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Abstract

A comprehensive understanding of the dynamics of tribological interactions is essential
for enhancing efficiency and durability in a multitude of technical domains.
Conventional experimental techniques in tribology are frequently costly and
time-consuming. In contrast, elastohydrodynamic lubrication (EHL) simulation models
present a viable alternative for calculating frictional forces in sealing contacts. These
calculations are based on the hydrodynamics within the sealing contact, as defined by
the Reynolds equation, the deformation of the seal, and the contact mechanics.
However, a significant drawback of these simulations is the time-consuming calculation
process. To overcome these experimental and computational limitations, machine
learning algorithms offer a promising solution. Physics-informed machine learning
(PIML) improves on traditional data-driven models by incorporating physical principles.
In particular, physics-informed neural networks (PINNs) are as effective hybrid solvers
that combine data-driven and physics-based methods to solve the partial differential
equations that drive EHL simulations. By integrating physical laws into the parameter
optimization of the neural network (NN), PINNs provide accurate and fast solutions.
Thus, unlike traditional NNs, PINNs have the potential to make accurate predictions
beyond the limited training domain. The objective of this study is to demonstrate the
feasibility of spatial and temporal extrapolation of the PINN and to analyze its reliability,
both with and without consideration of cavitation. Two test cases are employed to
examine the pressure and cavitation distribution within a sealing contact that extends
beyond the spatial and temporal training range. The findings indicate that PINNs can
surmount the typical constraints associated with NNs in the extrapolation of solution
spaces, which represents a notable advancement in terms of computational efficiency
and model flexibility.
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Introduction
Mechanical components in technical systems rely heavily on the performance of their
lubricated tribological contacts, such as those in seals, which play a vital role in ensuring
efficiency, durability, and functionality. Seals are indispensable in numerous engineer-
ing applications, and their failure can lead to significant operational disruptions, costly
repairs, and, in extreme cases, catastrophic outcomes. Elastomeric seals, including O-
rings, X-rings, and rectangular rings, are widely utilized for their cost-effectiveness and
simplicity [1]. However, replacing these seals can involve complex, time-intensive, and
expensive processes. Seals are essential for maintaining the pressure required for system
operation in fluid power systems. Nevertheless, dynamic seals generate friction during
use, diminishing system performance and efficiency. This issue is particularly critical in
valves, where even small frictional forces can adversely affect valve dynamics and down-
stream components. Despite decades of industrial use, particularly in pneumatic systems,
the frictional mechanisms in pneumatic sealing contacts still need to bemore understood.
A typical dynamic sealing system, such as in pneumatic applications, consists of key ele-
ments: the seal, the housing, the cylinder, and the lubricant. The contact interface, often
involving a rigid counter surface such as a moving cylinder, operates within a hydrody-
namic lubrication regime where the gap is partially or completely filled with lubricant.
Understanding these lubricated contacts is a complex task due to the interplay of fluid
dynamics, contactmechanics, andmaterial properties. Dynamic friction,mainly driven by
fluid behavior, is crucial in accuratelymodeling these systems. Simplifications in analytical
models can compromise accuracy,while experimental studies are often resource-intensive
and costly. One of the most effective approaches to studying these interactions is through
elastohydrodynamic lubrication (EHL) simulations. EHL employs the Reynolds equation
to model pressure distribution and deformation in the contact region, offering a robust
framework for understanding and optimizing tribological systems. However, the intricate
nature of these phenomena often demands advanced simulation techniques to capture
the full range of behaviors observed in dynamic sealing systems.
A widely used method for solving EHL problems involves numerical approaches [1–3].

One such approach is fluid–structure interaction (FSI), which couples the deformation of
the solid structure, determined through Finite Element Analysis (FEA), with the hydrody-
namic behavior of the lubricant [4,5]. Another common technique isModelOrder Reduc-
tion (MOR), which employs hyper-reduction algorithms to project the problem onto a
low-dimensional subspace. This method significantly reduces computational effort while
maintaining solution accuracy [6]. In addition to numerical methods, research has also
been conducted to derive analytical solutions for EHL problems [7,8]. These analytical
model focus on specific parts of the EHL problem, by either simplifying the underlying
equations or developing an analytical solution for a particular part of the whole model.
Beyond numerical and analytical approaches, experimental studies have played a signif-
icant role in understanding EHL phenomena, with research dating back to the 1950 s.
Early studies focused on predicting film thickness in lubricated rollers [9]. A prominent
experimental technique is optical EHL, which allows for the direct observation of lubri-
cant films and is often used to validate analytical models [10,11]. Another experimental
approach involves attaching sensitive pressure and capacitance transducers to one of the
interacting surfaces to measure key parameters [12].
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A monolitic EHL simulation model was developed at the Institute for Fluid Power
Drives and Systems (ifas) at RWTH Aachen University to investigate reciprocating seals
in pneumatic valves [13–16]. This model, designated ifas DDS (Dynamic Description of
Sealings), is utilized to ascertain the degree of friction by resolving the hydrodynamic
interactions within the sealing contact. The model considers both contact mechanics
and seal deformation [17]. Prior research has validated this model using experimental
data [18]. Compared to the previously mentioned EHL simulations, the ifas DDS does not
rely on fluid–structure interaction. Moreover, the model is implemented monolithically,
meaning that deformation and hydrodynamics are solved simultaneously. However, the
extensive computational time required to solve the equations using numerical methods is
a significant limitation. While increasing computational resources can be beneficial, it is
not always feasible, particularly when the complexity of the simulations increases and real-
time calculations are necessary for applications such as control systems. An accelerated
approach formodeling EHL simulations, particularly for the ifas DDS, has been developed
using machine learning techniques to address these challenges. This approach has been
explored in prior studies, where the EHL problem was systematically modeled step by
step [19–24].
Employing machine learning algorithms, including neural networks (NNs), is a promis-

ing alternative to traditional EHL simulations [25–27] and has been already implemented
successfully for EHL line contacts in cylindrical roller bearings [28,29]. This is due to the
rapid computation capabilities that can be achieved post-training. However, conventional
NNs typically fail to incorporate the underlying physical principles. The primary objective
of regression tasks is tominimize the discrepancy between the predicted and actual values.
This data-driven approach is contingent upon the availability of a sufficient quantity of
data, as insufficient data may result in underfitting, whereby the NN cannot accurately
capture the correlations. Conversely, excess data may lead to overfitting, which can result
in elevated error rates with new data points, particularly those that fall outside the training
domain.
Physics-informed neural networks (PINNs) represent a significant advancement in this

field, as they incorporate physical laws into the training process. PINNs represent a class of
machine learning solvers for partial differential equations (PDEs). Their training process
incorporates physical equations described by the initial (IC) and boundary conditions
(BC), as well as the residuals of the PDEs. In contrast to conventional NNs, this enables
them to enhance prediction accuracy and extend their applicability beyond the scope of
the training domain.
PINNs have been used effectively in tribology, particularly for tasks such as predicting

lubricant behaviour and assessing wear and damage [30,31]. Compared to MOR tech-
niques in EHL simulations [6], PINNs offer notable advantages, such as flexibility in
incorporating new parameters or modifying architectures to suit specific problems. They
are particularly adept at handling discontinuities, such as cavitation with zero-pressure
regions, which pose challenges forMORapproaches, including theReducedBasismethod.
In addition, PINNs enable faster computation once training is complete, making them a
practical choice for dynamic EHL scenarios. In particular, the potential to predict reli-
able values beyond the parameters of the training domain represents a significant advan-
tage when investigating tribological problems. This capacity provides the opportunity to
gain insight into system areas where direct measurements are not feasible. In numerous
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real-world applications, conditions are perpetually evolving. A model that is capable of
extrapolation is more resilient to unforeseen or novel scenarios. In contrast, traditional
simulation models are typically unable to perform such extrapolation, necessitating a
repetitive, time-consuming numerical calculation across the entire geometry of the seal.
In the context of machine learning, extrapolation refers to the prediction or estimation
of values for input points that lie outside the range covered by the training points. In
other words, the model attempts to apply patterns or relationships to input points that go
beyond the limits of what it saw during training. In contrast to extrapolation, interpolation
refers to the prediction or estimation of values for input points that lie within the range
covered by the training data. These are input values that fall within the range of values
that the model has learned during training.
Several studies on PINNs have focused on the hydrodynamic aspect of EHL simulations,

excluding deformation and friction. Furthermore, previous work has demonstrated the
effectiveness of PINNs on the hydrodynamic aspect only in the interpolation domain.
Almqvist was among the pioneers in applying PINNs to study pressure distribution gov-
ernedby a simplifiedone-dimensional variant of theReynolds equation [32]. Subsequently,
Li and colleagues broadened the application of PINNs to encompass the two-dimensional
Reynolds equation, particularly in the context of gas bearings [33]. Subsequent advance-
ments were made by Yadav et al., who applied PINNs to analyze journal bearings [34],
and Zhao et al., who explored the utility of PINNs in modeling linear sliders [35]. A note-
worthy contribution by Rom introduced a successful approach for solving the Reynolds
equation integrated with the Jakobsson-Floberg-Olsson (JFO) cavitation model [36]. His
methodology involved the implementation of soft constraints and a dynamic adaptation
of collocation points, which enabled the accurate representation of cavitation zones and
regions with steep gradients. Building on this, Cheng and colleagues extended the PINN
framework to incorporate the JFO and Swift-Stieber (SS) cavitation models [37].
In recent developments, Xi et al. proposed an improved PINN strategy for solving the

Reynolds equation. This strategy employs a combination of hard and soft constraints
during training, which has been shown to enhance the accuracy of the solution [38,39].
Brumand-Poor et al. developed a hydrodynamic lubrication framework for solving the
transient Reynolds equation in scenarios with andwithout cavitation for one-dimensional
sealing gaps. Furthermore, Brumand-Poor et al. addressed challenges related to interpo-
lation and extrapolation, as documented in several publications [19–24]. Rimon et al.
investigated the application of PINNs to an EHL model. Their approach combined a
simplified stationary Reynolds equation, excluding cavitation, with the Lamé equation to
account for seal deformation [40]. The previously mentioned research has focused on the
use of purely physics-based PINNs. However, investigations have also been conducted on
hybrid PINNs for hydrodynamic lubrication by incorporating a data-based loss. Shutin
et al. were the first to explore this approach for determining the hydrodynamic behav-
ior of fluid films in journal bearings [41]. Similarly, Zhao et al. applied hybrid PINNs to
model lubrication in slider bearings [42]. Another application of PINNs in the context of
hydrodynamic lubrication was conducted by Xi et al., who addressed the inverse prob-
lem of the Reynolds equation by integrating data into the PINN. This method solved the
Reynolds equation and determined the eccentricity and geometric parameters of a journal
bearing [43].
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Similar to the priormentioned publications, this contribution also focuses on the hydro-
dynamic aspect of EHL, while neglecting friction and contact mechanics. Deformation is
artificiallymodeled by a constant sealmovement, which ignores pressure dependencies. In
contrast to previous research in this area, the results presented in this paper demonstrate
the efficacy of PINNs in spatio-temporal extrapolation tasks.Ahydrodynamic-PINN (HD-
PINN) framework, previously implemented and validated for stationary scenarios without
cavitation [19], has been demonstrated to permit extrapolation tasks of the pressure dis-
tribution beyond the boundaries of the trained regimes [20]. As further research, this
framework is extended to enable the modeling of the Reynolds equation, incorporat-
ing sliding and squeezing motions as well as cavitation effects, which are observed in
sealing contacts. This contribution demonstrates the feasibility of spatial and temporal
extrapolation of the extended HD-PINN framework across spatial and temporal bound-
aries. Extrapolating pressure distribution and cavitation effects in tribological systems are
beneficial, as predictions, especially temporal ones, beyond the training domain provide
valuable information for modeling and understanding these systems (e.g., the develop-
ment of cavitation regimes inside the sealing gap). Additionally, the computation time,
which includes both training and evaluation phases, can be reduced since training is not
required for the entire spatial and temporal domain.

Methods
This section provides a detailed description of the methods used to address and solve
problems in the field of lubricated tribological contacts. Hydrodynamic lubrication, a
fundamental aspect of many lubricated tribological contacts, is usually described by the
Reynolds equation. The conventional numerical approach to solving this equation is pre-
sented first. Subsequently, the potential for a more innovative approach to solving the
Reynolds equation with PINNs is demonstrated. The primary focus is on the ability of
PINNs to extrapolate across boundaries compared to traditional numerical methods. An
extended HD-PINN framework is presented, which has been expanded to include tran-
sient and cavitation terms. To demonstrate the feasibility of the spatial and temporal
extrapolation capability two test cases are defined. Furthermore, a novel training proce-
dure is presented, which is designed to enhance the extrapolation capability.

Hydrodynamic lubrication—the reynolds equation with cavitation modeling

EHL simulations are essential for the analysis of wear, friction, and leakage in lubri-
cated mechanical interfaces. These simulations study the dynamic interactions between
lubricants and contacting surfaces, focusing on the computational modeling of surface
deformations and the resulting hydrodynamic pressure within the contact area. They
are crucial for the design and optimization of tribological contacts in various industrial
applications.
The ifas DDS model is an advanced simulation framework that has been validated

against experimental data under various operating conditions [18]. This model elucidates
the complex interactions between a seal and its mating surface, emphasizing the lubri-
cating film that separates them and significantly influences seal behavior. The model uses
Abaqus finite element software to accurately simulate seal deformation under operat-
ing conditions, integrating the Reynolds equation to calculate hydrodynamic phenomena
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through custom user subroutines. This research focuses on solving the Reynolds equa-
tion and simplifying the model by excluding surface deformation, contact mechanics,
and friction. The goal is to study lubrication aspects without the added complexity of
deformations.
In order to validate the extrapolation capability of the PINN, a variant of the ifas DDS

model, the so-called rigid DDS, is employed. The rigid DDS is a model that focuses
exclusively on lubrication dynamics. The rigid DDS is a model that focuses exclusively
on the lubrication dynamics. The two mating surfaces of the lubrication gap can move
relative to each other. However, deformation, friction, and contact mechanics of the
mating surfaces are not taken into account. This enables a direct comparison between
the PINN solver and the rigid DDS, both of which were developed to solve the same
underlying equations.
The Reynolds equation, integrated into the DDS model, is based on Osborne Reynolds’

original formulation of 1886, which has been extended by the Jakobsson Floberg-Olsson
(JFO) cavitation model. This introduces the cavitation fraction concept, represented by
the variable θ [17]. The value of θ represents the local volume fraction of the gas phase and
ranges from zero (no cavitation) to one (complete cavitation). Furthermore, the model
integrates the flow factors �τ and �p according to the work of Patir and Cheng [44,
45]. This extension allows for the consideration of the effects of surface topography on
lubrication. The extended form of the Reynolds equation is thus described as follows [17]:
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The Reynolds equation describes the hydrodynamic pressure p and the cavity fraction θ

in thin liquid films, considering the dynamic viscosity η, the relative velocity v between the
contact surfaces, and the gap height h. This PDE plays a pivotal role in analyzing lubricated
contacts with incompressible fluids. The variables of time t and location x are of particular
significance in this equation, as they are essential for its formulation. Furthermore, the
influence of contact surface roughness on the hydrodynamic behavior is incorporated
through the parameters �τ and �p, which represent the shear and pressure flow factors,
respectively. Additionally, the mean square roughness Rq is also included in the equation.
The Fischer-Burmeister Equation, as employed byWoloszynski et al. [46], establishes the
relationship between pressure and cavity fraction:

p + θ −
√
p2 + θ2 = 0 (2)

The cavity fraction provides insight into the occurrence of cavitation within the lubri-
cated contact, which is defined as the formation of vapor when the pressure drops below
the vaporization threshold, which is set to zero. The JFO cavitation model and its imple-
mentation make only minimal assumptions about the physical mechanisms, causing the
cavity fraction to be non-zero. This allows it to track lubricant distribution in tribological
contactswith limited lubricant supply (starved lubrication), such as grease-lubricated seal-
ing contacts in pneumatic spool valves. In these cases, a non-zero cavity fraction indicates
partial filling of the sealing gap.
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In the DDS, a user-defined element (UEL) is implemented within the Abaqus finite ele-
ment framework to calculate the fluid pressure and cavitation fraction in the contact zone
of a seal. The UEL integrates the Reynolds equation and a cavitation model into both the
Jacobian matrix and right-hand side vector to iteratively solve the nonlinear relationship
between deformation variables and fluid pressure values. This approach aligns with the
general finite element method (FEM) formulation K · u = RHS, where u represents the
deformation vector, K is the stiffness matrix, and RHS is the right-hand side of the sys-
tem of equations. The RHS vector encapsulates all external forces acting on the system.
This includes all forces or loads that act on the nodes of the finite element model, which
essentially lead to deformation in the structure. Solving the system of equations allows for
the determination of the resulting deformation vector u.
In the context of the UEL, the fluid state is characterized by pressure p and cavitation

fraction θ , rather than spatial coordinates. Both the Reynolds and Fischer-Burmeister
equations are structured to equal zero thus they are incorporated into RHS of the system
of equations. The Jacobian matrix of the UEL is derived by differentiating these equations
with respect to all spatial and fluid coordinates of the deformation vector u.
By combining the element formulations for the solid and fluid domains into a single

system of equations, the method enables a monolithic solution using the implicit Newton
solver. Due to the axisymmetric nature of the sealing gap, combined with the negligible
gap height compared to the contact length, a one-dimensional discretization using the
finite difference method and solution of the Reynolds and Fischer-Burmeister equation
is chosen. Through iterative adjustments of the shared “deformation” vector, the solver
simultaneously resolves the solid deformation and the fluid pressure and cavitation dis-
tribution. This modeling of fluid-solid interaction is crucial for accurately predicting the
operational conditions of seals, considering pressure distributions and cavitationphenom-
ena. For validation of the Reynolds equation solution in this work, surface deformation,
contact mechanics, and friction are neglected, thereby simplifying the DDS.

Physics-informed neural network

The Reynolds equation represents a fundamental mathematical tool for the modeling of
pressuredistribution in lubricated contacts. In the absenceof an analytical solution inmost
cases, numericalmethods such as finite volume, element, or difference approaches are typ-
ically employed to address tribological problems. However, the employment of numerical
methods frequently necessitates the allocation of substantial computational resources.
Consequently, the utilization of machine learning in tribology has recently demonstrated
considerable promise, facilitating notable advancements [30,47]. Deep learning, particu-
larly deep neural networks, has already shown efficacy in fault detection in tribological
systems, including ball bearings, plain bearings, and slipper bearings [48–50]. One illustra-
tive example is the contribution of Hess and Shang, who employed a convolutional neural
network to calculate the elastohydrodynamic pressure distribution in plain bearings [51].
It is widely acknowledged that traditional machine learning models are characterized by
their flexibility and ease of implementation. In general, these models are data-driven, or
what is commonly referred to as a “black-box” model. In recent times, however, hybrid
models that combine data-driven and physics-based approaches have gained consider-
able traction. In instances where only a limited quantity of measurement data is available,
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and a comprehensive mathematical system description is lacking, models based solely on
data or exclusively on physical principles (white-boxmodeling) are not viable [52]. In such
cases, hybridmodels offer a suitable alternative. Over time, various configurations of these
models have been explored, including sequential, parallel, and structured forms [53–55].
In the field of tribological research, PIML represents a promising development. In PIML,

machine learning models are integrated with physical principles to enhance the represen-
tation of phenomena such as friction, wear, and/or lubrication [31]. The application of
such models in the field of tribology encompasses a range of applications, from the eval-
uation of lubrication conditions in hydrodynamic interfaces to the prediction of wear or
damage. In contrast to traditional machine learning methods, which rely solely on data-
driven strategies, PIMLs, especially PINNs, utilize physical principles to direct the learning
process. Consequently, these models frequently yield more precise and dependable out-
comes than those derived from purely data-driven methodologies. PINNs employ a NN
for predictive purposes but are trained with the applicable laws of physics by including
residual terms in the loss function [56].
In early work, Cybenko demonstrated that neural feed-forward networks with at least

one hidden layer are capable of approximating any continuous function with a desired
degree of accuracy [57]. Hornik subsequently expanded these findings to encompassmea-
surable Borel functions [58]. The contributions to the physically based regularization
of NNs by Lee [59] and Lageris [60] are based on the results of Cybenko and Hornik.
Although there is no explicit reference to the term “physically-informed,” the work of
Lee and Lagaris is consistent with the fundamental principles underlying the develop-
ment of PINNs. Lee’s approach constituted an extension of the NN loss function into
which pertinent differential equations were embedded, thereby establishing the founda-
tion for PINNs. This concept had a considerable impact on subsequent developments
in PIML, as it facilitated the integration of domain-specific knowledge into traditional
machine learning. The integration of physical laws into the training of NNs was originally
a relatively unexplored area due to limited computational resources and underdeveloped
computer algebra techniques. Nevertheless, this concept has recently been revitalized as
both the methods of efficient gradient computation, such as automatic differentiation,
and hardware capabilities have evolved.
The revitalizationof PIMLwas initializedbyOwhadi in 2014.Hewas thefirst to integrate

prior knowledge into the solution process by framing the solutions of PDEs as Bayesian
inference problems, thereby enhancing algorithms with existing information [61]. Build-
ing on this foundation, Raissi and his team developed a probabilistic machine learning
framework that employs Gaussian processes to solve general linear equations, with a
particular focus on integro-differential equations and PDEs [62,63]. Subsequently, this
methodology was extended to effectively address nonlinear PDEs [64,65].
A significant development was the advent of PINNs, which are characterized as mesh-

free models that reframe the resolution of PDEs as an optimization problem defined
by a loss function [66]. PINNs were introduced as a novel class of hybrid solvers with
the capacity to accurately address a range of forward and inverse problems described
by PDEs [67–69]. Antonello et al. expanded the PINN concept to encompass control
tasks by incorporating control inputs into the network, thereby developing an algorithm
capable of solving control applications [70]. PINNs process inputs such as case-dependent
parameters, position x, and time t in a manner analogous to that of traditional NNs.
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Fig. 1 Schematic illustration of a PINN [19]

The input values are processed through the hidden layers of the network, resulting in
the generation of the network’s output. Each neuron performs a series of mathematical
operations, including themultiplication of inputs by a weight factor, the addition of a bias,
and the application of an activation function σ , which collectively enable the calculation
of the neuron’s output. The net result of these operations is the generation of a complex
function as the output of the NN.
The residual losses correspond to the residuals of the governing physical equations,

making this an unsupervised loss [71]. The evaluation of loss is conducted at designated
spatial and temporal junctures, referred to as collocation points. In order to integrate
complex differential equations, NNs employ automatic differentiation (AD), which is
capable of efficiently computing gradients of any order withmachine accuracy by applying
differential rules suchas the chain andproduct rules. In conventionalNNs,AD is employed
for parameter updates,whereas inPINNs, it is also utilized for the calculationof derivatives
( ∂ku
∂xk ,

∂ ju
∂tj , ...) associated with differential equations. The objective of the losses associated

with boundary conditions and ICs is to guarantee that the prescribed boundary and ICs for
the partial differential equation are satisfied. The two aforementioned losses are subject
to supervisory control.
Figure 1 illustrates an exemplaryPINN.Thenetworkdepicted is a hybridPINNcompris-

ing physically informed and data-driven components. The available data is employed to
accelerate the convergence of the governing equations, thereby facilitating the attainment
of a more accurate solution. The data loss term corresponds to the classical data-driven
loss. The loss terms are then each multiplied by a weight factor and added together.
Subsequently, the network parameters � are optimized so that the weighted loss sum is
minimized.
Prior to outlining themethodologies and loss functions utilized in this study, it is imper-

ative to provide a concise overview of the applications of PINNs in the field of hydrody-
namics. Subsequently, a synopsis of extant research on the extrapolation of PINNs will be
provided.

Applying physics-informed neural networks to solve the Reynolds equation

The following Table 1 provides an overview of the existing literature dealing with the use
of purely physics-based PINNs to solve the Reynolds equation.
Almqvist’s paper can be regarded as one of the first to use PINNs to solve a simplified

form of the Reynolds equation [32]. Subsequently, this approach was further developed
through the development of sophisticated algorithms to solve the 2D Reynolds equation
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Table1 Summary of various NNs employed in literature for solving the Reynolds equation

Author Inputs1 Layers Layer size Output

Almqvist [32] x 1 10 p

Cheng et al. [37] x , y 6 20 p

Hess et al. [51] h(x,y) 6 three-dim, see paper p

Ramos et al. [72] x, y, ε ,α 7 (4, 12, 50, 50, 25, 12, 1) p

x, y, ε ,α, u, v 6 (6, 15, 60, 60, 15, 1) p

Rimon et al. [40] x 4 30 p, Q

Rom [36] x, y 6 20 p, θ

x, y, erel 6 20 p, θ

Xi et al. [39] x 3 64 p, θ

Zhao et al. [35] x, y 2, 3 and 4 16, 32 p
1 The notation used includes eccentricity (ε), angle of attack (α), velocities in the x and y directions (v and u respectively),
and leakage rate (Q)

in various applications such as linear slides, gas bearings and plain bearings [33–35]. Rom
made significant progress by being the first to apply PINNs to the stationary Reynolds
equation, integrating the JFO cavitation model and introducing relative eccentricity as
an input parameter to the PINN [36]. Extending these developments, Cheng et al. imple-
mented a PINN that successfully solves the Reynolds equation considering the JFO or
the Swift-Stieber (SS) cavitation model. The approach integrates three different multi-
task learning strategies to optimize the loss components tailored to each model [37]. In
another study, Xi et al. investigated the steady-state Reynolds equation with cavitation,
incorporating both soft and hard constraints in the loss function to achieve higher solution
accuracy [39]. Rimon et al. investigated the potential of PINNs in EHL simulation. They
used a simplified Reynolds equation and modeled the seal deformation with the Lamé
equation [40].

Extrapolation with physics-informed neural network

In the context of this paper, interpolation refers to the estimation of pressure and cavita-
tion distribution within the spatial and temporal range of the training collocation points.
Conversely, extrapolation pertains to the estimation of pressure and cavitation distribu-
tion beyond this range. Previous works on PINNs for solving hydrodynamic lubrication
scenarios have focused on presenting their effectiveness using testing points within the
interpolation domain. A promising aspect of PINNs is their capacity to extrapolate. This
refers to a model’s ability to generate predictions for regions that lie outside the range
of the training points. Initial research on PINNs’ extrapolation capabilities includes work
by Kim et al., who developed an algorithm to adjust the gradient for residual and BC
loss, aiming to extrapolate the solution of Burger’s equation over time [73]. Fesser et
al. explored transfer learning on equations like Burger and Allen-Cahn to enhance time
extrapolation [74]. The research conducted by Bonfanti et al. examines the behavior of
PINNs when applied to problems outside of their training domain. Using a simple 1D
problem, the study analyses the effects of training hyperparameters on the extrapolation
ability [75].
In the field of hydrodynamic lubrication, initial research was conducted by the authors

of this paper [20]. In this work, a PINN framework was applied to solve extrapolation tasks
for a simplified variant of the Reynolds equation. The results have indicated that PINNs
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can not only determine the pressure distribution for a stationary convergent scenario
within the interpolation range but also have the ability to extrapolate beyond the limits
of this range. With regard to position extrapolation, the PINN demonstrated an apti-
tude for adapting to the rigid ifas DDS. When extrapolating the pressure boundaries, the
single-case PINN exhibited an inability to accurately calculate the pressure distribution.
In contrast, the multi-case PINN demonstrated satisfactory performance in both extrap-
olation and interpolation of pressure boundaries. However, the PINN faced challenges
with multi-case and height-related extrapolation tasks. The present work represents an
extension of the above investigations and integrates transient and cavitation terms of the
Reynolds equation into the framework. The extrapolation capability of single-case PINNs
is tested across positional and temporal boundaries. The subsequent section presents
the HD-PINN framework, including the test cases, the PINN structure, and the training
procedure that are the subject of this paper.

HD-PINN framework

This section will provide an overview of the later simulated test cases. Then it will present
the NN’s structure and functions.

Test cases and physics-informed loss

The present study examines two distinct test cases, as illustrated in Table 2.
In both cases, the system comprises a flat counter surface, which is moving with a

constant velocity v and a rigid sealing geometry, which is described by four coefficients
[h1, h2, h3, xb] where x ∈ [xl , xr] as follows:

h(x) =

⎧⎪⎨
⎪⎩

h1−h2
xb−xl · ReLU(xb − x) + h2 + h3

(
x − xl+xr

2

)2 − h3
(
xl+xr
2

)2
xb �= xl

h1 + (h2 − h1) · (x − xl) + h3
(
x − xl+xr

2

)2 − h3
(
xl+xr
2

)2
xb = xl

(3)

In order to demonstrate the extrapolation capability in both spatial and temporal dimen-
sions, a test domain with x ∈ [0, 1] and t ∈ [0, 1] is defined. The boundaries of the training
domain, represented by xTrain and TTrain, are situated within the test range. They divide
the test domain into an interpolation domain and an extrapolation domain. This implies
that the spatial and temporal collocation points for training the PINN lie within the inter-
val [0, xTrain] and [0, TTrain], whereas the test is conducted with collocation points that
extend over the entire test area.
In contrast to the preceding publication, the PINN structure has undergone modifica-

tion. The network has been expanded to comprise 17 inputs, including x and t, as well as all
mentioned parameters and variables associated with themodified Reynolds equation. The
network generates predictions for pressure p and cavitation θ . Furthermore, additional
loss terms were incorporated into the HD-PINN to address both transient and cavitation
issues, as illustrated in Fig. 2 and Table 3. The BCs, specifically pl and pr , as well as θl and
θr are fixed and defined on xl and xr , respectively. The BCs for the pressure p at xTrain
are provided by the DDS at every time step. The cavitation IC at t = 0 is determined by
the lubricant film height hlub. It should be noted that dynamic viscosity of the fluid η is
set to one. Furthermore, shear and pressure flow factors are disregarded, with φτ = 0 and
φp = 1, thus assuming smooth surfaces. All other simulation parameters are presented in
Table 2.
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Fig. 2 HD-PINN with soft constraint loss used in this study

Table 3 Input variables for the HD-PINN

Category Input variables Symbol

Collocation points Number of spatial collocation points1 Nx

Number of temporal collocation points1 Nt

Boundary conditions Left pressure boundary pl
Right pressure boundary pr
Left cavitation boundary2 θl

Right cavitation boundary2 θr

Lubricant properties Relative velocity vrel
Density ρ

Viscosity η

Surface characteristics Mean square roughness Rq
Shear flow factor �τ

Pressure flow factor �p

Geometry and dynamics Height vector [h1 , h2 , h3 , xb]

Vertical velocity of the Seal vh
Lubricant height hlubricant

1 The HD-PINN receives the number of collocation points in space and time as input. Based on this input, it generates two
uniformly distributed arrays: one for the spatial coordinates, x, and one for the temporal coordinates, t
2 The HD-PINN requires only one of the two boundary conditions for cavitation to model cavitation phenomena. The second
boundary condition is inherently determined by the lubricant film thickness and is therefore automatically accounted for.
Consequently, only 17 input parameters are required

The trainingprocess employs fivedistinct loss functions.The residual loss function com-
putes the extended Reynolds equation and requires ICs over the entire training domain,
in addition to BCs for pressure and cavitation. Furthermore, specific boundary and ICs
are implemented as separate loss functions to ensure compliance. Another loss function,
based on the Fischer-Burmeister equation, models the relationship between the pressure
and the cavitation. However, this approach is insufficient for accurately predicting tran-
sition regions where the approach to zero of the cavitation is accompanied by a tendency
towards non-zero values of pressure. To address this challenge, an additional loss function
that employs soft constraints is introduced. This method, initially proposed by Rom [36],
is designed to overcome the limitations of the Fischer-Burmeister equation in transition
regions.
Given the considerable variability in the magnitudes of the different loss functions, it

is crucial to apply appropriate weightings. To achieve this, a loss balancing algorithm is
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Fig. 3 Loss balancing

Fig. 4 HD-PINN Framework

implemented, which is based on earlier work by Bischof et al. [76], see Fig. 3. Subsequently,
the total loss is determined by a weighted summation of the individual loss functions,
which are then subjected to an Adam optimizer.

Training procedure

An overview of the HD-PINN framework is presented in Fig. 4. In order to identify appro-
priate hyperparameters (H) that will enhance extrapolation capability, Bayesian optimiza-
tion is employed. This probabilistic method of identifying a coherent set of parameters
from a set of unknown parameters provides a starting point for further optimization.
Multiple training trials run in an outer loop until promising hyperparameters are found.
For each training, a PINN and the corresponding loss functions are initialized.
Here, additional loss functions are defined to evaluate the pressure pex and cavitation

θex outside the training area. These are structured in the same way as the loss functions
that have already been presented. The only difference is that the collocation points used
to calculate the pressure and cavitation are located outside the training domain, i.e. in the
extrapolation domain. For the case, that the collocation points are set inside the train-
ing domain the extrapolation loss becomes the classical interpolation loss. In a manner
analogous to the original loss calculation, these loss functions contain the partial deriva-
tives, which, however, originate from the extrapolation range. The boundary and ICs are
determined by the previously defined test range. These modifications are employed to
compute the extrapolation loss, wherein the weighting coefficients remain unaltered. The
sum of the extrapolation loss is conveyed to the Bayesian optimizer subsequent to each
training trial, which searches for the optimal hyperparameter configuration with the low-
est extrapolation loss. Notably, the extrapolation loss is not included in the actual training
but is solely utilized to optimize the hyperparameters.
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Table 4 summarizes the hyperparameters within the HD-PINN framework explored in
this study and their respective value ranges. The initial hyperparameter ranges were based
on the suggested values by Bischof et al. [76] and were further refined through previous
research on PINNs addressing sealing movement and transient cavitation [22,23].
For the actual PINN training, the five losses are calculated with the help of the evaluated

pressure pin and cavitation θin inside the training domain. Adam optimizer then updates
all neurons. After finding promising hyperparameters, these can be further finetuned
manually or a longer training session can be started to train a final PINN.

Results
This section presents the results of the HD-PINN for the extrapolation tasks of the two
test cases. The following subsections contain the predictions of the PINNs, which were
trained on different spatial and temporal domains. In both cases, the training domain is
successively reduced while the extrapolation domain is increased. The predictions of all
PINNs are presented across the entire spatial testing domain alongside the validation data
from the DDS for different time steps.

Sealing movement

In the first test case, both the spatial and temporal dimensions are successively reduced
in steps of 0.25. This results in the training domain being divided into nine distinct com-
binations, with xTrain ∈ {0.75, 0.5, 0.25} and TTrain ∈ {0.75, 0.5, 0.25}. The predictions
of all PINNs are presented across the entire spatial testing domain alongside the valida-
tion data from the ifas DDS for the different time steps t ∈ {0, 0.25, 0.5, 0.75, 1}. Table 5
shows the hyperparameter and Figs. 5, 6, 7 illustrate the predictions of the PINNs trained
on the spatial interval x = [0, xTrain], where xTrain = 0.75 and TTrain varies. A com-
parison of the predicted pressure distributions for the individual networks reveals that
they make distinct predictions. At initial time t = 0, all models are within the temporal
interpolation range. It can be observed that they make highly accurate predictions in the
spatial interpolation range. Furthermore, they also provide accurate predictions outside
the interpolation range, up to a certain distance from the boundary of the convex hull of
the interpolation range. The same can be observed for t = 0.25. Here, the predictions of
all three models are also within the temporal interpolation range. Thes yield congruent
results both within the interpolation range and up to a certain distance from their bound-
ary. From time t = 0.5, only the PINNwith TTrain = 0.25 is in the temporal extrapolation
range. Notwithstanding the temporal extrapolation, it is evident that the predictions of
this model are congruent with those of the other PINNs. At the time t = 0.75, two PINNs
with TTrain = 0.25 and TTrain = 0.5 are present in the temporal extrapolation range. For
the first time, a minor discrepancy in the spatial interpolation range emerges for the net-
work with TTrain = 0.25. At time t = 1, all PINNs are within the temporal extrapolation
range. The deviation for the network with TTrain = 0.25 is particularly evident, while the
predictions of the other PINNs in the spatial interpolation range and in the vicinity of
their convex hull are congruent with the results of the ifas DDS.
Table 6 shows the hyperparameter for the PINNs trained on the spatial interval

x = [0, xTrain], where xTrain = 0.5. The following figures, referenced as Figs. 8, 9, 10,
demonstrate the predictions of the PINNs.
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Table 5 Bayesian-optimized hyperparameter configurations for HD-PINNs trained on the sealing
movement test case, with spatial bound xTrain = 0.75

HP TTrain = 0.75 TTrain = 0.5 TTrain = 0.25
dk 6 4 5

m(i) (128, 64, 64, 64, 64, 32) (128, 64, 128, 64) (32, 32, 64, 128, 64)

σ (i) (sigmoid, sigmoid, elu, gelu, swish, gelu) (swish, tanh, tanh, softplus) (tanh, gelu, tanh, swish, gelu)

E 19987 19824 19878

lr 7.47 · 10−5 1.5046 · 10−4 2.3 · 10−4

α 0.4007 0.6568 0.7839

T 0.00047 0.00293 2.25 · 10−6

E(ρ) 0.2619 0.2109 0.5971

Fig. 5 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.75] and different temporal
domains [0, TTrain], shown for t = 0.0 (left) and t = 0.25 (right)

Fig. 6 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.75] and different temporal
domains [0, TTrain], shown for t = 0.5 (left) and t = 0.75 (right)

Fig. 7 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.75] and different temporal
domains [0, TTrain], shown for t = 1

Aspreviously stated,TTrain varies.Within the temporal interpolation range, the pressure
distributions of the models show extensive agreement with the outputs of the ifas DDS in
the spatial interpolation range. In contrast to the previous results for xTrain = 0.75, it can
be observed that the predictions of the different models in the extrapolation range already
diverge fromthe initial timepoint t = 0.Notwithstanding the fact that this rangewas taken
into account during the training process of the three models, the predictions produced
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Table 6 Bayesian-optimized hyperparameter configurations for HD-PINNs trained on the sealing
movement test case, with spatial bound xTrain = 0.5

HP TTrain = 0.75 TTrain = 0.5 TTrain = 0.25
dk 3 5 5

m(i) (64, 128, 64) (64, 64, 128, 64, 128) (128, 128, 32, 128, 32)

σ (i) (gelu, gelu, softplus) (tanh, swish, gelu, tanh, softplus) (elu, tanh, elu, elu, sigmoid)

E 19995 19944 17307

lr 4.4343 · 10−5 1.1940 · 10−4 0.001

α 0.0255 0.2899 0.5236

T 1.2307 5.1780 9.7700 · 10−4

E(ρ) 0.7335 0.8088 0.5931

Fig. 8 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.5] and different temporal
domains [0, TTrain], shown for t = 0.0 (left) and t = 0.25 (right)

Fig. 9 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.5] and different temporal
domains [0, TTrain], shown for t = 0.5 (left) and t = 0.75 (right)

Fig. 10 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.5] and different
temporal domains [0, TTrain], shown for t = 1

outside the training range exhibit notable discrepancies. The output pressure distribution
of the PINN with TTrain = 0.25 exhibits the greatest discrepancy. The predicted pressure
distributions of all PINNs align closely with the DDS up to a spatial interpolation limit of
t = 0.5. However, a minor discrepancy between the DDS pressure distribution and the
model prediction with TTrain = 0.25 can be observed. While the pressure distributions
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Table 7 Bayesian-optimized hyperparameter configurations for HD-PINNs trained on the sealing
movement test case, with spatial bound xTrain = 0.25

HP TTrain = 0.75 TTrain = 0.5 TTrain = 0.25
dk 3 2 4

m(i) (64, 32, 64) (32, 32) (32, 32, 32, 32)

σ (i) (softplus, gelu, sigmoid) (gelu, sigmoid) (gelu, elu, tanh, sigmoid)

E 19995 79985 53084

lr 1.9942 · 10−5 3.783 · 10−4 4.57 · 10−4

α 0.3766 0.8902 0.9273

T 1.4919 · 10−3 3.429 · 10−5 2.489 · 10−6

E(ρ) 0.6610 0.0322 0.0430

Fig. 11 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.25] and different
temporal domains [0, TTrain], shown for t = 0 (left) and t = 0.25 (right)

for TTrain = 0.5 and TTrain = 0.75 remain relatively close to the calculations of the DDS
until the end of the test time frame, it can be observed that the inaccuracies of the PINN’s
predictions forTTrain = 0.25 increase significantlywith increasing temporal development.
Table 7 and Figs. 11, 12, 13 show the hyperparameter and predictions of those PINNs

that have been trained on the spatial interval x = [0, xTrain], where xTrain = 0.25 and the
temporal domain boundary TTrain vary, respectively.
We also recognize here that the predictions of the PINNs within the interpolation range

match the output of the DDS very accurately. At time t = 0, we also recognize here that
the predictions of the three differentmodels differ from each other outside the spatial area
seen. Nevertheless, all models show a congruence with the DDS, up to x ≈ 0.5. Only the
predicted pressure distributions of the PINNs with TTrain = 0.5 and TTrain = 0.75 show a
gradient in the right direction from this point onwards. The temporal development shows
that thepredictions in the extrapolation areasdeviatemore andmore fromthevaluesof the
ifas DDS. While the pressure distribution of the PINN with TTrain = 0.75 only gradually
approaches a gradient drop in the x-direction, the model with TTrain = 0.25 exhibits a
much earlier gradient drop. The PINN with TTrain = 0.5 demonstrates a consistently low
gradient drop in the extrapolation range throughout the simulation. The right-hand BC
of the test range fails to meet the standards set by this PINN. The results presented in
this subsection demonstrate that the pressure distribution of the PINNs is consistently
congruent with the output of the DDS in the interpolation range. As the distance from
the interpolation range’s convex hull increases, the PINNs’ predictions exhibit a greater
and greater degree of deviation in the extrapolation.
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Fig. 12 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.25] and different
temporal domains [0, TTrain], shown for t = 0.5 (left) and t = 0.75 (right)

Fig. 13 Sealing Movement Test Case with HD-PINNs trained on the spatial domain [0, 0.25] and different
temporal domains [0, TTrain], shown for t = 1

Table 8 Bayesian-optimized hyperparameter configuration for HD-PINNs trained on the transient
cavitation test case

HP TTrain = 1.0
dk 7

m(i) (32, 32, 32, 32, 32, 32, 32)

σ (i) (gelu, elu, swish, softplus, gelu, gelu, sigmoid)

E 120000

lr 3.246 · 10−4

α 0.9805

T 1.609 · 10−6

E(ρ) 0.0322

pthresh 0.005

θthresh 0.1(
∂θ
∂x

)
thresh 15

ncpadded 15

Transient cavitation

In the second test case, the temporal dimensions are successively reduced in steps of 0.2.
This results in the temporal training domain partitioning into four different variations,
with TTrain ∈ {0.8, 0.6, 0.4, 0.2}. The predictions of all the PINNs are presented, show-
ing the pressure and cavitation distribution over the entire spatial test domain. These
predictions are compared to the validation data from the DDS for different time steps
t ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Table 8 illustrates the set of hyperparameters used for the
investigated PINNs obtained from a previously published paper regarding the solution of
a transient cavitation test case [22].
Figure 14 illustrates the pressure and cavitation distribution at times t = 0 and t = 0.2

for a model that was trained up to TTrain = 0.8. The initial state at t = 0 is predicted
by the network to be congruent with the DDS output. At t = 0.2, the model is in the
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Fig. 14 Pressure and cavitation distribution at t = 0 (left) and t = 0.2 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.8]

Fig. 15 Pressure and cavitation distribution at t = 0.4 (left) and t = 0.6 (right) for the transient cavitation test
case, with HD-PINN trained on the temporal domain [0, 0.8]

Fig. 16 Pressure and cavitation distribution at t = 0.8 (left) and t = 1 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.8]

interpolation range and also delivers largely congruent results. The only instance where
the cavitation distribution deviates from that of the DDS is in the range x ∈ [0.55, 0.80].
Figure 15 shows the prediction of the pressure and cavitation distribution at times

t = 0.4 and t = 0.6. Here, the pressure distribution is shown to be congruent, whereas in
the same spatial range x ∈ [0.55, 0.80] the deviation remains.
Figure 16 depicts the prediction for the time points t = 0.8 and t = 1. The latter repre-

sents the first temporal extrapolation of the PINN. While the deviation of the cavitation
distribution behind the pressure peak remains the same, the pressure distribution of the
model is still an accurate approximation of the DDS.
The following figures illustrate the temporal development of the pressure and cavitation

distribution of a PINN trained up to TTrain = 0.6. Figure 17 shows a deviation in the
pressure distribution at t = 0, which aligns with the pressure distribution of the ifas DDS
at t = 0.2.
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Fig. 17 Pressure and cavitation distribution at t = 0 (left) and t = 0.2 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.6]

Fig. 18 Pressure and cavitation distribution at t = 0.4 (left) and t = 0.6 (right) for the transient cavitation test
case, with HD-PINN trained on the temporal domain [0, 0.6]

Fig. 19 Pressure and cavitation distribution at t = 0.8 (left) and t = 1 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.6]

In Fig. 18, it canbe seen that the cavitationdistribution in the regions behind thepressure
area exhibits a smaller deviation compared to the PINN trained up to TTrain = 0.8.
Figure 19, demonstrates the model’s behaviour in extrapolation tasks. The predictions

at t = 0.8 are largely congruent. At t = 1, a difference between the model prediction and
the ifas DDS is noticeable. Nevertheless, the direction of the gradients in the cavitation
distribution is consistent with that of the ifas DDS.
Subsequently, the temporal training range is further reduced to TTrain = 0.4. Figure 20

shows the pressure and cavitation distribution for such a PINN. The results obtained show
a high level of agreement with the validated simulations. The predictions shown in Fig. 21
also show almost complete agreement with the ground truth outputs. It should be noted
that the PINN was extrapolated at time t = 0.6 and still makes such accurate predictions.
The predictions shown in Fig. 22 approximate the pressure and cavitation distribution of
the validated simulation. A small deviation is recognizable. However, it should be noted
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Fig. 20 Pressure and cavitation distribution at t = 0 (left) and t = 0.2 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.4]

Fig. 21 Pressure and cavitation distribution at t = 0.4 (left) and t = 0.6 (right) for the transient cavitation test
case, with HD-PINN trained on the temporal domain [0, 0.4]

Fig. 22 Pressure and cavitation distribution at t = 0.8 (left) and t = 1 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.4]

that the gradients of the predicted pressure and cavitation distribution have a similar
direction to those of the ifas DDS. Finally, the results are shown for the PINN that was
only trained up to TTrain = 0.2. In Fig. 23, it can be observed, especially at t = 0.2, that the
PINNgivesmore accurate predictions in the previouslymentioned range of x ∈ [0.55, 0.8].
Figure 24 shows this PINN for the first time in extrapolation tasks. It quickly becomes
clear that the prediction of the pressure and cavitation distribution differs significantly
from the ifas DDS distribution. In Fig. 25, the PINN predictions of pressure and cavitation
are pushed towards zero, which does not correspond to the output of the ifas DDS.

Discussion
The potential of PINNs for hydrodynamic lubrication calculations is demonstrated by
their use in extrapolation tasks. An additional significant advantage of PINNs is demon-
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Fig. 23 Pressure and cavitation distribution at t = 0 (left) and t = 0.2 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.2]

Fig. 24 Pressure and cavitation distribution at t = 0.4 (left) and t = 0.6 (right) for the transient cavitation test
case, with HD-PINN trained on the temporal domain [0, 0.2]

Fig. 25 Pressure and cavitation distribution at t = 0.8 (left) and t = 1 (right) for the transient cavitation test case,
with HD-PINN trained on the temporal domain [0, 0.2]

Table9 Comparison of prediction speed between HD-PINN model and a rigid DDS

Method1 Average prediction time (ms) Speed factor

rigid DDS 1200 –

HD-PINN 6 ± 2 150 − 300×
1The results were obtained on a PC running Windows 10 with an Intel(R) Xeon(R) CPU E5-1680 v3 @ 3.2 GHz (16 CPUs)

strated in Table 9. For the simulations conducted, the factor was 150 − 300 in the com-
puting time between HD-PINN and the traditional counterpart of the rigid ifas DDS.
A current limitation of the HD-PINN is the neglect of time dependencies in the NN

itself. This poses a challenge in temporal extrapolation, especially for the cavitation regime,
since cavitation exhibits a time dependence term in the Reynolds equation, which can be
observed in the cavitation regime after the pressure peak in Figs. 24 and 25. This observa-
tion is supported by the more accurate prediction of cavitation before the pressure peak,
as it does not vary to the same extent as in the post-peak regime. To solve this issue
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and improve the generalizability, instead of Fully Connected Networks (FCNs), Recurrent
Neural Networks (RNNs) or Long Short-Term Memory Networks (LSTMs) can achieve
better extrapolation capability. The application of physics-informed losses in RNNs [77]
andLSTMs [78] has alreadybeen successfully implemented and investigated for extrapola-
tion tasks [79,80]. Another notablemethod is the so-called PINNsFormer, an architecture
that uses attention mechanisms to capture deeper correlations [81]. Compared to tempo-
ral extrapolation, spatial extrapolation is more prone to errors, especially compared to the
observed accuracy in the interpolation regime. These results also match prior research
on spatial extrapolation for hydrodynamic lubrication for a more simplified variant of the
Reynolds equation and gap geometry [20]. The PINN requires an understanding of the
investigated geometry. However, four height parameter inputs aim to represent the whole
geometry. To tackle this issue, Rom extended his PINN’s input, which was applied to jour-
nal bearings by the relative eccentricity [36]. In the case of a sealing gap, a single additional
physical parameter can not be defined for all several geometries; therefore, implementing
a geometry-aware PINN (GA-PINN) framework [82] could improve this issue. In this
case, custom input parameters do not describe the geometry. Instead, the gap geometry
is sampled and passed to an autoencoder, which reduces the high-dimensional input to
a low-dimensional latent space and then passes to the PINN with the spatial and time
coordinates. A noteable type of network is the Convolutional Neural Network (CNN),
which is frequently used for processing of high-dimensional input, like images and can be
integrated in the autoencoder. The combination of a physics-informed loss and a CNN
has already been successfully investigated for space-time problems [83]. Another promis-
ing approach is graph neural networks (GNNs) [84,85], which aim to process the input
represented in the graph domain directly and have already been implemented in a physics-
informed GNN (PI-GNN) [86]. The HD-PINN has many hyperparameters, mainly due to
the sophisticated loss balancing. Using themodel-basedBayesian optimizer automates the
process of finding suitable hyperparameters. For each PINN solving the sealingmovement
test scenario, a set of suitable hyperparameters has been obtained and listed in Tables 5, 6
and 7. For the transient cavitation test case, where the spatial domain was kept constant,
and the temporal domain was reduced, a hyperparameter set was used, which is shown
in Table 8. As the Bayesian optimizer can select continuously within the range of hyper-
parameters provided, it is doubtful that the exact same set of hyperparameters will be
obtained for different test cases. However, there is no clear trend in the hyperparameters
for changing the spatial and temporal training domain. For example, the decay rate α

increases for decreasing temporal training domain and constant spatial training domain
but increases and decreases for decreasing xTrain and constant TTrain. The temperature
does not show a clear trend for changing spatial or temporal training domains. Due to
the high dimensionality created by the available number of hyperparameters, several sets
might exhibit suitable performance but may not show a trend toward changing scenarios.
For a deeper understanding of the influence of the hyperparameters, a further study is
required, firstly to obtain a set of hyperparameters for each PINN solving the transient
cavitation, and secondly to investigate whether different sets of hyperparameters could
lead to the same performance in terms of interpolation and extrapolation of a test case.
To sum up, the results of this study are highly significant. The ability of PINNs to

extrapolate both spatially and temporally was demonstrated using two hydrodynamic test
cases. For both test cases, the HD-PINN already has a very accurate prediction capability
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Fig. 26 Normalized MSE between the predictions of the PINN, with xTrain = 0.75 and TTrain = 0.75, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 0.18884 (left) and 0.012587 (right)

Fig. 27 Normalized MSE between the predictions of the PINN, with xTrain = 0.75 and TTrain = 0.5, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 0.17914 (left) and 0.011865 (right)

in the interpolation domain. This was also demonstrated in the extrapolation domain,
which was sufficiently close to the convex hull of the interpolation domain. This section is
devoted to the discussion. The normalized mean squared error (MSE) between the rigid
ifas DDS and the differently trained PINNs in the respective test cases is used to highlight
and discuss the differences between the predictions in the interpolation and extrapolation
domains. Therefore a quantitative analysis, besides the qualitative analysis is provided.

Sealing movement

This subsection presents an analysis of the behavior of the PINNs in the context of spatial
and temporal interpolation and extrapolation. Themetric employed for this analysis is the
mean squared error (MSE), which has been normalized to the maximum error between
the rigid ifas DDS and the PINNs. The following figures illustrate the normalized MSE in
the spatial and temporal directions for PINNs with xTrain ∈ {0.75, 0.5, 0.25} and TTrain ∈
{0.75, 0.5, 0.25}. It can be observed that the discrepancy between the PINNs and the rigid
ifas DDS increases significantly in the x-direction beyond the spatial interpolation limit.
Similarly, the discrepancy in the temporal dimension also increases, though to a lesser
extent than in the spatial dimension (Figs. 26, 27, 28).
Another discernible pattern can be identified. It can be demonstrated that as the spa-

tial interpolation ranges become smaller, the MSEp(t) increases. This phenomenon can
be observed in the right-hand plots. This indicates that the extrapolation capability is
diminished as the training range is narrowed (Figs. 29, 30, 31, 32, 33, 34).
The kink in the MSEp(x) graph within the extrapolation region is attributed to the

pressure gradient drop of the rigid ifas DDS in this region. In contrast, the PINN predicts
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Fig. 28 Normalized MSE between the predictions of the PINN, with xTrain = 0.75 and TTrain = 0.25, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 0.24769 (left) and 0.03659 (right)

Fig. 29 Normalized MSE between the predictions of the PINN, with xTrain = 0.5 and TTrain = 0.75, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 1.87879 (left) and 0.16923 (right)

Fig. 30 Normalized MSE between the predictions of the PINN, with xTrain = 0.5 and TTrain = 0.5, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 1.69390 (left) and 0.13563 (right)

Fig. 31 Normalized MSE between the predictions of the PINN, with xTrain = 0.5 and TTrain = 0.25, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 2.61361 (left) and 0.20934 (right)
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Fig. 32 Normalized MSE between the predictions of the PINN, with xTrain = 0.25 and TTrain = 0.75, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 2.36247 (left) and 0.17607 (right)

Fig. 33 Normalized MSE between the predictions of the PINN, with xTrain = 0.25 and TTrain = 0.50, and the
reference values of the rigid DDS data in both spatial and temporal domains. The MSE is normalized with respect
to the maximum error value: 4.44342 (left) and 0.33365 (right)

Fig. 34 Normalized MSE between the predictions of the PINN, with xTrain = 0.25 and TTrain = 0.25, and the
reference values of the rigid ifas DDS data in both spatial and temporal domains. The MSE is normalized with
respect to the maximum error value: 1.41619 (left) and 0.23464 (right)

a lower pressure gradient drop in this region, highlighting the struggle of the PINN to
correctly predict the gradients in the extrapolation region. It has been shown that it is
possible to extrapolate beyond both boundaries. The plots presented in this subsection
confirm the findings from the literature regarding the extrapolation of PINNs: As the
distance from the convex training envelope increases, the accuracy of the predictions
deteriorates.

Transient cavitation

In order to discuss the results of the second case, it is necessary to consider the error
metric MSE between the pressure and cavitation distributions predicted by the PINN
with different TTrain and those output by the rigid DDS. This is shown for the pressure
and cavitation predictions as a function of time t. Figure 35 shows that the mean square
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Fig. 35 Normalized MSE of PINNs’ predictions relative to validated rigid ifas DDS data in the temporal domain.
The MSE is normalized with respect to the maximum error value: 0.00004 (left) and 0.00155 (right)

Fig. 36 Normalized MSE of PINNs’ predictions relative to validated rigid DDS data in the temporal domain. The
MSE is normalized with respect to the maximum error value: 0.00028 (left) and 0.00386 (right)

Fig. 37 Normalized MSE of PINNs’ predictions relative to validated rigid DDS data in the temporal domain. The
MSE is normalized with respect to the maximum error value: 0.00012 (left) and 0.00707 (right)

error increases in the temporal direction. However, it can be seen that it does not differ
drastically in the temporal interpolation range from that in the extrapolation range for
pressure distribution predictions. In contrast to the spatial extrapolation of the first test
case, a pronounced exponential increase in the error in the temporal extrapolation is not
observed. The MSE remains within a smaller size range with increasing time.
The same can be seen in Fig. 36 for the PINN with TTrain = 0.6. Here, the increased

error at t = 0 is visible in the interpolation domain.
Between TTrain = 0.6 and TTrain = 0.4, there is no major difference in magnitude in the

MSE for both the pressure and cavitation distributions, as can be compared with Fig. 37.
At TTrain = 0.2, the MSE increases significantly compared to the previous temporal

training domains, as can be seen in Fig. 38. This test case also seems to confirm the
theory that predictions become less reliable as the interpolation range becomes smaller.
Nevertheless, the temporal extrapolation of the PINNs provides reliable predictions up to
a certain distance from the training range.
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Fig. 38 Normalized MSE of PINNs’ predictions relative to validated rigid DDS data in the temporal domain. The
MSE is normalized with respect to the maximum error value: 0.00738 (left) and 0.01422 (right)

In this work, it has been shown that the temporal extrapolation of the pressure and
cavitation distribution for a TTrain = 0.4 predicts reliably up to the time t = 0.8.

Conclusion and outlook
In particular, for real-world applications that require real-time simulation of complex
tribological systems or applications that consist of several partial simulations and require
fast internal computations, PINNs are highly suitable alternatives to conventional numer-
ical methods. In particular, for seals, which are a key component of many engineering
systems, especially in pneumatic valves, using PINNs to accelerate the solution of the
EHL investigation is a promising innovation. The ability to gain a deeper understanding
of the interplay between hydrodynamics, contact mechanics, and material properties in
a reasonable amount of time enables an optimized seal’s design and operation. EHL sim-
ulations such as the ifas DDS provide accurate solutions but have a significant drawback
due to their iterative solution process, which requires extensive computing time. The
presented HD-PINN represents a promising approach to develop an accelerated solu-
tion method for the ifas DDS, which has already been demonstrated in previous work
for interpolation tasks [23]. Furthermore, PINNs are able to predict beyond their domain
of definition. While PINNs are able to perform extrapolations as demonstrated in this
work, traditional numerical methods are not. Consequently, the ICs and bounds must be
reset for each new problem, and the process must be repeated until a solution is found.
In contrast, PINNs are capable of adapting to new conditions and domains in a flexi-
ble manner, thereby delivering results. The results demonstrate that the extrapolation
of the HD-PINN is of high quality in the immediate vicinity of the interpolation domain.
However, the extrapolation quality declines, and the prediction errormagnitude increases
significantly outside this area. This finding was also seen in the studies by Kim et al., Fesser
et al. and Bonfati et al. [73–75]. The spatial extrapolation is more susceptible to errors
than the temporal extrapolation. This may be attributed to the fact that the HD-PINN
does not accurately capture the spatial relationship with the height profile of the sealing
gap. Another potential reason for the observed increase in error with increasing distance
from the interpolation limit is that the PINN was trained on a specific case only and
may not generalize to other physical relationships. To improve the generalizability for
the spatial extrapolation a GA-PINN or PI-GNN could be integrated in the HD Frame-
work. As the investigated PINNs were studied for two specific test cases, future research
could investigate the extrapolation capability in a multi-case scenario that encompasses
different geometries of the hydrodynamic lubrication gap, similar to prior conducted
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research [20]. In addition, transfer learning approaches could be considered, whereby a
pre-trained PINN contains fundamental knowledge and is further trained for specific use
cases. This approach could significantly reduce the computational time required for train-
ing, as only a limited number of data sets would be necessary for ongoing training. Further
research also includes investigating the hyperparameter. Firstly, the effect of the hyper-
parameter on the transient cavitation test scenario should be investigated by obtaining
a set of hyperparameters for each extrapolation task with the Bayesian optimizer. Sec-
ondly, a deeper dive into the hyperparameters could lead to a better understanding of
their effects on interpolation and extrapolation and overall PINN’s performance. In the
field of PIML, there are other promising approaches besides PINNs with great potential
for extrapolation, especially in the field of temporal extrapolation. Instead of FCNs, RNNs
or LSTMs or Transformers can be used to achieve improved extrapolation capability. In
summary, PINNs are a promising and faster alternative to traditional PDE solvers and can,
to some extent, provide reliable results outside the defined domain. However, there is still
considerable potential to improve the extrapolation capability. Eventually, the HD-PINN
will model the entire EHL simulation by extending it to include surface roughness, non-
Newtonian fluid, and deformation. Recently, the framework successfully solvedmulti-case
tasks with varying surface roughnesses [24]. The ifas DDS solves the EHL for a pneumatic
valve; therefore, the lubricant is modeled as a non-Newtonian fluid and behaves according
to Herschel-Bulkley (HB), which has already been modeled with PINNs [87]. Regarding
the deformation, the DDS considers hyperelastic behavior; therefore, respective material
models are integrated into the HD-PINN, similar to the approach of Nguyen et al., who
solved hyperelastic deformation problems with PINNs [88].

Abbreviations
AD Automatic differentiation
BC Boundary conditions
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