h1

h2

h3

h4

h5
h6
% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Lan:1002951,
      author       = {Lan, Yu-Chia and Strauch, Martin Tobias and Pilva, Pourya
                      and Schmitz, Nikolas E. J. and Sadr, Alireza Vafaei and
                      Niggemeier, Leon and Nguyen, Huong Quynh and Hölscher,
                      David Laurin and Nguyen, Tri Q. and Kers, Jesper and Bülow,
                      Roman David and Boor, Peter},
      title        = {{E}cologically sustainable benchmarking of {AI} models for
                      histopathology},
      journal      = {npj digital medicine},
      volume       = {7},
      issn         = {2398-6352},
      address      = {[Basingstoke]},
      publisher    = {Macmillan Publishers Limited},
      reportid     = {RWTH-2025-00788},
      pages        = {378},
      year         = {2024},
      cin          = {528001-2 ; 922910},
      ddc          = {610},
      cid          = {$I:(DE-82)528001-2_20140620$},
      pnm          = {OAPKF - Open-Access-Publikation mit Unterstützung der RWTH
                      Aachen University (021000-OAPKF) / DFG project
                      G:(GEPRIS)322900939 - TRR 219: Mechanismen kardiovaskulärer
                      Komplikationen bei chronischer Niereninsuffizienz
                      (322900939) / DFG project G:(GEPRIS)454024652 -
                      Translationale Nephropathologie (454024652) / DFG project
                      G:(GEPRIS)432698239 - Die Rolle von epithelialen CD74 in
                      Nierenerkrankungen (432698239) / DFG project
                      G:(GEPRIS)445703531 - KFO 5011: Integration neuer Methoden
                      zur Verbesserung von translationaler Nierenforschung
                      (445703531) / AIM.imaging.CKD - AI-augmented, Multiscale
                      Image-based Diagnostics of Chronic Kidney Disease
                      (101001791) / BMBF 01GM2202C - STOP-FSGS - Translationaler
                      Forschungsverbund zur Verbesserung der Diagnostik und
                      Therapie der FSGS, Histopathologische Bildanalyse und
                      Analyse von pathogenen Signalwegen (01GM2202C)},
      pid          = {G:(DE-82)021000-OAPKF / G:(GEPRIS)322900939 /
                      G:(GEPRIS)454024652 / G:(GEPRIS)432698239 /
                      G:(GEPRIS)445703531 / G:(EU-Grant)101001791 /
                      G:(BMBF)01GM2202C},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:001382410600002},
      pubmed       = {pmid:39719527},
      doi          = {10.1038/s41746-024-01397-x},
      url          = {https://publications.rwth-aachen.de/record/1002951},
}