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Abstract: We study the possibility of using the LiteBIRD satellite B-mode survey to
constrain models of inflation producing specific features in CMB angular power spectra. We
explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This
model can source parity-violating gravitational waves from the amplification of gauge field
fluctuations driven by a pseudoscalar “axionlike” field, rolling for a few e-folds during inflation.
The sourced gravitational waves can exceed the vacuum contribution at reionization bump
scales by about an order of magnitude and can be comparable to the vacuum contribution
at recombination bump scales. We argue that a satellite mission with full sky coverage
and access to the reionization bump scales is necessary to understand the origin of the
primordial gravitational wave signal and distinguish among two production mechanisms:
quantum vacuum fluctuations of spacetime and matter sources during inflation. We present
the expected constraints on model parameters from LiteBIRD satellite simulations, which
complement and expand previous studies in the literature. We find that LiteBIRD will be
able to exclude with high significance standard single-field slow-roll models, such as the
Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales.
We further investigate the possibility of using the parity-violating signature of the model, such
as the TB and EB angular power spectra, to disentangle it from the standard single-field
slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside
in BB angular power spectra rather than in TB and EB correlations.

Keywords: CMBR experiments, gravitational waves and CMBR polarization, inflation,
primordial gravitational waves (theory)
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1 Introduction

A stochastic background of primordial gravitational waves (hereafter GWs) predicted by the
inflationary paradigm [1, 2] represents one of the main targets of ongoing experimental efforts
in cosmology. The simplest models of inflation (realized by a single scalar field minimally
coupled to gravity and slowly rolling down its potential) predicts several properties of the
distributions of the scalar (density) fluctuations [3–7], which are in remarkable agreement
with cosmological observations [8–11]. Additionally, if the GW background is detected, it
would provide definitive evidence for cosmic inflation [12–15].

The spectrum of inflationary gravitational waves (tensor modes) extends over about 21
decades in frequency and is measurable through several different means. Among them, the
primordial B-modes of the cosmic microwave background (CMB) polarization represent the
most promising probe to detect the inflationary stochastic GW background [16, 17], and also
the closest in time. Other possible options include pulsar timing arrays (hereafter PTA) and
laser interferometers (see, e.g. ref. [18] for a review). Even though recent PTA measurements
presented strong evidence for the existence of a stochastic GW background [19–24], this signal
is still compatible with an astrophysical origin, i.e., due to inspirals of supermassive black
hole binaries [25–27]. Nonetheless, the deviation of the observed signal from the expected
astrophysical GW background could still have a primordial origin [28–30].

Whereas there has been no detection of the B modes from primordial tensor modes yet,
CMB experiments currently hold the tightest constraints on their amplitude, customarily
parametrized through the tensor-to-scalar ratio r parameter, i.e. the ratio of the amplitudes
of the tensor and scalar primordial power spectra. An upper limit r < 0.036 at 95% C.L.,
established by the BICEP/Keck collaboration at the pivot scale of k0 = 0.05 Mpc−1 assuming
a fixed cosmology [31], was shown to increase to r < 0.042 at 95% C.L. when fitting also

– 1 –
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for ΛCDM parameters [32]. With the addition of Planck PR3 data, the current upper limit
reduces to r < 0.035 at 95% C.L. [31, 33]. An even tighter limit is obtained using Planck
PR4 data and likelihoods, together with BAO data, i.e. r < 0.032 at 95% C.L. [32]. Using
a conditioned covariance matrix as advocated in ref. [34], the upper limit from the same
datasets was shown to increase to r < 0.037 at 95% C.L. for a profile likelihood approach [35]
and to r < 0.038 at 95% C.L. for a Monte Carlo Markov chain approach [34]. Finally, fitting
also the slope of the tensor power spectrum (and adding the LIGO-Virgo KAGRA dataset to
the previous ones), leads to an improved upper bound r < 0.028 at 95% C.L. at the pivot
scale k0 = 0.01 Mpc−1 [36]. Given the importance of this measurement, several B-mode
experiments, such as the ground-based Simons Array [37], Simons Observatory (SO) [38], the
South Pole Observatory [39], the Cosmology Large Angular Scale Surveyor (CLASS) [40]
and CMB-S4 [41], the balloon-borne SPIDER [42] and the LiteBIRD (Lite satellite for the
study of B-mode polarization and Inflation from cosmic background Radiation Detection)
satellite [43], are currently targeting this very faint primordial signal or will do so towards the
end of this decade. More specifically, LiteBIRD is a strategic large-class mission selected by
the Japan Aerospace Exploration Agency (JAXA) to be launched in the early 2030s. It will
orbit the Sun-Earth Lagrangian point L2 and will map the CMB polarization over the entire
sky for three years, using three telescopes in 15 frequency bands between 34 and 448 GHz.
LiteBIRD, being a full-sky satellite mission, will also have access to the very largest scale
B modes produced during cosmic reionization, in addition to the smaller scale B modes
produced during cosmic recombination. Instead, planned ground-based CMB experiments
will only be able to access the recombination signature at smaller scales. With a detection
limit at the level of r ≲ 10−3, LiteBIRD and CMB-S4 are the most sensitive among the
experiments that have already passed the proposal stage.

However, simply detecting r on its own would not allow one to understand the origin of
the primordial GW background. In the simplest scenario (i.e. standard single-field slow-roll
inflation), the primordial scalar and tensor perturbations are produced by quantum vacuum
fluctuations of the metric. The resulting GW background has three distinctive properties:
(i) a nearly scale-invariant spectrum (with a slight red tilt given by the inflationary consistency
relation); (ii) an almost Gaussian probability density function (pdf); and (iii) no net circular
polarization (i.e., non-chiral or parity conserving polarization). In this simple framework, r

can be directly related to the energy scale of inflation [44]. However, all previous properties
characterizing the vacuum-produced GW background do not necessarily hold if matter
sources (i.e. excited extra particle content) are active during inflation. Checking for the
scale dependence of the tensor spectrum, the presence of non-Gaussianities in the tensor
modes and the existence of parity-violating correlations, both at the CMB and interferometer
scales, therefore becomes a necessary step before any claim on the origin of these tensor
modes can be made [18, 33, 45–48]. Other models that can violate the above properties
of vacuum-produced GW background are those introducing non-minimal coupling of the
inflaton [49–51], additional scalar fields [52–56], and modified gravity models [57]. Non-zero
spatial curvature and kinetically-dominated initial conditions for inflation could also play
a role in amplification or suppression of the GW background [58, 59].

Model-building with additional matter sources typically poses a challenge: sources are
always at least gravitationally coupled to the inflaton sector, which results also in excitation

– 2 –
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of non-Gaussian scalar modes [60–63], potentially clashing with the bounds from CMB
data [46, 64, 65]. In this context, two of the most successful categories of models are based on
Abelian [52, 60, 64, 66–75] and non-Abelian [76–89] gauge fields. In this paper, we will focus
on a model belonging to the latter category, which sources tensor modes from an SU(2) gauge
field coupled to a pseudoscalar “axionlike” field through a Chern-Simons term [81]. Since the
axion and gauge fields are spectators (i.e., their energy density is subdominant compared to
that of the inflaton), inflation is achieved through a standard inflaton sector [81]. However,
the Chern-Simons coupling breaks the conformal invariance of massless free gauge fields
coupled to gravity, allowing for tachyonic amplification of gauge field perturbations, a process
controlled by the speed of the axion rolling along its potential. Gauge field fluctuations, in
turn, lead to a peak in the primordial tensor power spectrum, with a characteristic Gaussian
bump shape [90]. This model is unique because it can source tensor modes from matter fields
at linear order in the perturbed Einstein equations without breaking the statistical isotropy
of the Universe. Therefore, unlike similar models such as axion-U(1) inflation [46, 64], which
can source tensor modes only at second order in gauge-field perturbations, the axion-SU(2)
model typically produces a negligible amount of sourced scalars and scalar non-Gaussianity
compared to the vacuum-produced ones, allowing for sizeable amplitudes of a sourced GW
background without spoiling agreement with current CMB bounds. On the other hand, the
axion-SU(2) setup produces a strongly non-Gaussian tensor signal due to self-coupling of
the gauge field, providing another distinctive (and potentially crucial) feature of this model
compared to the inflationary paradigm [64, 69, 83, 84]. Generalizations to SU(N) gauge
theories have also been considered and lead to the same phenomenology [91].

From the perspective of future B-mode experiments, the axion-SU(2) setup appears to
be a particularly interesting candidate to probe: it can source tensor modes exceeding the
vacuum contribution by a factor of ∼ 5 on the reionization bump scales in the CMB B-modes,
while both contributions can still be comparable on the recombination bump scales [92]. As
we argue in section 2.5 of [43], this feature of the model highlights the benefits of a full-sky
survey with access to the reionization bump, such as LiteBIRD, when trying to distinguish
between sourced and vacuum origins of the primordial GW background. Our motivation
in this work is to investigate how well LiteBIRD can test the properties (i) and (iii) of the
vacuum GW background, i.e., the approximate scale-invariance of the spectrum and the parity
symmetry. Specifically, we discuss whether LiteBIRD observations can exclude standard
single-field slow-roll inflation if tensors fluctuations arise from the production of matter in a
way that breaks the approximate scale-invariance of the spectrum and produces non-zero
parity-violating correlations. If observed data were found to be inconsistent with predictions
of standard single-field slow-roll models, it would provide a strong motivation to test also the
property (ii), i.e., the Gaussianity of the stochastic GW background. The latter topic will be
the subject of detailed investigation in a follow-up LiteBIRD collaboration paper.

This work is part of a series of papers that present the science achievable by the LiteBIRD
space mission, expanding on the overview published in ref. [43]. In particular, we expand
on the discussion presented in section 2.5 of ref. [43] with a more quantitative approach,
using LiteBIRD map-based simulations (including the component separation and angular
power spectra estimation steps), to build a robust power spectrum covariance matrix and
a likelihood based on the Hamimeche & Lewis [93] approximation. We then perform a

– 3 –



J
C
A
P
0
6
(
2
0
2
4
)
0
0
8

parameter inference on a representative selection of parameter choices for the model, using a
frequentist Monte Carlo approach based on the Feldman-Cousins prescription [94, 95] (see
also [35, 42, 46, 96, 97] for recent applications in cosmology) to account for the presence
of physical boundaries on the parameters.

We also investigate another unique signature of the axion-SU(2) model: TB and EB

parity-violating correlations in the CMB due to the Chern-Simons coupling. We find that
the TB and EB spectra produced by this model cannot be detected by LiteBIRD, and that
almost all the constraining power on the axion-SU(2) model resides in the BB spectrum. We
finally assess the power of LiteBIRD in discriminating between the two possible mechanisms
for the production of gravitational waves, including information from TT , EE, BB, TE,
TB and EB CMB spectra in the covariance matrix.

The rest of the paper is structured as follows. In section 2 we review the axion-SU(2)
model of [81] and the latest bounds available in the literature. In section 3 we describe the
simulations and the method used. In section 4 we emphasize the benefits of a full-sky B-mode
mission to test the origin of the stochastic GW background. In section 5 we quantify the
constraining power of LiteBIRD on the parameters of the axion-SU(2) model. In section 6
we investigate the additional discriminating power of the TB and EB angular power spectra.
We present our conclusions in section 7.

2 Spectator axion-SU(2) gauge field inflation model

We will consider the spectator axion-SU(2) gauge field inflation model of ref. [81], based on
the “chromo-natural” inflation model [98] (see also refs. [45, 78] for reviews). The Lagrangian
for this model,

L = Linf − 1
2 (∂µχ)2 − V (χ) − 1

4F a
µνF aµν + λ

4f
χF a

µνF̃ aµν , (2.1)

contains a standard inflaton sector Linf , which always dominates the energy density and
is responsible for inflation, and an axion field χ with a cosine-type potential V (χ) =
µ4 [1 + cos (χ/f)], where µ and f are dimensioned parameters and λ is the dimensionless
coupling constant for an SU(2) gauge field coupled to the axion via a Chern-Simons term.
The SU(2) gauge field Aµ =

∑
a Aa

µσa (where σa are the Pauli matrices and a = {1, 2, 3}) has
a field strength tensor given by F a

µν = ∂µAa
ν − ∂νAa

µ − gϵabcAb
µAc

ν , where g is the self-coupling
constant, F̃ aµν ≡ ϵµνρσF a

ρσ/(2
√

−gM) is the dual field strength tensor and ϵµνρσ is the totally
antisymmetric symbol with ϵ0123 = 1. Here,

√
−gM is the determinant of the metric tensor.

This model can source tensor modes at linear order in the perturbed Einstein equations
without breaking the observed statistical isotropy of the Universe, because the SU(2) gauge
field establishes a homogeneous and isotropic background solution, Āa

i = a(t)Q(t)δa
i [76, 77].

This solution is approached even if the Universe was initially highly anisotropic (i.e. is an
attractor solution) [99–102]. The perturbation around this solution gives scalar, vector, and
tensor modes [76, 77]. In particular, tensor fluctuations of the gauge field, which are subject
to tachyonic amplification near horizon crossing, source gravitons at the linear level in the
stress-energy tensor. Only one of the helicities of the gauge field is amplified due to the
parity-violating Chern-Simons coupling, leading to a chiral GW background with left- or

– 4 –
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right-handed circular polarization [78, 80, 85, 86]. The primordial power spectrum of the
sourced tensor modes, assuming that only left-handed gravitational waves are amplified,
has a log-normal shape1 [90]

PL, sourced
t (k) = r∗Pζ(kp) exp

[
− 1

2σ2 ln2
(

k

kp

)]
, (2.2)

PR, sourced
t (k) ≃ 0, (2.3)

controlled by the wavenumber kp where the spectrum peaks, the effective tensor-to-scalar
ratio at the peak scale r∗, the width of the Gaussian-shaped bump σ and the power spectrum
of scalar curvature perturbations Pζ . The three parameters {r∗, kp, σ} can be related to the
parameters in the model Lagrangian2 {g, λ, µ, f} (eq. (2.1)) [90, 103]. The peak wavenumber
kp corresponds to the time t∗ at which χ is at the inflection point of the potential, χ(t∗) = πf/2,
reaching its maximum velocity. We also define the dimensionless time-dependent mass
parameter of the gauge field fluctuations as mQ(t) ≡ gQ(t)/H (with H the Hubble expansion
rate during inflation), which is m∗ ≡ mQ(t∗) = (g2µ4/3λH4)1/3 at the inflection point.
We can also define a dimensionless effective coupling ξ∗ ≡ λχ̇(t∗)/(2fH) ≈ m∗ + m−1

∗ and
write k/kp = eH(t−t∗), σ2 = (λ/2ξ∗)2/[2G(m∗)], with G(m∗) ≈ 0.666 + 0.81m∗ − 0.0145m2

∗ −
0.0064m3

∗ [90]. The effective tensor-to-scalar ratio at the peak scale can be defined as

r∗ = Psourced
t (kp)
Pζ(kp) = m4

∗H4F(m∗)
π2g2M4

PlPζ(kp)
, (2.4)

where F(mQ) ≃ exp [2.4308mQ − 0.0218m2
Q − 0.0064m3

Q − 0.86] and MPl is the Planck mass,
and can take any positive value, in principle.3 On the other hand, since χ can remain at the
top of its cosine-type potential hill only for a limited amount of time due to its quantum
fluctuations, σ and kp must satisfy the relation [90]:

∆N = σ
√

2G(m∗) ≳ ∆Nmin = 1
1.8 log

(
kp

kCMB

)
, (2.5)

where ∆N is the number of e-folds during which the axion is rolling down its potential
and kCMB is roughly equal to the largest observable CMB scale. Whereas eq. (2.2) and
the following discussion hold only for axion potentials of the cosine-type and those with an
inflection point, other power spectrum shapes are possible for different V (χ) [103].

In all previous equations, Pζ receives negligible sourced contributions for mQ ≥
√

2 [80, 81]
and can therefore be assumed to be equal to the vacuum scalar power spectrum Pvac

R (k) =
As (k/k0)ns−1, with the amplitude As, spectral index ns and pivot scale k0 = 0.05 Mpc−1.
The tensor power spectrum from the inflaton sector (indicated by “vac”) receives instead

1Note that this result assumes also that the slow-roll approximation is appropriate for the axion evolution.
This has been checked in ref. [90] comparing with the full numerical solution of the background and perturbation
equations for the axion and gauge field.

2The three parameters {r∗, kp, σ} do not uniquely determine the four Lagrangian parameters {g, λ, µ, f}:
it is necessary to specify a fourth parameter, e.g. m∗, the mass of the gauge field fluctuations at the inflection
point of the potential [90].

3Note that the expression for F(mQ) is valid for 3 ≤ mQ ≤ 7 [90].
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a sourced contribution:

Pt(k, kp, r∗, σ) = Pvac
t (k) + Psourced

t (k, kp, r∗, σ), (2.6)

Psourced
t (k, kp, r∗, σ) = PL, sourced

t (k) + PR, sourced
t (k), (2.7)

where Pvac
t (k) = At (k/k0)nt is the tensor power spectrum from quantum vacuum fluctuations,

with the amplitude At and spectral index nt. We also define the tensor-to-scalar ratio of
purely vacuum fluctuations as rvac = At/As.

The theoretical self-consistency of the axion-SU(2) setup has been studied in a number of
papers, focusing mainly on the backreaction effect of particle production from the background
axion and gauge fields on the background evolution, which could possibly ruin the phe-
nomenological success of this model [81, 92, 104–110]. Recently, the study on spin-2 particle
production has been significantly improved by solving equations of motion with backreaction
for a wide range of model parameters [92]. According to this study, the amplitude of the
sourced tensor modes can exceed by more than a factor O(10) the vacuum contribution
at the CMB scales, and by several orders of magnitude at smaller scales. Including the
effect of non-Gaussian scalar perturbations produced in second order by sourced tensor
modes [111, 112] reduces the allowed ratio of sourced-to-vacuum tensors to a factor O(1)
at ℓ ≳ 80, where both the scalar power spectrum and scalar non-Gaussianity are tightly
constrained by CMB temperature data [9, 11, 113], and to a factor ∼ 5 at low multipoles
ℓ ≲ 10, where the temperature constraints are weaker.

In light of these theoretical bounds, we choose two sets of parameters of the axion-
SU(2) model with the purpose of obtaining B-mode spectra with reionization bump scales
(ℓ ≲ 10) as different as possible from the Starobinsky model of inflation [114] (rvac = 0.00461,
nt = −rvac/8), while having similar recombination bumps (ℓ ∼ 80–100) (figure 1). These two
sets of parameters are r∗, σ, kp, rvac = [0.023, 1.1, 3.44 × 10−4 Mpc−1, 0.00461], which gives the
“high reionization bump” model (dot-dashed orange curve in figure 1) and r∗, σ, kp, rvac =
[0.002, 1.9, 0.03 Mpc−1, 0.002], the “low reionization bump” model (dashed purple). These two
choices update those in figure 4 of ref. [43] with viable models according to the study in ref. [92].
The CMB angular power spectrum for the “high reionization bump” remains approximately
the same as in ref. [43], although we use rvac = 0.00461 instead of the almost negligible
value of rvac = 10−4 previously assumed. This is because the ratio of sourced-to-vacuum
tensors can be at most ∼ 5 at low multipoles [92]. In this new choice of parameters, the
vacuum fluctuations provide a similar recombination bump as the Starobinsky model, while
the sourced modes enhance only the reionization bump. However, now a value of r∗ = 0.023
(about half of the previous r∗ = 0.041) is sufficient to obtain the amplitude of the power
spectrum similar to the one in ref. [43] at scales ℓ ≲ 10. On the other hand, the new “low
reionization bump” model, due to the fact that the ratio of sourced-to-vacuum tensors can be
at most O(1) at ℓ ≳ 80 [92], is significantly different from the one in [43]. In this case, both
vacuum and sourced tensors contribute equally (i.e., rvac = r∗) to produce a recombination
bump similar to that of the Starobinsky model. Figure 1 also shows for reference the cosmic
variance-only (including primordial and lensing B-mode variance) and total LiteBIRD ±1 σ

binned error bars (including foreground residuals) as gray and blue regions, respectively.
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Figure 1. B-mode power spectra, DBB
ℓ = ℓ(ℓ + 1)CBB

ℓ /2π, for the Starobinsky model with
rvac = 0.00461 and nt = −rvac/8 (black dotted line) and for axion-SU(2) inflation with two parameter
sets (see section 2): one gives the “high reionization bump” model (dash-dotted orange) with
parameters r∗, σ, kp, rvac = [0.023, 1.1, 3.44 × 10−4 Mpc−1, 0.00461]; the other the “low reionization
bump” model (dashed purple) with r∗, σ, kp, rvac = [0.002, 1.9, 0.03 Mpc−1, 0.002]. The cosmic-variance-
only (including primordial and lensing B-mode variance) and total LiteBIRD ±1 σ binned error bars
(including foreground residuals) are shown as the gray and blue regions, respectively.

In this work, we also check that all the parameter choices are consistent with observational
constraints on the axion-SU(2) model from the analysis of current CMB datasets [115].
However, as also noted in [115], the shape of the tensor power spectrum is very weakly
constrained by the Planck and BICEP/Keck data: the upper limits on the model parameters
are prior dominated and strongly affected by degeneracies.

3 Method, simulations and likelihood

In this section, we will briefly describe the map-based simulations with LiteBIRD specifications,
the component separation method, the angular power spectrum estimation procedure, and
the likelihood used in this work. A sketch of the pipeline from input maps to inference on
inflationary model parameters is shown in figure 2.

Simulations. The simulation setup used in this paper is the same as described in section 5.2
of [43] to which we refer the reader for full details. Here, we summarize the main points. The
input CMB and Galactic foreground maps in each LiteBIRD frequency channel are generated
at a HEALPix [116] resolution of Nside = 512. The input maps of the CMB are generated as
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Figure 2. Pipeline for inflationary model parameter constraints used in the paper. See sections 3, 5
and 6 for details.

random Gaussian realizations from the lensed CMB angular power spectra corresponding
to the values of the Planck best-fit cosmological parameters [9] and rvac = 0. Note that
simulations for rvac ̸= 0 and/or other models of inflation are built from the component
separation outputs of the maps with rvac = 0 as explained in the “Component separation”
section below. The input maps of the Galactic foreground are instead generated using the
PySM package [117, 118], and more specifically the default model identified as d1s1, which
includes templates of thermal dust and synchrotron emission [119–121]. The frequency
dependence of the thermal dust signal is modeled as a modified black-body with temperature
and spectral index varying across the sky, following [119]. Similarly, polarized synchrotron
emission follows a power law with a spatially varying spectral index [122]. The sky templates
from PySM are then convolved with top-hat bandpasses, coadded, convolved with Gaussian
circular beams, and subsequently added to instrumental (white) noise realizations (see table 3
in ref. [43] for bandpass width, beam size, and noise levels considered). This procedure results
in 1000 realizations of CMB, noise and foregrounds, which constitute the input maps for
the component separation procedure described below.

Component separation. Component separation is performed using the FGBuster4 code [123],
implementing a parametric fitting approach. The foreground model assumed in the code
includes three spectral parameters: the spectral index and temperature of a modified black-
body spectrum for the dust; and the spectral index of the power-law spectrum of synchrotron
radiation. The three spectral parameters are fitted independently over patches defined by
HEALPix pixels at a given Nside resolution [124]. To find a suitable balance between the

4https://github.com/fgbuster/fgbuster.
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statistical uncertainty on spectral parameters, which increases with the number of pixels
(i.e., of free parameters in the fit), and the need to capture the actual spatial variability of
the foreground sky, we adopted different values of Nside for each parameter and according
to the Galactic latitude [43].

The FGBuster code returns a map including post-component separation noise and
foreground residuals (hereafter collectively named “noisy foreground residuals”) at Nside = 64
for each of the 1000 input CMB and noise map realizations. Since these output maps are
independent of the CMB input signal [125], we can sum them to Gaussian map realizations
of a lensed CMB signal computed from an arbitrary cosmological model. In this way, we can
get 1000 component-separated maps for each choice of our inflationary model parameters.
This feature will be used in sections 4, 5 and 6 to obtain constraints on the axion-SU(2)
model without rerunning the computationally expensive component-separation code for each
set of model parameters. To avoid correlations, we used 500 simulations to estimate the
Cℓ covariance matrix with a fiducial model and the other 500 simulations as simulated
data (see also below).

Angular power spectrum estimation. We compute auto-spectra of maps using two
different estimators of angular power spectra at different scales, as in ref. [126]: a pure
pseudo-Cℓs method (implemented in the NaMaster5 code [127]) for intermediate and small
scales (ℓ ≥ 35) and a quadratic maximum likelihood (QML) estimator [128, 129] at large scales
(ℓ < 35). The pseudo-Cℓs estimator is nearly optimal for smaller scales, but suboptimal at large
scales [130, 131]. The QML method, despite being more computationally expensive compared
to the pseudo-Cℓs, produces nearly optimal variance estimates of the power spectrum at large
scales. We use the QML implementation publicly available in the xQML6 code [129]. The
two estimators are computed separately on the maps and then joined to form a single auto
power spectrum. As specified above, the noisy foreground residuals returned by FGBuster
have a resolution of Nside = 64; however, since the xQML implementation is memory intensive
and therefore not feasible at this resolution, we downgrade the maps to Nside = 16, after
convolution with an apodizing kernel to avoid aliasing [9].

Sky masks. We use two different masks for the two power spectrum estimators described
above: a binary mask obtained from the LiteBIRD polarization mask with sky fraction
fsky = 49.5% presented in section 5.2.4 of [43] for the QML estimator and the Planck Galactic
plane mask appropriately apodized for the pseudo-Cℓs (figure 3). We optimize the mask
properties at both the spectrum and the parameter likelihood levels. First, we minimize both
the variance of the BB spectrum and the residuals of the simulations with respect to the input
spectrum divided by the error on the mean at each multipole, while varying the threshold of
the binary mask in the QML part and the apodization scale and sky fraction in the pseudo-Cℓs
one. We then verify that the mask configurations explored in the first step actually minimize
the uncertainty and bias on the tensor-to-scalar ratio rvac for a fiducial Starobinsky model
(see also discussion below). We find the optimal configuration by downgrading the LiteBIRD
mask to Nside = 16 and thresholding it at a value of 0.75, resulting in fsky = 47% for the

5https://github.com/LSSTDESC/NaMaster.
6https://gitlab.in2p3.fr/xQML/xQML.
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Figure 3. Left panel: binary mask (fsky = 47%) used for the large-scale power spectrum estimation
(QML) at Nside = 16 resolution. Right panel: Planck Galactic-plane apodized mask (fsky = 51%) at
Nside = 64 used for intermediate/small-scale pseudo-Cℓs estimation (see section 3 for details).

QML estimator, and by apodizing the Planck fsky = 60% mask at a 10◦ scale with the C2

method [130], resulting in an effective fsky = 51% for pseudo-Cℓs.

Likelihood. We perform statistical inference on the inflationary model parameters using a
likelihood based on the Hamimeche & Lewis (hereafter H&L) [93] approximation. Specifically,
we add an offset term, as prescribed in ref. [132], to deal with negative values of the estimated
power spectra on large scales. We also use the Sellentin & Heavens (hereafter S&H) [133]
correction to the H&L likelihood, accounting for the increased uncertainty in the parameters
due to the finite number of simulations used in the estimation of the covariance matrix.
The block BBBB of the Cℓ covariance matrix estimated from simulations is shown in
figure 4, with unbinned multipoles in ℓ < 35 and binned multipoles with ∆ℓ = 10 for
ℓ = 35–150. Finally, we checked that the Monte Carlo noise due to the limited number of
simulations used to estimate the covariance does not affect parameter inference: adopting
the conditioning strategy suggested in ref. [34] leaves parameter estimates unchanged. All
fits in this paper are performed by minimizing the negative logarithm of likelihood −2 log L
by the multidimensional minimizer iMinuit.7

4 Disentangling vacuum and sourced origins: benefits of a full-sky mission

In this section, we highlight the benefits of a full-sky B-mode mission with access to the
reionization bump scales in helping to understand the origin of primordial GW background.
In the event of a detection of primordial B modes, this feature could allow one to exclude
quantum vacuum fluctuations of spacetime within the standard single-field slow-roll paradigm
as the only source of the observed GW background, pointing instead towards production
by matter sources, that is, the additional excited particle content active during inflation.
From this perspective, the axion-SU(2) model can provide a useful benchmark: it can source
tensor modes that exceed by a factor O(5) the vacuum contribution at the largest scales,
producing a pronounced feature in the reionization bump, while producing at the same time

7https://scikit-hep.org/iminuit/.
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Figure 4. Correlation matrix for the BBBB covariance block. Here multipoles up to ℓ = 35 are
unbinned, while larger multipoles are binned with ∆ℓ = 10.

a recombination bump essentially indistinguishable from the standard single-field slow-roll
prediction [43] (figure 1).

Here we expand on the discussion in ref. [43] in a more quantitative way. Suppose that
the true sky was generated from the axion-SU(2) inflation. Then what if the observational
data were fitted with a “wrong” model, in this case the standard single-field slow-roll one?
To this end, we generate LiteBIRD simulations for the “high reionization bump” parameter
choice of the axion-SU(2) model (corresponding to the orange dot-dashed curve in figure 1)
using the procedure described in section 3, and fit the BB spectrum of each simulation for the
tensor-to-scalar ratio parameter rvac (as defined in section 2), assuming for simplicity that all
other cosmological parameters are fixed by TT , TE and EE. This is a good approximation,
as the axion-SU(2) model provides negligible contributions to scalar perturbations, allowing
us to break the degeneracy between the inflationary parameters and the ΛCDM parameters.
The fit is performed three times for each simulation, taking three different ranges of multipoles
of the BB spectrum: only the reionization bump range (ℓ = 2–30), only the recombination
bump range (ℓ = 31–150) and finally the full range of multipoles (ℓ = 2–150). The resulting
histograms are shown in figure 5, while we report in table 1 the mean value and standard
deviation associated with the fit for each case. As is evident, the fit recovers very different
amplitudes for rvac in the three cases, potentially leading to incorrect interpretations within
the standard single-field slow-roll scenario. As was expected from our choice of the axion-
SU(2) parameters, the data point towards the Starobinsky model if the survey does not have
access to the reionization bump, even though the true sky features a significant contribution
from matter sources.

We note that if we also fit, in addition to rvac, the underlying “high reionization bump”
SU(2) simulations for the tensor spectral index nt, we expect nt to be partially degenerate
with r∗, σ and kp. In this case, the recovered nt would be very red, violating the standard
single-field slow-roll consistency relation and pointing towards the presence of more than
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Figure 5. Histograms of the inferred vacuum tensor-to-scalar ratio rvac values obtained from fitting
an observed sky generated from the “high reionization bump” axion-SU(2) model (with parameters
r∗, σ, kp, rvac = [0.023, 1.1, 3.44 × 10−4 Mpc−1, 0.00461]) in three different ranges of multipoles: only
the reionization bump range (ℓ = 2–30, in red), only the recombination bump range (ℓ = 31–150, in
yellow) and the full range (ℓ = 2–150, light blue). We also show for reference the rvac value for the
Starobinsky model (rvac = 0.00461).

ℓ range r̄vac σrvac

Full range 2–150 0.0065 0.0017
Reionization bump 2–30 0.011 0.004
Recombination bump 31–150 0.0044 0.0018

Table 1. Mean values (indicated by r̄vac) and standard deviation of the distributions of the rvac
parameter in figure 5, obtained by fitting a true sky generated from the “high reionization bump”
SU(2) model in three different ranges of multipoles.

one field during inflation. Checking the Gaussianity of the signal would then be essential in
discriminating between axion-SU(2) and other models (see section 1 for more details).

5 Constraining axion-SU(2) parameters with LiteBIRD

In this section, we explore the possibility of constraining the parameters of the axion-SU(2)
model using the LiteBIRD satellite. We infer parameters using a frequentist approach based
on the Monte Carlo simulations constructed in section 3, and account for the presence of
physical boundaries on the parameters following the Feldman-Cousins prescription [94]. We
start in section 5.1 by describing the Feldman-Cousins approach and applying it to our case
study, and in section 5.2 we explore the robustness of this construction.
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5.1 Feldman-Cousins approach

Frequentist confidence intervals for the parameters of interest are built using the classical
Neyman’s construction [134]. However, if the parameter has a physical boundary and its
estimate is close to this boundary, Neyman’s construction must be corrected as indicated by
Feldman & Cousins [94] (hereafter FC). This approach is a standard staple in particle physics
data analysis [135]. Recently there has been renewed interest in using it for cosmology, being
applied, for example, to Planck data [97], SPIDER B-mode data [42], early dark energy
models [96], the tensor-to-scalar ratio from the Planck and BICEP/Keck data [35], and
the search for signatures of axion-U(1) inflation in the current data [46]. This technique is
not plagued by prior volume effects that can arise during the marginalization procedure in
the Monte Carlo Markov Chain (MCMC) approach, when performing inference on degen-
erate/unconstrained parameters [35, 96, 136]. The Feldman-Cousins approach is therefore
an ideal choice for our case study, since we expect the axion-SU(2) model parameters to
be degenerate and hard to constrain simultaneously.

The FC recipe for our parameter of interest, r∗, is the following:

1. For each of the input values in the physically-allowed range of interest, rin
∗ , we generate

a sufficient number of simulations.

2. We fit a model to each simulation, obtaining values of rmle
∗ that maximize the likelihood

given the input simulation. These can be used to build a histogram of rmle
∗ values for

each input rin
∗ , which is then used in Step 3.

3. We determine, for each rin
∗ , the interval of rmle

∗ values that includes 95% of the simulations
(for a 95% C.L. confidence interval) with the highest likelihood ratio,8 defined as

R(rmle
∗ , rin

∗ ) = L(rmle
∗ |rin

∗ )
L(rmle

∗ |rbest
∗ ) , (5.1)

where rbest
∗ is the value of rin

∗ that maximizes the likelihood L(rmle
∗ |rin

∗ ). This determines
a horizontal interval at each rin

∗ in the rin
∗ versus rmle

∗ plane: the union of all these
intervals creates the confidence belt.

4. Finally, we intersect the confidence belt by drawing a vertical line at the observed value
of rmle

∗ , which we call robs
∗ . We can then read off the rin

∗ axis an upper (lower) limit if
the confidence belt is intersected only in its upper (lower) part or a two-sided confidence
interval if there are two intersection points.

In our specific case, we take 200 input values of rin
∗ linearly spaced in the range [0, 0.2] and

generate for each value 1000 LiteBIRD simulations as described in section 3, keeping fixed
kp = 3.44 × 10−4 Mpc−1, σ = 1.1 and rvac = 0.00461. We use robs

∗ = 0.015 as the observed
value, obtained as the best fit to the simulation generated from the “high reionization bump”
parameters (hereafter “ground truth” values) with rin

∗ = 0.023.
8The likelihood ratio is actually a profile likelihood ratio [95, 137], where one uses the maximum likelihood

estimates of the nuisance parameters in eq. (5.1).
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Figure 6. FC construction for the 1-parameter fit (solid black lines), with σ and kp fixed to
their ground truth. LiteBIRD will be able to obtain a two-sided 95% C.L. confidence interval
r∗ = 0.015+0.04

−0.008, if the observed sky has been generated from the “high reionization bump” model.
The observed value robs

∗ = 0.015 is indicated as a vertical solid red line, and its intersection with the
confidence belt with two red dots. The color bar shows the distribution of rmle

∗ obtained by fitting the
simulations as a function of the input rin

∗ . See section 5.1 for details.

In figure 6, we show the FC construction (solid black lines) in which we fit the simulations
only for r∗ (hereafter 1 parameter fit), fixing σ and kp to their ground truth in the template
(eq. (2.2)). In this case, we observe that LiteBIRD will be able to obtain a two-sided 95% C.L.
confidence interval of r∗ = 0.015+0.04

−0.008, if the observed sky has been generated from the
“high reionization bump” model. In the next section, we will discuss the robustness of these
constraints against a mismatch between the assumed values of σ and kp in the fit and the
ground truth, as well as the degradation of the constraint in r∗ when we also treat σ and
kp as free parameters in the fit.

5.2 Robustness of the constraints

In this section, we will explore how constraints on r∗ from the FC construction can change if
we adopt “wrong” assumptions about σ and kp in the 1-parameter fit. We also assess the
degradation of the constraints on r∗ when σ and kp are additional free parameters in the fit,
exploiting the full power of the FC construction: the parameter inference performed with
this technique is free from prior volume effects due to degeneracies/unconstrained parameters
in the Bayesian MCMC [35, 96, 136].

We start by examining the FC confidence belt built from the same simulations as in
section 5.1 and fitting each one for r∗; however, in this case, we consider three different values
of the peak scale kp = [10−4, 5 × 10−4, 5 × 10−3] Mpc−1 as shown in figure 7, instead of fixing
it to its ground truth, kp = 3.4 × 10−4 Mpc−1. We still fix σ to its ground truth; similar

– 14 –



J
C
A
P
0
6
(
2
0
2
4
)
0
0
8

0.025 0.000 0.025 0.050 0.075 0.100 0.125

rmle
*

0.00

0.02

0.04

0.06

0.08

0.10

rin *

1 parameter fit

true kp and 
kp = 0.0001 Mpc 1

kp = 0.0005 Mpc 1

kp = 0.005 Mpc 1

0

10

20

30

40

50

60

70

D
is

tri
bu

tio
n 

of
 s

im
ul

at
io

ns

Figure 7. FC construction for the 1-parameter fit with kp fixed to values different from its ground
truth, i.e. kp = [10−4, 5 × 10−4, 5 × 10−3] Mpc−1 (dotted orange, dot-dashed blue and dashed green,
respecitvely), compared to the ground truth confidence belt (solid black, same as in figure 6). We
assume the ground truth for σ. The color bar shows the distribution of rmle

∗ obtained by fitting the
simulations (assuming the ground truth for kp and σ) as a function of the input rin

∗ . See section 5.2
for details.

conclusions can be drawn by varying σ instead of kp. The behavior of the confidence belts in
figure 7 can be easily interpreted. The larger rin

∗ is, the larger the power in the underlying
simulations at the reionization bump becomes. However, if we fix kp = 5 × 10−3 Mpc−1

in the fit (green dashed), the template model can add power only at recombination bump
scales (k ∼ 5 × 10−3 Mpc−1): this results in a preference for small values rmle

∗ around zero,
since the power in simulations at recombination bump scales is already saturated by rvac.
Similarly, for the kp = 5 × 10−4 Mpc−1 case (dot-dashed blue), the confidence belt is slightly
tighter compared to the initial one (solid black) as less power is allowed at smaller scales
compared to reionization bump scales in the simulations, while the opposite is true for the
kp = 10−4 Mpc−1 case (dotted orange). The best choice of kp can be found by comparing
the value of the likelihood for each model considered.

Now, we check how much the constraints presented in section 5.1 are degraded when also
σ and kp values re allowed to vary in the fit. In figure 8, we show the confidence belt for
the 3-parameter fit (r∗, σ, kp). In this case, LiteBIRD will be able to put a 95% C.L. upper
limit on r∗ ≤ 0.16, if the observed sky has been generated from the “high reionization bump”
model. This significant degrading of the constraining power is mainly due to the degeneracy
among the three parameters of the model given in eq. (2.2). We also compare in table 2 the
95% C.L. confidence interval or upper limit on r∗ obtained from the FC construction in the 1-,
2- and 3-parameter fits. We report the observed value robs

∗ and the corresponding error bars
or upper limits. For the 1-parameter fit, we fix σ and kp to their ground truth values, while
in the 2-parameter case we additionally fit for σ while kp is fixed to the ground truth value.
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Figure 8. FC construction for the 3-parameter fit (solid black lines) with free parameters r∗, σ and
kp. LiteBIRD will be able to obtain a 95% C.L. upper limit r∗ ≤ 0.16, if the observed sky has been
generated from the “high reionization bump” model. The observed value robs

∗ = 0.05 is indicated as a
vertical solid red line. The color bar shows the distribution of rmle

∗ obtained by fitting the simulations
as a function of the input rin

∗ . See section 5.2 for details.

Constraint on r∗

1-parameter fit (r∗) r∗ = 0.015+0.04
−0.008

2-parameter fit (r∗, σ) r∗ = 0.033+0.06
−0.028

3-parameter fit (r∗, σ, kp) robs
∗ = 0.05; r∗ ≤ 0.16

Table 2. 95% C.L. confidence intervals or uppper limits on r∗ obtained from the FC construction
in the 1-, 2- and 3-parameter fits. We assume as the underlying model the “high reionization bump”
model (section 2). See section 5.2 for more details.

6 Parity-violating T B and EB correlations

In this section, we investigate another unique signature of the axion-SU(2) inflation model
when trying to disentangle it from standard single-field slow-roll models: TB and EB parity-
violating correlations in the CMB produced by chiral gravitational waves [49, 69, 138–140].
We finally assess the full power of LiteBIRD in discriminating between two mechanisms for
enhanced gravitational wave production, using all CMB spectra (TT , EE, BB, TE, TB

and EB) in the covariance matrix.
Concerning TB and EB spectra, we improve and update the LiteBIRD forecast presented

in [90] in a number of aspects. First, we relax the assumption used in [90] of the same
CMB upper bound on rvac applying to all scales. Instead, we take into account that at
reionization bump scales this bound becomes considerably relaxed compared to the one

– 16 –



J
C
A
P
0
6
(
2
0
2
4
)
0
0
8

at k = 0.05 Mpc−1 [32, 126, 141]. This allows, in principle, for a larger signal from the
axion-SU(2) model at these scales. Second, we update the forecast with new bounds on
the SU(2) parameter space from backreaction [92] and the current upper limits from the
Planck and BICEP data [31, 32, 35, 115]. Third, we show results for the full covariance
matrix from realistic LiteBIRD simulations, instead of the simplified Fisher approach of [90].
Fourth, since we found that the signal-to-noise ratio defined in [90] is strongly dependent
on the fiducial model adopted in the covariance matrix, we use as a figure of merit ∆χ2

between the standard single-field slow-roll fiducial (specifically, the Starobinsky model) and
axion-SU(2) models, that is

∆χ2 =
(
CSU(2)

ℓ − Cfid
ℓ

)T
M−1

(
CSU(2)

ℓ − Cfid
ℓ

)
, (6.1)

where M is the Cℓ covariance matrix, Cfid
ℓ is a vector containing the fiducial angular power

spectra and similarly CSU(2)
ℓ contains the theoretical spectra for the axion-SU(2) model.

We quantify in figures 9 and 10 the discriminating power of LiteBIRD between the
axion-SU(2) and standard single-field slow-roll Starobinsky models (rvac = 0.00461) via ∆χ2

values as a function of r∗ and σ given a fixed scale kp. For each point in this parameter space,
we compute the quantity ∆χ2 in eq. (6.1): larger positive values of ∆χ2 indicate an increased
ability of LiteBIRD to discriminate axion-SU(2) from the fiducial model. The associated p-
value, i.e. the probability that the χ2 statistic should exceed a particular value ∆χ2 by chance,
given that the null hypothesis (i.e. the fiducial model) is correct, can then be computed as [95]

p(∆χ2, n) =
∫ +∞

∆χ2
χ2

n(x)dx, (6.2)

where χ2
n(x) is the distribution for n degrees of freedom (hereafter d.o.f.). In our analysis,

the number of d.o.f. will be equal to the total number of multipole bins in all spectra
considered.9 The p-value can be converted into an equivalent significance Z, defined such
that a Gaussian distributed random variable, fluctuating Z standard deviations above its
mean, has an upper-tail probability equal to p, that is, Z = Φ−1(1 − p), where Φ is the
cumulative distribution of the standard Gaussian and Φ−1 its inverse quantile [95]. For
instance, Z = 5 (i.e. a 5 σ detection) corresponds to p = 2.87 × 10−7. We use this relation
to draw reference contours of significance of 1 σ, 3 σ, 5 σ and 8 σ in figures 9 and 10. Note
that this σ, although named the same, is not the parameter σ of the axion-SU(2) model,
which is instead plotted on the x-axis of these figures.

In figure 9, we compare the contribution to ∆χ2 from different blocks of the covariance
matrix (the full covariance, BBBB, TBTB and EBEB blocks) in each panel. In figure 10,
instead, we compare ∆χ2 for different choices of kp that can be probed by CMB observations,
using the full covariance matrix. The white area in both figures represents the portion of
parameter space excluded by current upper limits on the tensor-to-scalar ratio by Planck
and BICEP/Keck data at each scale [31, 32, 35, 115, 126]. Note that we assume r∗ = 5rvac

9For this analysis we bin angular power spectra with equal width ∆ℓ = 10, resulting in 14 bins for each
spectrum. We additionally checked that the distribution of ∆χ2

null,i =
(
Csim,i

ℓ − Cfid
ℓ

)T M−1 (Csim,i
ℓ − Cfid

ℓ

)
for fiducial Starobinsky model simulations (i.e., the null hypothesis), where Csim,i

ℓ is the spectrum estimated
from the ith simulation, follows a χ2 distribution with the expected number of d.o.f.
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Figure 9. Comparison of ∆χ2 (eq. (6.1)) between the axion-SU(2) and standard single-field slow-roll
Starobinsky models from the full covariance matrix (top left panel), BBBB (top right), TBTB

(bottom left) and EBEB (bottom right) covariance blocks for LiteBIRD, as a function of r∗ and
σ given kp = 3.44 × Mpc−1. The contours show 1 σ, 3 σ, 5 σ and 8 σ significance (note that this σ,
although named the same, is not the parameter of the axion-SU(2) model, which is instead plotted on
the x-axis). The white area is excluded by current upper limits on the tensor-to-scalar ratio. The red
⋆ symbol in the upper right panel indicates the “high reionization bump” model. Note that the color
scale changes in every panel.

for all kp choices, except for kp = 5 × 10−3 Mpc−1 for which we assume r∗ = rvac, following
ref. [92] (section 2). In figures 11, 12 and 13, we also show the BB, |TB| and |EB| power
spectra, respectively, used in figure 10.

We find that the contribution to the total ∆χ2 is entirely dominated by BB: LiteBIRD
will be able to exclude with high significance the Starobinsky model if the tensor fluctuations
arise from axion-SU(2) inflation and if the typical features of this latter model occur at
scales observable by the CMB. Specifically, the significance is higher than 8 σ for parameter
close to the current upper limits on axion-SU(2) parameters, while TB and EB remain
under 1 σ significance in all cases considered, making it impossible for LiteBIRD to detect
parity-violation generated by the axion-SU(2) model. Furthermore, as noted in ref. [90], the
TB contribution dominates over the EB one, making ∆χ2 larger by a factor ∼ O(102).
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Figure 10. Same as figure 9 but each panel has a different kp and we use the full covariance matrix
for all panels. Here we assume r∗ = 5rvac in the top two and bottom left panels, while the bottom
right panel assumes r∗ = rvac, following ref. [92]. Note that the color scale changes in every panel and
y-axis range changes in the bottom right panel.

Comparing the upper left and right panels of figure 9, we find that, for a given parameter
choice, using only the BBBB block results in higher significance compared to the full
covariance matrix. This is because differences between the fiducial and axion-SU(2) model
exist only in the BB spectrum and marginally in TB and EB. Therefore, using the full
covariance just increases the number of degrees of freedom, diluting the information content.
Although the inference of parameters by extracting a single block from the full covariance
matrix is not strictly correct, it is still useful in this context to understand in an approximate
fashion the contribution of different angular power spectra to the final LiteBIRD sensitivity.

Our analysis can be improved. Since we are using the same sky mask, which was optimized
for B modes (see section 3), for both temperature and polarization maps to compute the
full covariance, the importance of the TB spectrum in the analysis could further increase
if we optimized masks to temperature field with a larger sky fraction.

In summary, we conclude that LiteBIRD will be able to exclude with high significance
tensor fluctuations produced by vacuum fluctuations (specifically, in the Starobinsky model)
if the GW background has been produced by the axion-SU(2) mechanism and the feature
is sourced at the CMB scales. We also find that the BB spectrum will dominate the
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Figure 11. BB power spectra for each of the parameter sets used in each panel of figure 10. They
correspond to spectra computed on a grid of 100 linearly spaced values of r∗ in the range 0.001–0.36
and 50 values of σ in the range 1–10 at each fixed kp value, excluding spectra not compatible with
theoretical consistency arguments and observational bounds (see section 2 for details). Darker color
lines correspond to larger r∗ and σ in this range. We also show for reference the BB spectrum for
standard single-field slow-roll inflation obtained for rvac = 0.037 (solid red), saturating the current
upper at scales 0.05 Mpc−1, the “high reionization bump” axion-SU(2) model (dot-dashed orange, see
section 2) and the Starobinsky model (dotted black).

discriminating power of LiteBIRD, while TB and EB correlations would be of secondary
importance. In the axion-SU(2) model, in fact, the production of detectable parity-violating
correlations would imply an overproduction of B modes, which would conflict with current
observational limits on tensor modes. Since the tensor power spectrum log-normal template in
eq. (2.2) can include several different shapes, we can reframe our conclusions on parity-violating
correlations TB and EB in a more general way. Based on our results in figure 9, we argue that
LiteBIRD will not be able to exclude the fiducial Starobinsky model using exclusively TB

and EB correlations for all models producing fully or partially chiral GWs, as long as in the
parameter space of interest: (i) the tensor power spectrum shape is “nested” in the log-normal
template; (ii) sourced scalar modes are negligible, or, in other words, the observational bounds
on TT , TE and EE as well as on non-Gaussianities of the scalar perturbations, are satisfied;
(iii) the maximum allowed ratio between sourced and vacuum-produced tensor modes is
≲ O(10) at reionization bump scales and ≲ O(1) at recombination bump scales. We also note
that higher-order correlations (such as bispectra, trispectra etc.) in the CMB are expected
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Figure 12. Same as figure 11 but for |TB| power spectra. We also show for reference the |TB|
spectrum for the “high reionization bump” axion-SU(2) model (dot-dashed orange, see section 2).

to be powerful probes to investigate parity-violation during inflation [140]. A forecast using
these statistics will be the subject of a future paper of the LiteBIRD collaboration.

7 Conclusions

Enhanced primordial gravitational waves from gauge fields during inflation represent a new
paradigm of the primordial universe that has been extensively studied in the literature [45, 78].
In this paper, we used realistic simulations to show that, thanks to the access to the reionization
bump scales provided by a full-sky CMB mission, LiteBIRD can provide significant help in our
effort to distinguish between inflation models, more specifically in excluding the production
of the stochastic GW background within the standard vacuum fluctuations paradigm in favor
of production by matter sources and vice versa. We also presented expected constraints
on the model parameters of an SU(2) model with a characteristic “bump-like” feature in
the reionization bump. In this case, LiteBIRD will be able to obtain a two-sided 95% C.L.
confidence interval on the bump feature amplitude r∗.

The SU(2) model, in contrast to the standard inflationary scenario, also predicts parity-
violating correlations in the CMB. We include the contribution of TB and EB in the full
covariance matrix and assess the ability of LiteBIRD to disentangle standard single-field
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Figure 13. Same as figure 12 but for |EB| power spectra.

slow-roll (specifically the Starobinsky model, a reference target for LiteBIRD) from the
axion-SU(2) model, finding that this experiment will be able to distinguish them with high
significance for a wide range of model parameters. We also find that the discriminating
power of LiteBIRD will be determined mainly by BB, with TB and EB giving negligible
contributions in almost all the allowed parameter space. Detecting the parity-violating signal
in TB and EB from the axion-SU(2) model remains out of sight for LiteBIRD.

We enforced bounds on sourced-to-vacuum tensor perturbations from the backreaction
effect of spin-2 particle production on the background fields and from the non-Gaussian
contribution to the scalar curvature perturbations produced at second order by sourced
tensor modes, in order for the analytical template (eq. (2.2)) to remain valid. However, we
stress that lattice simulations [142, 143] can be used to relax these bounds and study the
system also in the strong backreaction regime.

In this paper, we used the power spectrum as our main observable, taking advantage
of the strong scale dependence of the tensor spectrum and the presence of parity-violating
correlations predicted in axion-SU(2) models. However, additional information is available in
the bispectrum and higher order correlation functions, potentially allowing to distinguish
vacuum produced from sourced tensors when the power spectrum does not present significant
features at CMB scales [64, 69, 83, 84]. We plan to explore this possibility in a dedicated
future LiteBIRD paper.
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The axion-SU(2) model can also produce a signal directly detectable in the interferometer
band, both in intensity and circular polarization of GWs [90, 144]. This opens up a new
window in the GW spectrum to detect the parity-violating signature of this model. We also
note that GW background anisotropies are a powerful probe of primordial parity-violation
and non-Gaussianities in both PTA [145–148] and interferometers [149–151].

Finally, we mention the connection between this model and recent cosmic birefringence
measurements. It has been shown in ref. [152] that the large EB signal recently observed [153–
156] cannot be explained by a parity-violating GW background from the axion-SU(2) model,
due to the simultaneous amplification of the BB power spectrum that violates current
upper bounds on the tensor-to-scalar ratio. If any signal is present in EB from primordial
parity-violation due to matter sources during inflation, it is expected to be subdominant
with respect to the observed cosmic birefringence signal.
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