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For a subgroup H of a finite group G, the Frobenius graph 
Γ(G,H) records the constituents of the restrictions to H of the 
irreducible characters of G. We investigate when this graph 
has diameter 3.
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1. Introduction

Let H be a subgroup of a finite group G. The Frobenius graph Γ(G,H) is the bipartite 
graph with vertex set the disjoint union of Irr(G) and Irr(H) and an edge between 
χ ∈ Irr(G) and ϕ ∈ Irr(H) whenever [χH , ϕ] �= 0. Here [α, β] = [α, β]H is the inner 
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product of (virtual) characters α, β of H, and χH denotes the restriction of a (virtual) 
character χ of G to H. We also dfine the Frobenius matrix

F (G,H) := ([χH , ϕ])ϕ∈Irr(H),χ∈Irr(G).

Then the biadjacency matrix of Γ(G,H) is obtained from F (G,H) by replacing each 
nonzero entry by 1.

We will mainly be interested in situations where the diameter d of Γ(G,H), i.e., the 
largest distance of two vertices in Γ(G,H), is finite. We show that Γ(G,H) is connected 
if and only if the core of H in G is trivial. We note:

• d = 1 if and only if |G| = 1 holds,
• d = 2 if and only if |G| > 1 and |H| = 1 hold.

Thus d ≥ 3 holds if and only if H is nontrivial. Observe that for 1H �= ϕ ∈ Irr(H), 
any path from 1G to ϕ in Γ(G,H) has odd length > 1.

Frobenius graphs can have arbitrarily large diameters, for example the diameter of 
Γ(Sn+1, Sn) is 2n, where Sn is the symmetric group of degree n. This can be proved in 
terms of partitions of n, which parametrize the irreducible characters of Sn, as follows: 
Any partition of n can be transformed into any other partition of n by a sequence of at 
most n − 1 steps, where one step consists of adding an addable node in order to get a 
partition of n+ 1, and then removing a removable node. Thus one gets a path of length 
at most 2n − 2 between any two characters of Sn in Γ(Sn+1, Sn). Then it is clear that 
paths between characters of Sn+1 have length at most 2n, and that the path between 
the trivial and the alternating character of Sn+1 has length exactly 2n.

In the following, we will investigate Frobenius graphs Γ(G,H) of diameter 3. In this 
case we call H a diameter three subgroup of G.

Section 2 collects properties of pairs (G,H) such that H is a diameter three subgroup 
of G, Section 3 shows examples, Section 4 studies large subgroups that are diameter 
three subgroups, Section 5 classfies those quasisimple groups that contain diameter three 
subgroups, Section 6 deals with the question how minimal groups (w. r. t. inclusion) look 
like which have a diameter three subgroup. Finally, Section 7 explains some connections 
between the diameter of a Frobenius graph Γ(G,H) and the subgroup depth of H in G.

The direct computations for this paper were done with the help of the computer 
algebra system Oscar [9,17].

2. Structural properties

The following result is essentially contained in [7, Section 6]. We include a proof for 
the convenience of the reader.

Proposition 2.1. Let H be a proper subgroup of a finite group G. Then the connected com
ponents of Γ(G,H) are in bijection with the G-orbits on Irr(K) where K := CoreG(H) :=
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⋂
g∈G gHg−1 denotes the core of H in G. In particular, Γ(G,H) is connected if and only 

if K = 1.

Proof. Let χ ∈ Irr(G) and ϕ ∈ Irr(H) such that [χH , ϕ] �= 0. By Clifford theory, ϕK is 
a sum of H-conjugates of a character θ ∈ Irr(K). Thus χK is a sum of G-conjugates of 
θ. If also ψ ∈ Irr(G) satifies [ψH , ϕ] �= 0 then ψK is again a sum of G-conjugates of θ. 
Thus, whenever χ′ ∈ Irr(G) is contained in the same connected component of Γ(G,H)
as χ then the irreducible constituents of χ′

K form the G-orbit of θ.
Conversely, let χ, χ′ ∈ Irr(G) such that 0 �= [χK , χ′

K ] = [1K , χKχ′
K ] = [1GK , χχ′]. Then 

χχ′ has a constituent η whose kernel contains K. On the other hand, the kernel of 1GH is 
K, so that we can view 1GH as a faithful character of G/K. By a theorem of Burnside [14, 
Satz V.10.8], there is a positive integer m such that 0 < [(1GH)m, η] ≤ [(1GH)m, χχ′] =
[χ(1GH)m, χ′]. Consider the linear map U : ZIrr(G) −→ ZIrr(G), α �−→ αG

H = α(1GH); 
here ZIrr(G) denotes the group of virtual characters of G. Then Un(α) = α(1GH)n for all 
n > 0 which implies that 0 �= [Um(χ), χ′]. Now note that the constituents of U(χ) = χG

H

are contained in the connected component of χ in Γ(G,H). Thus also the constituents 
of Um(χ) are contained in the connected component of χ in Γ(G,H). In particular, χ′

is contained in the connected component of χ in Γ(G,H).
This proves the first assertion of our proposition. Now suppose that Γ(G,H) is con

nected. Then Irr(K) is a single G-orbit, i.e., G acts transitively on Irr(K). Thus the 
trivial character 1K is the only irreducible character of K, so that K = 1. The converse 
is clear. �

By Proposition 2.1 and the remarks from Section 1, a diameter three subgroup H is 
always nontrivial and core-free in G, i.e., CoreG(H) = 1. The following result will be our 
main tool in order to detect diameter three subgroups.

Proposition 2.2. Let H be a nontrivial proper subgroup of a finite group G. Then the 
following assertions are equivalent:

(a) Γ(G,H) has diameter 3.
(b) (i) For any χ ∈ Irr(G), we have [χH , 1H ] �= 0.

(ii) For any ϕ,ψ ∈ Irr(H), we have [ϕG, ψG] �= 0.

Proof. Suppose that (a) holds. Then any χ ∈ Irr(G) is connected to the trivial character 
1G of G via a path of length l ≤ 3 in Γ(G,H). Since l must be even, we have in fact l ≤ 2. 
Thus χH and (1G)H = 1H have a common constituent, which must be 1H . Hence (i) 
holds.

Similarly, any two ϕ,ψ ∈ Irr(H) are connected via a path of length l ≤ 3. Again, we 
must have l ≤ 2. Thus there is χ ∈ Irr(G) such that [χH , ϕ] �= 0 �= [χH , ψ] holds. This 
implies that [ϕG, ψG] �= 0, and (ii) holds.
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Now suppose that (b) holds. Then (i) implies that Γ(G,H) is connected. More pre
cisely, the distance in Γ(G,H) between any two characters χ, η ∈ Irr(G) is at most 2. 
Similarly, by (ii) the distance between any two characters ϕ,ψ ∈ Irr(H) is at most 2. 
Thus the distance between any character χ ∈ Irr(G) and any character ϕ ∈ Irr(H) is at 
most 3. Since H is nontrivial, the diameter of Γ(G,H) is 3. �
Remark 2.3. We note that the conditions (b) (i) and (b) (ii) in Proposition 2.2 are 
independent.

In many examples, condition (b) (ii) does not imply condition (b) (i). We can take 
the symmetric groups G = S3 and H = S2 of degrees 3 and 2, where Γ(G,H) is a path 
of length 4.

1 1

1 2 1

An example where (b) (i) does not imply (b) (ii) is given by the Frobenius group 
G of order 351 = 33 · 13 with an elementary abelian kernel of order 33 and a comple
ment of order 13, and a subgroup H of order 32 in G. Then G is a subgroup of index 
2 in AGL(1, 33). Moreover, Irr(G) consists of 13 linear characters and two irreducible 
characters χ, η of degree 13. Furthermore, condition (b) (i) is satified since the permu
tation character 1GH is exactly the sum of all irreducible characters of G. On the other 
hand, condition (b) (ii) is not satified since there are characters ϕ,ψ ∈ Irr(H) such that 
ϕG = 3χ and ψG = 3η, so that [ϕG, ψG] = 0.

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 13 13

Examples of groups for which (b) (i) does not imply (b) (ii) for some subgroups seem 
to be rare, see Remark 4.5 and Section 6.3.

Remark 2.4. In the situation of Proposition 2.2, for any two characters ϕ,ψ ∈ Irr(H)
the induced characters ϕG, ψG have a common constituent χ ∈ Irr(G). However, in 
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general there does not exist a character χ ∈ Irr(G) which is a constituent of ϕG for every
ϕ ∈ Irr(H). As an example, one can take the Frobenius group G of order 24 · 5 and a 
suitable subgroup H of order 4. (There are seven classes of subgroups of order four, one 
of them works.) Then the Frobenius matrix F (G,H) and the Frobenius graph Γ(G,H)
are as follows:

⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 0 0 2 2 0
0 0 0 0 0 2 0 2
0 0 0 0 0 0 2 2

⎤
⎥⎥⎥⎦

1 1 1 1

1 1 1 1 1 5 5 5

Thus Γ(G,H) has diameter 3.

Remark 2.5. Condition (b) (ii) of Proposition 2.2 is equivalent to the following one. For 
every ϕ,ψ ∈ Irr(H), there exists g ∈ G such that [ϕH∩Hg , ψg

H∩Hg ] > 0.
Note that by Frobenius reciprocity and Mackey decomposition,

[ϕG, ψG] =
∑
g∈R

[ϕ, (ψg
Hg∩H)H ] =

∑
g∈R

[ϕHg∩H , ψg
Hg∩H ],

where R is a set of representatives of H-H-double cosets in G.
This condition implies the following: For every ϕ ∈ Irr(H), there exists g ∈ G such 

that [ϕH∩Hg , 1H∩Hg ] > 0.
The second condition also implies that, for every linear character λ of H, there exists 

g ∈ G such that H ∩Hg is contained in the kernel of λ.

The following consequence will be useful in checking examples.

Corollary 2.6. Let G be a finite group and H ≤ G. Condition (b) (ii) in Proposition 2.2
is satified if one of the following holds.

(i) There is g ∈ G such that |Hg ∩H| = 1.
(ii) H is core-free in G, and all nontrivial elements of H are conjugate in NG(H).

Proof. (i) Use the reformulation from Remark 2.5, and take g with |Hg ∩H| = 1 as one 
element in R, then [ϕHg∩H , ψg

Hg∩H ] �= 0.
(ii) We may assume that H is nontrivial. By Brauer’s Permutation Lemma, all non

trivial elements in Irr(H) are conjugate in NG(H). Since Γ(G,H) is connected, there 
exists a nontrivial character ϕ ∈ Irr(H) such that [1GH , ϕG] > 0. Then [1GH , ψG] > 0 for 
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all ψ ∈ Irr(H). Since also [ϕG, ψG] = [ϕG, ϕG] > 0 for all nontrivial ϕ,ψ ∈ Irr(H) the 
result follows. �

An example where condition (b) (ii) in Proposition 2.2 is satified but Corollary 2.6
cannot be applied is the group G = S3 ×S3 where H is a non-normal S3 type subgroup. 
Note that two different G-conjugates of H intersect in a subgroup of order 2 or 3.

Now we record some easy consequences of Proposition 2.2. Several results about di
ameter three subgroups hold in fact already if condition (b) (i) of this proposition is 
satified. We introduce the following notation.

Definition 2.7. A proper subgroup H of a group G is called rich in G if [χH , 1H ] �= 0
holds for all χ ∈ Irr(G).

This terminology is motivated by part (i) of the following corollary.

Corollary 2.8. Let H be a rich subgroup in a finite group G. Then the following assertions 
hold:

(i) Each character in Irr(G) is a constituent of the permutation character 1GH. In par
ticular, we have [G : H] ≥

∑
χ∈Irr(G) χ(1).

(ii) H is core-free in G.
(iii) The derived subgroup G′ of G contains H; moreover, if G′ = H then G is abelian.
(iv) If χ is an irreducible character of G of degree 2 then the kernel of χ contains H ′.

Proof. (i) follows immediately from the definition of richness.
(ii) follows from the fact that Γ(G,H) is connected, and Proposition 2.1.
(iii) follows from the definition of richness since [λH , 1H ] �= 0 for every linear character 

λ of G, and that G′ = H happens only if H is trivial, by part (ii).
(iv) Suppose that χ ∈ Irr(G) satifies [χH , 1H ] �= 0 and that χ(1) = 2. Then χH must 

be the sum of two linear characters of H. Thus H ′ is contained in the kernel of χ. �
Part (i) of Corollary 2.8 implies that rich subgroups must be ``small'', see Section 4.

Proposition 2.9. Let G be a finite group with subgroups 1 < L ≤ H < K ≤ G. If H is 
rich in K then L is rich in G, and if Γ(K,H) has diameter 3 then Γ(G,L) has diameter 
3.

Proof. Let H be rich in K, let χ ∈ Irr(G), and let η be a constituent of χK . Then 
[χL, 1L] ≥ [χH , 1H ] ≥ [ηH , 1H ] > 0, and L is rich in G. Suppose that Γ(K,H) has 
diameter 3, let α, β ∈ Irr(L), and let ϕ,ψ ∈ Irr(H) such that [αH , ϕ] �= 0 �= [βH , ψ]. 
Then [αG, βG] ≥ [ϕG, ψG] ≥ [ϕK , ψK ] > 0, and Γ(G,L) has diameter 3. �
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By Proposition 2.9, a finite group G contains a diameter three subgroup if and only 
if G contains a diameter three subgroup of prime order. By Corollary 2.6 (i), this is the 
case if and only if G contains a rich subgroup of prime order, which is the case if and 
only if G contains a nontrivial rich subgroup. Note also that this property can be decided 
from the character table of G.

Lemma 2.10. Let H be a rich subgroup in a finite group G, and let U be a subgroup of 
G such that G = HU . Then U ∩H is rich in U .

Proof. Let χ ∈ Irr(U). By Frobenius reciprocity and Mackey decomposition, we have

[χU∩H , 1U∩H ] = [(χU∩H)H , 1H ] = [(χG)H , 1H ],

and the right hand side is nonzero because any constituent ψ of χG satifies [ψH , 1H ] > 0, 
by the assumption that H is rich in G. �

The existence of a diameter three subgroup in the group G does in general not imply 
the existence of a diameter three subgroup in the factor group of G modulo a normal 
subgroup, see for example Corollary 2.12 below. However, the following holds.

Lemma 2.11. 

1. Let H be a rich subgroup in G, and let N be a proper normal subgroup of G. Then 
HN/N is a rich subgroup in G/N .

2. Let H be a diameter three subgroup of G, with H of prime order. If N is a normal 
subgroup of G that does not contain H then HN/N is a diameter three subgroup of 
G/N .

Proof. In order to prove part 1, let χ ∈ Irr(G/N), and view χ as a character of G. Since 
[χH , 1H ] > 0 the subgroup H fixes a vector v �= 0 in a module V affording χ. Since N
acts trivially on V , the vector v is also fixed by HN , so that [χHN , 1HN ] > 0. Also, 
choosing χ nontrivial we see that we cannot have HN = G. This shows that HN/N is 
rich in G/N .

Part 2. is just a special case of part 1. where H has prime order, by Corollary 2.6. �
Corollary 2.12. Let H be a nontrivial subgroup of a supersolvable group G. Then H is 
not rich in G, and Γ(G,H) does not have diameter 3.

Proof. Let G be a counterexample of minimal order, and let N be a minimal normal 
subgroup of G. Then N has prime order, so that N < G. Since H is core-free in G, 
N does not contain H. Thus HN/N is a nontrivial rich subgroup of the supersolvable 
group G/N , by Lemma 2.11. This contradicts the minimality of G. �
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Corollary 2.13. Let H be a rich subgroup in G. If H is maximal in G then G is simple.

Proof. If H is maximal in G and N is a nontrivial proper normal subgroup of G then 
either N ≤ H or HN = G holds. The former cannot happen because rich subgroups are 
core-free. The latter cannot happen because of Lemma 2.11. �

See Section 4 for examples of rich subgroups that are maximal in simple groups.
In certain situations, one can go down from a finite group G with a rich subgroup to 

a smaller group with a rich subgroup.

Lemma 2.14. Let G be a finite group with subgroups H < K < G.
(i) Suppose that, for η ∈ Irr(K), there are mη ∈ N and χη ∈ Irr(G) such that 

(χη)K = mηη. If the pair (G,H) satifies Condition (b)(i) in Proposition 2.2 then the 
pair (K,H) also satifies this condition.

(ii) Suppose that, for χ ∈ Irr(G), there are nχ ∈ N and ηχ ∈ Irr(K) such that 
χK = nχηχ. If the pair (G,H) satifies Condition (b)(ii) in Proposition 2.2 then the 
pair (K,H) also satifies this condition.

Proof. (i) Let η ∈ Irr(K), and let mη and χη be as above. Then Condition (b)(i) 
for (G,H) implies: 0 < [(χη)H , 1H ] = [mηηH , 1H ], so that [ηH , 1H ] > 0. Thus Con
dition (b)(i) is satified for (K,H).

(ii) Let ϕ,ψ ∈ Irr(H). Then, by Condition (b)(ii) for (G,H), ϕG and ψG have a 
common constituent χ. Let nχ and ηχ be as above. Then we have 0 < [χ, ϕG] = [χH , ϕ] =
[nχ(ηχ)H , ϕ] = nχ[ηχ, ϕK ], so that [ηχ, ϕK ] > 0 and, similarly, [ηχ, ψK ] > 0. We conclude 
that [ϕK , ψK ] > 0, and Condition (b)(ii) is satified for (K,H). �
Remark 2.15. (a) We note that the hypothesis of (i) is satified in the special case where 
every irreducible character of K extends to an (irreducible) character of G. In this case, 
K is sometimes called a CR-subgroup of G where CR stands for ``character restriction''; 
see for example [16]. In particular, (i) applies whenever K has a normal complement in 
G.

(b) Similarly, the hypothesis in (ii) is satified in the special case where every irre
ducible character of G restricts to an irreducible character of K.

Lemma 2.16. Let Z be a central subgroup of a finite group K, and suppose that we have 
subgroups 1 < H < G ≤ K = GZ. Then H is rich in G if and only if H is rich in K, 
and the diameter of Γ(G,H) is 3 if and only if the diameter of Γ(K,H) is 3.

Proof. The direction from (G,H) to (K,H) follows from Proposition 2.9.
For the other direction, it is easy to see that the irreducible characters of K are 

extensions of the irreducible characters of G. (Note that K is isomorphic to a quotient 
of G× Z.) Now apply Lemma 2.14. �
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Proposition 2.17. Let H1 be a proper subgroup of a finite group G1, and suppose that H1
is rich in G1 (or Γ(G1, H1) has diameter 3). Moreover, let G2 be a finite group which 
is isoclinic to G1. Then there exists a proper subgroup H2 of G2 such that H2 is rich in 
G2 (or Γ(G2, H2) has diameter 3).

Proof. Since G1 and G2 are isoclinic, there exists a finite group K containing subgroups 
isomorphic to G1 and G2 (which we identify with G1 and G2) such that G′

1 = G′
2 and 

K = GiZi with a central subgroup Zi of K, for i = 1, 2. (This characterization of 
isoclinism is often attributed to Conway, see [8, Section 6.7]. A proof that it is equivalent 
to the usual definition can be found in [13, Theorem 4.2].)

We note that H1 is contained in G′
1 = G′

2 by Corollary 2.8 (iii). Thus we can view 
H2 := H1 as a subgroup of G2 as well. Now we apply Lemma 2.16 twice: If Γ(G1, H1)
has diameter 3 then Γ(K,H1) has diameter 3, and therefore Γ(G2, H1) has diameter 
3. �
3. Examples

Example 3.1. Let G := AGL(1, pn) be the a˙ine group of degree 1 over a field with pn

elements where p is a prime and n ≥ 2 is an integer. Then G is a Frobenius group 
with an elementary abelian kernel E of order pn and a cyclic complement C of order 
pn − 1. Moreover, Irr(G) consists of pn − 1 linear characters and one faithful character 
χ of degree pn − 1 (cf. [14, Satz V.16.13]). Let H be a subgroup of order p in G. The 
linear characters of G are trivial on E and thus on H, and χE is the sum of all nontrivial 
irreducible characters of E. Since n ≥ 2, every irreducible character of H is a constituent 
of χH . Thus H is rich in G. Since also condition (b) (ii) is satified by Corollary 2.6 (i), 
Γ(G,H) has diameter 3.

Example 3.2. Let G be the subgroup of order p2d in AGL(1, p2), where d > 1 and d
divides p2 − 1. As in Example 3.1, G is a Frobenius group with an elementary abelian 
kernel E of order p2 and a cyclic complement C of order d. Then G has a diameter three 
subgroup (necessarily of order p) if and only if d is divisible by (p + 1)(p − 1)2, where 
(p− 1)2 is the 2-part of p− 1. Equivalently, this happens if (p2 − 1)/d is an odd divisor 
of p− 1.

First note that d is divisible by (p + 1)(p − 1)2 if and only if all p + 1 subgroups 
of order p in E are conjugate in G. Note that |NC(H)| = gcd(d, p − 1), where H is a 
subgroup of order p. In order to see this, observe that on the one hand, if d is divisible 
by (p+1)(p−1)2 then gcd(d, p−1) = d/(p+1), so |C/NC(H)| = p+1 holds, and on the 
other hand, if there is only one class of order p subgroups in G then |NC(H)| = d/(p+1), 
which means that (p− 1)2 divides d/(p + 1).

Let H be a subgroup of order p in E. Then G has (p2 − 1)/d nonlinear irreducible 
characters of degree d. The restriction of each such character to E is a sum of d nontrivial 
irreducibles of E.
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If there is only one class of order p subgroups in G then the transitive action of C on 
these p + 1 subgroups means that each C-orbit of nontrivial irreducibles of E contains 
at least one character with kernel H, thus H is a diameter three subgroup of G.

Conversely, let H1, H2, . . . , Hk be representatives of conjugacy classes of subgroups 
of order p in G. Each C-orbit of nontrivial irreducibles of E contains characters with 
kernels only from one class of subgroups of order p. Considering an orbit containing no 
character with kernel Hi yields that Hi cannot be a diameter three subgroup.

Example 3.3. Let G be the subgroup of order pnd in AGL(1, pn), where d divides pn− 1. 
Then G acts on the set of (pn − 1)/(p− 1) subgroups of order pn−1 in G by conjugation. 
They are the kernels of the nontrivial characters of the normal subgroup E of order pn
in G. Let U be a subgroup of order pn−1 in G. Its normalizer has order pn gcd(d, p− 1). 
Thus U has precisely d/ gcd(d, p − 1) conjugates in G. Hence there are precisely (pn −
1) gcd(d, p− 1)/((p− 1)d) conjugacy classes of subgroups of order pn−1 in G. If we can 
choose one subgroup from each of these conjugacy classes such that their intersection 
is nontrivial then this intersection contains a diameter three subgroup of order p in G. 
Since the intersection of k subgroups of order pn−1 yields a subgroup of order at least 
pn−k, such a choice is possible if n > (pn − 1) gcd(d, p− 1)/((p− 1)d).

This implies that if n ≥ 3 and p is odd then the subgroup of index 2 in AGL(1, pn)
has a diameter three subgroup of order p. Example 3.2 shows that this is not the case 
for n = 2.

(The bound is not sharp. For example, the subgroup of order 73 · 19 in AGL(1, 73)
has 3 classes of subgroups of order 72, and still has a diameter three subgroup.)

Example 3.4. Let H be a subgroup of order 2 in a nonabelian finite simple group G. 
Then Γ(G,H) has diameter 3. In order to see this, we check that for any χ ∈ Irr(G), 
[χH , 1H ] �= 0 holds. Write H = {1, h}. If χ ∈ Irr(G) satifies [χH , 1H ] = 0 then χ(h) =
−χ(1), and h is contained in Z(χ), the center of χ. In particular, we have Z(χ) �= 1. 
Since G is simple, this implies Z(χ) = G. Since Z(χ)/ ker(χ) is cyclic we conclude that 
ker(χ) = G. Thus χ = 1G which, however, is impossible.

Remark 3.5. Example 3.4 shows that nonabelian finite simple groups always have di
ameter three subgroups. This fact does not generalize to quasisimple finite groups; in 
fact, the quasisimple group SL(2, 5) = 2.A5 does not have a diameter three subgroup. 
This can be seen by noting that SL(2, 5) is a Frobenius complement; thus it cannot have 
nontrivial rich subgroups, by [12, (25.5)].

See Section 5 for more about quasisimple groups.

Proposition 3.6. Every nonabelian finite simple group has a solvable subgroup which con
tains a diameter three subgroup of order 2.

Proof. It is known (cf. the main result of [1]) that every nonabelian finite simple group 
contains a minimal simple group, i.e., a nonabelian simple group all of whose proper 
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subgroups are solvable. Thus it suffices to prove that every minimal simple group has 
a proper subgroup which contains a diameter three subgroup of order 2. The minimal 
simple groups were classfied by Thompson; they are given as follows, cf. [14, Bemerkung 
II.7.5]:

PSL(2, p), p > 3 a prime with p2 − 1 �≡ 0 (mod 5),
PSL(2, 2q), q a prime,
PSL(2, 3q), q an odd prime,
PSL(3, 3),
Sz(2q), q an odd prime.

By part (4) of [14, Satz II.8.27], the groups PSL(2, p), where p > 3 is a prime, and the 
groups PSL(2, 3q) contain subgroups isomorphic to the alternating group A4 which has a 
diameter three subgroup of order 2. Part (7) of the same theorem yields Frobenius groups 
with Frobenius kernel of 2-power order, as in Example 3.1, as subgroups of PSL(2, 2q). 
The question about PSL(3, 3) can be answered computationally; this group has maximal 
subgroups of the type S4, and hence subgroups isomorphic to A4. Finally, the Suzuki 
group G = Sz(2q) has a Sylow 2-subgroup P of order 22q, with an elementary abelian 
center Z of order 2q (cf. [15, Lemma XI.3.1]). The normalizer of P in G is a semidirect 
product of P with a cyclic group of order 2q − 1, it contains a subgroup S which is the 
semidirect product of Z with the cyclic group of order 2q−1. This group S is a Frobenius 
group with Frobenius kernel of 2-power order, as in Example 3.1. �
4. Large rich subgroups

Part (i) of Corollary 2.8 implies that rich subgroups must be ``small''. Here is a quan
titative version of this statement.

Proposition 4.1. Let T (G) =
∑

χ χ(1), where χ runs over Irr(G), k(G) = |Irr(G)|, and 
b(G) = max{χ(1);χ ∈ Irr(G)}.

(i) We have

|G| =
∑

χ∈Irr(G)

χ(1)2

=
∑

χ∈Irr(G)

χ(1) · b(G) −
∑

χ∈Irr(G)

χ(1) · (b(G) − χ(1))

= T (G) · b(G) − [G : G′] · (b(G) − 1) −
∑

1<χ(1)<b(G)

χ(1) · (b(G) − χ(1)) .

(ii) We have

|G| ≤ T (G) · b(G) ≤ T (G) · (T (G) − k(G) + 1) .
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Moreover, we have |G| = T (G)b(G) if and only if G is abelian.
(iii) If 1 �= H ≤ G is rich in G then |H| ≤ [G : H] − k(G) + 1 and |H| < b(G). In 

particular, |H| <
√

|G|.

Proof. Part (i) is clear, part (ii) follows easily from part (i), and part (iii) follows from (ii) 
since T (G) ≤ [G : H] by Corollary 2.8, �
Proposition 4.2. Let H be a rich subgroup in a finite group G, and suppose that [G : H]
is a power of a prime p. Then H = 1.

Proof. Let G be a minimal counterexample. Then G is not a p-group, by Corollary 2.12. 
Let P be a Sylow p-subgroup of G. Then G = HP since [G : H] and [G : P ] are coprime. 
By Lemma 2.10, H ∩P is rich in P . Thus Corollary 2.12 implies that H ∩P = 1. Hence 
|G| = |H| · |P |, so that H is a Hall p′-subgroup of G. Thus 1GH is the character of the 
projective cover of the trivial module (in characteristic p). Thus its constituents lie in the 
principal p-block of G. We conclude that G has only one p-block. Let N be a minimal 
normal subgroup of G. Then N is isomorphic to Sk where k is a positive integer and 
S is a simple group. Moreover, N has a unique p-block, and S has a unique p-block; in 
particular, p divides |S|. If S is nonabelian then, as is well-known, we have p = 2, and S
is isomorphic to M22 or M24. On the other hand, N and S both have Hall p′-subgroups 
which is a contradiction. This shows that S is abelian, i.e., N is an elementary abelian 
p-group. By Lemma 2.11, HN/N is rich in G/N and of p-power index. Since |G/N | < |G|
this implies HN/N = 1, i.e., 1 < H < N . Then G/N and G are p-groups, and we have 
a contradiction. �
Remark 4.3. If 1 �= H ≤ G is rich in G then 1GH =

∑
χ aχχ, with aχ > 0 for all χ ∈ Irr(G), 

hence the number [1GH , 1GH ] =
∑

χ a2
χ of H-H-double cosets in G, which is equal to the 

rank of the permutation action of G on the cosets of H, is at least equal to k(G). Note 
that Proposition 4.1 only yields that this rank is at least 3, because rank 2 would imply 
a doubly transitive action of G and hence |G| ≥ [G : H]([G : H] − 1).

Example 4.4. Let G := AGL(1, 2n) be the group from Example 3.1 in the special case 
p = 2, but now choose a subgroup H of order pn−1 in G. Then the linear irreducibles 
of G restrict to 1H , and because T (G) = 2(2n − 1) = [G : H] holds, also the unique 
nonlinear character χ of G occurs with multiplicity 1 in 1GH , that is, 1GH is exactly the 
sum of Irr(G). In order to verify condition (b) (ii) and hence to show that H is indeed a 
diameter three subgroup of G, we note that χ is a constituent of each ϕG, for ϕ ∈ Irr(H).

Now we may take the direct product of G with an abelian group (or more generally, 
take a group isoclinic with G), and keep the subgroup H, then we get again that H is 
a diameter three subgroup of G with the property that [G : H] = T (G) holds, that is, 
H has the largest possible order. Moreover, the rank of the permutation action of G on 
the cosets of H is exactly k(G).
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Table 1
Groups having nontrivial rich subgroups of index at most 45.

n |G| i G diam. 3?
6 12 3 A4 +

12 24 12 S4 +
24 13 2 × A4 +

14 56 11 23 : 7 +
18 36 3 22 : 9 +

36 11 3 × A4 +
20 60 5 A5 +

80 49 24 : 5 +
24 48 3 42 : 3 +

48 30 A4 : 4 +
48 31 4 × A4 +
48 48 2 × S4 +
48 49 22 × A4 +
48 50 24 : 3 +
72 39 32 : 8 +
72 41 32 : Q8 +
96 70 (24 : 2) : 3 +
96 71 (42 : 2) : 3 +

28 56 11 23 : 7 +
112 41 2 × 23 : 7 +

30 60 5 A5 +

n |G| i G diam. 3?
60 9 5 × A4 +

240 191 24 : 15 +
36 72 15 (22 : 9) : 2 +

72 16 2 × 22 : 9 +
72 42 3 × S4 +
72 43 (3 × A4) : 2 +
72 44 A4 × S3 +
72 47 6 × A4 +

144 184 A4 × A4 +
39 351 12 33 : 13 -
40 80 49 24 : 5 +

120 34 S5 +
120 35 2 × A5 +
160 234 (24 : 5) : 2 +
160 235 2 × 24 : 5 +

42 84 10 7 × A4 +
84 11 (14 × 2) : 3 +

168 42 PSL(3, 2) +
168 43 23 : (7 : 3) +
168 44 3 × 23 : 7 +

Remark 4.5. If H < G is rich in G then the action of G on the cosets of H is faithful. 
Hence there are, for each prescribed integer n, only finitely many pairs (G,H) such that 
H is a rich subgroup of index at most n in G. Table 1 lists all groups G with a nontrivial 
rich subgroup of index at most 45. It was computed using the list of all groups of order at 
most 2 000, up to isomorphism, that contain a nontrivial rich subgroup, see Section 6.3. 
The columns show n = [G : H], |G|, the number i such that G can be obtained as the i-th 
group of its order, according to the numbering in [2], a structure description of G, and a 
+ sign if the point stabilizer H is a diameter three subgroup of G --the Frobenius group 
of order 33 · 13 = 351 is the only example where this is not the case, see Remark 2.3.

Proposition 4.6. Let H be a nontrivial rich subgroup of index 2p in a finite group G where 
p is a prime. Then p is a Mersenne prime, and G is a Frobenius group of order p(p+1).

Proof. By Proposition 4.2, p is odd. Let P be a Sylow p-subgroup of G. If P is normal 
in G then Lemma 2.11 implies that either H ≤ P or HP/P is a rich subgroup of 
index 2 in G/P . The former case cannot occur because then H is a p-group, and |G| <
4p2 implies |H| = p and thus |G| = 2p2; however, this means that |H| < b(G) ≤ 2, 
hence H is trivial. The latter case cannot occur because then HP/P is normal in G/P

which is a contradiction since rich subgroups are core-free. Thus P is not normal in 
G. By the Itô-Michler theorem, there is χ ∈ Irr(G) such that p divides χ(1). Since 
χ(1) ≤ b(G) < T (G) ≤ [G : H] = 2p we conclude that b(G) = χ(1) = p. Thus 
|H| < b(G) < p + 1 ≤ [G : NG(P )] ≤ [G : P ] = 2|H| < 2p. Hence we obtain P = NG(P )
and |G| = p(p + 1). Since NG(P ) = CG(P ), a theorem of Burnside implies that G has a 
normal p-complement N . Since |N | = p + 1, P acts transitively on N \ {1}. Since p + 1
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Table 2
Rich subgroups in simple groups, maximal w. r. t. inclusion.

G n g m H

A5 9 2 2 2, 3
PSL(3, 2) 15 3 2 3, 4
A6 22 9 6 5, 4, 22, S3
PSL(2, 8) 12 4 3 3, 22, 7
PSL(2, 11) 16 7 5 22, 5, S3, 6
PSL(2, 13) 16 7 5 22, 6, S3, 7
PSL(2, 17) 22 10 5 S3, 8, D8, 9
A7 40 16 9 5, S3, 32, A4, 6 × 2, 3 :4
PSL(2, 19) 19 10 6 S3, 9, D10, 10, A4
PSL(2, 16) 21 11 5 S3, 23, D10, A4, 15
PSL(3, 3) 51 14 6 S3, Q8, 8, A4, 3 × S3
PSU(3, 32) 36 3 2 3, 4
PSL(2, 23) 23 11 5 S3, D8, 11, 12
PSL(2, 25) 37 19 9 D8, D10, D12, A4, 12, 13
M11 39 10 7 22, 5, S3, 6, Q8, 8
PSL(2, 27) 16 10 6 32, A4, 13, 14, D14
PSL(2, 29) 22 12 7 S3, D10, A4, 14, D14, 15
PSL(2, 31) 29 15 8 S3, D8, D10, A4, 15, 16
PSL(3, 4) 95 60 15 D10, A4, 7 :3, S4, 42 :2, 32 :4
A8 137 46 17 7, D8, D10, A4, 6 × 2, 3 :4, D12, 2 × D8, (4 × 2) :2, 32 :2, 3 × S3, S4, 

2 × A4
PSL(2, 37) 23 13 6 D12, A4, 18, D18, 19
PSU(4, 22) 116 20 7 22, 4, 5, S3, A4, (4 × 2) :2, 3 × S3
Sz(8) 22 9 6 5, 7, 4 × 2, 13
PSL(2, 32) 24 16 4 S3, 11, 24, 31
PSL(2, 41) 33 21 7 D14, D20, 20, 21, S4
PSL(2, 43) 20 12 7 S3, A4, D14, 21, 22, D22
PSL(2, 47) 29 19 7 A4, D12, D16, 23, 24
PSL(2, 49) 51 33 10 D10, D16, 24, D24, S4, 25, 7 :6
PSU(3, 42) 34 4 3 3, 4, 5
PSL(2, 53) 20 12 6 A4, D18, 26, D26, 27
M12 147 64 13 11, A4, D12, 2 × D8, 3 × S3, 2 × A4, 8 :22, 42 :2, (8 :2) :2, 2 × 5 :4
PSL(2, 59) 26 18 7 D12, A4, D20, 29, 30, D30
PSL(2, 61) 32 18 7 A4, D12, D20, 30, D30, 31
PSU(3, 52) 80 21 9 5, S3, 8, 3 :4, 7 :3, SL(2, 3), 3 × A4
PSL(2, 67) 20 12 7 S3, A4, D22, 33, 34, D34
J1 40 30 12 D12, D20, D22, 2 × A4, 3 × D10, D30, 5 × S3, 7 :6, 11 :5, 19 :3, A5

is even, N has to be an elementary abelian 2-group, and G is a Frobenius group with 
kernel N . �
Remark 4.7. The statement of Proposition 4.6 generalizes to the situation of nontrivial 
rich subgroups of index pq where p and q are odd primes. We hope to publish this result 
in a sequel.

Remark 4.8. For a given group G, we can ask which of its subgroups H are maximal 
with the property that H is rich in G. Table 2 lists these subgroups H (where duplicate 
isomorphism types have been removed) for some small simple groups G. The columns 
labelled by n, g, m list the total number of classes of subgroups of the group G, the 
number of classes of rich subgroups H, and the number of classes of rich subgroups H of 
maximal order. In fact, all subgroups listed in the table are diameter three subgroups.
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Table 3
Rich maximal subgroups in Lie type 
simple groups.
G H

PSL(2, 27) A4
PSL(2, 109) A5, A5
PSL(2, 113) S4, S4
PSL(2, 125) A5
PSL(3, 7) 32 : Q8, 19 : 3
PSU(3, 82) 19 : 3
PSL(3, 8) 72 : S3, PSL(3, 2)
PSU(3, 112) 37 : 3
2G2(27) (22 × D14) : 3, 19 : 6

Table 4
Rich maximal subgroups in sporadic simple groups.
G H

J1 7 :6
Suz A7
ON 34 :21+4D10, M11, M11, A7, A7
Fi22 M12
Ly 67 :22, 37 :18
Th A5.2
J4 PGL(2, 23), PSU(3, 32), 29 :29, 43 :14, 37 :12
F3+ 7 :6 × A7, PGL(2, 13), PGL(2, 13), 29 :14
B PSL(2, 49).23, PSL(2, 31), PSL(3, 3), PGL(2, 17), PGL(2, 11), 47 :23
M (7 :3 × He) :2, (52 : [24] × PSU(3, 52)).S3, 72+1+2 :GL(2, 7), (S5 × S5 × S5) :S3, 

(PSL(2, 11) × PSL(2, 11)) :4, (72 : (3 × 2A4) × PSL(2, 7)).2, (13 :6 × PSL(3, 3)).2, PSU(3, 42).4, 
PSL(2, 71), PSL(2, 59), 112 : (5 × 2.A5), PSL(2, 41), PGL(2, 29), 72 :SL(2, 7), PGL(2, 19), 
PGL(2, 13), 41 :40

Remark 4.9. By Corollary 2.13, a maximal subgroup H of G can be rich only if G is 
simple. Examples where this happens in simple groups G of Lie type are listed in Table 3. 
Table 4 lists all maximal subgroups H in sporadic simple groups G that are rich. The 
subgroups shown in these tables are diameter three subgroups.

5. Quasisimple groups

The aim of this section is to classify those quasisimple groups, i.e., perfect central 
extensions of simple groups, which have a diameter three subgroup.

Theorem 5.1. Let G be a quasisimple group. Then G has a diameter three subgroup, 
except if G ∼ = SL(2, 5) ∼ = 2.A5 or G ∼ = SL(2, 9) ∼ = 2.A6 or G ∼ = 6.A6.

The proof uses the classfication of finite simple groups.
The idea is to either establish directly the existence of a diameter three subgroup, or 

to prove the existence of a proper quasisimple subgroup which is already known to have 
a diameter three subgroup.

We start with computational results in cases where we do not know a conceptual 
approach.
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Table 5
Simple groups with exceptional Schur multiplier.
S e

A6 3
A7 3

A1(4) ∼ = PSL(2, 4) 2
A1(9) ∼ = PSL(2, 9) 3
A2(2) ∼ = PSL(3, 2) 2
A2(4) ∼ = PSL(3, 4) 4 × 4
A3(2) ∼ = PSL(4, 2) 2
2A3(2) ∼ = PSU(4, 22) 2
2A3(3) ∼ = PSU(4, 32) 32

2A5(2) ∼ = PSU(6, 22) 22

S e

B2(2) ∼ = PSp(4, 2) 2
2B2(2) ∼ = Sz(8) 22

B3(2) ∼ = PSp(6, 2) 2
B3(3) ∼ = PΩ(7, 3) 3
C3(2) ∼ = PSp(6, 2) 2
D4(2) ∼ = PΩ+(8, 2) 22

G2(3) 3
G2(4) 2
F4(2) 2
2E6(2) 22

Lemma 5.2. Let G be a perfect central extension of a simple group that is either sporadic 
simple or has an exceptional Schur multiplier. Then G has a diameter three subgroup, 
except in the exceptional cases of Theorem 5.1.

Proof. The character tables of all groups G in question are available in the Charac
ter Table Library [3], and checking the conditions of Proposition 2.2 requires only the 
character table of the group.

The simple groups S with exceptional Schur multiplier e are listed in Table 5, cf. 
Table 6 of [8]. �

Next we deal with alternating groups.

Lemma 5.3. Let G be a perfect central extension of the alternating group An on n points, 
for n ≥ 7. Then G has a diameter three subgroup.

Proof. The claim holds for n = 7, by Lemma 5.2, and the alternating group on n > 7
points contains A7. �

It remains to deal with the simple groups of Lie type. The key result is about PSL(2, q).

Lemma 5.4. Let q be a prime power with q > 3. If 5 �= q �= 9 then G := SL(2, q) has a 
diameter three subgroup.

Proof. If q is even then G is simple. Thus G has a diameter three subgroup of order 2, 
by Example 3.4. Hence we may assume that q is odd. Let H be a subgroup of order 3 in 
G. We will show that Γ(G,H) has diameter 3, using Proposition 2.2. By Corollary 2.6, 
it suffices to verify that H is rich in G.

In the following, we use the notation from [11, § 38]. We distinguish several cases.
Case 1: q ≡ 1 (mod 3); in particular, q ≥ 7.
The subgroup 〈a〉 of order q − 1 in G contains an element h := al of order 3, and we 

may assume that H = 〈h〉. We need to show that, for χ ∈ Irr(G), we have 0 �= [χH , 1H ], 
i.e.,
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σχ := χ(1) + χ(h) + χ(h) > 0.

This is trivial if χ = 1G or χ(h) = 0. If χ(1) ∈ {q, (q + 1)/2} then |χ(h)| = 1, and thus 
σχ ≥ 4 − 1 − 1 > 0. If χ(1) = q + 1 then |χ(h)| ≤ 2, and thus σχ ≥ 8 − 2 − 2 > 0, and 
the result is proved in this case.

Case 2: q ≡ 2 (mod 3); in particular, q ≥ 11.
In this case we may assume that H = 〈h〉 is contained in the subgroup 〈b〉 of order 

q + 1 in G. With notation as above, we need to show that σχ > 0, and we may again 
assume that χ �= 1G and χ(h) �= 0. If χ(1) ∈ {q, (q − 1)/2} then |χ(h)| = 1, and thus 
σχ ≥ 5 − 1 − 1 > 0. If χ(1) = q − 1 then |χ(h)| ≤ 2, and thus σχ ≥ 10 − 2 − 2 > 0. The 
result follows in this case as well.

Case 3: q ≡ 0 (mod 3); in particular, q is a power of 3, and q ≥ 27.
In this case we may take H = 〈h〉 where h := c. Again we need to show that σχ > 0, 

and we may assume that χ �= 1G and χ(h) �= 0. If χ(1) = q ± 1 then |χ(h)| = 1, and 
thus σχ ≥ 26 − 1 − 1 > 0. If χ(1) = (q ± 1)/2 then |χ(h)| ≤ (1 + √

q)/2, and thus 
σχ ≥ (q − 1)/2 − 1 −√

q > 0. This completes the proof of the lemma. �
Lemma 5.5. Let G be a quasisimple finite group with G/Z(G) ∼ = PSL(n, q), for some 
positive integer n and some prime power q. Then G has a diameter three subgroup, 
except when G is isomorphic to one of the groups SL(2, 5) = 2.A5, SL(2, 9) = 2.A6 or 
6.A6.

Proof. Since G is quasisimple, we have n ≥ 2 and (2, 2) �= (n, q) �= (2, 3). Moreover, G
is isomorphic to a factor group of the Schur cover X of S := PSL(n, q), and Z(X) is 
isomorphic to the Schur multiplier M(S) := H2(S,C×). The order of M(S) is gcd(n, q−
1), with the exceptions

(n, q) ∈ {(2, 4), (2, 9), (3, 2), (3, 4), (4, 2)},

which have been dealt with in Lemma 5.2. Thus from now on we may assume that (n, q)
is not one of these exceptional values. Then X is isomorphic to SL(n, q). By Lemma 5.4, 
we may assume that n ≥ 3, and that Z(G) �= 1. Recall that SL(n, q) contains subgroups 
isomorphic to SL(n − 1, q) and subgroups isomorphic to SL(n, p) where p is the prime 
dividing q. This implies the lemma for n = 3. (Note that M(SL(3, 3)) and M(SL(3, 5))
are trivial.) The result for n ≥ 4 then follows by induction on n. �
Lemma 5.6. Let G be a quasisimple finite group with G/Z(G) ∼ = PSp(2n, q), for some 
integer n ≥ 2 and some prime power q. Then G has a diameter three subgroup.

Proof. The exceptional case (n, q) = (3, 2) has been done in Lemma 5.2, we assume that 
(n, q) �= (3, 2). Then the Schur multiplier of PSp(2n, q) is trivial when q is even, and 
of order 2 when q is odd. Thus we may assume that q is odd. Then Sp(2n, q) is the 
Schur cover of PSp(2n, q). Since our result is known for simple groups, we may assume 
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Table 6
Subgroups obtained from Dynkin diagrams.
S T

Bn(q) ∼ = PΩ(2n + 1, q) n ≥ 3 An−1(q) ∼ = PSL(n, q)
Dn(q) ∼ = PΩ+(2n, q) n ≥ 4 An−1(q) ∼ = PSL(n, q)
2Dn(q) ∼ = PΩ−(2n, q) n ≥ 4 An−2(q) ∼ = PSL(n − 1, q)
E6(q) A5(q) ∼ = PSL(6, q)
2E6(q) 2A5(q) ∼ = PSU(6, q2)
E7(q) E6(q)

that G ∼ = Sp(2n, q) where n > 1 and q is odd. Recall that Sp(2n, q) contains subgroups 
isomorphic to Sp(2n− 2, q). Thus it suffices to prove the result for n = 2. Since Sp(4, q)
contains subgroups isomorphic to Sp(2, q2) ∼ = SL(2, q2), it suffices to consider the case 
q = 3. But then we know that G contains subgroups isomorphic to PSL(3, 3). �
Lemma 5.7. Let G be a quasisimple finite group with G/Z(G) ∼ = PSU(n, q2) for some 
integer n ≥ 3 and some prime power q. Then G has a diameter three subgroup.

Proof. First we consider the case n = 3. Then q > 2 since PSU(3, 22) is solvable. Since 
the Schur multiplier of PSU(3, q2) has order gcd(3, q + 1), we may assume that q ≡ 2 
(mod 3) since otherwise G is simple and thus we know already that the result holds. 
Then G is isomorphic to SU(3, q2). Since SU(3, q2) contains subgroups isomorphic to 
SU(2, q2) ∼ = SL(2, q), Lemma 5.4 implies the lemma unless perhaps q = 5. But SU(3, 52)
contains subgroups isomorphic to A7.

Next we consider the case n = 4. The groups PSU(4, 22) ∼ = PSp(4, 3) and PSU(4, 32)
have been dealt with in Lemma 5.2. Thus we may assume that q > 3. Then SU(4, q2) is 
a Schur cover of PSU(4, q2). Since SU(4, q2) contains subgroups isomorphic to SU(3, q2), 
the result follows from the previous case.

Finally, we consider the case n ≥ 5. The group PSU(6, 22) has been dealt with in 
Lemma 5.2. Thus we may assume that (n, q) �= (6, 2). Then SU(n, q2) is a Schur cover 
of PSU(n, q2), and SU(n, q2) has subgroups isomorphic to SU(n− 1, q2). Thus our result 
follows by induction on n. �
Lemma 5.8. Let G be a quasisimple finite group with G/Z(G) of one of the following 
types: PΩ(2n + 1, q) (n ≥ 3), PΩ+(2n, q) (n ≥ 4), or PΩ−(2n, q) (n ≥ 4), where q is 
some prime power. Then G has a diameter three subgroup.

Proof. In all three cases, Table 6 lists a simple group T such that S = G/Z(G) has a 
subgroup that is isomorphic to a perfect central extension of T ; this subgroup is obtained 
by removing suitable nodes from the Dynkin diagram of S. Hence the claim follows from 
Lemma 5.5. �
Proof. (of Theorem 5.1) According to the classfication of the nonabelian finite simple 
groups, each such group is either alternating (see Lemma 5.3), sporadic simple (see 
Lemma 5.2), or a group of Lie type of the type A (see Lemma 5.4 and Lemma 5.5), C
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(see Lemma 5.6), 2A (see Lemma 5.7), B, D, 2D (see Lemma 5.8), or of exceptional 
type.

Thus it remains to show the claim for the latter groups. Table 6 (cf. [8, Table 5]) lists 
the series of those simple groups S with nontrivial Schur multiplier (omitting the cases 
that were dealt with in Lemma 5.2) and a simple factor T of a quasisimple subgroup of 
S, where we know already that any perfect central extension of T has a diameter three 
subgroup. The groups T can be read off from the Dynkin diagrams of the groups S.

(The Schur multipliers of 2B2(q), 3D4(q), G2(q), 2G2(q), F4(q), 2F4(q), and E8(q) are 
trivial, apart from the exceptions listed in Lemma 5.2.) �
6. Minimal groups with diameter three subgroups

By Proposition 2.9, we can ask for the smallest subgroups of a given group that 
have a diameter three subgroup. In this section, we study groups that are minimal 
w. r. t. inclusion in this respect.

Example 3.2 states that AGL(1, p2) has a unique subgroup that is minimal in this 
sense, whose index in AGL(1, p2) is the odd part of p − 1. Proposition 3.6 states that 
simple groups are never minimal.

Example 3.2 also implies that the number of prime divisors of the order of minimal 
groups that contain a diameter three subgroup is not bounded. Namely, for any natural 
number t we may take the product c of t pairwise different primes, and choose a prime 
p = kc− 1, for some natural number k. (Ifinitely many such primes exist by Dirichlet’s 
theorem.) Then Example 3.2 yields a group G of order p2 · d, where d is a multiple of c, 
such that G contains a diameter three subgroup and is minimal with this property.

Note that the order of minimal non-nilpotent groups is divisible by exactly two dif
ferent primes. Minimal non-supersolvable groups are solvable, and Proposition 6.2 below 
shows that minimal groups that have a diameter three subgroup need not be solvable. 
See [10] for properties of minimal non-nilpotent and minimal non-supersolvable groups.

Remark 6.1. Proposition 2.11 states that factoring out certain normal subgroups of a 
group with a diameter three subgroup yields again groups with a diameter three sub
group. Thus we could dfine minimality by going down to subgroups and by factoring 
out normal subgroups if possible. However, this would yield strange results. For example, 
we will see in Proposition 6.4 that the group SL(2, 7) is minimal w.r.t. inclusion; if we 
allow to take factors then we get PSL(2, 7), which is not minimal because its A4 type 
subgroups have diameter three subgroups.

6.1. Series of minimal examples

Proposition 6.2. Let G be a semidirect product of an elementary abelian p-group E and 
a cyclic group C of order q, a power of a prime l �= p. Assume that C acts irreducibly 
on E and that G is minimal with the property that it has a diameter three subgroup.
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Let Gi be a subgroup of index q in the direct product G × Ci, where Ci is a cyclic 
group of order q · li, such that the Sylow l-subgroup of Gi is cyclic and acts irreducibly 
on E. Then Gi has a diameter three subgroup and is minimal with this property.

Proof. The group Gi embeds into G×Ci by enlarging the center, so G and Gi are isoclinic 
for all i, see the proof of Proposition 2.17. Hence Gi has a diameter three subgroup by 
Lemma 2.16.

In order to show the minimality of Gi, we show that no maximal subgroup of Gi has 
a diameter three subgroup. Let M be a maximal subgroup of Gi. Since Gi is solvable, 
[Gi : M ] is a prime power.

If this prime is l then M contains E, thus M has index l in Gi, and M can be 
embedded into U × Ci−1, where U is the subgroup of index l in G. Thus M is isoclinic 
with U and hence has no diameter three subgroup, by the minimality of G.

If this prime is p then M is a Sylow l-subgroup of Gi, by the irreducibility of the 
action on E, thus M has no diameter three subgroup. �
Example 6.3. Applying Proposition 6.2 to the Frobenius group G of order 2n(2n − 1)
from Example 3.1, where p = 2n − 1 is a prime, yields minimal examples 22 : 3, 22 :
9, 22 : 27, . . ., 23 : 7, 23 : 49, 23 : 343, . . ., 25 : 31, 25 : 961, . . ., 27 : 127, 27 : 16129.

Starting from G = 32 : 8, we get 32 : 16, 32 : 32, . . ., and G = 24 : 5 yields 24 : 25, 24 :
25, . . .. See Table 7 for more examples.

6.2. The groups SL(2, p)

Proposition 6.4. Let p be a prime. Then SL(2, p) is a minimal group (w. r. t. inclusion) 
that contains a diameter three subgroup if and only if p > 5.

Proof. The group SL(2, 2) ∼ = S3 is supersolvable, and SL(2, 3) and SL(2, 5) are Frobenius 
complements, thus we know that these groups do not have diameter three subgroups.

Now assume p > 5. Lemma 5.4 shows that G = SL(2, p) has a diameter three sub
group. We show that the proper subgroups of G do not have such a subgroup. Let 
π : G → G/Z(G) ∼ = PSL(2, p) be the natural epimorphism. The subgroups of the simple 
group π(G) are listed in [14, Satz II.8.27], there are eight types of subgroups. The types 
(1)--(3) and (7) are cyclic or metacyclic, in particular supersolvable, hence also their 
preimages under π are supersolvable and thus do not have a diameter three subgroup, 
by Corollary 2.12. The preimages of subgroups of the types (4)--(6) are isomorphic to 
SL(2, 3), SL(2, 5), or the unique group of order 48 with exactly one involution s. t. the 
factor modulo the center is isomorphic to S4; the former two groups have been dealt with 
above, and if the latter had a diameter three subgroup then it would be of order divisible 
by 3, which would imply a diameter three subgroup of order 3 in S4, by Proposition 2.11, 
which contradicts Corollary 2.8. Finally, subgroups of the type (8) do not occur because 
p is prime. �
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Table 7
Small groups that are minimal with a nontrivial rich subgroup.

k |G| i G

5 12 3 22 : 3 ∼ = A4
2 56 11 23 : 7
5 72 39 32 : 8
9 72 41 32 : Q8
3 80 49 24 : 5
2 160 199 21+4

− : 5
4 216 86 31+2

+ : 8
6 216 88 31+2

+ : Q8
18 288 393 32 : (8 : 4)
1 336 114 SL(2, 7)
1 351 12 33 : 13
6 576 1966 32 : (16 : 4)
9 576 1967 32 : (16 : 4)
5 576 1973 32 : ((8 × 2) : 4)
9 576 1976 32 : ((8 : 2) : 4)
2 600 148 52 : (3 : 8)
3 600 149 52 : 24
2 600 150 52 : SL(2, 3)
2 648 641 33 : SL(2, 3)
2 784 160 72 : 16

k |G| i G

3 784 162 72 : Q16
9 864 676 31+2

+ : (8 : 4)
1 992 194 25 : 31

10 1152 4900 32 : (((4 × 2) : 4) : 4)
10 1152 5070 32 : ((2 × (4 : 4)) : 4)
6 1152 5232 32 : ((2 × ((4 × 2) : 2)) : 4)
4 1152 6492 32 : ((8 : 4) : 4)
3 1152 6577 32 : (((23) : 4) : 4)
3 1152 6619 32 : (((23) : 4) : 4)
3 1152 7054 32 : (32 : 4)
1 1152 7092 32 : (32 : 4)
1 1320 13 SL(2, 11)
1 1620 419 34 : (5 : 4)
1 1620 420 34 : 20
1 1620 421 34 : (5 : 4)
1 1728 2787 31+2

+ : (16 : 4)
3 1728 2788 31+2

+ : (16 : 4)
2 1728 2794 31+2

+ : (42 : 4)
3 1728 2797 31+2

+ : ((8 : 2) : 4)
1 1800 270 52 : (9 : 8)

6.3. Small groups

Using the library of small groups [2], we computed the groups G of order up to 2 000, 
up to isomorphism, that contain nontrivial rich subgroups H. There are exactly 52 239
such isomorphism types, 33 523 of them have order 1 536. A JSON format file containing 
the data about these groups is publicly available, see [4].

If we consider only those groups G such that no proper subgroup of G has this property, 
we get exactly 163 such groups, up to isomorphism. These groups lie in 40 isoclinism 
classes.

(Fortunately, enough information is available such that one need not really run over 
all isomorphism types of groups. For example, most of the 408 641 062 groups of order 
1 536 are supersolvable and hence need not be checked. In the end, no group of this order 
turned out to be minimal.)

Table 7 shows one representative of each isoclinism class. The first column contains 
the number k of isomorphism types of those groups in the isoclinism class that are among 
the 163 minimal examples. The second and third column list the values |G| and i such 
that the group G is the i-th group of its order, according to the numbering in [2]; the 
values of Frobenius groups are shown in boldface.

Examples of isoclinic minimal examples are described in Section 6.1.
Diameter three subgroups H in groups of order at most 2 000 have order at most 16.
There are exactly 11 isomorphism types of groups of order at most 2 000 which have 

nontrivial rich subgroups that are not diameter three subgroups. Among these groups 
are the Frobenius groups 33 :13 and 26 :21 of the orders 351 and 1 344, respectively, and 
direct products A× 33 :13 where A is an abelian group of order at most 5.
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7. Diameter and depth

A notion of depth can be dfined for subrings of a ring (cf. [7]). Here we are only in
terested in complex group algebras of finite groups and their subgroups. In this situation 
the depth can be computed in terms of the Frobenius matrix. More precisely, let H be 
a proper subgroup of a finite group G, and set M := F (G,H). Then we have

S := MM� = ([ϕG, ψG])ϕ,ψ∈Irr(H).

For a positive integer m, one has that H is of depth n = 2m + 1 in G if and only 
if Sm+1 ≤ qSm for some q > 0, and that H is of depth n = 2m in G if and only if 
SmM ≤ qSm−1M for some q > 0. Here the inequality A ≤ B between real matrices 
A = (aij) and B = (bij) of the same format is dfined by aij ≤ bij for all i, j.

It is known that depth n always implies depth n+1. Thus the minimal depth d(H,G)
is of particular interest. It is also known that H is of depth 2 in G if and only if H is a 
normal subgroup of G. Several papers have investigated subgroups of depth 3 (cf. [5,6]). 
Here we point out connections to the diameter of Γ(G,H).

Proposition 7.1. Let H be a nontrivial core-free subgroup of a finite group G. Then the 
following assertions hold:

(i) If Γ(G,H) has diameter 3 then [ϕG, ψG] > 0 for all ϕ,ψ ∈ Irr(H).
(ii) If [ϕG, ψG] > 0 for all ϕ,ψ ∈ Irr(H) then H is of depth 3 in G.
(iii) If H is of depth 3 in G then the diameter of Γ(G,H) is 3 or 4.

Proof. (i) is an immediate consequence of condition (b) (ii) in Proposition 2.2.
(ii) follows from the above definition of depth.
(iii) Suppose that H is of depth 3 in G. Since Γ(G,H) is connected, [7, Theorem 3.6] 

implies that the distance between any two distinct ϕ,ψ ∈ Irr(H) is 2. Thus the distance 
between any ϕ ∈ Irr(H) and any χ ∈ Irr(G) is at most 3, and the distance between any 
two distinct χ, η ∈ Irr(G) is at most 4. Thus Γ(G,H) has diameter 3 or 4. �

Thus diameter 3 implies depth 3, and conversely depth 3 implies diameter 3 or 4. 
Note that it can happen that the depth is 3 whereas the diameter is 4, as the example 
S2 < S3 shows. Note also that the depth is dfined also for subgroups with nontrivial 
core; for example, the depth of the Sylow 2-subgroup H in the dihedral group G of order 
12 is 3, but Γ(G,H) consists of two connected components, each a path of length 4.
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