et al. [DEKE88] used a different approach to investigate process stability. A 
system for differentiating pulses was developed with which 13 various forms of dis-
charge could be distinguished. Wire breaks were generated by increasing the dis-
charge frequency. It was shown that certain pulse shapes of the investigated dis-
charges influence a wire break. Watanabe et al. [WATA90] reduced the number of 
discharge forms in their work to the known forms according to [KUNI05] into normal 
discharges, abnormal discharges and short circuits. A correlation was found between 
the discharge forms and the stability of the EDM process.  

Since most studies support the theory that a local concentration of discharges in par-
ticular causes wire breaks, Shoda et al. [SHOD92] developed an adaptive control sys-
tem that utilizes online detection of discharge locations to diminish discharge concen-
tration at specific points on the wire electrode, consequently reducing the likelihood of 
wire break.  

Obara et al. [OBAR97] compared three gap detecting signals: the ignition delay time, 
the discharge voltage and a radio signal as a function of the local position of the dis-
charge in order to detect wire breaks at an early stage. In their results, they were able 
to demonstrate a decrease in the discharge voltage before wire breaks. In further stud-
ies the same authors proposed a new detecting method dividing these signals into 
groups according to discharge locations. This method clarifies an abnormal gap state 
just before the wire break [OBAR98].  

Rajurkar et al. [RAJU93] conducted research that involved the development of a mon-
itoring system for wire EDM. This system compared discharge frequencies with a da-
tabase containing experimental evaluations of the thermal load capacities of the wire 
electrode, alongside corresponding maximum discharge frequencies. An algorithm 
was employed to assess a control strategy aimed at preventing wire break. However, 
the direct correlation between discharge frequency, removal rate and the efficiency of 
the wire EDM process hindered the effectiveness of this approach in facilitating early 
detection of wire break.  

Based on the findings, several fuzzy systems were established. Fuzzy logic is de-
scribed as a summary of mathematical rules for the representation of knowledge, 
which is based on the degrees of membership and not on a sharp membership as in 
classical binary logic. It incorporates fuzzy logic, which allows for imprecision and un-
certainty, enabling the system to handle information that is not strictly binary and to 
better emulate human reasoning in complex and ambiguous situations [STYC17].  

Yan and Liao [YAN96] introduced a self-learning fuzzy controller aimed at maintaining 
the discharge frequency at a safety threshold to prevent wire breaks. Yan et 
al. [YAN98] conducted investigations on the control of the EDM process by analyzing 
discharge frequency and the proportion of abnormal discharges. Two types of adaptive 
control systems were developed, with the first relying on a simple algorithm utilizing a 
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developed database to control the splitting state. This system, while applicable to var-
ious wire EDM scenarios, has limitations in memory capacity and inability to respond 
to unexpected disturbances. The second type of adaptive control system incorporated 
digital control technologies, model-based control and fuzzy systems. A novel monitor-
ing and adaptive control system based on fuzzy logic was proposed to optimize the 
process. By regulating feed rate and discharge frequency, a more stable EDM process 
with reduced wire break risk was achieved. Different discharge forms, such as normal, 
arc discharges and short circuit, were detected and variables like the ratio of the dis-
charge types were calculated. These variables were correlated with wire break proba-
bility, removal rate and surface quality.  

Liao et al. [LIAO97b] observed two phenomena preceding wire break: a sudden in-
crease in discharges lasting between t = 50 ms - 2 s and a rise in the proportion of 
abnormal discharges exceeding 50%, continuing until t = 60 s when the wire breaks 
[YAN98]. To address these findings, a multivariable fuzzy controller was developed, 
adjusting feed rate and pulse interval time based on the proportion of abnormal dis-
charges and discharge frequency for optimized wire EDM.  

In further studies Yan et al. [YAN99] provided a detailed design of a fuzzy controller 
specifically for gap voltage control, aiming to enhance productivity and machining sta-
bility in the wire EDM process. Liao and Woo [LIAO00] developed a fuzzy logic control 
system, incorporating an online pulse discriminating and control device, to achieve 
high cutting speeds and ensure stable machining conditions. Despite the successful 
application of fuzzy logic control in adaptive wire EDM processes and its versatility 
across various machining conditions, these systems may encounter challenges in re-
sponding appropriately to unexpected disturbances, such as machining a stair-shaped 
workpiece. This was mainly due to the challenge of recording and analyzing process 
data at high frequency in real time. This could be realized in the beginning of the 2000s 
by the further development of measurement technologies and thus also offered new 
possibilities for using data.  

Kwon et al. [KWON06] focused on the implementation and examination of real-time 
energy monitoring during the transient state of the wire EDM process. Although dis-
charge frequency information has been employed for process control to enhance sta-
bility and efficiency, experimental results reveal limitations and inadequacies in this 
approach. Instead of relying on discharge frequency monitoring, the paper suggests 
the utilization of a real-time instantaneous energy monitoring system for a more precise 
interpretation of the wire EDM process state. 

Despite all this research, wire breaks remain a challenge even with the most advanced 
wire EDM machines, particularly when machining components with varying heights, 
which are common in practice. Although Xu et al. [XU10] have presented an approach 
for an adapted 3D G-code considering workpiece heights, the basis for controlling the 
continuous process with changing process conditions is still missing.  
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Process Monitoring with Continuously Recorded Data  

Lee et al. [LEE07] proposed a control system aimed at enhancing the efficiency of wire 
EDM processes when machining workpieces with varying thicknesses. It utilizes the 
abnormal ratio Rab as a controlled variable, allowing temporary reduction during 
changes in cutting thickness. A gain self-tuning fuzzy control algorithm ensures stability 
and suppresses transient conditions. A grey predictor compensates for time-delayed 
Rab caused by data processing. Experimental results show that optimizing Rab can sig-
nificantly improve cutting speed. 

Cabanes et al. [CABA08b] investigated the possibility of online detection of unstable 
process states and wire breaks with higher frequencies for longer measure times. First, 
an acquisition system was developed that measures and records the current and volt-
age signals in real time. Subsequently, test conditions were defined with which stable 
and unstable process states can be set. A stable process is ensured by performing a 
straight cut under the standard settings of the machining technology. Unstable condi-
tions are created by poor flushing conditions, machining complex geometries and var-
ying the unloading frequency. Next the most important parameters were selected on 
the findings. In preliminary investigations, it was found that the discharge energy in-
creases sharply before wire breaks. In addition, there are strong fluctuations and an 
increase in the maximum discharge current and the ignition delay time. Reference val-
ues for the parameters were initially defined for the further course of the investigations. 
These were chosen depending on the process parameters of stable machining. After 
selecting a suitable sampling rate, heuristic rules for predicting wire breaks are formu-
lated. The rules are not described in detail here. With this system, wire breaks can be 
detected up to t = 500 ms before they occur.  

In a similar way, a system was developed that characterizes wire breaks using the 
discharge energy, the maximum discharge current and the proportions of abnormal 
discharges and short circuits [CABA08a]. To bring the EDM process to an unstable 
state, the flushing conditions are also worsened here, or the discharge frequency is 
increased. The process parameters are also investigated when both operations are 
carried out simultaneously. In addition, different workpiece heights are examined. The 
process behavior before wire breaks was analyzed using an algorithm that reflects the 
proportions of over- or underruns of the individual reference process parameters.   

The methods of Portillo et al. [PORT07, PORT09] can be regarded as more advanced 
approaches. The authors developed a virtual measuring system that was able to sam-
ple current and voltage signals with a frequency of up to f = 10 MHz. In addition to the 
maximum discharge current, the discharge energy and the ignition delay time, non-
electrical indicators such as the workpiece height and the influence of flushing were 
investigated. Based on this, a three-stage alarm system was developed that evaluated 
the process in real time, classified it into one of the three stages and then controlled it 
accordingly. The three levels represented the risk of wire break. The study conducted 
tests involving wire break and wire stability. Wire stability tests established a reference 
value, while tests with wire break determined critical parameter values. Tests were 
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performed at workpiece heights of 50 mm and 100 mm, with results stored in a data-
base. When a parameter deviated from its reference value, the diagnostic system trig-
gered alarms based on wire break risk. Depending on alarm level and critical parame-
ters, one of four algorithms initiated predefined countermeasures. 

Schwade conducted an automated signal analysis in sinking as well as in wire EDM to 
optimize the machining technology for machining magnesium in medical applications 
[SCHW17]. In addition to examining the impact of individual electrical variables on pro-
cess performance, the distribution of different discharge types was also taken into ac-
count in this study. 

Even though the study conducted by Caggiano et al. [CAGG20] focuses on die sinking 
EDM, it illustrates the utilization of continuously recorded data for process monitoring 
through signal processing and statistical analysis. The research involved real-time ac-
quisition of data related to eight distinct process parameters, encompassing variables 
such as the frontal working gap, average discharge voltage, pulse frequency consid-
ering various discharge types and more. The parameters were observed under both 
optimal and suboptimal machining conditions. The acquired process signals are seg-
mented based on the frontal working gap, recognized as the most representative signal 
of EDM progression, to retain pertinent information. Each segment corresponding to a 
single slot undergoes statistical feature extraction, including mean value, variance, 
skewness, and kurtosis. This results in a dataset comprising 28 features, representing 
the four statistical parameters for each of the seven additional acquired signals. An 
anomaly detection approach is employed, utilizing machining data under standard con-
ditions as the training set. Subsequently, the system is tested using a dataset of in-
duced degraded machining signals, employing the Six Sigma approach. This approach 

he training 
phase, and a range of six sigma is established to identify anomalies – any data point 
falling outside this range is flagged as anomalous. The authors assert that their meth-
odology yields excellent results in anomaly detection based on this comprehensive 
approach. 

Abhilash et al. [ABHI21b] addressed a similar approach using electrical process data 
through measuring the current and voltage signals. The discharge energies, pulse fre-
quency and the pulse proportion considering the pulse classification were extracted 
from the recorded data to evaluate the process and forecast unstable scenarios. Fur-
thermore, this evaluation is supposed to be used for an adaptive control and adjust 
these input parameters. In total 36 different setups with four input parameters were 
varied for the experiments. Since the setup is not able to record the high frequency 
process data continuously, the results only are representative for constant process 
conditions and the investigated parameter space.  

Boccadoro et al. [BOCC18, BOCC20] presented the basis for using continuously rec-
orded data in wire EDM by implementing a location sensor in an industrial wire EDM 
machine. By measuring the two currents flowing to the wire through upper and lower 
feeding path separately, the recording of spatially resolved single discharges could be 
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realized. A protection system is introduced which ensures that the number of dis-
charges at specific workpiece heights is limited by thresholds. On the one hand, this 
approach should be able to prevent wire breaks, as a local accumulation of discharges 
can be detected. On the other hand, a correlation between the discharge distribution 
along the workpiece height and the component curvature should be able to be identi-
fied. However, the investigations do not address the exact frequency at which dis-
charges are continuously recorded. The illustrated values are averaged. Furthermore, 
no distinction is made between the discharge types during recording, only normal dis-
charges are recorded.  

Based on this discharge location tracker, a simulation of the electrode in wire EDM 
was performed [DICA20]. A real-time numerical integration approach to model the tran-
sient behavior of wire thermal dynamics and wear using Finite Element Method (FEM), 
Finite Differences and Euler numerical methods was conducted. By integrating data 
on single discharge position and energy obtained from discharge location tracker with 
the wear model and real-time computations, the method enables realistic modeling and 
monitoring of wire condition across various part complexities. The simulation yields 
valuable insights into enhancing process control efficiency and validates the distribu-
tion of discharges as an effective indicator for preventing wire break strategies in wire 
EDM operations [DICA20]. However, the research does not consider the distribution of 
different discharge types which significantly affects the generated discharge energy. 
Furthermore, only a strong simplification was considered for modeling the thermal load 
[BANE93]. The actual energy dissipation required for the temperature profile of the 
electrode in wire EDM is still not known. Schneider [SCHN21] has so far presented the 
most extensive work on the energy dissipation in EDM and gained significant new in-
sights. But even with comprehensive investigations in die sinking EDM, he was only 
able to provide a range for the dissipation of energy in the various areas, which differs 
greatly depending on various process boundary conditions and assumptions. This 
once again underlines the challenge of transferring complex simulation models to other 
boundary conditions. 

Conde et al. [COND18a] analyzed the correlation between the produced workpiece 
curvature due to wire deformation as well as vibration and the distribution of different 
pulse types. Analysis of discharge patterns reveals correlations between machining 
accuracy and discharge quality. Results indicate a substantial increase in wire defor-
mation, up to 45%, when cutting circular interpolations with a radius of 0.8 mm com-
pared to straight cuts on similar thickness parts. Additionally, a relationship is estab-
lished between wire lag and discharge characteristics, indicating a shift in discharge 
types with increasing radii, thereby impacting machining precision. Similar observa-
tions were made by Guo et al. [GUO03] in their simulation and analysis of electrode 
fluctuations in wire EDM. The findings demonstrate that attaining an optimal equilib-
rium among discharge energy, discharge frequency, wire tension, and wire span re-
sults in a notably more uniform distribution of discharge points across the wire length. 
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Parameter Optimization  

Ahmed et al. [AHME17] addressed common defects like surface lines, surface rough-
ness and a white layer. Approaches are proposed individually for each type. Before 
machining, selecting optimal process parameter values is recommended and during 
machining, monitoring conditions to predict and prevent defects are essential. A com-
bined online-offline fuzzy-nets approach for addressing these issues is recommended. 
Notably, the paper introduces a novel method for preventing surface lines in wire EDM, 
involving high frequency sensing, a new algorithm for detecting consecutive short cir-
cuits, and proactive pulse-off time adjustment through an adaptive fuzzy nets system, 
as validated experimentally. 

A study by Goya et al. [GOYA22] deals with the optimization of a technology under 
consideration of the cutting speed and the formation of the white surface layer. A meth-
odology was developed that uses Multi-Objective Particle Swarm Optimization 
(MOPSO) [SHAM22, WANG18b] to adapt the technology parameters for machining an 
AZ31 alloy. 

Besides there are several studies using Single Objective Taguchi Methods and Multi-
Objective Optimization Methods to correlate process parameters with the process per-
formance. For example, by applying these statistical methods optimized machining 
setting parameters might be identified to produce an aimed surface roughness and kerf 
width [DURA13, LODH14]. Other works also included the prediction of material re-
moval and considered chemical compositions of materials as an influence parameter 
[THAN19, UGRA15].  

In conclusion, the use of process data in wire EDM is able to identify clear correlations 
between process parameters and the process performance. Therefore, analysis of pro-
cess data can be exploited for process monitoring, development, and optimization. It 
was even possible to implement process control based on these correlations, but this 
was grounded on heuristic and empirical models. The further development of wire EDM 
machines, particularly the generators, means that even shorter pulses can be ignited 
and controlled. As a result, process is even more dynamic at higher discharge frequen-
cies, which, due to its stochastic nature, can no longer be described with sufficient 
accuracy by evaluating process data using only statistical methods. Especially, the use 
of continuously recorded process data to consider process changes during machining 
results in large amounts of data and requires advanced analysis methods.  

2.3 Machine Learning Methods  
Nowadays the modern manufacturing technologies are facing great challenges be-
cause of the increasing demands of productivity and quality. To meet these increasing 
demands, data collection, monitoring and analysis tasks play an increasingly important 
role in the machining process. This would inevitably lead to continuous generation of 
huge amounts of data. The system should be able to react fast to the input data and 
learn useful information from it, as the data stream is usually too large to be cached for 
later analysis and the raw data needs processing to become useful information. This 
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processing of large amounts of data is nowadays usually done with the help of Artificial 
Intelligence (AI) [FRAU18].  

Although AI has been applied for years, there is still not a unified definition of it. But it 
is generally agreed that AI is the ability of digital computers to solve tasks normally 
associated with higher intellectual processing abilities of humans or to be developed 
to do things at which, at this moment, people are better. For example, monitoring large 
amounts of data, finding patterns and new insights, predicting and interpretating un-
structured data as well as interacting with the physical environment. In recent years, 
artificial intelligence has developed more in the direction of machine learning, since 
humans are still far superior to computers in terms of learning ability, a particular 
strength of human intelligence which enables people to adapt to the most varied envi-
ronmental conditions and to change our behavior accordingly. So according to the def-
inition, machine learning is a central sub-area of AI [ERTE16]. 

In general, machine learning encompasses methods that are to recognize relationships 
in existing data sets using learning processes and make predictions basing on the 
patterns [MURP12]. The approach of Mitchell is often used, the basic concept of the 
machine learning process as “a computer program is said to learn from experience E 
with respect to some class of tasks T and performance measure P, if its performance 
at tasks in T, as measured by P, improves with experience E”. To put it more simply: 
the ability of a machine or software to learn to do certain tasks is trained based on 
experiences respectively data [MITC13]. For this purpose, machine learning methods 
can mainly be divided into two different types. They are displayed in Figure 2.5 and 
explained in detail in the following [BADI20, BISH06, MURP12, RICH19].  

 

Figure 2.5: Overview of main machine learning (ML) algorithms according to [BADI20] 

Unsupervised Machine Learning 

Unsupervised machine learning algorithms use a set of unlabeled data. The algorithm 
detects hidden structures and patterns within the data set without a result being defined 
in advance. A method variant of unsupervised learning is the principal component anal-
ysis. This variant enables a reduction of the attributes. Linear combinations are used 
to combine existing attributes into new attributes known as principal components. The 
group of anomaly detection also belongs to the unsupervised machine learning 
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methods. This variant makes it possible to recognize outliers within the data records 
[AUST21, BADI20, BISH06]. 

Another method variant of unsupervised learning is the cluster analysis. It is a fre-
quently used example of unsupervised learning. The data is automatically divided into 
groups with similar characteristics. The individual clusters are only interpreted after-
wards by the user. This procedure can be used to discover hidden correlations within 
large data packages [AUST21, BUXM21, FROC21].  

However, clustering analysis is usually accompanied with three main challenges, 
which are first defining a unit to measure the similarity and hence judge the closeness 
or relatedness between different elements; second applying an efficient algorithm to 
discover and group these similar elements in clusters in an unsupervised manner and 
third derive descriptions that can characterize the elements of a cluster in a precise 
and concise manner [AHMA07, LARO14, WARR05]. Clustering is the most frequently 
used unsupervised ML algorithm and is also employed in exploratory data analysis to 
find similar entitles or hidden patterns. Generally, clustering algorithms try to group 
data points in clusters that are as different as possible from one another while keeping 
intra-cluster data points as similar as possible [BISH06]. 

In clustering tasks, unlike classification tasks where the number of classes is known, 
determining the appropriate number of clusters is challenging and crucial for evaluating 
clustering algorithms [JIAW12, LIU11]. The number of clusters not only influences al-
gorithmic choices but also affects the granularity and accuracy of cluster analysis. This 
hyperparameter balances compressibility and accuracy, where compressibility is max-
imized by considering the entire dataset as one cluster, while accuracy improves when 
each data point is treated as a separate cluster. However, the latter approach lacks 
data aggregation. Effective methods for determining the optimal number of clusters 
and evaluating cluster quality are the Elbow Method and more commonly used the F1-
score [JIAW12, LIPT14]. 

Supervised Machine Learning 

In supervised machine learning, correlations between input data X and one or more 
resulting target variables Y are examined. These target variables can be a numeric 
value or a class. Ideally, the relationship can be represented by a function Y = f*(X) 
with f*:X Y. For this purpose, n  N data with information about the input parameters 
and the associated target variables Y are collected. This data set can be used to train 
a model that can identify the relationships between the input parameters and the re-
sulting target variables. A key challenge in model selection is that minimizing empirical 
risk does not guarantee generalizability, and the expected risk of an estimate is not 
directly accessible. One solution is to use a second dataset with known target values, 
called a validation dataset. The idea is to ensure generalizability by using data for val-
idation or testing that has not yet been processed by the algorithm. This approach 
helps to detect and avoid overfitting. It should be noted that validation and test data 
differ in their function and have a different meaning in the field of data science than in 
classical engineering.  
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The data sets are defined as follows according to [PLAU21]. The training data set is a 
sample of pre-classified or pre-evaluated training examples, on the basis of which a 
machine learning process determines the parameters of a model (by minimizing the 
training error). The validation data set is a sample of pre-classified or pre-assessed 
test examples used for model selection: The test error is estimated using this data set 
to determine the optimal hyperparameters. The test data set is a sample of test exam-
ples, which are also used to estimate the test error in order to assess the quality of the 
final classifier or the regression model [PLAU21]. 

A typical workflow for implementing and testing a supervised learning method is done 
in four steps according to [PLAU21]. First, the entire dataset is partitioned, usually 
through random selection, into a training set, a validation set, and a test set. A common 
split is 70% for training and 15% each for validation and test sets. Second, model pa-
rameters are determined for a selection of hyperparameters. Hyperparameter selection 
can be done manually (grid search) or randomly (random search). Third, for each set 
of hyperparameters, the average loss is calculated using the validation set. Additional 
metrics may be used for evaluation. In practice, factors like processing speed and 
memory requirements can also be important. Finally, the model or hyperparameters 
that perform best in the validation step are selected and finally evaluated using the test 
set. In practice, the distinction between validation and test sets may not be strict. How-
ever, it is crucial that the training set does not overlap with the validation/test set to 
ensure proper evaluation [PLAU21]. 

Supervised machine learning is mainly divided into regression and classification. The 
main difference between these approaches lies in the type of output variable being 
predicted. Regression deals with predicting continuous numerical values, while classi-
fication deals with predicting discrete categories or classes. Both regression and clas-
sification are fundamental tasks in supervised learning, where the model learns from 
labeled data. Artificial Neural Networks represent a common method that can be em-
ployed for both different tasks and have gained immense importance in the past 15 
years. They can be used where large or enormous amounts of training data are avail-
able [BADI20, BISH06, MURP12, PLAU21].  

The basic idea behind Artificial Neural Networks (ANN) is based on the way the human 
brain works. Thus, ANNs consist of nodes and edges that act as a kind of neurons and 
synapses. The nodes (units) act as processing units and are connected by weighted 
edges to pass on information. The ANN can be divided into three layers. The first layer 
consists of the input units. They contain the necessary input data. The information from 
the input units is passed on to the second layer via edges. This can consist of several 
layers and forms the inner area of the ANN. This is where the decisive functionality of 
the ANN is determined. There are no clear rules for the number of hidden layers to be 
applied and therefore a combination of empirical values and experiments is used as a 
guide. The number of nodes within the individual layers can also be varied. The output 
layer forms the conclusion of the ANN. This contains nodes with the corresponding 
target variables. The general structure of a neural network is depicted in Figure 2.6 
[AUST21, MATZ21, MURP12, PLAU21, RICH19, STYC17]. 
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Figure 2.6: Structure of a neural network [MATZ21] 

Various problems can be solved with an ANN. If classification problems are dealt with, 
the ANN has a node in the output layer for each possible class. The output values 
represent the probability or certainty that the class represented by the node applies. 
The class with the highest probability value is then assigned to the input data set. In 
this case, only one intermediate layer is usually required. A typical use case would be 
the classification of animal photos. Based on the pixels of the photo, the ANN deter-
mines the class assignment to the individual animal groups. For problems that have 
absolute numbers as target values, several intermediate layers are usually used. The 
result can be taken directly from the nodes of the output layer, which contain an abso-
lute numerical value. For example, an ANN can make predictions about the surface 
roughness of a manufactured component [AUST21, MATZ21, MURP12, PLAU21, 
RICH19, STYC17]. 

In machine learning hyperparameters are configuration settings that are external to the 
model and cannot be directly learned from the data. But they need to be tuned and 
optimized to achieve optimal performance of the model [BISH06, MATZ21]. Especially, 
in hyperparameter optimization, overfitting presents a significant challenge. This phe-
nomenon occurs when a learning algorithm fits the training dataset so precisely that it 
memorizes noise and idiosyncrasies within the data. Consequently, the performance 
of the algorithm decreases when tested on an unknown dataset. The amount of data 
used for the learning process plays a crucial role, with small datasets being more sus-
ceptible to overfitting than larger ones. However, even large datasets can be affected 
by overfitting, despite the complexity of the learning problem. Overfitting diminishes 
the generalization properties of the model, rendering its performance unreliable when 
applied to new measurements [GOOD16]. This creates a dilemma, as the goal of op-
timization algorithms is to find the best solution in parameter space based on a prede-
fined objective function and available data. Underfitting is the opposite of overfitting in 
machine learning. It occurs when a model fails to capture the variability present in the 
data adequately [GOOD16]. For instance, if a linear classifier is trained on a dataset 
that follows a parabolic pattern, the resulting classifier will lack predictive power and 
fails to accurately represent the training data [JABB14, MURP12]. Solutions can be a 
different preparation of the data and its quantity, a larger number of training epochs 
and many other methods to avoid overfitting and underfitting [JABB14]. An epoch is 
determined by processing all training data during the training of ML models [PLAU21]. 
The goal is to find a balance where the model performs well on the training data but is 
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also able to react to new data. Figure 2.7 exemplarily presents schematically the dif-
ferent fits.  

 
Figure 2.7: Presentation of different model fits according to [FERG22] 

However, as the complexity of tasks increases, the limitations of traditional neural net-
works become apparent. Deep neural networks or deep learning can model a large 
number of model parameters in the range of 104 to 1011 in order to learn highly individ-
ual classifiers and regression functions from training data, while maintaining a high 
degree of generalizability [PLAU21]. Therefore, deep learning represents a significant 
evolution in neural network architecture, characterized by the incorporation of multiple 
hidden layers. Unlike shallow neural networks, which may have one or two hidden 
layers, deep neural networks can have tens or even hundreds of layers. This depth 
allows these networks to automatically learn hierarchical features and representations, 
capturing intricate patterns in the input data. The specific threshold for the number of 
hidden layers that qualifies a model as "deep" can vary [MURP12]. What's more im-
portant than the exact number of layers is the idea that the architecture is deep enough 
to capture complex patterns and abstractions in the data. It is essential to note that the 
field of deep learning is dynamic and advancements in architecture and training tech-
niques continue to evolve. Through a process of forward propagation and backpropa-
gation, these networks are trained on large datasets to learn representations of the 
data that enable them to perform tasks such as classification, regression, clustering, 
and generative modeling. Deep Learning has demonstrated remarkable success in 
various domains, including computer vision, natural language processing, speech 
recognition, and reinforcement learning, often achieving state-of-the-art performance 
in complex tasks [GOOD16, MURP12, SWAM17]. 

2.4 Machine Learning in Wire EDM  
After the use of data in wire EDM has been reviewed and different machine learning 
models have been presented in detail, the following section provides an overview of 
the work that has used the machine learning approach in EDM. The potential and the 
weakness of applying these methods in EDM, especially wire EDM, is highlighted. This 
is because most of the work in this field of research has two major deficits. Firstly, in 
most studies only the correlation between the discrete machine setting variables and 
the process evaluation variables was determined. The number of input parameters for 
the system and their variation options were kept so low that these relationships can be 
mapped sufficiently well with statistical models descripted in Chapter 2.2. Furthermore, 
the biggest weakness in the presented studies applying machine learning methods in 
EDM is the insufficient amount of training and test data as well as the data quality. 

Underfitting Overfitting Right-Fit
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Data quality can be evaluated by various factors such as completeness, consistency, 
validity, uniqueness, correctness and actuality [ASKH13]. The typical amount of nec-
essary data is not generated in almost any work to fulfill the required criterion and to 
develop such models with valid significance. On the contrary, in most cases the hy-
perparameter optimizations show a classic overfitting of the models, which leads to 
improbably high prediction accuracies of the models and does not provide a valid state-
ment to the original problem [MURP12]. Finally, the validity of the studies is examined 
and a general research deficit for the underlying work is discussed. 

Using Discretely Recorded Data  

The first studies dealing with the application of machine learning in EDM have already 
taken place back in the 1990s. In their studies, Tarng et al. [TARN95] developed a 
neural network to map the relationship between process parameters and process per-
formance. Similar works were conducted by Spedding et al. [SPED97] to model the 
correlation between some electrical and mechanical parameters and the surface 
roughness, waviness as well as the cutting speed. However, only discrete machine 
settings were used for the model and a low number of training data. 

Also, many current studies have enormous data weaknesses, both in terms of their 
quality and even more so in the quantity of data used. For example, an attempt was 
made to train a classical ANN model that predicts the surface roughness, the accuracy, 
the material removal and wire wear on the basis of only 27 test series with four input 
parameters [GURU17]. Unsurprisingly, overfitting in models with limited data and hy-
perparameter optimization often results in accuracies approaching 100%, highlighting 
the lack of data-based validity and technological interpretability in such studies.  

The work of Ugrasen et al. [UGRA14] can be mentioned here as another study that 
leads to unrealistic model accuracies due to a lack of data and overfitting. Even though 
the use of a neural network for mapping complex content offers a promising solution, 
the results show the problems in this subject area. The parameters discharge duration, 
pulse interval time, discharge current and feed rate were used as input parameters to 
predict the quality and productivity of the wire EDM process. These were each set to 
four different levels when generating training data. A backpropagation algorithm was 
used to train the model. With only a few data for training, the surface roughness, the 
material removal rate and the geometrical deviation could be predicted with an unreal-
istic accuracy. In further studies, similar models were used to improve the removal rate 
and surface roughness as well to predict the accuracy and electrode wear e.g.: 
[BAHL20, CHOU18, MING15, SAHA22a, SAHA22b, SUDH22a, SURY17, ULAS20, 
THAN19].  

Other studies [CHEN10, MAJU15, TARN95] combined the use of ANN with evolution-
ary algorithms such as Simulated Annealing, Genetic Algorithm (GA) or Particle Swarm 
Optimization (PSO) to correlate process input parameters and process performance. 
Simulated annealing and Particle Swarm Optimization differ in their inspiration and ap-
proach. Simulated annealing, inspired by metallurgical processes, uses a probabilistic 
method to explore solutions gradually, accepting suboptimal solutions with decreasing 
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probability [KIRK83]. In contrast, Particle Swarm Optimization is inspired by social or-
ganisms' collective behavior, utilizing particles in a multidimensional space that adjust 
positions based on individual and swarm experiences. PSO emphasizes cooperation 
among particles for efficient exploration and convergence [GAD22]. The key distinction 
lies in their exploration strategies and the mechanisms used for solution refinement. 

More complex methods, such as the use of Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS), have already been applied in some studies [ABHI20a, ÇAYD09, GOYA21, 
MAHE15, NARE20, SAHA23, SING20]. This system is a hybrid machine learning 
model that combines fuzzy logic and neural networks. ANFIS aims to adaptively model 
complex systems by learning from data. Clustering techniques can be used as a pre-
processing step or in conjunction with ANFIS in certain scenarios [JANG93].  

The studies using the ANFIS approach have different goals. For example, Abhilash et 
al. [ABHI20a] investigated the correlation between mean gap voltage variation and wire 
break occurrences. The mean gap voltage variation Vm is considered as an indicator 
of instabilities in the working gap, identified as a primary cause for wire breaks and 
suboptimal part quality. It is calculated as the difference between servo voltage and 
mean gap voltage. The experimental design involves only 31 experiments based on a 
central composite design (CCD) of response surface methodology (RSM), with pulse 
on time, pulse off time, servo voltage and wire feed rate as input parameters. The 
ANFIS model demonstrates high accuracy in predicting Vm, nevertheless the results 
must be questioned due to the small amount of data. 

Caydas et al. [ÇAYD09] used the approach to predict the surface roughness and the 
thickness of the white surface layer. For this purpose, they used an ANFIS model, 
which can be trained very efficiently. The pulse duration, the open-circuit voltage, the 
dielectric flushing pressure and the wire feed speed were used as input parameters.  

Maher et al. [MAHE15] also used the hybrid ANFIS model to make predictions about 
the effects of varying discharge durations, pulse currents and different wire tensions 
on the cutting speed, surface roughness and the heat-affected zone. A functional 
model was also created here. The deviation of the predicted values from the actual 
measured values is less than 4.2% on average. However, the authors make no attempt 
to address the interpretability of this result.   

Similar approaches to machine learning techniques were conducted by Venkatarao et 
al. [VENK23] to optimize the development of sustainable production processes and 
reduce energy consumption. They used a hybrid optimization approach; the so-called 
Hybrid Teaching and Learning-Based Optimization (HTLBO). This method was devel-
oped to perform multi-criteria optimizations. Teaching–Learning-Based Optimization 
(TLBO) is a nature-inspired optimization and simulates the teaching and learning pro-
cess in a classroom setting to iteratively improve a population of solutions for an opti-
mization problem. The algorithm designates one solution as the teacher, considered 
the best, and others as students. During the learning phase, students adjust their po-
sitions based on the teacher's influence, aiming to converge towards an optimal solu-
tion. TLBO is known for its simplicity and efficiency in solving various optimization 
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problems across different domains [RAO11]. With this methodology the kerf width 
(KW), the material removal, the surface roughness as well as the power consumption 
(PC) were optimized resulting in specific working conditions. 

Rahu et al. [RAHU23] used a Particle Swarm Optimization with a regression model 
based on the TOPSIS method (Technique for Order of Preference by Similarity to Ideal 
Solution) to find optimal process parameters for machining shape memory alloys. TOP-
SIS is a multi-criteria decision-making method used to determine the best alternative 
from a set of options. It evaluates alternatives based on their proximity to an ideal 
solution while considering multiple criteria [HWAN81, OLSO04]. In the study, a CNN 
model is employed to classify SEM images based on the material removal rate, utilizing 
pixel intensity histograms.  

Drzajic et al. [DRZA22] developed an integrated autonomous system to execute the 
responsibilities of a virtual machine tool operator. Bayesian Optimization (BO) employ-
ing Gaussian Processes (GP) is applied for model-based adaption [TULL93]. The sys-
tem's functionalities are showcased across various contexts through case studies in-
volving EDM processes. Multi objective optimization is performed, and prior knowledge 
of existing optimization session is transferred to a new one to decrease the number of 
required experiments. This approach really is a methodical way of systematically de-
veloping technologies based on knowledge and data. However, the use of machine 
settings limits the application to the continuous process with unchanging machining 
conditions.  

In other studies, attempts were also made to map the relationship between the ma-
chine settings and process performance, but even with the use of such complex meth-
ods, the results do not offer any new value compared to empirically and simulatively 
determined findings, as the quantity and quality of data is not high here either.  

In addition to models for predicting quantitative values for cutting rates or surface cri-
teria parameters, there is also the approach of evaluating the process using classifica-
tions. Abhilash et al. [ABHI21a] used classification models to indirectly evaluate the 
wire EDM finishing process. For this purpose, an attempt was made to use surface 
images to train a model that recognizes micro-defects that can be traced back to similar 
parameter settings and suggests an optimization of the parameters on this basis to 
improve the surface. The approach is interesting as it considers the quality after finish-
ing, but the generation of images is associated with an enormous effort and is reflected 
here by the small number of 27 surface images used.  

An equal concept was chosen to map the wire wear and thus predict the wire break 
[ABHI22b]. Again, a very small data set of only 18 trials with five input parameters was 
used for training and testing. To predict wire breaks, process signals were employed, 
and the model was extended by a statistical discharge pulse analysis. However, it of-
fers no added value compared to the work on this topic presented in Chapter 2.2. 

Workpiece images as input parameters were also employed to evaluate the process 
quality, but in sinking EDM [SAEE21]. In this study, deep neural networks were applied 
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to obtain the surface roughness and defect detection. A deep learning model was de-
veloped by using different types of neural networks.  

In further investigations, the analysis of the different pulse types was extended by train-
ing machine learning-based classification models [ABHI22c]. Different methods such 
as decision tree, Naive Bayes, Support Vector Machine (SVM), K-Nearest Neighbor, 
and ANN were used. The ANN showed the highest accuracy of over 98% for classifying 
pulses into the four discharge types presented: normal, arc, short and open. Same 
approach was used by Zhang et al. [ZHAN15] for a pulse classification and yielded in 
similar results. However, the detection of different discharge types can also be realized 
by a simple signal analysis [BERG18b, OßWA18]. 

In another research the challenge of optimizing wire EDM process setting parameters 
is addressed, where manual adjustments failed to achieve optimal conditions 
[ABHI20b]. An ANN-based classification model to predict process events based on 
setting variables, classifying events into wire breaks, “sparks absence” (indicating in-
adequate processing conditions) and normal conditions is introduced. The input varia-
bles pulse-on time, pulse-off time, control voltage, and wire feed speed were utilized 
for classification. The neural network, featuring four input variables and three output 
categories, incorporated a central structure with 10 hidden layers. Optimal hidden layer 
determination involved experimenting with layer counts from 1 to 15, adopting the con-
figuration with the best results. Backpropagation model measured quality using the 
cross-entropy loss function, terminating training after six consecutive iterations without 
a decrease in the error. Evaluation using a confusion matrix revealed a noteworthy 
alignment between target classes and algorithmic classification results. However, the 
work reveals two major weaknesses. Firstly, the basic categorization of the process 
events, in particular the description of "spark absence", is not comprehensible. Open-
circuit pulses lead to slower machining, see Figure 2.4. But on the one hand this is only 
caused by a disproportionately high frequency and on the other hand this type of char-
acteristic discharge is no longer present in modern wire EDM machines [BERG18b]. 
The determination of this process condition in the study is not explained. Secondly, 
this model is limited to a narrow parameter space and the extensibility to other process 
conditions is not given by the training with discrete parameters.  

This work was expanded increasing the quality of data and methods while aiming the 
same goal [ABHI22c]. First, the total number of experiments was increased up to 108. 
Second, in addition to machine setting parameters physical process parameters were 
recorded and used for training. However, only discrete data was recorded here, where, 
for example, a value for the short circuit ratio is used for a test. This increased the total 
amount of data, but there is still too little data to generate ANN models with high sig-
nificance. Secondly, discrete data does not represent the continuous process accu-
rately enough to train machine learning models.  
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Using Continuously Recorded Process Data 

As the wire EDM process is very slow and experiments are associated with time-con-
suming processing and slicing, only a small number of experiments is usually carried 
out. However, a statistically based reduction in the number of experiments using clas-
sic Design of Experiments (DOE) or Taguchi methods does not allow machine learning 
models to be trained with a reduced amount of data. On the contrary, these preliminary 
considerations are a prerequisite for generating data that is important for the process 
description under the most relevant process conditions possible. Based on such ex-
periments, however, it is essential for the application of machine learning methods for 
process evaluation in wire EDM that continuous process data is used. Works that at 
least used real process data with different quantity for various purposes are presented 
below. 

Huang et al. [HUAN18] conducted a study utilizing real process data and a Support 
Vector Machine (SVM) approach to determine real-time workpiece height in wire EDM. 
Preliminary investigations identified suitable input parameters, exploring the influence 
of various factors on machining states. Changes in machining conditions were ob-
served by altering frequencies and feed rates, with some parameters proving influen-
tial. Pulse intervals and programmed feed rates were key factors, forming input param-
eters for the SVM model. Training data were generated by cutting stepped workpieces 
of different thicknesses and tests demonstrated the model ability to accurately predict 
workpiece height, with a maximum deviation of 2 mm. 

Liao et al. [LIAO02] also aimed to estimate the workpiece height by using machine 
learning based on electrical process signals. They divided the discharges into different 
types, collected and analyzed them. The total discharge frequency, normal discharge 
and abnormal discharge ratio are used as input parameters for the neural network with 
an 8-9-2 topology and backpropagation. Utilizing the real-time estimation of the work-
piece height, a rule-based approach is suggested for dynamically adjusting parame-
ters. This strategy aims to ensure stable machining conditions and enhance overall 
machining efficiency. However, a correction approach for the thickness identification 
coefficient was introduced, aiming to enhance the accuracy of estimating workpiece 
height [LIAO13]. Experimental findings confirm the feasibility of achieving precise 
online estimation of workpiece height, with an estimation error below 1 mm and a pro-
cessing time within one second. It must be considered that determining the workpiece 
height can also be realized by simple signal analyses and that the accuracy does not 
offer any advantages over the conventional methods presented in Chapter 2.2.  

Portillo et al. [PORT08a, PORT08b] presented a model for interpolating instability 
trends in wire EDM using an Elman-based Layer Recurrent Neural Network (LRNN). 
An LRNN is a Recurrent Neural Network architecture that includes an Elman layer. 
This design, featuring recurrent connections, preserves context information across se-
quential inputs, making it well-suited for tasks involving temporal dependencies and 
sequential data processing [DING08]. Various types of degraded behaviors in work-
pieces of two common thicknesses (50 and 100 mm) were identified. While the 
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identified degraded behaviors were consistent across the studied workpiece thick-
nesses, the thresholds for detection varied. Consequently, the study aims to develop 
a single empirical model capable of detecting process degradation across different 
workpiece thicknesses. A comparative analysis is conducted to determine the optimal 
ANN configuration, followed by the implementation of a strategy to detect degraded 
conditions in different workpiece thicknesses. However, it must be noted that the ac-
curacy of the model depends primarily on how the corresponding unstable states are 
defined. After all, these are designed heuristically, and the classification is particularly 
linked to the occurrence of wire breaks. A prediction with the model approx. 50 to 
250 ms before a wire break is not yet a significant improvement on previous statistical 
analyses presented in Chapter 2.2.  

Same method was applied by Conde et al. [COND18b] to predict the accuracy of com-
ponents produced by wire EDM. An algorithm, combining LRNN with Simulated An-
nealing optimization, corrects deviations in machined parts. The proposed solution sig-
nificantly reduces average deviation by up to 80% and decreases the Coefficient of 
Variation (CV) by 43%, especially effective in scenarios with substantial wire defor-
mation. Importantly, the solution is easily implementable on existing wire EDM ma-
chines. 

Wang et al. [WANG18a] introduced a novel approach to tolerance monitoring using 
unsupervised machine learning techniques for the manufacture of fir tree slots where 
component tolerances are subject to stringent requirements. Specifically, k-means and 
hierarchical clustering were investigated to avoid time-consuming experiments for es-
tablishing threshold values of the monitoring variable. The potential use of distribution 
ionization time was explored through preliminary experiments [WANG19b]. Efficiency 
in classifying regions based on wire infeed was observed in hierarchical clustering of 
ignition delay time distribution curves. Additional features extracted from these curves, 
notably average and kurtosis, demonstrated high Pearson correlation coefficients. Em-
ploying k-means with these features exhibited agreement with wire infeed. The pro-
posed technique underwent validation through wire EDM of an actual fir tree slot ge-
ometry under industrial conditions. Clustering results (using hierarchical clustering) 
were compared with deviations measured using a Coordinate Measuring Machine 
(CMM).  

Same authors employed a supervised machine learning approach, specifically a deep 
neural network, to establish a direct relationship between machining process data and 
tolerance defects [WANG19a]. They created extensive training datasets by varying 
machining parameters to produce again fir tree slots. The training data included varia-
tions in the lateral working gap (wire infeed) and the corresponding ignition delay times. 
Data collection involved an online recording application capturing ignition delay times 
of single discharges at a sample rate of 5 ms. Discharges were labeled based on their 
ignition delay times and categorized alongside the lateral working gaps. The dataset 
comprised ignition delay times as input and lateral gap as target parameters. The 
trained deep neural model demonstrated high accuracy in predicting the lateral gap 
during machining experiments, considering wire vibration uncertainties. Subsequently, 
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the model was utilized to predict defects in the first trim cut. Predictions of expected 
tolerances were compared to actual cut geometry measured using CMM, showing a 
high correlation. To validate their model, they imposed more stringent tolerance re-
quirements, enabling a comprehensive assessment of component quality. However, 
this validation process was limited to finishing processes and involved straightforward 
gap voltage analysis at a low sample rate, focusing on a small number of continuous 
discharges for effective monitoring. 

In another study, deep learning techniques were applied to predict an unexpected 
event like a change in the machining height for the main cut [SANC18]. The approach 
showed good results, but only 567 labelled examples for each category were used, 
which is considerably less than the recommended 5000 for the used technique 
[GOOD16].  

Caggiano et al. [CAGG16] trained a neural network with different structures to figure 
out the relationship between surface defects or marks and different groups of pulses, 
average discharge energy, average discharge current pulse, discharge frequency and 
open circuit ratio as input parameters. Relevant signal features were extracted from 
the voltage and current signals to construct sensor fusion pattern vectors. This ap-
proach was presented in detail by the same authors in [CAGG15]. Based on this the 
correlation vectors calculated for different time intervals are used to predict quality out-
put, which is 0 or 1 representing if it has lines and defect marks. In the end, it was 
concluded that the open-circuit ratio does not contribute to the identification of lines 
and marks.  

Finally, several reviews summarize studies dealing with machine learning in EDM 
which did not reveal any significant new findings or also demand critical interpretations 
of the presented results [KIM18, GUO23, MOHD07, SUDH22b, WEIC19].  

Table 2.1 summarizes the literature review on applying machine learning to wire EDM, 
considering the critical aspects of the used data and model validity. In most publica-
tions the black box approach was applied by using only discrete machine setting pa-
rameters (MSP). This approach requires large amount of data with high quality to de-
velop generic models, which are not only applicable under defined machining condi-
tions. It can be concluded that very few publications have briefly dealt with the use of 
continuously recorded process data including physical knowledge like the electrical 
process parameters (EPP) or discharge distribution.  
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Table 2.1: Overview of studies in the field of machine learning in EDM 
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2.5 Summary and Conclusions 
Wire electrical discharge machining (wire EDM) is a pivotal technique employed in the 
fabrication of intricate geometric features in high-strength materials. The mechanism 
behind material removal in EDM is primarily attributed to thermal loading induced by 
electrical discharges. This characteristic allows for manufacturing irrespective of the 
mechanical strength of the material being machined. The use of new control strategies, 
new wire electrodes and the design of optimized mechanical parameters, such as wire 
tension or flushing pressure, has significantly increased the productivity and quality of 
the process and thus expanded the areas of application of wire EDM in production 
technology. This was reinforced due to the advancements of machine generators, 
which allow individual discharges to be controlled with increasing precision.  

Extensive research has dealt with the use of data to evaluate the wire EDM process, 
especially, the occurrence of wire breaks. Nevertheless, even when adaptive rules are 
utilized, they are designed heuristically. The rules or fuzzy logic are usually based on 
simplified statistical models, such as empirically determined correlations between pro-
cess data and process evaluation variables. These models or correlations are limited 
by the boundary conditions under which they were determined. Due to the high dis-
charge frequencies, the acquisition of continuous process data is a challenging task. 
A great deal of previous research into process evaluation has focused mainly on the 
analysis of process data, independently applying statistical methods or machine learn-
ing methods. A method or system for recording continuous process data with the latest 
measurement technology has not yet been implemented. For this reason, previous 
work has considered process data that could only be recorded over a short period of 
time. However, these only represent a stationary or quasi-stationary process state.  

In the context of Industry 4.0, data-driven models are required and seen as an enabler 
for monitoring and process development through inherent process signals. Based on 
the literature review, there is no data-driven model that can evaluate the continuous 
process based on physical process data recorded in real time and is not limited to 
constant process conditions. 
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3 Objective and Tasks  
In most applications, wire EDM is used as one of the final steps in the process chain, 
which makes an investigation of monitoring and automation of the process a promising 
approach to acquire practical improvements which even may allow to generate a report 
with respect to the machined quality. Using the approach of implementing a Digital 
Twin, could achieve the integration in a networked adaptive production in the context 
of Industry 4.0. The use of process data in wire EDM represents a major challenge for 
the digitalization of the process due to its high frequency and stochastic behavior.   

Based on the presented state of the art, it is evident that the utilization of process data 
in wire EDM is inadequately investigated. The described studies do not consider 
changing process conditions. Neither the data-driven models are based on physical 
quantities, nor they were provided with a sufficient amount of high-quality data. A data-
driven methodology for process design and process monitoring in industrial application 
is also not given yet, especially, not for applying the main cut. Since productivity and 
contour accuracy are largely determined by the main cut [HEID21, KÜPP24, WELL15], 
this work examines main cut machining. 

Therefore, this thesis addresses the need for research through the discussion of the 
following research hypothesis:  

The process performance and product quality in wire EDM can be evaluated using 
machine learning methods based on continuously recorded electrical process data. 

The hypothesis is investigated by answering the following research questions: 

1. Can the high-frequency process parameters be recorded in a continuous pro-
cess and reduced to their relevant information? 

2. Which evaluation criteria are crucial applying the main cut and how do they cor-
relate with process data? 

3. Can a regression model evaluate the produced workpiece quality based on pro-
cess data for changed process conditions and enable a Digital Twin represent-
ing the machined curvature in real time? 

4. Can a classification model evaluate the process productivity based on process 
data for different technology setups? 

The aim of this thesis is the development of data-driven models to evaluate the contin-
uous wire EDM process based on physical process parameters. The conceptual ap-
proach of the work is illustrated in Figure 3.1. The procedure outlined here roughly 
covers the most important points for applying machine learning to a defined problem 
[MATZ21, SWAM17]. The procedure is based on the formulated research questions 
and is carried out in the following steps considering all important aspects [VIEI20].  

A sufficient amount of high-quality has to be ensured by data acquisition and pro-
cessing of process and product data. Because of the process-related high amount of 
data due to millions of discharges in the single-digit microsecond range and the 
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stochastically process behavior in wire EDM, the data acquisition is a challenging step 
for this process and has not been implemented in other works or industry yet. There-
fore, in chapter 4, a data acquisition system is developed to record, and store spatially 
resolved and characterized single discharges in the continuous process. The data is 
reduced in two steps without any loss of relevant information to minimize the necessary 
storage capacity to ensure recording unlimited process data. In the first step, only char-
acteristic discharge parameters are recorded by signal processing of the raw data in 
real time. Then, based on clustering analysis the maximum time interval is determined 
to average data without losing relevant information and increase information density. 
These data can be used to map the spatially resolved process energy. 

 
Figure 3.1: Procedure for the development of data-driven models to evaluate the wire EDM 

process  

Exploratory analysis is then used in chapter 5 to identify evaluation parameters for the 
main cut process and to investigate the first characteristic process parameters. For this 
purpose, different experimental setups are examined. Different process parameters 
are analyzed for the evaluation of the productivity regarding the cutting rate and the 
occurrence of wire breaks. After that the influence of varied process conditions on the 
produced workpiece quality considering macroscopic as well as microscopic changes 
is investigated. Here the relevance of quality evaluation criteria is determined.  

In Chapter 6, a regression model is developed to predict quantitatively the produced 
geometrical deviation based on only electrical process data. For this purpose, process 
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influence parameters are categorized causing geometrical deviation in form of work-
piece curvature. After the data generation under defined process conditions, the data 
is processed and various input parameters for the machine learning models are iden-
tified by feature engineering. For the regression model neural networks are used and 
the model architecture is determined. Next the data is split into training, validation, and 
test data sets. Finally, the model is trained and tested with different data sets to eval-
uate the model performance.   

In chapter 7, a classification model is built to differentiate between varied machine 
parameter setups based on process data and categorize them into defined productivity 
level. Here a deep learning approach is applied for which feature engineering is not 
needed. Building sub models, the different aspects affecting the productivity are clas-
sified considering speed, stability, and part quality. For this purpose, many technology 
variants are examined with changing machine setting parameters. The model archi-
tecture is built based on data sets with similar process conditions, here with the same 
workpiece height and changing machine setting parameters. To evaluate the transfer-
ability of the models, the testing is conducted with strongly changed process conditions 
such as changed workpiece height.  

Finally, this thesis demonstrates how this approach, and the results can be utilized in 
an industrial environment. Thereto, the recorded and pre-processed data is streamed 
to a cloud of an AI software provider to analyze it with advanced machine learning 
techniques. The results then are transferred to a digitized manufacturing dashboard of 
an end user using the wire EDM machine.  

 





4 Data Acquisition and Processing in Wire EDM 41

4 Data Acquisition and Processing in Wire EDM 
In the first part of this chapter, a short description of the used hardware and software 
for the experiments is presented, including the technical description of the devices. 
Once the problem has been defined, it is necessary to collect high quality data in order 
to develop a machine learning model. For this purpose, different measurement meth-
odologies are described for the acquisition of specific discharge energies and electrical 
signals in the continuous wire EDM process. A methodology for the detection of spa-
tially resolved process parameters is explained and validated. Finally, it is demon-
strated that the agglomeration of data ensures no loss of information in the data pro-
cessing step. For all experiments, a standard steel technology regarding to specific 
machining workpiece height was applied using the d = 0.25 mm brass wire bercocut
pro 900 by bedra [BERK24a]. Unless otherwise described, a workpiece height of 
h = 40 mm was always used.

4.1 Offline Measurement of Single Discharge Energies 
In the course of this work, all experiments were performed on a wire EDM machine 
from Makino. The U6 H.E.A.T. series machine, shown in Figure 4.1, offers a compro-
mise between a high machining speed and a high manufacturing quality of the ma-
chined workpieces, while at the same time keeping wire consumption low. Due to the 
achievable high flushing pressure, it is possible to perform very short cycle times during 
roughing. Deionized water is used as working medium [MAKI24].

Figure 4.1: Makino U.6 H.E.A.T. and technical data [MAKI23a]

The isoenergetic pulse control generator of the machine supplies a constant energy 
per discharge type. This energy is mainly specified by the machining technology. While 
the machining technology parameters are stipulated by the machine manufacturer, 
these values are confidential, as they are considered core competencies. However, 
the energy values for the different technologies per discharge type can be computed 
from the electrical signals of the discharges using equation (2.1). To determine the 
energy per discharge, an offline measurement setup was examined, and a signal 
analysis was conducted [BERG18b]. 
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High-frequency measurement technology by Tektronix was selected to measure the 
current and voltage signals of the wire EDM process. The modern equipment ensures 
the capability to handle high frequency measurements. The voltage signal is recorded 
with a THDP0200 high-voltage differential probe. According to the manufacturer, this 
device has a bandwidth of up to fvoltage = 200 MHz and can be applied in conjunction 
with any oscilloscope. In addition, voltages in the range of u = "±" 1500 V can be sam-
pled [TEKT23a]. To measure the voltage, the probe is tapped between the upper wire 
guide head and the sample or the machine table.  

The voltage signal is forwarded to a DPO7104C digital storage oscilloscope and can 
be displayed in real time. It has a bandwidth of foscilloscope = 1 GHz and can store up to 
125 million data points [TEKT18]. In parallel, a current signal is fed into the storage 
oscilloscope via a second channel. The current was recorded with a measuring system 
consisting of a TCP303 current probe and an associated TCPA300 amplifier. The total 
current through the workpiece can be measured using a specific clamping device and 
a toroid with a cable wound around it. The current probe is clamped to the cable of the 
toroid. From the current probe head, the signal is first passed on to the amplifier and 
then to the oscilloscope. The amplifier ensures that the measuring system covers a 
large current measuring range. This combination of current probe and amplifier covers 
a current measurement range between i = 5 mA and 150 A. The bandwidth of the cur-
rent measuring system is fcurrent = 15 MHz [TEKT23b].  

According to the manufacturer's specifications, the measuring equipment covers the 
resulting current and voltage ranges on a wire EDM machine. It must also be verified 
that the resolution of the measuring equipment is sufficiently high. According to the 
Nyquist-Shannon sampling theorem, the sampling frequency (also known as the Shan-
non frequency) must be at least twice as high as the maximum frequency occurring in 
the signal in order to ensure lossless measurement [ABEL09]. In the tests, the sam-
pling frequency corresponds to the smallest bandwidth of the individual measuring de-
vices. This means that the bandwidth of the discharge measuring system sets the max-
imum limit frequency of the signal to fmeasure = 7.5 MHz. The lowest signal characteristic 
is a short circuit and has a discharge duration of at least te = 0.5 μs. This means that 
the highest frequency appearing in the signal is fmax = 1 MHz and the Nyquist-Shannon 
sampling theorem is thus fulfilled. 

The storage oscilloscope can save and reproduce the fed signals at specified intervals. 
Various settings can be configured on the device for saving the data. The recording of 
a signal is determined by the set time span and the sampling frequency. In addition, 
the time or event at which data should be recorded can be specified. The oscilloscope 
offers various trigger options and for this purpose characteristics in the signal can be 
selected. Two different trigger events were used for data recording in the tests. For 
recordings during the cut that do not lead to wire breaks, an edge detection as a single 
event is selected as trigger type. Figure 4.2 shows a screenshot of the storage 
oscilloscope when edge detection was applied. After manual confirmation by the 
operator, data recording is started when a rising or falling edge exceeds or falls below 
a value according to the settings. Here, the edge voltage that reaches or exceeds the 



4 Data Acquisition and Processing in Wire EDM 43 

value of u  18 V was chosen to stir a discrete recording in the continuous process. At 
least five recordings were conducted for each setting in different process technologies 
to determine the electrical process parameters such as discharge energies. The 
measurements were carried out with a sample rate of the oscilloscope 
foscilliscope = 200 MHz and a recording time of t = 200 ms resulting in 40 million data 
points for the current and voltage signal.  

 
Figure 4.2: Trigger concept - edge detection 

In the following the signal analysis of the recorded current and voltage raw data is 
explained. An analysis algorithm in Matlab is developed to extract process parameters 
from the current and voltage signals. Matlab is widely used for numerical computation, 
data analysis, visualization, and algorithm development. Its strength lies in its ability to 
perform calculations with matrices. This capability is particularly advantageous for 
evaluating wire EDM data, where large matrices are common due to the high number 
of discharges.  

First, the current and voltage signals are read in and saved as vectors. Then, the sig-
nals are filtered to remove the noise since noise in signals can lead to problems in the 
feature extraction of data records [STEA18]. A low-pass filter and a moving average 
filter are used for filtering. The cut-off frequency and the order of the filters as well as 
the group delay were determined by a Fast Fourier Transformation (FFT) and by test 
runs. 

Once the raw signals have been prepared, the signals systematically run through loops 
under defined conditions. The procedure is exemplarily explained by analyzing the cur-
rent signal. First, all discharges are determined. To achieve this, the program checks 
the current signal and uses a logical operation to create a new vector of the same 
length as the current signal vector. This new vector consists only of two distinct entries 
(0 and 1) indicating whether the comparison operation is fulfilled. For this purpose, the 
loop checks which data points of the current exceed a specific value, e.g. i  50 A. For 

Edge voltage

Data points per 
second

Time span per division

Start of

Current i / A
Voltage u / V



44 4 Data Acquisition and Processing in Wire EDM 

illustrative purposes only, the value 150 is entered in the logical vector for each point 
where this condition is met, otherwise a zero is inserted. Figure 4.3 depicts a section 
of the current signal and the logical vector. As shown in the diagram, a value is entered 
in the logic vector for each position i  50 A. The red circles in the diagram show the 
point at which the current assumes the value i = 50 A. Based on the created vector, 
the exact start and end points of the individual discharges can now be determined 
using new conditions. This is done by iteratively increasing and reducing until the lines 
of the logical vector reach the corresponding current values of i = 0 A. The results of 
these loops in Figure 4.3 show the precise detection of the start and end of a single 
discharge.

 
Figure 4.3: Detection of the exact start and end point of a discharge 

With the same approach, the ignition delay time or the build-up of the open-circuit volt-
age can be detected. By the determination of these discharge characteristics, the cur-
rent and voltage parameters can be calculated individually for every single discharge. 
With this methodology, an automated analysis of process parameters could be real-
ized. 

Based on this, different discharge types were identified. Figure 4.4 shows the current 
and voltage signals of different discharge types occurring on the used wire EDM ma-
chine applying a main cut. The extracted process parameters are shown in the diagram 
(a), which represents the signal of a normal discharge, following a pattern similar to 
normal discharges as described above [HENS17, KLOC07, KUNI05]. Initially, an open-
circuit voltage is established, typically set by technology-specific variables. In a normal 
discharge on this machine, the open circuit voltage reaches around ui = 100 V. How-
ever, in the discussed experiments, at least a ui  70 V is required. This voltage is 
sustained for a brief period before abruptly dropping to a very low value, initiated by 
the generator controller. Subsequently, the generator's power stage switches from low 
voltage to higher levels, causing the discharge current to increase. The specific current 
profile during discharge is influenced by processing technology settings, with the max-
imum discharge current typically exceeding ie  300 A. 

The abnormal discharge depicted in the diagram (b) on the right reaches the same 
energy level of a normal discharge. This means that the power stage of the generator 
is also ignited here. However, it does not correspond exactly to a normal discharge, as 
a lower open-circuit voltage is built up during the ignition delay time. Consequently, 
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any discharge with an open-circuit voltage of ui < 70 V was here defined as an abnor-
mal discharge.  

The abnormal discharge drawn in the diagram (c) differs from a normal discharge both 
in the ignition delay time and energy. The open-circuit voltage is usually even lower 
than that of the previously described abnormal discharge. This value is so low that the 
machine does not switch on the power stage of the generator. This results in signifi-
cantly lower discharge energies. The maximum discharge current measured for this 
type of abnormal discharge does not exceed the value of ie = 300 A and for the most 
part is even much lower at approx. ie  200 A.  

The short circuit is displayed in the diagram (d). No open-circuit voltage is built up. In 
addition, no power stage is ignited here due to the low open-circuit voltage. The dis-
charge energy corresponds to the energy level of the abnormal discharge in (c) without 
ignition of the power stage.  

 
Figure 4.4: Different forms of discharges on the wire EDM machine 

The effects of the individual discharges in terms of material removal and wear on the 
workpiece and electrode have already been explained in chapter 2.1. While a normal 
discharge leads to the greatest material removal, abnormal discharges and short cir-
cuits reduce the productivity of wire EDM, especially, considering the discharge en-
ergy. In addition, abnormal discharges respectively short circuits increase wear on the 
wire electrode, which can lead to wire breaks. It is therefore essential to evaluate the 
distribution of different discharge types in order to assess the process performance in 
wire EDM. The analysis of various experiments has shown that the described abnormal 
discharge types (b) and (c) can be neglected for the further consideration in this work. 
The proportion of these specific discharge types is negligible. Figure 4.5 shows the 
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distribution of the different types for operations with different pulse interval times. In-
stead, an energy-based differentiation of the discharges is considered.  

 
Figure 4.5: Distribution of discharge types for decreasing pulse interval time 

4.2 Online Measurement of Process Parameters 
Even though comprehensive analysis of single discharges has been conducted, for the 
evaluation of the continuous process, consecutive discharges have to be considered 
[KUNI05]. However, due to the high discharge frequency in the wire EDM process, an 
analysis of electrical process parameters is limited by the duration of the measurement 
[BERG18b]. In most other investigations, the same approach was used like described 
above. Raw data of the current and voltage signals are measured with a high sample 
rate and saved on a storage oscilloscope. The characteristic process parameters are 
subsequently determined offline.  

A methodology was developed to characterize single discharges in the continuous wire 
EDM process without saving the raw signal data implementing a real time capable 
system to extract features. The system is equipped with a digitizer and a Field Pro-
grammable Gate Array (FPGA). FPGAs are part of the broad category of programma-
ble logic components. They consist of a matrix of configurable logic blocks, which can 
be either combinational or sequential, interconnected through a reprogrammable inter-
connection network. Memory cells within the FPGA control both the logic blocks and 
the connections, enabling the component to meet specific application requirements 
[MONM07]. 

The FPGA system FlexRIO from National Instruments was used to analyze the high-
frequency signals in real time. FlexRIO systems combine powerful analog-to-digital 
converters, digital-to-analog converters or high-speed serial connectivity with an FPGA 
for user-defined signal processing [NATI24b]. The two devices are connected to each 
other via high-speed interfaces. The NI 5733 adapter module for the FlexRIO with two 
channels, a bandwidth of 120 MS/s and a 16-bit digitizer was employed for the 
experiments. It is able to process analog data in real time using its high-performance 
A/D converters and transmit it to the FPGA [NATI24a]. Finally, the calculated 
parameters are transferred to a conventional PC.  

The raw data was evaluated directly in real time on the FPGA. This eliminates the need 
to save the raw data. Only the characterizing process parameters need to be saved 
and are identified by a signal feature extraction. The same approach as used for offline 
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measurement was applied to detect the discharges via the FPGA. Thereto, the current 
signal is sufficient to determine discharges. Based on the isoenergetic working princi-
ple of the generator only two different discharge types were distinguished. The current 
signal of a normal discharge and a short circuit are plotted in Figure 4.4. The maximum 
discharge current, the average discharge current or the discharge duration can be 
used to distinguish between discharge types. For the investigations in this thesis, the 
discharge duration was used to differentiate and evaluate the discharges. In prelimi-
nary tests, this showed a clearer distinction between normal discharges and short cir-
cuits than an assessment based on the discharge current parameters. The duration of 
a normal discharge is in the range of te,n = 2 μs, whereas the discharge duration of a 
short circuit is in the range of te,s = 0.7 μs.  

The functionality of the program code for signal feature extraction is presented below. 
The LabView program from National Instruments is employed for this purpose. This is 
a graphical development environment that is applied for test, measurement, control, 
and regulation systems [ELLI07, NATI24c]. The finished program code is compiled and 
can be stored in the configuration memory of the FPGA. Function blocks are called 
Virtual Instruments (VIs) in LabVIEW. The VIs often have several subprograms, which 
are called SubVIs. The program for the acquisition or processing of electrical signals 
consists of two VIs, each with several SubVIs.  

The system processes input data by first scaling and transmitting it to an FPGA. A First 
In First Out (FIFO) queue ensures ordered data exchange, temporarily holding meas-
ured values to prevent computer overload before transferring them to the MainVI at a 
20 Hz rate for further processing and saving. The MainVI sets discharge start and end 
points based on specified limits, adjusting for the digitizer's output. Shift Registers (SR) 
dynamically store parameters. One SR counts samples and identifies discharge initia-
tion by comparing current values against a threshold. Discharge characteristics are 
calculated using additional SRs, which count samples and sum current values during 
a discharge, adjusting for the detection of discharge ends. The system converts these 
calculations into time and current units, assessing discharge type based on duration 
and summarizing the proportion of normal discharges. User-friendly GUI allows for 
easy adjustments and monitoring. The system efficiently stores unlimited discharge 
data, requiring 15 MB per minute storage space compared to 3 GB per minute storing 
raw signal data, significantly reducing storage demands. 

Validation of the FPGA System 

To validate the FPGA system, tests were conducted comparing it with offline measure-
ments using a storage oscilloscope. Based on the observations, iterative modifications 
of the algorithm were made to optimize the feature extraction. But first a possible influ-
ence of the set sampling frequency on the accuracy of the measurement was analyzed. 
It was set to f = 40 MS/s for previous tests. In order to determine the quantitative influ-
ence, the current signal was sampled once at f = 40 MS/s and once at f = 60 MS/s. To 
validate the results, the discharge durations are compared as a histogram in Figure 
4.6. There are hardly any differences between the two sampling frequencies and the 
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discharge durations differ by less than one percent. Only the resolution of the meas-
ured values was improved negligibly small.  

 
Figure 4.6: Comparison of discharge duration using different sampling frequency 

The accuracy of the calculated current parameters is exemplarily illustrated in Figure 
4.7, where the average discharge currents of both measurements are displayed in a 
histogram. While the average discharge current of normal discharges can be deter-
mined with the FPGA system with a deviation less than 1%, the current parameter of 
short circuits deviates by approx. 20%. Possible source of error is incorrect attenuation 
of the current signal due to the impedances of measurement devices and has to be 
considered in further analyses.  

 
Figure 4.7: Average discharge current of offline and online measurements  

Discharge durations between online and offline measurements were compared by con-
ducting measurements with both systems under identical conditions, investigating over 
50,000 discharges for each setup. Figure 4.8 depicts a histogram illustrating the distri-
bution of discharge durations for both online and offline evaluations.  
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Figure 4.8: Offline and online evaluations of the discharge duration te [KÜPP20] 

The histogram is presented with a specific number of categories but without a 
threshold. The various analysis methods demonstrate a significant correspondence in 
discharge duration, particularly for short circuits between te,s = 0.5 and 1 μs and for 
normal discharges, exhibiting a high consistency with deviations less than 5%. 

The subsequent section demonstrates the ability to detect and accurately classify all 
discharges as either normal or short circuits. Figure 4.9 illustrates the effective pulse 
frequency fe and the ratio of normal discharges rn for both online and offline measure-
ments. Each measurement involved analyzing again over 50,000 discharges. While 
online measurements were conducted continuously during the process, offline evalu-
ations required multiple measurements with subsequent averaging of values. The ef-
fective pulse frequency fe exhibits a deviation of less than 5% between the two sys-
tems, likely attributable to variations in measuring durations. Regarding the classifica-
tion of discharge types, the values differ by less than 2%.  

 
Figure 4.9: Online and offline evaluations of effective pulse frequency fe and ratio of normal 

discharges rn [KÜPP20] 

These results indicate a high level of consistency between the two methods, thereby 
validating the efficacy of the online system. Nevertheless, single discharge energies 
cannot be determined with high accuracy using the FPGA system. For constant ma-
chine settings, the discharge energies are also constant and only two different values 
occur because of the isoenergetic generator. Therefore, a combination of the offline 
discharge energy calculation, as described in chapter 4.1, and the described online 
measurement was applied for further data acquisition. 

4.3 Online Measurement of Spatially Resolved Single Discharges  
By the presented FPGA system, process data can be recorded continuously without 
any limit of the process time. Therefore, changing process conditions can be captured 
and high amount of process data are ensured. To increase the quality of the process 
data and extend the information density, the characterization of single discharges is 
not only time but also spatially resolved.  

4.3.1 Measurement Setup  
Several studies investigated the localization of discharges in sinking EDM [HAN08b, 
KOBA99, KUNI90, LI97, KUNI91]. The localization of discharges over the workpiece 
height in wire EDM were initially analyzed for only short periods using different process 
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signals considering current and voltage signals [HAN04, HASH09, OBAR98, RAJU94, 
RAJU97, SHOD92] or even acoustic emission signals [SMIT13]. In addition to detect-
ing the discharge position, initial attempts have already been made to ignite the dis-
charges in a controlled manner at specific positions [KUNI01].  

Findings by Hada and Kunieda [HADA12] revealed that, even with identical pulse con-
ditions, thicker workpieces yielded higher discharge currents. Consistency between 
analytical and experimental outcomes suggests the feasibility of in-process workpiece 
thickness measurement based on monitored discharge currents. The current signals 
were used to measure discharges considering the localization in a continuous process 
[BOCC18, BOCC20, DICA20]. However, the different discharge types are not consid-
ered by localizing the discharges. Due to the various energy of different discharge 
types, the distinction in detection is necessary to determine the spatially resolved pro-
cess energy and thus represents the need for a method to characterize spatially re-
solved discharges. 

The discharge position is determined using two current probes. Based on the several 
findings, the currents of the upper and lower wire head are measured separately for 
the localization of single discharges along the workpiece height [LI97, KOBA99, 
HAN08b, HAN04, OBAR98, SHOD92, BOCC18]. These are each connected to the 
current line of the upper and lower wire head via a toroidal transformer. The measure-
ment setup is shown in Figure 4.10 and is based on the FPGA measurement chain 
described in chapter 4.2, except that two current clamps are used instead of just one. 

The total current itotal is supplied via workpiece, see Figure 4.10. As soon as the die-
lectric strength of the working medium is overcome and a discharge occurs, the total 
current splits and flows via the wire electrode. The current flows through the connection 
between the wire electrode and the wire heads via the power cables to the ground 
point of the machine. Depending on the position of the discharge on the workpiece, 
different distances or path lengths to the earth point result for the current i flowing 
upwards or downwards along the wire electrode. As a result, the total current is distrib-
uted unevenly to the upper or lower wire head. This can be explained with the help of 
Ohm's law and the resistance R of a current-carrying conductor with a constant cross-
sectional area [WEIß15]: 

 u = R  i     i = 
u
R

 (4.1)  

 R = 
l
A

  (4.2)  

The path length from the discharge position to the machine's earth point is represented 
by the length l in equation 4.2. As soon as different path lengths to the earth point occur 
due to an off-center discharge position, different resistances R result for the current 
flow. Based on Ohm's law in Formula 4.1, for a constant voltage and unequal re-
sistances, different current strengths iupper and ilower result at the upper and lower wire 
head. 
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Figure 4.10: Measurement setup for determining the discharge position [KÜPP21a]

Based on the measurement setup and the physical principles, the method for the spa-
tially resolved characterization of single discharges is described in [KÜPP21a]. There-
fore, the determination of the difference in the current signal during a discharge can be 
attributed to the discharge position. In Figure 4.11, the upper, lower, and total current 
signals for the different discharge types are depicted. The difference in current of the 
upper and lower wire head between two discharges is independent of the workpiece 
or the tool material and can thus be used generically to detect the discharge position 
[HAN04, OBAR98, SHOD92]. To determine the discharge position using the current 
difference, the differentials are plotted as a frequency distribution in the form of histo-
grams with constant bins, which are defined by a uniform width. Binning in data science 
can be useful when dealing with numerical data, as it can help to understand certain 
trends or distributions [SUCK20]. 

Figure 4.11: Upper and lower current of a normal discharge and a short circuit [KÜPP21a]

The following investigations examine how well the discharge distribution along the 
workpiece height can be determined and visualized. The average discharge current 
and the maximum discharge current were calculated for both measured current signals 
in real time. In first experiments, the measurement capability of the FPGA for this pur-
pose was examined. After that, the deviations between the difference of the maximum 
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and average current must be obtained to define the best performing indicator. This is 
done by evaluating the variance of the frequency distribution of the maximum dis-
charge current and the average discharge current. 

4.3.2 Adaption and Validation of the Measurement Setup 
As described in chapter 4.2, the determination of the current values can only be real-
ized with small deviations compared to the high-frequency measurement using a stor-
age oscilloscope, which enables the most accurate measurement. To validate the 
FPGA, the number of discharges with the corresponding current difference e is plot-
ted in Figure 4.12. This was carried out for both the FPGA measurement and the os-
cilloscope reference measurement. The class width resulted on the one hand from the 
distance between the minimum and maximum current difference and on the other hand 
from the selected resolution. The resolution or the number of classes nb can be set in 
advance in the algorithm. It is important to ensure that the resolution is not set too low, 
otherwise the class width will be so large that outliers will no longer be weighted. This 
reduces the significance of the processed data. 

 
Figure 4.12: Current differences determined with the FPGA and oscilloscope 

It can be seen from the data in Figure 4.12 that the discharge distribution of the oscil-
loscope measurement strongly resembles a classical normal distribution. What is strik-
ing in this chart is the shift of FPGA measurement towards bigger current differences. 
The mode of the two measurements is xM = 3 A. The mode xM is an important measure 
of position that indicates which characteristic occurs most frequently in a data set 
[FAHR16].  

The difference in the discharge distributions can be explained by the shift of the current 
zero line. The FPGA is able to detect voltage signals in the range from u = -1 V to +1 V. 
These voltage values are converted into so-called bits and are mapped to a total range 
of 216 bits. The total number of bits results in the possible mapping spectrum of the 
FPGA. To determine the current values precisely, the current zero line must run exactly 
along the center line of the mapping range, i.e. at 215 or 32768 bits. The correction of 
the current consists of two steps. First, the difference between the zero line of the 
current and the center line of the spectrum must be determined and corrected. This 
correction is described by the factor KS. To determine KS, the upper and lower currents 
were recorded with the FPGA, analogous to the previous measurement setup. The 
data was then analyzed using the DIAdem software from National Instruments. 

0

500

1,000

1,500

-8 -6 -4 -2 0 2 4 6 8 10 12 14

N
um

be
ro

f
di

sc
ha

rg
es

Discharge current difference e / A

FPGA
Oscilloscope



4 Data Acquisition and Processing in Wire EDM 53

DIAdem is a data management software for combining, analyzing, evaluating and log-
ging measured values very easily without the necessity of programming [NATI20c]. 

A section illustrating the DIAdem evaluation is shown in Figure 4.13. The current sig-
nals of the raw data sets are plotted over the measurement duration tmeasure. Two nor-
mal discharges and one short circuit are shown in the diagram. The type of discharge 
can be distinguished by the height of the peaks. The magnification of the signal shows 
that the zero line of the current signal (yellow line) is shifted upwards by a factor of KS

relative to the center line (grey line). The correction factor results from the bit difference 
between the two lines at KS = 192 bits. Due to the oscillating signal fluctuations in the 
single-digit bit range along the center line, errors occur in the determination of the av-
erage discharge current. These signal fluctuations can be seen in the magnified sec-
tion of the previous Figure 4.13. 

Figure 4.13: Determination of the correction factor KS

The diagram in Figure 4.14 shows a characteristic normal discharge from the DIAdem 
evaluation and demonstrates the increase of signal fluctuations especially just before 
the discharge. After the discharge, the current drops significantly. The average dis-
charge current is determined based on the area that forms between the center line and 
the signal contour. The limit values of the area along the X-axis are determined by the 
number of passes of the signal at the center line. As a result of the signal noise, the 
limit value on the left-hand side is determined incorrectly. This causes the area be-
tween the center line and the signal to be calculated incorrectly, resulting in a falsifica-
tion of the average discharge current.

Figure 4.14: Schematic representation of the recursive limit value KT

To counteract this situation, in a second step of the current correction the factor limit 
value KT was defined. It is presented as a red line in Figure 4.14. The distance between 
this limit value and the center line is described by the factor KT. As soon as a meas-
urement is started, the LabVIEW program begins to record the signal curve. If the 
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current signal rises above the KU value specified in the user interface, the program 
detects a discharge. This discharge is recorded until the current signal falls below the 
center line again (light blue area). The area under the discharge is then recursively 
supplemented by the yellow shaded area. The discharge duration of the discharge thus 
results from the right-sided passage of the signal at the center line and the left-sided 
perpendicular of the signal intersection with the correction factor KT. On the one hand, 
this ensures that not every signal fluctuation is recorded as a discharge and, on the 
other hand, exact recording of the discharges.  

The correction factor KT was determined experimentally. A total of six measurements 
(KT = 0 - 5) were recorded for this purpose. During the series of measurements, the 
correction factor KT was gradually increased before each measurement. In Figure 4.15 
the recorded number of normal discharges over the average discharge current  for 
three of the six correction factors are plotted in the histogram.  

 
Figure 4.15: Determination of the correction factor KT of the recursive loop  

An accumulation and shift of the discharge distributions to the higher discharge values 
can be detected as the correction factor increases. This is consistent with the situation 
described above. With a correction factor KT = 0, discharges that by definition do not 
represent a discharge as such are incorrectly assigned to the normal discharges. In 
Figure 4.15, this can be seen by the light blue bins in the left-hand diagram area. With 
the correction factor KT = 3, shown in dark blue, the incorrectly allocated discharges in 
the range of  = 6 A - 18 A decrease significantly. However, the discharges in the left-
hand diagram area only disappear from a correction factor of KT = 5, see red marked 
discharge distribution. An increase in the correction factor KT did not result in any fur-
ther improvement. 

As mentioned, in addition to the average discharge current , the maximum discharge 
current  can also be employed as an evaluation parameter. The advantage of the 
maximum discharge current lies in the fact that it is determined based on the highest 
level of the discharge current profile and therefore remains unaffected by signal noise 
around the center line. However, it must be checked whether the maximum discharge 
current is sufficiently accurate to determine the position of the discharge location. For 
this purpose, the number of normal discharges and short circuits from a total of five 
measurements were compared with each other. The results of the comparative meas-
urements are shown in the histograms in Figure 4.16. 
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Figure 4.16: Comparison of the maximum and average discharge current [KÜPP21a] 

It can be stated that the evaluations of the average and maximum discharge currents 
show comparable results. The values of normal discharges show slight differences in 
the width of the discharge distribution. The maximum discharge currents of short cir-
cuits show more isolated peaks. This can be attributed to the lower current values of 
the maximum discharge current. The lower currents result in smaller absolute current 
differences and thus the impact of signal fluctuations increases. Therefore, the average 
discharge current was used for the measurement, despite the greater computational 
effort involved.  

In summary, it can be said that the capability of the online measurement system could 
be demonstrated based on the validation tests of the individual measuring devices. 
The deviation of the FPGA from the storage oscilloscope is less than 5% and can be 
attributed to signal noise and the input impedances of the individual measuring de-
vices. This means that a real-time calculation of the current differences can be carried 
out with sufficient accuracy using the FPGA system. 

4.3.3 Correlation of Discharge Current and Discharge Position  
The following description of the procedure for correlating the discharge current with 
discharge position was also presented by the author in [KÜPP21a]. Even though, the 
averaged discharge current is used and represents a statistically safer variant, since 
more values are considered; the measurement uncertainty is still an issue. As men-
tioned before, the histograms are formed with constant bins. Thereby, the limits are 
defined by the calculated current differences. Depending on how many classes are 
specified and how small the value range of the current difference is, the measurement 
errors at the boundaries can lead to distorted results. It can be assumed that outliers 
will always be measured. In order, to eliminate these errors, data processing is con-
ducted before forming the final histogram. Based on the investigations a minimum 
number of bins is recommended, which is at least as large as the workpiece height in 
millimeter. The procedure for the formation of histograms is exemplary shown in Figure 
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4.17. With the specification of the number of classes, the width and the boundaries are 
formed based on the data. In this example, five bins are chosen. The classes at the 
margins contain measurement errors, which induce the value areas and limits of the 
bins. A minimum number of discharges is defined, which each bin must contain, oth-
erwise the data points of the bin are deleted. Subsequent, a new histogram is formed 
with the same number of bins but new limits and adapted boundaries. This procedure 
can be repeated iteratively to minimize the measurement error. 

Figure 4.17: Methodology for the formation of the histograms [KÜPP21a]

4.3.4 Influence of the Workpiece Position and Workpiece Height
In order to determine the relationship between the discharge position and the current 
difference, the following experimental setup was conducted, see Figure 4.18. A work-
piece with a height of h = 2 mm was machined at varied positions of height z. The first 
sample was machined on the machine table at a height position z = 0. Then, shim 
plates of a thickness t = 1 mm are successively placed underneath and the sample 
was machined each time up to a total height position of z = 40 mm. For each position, 
the current difference was recorded.

Figure 4.18: Experimental setup to determine the influence of the workpiece position 
[KÜPP21a]
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In Figure 4.19 (a), some of the results are depicted in a histogram. A distinction of the 
current differences machined during varied height positions can be clearly seen in the 
histogram. The gaps between the individual data sets show that the current differences 
can be distinguished with the described method even with a height difference of less 
than  = 1 mm.  

However, the observation of individual frequency distributions clearly demonstrates 
that the frequencies are approximately normally distributed. The center of such a 
normal distribution is represented by the mode value. Since the number of discharges 
is highest in the center of the component, the mode can therefore represent the 
position of the center of the component z + h/2 via the current difference e. For this 
reason, a mode analysis of all 21 component positions was carried out for a more 
detailed representation of the frequency distributions and plotted over the position 
p = z + h/2. As expected, there is a linear correlation between the discharge position 
and the current difference with a coefficient of determination of almost R² = 1. The 
distribution of the mode values is more uniform compared with the frequency 
distributions in Figure 4.19 (b). The individual workpiece positions show uniform 
distances in their current differences. Only the current difference of height z = 1 mm is 
shifted to the left. 

 
Figure 4.19: Distribution of normal discharges for different workpiece positions (a) and cor-

relation between the workpiece position and calculated modes of discharge dis-
tribution (b) [KÜPP21a] 

The corresponding, linearly interpolated straight line of the 21 component positions 
has the following equation:   z = 1.96  i + 1.02 (4.1) 

With a calculated slope of m = 1.96, the current difference is increased by the factor 
m-1 = 0.51 A/mm over the position of the component. The position of the components 
can be determined to an accuracy of  = 0.71 mm using the interpolated straight lines.  
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In this section, the distribution of current differences for different workpiece heights are 
evaluated. For this purpose, 10 experiments with varying workpiece heights from 
h = 5 mm to 50 mm with Δh = 5 mm steps were machined. In Figure 4.20, the evalu-
ated results of different workpiece heights are presented by plotting the distributions of 
normal discharges after the application of the described methodology. The number of 
bins for each data set equates to the workpiece height value. The depicted diagrams 
show good results, and the current difference can be converted directly into the work-
piece height regarding the linear correlation.  

Figure 4.20: Discharge distribution dependent on workpiece height [KÜPP21a] 

With the use of a specific component with recesses, it is proven that not only different 
workpiece heights are correctly mapped by the methodology and system, but also lo-
cations where no discharges ignite. The specimen and results are illustrated in Fig-
ure 4.21. The component has a height of h = 100 mm and six recesses with different 
thicknesses.  

Figure 4.21: Visualization of workpiece geometry by process data [KÜPP21a] 
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The wire position is tracked using a program by Makino connected with a machine 
interface. By the recorded wire position, the electrical signals can be allocated on the 
workpiece and the cutting rates can be determined. Finally, the geometry can be visu-
alized precisely by the system characterizing and recording every single discharge, 
see Figure 4.21. This visualization is real-time capable and can be realized during ma-
chining by implementing the methodology of histogram formation in the FPGA system.  

4.4 Data Agglomeration  
Generally cleaning data by handling missing values, outliers and inconsistencies is 
necessary. While normalizing or standardizing numerical features are typical process 
steps in data processing, in this case especially data agglomeration is meaningful. This 
necessity arises not only due to the high data volumes, but also because of the oper-
ating principle of the process. Since the investigations of individual discharges show 
only microscopic material changes, the first step is to determine how much the data 
can be agglomerated without loss of information. This involves the accumulation of 
consecutive discharges over a period of time, causing not only a microscopic but also 
a macroscopic change in the workpiece. For example, a typical feed rate of 
vf = 3 mm/min and an effective pulse frequency of fe = 50 kHz, results in one million 
discharges for a cut length of only l = 1 mm with a period of t = 20 s. The purpose of 
this data is to provide information about the change in the workpiece, in terms of ge-
ometry, surface or subsurface layer. Therefore, the aim is to find longest possible time 
over which data can be agglomerated without losing relevant information. Machine 
learning-based approaches offer the possibility to quickly process the enormous data 
stream. In the following, it is shown how data can be systematically agglomerated with 
an evaluation of the conducted agglomeration. Unlike in other studies, the measure-
ment and analyses are not restricted to specific sample rates. All single discharges are 
recorded and subsequently agglomerated. 

For the evaluation of data agglomeration, a workpiece with different heights and varied 
nozzle distances was machined. In industrial applications, many components cause 
changing workpiece heights, nozzle distance and thus flushing conditions due to their 
geometry. The component had different heights from hmin = 5 mm to hmax = 50 mm, 
each with 5 mm steps. Figure 4.22 shows the staircase-shaped workpiece as well as 
the schematic top view of the clamped workpiece indicating the machined slot. 

A test series composed of a total of ten straight cuts was performed. This consisted of 
one cut per step. For each step, machining parameters of the slot were recorded over 
a minimum time interval of t = 60 s. To counterbalance any influence due to unstable 
or varying flushing conditions, machining parameters were recorded three times at dif-
ferent locations along the machined slot. For all the machined slots, the upper head 
and hence nozzle position was kept constant. The position of the upper head was kept 
at 8 mm over the highest step hmax. It should be emphasized that the change from one 
step to another involved not only changing the thickness of the workpiece, but also 
changing the flushing distance of the top nozzle, which are two different factors that 
affect wire EDM machining and, therefore, the machining parameters. While the 
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thickness reduces from hmax to hmin, the upper nozzle distance increases from 
a = 10 mm to 55 mm. In Figure 4.22 an overview of the different setups is listed. 

Figure 4.22: Staircase-shaped workpiece and clamping design

A medium carbon steel C45, typically used in various applications including mechani-
cal engineering, automotive industry and tool making was machined. All tests were 
conducted with the d = 0.25 mm brass wire bercocut pro 900 by bedra [BERK24a]. In 
order to keep the machining efficiency high on one hand and to avoid wire break on 
the other hand, a standard machining technology for a workpiece with the average 
height = 25 mm was used. Data of the continuous process were recorded which in-
cluded every single discharge and the corresponding label for the type of discharge, 
the time at which the discharge was ignited and the current difference for the spatial 
resolution of the single discharges as described above.

Based on the machining data, characteristic process parameters like the effective 
pulse frequency fe and the ratio of normal discharges rn were evaluated over specific 
time intervals. Starting with averaging time of = 3 ms it was then increased iteratively 
by one millisecond until = 350 ms. Agglomerations over = 3 ms can cover ap-
proximately 25 to 150 consecutive discharges while = 350 ms covers over 2,500 to 
15,000 consecutive discharges, depending on the machining settings and the work-
piece and wire materials. The goal was to find the agglomeration time interval which 
can be used to precisely describe and distinguish between these tests. Optimally, this 
time interval should be as large as possible to maximize information density, but small 
enough to detect relevant changes, whether in the workpiece or in the machining sta-
bility parameters. For example, early detection of deteriorating machining stability, usu-
ally a few hundred milliseconds in advance, can be used to prevent wire breaks 
[BERG18b, CABA08a]. This can serve as an upper limit for the agglomeration time 
interval depending on the purpose of the data use. 

Figure 4.23 shows the agglomeration of the different processes averaged with various
time intervals. The effective pulse frequencies are plotted against the corresponding 
ratio of normal discharges in different colors according to the legend in Figure 4.22. As 
it can be seen in the diagrams, machining of workpieces with smaller heights is char-
acterized by high ratios of normal discharges resulting from the good flushing condi-
tions, which enhances the deionization of the working gap and promotes rapid debris 
removal from this region. In isoenergetic pulse control systems employing a constant 
pulse interval time, higher ratios of normal discharges result in lower effective pulse 

10987654321Exp.

5045403530252015105height 
h / mm

10152025303540455055
Nozzle 

distance 
a / mm
Color
legend

h

Wire

a
Cutting
direction



4 Data Acquisition and Processing in Wire EDM 61 

frequencies, as normal discharges typically endure about four times longer than short 
circuits. Furthermore, higher ratios of normal discharges achieve higher material re-
moval rates since material removed by short circuits is negligible compared to that of 
normal discharges. However, this was only determined for single discharges according 
to the literature [KLOC07]. 

Contrary, lower ratios of normal discharges, here for the machining of higher work-
pieces, correspond to higher effective pulse frequencies. The stagnation area, region 
where debris accumulates and hence promotes short circuits, increases with the height 
of the workpiece. Thereupon, in general, the trend is a linear relationship between the 
workpiece height and the effective pulse frequency on the one hand and an inverse 
relationship between the workpiece and the ratio of normal discharges. However, an 
overlapping of the data points for a certain region can be observed.  

 
Figure 4.23: Ratio of normal discharges in correlation with effective pulse frequency for dif-

ferent averaging times  

Subsequently, the ability of unsupervised machine learning methods to effectively dis-
tinguish the different processes when they are analyzed as a single data set for varying 
averaging times was investigated. Accordingly, the data records were divided into the 
same time intervals as before. This results approx. in 350 data sets of two features: 
ratio of normal discharges and the effective pulse frequency. Four unsupervised ma-
chine learning algorithms were used to cluster these data sets. As already discussed 
in chapter 2.3, clustering analysis is often used to group similar data points or find 
hidden patterns in data sets. Here, the clustering algorithm should sort the data points 
per test so that each cluster represents the data set of a specific test. The four different 
clustering algorithms used are k-means, hierarchical, spectral, and fuzzy c-means. The 
general approach of these algorithms, where the number of clusters must be defined 
a priori, is particularly suited for the desired task since the number of tests is known 
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and is the same for all data sets. A detailed description of the clustering algorithms used 
in this work is provided in the following.  

k-means 

Among clustering algorithms, k-means is probably the most used owing to its simplicity. 
It aims to divide a dataset with n data points into k distinct, non-overlapping clusters. 
Each data point is assigned exclusively to one cluster, constituting “hard clustering”. 
The number of clusters k is defined a priori, and data points are randomly chosen as 
initial cluster centers. Subsequently, each data object xi is assigned to the nearest 
center mk, typically determined using Euclidean distance [NA10]. Data points are then 
allocated to the nearest cluster center, creating subsets (clusters) C1, C2, …, Ck. The 
centroid of each cluster is computed, and cluster center locations are updated accord-
ingly. This process iterates until convergence or the fulfillment of termination criteria, 
ensuring optimal clustering. The most commonly used criterion is the sum of squared 
Euclidean distances between each data point xi and the centroid mk (cluster center) of 
the subset Ck containing xi. This criterion, termed clustering error E, is dependent on 
the cluster centers C1, …, Ck [LIKA03, SINA20]: 

 ( , … , ) ( ) ² (4.2) 

where ( , … , ) = 1 if xi, …, xn is true and 0 otherwise. 

Good clusters should have large between-cluster variation compared to the within-
cluster variation. The main drawback of k-means algorithm is that it is sensitive to the 
initial positions of the cluster centers. Therefore, in order to obtain near optimal solu-
tions with this algorithm, the data points are clustered several times with different initial 
positions of the cluster center and compared [AHMA07, ARTH07, WARR05]. 

Hierarchical Clustering 

Hierarchical clustering is a method for constructing a hierarchy of clusters, organized 
in a tree-like structure either from top to bottom or bottom to top. Unlike k-means, it 
does not require a predetermined number of clusters. This technique can be agglom-
erative or divisive, forming clusters in a bottom-up or top-down manner, respectively. 
It generates a nested sequence of partitions, starting with a single encompassing clus-
ter at the top and individual data points as singleton clusters at the bottom. Each level 
represents a different number of clusters, with clusters formed by combining or splitting 
clusters from adjacent levels. A dendrogram graphically displays the clustering result. 
Initially, each data point forms its own cluster, resulting in n clusters. Then, pairs of 
clusters with the highest similarity are iteratively merged, reducing the number of clus-
ters by one until only one cluster remains . 

The cluster’s merging step is usually performed using either the so-called ‘single link-
age method’, the ‘complete linkage method’ or the ‘average linkage method’. In single 
linkage, clusters merge based on the smallest distance between any two records, em-
phasizing similarity between the most similar records. Conversely, the complete 
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linkage method merges clusters based on the maximum distance between any two 
records, prioritizing similarity between the most dissimilar records. The average linkage 
method mitigates the impact of extreme values by computing the average distance 
between all pairs of records from different clusters . 

Hierarchical clustering algorithms offer flexibility in distance or similarity functions and 
enable exploration of clusters at different levels of granularity through dendrogram vis-
ualization. Despite these advantages, hierarchical clustering is prone to the chain ef-
fect in single-linkage and sensitivity to outliers in complete-linkage methods. Addition-
ally, it exhibits computational complexity that increases quadratically with data size, 
making it less efficient for large datasets compared to algorithms like k-means 
[BACH10, LARO14].  

Spectral Clustering 

Spectral clustering is a graph-based algorithm utilized for grouping data points into a 
predetermined number of clusters. It effectively reduces complex multidimensional da-
tasets into groups of similar data points in lower dimensions, often employing simple 
algorithms like k-means for this purpose. This technique finds applications in various 
fields such as exploratory data analysis, computer vision, and speech processing 
[BACH04].  

The spectral clustering process involves several key steps, beginning with the creation 
of an affinity matrix based on the similarity between data points, which is adjusted by 
a parameter. This matrix underpins the process by reflecting the relationships between 
data points. A diagonal matrix is then formed from the affinity matrix and used to gen-
erate a normalized affinity matrix, allowing for an accurate representation of data point 
relationships while adjusting for size differences. The next step involves finding the top 
k eigenvectors of this normalized matrix through eigenvalue decomposition, which 
serve as new dimensions that reveal the data's inherent structure. These eigenvectors 
are compiled into a matrix and renormalized to create a matrix, ensuring uniformity in 
the scale of data points and preserving the significance of each dimension. The renor-
malized data is then clustered into k groups using techniques like k-means, based on 
the spectral representation. Each data point is assigned to a cluster according to its 
position in the renormalized matrix, finalizing the spectral clustering process and or-
ganizing the data into distinct groups based on spectral characteristics [JIAW12]. While 
spectral clustering is effective for various data distributions, it is noted for its computa-
tional demands, particularly in handling large datasets due to the requirement for ei-
genvector calculation [ZELN04]. 

Fuzzy C-Means Clustering 

In all the above-mentioned clustering algorithms, each data point can be assigned to 
one and only one cluster. This assignment rule or hard clustering is required in many 
applications. However, for some other purposes, this rigid assignment is often not de-
sirable, instead clusters with flexible or "fuzzy" boundaries are needed, which is the 
main principle behind fuzzy clustering methods. A given data point can simultaneously 
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belong to a given fuzzy set to a certain degree and to another fuzzy set to a certain 
degree [BEZD81]. This degree is called the degree of membership, typically repre-
sented by a real-valued number in the interval [0, 1] [FREI02]. For a given set of data 
points,  = { ,…, }, the fuzzy set  is a subset of  that allows each element in X to 
have a membership degree between 0 and 1 [BEZD81, JIAW12]. 

In Figure 4.24 the results of the clustering analysis for selected averaging time intervals 
are exemplary shown. Various cluster methods were examined separately to distin-
guish the data sets based on only knowing the total number of data sets. It can be 
observed that machining parameters that overlap are more difficult to be sorted, which 
is true for virtually any system, as clear distinction is hard to achieve. This is independ-
ent of the averaging time interval.  

 
Figure 4.24: Overview of clustering results for different agglomeration time intervals  

In order to evaluate the performance of each clustering method, the F1-score is deter-
mined. It is a performance metric which is crucial for evaluating the quality of machine 
learning models. The F1-score, defined as the harmonic mean of precision and recall, 
is commonly used in assessing clustering algorithms due to its ability to meet essential 
criteria [JIAW12]: 

1. Cluster homogeneity: This criterion grades the purity of the clusters, which 
requires that the purer the resulting clusters are, the better is the clustering pro-
cess. 

2. Cluster completeness: This is analogue to cluster homogeneity and seeks to 
evaluate if data points of the same cluster, according to the ground truth, are 
assigned to the same cluster. 
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3. Rag bag: This criterion penalizes heterogeneous data points assigned to pure 
clusters more severely than those assigned to miscellaneous clusters, reflecting 
the challenge of merging dissimilar data points. 

4. Small cluster preservation: Recognizing that splitting smaller clusters tends 
to generate noise, this criterion penalizes splitting smaller clusters more than 
larger ones. 

However, computing the F1-score requires ground truth, representing the ideal clus-
tering compared against the clustering results. Precision p measures the relevance of 
elements assigned to a cluster, while Recall r indicates how many data points of the 
same category are assigned to the same cluster. These parameters are derived from 
the confusion matrix, depicting the counts of different predictions made by the model 
as shown in Figure 4.25.  

 
Figure 4.25: Confusion matrix [TING10] 

True positive and true negative outcomes indicate correct clustering assignments, 
while false positive and false negative outcomes represent incorrect assignments. Pre-
cision and recall can then be calculated using these results [LIPT14]:  = +  (4.3) 

 = +  (4.4) 

Hence the F1-score given as the harmonic mean, which is the reciprocal of the average 
of the reciprocals, of precision and recall is given by [LIPT14]:  1 = 2 + =  22 + +  (4.5) 

In Figure 4.26, the F1-score values of different clustering methods for varied averaging 
times from  = 0 - 350 ms are presented. In general, the clustering methods show a 
better performance from an averaging from  = 50 ms upwards. The results identified 
k-means and spectral as best performing clustering methods. Furthermore, different 
statistical measures were used but showed no improved clustering performance. 
These statistical measures include the mean values of the distribution of discharges, 
the standard deviation and the kurtosis of normal and abnormal discharges, etc. 

Ground truth

Pr
ed

ic
te

d
C

lu
st

er A

B

A B
true positives

(tp)
false positives

(fp)
false negatives

(fn)
true negatives

(tn)



66 4 Data Acquisition and Processing in Wire EDM

Figure 4.26: F1-score of different clustering methods for varied averaging time [KÜPP22b]

Characterization of the discharges along the cutting direction alone is not sufficient to 
evaluate process performances [KÜPP20]. Hence the spatial resolution of process pa-
rameters along the workpiece height is necessary. Previously, the agglomeration po-
tential of process data with different averaging time without losing relevant information
of the continuous wire EDM process was investigated. Under consideration of these 
findings, a data agglomeration approach was developed, as shown in Figure 4.27. In 
order to visualize these microscopic changes, the spatially resolved machining param-
eters were evaluated along the cutting length. Based on an analytical analysis, interval 
values from = 0.05 mm and = 0.5 mm were selected for most parts of the ex-
ploratory data analysis.

Figure 4.27: Area-dependent process data evaluation

With this, process parameters can be spatially resolved in such a way that locally in-
duced anomalies could be identified. The wire tracing program from the machine man-
ufacturer has a sampling rate of approximately s = 10 Hz, returning the wire position 
on average every 100 ms, which is sufficient according to the previously performed 
investigations. With the typically low feed rates achieved in wire EDM, this time still 
represents only changes on the microscopic scale ( 100 ms 0.005 – 0.008 mm).

Figure 4.28 shows the spatially resolved characterization of single discharges repre-
senting the ratio of normal discharges and short circuits of the continuous wire EDM 
process machining a C45 steel material with a workpiece height of h = 50 mm. The 
data were recorded for a cutting length of approximately l = 8 mm. 
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Figure 4.28:  Spatially resolved ratio of normal discharges [KÜPP21a] 

An optimal nozzle distance of a = 8 mm was used which is recommended for the used 
technology. The process data recorded for the evaluation amounted to 766 MB for al-
most 14 million single discharges. Upon evaluation, the process data were only 
1.5 MB, representing a compression factor of more than 500. The lowest ratio rn is 
found in the middle of the component. This can be explained by the particle accumu-
lation due to the flushing from the top and bottom of the working gap, which causes 
short circuits especially in the center of the workpiece [OKAD09, OKAD15]. 

Based on this information, the effective pulse frequency considering all discharges can 
be displayed in Figure 4.29. As a result of the discharge distribution in Figure 4.28 and 
due to the two times shorter discharge duration of short circuits and the missing ignition 
delay time, logically more short circuits than normal discharges take place at the same 
time. 

 
Figure 4.29: Spatially resolved effective pulse frequency 
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Due to the isoenergetic working principle of the generator in wire EDM, the discharge 
energies are constant for each type with unchanged input machine parameters 
[KÜPP20]. The discharge energy can be influenced by variations of the workpiece 
height. But this effect on the energy of a single discharge is negligibly small [HADA12], 
since here the mapping of the total process energy is to be represented. 

To visualize the local discharge energy wlocal, it is calculated in dependence of the 
number of all discharges , the various discharge types  and , the cutting coordi-
nates, and the discharge position along the workpiece heights with following equations:  

 , = ,  (4.6)  

 , = ,  (4.7) 

 = , + ,  (4.8) 

The energy of a normal discharge is two times higher compared to the energy of a 
short circuit. Figure 4.30 visualizes that even if short circuits have a substantially lower 
discharge energy compared to normal discharges, a concentrated energy input can 
take place considering the number and type of single discharges. 

 
Figure 4.30: Spatially resolved generated discharge energy [KÜPP21a] 

4.5 Summary and Conclusions 
In this chapter, a methodology and system were developed to record spatially resolved 
single discharges in wire EDM considering the individual discharge type. For this pur-
pose, first the approach for the determination of single discharge energies was intro-
duced. Based on the described high-resolution measurements using a storage oscillo-
scope and conducting an offline feature extraction, the electrical parameters could be 
calculated precisely, and different discharge types were introduced. With an expanded 
feature extraction approach and the employment of more powerful measurement tech-
nology such as an FPGA, the recording of continuously measured discharges was re-
alized. The system is capable to record time resolved single discharges considering 

D
is

ch
ar

ge
 e

ne
rg

y 
W

e
/ k

J

10

8

6

4

2

20

40

30

50

10

0
54320 1 86 7

Cutting length l / mm

W
or

kp
ie

ce
 h

ei
gh

t h
 / 

m
m



4 Data Acquisition and Processing in Wire EDM 69 

electrical parameters and the discharge type without saving any raw data. By combin-
ing these two approaches, the single discharge energies can be recorded for an un-
limited measurement time, due to the isoenergetic working principle of the generator. 

By expanding the FPGA system and introducing a methodology, single discharges 
could be recorded not only in time but also in spatial resolution. With the recorded 
process data, it is possible to digitally map the generated process energy along the 
workpiece height. The data acquisition system was optimized by conducting experi-
ments and data analysis considering wire head and workpiece position as well as the 
workpiece height. Thereby, discharges can be detected with an inaccuracy of less than 
1 mm in real time along the workpiece. The most important prerequisite for the devel-
opment of data-driven models and the application of machine learning methods is thus 
fulfilled by the possibility of recording unlimited continuous process data with high qual-
ity as well as high information density.  

An agglomeration approach was developed to reduce data volumes by averaging ma-
chining signals over specific time intervals. This method accumulates consecutive dis-
charges within defined intervals. Various tests were conducted using a staircase-
shaped workpiece with fixed nozzle positions, and machine parameters were averaged 
over different periods. Each test generated datasets based on these periods, which 
were then combined. Four different unsupervised machine learning algorithms were 
used to classify the data into ten groups, with k-means and spectral clustering yielding 
the best results. The effectiveness of these algorithms was evaluated using the F1-
score metric. The results indicated that the overall clustering performance improved 
for time intervals longer than  = 50 ms. 
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5 Analysis of Evaluation Criteria in Wire EDM 
After the acquisition and collection of process data with high quality, preparation or 
processing of the recorded data was conducted. With the collected data, an analysis 
of the data follows the procedure illustrated in Figure 3.1. The data analysis is em-
ployed to obtain relevant information and useful knowledge through systematic organ-
ization, statistical processing and graphic presentation of data [PLAU21]. Initially, the 
aim is the determination of relevant evaluation variables for the main cut process. 
Based on this, the analyses should serve to understand the data and show first corre-
lations between the data and the identified evaluation variables. Figure 5.1 shows an 
overview of the evaluation criteria that were examined and evaluated in this work. The 
findings described in chapter 2.2 were taken into account when selecting the parame-
ters and the test design. Productivity was evaluated by the speed and process stability, 
which is determined by the occurrence of wire breaks. The quality parameters have 
different levels of detail and include the macroscopic influence of the process in the 
form of geometric deviations as well as microscopic changes in the form of surface 
roughness and the generated rim zone. Again, standard steel technologies were used 
for all experiments regarding the specific machining workpiece height.  

 
Figure 5.1: Overview of evaluation criteria in wire EDM  

5.1 Exploratory Data Analysis for the Productivity 
As mentioned in chapters 2.2 and 2.4, there are many studies that deal with the influ-
ence of process parameters on productivity, in particular the cutting rate. A correlation 
has been identified between increasing discharge energies and discharge frequencies 
with increasing removal rates. However, two aspects were not taken into account in 
the previous work. On the one hand, the relationship between the distribution of differ-
ent discharge types and the removal rate has not been investigated. Secondly, no con-
tinuous process data have been analyzed to account for temporal changes in the data. 

In the following, the results obtained by Küpper et al. [KÜPP20] are presented. To 
assess the performance of the continuous wire EDM process, the current signals and 
wire positions across various parameter configurations were recorded. The wire's po-
sition was monitored using a program by the machine manufacturer Makino interfaced 
with the machine. The recorded wire position allowed for the allocation of electrical 
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signals on the workpiece, enabling the determination of cutting rates. However, these 
analyses do not yet include the discharge position via the workpiece height, but only a 
continuous recording of characterized discharges.  

The main objective was to investigate the impact of different discharge types and the 
effective pulse frequency fe on the cutting rate Vw and the process stability with easy 
to record and handle process data considering single discharges. To achieve this, the 
pulse interval time t0 was varied to manipulate the number of discharges. A workpiece 
with a height of h = 10 mm was utilized, fastened to the machine table with an optimal 
upper nozzle distance a = 8 mm for the specific technology or parameter setting em-
ployed. The test geometry featured a cutting length l = 25 mm. A reference specimen 
with a the standard pulse interval time of t0,ref = 15 μs and turned on adaptive control 
was machined. Based on this technology, the adaptive control of the machine was 
initially switched off in order to prevent an increasing of t0 by the machine during the 
process. Subsequent tests were conducted with both standard and altered t0 settings. 
The pulse interval time was varied incrementally in steps of 0 = 1 μs with adjustments 
made in both directions until wire breaks occurred while the adaptive control was 
switched off. Fourteen test series were conducted, with the standard pulse interval time 
set at t0,std = 15 μs (without adaptive control). This value was incrementally increased 
to t0,19 = 19 μs and decreased to t0,wb = 7 μs, leading to instances of wire breaks (wb). 
Each test series involved the evaluation of more than five million discharges [KÜPP20]. 

In order to determine initial findings using exploratory statistics, the process parame-
ters that are directly influenced by the change in the pulse interval time were examined 
first. These are the pulse effective frequency, the proportion of normal discharges, the 
resulting generated process power and the cutting speed. In addition to statistical char-
acteristic values over averaged time periods, Fourier analyses were also carried out. 
The averaging times were varied in order not to miss possible correlations. Figure 5.2 
shows an example of the pulse effective frequency with different averaging times over 
a process. The strong smoothing caused by a longer averaging time is clearly visible, 
as are the strong fluctuations due to a short averaging time. The standard deviation of 
the discharge frequency at different averaging times depicted in Figure 5.3 confirms 
this observation. 

 
Figure 5.2: Pulse effective frequency fe for averaging times  = 1 s and  = 5 s  
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Figure 5.3: Standard deviations of fe for different averaging times  

In Figure 5.4 the correlation of the pulse interval time t0 and the pulse effective fre-
quency fe is depicted. The effective pulse frequency increases as expected as t0 is 
reduced, while the standard deviation of fe also rises. A consistent frequency fe signifies 
a stable process [KINO82, YAN96, YAN98], so the standard deviation of fe serves as 
an indicator of process stability. However, these process data do not directly indicate 
why the pulse interval time of the standard technology has been set to t0 = 15 μs. 

 
Figure 5.4: Averaged pulse effective frequency fe for different pulse interval time t0 

Analogous to the study by Kwon et al. [KWON06], Fast Fourier Transform (FFT) anal-
ysis were conducted. However, a Fourier analysis with additional high-pass and low-
pass filtering to identify unstable frequencies did not lead to any meaningful results, as 
no dominant frequencies could be detected repeatedly in the process data using dif-
ferent averaging times.  

Decreasing pulse interval times t0 cause poorer flushing conditions in the gap and the 
resulting worsened deionization of the working gap results in a higher number of short 
circuits respectively lower number of normal discharges [OKAD15]. A strong linear cor-
relation between fe and the power P as well as ratio of normal discharges rn and P can 
be observed in Figure 5.5. For the calculation of the power, the respective energies of 
the ignited discharges were summed and averaged for the total duration of the test cut. 
The coefficients of determination R² were calculated over R² = 0.9 and the trend lines 
were displayed without the results of t0,wb. Due to the negative correlation between fe 
and rn, the power increases by risen number of discharges. The growing number of 
short circuits has no negative impact on the amount of generated power. Contrary to 
the assumption that the highest possible number of normal discharges would result in 
a higher power, there is a range in which a growing power is achieved by an increase 
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in both normal discharges and short circuits. Due to the shorter pulse cycle time of 
short circuits, more discharges occur and generate more power [KÜPP20]. 

The results for t0,wb = 7 μs stand out in this diagram. For this parameter setting wire 
breaks occurred. A significant increase of fe by the risen ratio of short circuits, could be 
identified similar to other works immediate before wire breaks [BERG18b, CABA08b, 
CABA08a, PORT09]. An increasing amount of power could be observed in some stud-
ies [CABA08b, CABA08a, PORT09]. These effects can also be monitored in following 
experiments for a longer observation period. The normal discharge respectively short 
circuit ratio can be used to evaluate process stability. The critical threshold value of the 
proportion of short circuit is difficult to define but is in the same order of magnitude as 
already defined by Yan et al. [YAN98] at approx. 40%. However, not only a decrease 
in the ratio of normal discharges rate is provoked, but also the standard deviation of 
the measuring points increases simultaneously. This means that with a shorter pulse 
interval time, more short circuits occur, and they are also less homogeneously distrib-
uted over the process time. Such a less homogeneous distribution of the discharges 
can be an indication of a more unstable process. In addition, inhomogeneous dis-
charge distributions potentially could imply that the process undergoes uneven re-
moval [KÜPP20].  

 
Figure 5.5: Effective pulse frequency fe and ratio of normal discharges per second rn as a 

function of power P for different pulse interval times [KÜPP20] 

The generated discharge power has a significant effect on the cutting rate and should 
be considered in data analysis [KLOC07]. For this purpose, Figure 5.6 shows the in-
terrelationship between the power and the cutting rates. The cutting rates are also 
averaged for the total duration of the test cut. What is striking out in this diagram is that 
the cutting rate reaches its maximum despite increasing power. From t0,12 the cutting 
rate does not increase any further. Thus, the results indicate a kind of limit for the 
necessary power to achieve the highest cutting rates. Since higher power could induce 
greater impact on the material and thus higher material removal on workpiece as well 
on the wire electrode, the aim is to machine with lowest possible power [KÜPP20]. 

The trend line in the diagram could also describe this correlation. While the coefficients 
of determination are not as high as before because of the high dispersion of the values, 
still a R²  characterizing the polynomial function (except t0,wb). 
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Two clusters are formed respectively on the left and right side of the trend line. The 
short pulse interval times, which do not induce any increase of the cutting rates, are 
on the left side of the line. These clusters could be evaluation criteria for an optimal 
power and thus a specification for the effective pulse frequency and distribution of dis-
charge types. However, there are still further studies to be carried out to verify this 
hypothesis [KÜPP20]. 

 
Figure 5.6: Power as a function of cutting rate for different pulse interval times [KÜPP20] 

Beside the cutting rate, another criterion to evaluate the process performance or 
productivity is the process stability, which can also be defined by the probability of 
occurrence of wire breaks. In the following individual measurements of different pulse 
interval time settings are analyzed. The aim is to assess if there are features in the 
signal during machining without changing the parameter setting. Therefore, the gener-
ated power for every second was calculated for the whole cutting length. In Figure 5.7 
diagrams with the generated power for t0,ref and t0,wb as a function of the effective pulse 
frequency are depicted. The reference test cut with the activated adaptive control pro-
duced a linear behavior between the generated power and the effective pulse fre-
quency. Similar coefficients of determination are calculated for t0,std with R² = 0.95. The 
analysis of test cutting with t0,wb shows a high variance for the generated power and fe, 
see Figure 5.7. The ratio of normal discharges rn varies widely for shorter pulse interval 
times and causes different power for same number of discharges [KÜPP20].  

 
Figure 5.7: Power as a function of effective pulse frequency for t0,ref and t0,wb [KÜPP20] 
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Similar trends outcome in the diagrams in Figure 5.8. The diagrams highlight the dif-
ferent power values, which cause the same cutting rates. The variations are larger for 
shorter pulse interval times like t0,wb. These differences could lead to various impacts 
on the material’s surface. Especially, the power over such a trend line like in Figure 5.8 
for t0,ref could induce these effects. However, for a validation of this hypothesis, a spa-
tially resolved characterization of single discharges is necessary [KÜPP20]. 

 
Figure 5.8: Power as a function of the cutting rates for t0,ref and t0,wb [KÜPP20] 

The observations of an accumulation of short circuits immediately before a wire break 
have been made by many different studies [BERG18b, RAJU91, RAJU93, YAN98, 
WATA90, LIAO97a, KINO82]. To consider this phenomenon, in Figure 5.9 the accu-
mulation for the different t0 settings is depicted. For each parameter setting, it is 
counted how often more than 100 consecutive short circuits occur. In addition, the 
maximal number of consecutive short circuits is shown on the right axis. Both values 
significantly rise for shorter t0 [KÜPP20].  

 
Figure 5.9: Accumulation of short circuits for different t0 [KÜPP20] 
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 = ( )  (5.1) 

As expected, the evaluation of the ignition delay times with consideration of the dis-
charge types provide a strong correlation between short ignition delay times (usu-
ally < 5 μs) and short circuits and between long ignition delay times (usually > 15 μs) 
and normal discharges, see Figure 5.10. When analyzing the characteristic, an in-
crease in the ignition delay time can be determined for the parameter settings that lead 
to a wire break. In this diagram the rise of the standard deviation of the ignition delay 
time for the reduced pulse interval time t0,8 immediately before a wire break is depicted. 
Nevertheless, there are no significant trends which could precisely predict a wire break 
or be representative as an indicator of the process stability.  

 
Figure 5.10: Averaged ignition delay times for normal discharges and short circuits  

5.2 Exploratory Data Analysis for the Workpiece Quality  
As already described, the produced product quality can be categorized in terms of its 
level of detail. The first step is to discuss which quality categories play a significant role 
after the main cut and should be considered for this processing step. For this purpose, 
both macroscopic and microscopic changes were examined. Possible correlations be-
tween the electrical process data and the corresponding quality categories were visu-
alized. Experiments and the exploratory analysis of the process data are presented 
below. Due to the large amount of data and the fact that this was the first time that real 
process data from the continuous process was recorded and analyzed over a longer 
period of time, different test conditions were deliberately defined for data generation. 
This should ensure that the data analyses and the subsequent data-driven models are 
as generic as possible for the use in evaluating the wire EDM process.  

5.2.1 Macroscopic Influence – Geometrical Deviation  
There are two geometrical features produced by the main cut which are relevant. One 
is the straightness over the workpiece height. The other is the generated working gap 
which defines the offset value for specific machining conditions [KLOC07]. Both fea-
tures were examined in different experiments to identify relevant features which are 
necessary to monitor or predict after the main cut in order to compensate possible 
deviations using the trim cuts.  

Since only straight cuts were initially considered in this work, the focus was particularly 
on the straightness of the components over the workpiece height. While in most appli-
cations the main cut is not the last process step and trim cuts define the final 
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geometrical accuracy, it is however important to determine deviations after main cut to 
consider it for further machining steps. In addition, there are machining technologies 
which aim to ensure geometrical accuracies with tolerances under 10 μm or even 5 
μm even after the main cut.  

Several experiments with different workpiece heights and various flushing conditions 
were examined to investigate the influence of a produced curvature after the main cut. 
Depending on the conditions, especially, the size of the curvature, the first trim cut 
cannot compensate the deviation and thus the standard geometrical accuracy cannot 
be met. This can be illustrated briefly by Figure 5.11. Exemplary, two different ma-
chined workpiece heights with h = 120 mm and h = 200 mm were machined under 
modified process influencing variables. In each case, reference specimens were pro-
duced under optimum conditions respectively standard technologies and specimens 
with various nozzle distances and thus changed flushing conditions. Under degraded 
conditions, a curvature was produced that could not be fully compensated by a further 
trim cut. The reference values named Standard120 and Standard200 were manufactured 
with a standard machining technology and show that curvature values around 
C = 5 μm or even under can be achieved, while changed flushing conditions cause 
significant deviations which are not compensable [KÜPP23].  

 
Figure 5.11: Geometrical deviation after the main cut and the trim cut [KÜPP23] 

This was also observed in the studies by Bergs et al. [BERG20d] which investigated 
the effect of changing flushing conditions on the automated machining of fir tree slots. 
There, the tolerance for the straightness produced could no longer be maintained after 
changing the flushing conditions due to the use of a rotary axis. This observation sup-
ports the statement that predicting the contour deviation after the main cut and adjust-
ing the trim cuts are necessary to still meet the requirements. 

Based on this knowledge, experiments were designed and systematically conducted 
to correlate the recorded process data with the measured curvatures. The focus here 
was on investigating geometric deviations caused by changing flushing conditions. In 
this way, such deviations are ultimately generated in practical applications and would 
therefore also be relevant for process monitoring. In order to realize this, the correlation 
between process parameters like the spatial resolution of the discharge energy and 
the amount of material removal needs to be formulated. Several studies indicate a 
correlation between the amount of removal by different discharge energies and 
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discharge types [KLIN16, SHAH16]. However, these effects have not been studied for 
consecutive discharges in wire EDM, especially for the continuous process. Thereto, 
it is shown, how this knowledge can be extrapolated to the continuous process and 
how big the impact of discharge energy considering discharge types on the process is. 
By agglomeration of data and determining the distribution of discharge types, the ma-
terial removal should be reproduced qualitatively. From the spatially resolved dis-
charge energy illustrated in Figure 4.30, energy levels five times greater at the middle 
of the workpiece compared to edges can be observed and can have a relevant impact 
on the produced quality. For this purpose, experiments were conducted machining 
steel C45 with a workpiece height of h = 40 mm and a cutting length of l = 5 mm and 
varying nozzle distances in order to reproduce industrial machining of workpieces with 
altering heights, often ranging from optimal to poor flushing conditions. In addition, to 
the analyzed data the produced curvature of workpiece was determined by tactile 
measurements. 

Figure 5.12 shows an overview of the experiments performed with the different ma-
chining setups and the realized cutting rates VW. The highest cutting rate is achieved 
with the optimal flushing conditions as debris exclusion from the working gap is more 
effective. With higher nozzle distances, the dielectric enters the working gap with com-
paratively lower pressure and consequently resulting in lower debris exclusion from 
the working gap [KIMU22, OKAD09, OKAD15]. Even though setup B represents the 
mirrored condition of setup D, the feed rate of setup D however is considerably low. At 
a first glance, this may suggest that the lower nozzle distance with respect to the wire 
run is more determinant. Also, there is a considerable jump of the cutting rate from the 
symmetric flushing condition with a = 10 mm to that with a = 50 mm. This halving of 
the speed clearly shows the importance of flushing and its appropriate setting during 
machining, as it can result to doubling of machining time. Therefore, the optimal setup 
of a workpiece, even one with a varying height, is crucial for the machining times and 
hence costs. 

 
Figure 5.12: Overview of nozzle distance and cutting rate  
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was recorded for each experiment. This parameters does not consider the surface 
roughness as this is filtered out [DIN22]. While the profile in the case of experiment A 
shows no specific pattern, that of experiment D shows a distinctive curvature. Experi-
ment A to C all achieved a similar profile while experiment D to F all produced a cur-
vature. For the investigations in this work, no explicit distinction was made between 
concave or convex profile curvatures, but this was always defined as curvature. 

 
Figure 5.13:  Measurement profiles of experiments A and D  

In order to analyze the resulting machined profiles, the discharge energy distributions 
which can be determined from the discharge distribution were evaluated. A simplistic 
model to calculate these process parameters was derived by observing this in two 
dimensions as shown in Figure 4.30. The calculation is done by summing the energy 
per discharge for all discharge types over the height of the workpiece. The discharge 
distribution is also plotted. For better comparison, only the discharge and energy dis-
tribution for a machining length of l = 1 mm with the respective setup A-F is shown in 
Figure 5.14. 

As can be seen in the plots, the energy intensities and the number of discharges in-
crease overall from setup A to setup F, which initially contrasts with the decreasing 
feed rate listed in Figure 5.12. Characteristic peaks for the short circuit and energy 
distribution for experiments D to F can be observed. The energy peaks are located in 
regions where short circuits are mostly ignited. As already mentioned, this can be 
caused by particle accumulation due to the poor flushing process, which causes short 
circuits especially in the center of the workpiece [OKAD09, OKAD15]. Since the die-
lectric is flushed into the working gap from the top and bottom nozzles, decontamina-
tion is most likely to be achieved at the gap entrances.  

A possible explanation for the decreasing speed can be referred to the energy dissi-
pation in the working gap. It is known that only a proportion of the discharge energy is 
absorbed by the workpiece. Other proportions of discharge energy is absorbed by the 
dielectric, the tool and debris a portion of the this energy [SCHN21, ZEIS17]. Analogi-
cally, the rise of short circuits can be rooted to the high accumulation of debris which 
in turn favor the ignition of further short circuits and disfavors the ignition of normal 
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discharges. It was shown by Kunieda et al. that the gap width increases as a function 
of the particle concentration [KUNI95, KUNI99]. Even the influence of the electric field 
on the particles and their movement in the working gap was investigated [KUNI97]. An 
increased particle concentration increases the risk of particle bridges forming and in-
creasing the gap width. A larger gap width and the rise of short circuits leads to a 
reduction of the speed [KLOC07, WELL15]. Furthermore, a larger gap can degrade 
imaging accuracy.  

 
Figure 5.14: Spatially resolved discharge energy and distribution of normal discharges and 

short circuits [KÜPP22b] 
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On the contrary, experiments A to C show a relatively uniform distribution for both the 
energy and the discharge distribution. Furthermore, a surprising asymmetric relation-
ship between the discharge distribution and the nozzles distances can be observed. 
While this distribution is insensitive to the lower nozzle distance of alower = 10 mm, the 
opposite is true when the lower nozzle distance is alower = 50 mm. An explanation to 
this phenomenon cannot be easily formulated. It could be a machine-based error re-
sulting in unstable machining conditions, which has to be considered in further tests. 
Nevertheless, this proves the necessity of an online monitoring system being able to 
detect unstable machining conditions early enough which will enable machine opera-
tors to take adequate counter measures.  

In order to correlate the resulting curvature to the process data, the distribution of both 
discharge types was analyzed. As can be seen in the plots, the discharge distributions 
are not always normally distributed, so the kurtosis and skewness were used. The 
kurtosis is a statistical measure used to quantify how heavily the tails of a distribution 
differ from the tails of a normal distribution. Data sets with high kurtosis tend to have 
heavy tails, or outliers. Data sets with low kurtosis tend to have light tails, or lack of 
outliers. Additionally, the skewness is calculated, which indicates the symmetry of the 
distribution. The skewness for a normal distribution is zero and any symmetric data 
should have a skewness near zero. Negative values for the skewness indicate data 
that are skewed left and positive values for the skewness indicate data that are skewed 
right [FAHR16].  

The kurtosis is calculated as follows [FAHR16]: 

  =  1 ( )
 (5.2)  

The skewness is calculated as follows [FAHR16]: 

 =  1 ( )
 (5.3)  

In both equations, n represents the total number of elements in the dataset,  is the 
mean value, and s is the standard deviation. Both parameters determine how well a 
data set follows a normal distribution but with different focuses. The kurtosis and skew-
ness of both normal discharges and short circuits were calculated. For example, the 
evaluation of the kurtosis for normal discharges and short circuits for different tests are 
depicted in Figure 5.15.  

For this, the number of bins was set to nbins = 100. It was observed that the kurtosis 
stabilizes above a number of bins that is twice the height of the workpiece. Values 
below this have led to large fluctuations in the values. As it can be seen in Figure 5.15, 
the kurtosis of normal discharges shows a positive trend with respect to the curvature 
of experiments D to F such that when the curvature increases, the kurtosis also rises.  
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Figure 5.15: Correlation between the curvature and kurtosis of normal discharge and short 
circuit distribution [KÜPP22b]

However, this trend is not consistent with experiments A to C and does not describe 
any generic trend that correlates the curvature and the process data. The kurtosis of 
short circuits shows a similar behavior and can hence not be used in a generic manner. 
A related observation has been made when analyzing the skewness of the discharge 
distribution [KÜPP22b]. 

In order to correlate the curvature with the process data, the parameter emax was for-
mulated and defined by the ratio of the maximum counts of short circuits to the related 
counts of normal discharges at the same position when these discharges are discre-
tized. This definition is graphically described in Figure 5.16 [KÜPP22b]. 

Figure 5.16: Formulation and presentation of emax [KÜPP22b]

Its formulation is only based on empirical observations and is calculated as follows:emax= max.  number of short circuits (x,y,z)max.  number of normal discharges (x,y,z) (5.4) 

Additionally, the dependence on the number of bins was also analyzed. Figure 5.17
displays the emax results for the setups and its dependence on the number of bins. As 
can be seen, the values of emax fluctuate greatly for lower numbers of bins, that is, for 
a number of bins less than the height of the workpiece. In contrast, these values tend 
to be more stable for bin sizes nbins = 2 x workpiece height h. This is also true for setups 
with much lower ranges of emax [KÜPP22b].
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Figure 5.17: Dependence of emax on the number of bins [KÜPP22b] 

Using nbins = 100 the emax parameters for the process were evaluated and plotted as 
shown in Figure 5.18. The resulting curvature by the different setups are also plotted. 
From the diagram the emax for experiment A to C have very low values. However, these 
values increase for experiments D through F and correspond to experiments that pro-
duced high curvatures. This indicates a high correlation between the curvature and the 
emax parameter [KÜPP22b]. 

 
Figure 5.18: Correlation between analyzed process data and curvature [KÜPP22b] 

The advantage of this parameter is the easy calculation, which simplifies the applica-
tion for real-time process monitoring. Therefore, further experiments were conducted 
machining workpieces with heights of h = 40 mm and h = 80 mm. The flushing height 
was also varied ranging from a = 10 mm to a = 200 mm. The evaluation emax was per-
formed every 150 ms using the number of bins set to nbins = 2 x workpiece height h. 
The averaged value and the resulting standard deviation as error bar are plotted in 
Figure 5.19. While all the test series on the left side of the red line, where the nozzle 
distance was significantly increased, showed a distinctive curvature, all the tests on 
the right side, where only small changes of the nozzle distance have been changed, 
showed no characteristic curvature. Furthermore, the emax evaluated from these cur-
vature-free tests were not only small, but also very constant which can be seen from 
their very low standard deviation. In contrast, the tests with high curvatures returned 
high emax values with high standard deviations. However, neither the emax nor the stand-
ard deviation was proportional to the measured curvatures. Based on these observa-
tions, a threshold emax for the formation of a curved profile could be approximated to 
emax,th = 1.5, as shown by the dotted yellow line in Figure 5.19 [KÜPP22b]. 
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Figure 5.19: Detection of curvature during wire EDM [KÜPP22b] 

Beside the straightness of the workpiece, the gap width was measured using the Zeiss 
Smartzoom 5 digital light microscope. Therefore, the specimens with a height of 
h = 10 mm machined in the experiments from chapter 5.1 were examined. The gap 
width varied by only about 10 μm and is plotted in Figure 5.20. This does not represent 
a significant deviation but still a change of the gap width could lead to deterioration of 
the geometric accuracy and should be considered when applying the trim cut.  

 
Figure 5.20: Generated gap width for different t0 [KÜPP20] 

These results are also consistent with the observations made in the work of Bergs et 
al. [BERG18a]. Specimens also with a height of h = 10 mm were processed. The dis-
tance of the upper nozzle, the pulse interval time, the discharge current and the flush-
ing pressure were changed. The individual parameter values were halved or doubled. 
While a halved discharge current significantly decreased the gap width due to reduced 
discharge energy and resulting smaller erosion craters, changing the other parameters 
does not demonstrate such a comparable influence on the gap.  

5.2.2 Microscopic Influence – Surface Roughness  
The surface roughness is in general determined by the trim cuts [HENS17, KLOC07]. 
This was also confirmed by the evaluation of the test specimens surface roughness 
examined in chapters 5.1 and 5.2. The surface roughness was measured according to 
DIN EN ISO 4288 [DIN98]. The average surface roughness Ra values of the speci-
mens from chapter 5.2 are represented for the different settings in Figure 5.21. Ra is 
the arithmetic average of the absolute values of the roughness profile deviations from 
the surface within the evaluation length [DIN22]. No significant change in the surface 
roughness could be detected by a variation of the pulse effective frequency and the 
ratio of normal discharges [KÜPP20]. The standard deviation of the measurements 
was so small that they cannot be seen here at this resolution. 
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Figure 5.21: Average surface roughness using different t0 [KÜPP20] 

For the described experiments in chapter 5.2 also the surface roughness was 
examined and the results for the Ra values are depicted in Figure 5.22. Here, also the 
surface roughness parameter Rz was measured. It is also known as the peak-to-valley 
height and represents the maximum height difference within the evaluation length 
[DIN22]. Overall, the roughness varies from Ra = 3.3 μm to Ra = 3.8 μm for the main 
cut. The values and their scatter are representative of typical roughness values after 
the main cut and show no significant differences between the different machining 
processes for either Ra or Rz. Instead, based on these results, it can be assumed that 
changing flushing conditions have no significant influence on the surface roughness. 
The surface roughness is mainly determined by the electrical parameters. It rises with 
increasing discharge energy, while the individual variables such as discharge current 
and discharge duration have different effects on the topography [KLIN17, LI13, 
MARA20]. The roughness is therefore largely determined by constant pre-process 
settings. Therefore, surface roughness was excluded as a quality factor for this work. 
However, it must be taken into account that surface roughness is important for future 
work that includes trim cut processing. As described in chapters 2.3 and 2.5, the 
monitoring of trim cuts could already be realized by using data of the continuous 
process [KLOC14b, WELL15]. 

 
Figure 5.22: Surface roughness during various flushing conditions 

5.2.3 Microscopic Influence – White Layer  
As described the mechanism of material removal in EDM is primarily based on vapor-
ization and melting induced by thermal energy input – at least for metals. A portion of 
the resulting melt pool is ejected by pressure gradients during and after discharge, 
leaving behind a white layer on the workpiece surface. The white layer (WL) consists 

0
1
2
3
4
5

Ref 19 18 17 16 Std 14 13 12 11 10 9 8 WbAv
er

ag
e

su
rfa

ce
ro

ug
hn

es
s 

R
a

/ μ
m

Pulse interval time t0 / μs

h = 10 mm
taverage = 1 s

Av
er

ag
e 

su
rfa

ce
ro

ug
hn

es
s

R
a

/ μ
m

 

0
5
10
15
20
25
30

0

1

2

3

4

5

A B C D E F
Different setups

Su
rfa

ce
ro

ug
hn

es
s

R
z

/ μ
m

 



5 Analysis of Evaluation Criteria in Wire EDM 87 

of re-solidified material, is characterized by the nanocrystalline microstructure and the 
susceptibility to cracking. Its thickness predominantly fluctuates based on discharge 
energy levels, with reduced energy resulting in thinner layers [KLOC16, LIU16b]. The 
heat-affected zone is located under the recast layer, also called white layer, where 
metallurgical changes occur due to phase transformations and high spatial tempera-
ture gradients, leading to residual stresses within the material [HESS22, LIU16a, 
MOHA21]. The resulting three-part subsurface layer is shown in Figure 5.23. The in-
duced thermal state cannot be precisely determined but affects the material properties 
on the surface, persisting even after the process and amenable to analysis [KLOC07].  

 
Figure 5.23: Schematic representation of the subsurface layer [KLOC07] 

In order to determine the average depth of the white layer thickness (WLT), metallo-
graphic sections of the machined specimens were analyzed. A defined area of the 
sample was cut out. The section was then etched to generate the edge zone charac-
teristic white color. Finally, images of these cross sections were taken using the Zeiss 
Smartzoom 5 digital light microscope. This microscope offers a wide range of image 
acquisition modes, and a 5x magnification objective was selected to capture the cross 
sections. Using the "stitching" function, up to 100 images of each sample were cap-
tured and automatically merged into a single image. The result is an image of the entire 
cross section with a length of about l = 20 mm, a resolution of over 60,000×1600 pixels 
and a file size of up to 250 megabytes [ZEIS23]. 

Typically, several images with a length of approx. l = 0.25 mm are processed manually 
using image processing software to evaluate the white layer. First, the image is read 
in, and the pixel-millimeter ratio is determined using the measurement scale and then 
calculated. Finally, the average depth is obtained by dividing the white layer area by 
the width of the image. Figure 5.24 illustrates the manual evaluation of the white layer 
in the open-source software ImageJ. 

 
Figure 5.24: Manual evaluation of the white surface layer 

In order to fully analyze the cross-sectional samples, an algorithm in Python was de-
veloped to automatize the analysis. Initially, the image is read in and aligned. The de-
sired file and the two outer points of the contour are selected. These points can be 
used to determine the gradient of the sample in the image. Finally, 100 pixels above 
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and below the gradient line are selected to create a new image. This image is divided 
into several images of width dx. Then all the slices of the cross section are presented 
one after the other in the GUI. The contour of the white layer is detected using the 
Python library Open-CV (Open Source Computer Vision Library). The image is con-
verted to grayscale using a threshold. The resulting binary image is then examined for 
contours using various algorithms. The results are depicted in Figure 5.25. Since the 
brightness varies within the images, the brightness and threshold for gray image gen-
eration can be changed for each image. By using the developed program, the evalua-
tion time for the analysis of cross-sectional images could be significantly reduced, thus 
ensuring a large database for the evaluation of the white layer thickness. User-related 
measurement errors that can occur due to different approaches and accuracies when 
measuring surfaces can also be avoided. 

 
Figure 5.25: Semi-automated detection of the white layer thickness 

In order to analyze the relationship between the produced white layer and the process 
data, the discharge energy distribution of different process settings was created. The 
calculated distributions were visualized in heat maps. Figure 5.26 first presents the 
energy distribution for machining a steel material with a height of h = 40 mm and a 
cutting length of l = 32 mm using a standard technology setting as a reference. The 
other examples display the energy distributions for modified machining technologies.  

The standard technology test demonstrates a largely uniform energy distribution. In 
contrast, the second and fourth samples show a significantly higher energy input in the 
center of the sample. When using a technology with an increased discharge time, wire 
breakage occurred after a cut length of approximately 5 mm. The process was contin-
ued without changing the technology and the generated total energy after the wire 
break is higher than before. 

The evaluation of the test with a reduced pulse interval time showed punctual high 
discharge energy accumulations. By changing the nozzle distance of the lower head 
to 50 mm and the upper head to 100 mm, in addition to the high energy input in the 
center of the specimen, very large fluctuations in the discharge energies occurred over 
the cutting length. In order to investigate the correlation of the discharge energy distri-
bution with the produced white layer, cross sections in both transverse and longitudinal 
directions of different samples were taken at selected positions, see Figure 5.26. 

detected contours

selected contours
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Figure 5.26: Distribution of spatially resolved discharge energy for different settings 

After capturing the images with a light microscope, see Figure 5.27 showing some 
examples, the samples were analyzed using the previously described program for 
semi-automatic evaluation of the average thickness of the white surface layer. 

Figure 5.27: White layer analysis of X155CrVMo12-1 machined with different settings

The results are summarized in Figure 5.28. It has been observed that there is no sig-
nificant correlation between the generated process energy and the white layer. Instead, 
the results are supported by studies in which a larger white layer is propagated with an 
increase in the set individual discharge energy [GOST12, LI13, MARA20]. This hypoth-
esis was also examined in detail by Schneider [SCHN21] using different simulation
approaches. While a very precise calculation of the energy dissipation was taken into 
account, assumptions were made to estimate the positional distance between two con-
secutive discharges. 

W
or

kp
ie

ce
 h

ei
gh

t h
 / 

m
m

0

20

40

0 4 8 12 16 20 24 28 32

1200
1000
800
600
400
200

Reference

0

20

40

0 4 8 12 16 20 24 28 32

u0: -50%
1600

800
400

1200

te: +50%
1200
1000
800
600
400
200

Cutting length l / mm

0

40

80

0 4 8 12 16 20 24 28 32

aupper: 50 mm
alower: 100 mm

2500
2000
1500
1000
500

3000

D
is

ch
ar

ge
 e

ne
rg

y 
W

e
/ J

0

20

40

0 4 8 12 16 20 24 28 32

Cross section preparation

Reference u0: -50% te: +50% (left) te: +50% (right)

20 μm 20 μm20 μm 20 μm



90 5 Analysis of Evaluation Criteria in Wire EDM

Figure 5.28: Comparison of the white layer and the discharge energy of individual discharges

To verify the hypothesis for wire EDM, the modes for the local and temporal distance 
of consecutive discharges are plotted in Figure 5.29. For the local distance z, the 
distribution along the height within the cutting path of l = 0.1 mm was considered. For 
the temporal distance t, the ignition delay time td was determined from the data. Fi-
nally, a pulse interval time of typically t0 = 10 μs must be added to calculate the tem-
poral distance of two consecutive discharges. This resulted in most frequent spatial 
distance of approx. z = 1 mm and an average temporal distance of t = 15 μs. 

Figure 5.29: Distributions of local distance z along the workpiece height and td

Considering typical discharge crater geometries, individual discharges typically do not 
overlap. A very simplified simulation model according to Schneider [SCHN21] illus-
trates that also no superposition of the generated temperature fields takes place at the 
determined distances, see Figure 5.30. 

There, the worst case was assumed that 100% of the discharge energy is dissipated 
into the workpiece and no cooling takes place via the dielectric. Nevertheless, no su-
perposition occurs at the measured values and Schneider's hypothesis which states 
that the surface modification is mainly determined by the individual discharge energy 
can also be confirmed for wire EDM. The white layer is also determined by constant 
pre-process settings. Therefore, the white layer thickness was also excluded as a qual-
ity factor for this work. However, as with roughness, this evaluation parameter must 
also be taken into account for further processing steps.
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Figure 5.30: Temperature fields of consecutive discharges under determined local and  

temporal intervals  

5.3 Summary and Conclusions 
In this chapter, different evaluation criteria for the main cut regarding the process 
productivity and product quality were analyzed. The focus here was on analyzing the 
influence of changing machining conditions, in particular flushing. For this purpose, 
continuous process data was recorded to identify possible correlations with process 
productivity and quality. Statistical analysis was used to determine initial correlations 
and trends for evaluating productivity by analyzing the speed and occurrence of wire 
break using the process data. The observations were consistent with previous findings 
and new knowledge was also gained to understand the influences of discharge distri-
bution and the cutting rate. 

To evaluate product quality, macroscopic as well microscopic changes were consid-
ered. It was shown in Figure 5.11 that a change in the curvature was produced by 
changing process conditions which, depending on the extent, could not be compen-
sated by trim cuts. First analyses indicated correlations between the curvature and the 
discharge distribution over the workpiece height. Thereby, statistical parameters as 
skewness and kurtosis for the different discharge types were calculated. Based on 
these findings, the parameter emax was defined heuristically, which represents a rela-
tion between the distribution of normal discharges and short circuits defined in Figure 
5.16. It resulted in good correlation with the produced curvature but is depending on 
the data resolution.  

Microscopic changes in the workpiece in the form of surface roughness and white layer 
were not influenced by changing process conditions such as nozzle distance or work-
piece height. These factors are mainly dependent on the single discharge energy, what 
could be demonstrated through the experimental results and some simulations based 
on the findings by Schneider [SCHN21]. Therefore, these criteria are not important to 
monitor in the continuous process because they are determined by defined pre-pro-
cess setting parameters which impact the single discharge energy.  
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6 Regression Model for Quality Evaluation 
Based on the results of the first statistical analyses, this chapter presents regression 
models to evaluate the produced quality in wire EDM by using continuously recorded 
process data. As displayed in chapter 5, the variables for evaluating the main cut pro-
cess are initially limited to workpiece curvatures as a quality criterion. Using recorded 
process data and measured part geometry data, machine learning models are trained 
to represent the geometric deviation. The focus here is on predicting the generated 
curvature, which is to be determined with certain continuous values without measure-
ment. For this purpose, tests were carried out in which the adjustable and non-adjust-
able process variables were varied separately, and the data was recorded. After data 
processing and feature engineering, the model architecture was selected while opti-
mizing hyperparameters. Thereto, training and validation data was used. The chosen 
regression model was finally tested with unknown data and evaluated.  

6.1 Data Processing  
6.1.1 Categorization of Process Influencing Parameters  
A process evaluation can be used in EDM to monitor or control the process in real time 
or to develop as well as optimize a specific machining technology. In order to realize 
this with the help of a data-driven model, it is of great importance under which condi-
tions the data for the analysis or modeling is generated. For the data basis, experi-
ments were conducted which cover the challenges for an online monitoring system and 
for a technology development. Thereto, the process influencing parameters in wire 
EDM are distinguished in two categories: “adjustable” and “non-adjustable” parameters 
[KÜPP23].  

Adjustable parameters are machine parameters, which are set before the beginning of 
machining. They are used to develop, adapt or optimize a specific machining technol-
ogy. The configuration and selection of parameter values are made heuristically and 
mainly based on experience or on time-consuming experiments. This kind of parame-
ters include for example the electrical parameters like discharge current, discharge 
voltage, and discharge duration as well as the pulse interval time and the open circuit 
voltage. In addition, mechanical machine parameters like wire tension, wire run-off 
speed or the flushing pressure belong to it, see Figure 6.1. The selected parameters 
for the experiments represent the most important ones for technology developments 
and have great impact on process performance [BERG18a, KLOC07, KUNI05]. They 
were chosen based on experience, research literature and machine manufacturer ad-
vise.  

On the contrary, non-adjustable parameters are process influencing parameters, which 
are mainly defined by the workpiece. The process is influenced by the material of the 
workpiece and by its geometry. The workpiece geometry affects the process especially 
with changing machining heights. Machining technologies are optimized for specific 
machining heights with a defined nozzle distance. Changing heights in a workpiece 
have also a big impact on the flushing conditions due to changed nozzle distances 
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[FUJI12, KIMU22]. Wire EDM machines can only control such machining operations to 
a limited extent. These machining operations are usually associated with a loss of 
quality or productivity during machining [BERG18a, BERG20b, EBIS18, OKAD15]. To 
do this, the data generated by these parameters must be processed for process mon-
itoring.

For the selection of the test boundary conditions, a survey was developed in coopera-
tion with the WBA Aachener Werkzeugbau Akademie GmbH. The WBA is a leading 
partner for tool and die industry in the fields of consulting, digital solutions, training,
and research. In a survey, companies from the tool and die industry were asked which 
process conditions particularly affect the wire EDM process in their production. The 
machining heights and the selection of nozzle distances were defined based on the 
results of the surveys in order to cover the requirements as close to the application as 
possible.

Figure 6.1: Classification of process influencing parameters in “non-adjustable” and “adjust-
able”

6.1.2 Data Generation and Preparation
For data generation, tests were carried out separately for the two categories. A tool 
steel X155CrVMo12-1 was chosen as the experimental material. The material is a 
high-alloy cold work steel which is used for high-performance cutting tools, milling cut-
ters, broaches, and stamping tools. This steel is characterized by low residual stresses 
and ensures that there is no material-based distortion that would affect the measure-
ment and evaluation of the produced curvature [BLEC18]. All tests were performed 
using the bercocut pro 900 brass wire by bedra with a diameter of d = 0.25 mm, which 
represents a typical wire for the machined material [BERK24a]. In order to avoid the 
effect of material distortion, the parts were manufactured with a sufficient thickness. 
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This was tested in preliminary trials and set at a thickness t = 10 mm. Three different 
machining heights were selected based on the conducted survey: h = 40, 80 and 120 
mm. As a reference, the standard machining technology was chosen dependent on 
the individual machining height which is specified by the technology database of the 
machine. The selected influencing parameters and the setting for each category are 
listed in Table 6.1. The adjustable parameters were increased and decreased by 50%. 
When the upper limit was reached before, it was increased to this maximum. All pa-
rameter selections were conducted for every workpiece height. In addition, each vari-
ation for the two categories was performed with each other. This results for example 
in 27 data sets of “non-adjustable parameter” variations.  

Table 6.1: Changed process parameters for data generation 

 
Workpieces with a length of minimum of 30 mm were machined and the curvatures 
were measured using a coordinate measuring machine (CMM) Prismo navigator by 
Zeiss [KÜPP23]. The curvatures of every specimen are measured every 1 mm, which 
means for every experiment setting there are in total 30 curvatures, see Figure 6.2. 
Due to the large number of measurements, there was also an attempt to automate 
data acquisition. The geometric parameters are output in a PDF file following a meas-
urement. Therefore, an algorithm in Python was developed to automatically extract the 
required measurement data from the PDF files and save as a CSV-file.  

For developing the machine learning models, more than 7.3 billion counted individual 
discharges, generated in over 40 hours machining time, were evaluated. This exten-
sive processing time was necessary to generate a sufficiently large amount of data. 
Despite the signal processing and a strong data reduction, more than 200 GB of infor-
mation was stored as binary file. Over 2400 contour measurements were performed to 
predict the curvature. This resulted in a total of over 800 data sets for adjustable pro-
cess parameters and 1300 data sets for non-adjustable parameters. The models were 

Adjustable process parameter
max.-50%standardDischarge current ie / A
+50%-50%standardDischarge duration te / μs
+50%-50%standardOpen circuit voltage u0 / V
+50%-50%standardPulse interval time t0 / μs
max.-50%standardWire tension wt / N
+50%-50%standardFlushing pressure p / MPa
+50%-50%standardWire run-off speed vD / (m/s)

Non-adjustable process parameter
1005010Upper nozzle distance aupper / mm
1005010Lower nozzle distance alower / mm

Varied parameter for all experiments
1208040Workpiece height / mm
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partly trained and validated separately with the different data and partly data from both 
categories were used together. A selection of the results is presented in the following.

Figure 6.2: CMM measurement setup (left) and measurement procedure (right)

The results for the averaged curvature values considering all experiments with 
changed adjustable and non-adjustable parameters are plotted in Figure 6.3. Each bar 
was calculated using 30 measured curvature values. It is apparent from this table that 
larger curvatures are produced when machining higher components. Interestingly, a 
higher standard deviation was observed for the curvature produced during poor flush-
ing conditions. This represents a first indication for process instability and confirms the 
importance of flushing conditions by the state of the art [BERG20d, KIMU22, KLOC07]. 

Figure 6.3: Curvatures machined with varied adjustable and non-adjustable parameters 
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Before training a model, it is essential to define which features are potential input pa-
rameters for a supervised machine learning model. Although after preprocessing, 3 GB 
sized data is compressed to about 1 MB files, there are still too many selectable fea-
tures since adding more features increases the dimensionality and some tasks become 
exponentially more difficult as this number increases [GOOD16, BADI20]. Therefore, 
feature engineering is performed initially before selecting and training models to create 
meaningful features from existing data [PLAU21]. Various aspects are taken into con-
sideration for this. Firstly, more input parameters are initially used, even if these in-
crease the training times, to achieve the highest possible model performance. Never-
theless, a dimension reduction was carried out by feature selection to exclude the input 
parameters that do not generate any added value for the models. The averaging time
or interval sizes were also factored in, which considers data-based changes but can 
also be used to represent physically interpretable results. Depending on the parameter, 
these are calculated with different local resolutions. Figure 6.4 illustrates how this res-
olution can take place in principle. For some parameters, only averaging over the total 
height is more meaningful. For example, it must be considered that the CMM meas-
urements in the cutting direction were not only sensibly set to a distance of x = 1 mm 
from a metrological point of view, but that the recorded process data also allows such 
a compression ensuring no loss of relevant information. The division into grids in the 

and directions is very interesting, especially for the ratios of normal discharges
and short circuit illustrated in Figure 6.4. In the following, the influence of the interval 
size on the characteristic values is examined and the calculation of the discharge type 
ratios is explained in more detail.

Figure 6.4: Data processing using different resolutions 

6.1.3 Effect of Interval Sizes on Data
The processed data is summarized in matrices with input and output data. Table 6.2 
shows an example of a data matrix. Each row characterizes here one millimeter of the 
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machined component and is given in total such as the number of discharges and en-
ergy We or as an average value such as fe or rn. As the individual discharges can also 
be assigned a position in the Z direction, the areas can also be compressed within the 
height.  

Table 6.2: Example of a data matrix with measured and extracted features 

 
The selected interval size of one millimeter for the tests can be varied as required and 
is limited only by the sampling frequency of the position determination program. In this 
way it can be decided whether a more detailed resolution and thus smaller evaluation 
intervals should be used. This would increase the amount of data available. In addition, 
the influence of a lower resolution on the characteristic values is determined. If there 
are no major changes between large and small intervals, the resolution can be re-
duced, since a more detailed resolution does not provide any additional information, 
and the workload can be reduced due to the smaller area measurements. 

Next, the number of discharges is observed to illustrate the effect of interval size. In-
tervals of size x = 0.25 mm and x = 4 mm are compared to the x = 1 mm interval 
size used for the tests. The results are plotted in Figure 6.5 for l = 32 mm of cutting 
length machining a workpiece with a height of h = 40 mm using a standard steel tech-
nology. The number of discharges at x = 0.25 mm and x = 4 mm is scaled to allow 
comparison of the three curves. The scaling factor is set to S = 4 or S = 0.25, so that 
the data points represent the discharges per millimeter. The data is shown here as 
lines without dots for clarity. 

 
Figure 6.5: Influence of interval sizes on the number of discharges 

In the range between l = 8 mm to 16 mm, all three tests result in almost identical pat-
terns. Here the number of discharges is at a constant level and not subject to large 
fluctuations. A higher resolution does not generate more information. In the front area, 
however, the number of discharges changes much more. While the curve with an in-
terval size of x = 1 mm still shows the fluctuations well, there are already significant 
deviations at an interval size of x = 4 mm. The contour values associated with this 
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test in Figure 6.6 show that the values in the cut area in particular are subject to strong 
fluctuations. Therefore, evaluation with an interval size of x = 4 mm is not recom-
mended. Much better results can be obtained with an interval size of x = 1 mm. Only 
slight deviations from the interval size x = 0.25 mm can be observed here. 

 
Figure 6.6: Curvature of a machined sample with an interval size of x = 1 mm 

For two reason the interval size is left at x = 1 mm for the following test series. First, 
the evaluation of curvature measurements revealed that deviation is constant during 
unchanged process condition which can also be seen in Figure 6.6 between the cutting 
length of l = 5 - 32 mm. Second, the correlation of the measured process data with the 
determined surface properties is significantly more difficult with very small intervals and 
not useful in practice.   

Beside the ratio of normal discharges to total discharges, discharge distribution char-
acteristics in z-axis directions and many other features could be extracted from these 
data points. In the preprocessed file, the number of normal discharges and short cir-
cuits are recorded in every ( x  z) mm² square in x- and z-axis as a data point. All 
these squares with same x coordinate from 0 mm to the height of workpiece in z-axis 
together represent one curvature value. For example, to calculate the average ratio of 
normal discharges to total discharges for a specific cutting length interval ( ), all 
normal discharges are summed up and divided by sum-up total discharges in range of 
z0 = 0 mm to height of workpiece zh in the same x position xi, as equation 6.1 shows: 

 ( ) =  , ,, ,  (6.1) 

With the same calculation the ratio of short circuits ( ) is defined as follows:  

 ( ) =  , ,  , ,  (6.2) 

Figure 6.7 depicts an overview of the number of total discharges for an unstable pro-
cess with a resolution of 1 mm × 1 mm considering cutting length and workpiece 
height. In order to explicitly analyze the correlation of the local ratio of normal dis-
charges and short circuits with the curvature, new height-dependent characteristic val-
ues were created. As already explained, the local ratio of different discharge types is 
formed for each area on the workpiece surface. This results in a different number of 
values depending on the height and area division. 
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Figure 6.7: Plotted number of total discharges with a resolution of 1 mm × 1 mm  

As the data set consists of different workpiece heights and the areas for z therefore 
varies, relevant features for the machine learning model may be lost as a result. For 
this reason, in addition to the determined statistical parameters of the median, arith-
metic mean, standard deviation, variance, kurtosis, skewness and mode, new param-
eters ki are introduced that are intended to put the discharge distribution of the upper, 
lower and middle areas of the workpiece height in relation to each other. The index i 
describes the underlying data (normal discharge, short circuit, all discharges) and the 
quantile ranges q dividing the data in different parts. A graphical representation of this 
calculation is illustrated in Figure 6.8. 

 
Figure 6.8: Calculation of the k and q values 

It was also proven that no relevant information got lost by using the specified interval 
sizes for the calculation of the statistical variables. This can be illustrated briefly by 
Figure 6.9 representing the data of same experiments conducted before machining a 
workpiece height of . Three different widths of data are selected here: 

x = 0.2 mm, 0.5 mm, and 1 mm. The comparison reveals that there are no significant 
differences in the data between these three widths, except for kurtoses of first 2 mm 
and last 2 mm, which show slight differences. This could occur due to the instability of 
the machining condition, especially at the entry and exit of the parts. Also it can be 
observed because of the poor flushing conditions particularly at these points 
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[OKAD15]. The result underlines again that the width of x = 1 mm can well represent 
surface quality of certain small area. These analyses were performed for all relevant 
input parameters and the results are almost the same. 

 
Figure 6.9: Kurtosis comparison of different data widths  

Finally, an important and last step of data preparation is scaling. The data for training 
a machine learning or deep learning model can sometimes have large jumps in its 
value ranges. Moreover, data recorded in real experiments often contain outliers due 
to individual measurement errors or other interferences that cannot always be cor-
rected, or for research reasons, are not always desired. Scaling reduces the effect of 
these influences. Used features can also have different ranges, for example, for 
heights h = 40 and 120 mm, the skewness and kurtosis vary from K = -5 to 5, while the 
standard deviation can be more than  = 10. If these parameters are directly fed into 
the model, parameters with higher values and ranges could have more influence on 
the network than others. To avoid this, the range of features need to be normalized. 
The “Standard Scaler” is used extensively; its functionality is based on a simple math-
ematical transformation. The data is presented as the quotient of the difference be-
tween the data point and the mean value and the standard deviation. The transfor-
mation is calculated as follows [PATR15, RAJU20]: 

 =  (6.3) 

x is the original feature vector,  is the mean value of x, and  is the standard deviation. 
After the normalization, the average value of  is zero and its standard deviation is 
one [PATR15, RAJU20]. 

6.2 Feature Engineering 
Only information based on physical parameters were used to train the models. Input 
parameters such as the information of nozzle distance or knowledge about the 
changed variable for the respective datasets were intentionally not used for training 
the algorithms. A neural network can recognize and exploit obvious and unknown cor-
relations. Since some input parameters have a simple formulaic relationship with other 
parameters, a supervised machine learning algorithm can learn these relationships in-
dependently. These types of parameters provide no additional information and can be 
neglected.  
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There are simple examples such as the feed rate and the cutting rate, which are for-
mally defined by the multiplication of the workpiece height. Also, the number of different 
discharge types can be calculated with their ratio values and the number of total dis-
charges. To ensure a recommended dimension reduction for the machine learning 
models, it is necessary to identify the main variables determining the data. For this 
purpose, Exploratory Data Analysis (EDA) has been conducted using descriptive sta-
tistics, visual data exploration and correlation analysis. 

The machined workpiece height has a large influence on the generated curvature of 
the part. As can be seen in Figure 6.3 larger workpieces have a greater potential for 
curvature and therefore have a large influence on the target value used for the algo-
rithm. In addition, the cutting speed is strongly dependent on the workpiece height. For 
this reason, the use of a parameter that differentiates between the various heights will 
be selected as an input parameter for the algorithm. 

To do this, the curvature is plotted in a graph as a function of the number of discharges 
and process energy in Figure 6.10 (a) and (b). Clear clusters can be seen here that 
allow the data to be assigned to different workpiece heights. The graphs (c) and (d) 
indicate a certain correlation between the pulse effective frequency f0 and the ratio of 
normal discharges rn with the produced curvature. As fe increases and rn decreases, 
the curvature C appears to be less pronounced. 

Figure 6.10: Curvature as a function of the total number of discharges (a), discharge 
energy (b), pulse effective frequency (c) and norm discharge ratio rn (d)

Beside scatter plots, the relation between the process parameters has also been ana-
lyzed by visualizing various statistical parameters with the target value. As an example, 
kurtosis of the ratio of normal discharges and the generated curvature for the work-
piece height of h = 120 mm are plotted in Figure 6.11. This was carried out separately 
for a large number of parameters for the different workpiece heights.
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Figure 6.11: Kurtosis of the ratio of normal discharges rn for h = 120 mm workpiece heights  

To systematically identify relevant input parameters, in addition to the evaluation based 
on technological knowledge and visual data exploration, correlation analyses were per-
formed to determine the influence of process parameters on process performance. 
These analyses involve calculating correlation coefficients using three different meth-
ods, which ensures more robust and reliable analyses.  

A measure of the strength of a linear relationship is the empirical correlation coefficient, 
also known as the Bravais-Pearson correlation coefficient r. It is assumed that charac-
teristics are related, if the values are arranged in such a way that as the value of char-
acteristic x increases, the value of characteristic y also tends to rise. The coefficient 
can be calculated by the following equation (6.4) [FAHR16]: 

 = =  ( )(  )( ) (  )  (6.4) 

This correlation coefficient measures the strength of the linear relationship. Typical 
interpretations for r are: 

 low correlation: |r| < 0.5 

 r| < 0.8 

 high correlation: 0. r| 

However, for systems that cannot be measured accurately, lower values may still indi-
cate good correlations. It is important to note that this correlation coefficient cannot 
indicate non-linear correlations [FAHR16]. 

An alternative calculation of the correlation properties is the Spearman's method. This 
method replaces the data with their ranks. The rank describes the position a value 
would occupy if it was sorted by size. The advantage of the Spearman coefficient is 
that it can index not only linear but also non-linear relationships. Spearman's correla-
tion coefficient is now obtained as the Bravais-Pearson correlation coefficient applied 
to the rank pairs and calculated by equation (6.5) [FAHR16]: 
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 =  ( ( )  ( ))( ( )  ( ))( ( )  ( )) ( ( )  ( ))  (6.5)  

Kendall's calculation is another common method to quantify the correlation using only 
the ordinal scale level of the data. It is mainly used to compare the proportion of con-
cordant and discordant data. It compares pairs X and Y of data. A pair is concordant if 
the observation that has a higher rank for X also has a higher rank for Y. Otherwise 
the pair is discordant. If the pair is neither concordant nor discordant, it is called tied. 
An advantage of calculating concordance measures is that, unlike correlation coeffi-
cients, probability-based measures can also be described in the population. Kendall's 

 is a concordance measure that relates the difference between concordant Nc and 
discordant Nd pairs to the number of pairs that can be formed from n observations 
[FAHR16]: 

 =  ( 1)/2 (6.6) 

Figure 6.12 presents exemplary the correlation and concordance measures of the 
three different calculation methods evaluating the relationship between the produced 
curvature and several process parameters. All three measures have a range from -1 
to 1, where -1 indicates negative correlation or discordance, 1 indicates positive corre-
lation or concordance, and 0 indicates no correlation or no concordance. Since only 
the magnitude of the correlation or concordance is of interest in this case, the values 
in this diagram are reported as absolute values. The results agree with the visual anal-
ysis. The statistical distribution of different discharge types over the workpiece height 
has a high influence on the produced curvature. Especially, the median of the ratio of 
normal discharges has a high correlation coefficient, whereas the ratio of normal dis-
charges rn and the factor emax do not result with same high correlation values. In addi-
tion, the k-factor correlates with the curvature with a quantile classification of 33%. A 
total of over 300 statistical variables were determined and evaluated using an auto-
mated feature extraction approach. This was carried out both separately and for all 
workpiece heights together.  

For example, the Shannon Entropy for normal discharges and short circuits are plotted 
here. For a categorical characteristic with K possible values, it can be obtained that the 
relative frequencies f1, ..., fK of the occurrence of each value by dividing the absolute 
frequencies n1, ..., nK by the size of the sample n. The absolute frequencies always 
add up to n, the relative frequencies to one. The characteristic with the highest fre-
quency, i.e. the maximum value for fk or nk, is the position parameter, which is known 
as the mode. In a bar chart, it corresponds to the highest column. The Shannon En-
tropy, on the other hand, is a measure of the extent to which all columns have a similar 
height. It measures the degree of uncertainty or randomness in the dataset. A higher 
entropy occurs when the data distribution is uniform, reflecting maximum unpredicta-
bility. Conversely, lower entropy indicates that some values are much more likely than 
others, showing predictability and less diversity in the dataset [MURP12, PLAU21]. 
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Figure 6.12: Correlation analyses of the curvature and determined statistical features  

6.3 Regression Model Architecture 
Chapter 5.3 already provided first insights into the generated data. There were no di-
rect, linear correlations between the parameters and the surface contour to be pre-
dicted. With this level of complex correlations, the application of a supervised machine 
learning algorithm is appropriate [GOOD16, PLAU21]. The problem with the given in-
put and output data and the number of input parameters is suitable for building a neural 
network. It enables independent learning of hidden correlations and can then make 
predictions based on new input data. The available data is divided into training, valida-
tion, and test data. The training dataset is used to train the model, the validation dataset 
is used to monitor the performance and optimize the hyperparameters, and the test 
dataset is used to evaluate the final performance of the model. Using separate datasets 
for these purposes helps to ensure that the model is well generalized and not overfitted 
[BISH06]. In this work, the proportion of training data is set to  = 70%. Thus, approx. 
1500 training data sets and 600 validation and test data sets are available.  

Functionality of Artificial Neural Networks 

The general structure and basics of neural networks were presented in chapter 2.3 and 
illustrated in Figure 2.6. In artificial neural networks data is transported between the 
nodes via the weighted edges. The nodes of the previous layer are connected to the 
nodes of the subsequent layer by edges. If all nodes of layer A are connected to all 
nodes of the subsequent layer B, this is referred to as a fully connected layer. The 
weighting remains the same for each edge. In general, the significance of node infor-
mation for the subsequent node is determined by the edge weighting. This information 
can be summarized in a simplified weighting matrix. The information of the units of 
each layer can be recorded in vectors. Bias is used for scaling in addition to the channel 
weights. These help to keep the value of the nodes within a certain interval or to in-
crease their influence on the resulting outcome. They shift the values of the output up 
or down like the Y-intercept of a linear function [AUST21, MURP12, PLAU21]. 
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Basically, there are two types of parameters in artificial neural networks. Parameters 
such as the weighting of the edges or the bias are continuously adjusted during the 
training phase. They only remain unchanged after the training phase. The initial values 
of these parameters are arbitrary. Hyperparameters, on the contrary, must be defined 
before the start of the test phase. They contain the structure and functionality of a 
neural network. Hyperparameters include the number of layers, the number of nodes 
per layer, the shape of the activation function within the nodes, the learning rate and 
the batch size [MATZ21]. The parameters remain unchanged throughout the lifetime 
of the neural network. The following section explains how the network is built in detail 
and how the model can be optimized by adapting hyperparameters [MURP12, 
RICH19, STYC17].  

A feed forward neural network is the simplest form of artificial neural network and was 
employed here. It is based on a hypothesis space that consists of functions of the 
following form as: 

 : , ( ) = ( )( ) (6.7) 

Every layer  for all  {1, . . . , } is a function of following from as  

 : , ( ) =  ( ( ) + ( )) (6.8) 

with so-called activation functions :  and matrices of weights ( ) in the 
format of ×  and the offset vectors ( ) . The component functions , . . . , represent the neurons of the respective -th layer, a certain function value 
represents an activation of the neuron. The first layer is the input layer, the last layer 

 represents the output layer and the middle layer where 1 <  is called the hidden 
layer as shown in Figure 2.6. The number of layers determines the depth of the network 
and the number of neurons in each layer determines its width. 

Each node corresponds to a neuron. Neurons in a given layer are linked to each neuron 
in the next layer by weights. The incoming information in a node is processed within a 
node by an activation function. The choice of activation function is pivotal in shaping 
the behavior and learning capabilities of a neural network. This mathematical function 
determines the output of a neuron based on its input, introducing non-linearity essential 
for capturing complex relationships. The variety of activation functions can be broadly 
categorized into two classes: piecewise linear and locally quadratic functions. Piece-
wise linear functions consist of one or more linear segments, while locally quadratic 
functions exhibit non-zero second-order derivatives [RASA20, SHAR20, YUEN21]. 
These distinctions are illustrated in Figure 6.13. 

 
Figure 6.13: Various activation functions based on [MIRF22] 
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At its core, an activation function operates similar to a threshold function, activating the 
neuron once a certain threshold is surpassed. Linear activation functions simply trans-
mit input to output, proportionally increasing with the input signal. Non-linear alterna-
tives include the sigmoid function, bounded between 0 and 1, and the zero-centered 
hyperbolic tangent function (Tanh), ranging between -1 and 1. Other common activa-
tion functions include Rectified Linear Unit (ReLU), Gaussian Error Linear Units 
(GELU), and Sigmoid Weighted Linear Units (Swish), which lack output limitations in 
the positive range [RASA20, SHAR20, YUEN21].  

In order to determine the model parameters weight and bias as quickly as possible, 
the algorithm does not adapt them individually, but all model parameters are optimized 
simultaneously during the training phase. During the forward pass, the input data is fed 
through the network, and predictions are made. Then, during the backward pass, the 
error between the predicted output and the true output is calculated. 

Before the ANN delivers meaningful results, it must learn the relationship between the 
input and target variables. To do this, the model parameters weight and bias are opti-
mized simultaneously during the training phase by using backpropagation. In a first 
step, arbitrary edge weights are defined. The untrained model propagates the values 
of the initial nodes from the training data. These are compared with the real measured 
results and the error is determined [MATZ21, WERB88]. This error between the pre-
dicted output values of the model ( , , ) and the corresponding correct output val-
ues  from the training data is calculated using the loss function . The most common 
loss function is the Mean Squared Error (MSE) loss and is calculated considering the 
number of observations  as follows [MATZ21, WANG22]: 

 = 1 ( , , )  (6.9) 

MSE penalizes larger errors more than smaller ones because the differences are 
squared. The smaller the error , the better the artificial neural network is adapted to 
the data set. How many data points are used for each optimization loop can be defined 
by the user as a so-called batch size. Batch sizes can range from just 1 data point to 
so-called "mini batches" (for example 10-100 data points) to a full data set in each 
optimization loop. The optimization of the model parameters by means of backpropa-
gation takes place in the following six steps [GOOD16, MATZ21]: 

1. For the first run all weights  and biases  are determined randomly and the 
error E is calculated for the first batch of data points. 

2. Before the second run,  and  are changed slightly by random values w and 
. 

3. With the changed model parameters w and b, the error E is calculated for a new 
batch of data points. 
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4. Since the weightings of the connections to the subsequent layer are known, the 
influence of the individual neurons of the previous layer on the change in the 
error E can be calculated. This is continued layer by layer up to the input layer 
(backpropagation). 

5. Since it is now known what proportion of E each neuron in the layer has, it is 

possible to calculate which ratios  and  exist between the change in the 

error  and the change in the model parameters w and . 

6. The model parameters  and  are calculated and updated using the ratios  

and  with the gradient descent or other optimization methods. 

The algorithm repeats steps 3 to 6 until a pre-defined number of runs have been com-
pleted or the error E no longer improves. The backpropagation thus allows to assign 
the influence of the change in the error  to each neuron. Since the changes in the 
weights w and threshold values  and the last optimization are known for each neu-
ron at the same time, it is possible to calculate which positive or negative influence the 
change in all model parameters w and b had on the error E [MATZ21]. 

The gradient method is employed to minimize the model error. When the error measure 
reaches a satisfactory level, the backpropagation process can cease; otherwise, 
weight adjustments are computed. This involves partially deriving the error function, 
with respect to all connection weights. For each weight, the resulting direction indicates 
the steepest increase in the error function, guiding adjustments for optimal error reduc-
tion. Since the aim is error minimization, weights must be adjusted in the opposite 
direction of this increase, negating it accordingly. Additionally, these adjustments are 
scaled by a step size factor, known as the learning rate , which determines the model 
responsiveness to error in each iteration. Another important parameter, the momen-
tum, ensures convergence to a local optimum regardless of the starting point, known 
as global convergence. Exact line searches may result in a “zig-zag” behavior along 
the descent path due to the perpendicular relationship between consecutive gradient 
directions and search directions. To mitigate this, a momentum term ( ) where 0 1 controls the importance of the term, is suggested to reduce zig-zag behav-
ior by adding inertia to the descent direction, promoting smoother convergence to-
wards the optimum solution. One of the simplest algorithms for unconstrained optimi-
zation is gradient descent, also referred to as steepest descent and can be expressed 
as follows [ERB93, MURP12]: 

 = + ( ) (6.10) 

These two important hyperparameters can be adaptively optimized during training us-
ing the Adaptive Moment Estimation (ADAM) algorithm. ADAM is an adaptive learning 
rate optimization algorithm that directly incorporates momentum as an estimate of the 
first-order moment of the gradient, using exponential weighting. Additionally, this 
method includes bias corrections for both the first order and second order moment 



6 Regression Model for Quality Evaluation 109 

estimates to account for their initialization at the origin. This correction ensures more 
accurate moment estimates, particularly early in the procedure [KING14, ZHAN18b]. 
In this work, the ADAM algorithm was used for all models in combination with back-
propagation. 

6.4 Training the Regression Model  
In the development of an artificial neural network, the identification of appropriate hy-
perparameters stands as a critical precursor to the model's subsequent performance. 
However, the abundance of hyperparameters poses a significant challenge in this re-
gard. There are no clear rules for determination of hyperparameters. The predominant 
approach frequently employed involves a fusion of Grid Search and manual exploration 
[BERG12]. This typically involves experiments, wherein a multitude of potential hy-
perparameter variables are systematically combined to generate various model con-
figurations. The outcomes of these experiments serve as a basis for model develop-
ment. Should the performance of the leading model fall short of expectations, further 
grid experiments can be conducted to refine the model. Alternatively, the Random 
Search method presents an alternative approach to optimize hyperparameters. This 
method entails the development of a script that either randomly selects hyperparame-
ters from a predefined list or generates numerical values utilizing a random number 
generator. In a study by Bergstra et al. [BERG12], the efficiency of Grid Search was 
compared to that of the Random Search method. The findings suggested that Random 
Search often proves to be a more efficient strategy, given that only a handful of hy-
perparameters significantly influence model performance across numerous datasets. 
Consequently, the Grid Search approach is rendered inefficient, as it expands consid-
erable effort in less critical dimensions. In contrast, the Random Search method is 
frequently more adapted at navigating through larger, albeit less promising, configura-
tion spaces [BERG12, FLOU09, LIAS19].  

Therefore, the Random Search approach was performed. The parameters presented 
in Table 6.3 were tested. For the selection of data for training and validation, cross-
validation was conducted. Cross-validation is a statistical technique for evaluating 
learning algorithms by dividing data into two segments: one for training the model and 
the other for validating it. The process involves successive rounds where training and 
validation sets interchange, ensuring that each data point is validated against the oth-
ers. The most common form is k-fold cross-validation, with other variants being derived 
from it or involving repeated rounds of k-fold cross-validation. In k-fold cross-validation, 
data is divided into k equally sized segments or folds. Through k iterations, each fold 
is held out for validation while the remaining k-1 folds are used for training [GOOD16, 
REFA09].  

The first meaningful hyperparameters can be derived from the data extracted in chap-
ter 5. The structure of the data determines the structure of the input and output layers. 
Thus, the 18 input parameters can enter the neural network through the same number 
of input nodes. Since the curvature and the feed rate are the only output parameters 
for each model, the neural networks end in a single node. The number of hidden layers 
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or nodes is arbitrary. Since the problem is not a simple classification problem, more 
than one hidden layer should be employed. As mentioned before, the standard scaler 
was used for alle models in this work. The Random Search approach was applied to 
10 different validation sets on the basis of cross-validation. The data sets were each 
used to train 50 iterations with random configurations of the hyperparameters that lie 
within the specified ranges listed in Table 6.3.  

Table 6.3: Conditions and hyperparameter options for Random Search 

 
To monitor model training and hyperparameter selection, and to avoid possible over-
fitting, the loss and accuracy of the test and validation data were evaluated. While the 
Mean Squared Error MSE is used for the loss function, the accuracy is calculated using 
the Mean Absolute Percentage Error (MAPE). The MAPE is a measure of the accuracy 
of a prediction model or a prediction method as a percentage. It indicates the average 
percentage by which the predictions  of the model deviate from the actual values  
[KHAI17]. It has been shown that learning under MAPE provides good results for re-
gression models [MYTT16]. It is calculated considering the number of observations n 
as follows [KHAI17]:  

 =  100%
 (6.11) 

The prediction accuracy is determined by the difference of the MAPE and the theoret-
ical maximum possible accuracy: 

 =  100%  (6.12) 

Following the hyperparameter optimization, the loss and accuracy for the test and val-
idation data is plotted in Figure 6.14. Both training and validation curves show improve-
ment, indicating the model is learning effectively. The best results for the validation 
data were obtained for both the loss and the accuracy with an epoch number below 
10. The performance of the model deteriorates for a higher epoch number and indi-
cates overfitting which can be avoided by implementing regularization techniques, us-
ing more training data, or early stopping applying a small number of epochs. Therefore, 

Random Search hyperparameter options

EpochsNeuronsLearning 
rate

Batch 
sizeActivation functionsLayer

1 - 101 - 640.0001 - 0.11 - 4
Sigmoid, Tanh, Relu, 
Gelu, Hard Sigmoid, 

Linear Swish
1 - 20

Random Search
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Loss of testing set1050
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the best result for the hyperparameter selection was obtained with an epoch number 
between 1 and 10.  

 
Figure 6.14: Loss and accuracy training and validation sets  

6.5 Testing the Regression Model  
Initially, the regression models for the evaluation of the quality, in this case by predict-
ing the generated curvature, were built separately for using adjustable and non-adjust-
able parameters and some results are presented in [KÜPP23]. However, with increas-
ing variance within the curvature or output size, it has been shown that the performance 
of the models can be improved by increasing the data volume. Therefore, several re-
gression models were developed that use process data from both changing adjustable 
and non-adjustable parameters. In the following a model is presented, that was built 
based on three hidden layers which consist of 2, 5, and 1 neurons. The learning rate 
was set to approx.  = 0.02 and the batch size to one. The best performing neural 
network achieved an accuracy of almost 75% indicating a good level of explained var-
iance. Especially, in the field of manufacturing [PATU21] where curvature is predicted 
in micrometers, the model shows significant potential. Under unchanged process con-
ditions, the curvature remains almost constant, demonstrating the model's capability 
to provide accurate predictions in practical applications. The final structure of the ANN 
model and the used hyperparameters are presented in Figure 6.15. 

 
Figure 6.15: Structure of the used neural network 

Figure 6.16 shows the results for the test data. The left plot shows both the measured 
and predicted curvature values for all test data. In the right diagram the predicted 
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curvatures are plotted over the actual curvatures. Overall, the metrics indicate that the 
model has a satisfactory ability to predict curvature in the micrometer range. In addition 
to the MAPE and coefficient of determination R², the MSE and MAE (Mean Absolute 
Error) were calculated to quantify the average size of the errors. Unlike the MSE, the 
MAE reflects the absolute differences between the predicted values  and actual 
values  rather than the squared differences. The MAE is therefore less sensitive to 
outliers than the MSE. Considering the number of observations  the MAE is calculated 
as follows [MATZ21]: 

 = 1 | | (6.13) 

 
Figure 6.16: Predicted and actual curvature after testing with unknown process data  

The prediction accuracy and the ability to explain a considerable part of the variability 
in the data are good. The absolute error size is very low with an MAE = 0.85 and even 
when larger outliers are taken into account, the model can still realize a good prediction 
with an MSE = 1.51. With the achieved coefficient of determination, about 74% of the 
variability in the curvature can be explained by the model. This is a relatively high value, 
which indicates that the model has a strong predictive power [MURP12].  

This performance can be supported by analyzing SHAP (SHapley Additive exPlana-
tions) values. SHAP values are a method of explaining prediction models in machine 
learning. They are based on game theory concepts and allow to quantify the contribu-
tion of each feature to the prediction of a given instance. They also allow to identify the 
relative importance of the features in the prediction, which defines the importance of 
the features and allows to interpret the models [BOWE20, MARC20].  

The SHAP feature importance plot displays the impact of different features in predicting 
the curvature. The features are listed on the y-axis, and their importance is measured 
on the x-axis in terms of the Mean Absolute SHAP values, see Figure 6.17. As an 
example, a model was used that had similar performance to the model shown in Figure 
6.14. To explain and interpret the importance of each feature, the height of the work-
piece has been added here, while it was intentionally left out of the final model. Higher 
SHAP values indicate greater influence on the model's predictions. As expected, the 
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workpiece height h has a significant impact on the model performance. This stands 
also out in Figure 6.3, where a clear correlation between the workpiece height and the 
produced curvature can be observed.  

After the workpiece height, the effective pulse frequency fe has the highest mean 
absolute SHAP value, indicating it has the most significant impact on predicting the 
produced curvature. As the most influential feature, variations in fe value greatly affect 
the curvature prediction. The second most influential feature is the presented factor 
emax, which already showed correlations with the produced curvature in chapter 5.2.1. 
This feature is critical in predicting curvature. Its SHAP values suggest that changes in 
emax significantly affect the curvature prediction. The median of the normal discharge 
distribution over the workpiece height normalmedian also belongs to the top of the most 
important features for the presented prediction model.  

Finally, the skewness of normal discharges normalskewness and short circuits 
shortskewness over the workpiece height have a high importance for the model. The rest 
of the list contents of moderately influential features, which collectively contribute to 
the model’s predictions, though each individually has a smaller impact compared to 
the top three. Their SHAP values still need to be considered when analyzing the 
curvature prediction, as they can influence the model's output in combination with other 
features. Finally, less influential features such as the kurtosis of short circuit distribution 
over the workpiece height have almost no effect on the prediction model. 

 
Figure 6.17: Feature importance measured as the Mean Absolute SHAP values  
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While in Figure 6.17 the feature importance of different input parameters for the curva-
ture is evaluated, only the qualitative influence of the parameters is known. Therefore, 
in Figure 6.18 the SHAP values are presented in a beeswarm plot to show the exact 
impact of different features on model prediction. Listed left in the diagram from top to 
bottom are the parameters that are most important to the prediction accuracy of the 
model. The SHAP values on the x-axis indicate a positive contribution to the prediction, 
and negative SHAP values indicate a negative contribution. The color in the plot rep-
resents the feature value, thus corresponds to the raw values, with red illustrating high 
values and blue low values. Each point represents a row of data from the original data 
set.

For example, the workpiece height h has a mix of positive and negative values. High 
values (red) tend to have a positive impact on the model output, while low values (blue) 
have a negative impact. This means that high workpiece height values produce a high 
curvature while low values produce a low curvature. This matches the findings from 
the diagrams in Figure 6.3. On the contrary, it can be seen that for fe high pulse effec-
tive frequencies will result in a smaller predicted curvature value. Low frequencies do 
the opposite. 

Figure 6.18: SHAP values of the regression model
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direction to the discharge frequency. As expected, high values for emax, result in high 
curvature values for the prediction. The skewness of the discharge distribution over 
the height of the workpiece also appears to be important. The curvature increases with 
high skewness values, both of normal discharges and of short circuits. It should be 
noted here that, depending on the constellation of the model, these correlations could 
also be mirrored if the features also had different importance for the prediction. Overall, 
the evaluation shows how important it is to consider the different types of discharges 
and their distribution along the part height. This is particularly evident in the curvature 
and kurtosis of the standard discharges. 

6.6 Summary and Conclusions 
In this chapter, a neural network was developed to predict the curvature of the compo-
nent using continuously recorded data. To generate the data, the process influencing 
variables were first categorized. A distinction is made between adjustable and non-
adjustable variables. Subsequent data preparation and consideration of the influence 
of data agglomeration led to feature engineering.  

An automated feature extraction approach was used to extract a large number of sta-
tistical variables from the data sets. In addition to visual analysis, different correlation 
analysis methods were applied and compared. Based on the results, some of the most 
important parameters were used as input parameters for the neural network. After a 
brief description of how neural networks work, the model architecture was determined 
using the Random Search approach in presented in Figure 6.15. For this purpose, the 
generated data was divided into training, validation, and test data sets. The training 
data is used to determine the structure of the neural network, and the validation data 
is used to carry out a hyperparameter optimization. This is evaluated using various 
metrics. Finally, the performance of the determined model is evaluated using unknown 
test data. 

The model demonstrates good prediction accuracy and explains a substantial portion 
of data variability. It has a low mean absolute error of MAE = 0.85 and maintains strong 
prediction performance with a mean squared error of MSE = 1.51, even when account-
ing for larger outliers. The coefficient of determination indicates that approximately 
74% of the variability in curvature is explained by the model, reflecting its strong pre-
dictive power. Finally, the analyzed SHAP values show the validity of the model by 
interpreting the most influential input parameters. Moreover, these results can be used 
to prioritize parameters for further analyses or other machine learning models. This 
enabled the development of a Digital Twin that represents the generated curvature of 
the component on the basis of process data. 

During the development of the models, the critical importance of data volume became 
evident. Accounting for different elevations revealed that the complexity of prediction 
increases due to the involvement of a significant diversity in the target variable (curva-
ture). Based on the results obtained thus far, it can be anticipated that training the 
models with additional workpiece heights at smaller intervals, such as h = 10 mm in-
crements, will substantially enhance the model performance. 
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7 Classification Model for Productivity Evaluation
As depicted in Figure 5.1, the process evaluation is mainly divided in quality and 
productivity evaluation. Based on the approach in chapter 6, the regression models 
could analogically be trained to predict also the feed rate of the process and result in 
high prediction accuracies. Since the feed rate is a parameter which results during 
machining and is displayed on standard wire EDM machines, it is not beneficial or 
senseful to predict this parameter as a quantitative value. For the evaluation of the 
process performance, it is still necessary to assess the current feed rate based on the 
process data considering the process conditions. For this purpose, data-driven classi-
fication models are presented that evaluate processing technologies according to var-
ious criteria like machining speed, stability and quality. In contrast to the previous chap-
ter, no regression approach is used to predict continuous data; instead, the process is 
considered as a binary or multi-class problem and classified into specific categories. 
Due to the variety of process variables and the complexity of the problem, the deep 
learning approach is a promising method here. Only continuously recorded process 
data was used for the developed model to evaluate the process performance. 

Since this model was specifically designed to evaluate the productivity of a technology, 
different criteria are analyzed which determine the productivity of a main cut in wire 
EDM. Figure 7.1 illustrates schematically the classification model built on single sub 
models which are able to classify the wire EDM based on the criteria. The most im-
portant category is the machining speed, since the main cut generally takes up the 
largest portion of the machining time [WELL15]. Machining speed is represented here 
as feed rate vf instead of cutting rate, since the model should be able to classify process 
productivity regardless of workpiece height. Equally important is process stability. This 
is characterized by various factors, but the occurrence of wire breaks is a knock-out 
criterion for any machining technology setting. There are also secondary factors such 
as contour accuracy and wire consumption. Wire consumption has a direct impact on 
costs and can be controlled by wire run-off speed, which in turn affects process stabil-
ity. Therefore, the influence of the wire run-off speed was included in the experiments. 

Figure 7.1: Schematic structure of the classification model for productivity evaluation
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Adapted experimental setups were conducted to generate a useful large amount of 
data which covers the various influencing factors. The individual evaluation criteria 
were each divided into binary or multi-class problems. The collected data was then 
cleaned and transformed into a form suitable for deep learning methods. After that the 
performance of different neural networks was tested to develop the best predicting 
deep learning model architecture. Finally, it was tested whether the generated data 
could be used to evaluate productivity using the developed deep learning classification 
model. Not only the classification on a specific range of values was tested, but also the 
generalization of the model by testing with data which were generated under strongly 
changed process conditions and other workpiece heights.  

7.1 Data Generation  
The standard technologies for the same used material X155CrVMo12-1 were consid-
ered in the tests. In contrast to the previous investigations, the focus here was on the 
machine settings and therefore a large number of adjustable parameters were varied. 
The betterbrass one.9, a new generation of brass wire electrode by bedra for produc-
tivity increase with a diameter of d = 0.25 mm, was employed [BERK24b]. The dis-
charge current, the pulse interval time, the discharge durations for normal discharges 
and short circuits as well as the wire run-off speed were changed. These parameters 
are among the most important factors for the wire EDM productivity [BERG18a, 
KLOC07, KUNI05].  

The challenge is to find the optimum parameter setting. While the cutting rate increases 
as the discharge energy rises, increasing this parameter beyond a certain point does 
not improve productivity, but rather expands the risk of wire break and edge deteriora-
tion [BERG18b, KÜPP20]. Especially, the dependency of discharge duration and dis-
charge current has never been considered for the continuous process [MARA20]. In 
particular, the individual electrical process parameters for the two discharge types were 
neglected, each being considered separately. This means that possible connection or 
relationships were also considered here. The same trade-off must be made when set-
ting the pulse interval time. Reducing it increases the pulse effective frequency and 
therefore the cutting rate, but also affects the condition of the working gap, with the risk 
of accumulation of discharges at the same location due to reduced deionization. In 
addition to the effects on speed, this can have a particular impact on process stability 
or an increased risk of wire break [KÜPP20]. Another driving cost factor of the process 
is the amount of wire used, which can be influenced by the wire speed [KÜPP21b]. 

Different test series considering two various machining heights applying respective 
standard steel technologies for the specific height were conducted in this chapter to 
generate data. An overview of how the different data sets were used for the develop-
ment of the respective classification models is shown in Figure 7.2. Model development 
was divided into two phases. In the first phase, a model was selected on the basis of 
the reference data set. For this purpose, the reference data set was divided up for 
training, validation, and testing.  
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The determined model architecture was based only on the reference data sets. After 
determination of best performing model architecture, all reference test data from the 
experiments were then used for training only, while the other unknown data sets were 
used for testing. Thus, the transferability of the model to other heights and to more 
variable or dynamic process conditions was tested with a large and strongly varied 
data basis. The data sets generated for wire break detection, were only used for the 
stability evaluation sub model, while the other testing data sets were employed for all 
sub models. The percentages in Figure 7.2 show the proportion of data for the phase 
and for the work step in the model development. 

 
Figure 7.2: Use of the different data sets for training, validation as well as testing to evaluate 

the transferability of the models  

In the first setup, specimens with a cutting height of h = 40 mm and h = 60 mm were 
machined. The experiments were used to generate the reference data set and testing 
data sets. A straight cut was applied to produce rectangular samples with a thickness 
of 5 mm. The thickness of the components was measured at three positions along the 
workpiece height using a caliper gauge. In order to test as many different technology 
variations as possible on one sample, a length of l = 7 mm per side was machined on 
the samples for each variation. With two sides processed for each technology variant, 
this resulted in data for each variant that was generated on a cutting length of 
l = 14 mm. Figure 7.3 illustrates schematically the setup. Additional cut-in and cut-out 
areas of l = 3 mm were created to differentiate between the different areas and, more 
importantly, to ensure that the process becomes established and constant conditions 
are set for a variant. The nozzle distance was set regarding to the technology require-
ment to a = 10 mm. These experiments were used to generate data in order to train, 
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validate and test different models. The developed models evaluate the speed, process 
stability and quality. 

 
Figure 7.3: Experimental setup recording different technology settings  

In this setup, one of the setting parameters was changed in each case and a total of 
over 180 technology variants were executed. A quantitative view of the range in which 
each parameter is changed in turn depending on the workpiece height can be found in 
Table 7.1. First, tests were conducted with a workpiece height of h = 40 mm to gener-
ate data for selecting, training, and validating a model. This set of experiments will be 
referred to as the 'reference tests' throughout this work. This data was used as a ref-
erence to identify a model structure with the highest possible performance.  

In order to investigate how the model responds to processing different cutting heights, 
a workpiece height of 60 mm was machined with almost the same parameter setting 
changes. This is intended to demonstrate the model ability not only to optimize pro-
cesses, but also to develop machining technologies. The setting parameters are se-
lected as before and are modified regarding the specific standard technology for ma-
chining heights of h = 60 mm. These experiments will be referred to as “workpiece 
height tests”.  

Table 7.1: Setting parameters of reference data test and testing data set of for changed 
workpiece height 

 
Once the model has been selected, trained, and validated, two more test series were 
conducted for testing. First, another test series was run with a cutting height of 

Wire

Top measuring point

Middle measuring point

Bottom measuring point

Technology 1
Technology 2

Technology 3
Technology 4

Feed direction

40&60

73

5

Machine setting parameter value
Machine setting parameter

h = 60 mmh = 40 mm 
12 - 31 (step size 1)12 - 31 (step size 1)Discharge current ie
35 - 75 (step size  5)35 - 75 (step size 5)Pulse interval time t0
40 - 60 (step size 5)38 - 63 (step size 5)Normal discharge current rise time tr,n

58, 63, 67 - 102 
(step size 5)67 - 97 (step size 5)Normal discharge current fall time tf,n

4 - 11 (step size  1)4 - 12 (step size 1)Short circuit discharge duration te,s

168 and 16Wire run-off speed vD



7 Classification Model for Productivity Evaluation 121 

h= 40 mm. In contrast to the previous tests, not only one of the selected setting pa-
rameters was varied across the different technologies, but four machining setting pa-
rameters were changed simultaneously: the discharge current, the pulse interval time, 
normal discharge duration, and the short circuit discharge duration. This approach is 
intended to test the transferability of the created model to optimize the process. It was 
tested how well the model reacts not only to unknown data from similar process con-
ditions, but also to data representing a more dynamic process that was influenced by 
several factors simultaneously. These tests will be named “dynamic tests” in the fol-
lowing chapters. The parameters were chosen by conducting a Design Of Experiments 
(DOE) [FISH66] and in total 35 experiments have been conducted. The parameter 
variations are listed in the appendix in Table 11.1. 

Finally, a test series was set up to generate data for the evaluation of process stability, 
especially, the occurrence of wire breaks. For this purpose, a straight cut was applied 
for a minimum cutting length of l = 2 mm without an occurrence of a wire break. Based 
on this setting, first, the electrical parameters were changed with the purpose to rise 
the feed rate until the wire breaks. Then, the wire run-off speed was increased to com-
pensate the high wire wear until the process reached its limits and the wire broke. 
These experiments were conducted with different workpiece heights and changing var-
ious parameters which are listed in Table 7.2. In total approx. 170 different experiments 
were executed with a workpiece height of h = 40 mm resulting in over 40 wire breaks.  

Table 7.2: Overview of variations to evaluate the occurrence of wire breaks 

 

7.2 Data Processing and Defining Classes  
In the following, the resulting evaluation parameters are divided into classes. Based 
on the obtained results, the different data packages and process settings were cate-
gorized as shown in Figure 7.1. Only labeled discharges with a resolution of 
res = 0.1 mm × 1 mm were used as input variables for the model. Since this model 
focused on the process performance regarding stability and occurrence of wire breaks, 
a smaller averaging interval was selected based on previous findings [BERG18b]. The 
number of normal discharges and short circuits was utilized as well as the ratio of these 
discharge types in each area in relation to the workpiece height as calculated in equa-
tions 6.1 and 6.2. The classification of areas for each evaluation criterion was based 
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partly on experience and partly on data and serves as a criterion for labeling the data. 
The determination of the threshold was done separately for each sub model. 

7.2.1 Thresholds for Speed
The speed is treated as a multi-class problem and divided into the three classes nam-
ing "slow", "medium" and "fast". First, the sections with the corresponding parameter 
variations were examined as a database. Figure 7.4 shows an example of the distribu-
tion of the feed rate for varied normal discharge duration settings. The speed rises only 
slightly here with increasing discharge duration. The marked peaks are only used here 
to illustrate the different feed rate for the various parameter settings. These peak val-
ues represent the beginning of a cut and were removed for training as well as testing 
the data.

Figure 7.4: Feed rate for machining workpiece of h = 40 mm with different discharge dura-
tion parameters

In the following, a possible division of feed rates into different classes is presented. 
Therefore, the feed rates for different discharge current settings are plotted in Figure 
7.5. As expected, the speed rises with increasing discharge current. There are basi-
cally two ways to classify the data. The limits can be determined based on the statistical 
distribution. The initial position is the calculated average feed rate. The achieved feed 
rate is between vf = 1.4 to 3 mm/min in a stable range. A subdivision of the spectrum 
results in the following limit values. 

Figure 7.5: Thresholds calculated by average feed rates resulted by machining a work-
piece height of h = 40 mm with different discharge current parameters
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The second option for consideration is the speed achieved by the used standard tech-
nology as reference. The standard technology results in a feed rate of approx. 
vf,40 = 2.5 mm/min and is selected as the basis for the evaluation. A deviation of 10% 
in both directions around the guide value is defined as classification limit, which leads 
to the following limit values listed in Table 7.3. 

Table 7.3: Thresholds calculated by 10% deviation of the standard feed rate vf,40 for 
machining h = 40 mm 

 
There are advantages and disadvantages of both approaches. The first classification 
is statistically determined and reflects a data-based categorization. Due to the more 
even distribution of the data, this spectrum is likely to provide a more robust model and 
be less prone to misclassification than classification based on standard technology. 
The classification based on the standard technology feed rate focuses on the actual 
machining technology and speeds can be easily interpreted based on reference val-
ues. Both threshold approaches have been observed and considered in the model de-
velopments.  

At the higher workpiece height of h = 60 mm, the process proceeds as expected with 
a lower feed rate. Accordingly, the classification for these tests changes to the values 
listed in Table 7.4. The limit values for the different classification approaches are not 
specified here, since both variants cover the same range of values due to the shift in 
the speed range. 

Table 7.4: Thresholds calculated by 10% deviation of the standard feed rate vf,60 for 
machining h = 60 mm 

 
7.2.2 Threshold for Stability 
To classify a process as stable, it must consistently produce predictable results with 
small variations within a defined range without unexpected stops. Applied to the wire 
EDM process, this means that the process must run consistently without the risk of a 
sudden wire break. In the tests, the straight cuts were only allowed to run with slight 
changes in speed. A strong, sustained fluctuation in the feed rate reflects a strong 
intervention of the machine control and therefore represents an unstable process. The 
occurrence of wire breaks in the individual technologies was also recorded and is a 
direct exclusion criterion for a stable process. In addition to the technology variations 
directly affected by wire breaks, adjacent parameter settings must also be considered 
critically, as a wire break risk cannot be ruled out with minimal changes to the pro-
cessing conditions. The stability was classified on the basis of the standard deviation 
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of the feed rate of the individual variations and wire breaks. It is illustrated in Figure 
7.6. For example, a feed rate that fluctuates more than 20% around the mean value 
was considered unstable. Technology variations that led to wire breaks were also de-
clared unstable, as were settings that were at the limit before a wire break. In Figure 
7.6, the red area includes discharge current setting parameters 29 and 30, which in-
clude wire breaks as well as the setting parameter 28 as a threshold. 

Figure 7.6: Classification of stable and unstable discharge current settings 

7.2.3 Threshold Quality
In assessing the contour accuracy yielded by various technologies, these tests 
computed both the mean deviation from the attained specimen thicknesses and the 
standard deviation across three measurement points along the height of the workpiece. 
This approach enables insights into the precision of the generated working gap. 
Additionally, it serves as an indicator of any produced curvature, albeit with reservation 
that the accuracy of these measurements may not match that of the CMM 
measurement outlined in chapter 6. Figure 7.7 provides the average deviation for 
different tests. A deviation of the mean value between = -5 and 5 μm is regarded as 
within the tolerance for the evaluation.

Figure 7.7: Deviation of produced sample thickness with thresholds

The standard deviation of the measured thickness over the workpiece height is de-
picted in Figure 7.8 and the threshold for classification were determined to C = 1 μm. 
Everything below this value was declared as within tolerance and everything above it 
as not in tolerance. It represents a sufficiently good quality of the workpiece straight-
ness for a large number of applications and provides a corresponding amount of data 
for training.
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Figure 7.8: Standard deviation of the measurements along the workpiece height  

7.2.4 Influence of wire run-off speed on process performance 
Wire consumption is an important factor influencing the costs of the wire EDM process. 
The amount of wire used is determined by the wire run-off speed. Figure 7.9 compares 
the feed rates of two different wire run-off speeds. For this purpose, one wire run-off 
speed was halved. It is clear in this chart that the wire run-off speed has only a minor 
influence on the feed rate. However, it is important to note that a reduced wire run-off 
speed leads to increased wear of the wire electrode and thus a reduced wire cross 
section, which increases the risk of wire breaks.  

 
Figure 7.9: Feed rates for a standard and halved wire run-off speed  

Furthermore, this can have an impact on the quality of the produced part, in particular 
the straightness [DICA20, KÜPP21b]. This is confirmed by observing the sample thick-
nesses shown in Figure 7.10. On average, smaller sample thicknesses are produced 
due to reduced wire cross section. The curvature produced is slightly greater for some 
samples. 

 
Figure 7.10: Machined geometry applying different wire run-off speeds  
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When evaluating the wire EDM process, it must be considered whether the cost reduc-
tion by reducing wire consumption is proportional to the loss of geometric accuracy 
and speed. For applications that require high quality parts, higher wire run-off speeds 
should be used. On the other hand, with larger tolerances, reducing the wire run-off 
speed could minimize wire consumption without affecting the workpiece quality. This 
could be useful when the produced accuracy after the main cut is negligible, for exam-
ple, when cutting additive manufactured components from the substrate plate. 

7.3 Classification Model Architecture  
7.3.1 Deep Neural Networks  
Following the data generation and the definition of the classes, a suitable classification 
model is created below. First, the data was transferred to a classic dense model, also 
known as a fully connected neural network, for training. The use of a simple feed-
forward network initially serves to check the usability of neural networks for the problem 
at hand with the used data. The Deep Learning API (Application Programming Inter-
face) "Keras" in Python is used to create the neural networks. An API is a set of rules 
and protocols that allows different software applications to communicate with each 
other, enabling them to request and exchange data or services seamlessly [OFOE19]. 
Keras serves as an interface to several libraries, including TensorFlow, which provides 
access to the various applied layers in this chapter. In addition to the basic structure 
of the models and layers, the API also provides access to tools for examining the per-
formance of the models [KERA24, KETK17].  

Convolutional neural networks (CNN) are a class of deep neural networks designed 
specifically to process structured grid-like data, such as images. They consist of multi-
ple layers, including convolutional layers, pooling layers, fully connected layers (dense 
layers), dropout layer and flatten layer. The structure of a deeper CNN consisting of 
several CNN layers and different types of other layers is depicted in Figure 7.11. It 
consists of the main layers and several auxiliary layers. In convolutional layers, the 
network learns filters, also called kernels, that are convolved with the input data to 
extract local features through spatially shared weights [GOOD16, LECU15].  

 
Figure 7.11: CNN architecture with different layer types  
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One-dimensional CNNs were utilized in this work, see for processing images, a one-
dimensional CNN, as the name suggests, uses a one-dimensional input, which allows 
the concept of CNNs to be optimized for applications in flatter data structures. The 
reduction to a one-dimensional problem is the decisive feature here and allows this 
variation of CNNs to achieve faster and better results on these data types due to the 
reduced complexity. In particular, it is used for pattern recognition in sequential data. 
The core functionality and structure of the CNN remains the same. Here too, the input 
is subjected to local convolution and further processed by the activation function and 
pooling layer [GOOD16, KIRA21].

Figure 7.12: Convolution in one-dimensional according to [KIRA21]

At the end of the network are dense layers, which create a connection to all neurons 
of the previous layers and perform high-level feature extraction and classification. The 
task of the dense layer here is to reduce the dimensionality to the desired number of 
output neurons. In classification problems, as discussed in this work, this number of 
output neurons in the output layer represents in particular the number of classes into 
which the input data is to be categorized [GOOD16]. 

In addition to the main components of the network, various auxiliary layers are em-
ployed for efficient utilization. A dropout layer uses a regularization technique to pre-
vent overfitting in neural networks. A dropout or "dilution" of the neural network is a 
stochastic adaptation of the error feedback and is an effective and simple method to 
avoid overfitting. The idea is to use only a part of the network during training, which is 
randomly selected with each iteration step. Therefore, these layers randomly switch 
off individual neurons during training. This simulates the training of several independ-
ent neural networks. The result is a reduction in the dependency of the individual neu-
rons in a network and is schematically displayed in Figure 7.13 [PLAU21, SRIV14, 
GOOD16].

Figure 7.13: Dropout neural network model according to [SRIV14]

Another variant of the auxiliary layer is the so-called pooling layer, which can be set to 
individual convolution layers of the network. These are used to reduce the dimension-
ality of the data by aggregating data from neighboring pixels. Figure 7.14 shows an 
example of a max pooling layer that divides the data string into sections of the desired 
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size and determines the maximum value from each of these and discards the remain-
ing values. This serves to preserve important features while reducing existing param-
eters. The most important effect of this step is the improvement of invariance, which 
enables a more robust recognition of the same features regardless of location, trans-
lation or distortion within the input data [GOOD16, LECU15].  

 
Figure 7.14: Example of a one-dimensional MaxPooling layer of size two [LECU15] 

Finally, the multi-dimensional feature maps are converted by the convolution layer into 
a one-dimensional vector, which then can be fed into a dense layer. CNNs are typically 
trained by backpropagation to adjust the filters so that they can learn the relevant fea-
tures automatically [LECU15]. The two parameters learning rate and momentum in this 
model were also adaptively optimized while training by applying the ADAM algorithm 
[KING14]. 

Training is usually done by minimizing a loss function that measures the difference 
between the actual and predicted results [GOOD16]. In contrast to the training of the 
regression model in chapter 6, the MSE error is not used as the loss function here. 
Instead, the loss function Categorical Cross Entropy for multiple classification is ap-
plied [ZHAN18a, WANG22]. At its core, the cross entropy is a logarithmic function. The 
loss increases exponentially the greater the probability of an output determined by the 
model deviating from the true result. Thereby, the Softmax function ensures that the 
activation of an output neuron can be interpreted as a probability of class membership 
[NWAN18, WANG22]. The activation function is defined as follows [PLAU21]:  

 : , ( ) = ( ) ( , , … , ) (7.1) 

The Softmax function has the property that for all {1, … , } and  its values 
can always be interpreted as a mass function over the output neurons [PLAU21]: 

 ( ( )) > 0, ( ( )) = 1 (7.2) 

   {1, … , }    

The categorical cross entropy is calculated as follows [PLAU21]: 

 ( , ) = ( , … , , , … , ) =  ln ( ) (7.3) 

For a binary classification, a single sigmoid activated neuron can also be used as an 
output layer to guarantee a class membership probability between zero and one. In 
this case, the cross entropy takes the following form [PLAU21, WANG22]: 
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 ( , ) = ln (1 ) ln(1 )   (7.4) 

7.3.2 Performance of Fully Connected Neural Network  
First, the training metrics accuracy and loss function are determined for a simple dense 
network consisting of the input layer, dense layer and output layer. As described in 
section 7.1, the model architecture was determined by using the reference data set in 
the following sections. It can be seen in Figure 7.15, that the model has already 
achieved an accuracy with a small number of epochs that excludes the possibility of 
the model predicting correct values by chance and that an application to the data set 
is therefore valid. The number of epochs was set high enough at 170 to ensure that 
each model reaches its maximum values. This serves to examine the maximum 
achievable accuracy with the network used and provides an estimate of the number of 
epochs at which training should be terminated in order to avoid overfitting. For the 
purpose to check how the system behaves when the network is deepened, several 
dense filters were connected in series and analyzed as described for the simple net-
work. To compare the deep network with the simple network, both are plotted in Figure 
7.15. These results served as a benchmark for more complex networks, which were 
considered in the further course of the work. 

 
Figure 7.15: Comparison of a simple dense network and a deep network 

7.3.3 Performance of Convolutional Neural Network  
In order to find an optimized network for the problem, it is necessary to include the form 
and type of data. Due to the form of the utilized data, the implementation of filters that 
can convert the data into the form of vectors is recommended. For the analysis of 
vector-like formatted data, one-dimensional convolutional filters, which have been spe-
cially developed for this application and are designed to outperform dense layers, are 
suitable. To further improve the performance of the network, MaxPooling and Dropout 
layers were employed behind the convolutional layers of the deep network. The pro-
cedure for checking the performance of the different networks is again based on ob-
serving the behavior over 170 epochs and different network depths. The comparison 
demonstrated that the change from pure dense to convolutional networks resulted in a 
significant increase in the accuracy of the network. For direct comparison, the training 
metrics of the two deep network variants, dense and convolutional, are shown in Figure 
7.16. Note that not only the maximum accuracy increases, but also the accuracy of the 
system rises more with fewer epochs. 
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Figure 7.16: Comparison of convolutional one-dimensional and dense network 

7.3.4 Performance of Recurrent Neural Networks 
As mentioned before, the type of data is very important when developing machine 
learning models. The generated data is time related due to the characteristics of the 
wire EDM process. Recurrent Neural Networks (RNNs) are specialized neural net-
works designed for processing sequential data like text, speech, or time series. Unlike 
feedforward networks or convolutional neural networks, RNNs incorporate feedback 
between neurons, known as recursion. This recurrent feedback allows RNNs to inte-
grate information from previous steps into current calculations, creating a memory of 
temporal dependencies. This makes RNNs well-suited for analyzing sequential behav-
ior [DARB22, MANA18, SCHÄ08]. 

Although RNNs offer a wide range of applications, they face the challenge of the "van-
ishing gradient problem". This problem has a negative impact on the network ability to 
learn meaningful information over longer time intervals and can significantly reduce the 
effectiveness of RNNs in certain applications. The vanishing gradient problem occurs 
when the gradient propagated back through the network during training decreases ex-
ponentially with the length of the sequence. As a result, weight updates for weights 
further away from the output layer become negligibly small. To counteract this problem, 
the concept of RNNs was further developed in other networks, which use various pro-
tective functions against the occurrence of the problem [MANA18, SCHÄ08]. Figure 
7.17 illustrates schematically an RNN.  

 
Figure 7.17: Scheme of an RNN [GUPT19] 

To address this issue, various advanced RNN architectures have been developed, 
such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 
(GRUs), which are capable of learning and retaining information over longer time 
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scales. The LSTM network consists of special cells that have a series of circuits that 
allow information to be discarded, retained, or added. These circuits are called "gates" 
and consist of three components: the "forget gate", the "input gate" and the "output 
gate" [HOCH97, MANA18].  

The “forget gate” determines which information in the cell should be discarded, the 
“input gate” determines which new information should be added and the “output gate” 
determines which information from the cell should be passed on to the next step. The 
activation of each gate depends on the new input and the previous state of the cell. To 
control the gates, a sigmoid function is used to transform values between 0 and 1. In 
general, it can be said that values close to 0 are ignored and values close to 1 are 
considered important and saved [MANA18, SCHÄ08].  

This control of the information flow within the LSTMs makes it possible to model long-
term dependencies in sequences particularly well and yield a preferred use of LSTMs 
compared to conventional RNNs. For effective use, LSTM networks contain the same 
auxiliary functions as the CNNs. Here too, the network can be improved by using dif-
ferent pooling or dropout layers. The output layer is then finally reduced to the desired 
number of neurons by one or more dense layers [PHAM14, LAI15].  

Based on this, next RNNs in the form of LSTMs were added to the convolutional net-
work and their performance was tested again. Dropout layers were combined with the 
LSTM networks as auxiliary layers. Deepening the model did not generate a large jump 
in final accuracy on the training data, but there is a significant increase in the first 60 
epochs. This region is of particular interest, as the training of the sub models is likely 
to be limited to this region to avoid possible negative effects such as overfitting. This 
can be seen from the analysis of the previous plots. The exact process can be seen in 
Figure 7.18.  

 
Figure 7.18: Comparison of convolutional network and LSTM-network  

The investigation of the different variants revealed that a combination of various filter 
types achieved the highest performance. The convolutional layers with a downstream 
MaxPooling layer were well suited to prepare the data for the LSTMs. The combination 
of multiple LSTMs and dropout layers analyzes the extracted patterns of the convolu-
tional layers over time. The model reached a maximum in this configuration, as further 
deepening of the network delivered a decrease in accuracy and an increase in loss, as 
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can be observed in Figure 7.19. It is not advisable to further increase the complexity 
of the model, especially since a deterioration in performance on the training data set 
can have an amplified effect on the non-training data. 

 
Figure 7.19: Comparison of an LSTM network with 3 LSTM layers (3L) to 5 (5L) 

This results in the network shown in Figure 7.20. The final flatten and dense layers act 
as the necessary transformations to allow the network to perform the classification into 
the desired labels. The number of nodes in the dense layer corresponds to the label 
used in the selected sub model. Once the network has been selected for the problems 
at hand, it can be used to investigate the classification problems. Individual hyperpa-
rameters, such as the number of epochs used, are further refined and adapted for 
different cases. The activation function of the output depends on the problem. In this 
work, the standard functions for binary problems, the sigmoid function, and for mul-
ticlass problems, the Softmax function, are used.  

 
Figure 7.20: Structure of the developed deep neural network  

7.4 Testing the Classification Models 
This chapter presents the training and testing of the classification model. The overall 
model is built on the individually trained sub models that classify the individual evalua-
tion variables, see Figure 7.1. Information from the sub models can be merged, pro-
cessed, and then output in the overall model. 

For this purpose, the generated process data was divided into different training and 
test sets. Hence, this ensures that similar but not identical data is compared during the 
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evaluation. It is important because the model should recognize general patterns re-
garding the selected factors and not just the specifically selected technologies. First, a 
model was trained and tested as a basis with the data generated in the reference tests, 
see Table 7.1. The data set was split so that 70% was used for training and 30% for 
validation and testing the model. 

In order to evaluate the transferability of the models, models were trained and tested 
with the same architecture but different data. Initially, all data from the reference tests 
were utilized to train the model. To test the models, the data from the dynamic tests 
and the data from the modified workpiece height tests were employed separately. The 
transferability of the model to two different variables should be demonstrated here. 
Firstly, the model accuracy in more dynamic processes, determined by simultaneously 
changing several machine settings, should be improved. Secondly, its transferability to 
different workpiece heights needs to be addressed. Finally, a separate data set was 
considered for wire break predictions.  

7.4.1 Sub Model Speed  
Two different groups of limit values were considered for the speed sub model in chapter 
7.2.1. In the evaluation, these are examined in parallel in order to assess the differ-
ences in the performance of the models more precisely. 

First, the classification of the limit values based on the averages of feed rates achieves 
a good performance to be expected for a model with a balanced database. The evalu-
ation of the model using the confusion matrix in Figure 7.21 clearly underlines the high 
accuracy on the process-related data sets. The main diagonal of the matrix (yellow 
marked boxes), which represents the correctly classified data, contains approx. 70% 
of the results. This indicates that the model can reliably distinguish between the differ-
ent speed classes. A trained model with the average feed rate  defined in Figure 7.5 
as classification factor is presented in Figure 7.21 (a). In Figure 7.21 (b) a model with 
the thresholds based on the standard feed rate from Table 7.3 were used.  

This clearly shows that the averaged value provides better results as a threshold for 
different classes since it is based on the data, especially for the recognition of fast 
processing technologies. The accuracy of the classes achieved an F1-score of ap-
prox. 0.7. With the exception of isolated outliers, misclassification almost only occurs 
between the directly adjacent labels. It should be noted that the feed rate of individual 
samples is close to the limit of the other speed class, which means that inaccuracies 
in the evaluation are to be expected.  
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Figure 7.21: Model trained and tested with reference data: confusion matrix using training 

thresholds for average feed rate  (a) and using thresholds for standard feed 
rate vf,40 (b) 

These inaccuracies can be observed in Figure 7.22. Two diagrams are plotted there, 
both of which consider the same four technologies selected from Table 11.1. The upper 
diagram depicts the predicted label and the feed rate. Even if a classification model 
with 3 discrete categories was developed here, the model outputs probabilistic scores 
which allows prediction to fluctuate between the individual categories. Therefore, the 
lower diagram shows the accuracy with which the model assigned the label in the clas-
sification. This interpretation aligns with more advanced classification models that can 
represent uncertainty or gradations in predictions, allowing for more nuanced insights 
into the system's performance across different technologies.  

The first two technologies run constantly in their classes "slow" and "medium" in rela-
tion to the selected limit values with the cutting speed and are classified correctly ac-
cordingly. The last two technologies fluctuate around the feed rate of vf = 2.75 mm/min, 
which acts as the limit between the "medium" and "fast" classes. As a result, the clas-
sification of the model is also prone to errors at these transition points. In the lower 
diagram too, in addition to the fluctuations when moving the technologies in and out, 
the technologies close to the limit value are particularly affected. The classification of 
the thresholds, which are based on the standard technology, led to a similarly satisfac-
tory performance, albeit with a minimal deterioration compared to the previous config-
uration. Here too, the confusion matrix still shows a predominantly correct classifica-
tion, but with slightly more uncertainty in some areas, see Figure 7.21 (b). The main 
diagonal remains dominant, but the values outside the diagonal are slightly more fre-
quent and indicate a marginally increased number of misclassifications. Despite this, 
the model remains reliable.  

Both classification approaches revealed very good results on the data from the refer-
ence tests and the differences in performance are within the expected range. Depend-
ing on the evaluation, the advantages and disadvantages of slightly higher accuracy 
to better containment to the upper spectrum of speed must be weighed up here. In 
addition to the respective performance on more general data sets, the further 
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procedure also considers how the different limit value variations affect the robustness 
of the model. 

 
Figure 7.22: Actual feed rate and predicted label (upper diagram); accuracy of the related 

prediction (lower diagram) 

In the following the transferability of the models to more dynamic process conditions 
are presented. As described models were trained with the reference data and tested 
with data from dynamic tests changing four machine setting parameters at a time, 
which a defined in Table 11.1. In Figure 7.23, the comparison was made, using a model 
based on the averaged  (a) and standard feed rate vf,40 (b). The data sets were 
largely classified correctly and were concentrated in the range of the "fast" speed class, 
as well as in the limit area to this. It can be observed that both limit value variations 
performed approximately equally well. It is also evident for both variants that the great-
est challenge is to differentiate between “medium” and “fast”, which is why a lot of data 
is assigned from “fast” to “medium”. Due to the selected threshold values, the correctly 
recognized data sets were distributed across different labels. Misinterpretations be-
tween the individual groups show a similar number but are distributed differently in 
each case. The large outliers have remained almost the same in number and suggest 
that they are probably the same individual data points that do not match the pattern of 
the other data points or are data errors. However, the number of errors is small enough 
to be disregarded here.  

Overall, the classification works very well on general data with the same machining 
height. While the categorization as “medium” only has an F1-score below 0.5, the ac-
curacy predicting “fast” machining almost results in an F1-score of over 0.75. A more 
precise classification into the classes "slow", "medium" and "fast" is offered here by the 
standard technology approach. This is because primarily tests with high cutting speeds 
were employed here. If the behavior of the two networks is considered in connection 
with the shift of the limit value range, a specific alignment to a desired speed range or 
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a finer division into several classes appears to be quite valid here, as long as there is 
no excessive imbalance in the training data. 

 
Figure 7.23: Model trained with reference data and predicting dynamic process feed rate: 

confusion matrix using training thresholds for average feed rate  (a) and using 
thresholds for standard feed rate vf,40 (b) 

Finally, both networks were applied to the data sets with a cutting height of h = 60 mm. 
Due to the greatly reduced feed rate compared to the reference tests, the limits for the 
workpiece height tests were adjusted here, as described in chapter 7.2.1. Figure 7.24 
shows that both networks assign more data sets to the fast or slow class depending 
on their trained limit values. Here also a lot of data of a fast process is wrongly pre-
dicted as medium.  

 
Figure 7.24: Model trained with reference data and predicting changed height feed rate: 

confusion matrix using training thresholds for average feed rate  (a) and us-
ing thresholds for standard feed rate vf,40 (b)  

Again, both networks behave similarly robustly. The accuracies result in F1-scores 
around 0.6 for “medium” and “fast” classes, while a low F1-score around 0.3 for “slow” 
predictions is reached – as indicated in Figure 7.24. Accordingly, a choice of both net-
works is also possible for highly generalized data, which refers to data that captures 
essential patterns and relationships, making it applicable to a wide range of situations 
beyond the specific instances it was derived from. Depending on the exact use case, 
it is therefore possible to use adapted networks. For the case discussed in this work, 
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the classification based on the averaged feed rate is to be preferred, as this enables a 
more precise classification of the "fast" class. 

7.4.2 Sub Model Stability  
The stability sub model is considered a binary problem. The subdivision of the stable 
versus unstable data sets was based on the boundary value analysis in chapter 7.2.2. 
Based on the reference test data, the model shows a clear distinction between the two 
used classes. The misclassified data points are mostly stable data points that are con-
sidered unstable, see Figure 7.25 (a). This would be acceptable for monitoring and 
only the reverse case would be critical. Here, accuracies with an F1-score of 0.8 for 
the prediction of the stable process state and an F1-score of 0.85 for the correct clas-
sification of unstable process data were achieved. 

The selected machine setting parameters for the dynamic tests were at the limit to wire 
breaks. Due to this limitation, instabilities occur completely in the form of wire breaks. 
Therefore, an increased misinterpretation of the stable process curves in the direction 
of unstable processes can be seen in the data displayed in Figure 7.25 (b).  

 
Figure 7.25: Process stability prediction: model trained and tested with reference data (a); 

model trained with reference data and tested with dynamic process data (b) 

The change in cutting height and the associated generalization of the data leads to a 
decrease in accuracy data of the model predicting instability of process. This can be 
observed in Figure 7.26 (a). One possible factor that could influence the accuracy is 
the data density in the area of instability. Here, only an F1-score of 0.32 could be 
reached, while stable process can be predicted with an F1-score of approx. 0.9.  

A technology that is slightly unstable also contains stable sections in the data that af-
fect the classification. Due to the larger cutting height, the discharges are distributed 
over a larger area. This has a stabilizing effect on the process as, on the one hand, it 
is less likely that the discharges will hit the same spot at short intervals when removing 
material in one area. On the other hand, a longer time elapses after the removal of 
material until the area is processed again. Accordingly, the algorithm tends towards 
the "stable" classification. 

Due to the problem of the small number of unstable tests, especially those that lead to 
wire breaks, a further series of tests was produced separately for the case of wire 
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breaks. This data serves to check whether the used model tends more towards the 
"stable" label due to the distribution of the data. The investigation revealed that the 
model is clearly capable of determining unstable processes, see Figure 7.26 (b). The 
accuracy of the employed tests reached an F1-score of 0.9 of the individual data points. 
Considered over the distance, all used data sets can be assigned to the "unstable" 
label. 

 
Figure 7.26: Process stability prediction: model trained with reference data and tested with 

changed workpiece height process data (a); model trained with reference data 
and tested with wire break process data (b) 

7.4.3 Sub Model Quality   
As stated in chapter 7.2.3, the values based on the deviation of the cutting thickness 
were used here as labels. The contour accuracy is considered in two ways: the pro-
duced workpiece thickness and the standard deviation of the thickness which could 
indicate a machined curvature. Both characteristic values were evaluated and consid-
ered in parallel, see Figure 7.27. The sub model can clearly predict the deviation of the 
thickness and the standard deviation along the workpiece height. In both cases, thick-
ness measurements defined as good are more often classified as insufficient than the 
other way round. 

 
Figure 7.27: Model trained and tested with reference data to predict: the thickness (a); the 

standard deviation of thickness over workpiece height (b) 
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The performance of the model using dynamic test data decreases, but the tendencies 
from the previous evaluation are retained, see Figure 7.28. As with the previous data 
set, the standard deviation could be determined more precisely. This can be explained 
by the fact that the discharge types over the length of the cut are used for pattern 
recognition. With a uniform distribution, they correlate directly with a straighter cut 
edge, i.e. less construction. The greatest inaccuracies exist in the misinterpretation of 
"Within in tolerance" quality cuts as "Out of tolerance" quality cuts. Ideally, a more 
conservative approach is favored to maintain a correspondingly high quality of the pro-
duced pieces. However, the current level of misinterpretations leads to excessive 
waste, necessitating an adjustment of limit values or the facilitation of a finer differen-
tiation through an expanded sample selection. 

 
Figure 7.28: Model trained with reference data and tested with dynamic process data to pre-

dict: thickness (a); the standard deviation of thickness over workpiece height (b) 

Finally, analyzing the quality of workpiece height tests, it can be seen that the inaccu-
racies continue with the same tendency, see Figure 7.29. The model can no longer be 
used to classify the samples in this form. The misinterpretation of the good cuts is still 
the driving error here. In order to use the model for other cutting heights, retraining with 
appropriate samples that adequately represent both areas are necessary. 

 
Figure 7.29: Model trained with reference data and tested with changed workpiece height 

process data to predict: the thickness (a); the standard deviation of thickness 
over workpiece height (b) 
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7.5 Summary and Conclusions 
Based on the findings in the work, this chapter focused on creating a data-driven model 
for classifying varied machine parameter setups based on process data and categorize 
them into defined productivity level. A deep learning approach was applied by utilizing 
different forms of neural networks for the model architecture, see Figure 7.20. Initially, 
machine setting parameters were selected for data generation, with significant influ-
ence on process behavior. Data was then processed and converted into a suitable 
format for model training, considering important limit values for different characteristic 
parameters. The dataset was divided into training, validation and test sets, with two 
training stages conducted on the main data set to assess model efficiency. To identify 
the best performing model structure for the main data set only one machine setting 
parameter was changed at a time. The transferability of the model was later tested with 
data sets generated during machining changed workpiece height and changing four 
machine setting parameters at once.  

Results showed high accuracy for sub models, especially concerning correlations with 
process parameters like normal discharges and short circuits and their distribution 
along the workpiece height. However, when varying machine setting parameters, ac-
curacy slightly decreased but remained reasonable. Further analysis at a greater cut-
ting height revealed reduced model accuracy due to significantly altered experimental 
conditions. Still considering that all testing were conducted with completely unknown 
data, a good transferability of the models to changed process conditions could be ob-
served.  

Despite variations in data, the model accurately classified different datasets, suggest-
ing potential for future expansion. Notably, classification based on process parameters 
of normal discharge and short circuits, along with their distribution over workpiece 
height, was successful. Accuracies with an F1-score of approx. 0.7 were achieved cat-
egorizing different technology variants to various machining speeds depicted in Figure 
7.21. Thereby, three different classes were distinguished. For the prediction of process 
stability categorization even an F1-score over 0.9 could be reached. It should be noted 
that no additional information was used for the models. Thus, an evaluation of the pro-
cess performance, in particular the speed and stability, could be realized by a discrete 
categorization of different processes. This fulfils important requirements for the appli-
cation in practice. 

Recommendations for future studies include finer classification, expanding the dataset, 
considering additional process parameters, and modifying the algorithm for better effi-
ciency. Additionally, it can be assumed that the performance of the models will improve 
significantly if, in addition to the recorded data, the corresponding machine settings 
and expert knowledge are also used as input for the machine learning models. 
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8 Development of a Digital Twin
In the machine learning models in chapter 6 and 7 it could be demonstrated that based 
only on continuously recorded process data, process evaluation could be realized by 
predicting produced curvature and categorizing the process performance. While the 
data was recorded and processed in real time online, the training and subsequent test-
ing of the models was conducted offline. In this chapter, the gained knowledge is used 
to develop a Digital Twin for wire EDM under an industrial environment to make online 
predictions of the produced curvature real time capable. For this purpose, a coopera-
tive project was carried out with the AI software provider IconPro and the WBA as a 
user in order to demonstrate that the fundamental technological findings significantly 
increase the potential of data utilization, and that high-performance AI software can be 
used to digitally map processes and products. IconPro specializes in digitizing manu-
facturing processes and developing AI-based software for industrial applications while 
focusing on predictive calibration, predictive quality, and AI-based process analysis. 

The following approach was used to develop a Digital Twin to map the produced work-
piece curvature, see Figure 8.1. To implement data-driven models in processes that 
generate particularly large amounts of data, the data must be continuously reduced 
and agglomerated while increasing the information density. Data processing and data 
analysis in wire EDM were described and explained in detail in chapters 4 and 5.

Figure 8.1: Procedure to develop a Digital Twin in production technology [KÜPP22b]

The following system architecture was implemented for the data transfer between the 
machine, the individual data processing interfaces and the user interface in order to be 
able to display the Digital Twin representing the machined curvature on a dashboard, 
see Figure 8.2. Data is processed and condensed at the wire EDM machine, saved 
every 30 seconds as a CSV-file, and transmitted via a Python script to a cloud server
(Data Hub), ensuring spatial decoupling. The Data Hub distributes data for near-real-
time display and forwards it to evaluation software. Results are sent back for dash-
board display.
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Figure 8.2: System architecture for data transfer to create a Digital Twin in industrial envi-

ronment – cooperative by the MTI (Manufacturing Technology Institute), 
IconPro and WBA  

While the first steps from data acquisition and processing to transfer to the Data Hub 
have already been explained in detail in this thesis, the following section describes how 
the model approaches can be specifically implemented in AI software for industrial use 
based on the knowledge gained. Paranjape et al. [PARA24] developed an ML ensem-
ble model predicting geometric curvature error with mean absolute error approx. 1 μm 
and a reported runtime of 2 seconds per 100 predictions in an industrial environment. 
For this purpose, multiple machine learning models were trained to predict the geo-
metric curvature. Rather than relying on individually trained models, a diverse ensem-
ble of models was developed because ensemble models typically outperform individual 
models [MOHA23]. Since the target variable geometric curvature is numerical, also 
regression models were used for training as in chapter 6. These included a mix of 
simple tree-based models, decision trees, random forests, boosted trees, and neural 
network models. The training process for these models was automated with a runtime 
of 60 minutes. The models were trained and fine-tuned on training and validation da-
tasets, respectively. Insights from Gijsbers et al. [GIJS24] were utilized to train the 
individual models using open-source libraries. These models were subsequently com-
bined into an ensemble. EDM process data, along with quality measurements from 
CMMs, comprised the training dataset. A custom feature extractor module was used 
to derive features from the raw generated data [PARA24]. The train and validation sets 
were used to train an ensemble of ML models, which were finally evaluated on a test 
split as in chapter 6.  

The trained models were grouped to achieve the highest accuracy, resulting in a global 
model that is an ensemble rather than a single model. This ensemble was created 
using a voting mechanism, which combines the predictions of multiple individual mod-
els and produces a final prediction by averaging these predictions for regression tasks. 
The final ensemble included a total of 108 models, categorized into major groups as 
listed on the left in Figure 8.3. The overall ensemble consists of neural networks and 
various decision tree-based machine learning algorithms. All algorithms were trained 
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using default hyperparameters for the given runtime. In creating the ensemble, individ-
ual models could receive multiple votes. The training was conducted in Python using 
open-source libraries. The use of a voting mechanism in ensemble creation theoreti-
cally ensures that the ensemble outperforms the individual models [PARA24].

The global ensemble model was evaluated on a test split, which the model had not 
previously seen or used for hyperparameter tuning. Figure 8.3 illustrates a scatter plot 
comparing true curvature values with predicted values, where a 45-degree line repre-
sents perfect predictions. Quantitative metrics showed an R2-score of R² = 0.82, mean 
absolute error of MAE = 0.87 μm, and root mean squared error of RMSE = 1.29 μm, 
indicating that the prediction errors were within acceptable limits. Only a few samples 
had an MAE higher than 2 μm, highlighted in yellow in the diagram. To check for bias 
in dataset splitting, four experiments with different random seeds were conducted, 
yielding R2-scores of R² = 0.81, 0.82, 0.79, and 0.82. These consistent results suggest 
negligible bias in the model, despite slight differences in ensemble composition across 
experiments [PARA24].

Figure 8.3: Categorized model of the final ML ensemble model (left) and predicted and ac-
tual curvature after testing (right) according to [PARA24]

For industrial use, the trained machine learning model was deployed to be accessible 
to end users. The training and deployment architecture is depicted in Figure 8.4. De-
ployment was handled within a Kubernetes cluster to utilize its features like non-break-
ing updates, auto-scaling, resource management, and production readiness
[CARR22]. The process begins with a user interacting with the system by sending a 
request to the Application Programming Interface (API). It serves as the interface be-
tween the user and the Kubernetes cluster, receiving the user's request and forwarding 
it to the Ingress Controller within the cluster. The Ingress Controller then manages and 
routes the incoming requests to the appropriate services, either the training or infer-
ence components. 

Model training occurred via a Kubernetes job inside the cluster, and the trained model 
was stored on S3 (Simple Storage Service) storage for its simplicity and efficiency. It 
is a scalable object storage service provided by Amazon Web Services (AWS), which 
is designed to store and retrieve any amount of data from anywhere on the web, 
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offering high durability, availability, and performance [PALA08, PERS16]. The model 
was deployed in a pod using a flask server, with an ingress controller managing exter-
nal connections for both training and inference. The inference requests are routed to 
the appropriate pod, and the predicted curvature error is returned as a JSON (JavaS-
cript Object Notation) output [PEZO16] for display on the end-user dashboard 
[PARA24]. 

 
Figure 8.4: Training and deployment architecture under Kubernetes orchestration accord-

ing to [PARA24] 

The deployed model was tested in an industrial setup, showing an average runtime of 
2 seconds per prediction for sample sizes from 1 to 200. For batches of 300 and 1000 
samples, the runtime increased to 3 and 4.5 seconds, respectively. The model aims to 
reduce the cost and effort of manual measurement for parts cut with wire EDM by 
identifying parts with higher geometric curvature errors for inspection, potentially re-
ducing inspection costs and scrap rates. 

Based on these results, the end-user dashboard can display near real time process 
evaluation data, Figure 8.5. Several, parameters can be plotted during the machining 
process such as the pulse effective frequency, the discharge distribution considering 
the discharge types. Furthermore, a Digital Twin can be displayed by presenting the 
produced curvature based on the trained models. This sheet in the dashboard is only 
for one wire EDM machine and such sheets can be used for the entire production to 
monitor productivity, quality and efficiency for different machines and processes. The 
entire system could also be applied on a wire EDM machine from another manufacturer 
with minimal effort. 
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Figure 8.5: Dashboard by WBA Aachen for the user displaying Digital Twin representing 
produced curvature in real time [WBA24]

The app allows setting warning limits for process data, issuing alerts, and storing 
events for future analysis. Besides display, permanent storage of data for quality as-
surance is ensured with a two-part database structure: historical process data basis 
for dashboard data and historical AI data basis for evaluation results, see Figure 8.2. 
The dashboard is accessible via a web browser, ensuring device-independent use.

With this approach, an AI-based assistance system for technology development and 
optimization can be used through the same structure and the use of classification mod-
els as in chapter 7. By using reinforcement learning, for example, a self-learning pro-
cess could even be developed that automatically tests itself through parameter areas 
and optimizes itself [IPEK08].
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9 Summary and Outlook 
Summary 

The main areas of application for wire EDM are in tool and die making, as well as in 
aircraft engines and medical technology. Components are often machined that can no 
longer be produced economically using conventional manufacturing technologies due 
to their material properties and required tolerances. The technology is mainly used in 
the production of high-value products and is often the last critical manufacturing step. 
The process reliability and repeatability of this technology are therefore particularly 
important and can be guaranteed by correspondingly intelligent control and automation 
solutions. This, along with the digitalization of manufacturing processes in the context 
of Industry 4.0, requires the use of data-driven approaches in wire EDM. Machine man-
ufacturers do not offer yet any solutions for end-user data-driven process monitoring 
or process development. Based on the given state of the art dealing with process data 
in wire EDM, a deficit was identified for a valid data-driven model to evaluate the wire 
EDM process. 

The objective of the present work was therefore to develop a data-driven model for the 
evaluation of the wire EDM process. This was to be based primarily on continuously 
recorded physical respectively electrical process data in order to ensure the 
transferability and general validity of the model. Machine learning models were trained 
with process data to evaluate the process solely based on the electrical process signals 
analyzed in real-time. This goal was to be achieved by developing a regression model 
to evaluate quality and a classification model to evaluate productivity. Accordingly, the 
thesis addressed the problem by establishing the research hypothesis that process 
performance and product quality in wire EDM can be realized with the use of machine 
learning methods by using continuously recorded electrical signals. The research 
hypothesis was critically examined using various questions. The scientific design 
framework in this work is determined in particular by the methods and techniques used 
in data analysis and the structure of the work is designed accordingly for the 
development of data-driven models. 

The first step was therefore to develop a system for continuous time and spatially re-
solved recording of process data. To this end, it was first presented how the discharge 
energy of individual discharges can be determined offline using oscilloscope measure-
ments. The signal processing methodology presented was then transferred to an 
FPGA system in the next step, with which process signals can be processed in real-
time. This made it possible to record individual discharges with corresponding charac-
terization of their discharge type in a continuous process. This measuring chain was 
then extended to record individual discharge types in a spatially resolved manner. A 
systematic data reduction was then carried out by agglomerating the process data. 
The data was agglomerated as much as possible without relevant information being 
lost. The measuring system and methodology developed therefore not only ensure the 
acquisition of large amounts of high-quality data. 
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For wire EDM process evaluation, various criteria for process productivity and product 
quality were analyzed in the main cut. Continuous process data was recorded to iden-
tify possible correlations with productivity and quality. The exploratory analysis re-
vealed initial correlations and trends by examining the speed and occurrence of wire 
breaks based on the process data. Both macroscopic and microscopic changes were 
taken into account to evaluate product quality. Initial analyses showed correlations be-
tween curvature and discharge distribution over the height of the workpiece. The mi-
croscopic changes in surface roughness and the surface layer were not influenced by 
different process conditions such as nozzle distance or workpiece height. 

Based on the initial findings from the process data, a regression model was developed 
to evaluate product quality. For this purpose, a neural network was trained that predicts 
the curvature of the component based on continuously recorded data. An automated 
feature extraction approach was used to extract a large number of statistical variables 
from the data sets. In addition to visual analysis, different methods of correlation 
analysis were applied and compared. Based on the results, some of the most important 
parameters were used as input parameters for the neural network and the network 
structure was determined using the random search approach. The model shows good 
prediction accuracy and explains a significant part of the data variability. 

Unlike the previous instance, the productivity of the process was evaluated using a 
classification model. The cutting speed, process stability, and the contour produced, 
which ultimately also determines the number of trim cuts, were evaluated. This involved 
classifying different technology variants based on process data and assigning them to 
specific productivity levels. A deep learning approach was used, in which various forms 
of neural networks were used for the model architecture. For this purpose, a large 
number of experiments were carried out with modified machine parameters. The 
trained models were also validated with data from technology variants with different 
machining heights and with data from technology variants in which several machine 
parameters were changed simultaneously. The results showed a high accuracy for the 
sub models, especially considering that all testing were performed with completely un-
known data. 

Finally, it was shown how the findings can be transferred to the development of a Dig-
ital Twin in an industrial setting. To this end, it was first presented how a Digital Twin 
is developed in principle. In cooperation with an AI software manufacturer and a wire 
EDM user, a Digital Twin was developed that can map the machined curvature of the 
workpiece in a dashboard using data processed in real-time. 
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Outlook 

The findings in this thesis confirmed the demand in the field of data science for suffi-
cient and high-quality data. Even though a large number of experiments were carried 
out in this work and a total of over 15 billion individual discharges were used for the 
models, it can be assumed that a higher amount of data will improve the performance 
of the machine learning models even further since the information density of the pro-
cess data is very low and only beneficial by agglomerating the data. Additional work 
should, therefore, consider implementing data acquisition in systems that are in per-
manent operation. Based on the findings, such an implementation would be feasible. 
By linking appropriate optimization algorithms to the output of the prediction models, 
automated technology adaptation and optimization would be highly conceivable. 

Furthermore, in the next step, it would be necessary to map the geometric deviation 
not only via the workpiece height but also in the cutting direction to predict the deter-
mined contour, to extend the applicability of the Digital Twin. This would require training 
models for the evaluation of edges and curves. Based on these findings, the geometric 
deviation should be known in all dimensions and direct measures for the application of 
the first trim cut could be derived. This could be done by adjusting the distance between 
the wire and the workpiece or by a tapered feed of the wire to eliminate component 
curvature or skewness over the workpiece height. 

Finally, these approaches should be transferred to trim cuts. In addition to the current 
signals recorded so far, the voltage signal, which reflects the distance between the 
wire and the workpiece, should be considered. Initial analyses of the trim cuts revealed 
that characteristic properties can also be identified in the process data here. The used 
measuring system has also indicated that the signals can, in principle, be recorded in 
the same way using the methodology. However, a higher sampling frequency must be 
used here due to the shorter pulses. This was particularly evident when determining 
the position of trim cut discharges using the presented system. As the discharge cur-
rents in the trim cut are considerably smaller than in the main cut, the current difference 
is correspondingly smaller, and measurement inaccuracies have a much greater im-
pact on the result. Measuring equipment must therefore be replaced by devices with 
higher sampling rates. In addition, it is no longer possible to differentiate between dif-
ferent discharge types for trim cut processing, as these only consist of one pulse type 
almost identical to the short circuit pulse forms in the main cut. 
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Zusammenfassung und Ausblick  

Zusammenfassung 

Die Hauptanwendungsgebiete der Drahtfunkenerosion liegen im Werkzeug- und For-
menbau, sowie in der Triebwerks- und Medizintechnik. Bearbeitet werden oft Bauteile, 
die aufgrund ihrer Werkstoffeigenschaften und geforderten Toleranzen nicht mehr öko-
nomisch mit konventionellen Fertigungstechnologien gefertigt werden können. Dort 
kommt sie vor allem bei der Fertigung von hochpreisigen Produkten zum Einsatz und 
wird oft als letzte maßgebende Fertigungstechnologie eingesetzt. Daher sind die Pro-
zesssicherheit und Wiederholbarkeit dieser Technologie besonders wichtig und kön-
nen durch entsprechend intelligente Regelungen und Automatisierungslösungen ge-
währleistet werden. Dies und die Digitalisierung von Fertigungsprozessen im Kontext 
von Industrie 4.0 erfordern daher den Einsatz von datengetriebenen Lösungen in der 
Drahtfunkenerosion. Seitens der Maschinenhersteller existieren noch keine Lösungen 
für eine datengetriebene Prozessüberwachung oder Prozessentwicklung. Auf Basis 
der vorgestellten Arbeiten, in denen sich die Autoren mit Prozessdaten in der Draht-
funkenerosion auseinandersetzten, ergab sich ein Defizit für ein valides datengetrie-
benes Modell für die Bewertung des Prozesses. 

Die Zielsetzung der vorliegenden Arbeit bestand demnach darin, ein datengetriebenes 
Model zur Bewertung des Drahtfunkenerosionsprozesses zu entwickeln. Dieses sollte 
vor allem auf kontinuierlich aufgezeichneten physikalischen bzw. elektrischen Pro-
zessdaten beruhen, um eine Übertragbarkeit und Allgemeingültigkeit des Modells zu 
gewährleisten. Mit den Prozessdaten wurden KI-Modelle trainiert, um den Prozess nur 
auf Basis der in Echtzeit ausgewerteten elektrischen Prozesssignale zu bewerten. Die-
ses Ziel sollte durch die Entwicklung eines Regressionsmodells zur Bewertung der 
Qualität und eines Klassifikationsmodells zur Bewertung der Produktivität realisiert 
werden. Entsprechend widmete sich die Arbeit der Problemstellung, indem die For-
schungshypothese aufgestellt wurde, dass die Prozessperformance und die Produkt-
qualität in der Drahtfunkenerosion mit dem Einsatz von Machine Learning Methoden 
durch Nutzen von kontinuierlich aufgezeichneten elektrischen Signalen realisiert wer-
den können. Die Forschungshypothese wurden über verschiedene Fragestellungen 
kritisch überprüft. Der wissenschaftliche Gestaltungsrahmen wird in dieser Arbeit be-
sonders durch die Methoden und Techniken in der Datenanalyse bestimmt und der 
Aufbau der Arbeit ist entsprechend für die Entwicklung datengetriebener Modelle aus-
gelegt.  

In einem ersten Schritt wurde daher ein System zur kontinuierlichen orts- und 
zeitaufgelösten Aufzeichnung von Prozessdaten entwickelt. Dazu wurde zunächst 
vorgestellt, wie die Entladeenergie von einzelnen Entladungen offline durch 
Oszilloskopmessungen bestimmt werden kann. Die vorgestellte Methodik der 
Signalverarbeitung wurde dann im nächsten Schritt auf ein FPGA-System übertragen, 
mit dem sich Prozesssignale in Echtzeit verarbeiten lassen. Somit konnte eine 
Aufzeichnung von einzelnen Entladungen mit entsprechender Charakterisierung 
bezüglich ihres Entladetyps im kontinuierlichen Prozess realisiert werden. Diese 
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Messkette wurde anschließend erweitert, um einzelne Entladungstypen ortsaufgelöst 
aufzuzeichnen. Anschließend erfolgte eine systematische Datenreduktion durch 
Agglomeration der Prozessdaten. Dabei wurden die Daten möglichst stark 
agglomeriert ohne, dass relevante Informationen verloren gehen. Mit dem entwickelten 
Messsystem und der Methodik ist somit eine Akquise von großen hoch qualitativen 
Datenmengen gewährleistet. 

Zur Bewertung des Drahtfunkenerosionsprozesses wurden verschiedene Bewertungs-
kriterien für die Prozessproduktivität und die Produktqualität im Hauptschnitt analysiert. 
Es wurden kontinuierliche Prozessdaten aufgezeichnet, um mögliche Korrelationen 
mit Produktivität und Qualität zu identifizieren. Die explorative Analyse ergab erste 
Korrelationen und Trends, indem die Geschwindigkeit und das Auftreten von Draht-
brüchen anhand der Prozessdaten untersucht wurden. Zur Bewertung der Produkt-
qualität wurden sowohl makroskopische als auch mikroskopische Veränderungen be-
rücksichtigt. Erste Analysen zeigten Korrelationen zwischen Wölbung und Entladungs-
verteilung über die Werkstückhöhe. Die mikroskopischen Veränderungen der Oberflä-
chenrauheit und der Randschicht wurden nicht durch unterschiedliche Prozessbedin-
gungen wie Düsenabstand oder Werkstückhöhe beeinflusst. 

Basierend auf den ersten Erkenntnissen der Prozessdaten, wurde ein Regressions-
modell zur Bewertung der Produktqualität entwickelt. Dazu wurde ein neuronales Netz 
trainiert, das die Wölbung des Bauteils anhand kontinuierlich aufgezeichneter Daten 
vorhersagt. Ein automatisierter Ansatz zur Merkmalsextraktion wurde verwendet, um 
eine große Anzahl von statistischen Variablen aus den Datensätzen zu extrahieren. 
Neben der visuellen Analyse wurden verschiedene Methoden der Korrelationsanalyse 
angewandt und verglichen. Auf der Grundlage der Ergebnisse wurden einige der wich-
tigsten Parameter als Eingabeparameter für das neuronale Netz verwendet und mit-
hilfe des Random-Search-Ansatzes die Netzstruktur bestimmt. Das Modell zeigt eine 
gute Vorhersagegenauigkeit und erklärt einen erheblichen Teil der Datenvariabilität.  

Anders als zuvor sollte nun die Produktivität des Prozesses mithilfe eines Klassifikati-
onsmodells bewertet werden. Bewertet wurden dafür die Schnittgeschwindigkeit, die 
Prozessstabilität und die erzeugte Kontur, die schließlich auch die Anzahl der Nach-
schnitte bestimmt. Dazu fand eine Klassifizierung verschiedener Technologievarianten 
auf der Grundlage von Prozessdaten und deren Einstufung in bestimmte Produktivi-
tätsstufen statt. Es wurde ein Deep-Learning-Ansatz angewandt, bei dem verschie-
dene Formen neuronaler Netze für die Modellarchitektur verwendet wurden. Dazu wur-
den eine Vielzahl an Versuchen mit veränderten Maschinenparametern durchgeführt. 
Die trainierten Modelle wurden hierbei auch mit Daten aus Technologievarianten mit 
unterschiedlicher Bearbeitungshöhe validiert und mit Daten aus Technologievarianten, 
in denen mehrere Maschinenparameter gleichzeitig verändert wurden. Die Ergebnisse 
zeigten eine hohe Genauigkeit für die Teilmodelle, insbesondere unter Berücksichti-
gung, dass alle Validierungen mit völlig unbekannten Daten durchgeführt wurden.  

Abschließend wurde im letzten Kapitel gezeigt, wie die Erkenntnisse in die Entwicklung 
eines Digitalen Zwillings in einem industriellen überführt werden können. Dazu wurde 
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zunächst vorgestellt, wie ein Digitaler Zwilling prinzipiell entwickelt wird. In kooperativer 
Arbeit mit einem KI-Software Hersteller und einem Drahtfunkenerosionsanwender, 
konnte ein Digitaler Zwilling entwickelt werden, der durch in Echtzeit verarbeitete Da-
ten die erzeugte Kontur des Werkstücks in einem Dashboard abbilden kann.  

Ausblick 

Die Erkenntnisse in dieser Arbeit bestätigten die Forderung im Data Science Bereich 
nach ausreichend und qualitativ hochwertigen Daten. Auch wenn in dieser Arbeit eine 
Vielzahl von Versuchen durchgeführt wurde und insgesamt für die Modelle über 15 Mil-
liarden Einzelentladungen genutzt wurden, kann davon ausgegangen werden, dass 
sich durch mehr Daten die Performance der KI-Modelle verbessert. Dies liegt an der 
geringen Informationsdichte der Prozessdaten. Daher sollte für weitere Arbeiten in Be-
tracht gezogen werden, ob die Datenerfassung nicht in Anlagen implementiert werden 
sollte, die dauerhaft in Betrieb sind. Eine Implementierung des Datenerfassungssys-
tems wäre auf Basis der Erkenntnisse realisierbar. Eine automatisierte Technologie-
adaption und -optimierung wäre durch Anknüpfung entsprechender Optimierungsalgo-
rithmen an den Output der Prädiktionsmodelle sehr gut vorstellbar. Des Weiteren wäre 
es im nächsten Schritt notwendig die geometrische Abweichung nicht nur über die 
Werkstückhöhe abzubilden, sondern auch in Schnittrichtung zur Prädiktion der ermit-
telten Kontur und somit den DT zu erweitern. Dazu müssten Modelle für die Bewertung 
von Kanten und Rundungen trainiert werden. Basierend auf diesen Erkenntnissen 
sollte die geometrische Abweichung in allen Dimensionen bekannt sein und es sollten 
sich direkte Maßnahmen für die Anwendung des ersten Nachschnitts ableiten. Die 
kann durch eine Zustellung des Drahtabstands zum Werkstück oder durch eine koni-
sche Zustellung des Drahtes, um entsprechend eine Bauteilwölbung oder Bauteil-
schiefe über die Höhe zu eliminieren.  

Zuletzt sollten diese Ansätze auf die Nachschnitte übertragen werden. Dafür sollten 
neben den bisher aufgezeichneten Stromsignalen auch zusätzlich das Spannungssig-
nal aufgezeichnet werden, welches den Abstand des Drahtes zum Werkstück wider-
spiegelt. Erste Analysen der Nachschnitte zeigten, dass auch hier charakteristische 
Eigenschaften in den Prozessdaten identifiziert werden können. Mit dem eingesetzten 
Messsystem hat sich auch gezeigt, dass die Signale sich prinzipiell mit der Methodik 
auf die gleiche Weise erfass lassen. Jedoch muss hier aufgrund der kürzeren Pulse 
eine höhere Abtastfrequenz genutzt werden. Dies ergab sich besonders bei der Posi-
tionsermittlung von Nachschnittentladungen mittels des vorgestellten Systems. Da die 
Entladeströme im Nachschnitt wesentlich kleiner sind als im Hauptschnitt, ist die 
Stromdifferenz entsprechend kleiner und Messungenauigkeiten zeichnen sich wesent-
lich stärker auf das Ergebnis aus. Daher müssen entsprechend Messmittel durch Ge-
räte mit höheren Abtastraten ersetzt werden. Zudem kann für die Nachschnittbearbei-
tung nicht mehr auf die Unterscheidung von verschiedenen Entladetypen zurückge-
griffen werden, da diese nur noch aus einem Pulstypen bestehen, der fast identisch zu 
den Kurzschlussentladeformen ist. 
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11 Appendix 
Table 11.1: Machine setting parameters of test series “dynamic process” for workpiece 

height h = 40 mm 

 
  

Short circuit discharge
duration te,s

Normal discharge
duration te,n

Pulse interval
time t0

Discharge
current ie

6676023
8827023

10975023
11534023
8675026
6824026
11976026
10537026
10674029
11825029
6977029
8536029
11677020
10826020
8974020
6535020

10975523
6975023
6824526
8675526
11976526
10674529
11825529
10976023
6825026
11977026
10675029
11826029
10675529
11826529
10676029
11827029
10676529
11827529
10677529
10677529
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