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A B S T R A C T

Electric powertrains are becoming increasingly prevalent in various mobile propulsion applications, not only
due to legislations for lower CO2 emissions and local pollution, but also due to growing sustainable con-
sciousness. However, conceptualizing those systems, consisting of component and controller design processes,
is a complex task. The complexity itself arises from the amount of requirements for design objectives and
use-cases, which can be met inside a multidimensional parameter space. Additionally, system design and
evaluation are inherently tied to coupled component and system control strategy optimization. In this context,
the paper presents a fully automated active machine learning methodology applied for a combined optimization
of electric machine and system controller design, considering system performance, durability, and energy
consumption. During this iterative approach a stochastic optimization of a permanent magnet synchronous
machine (PMSM) takes place, constrained from a nonlinear model predictive control in a model-in-the-loop
system environment. The active learning is covered by a Bayesian optimization algorithm with a Gaussian
process regression to determine the most suitable parameter set in terms of exploration and exploitation. To
demonstrate the feasibility of this novel methodology, a thermal subsystem from an electrified state-of-the-
art powertrain has been used and further optimized regarding PMSM scaling and final gear ratio. Different
real-world drive scenarios from highway to city were taken into account to cover typical sport utility vehicle
use-cases. It could be shown that the electric machine losses of the optimized system are reduced by up to
32.7%, which equals a consumption of −0.43 kWh

100km
compared to the reference vehicle. Due to slightly worse

operating conditions of the inverter the whole system consumption has been minimized by −0.35 kWh
100km

. Three
parameter studies with fixed iteration count have been executed to find the optimal machine diameter to be
increased by 25% and the length slightly reduced by 16%. Moreover, the total gear ratio was adjusted by
−31% to shift the load points of highest energy conversion into the machine’s optimal efficiency area.
1. Introduction

Electric vehicle (EV) sales have been growing significantly in the
past decades, especially since 2018 the EV fleet has increased six times,
making a global share of 18% [1,2]. This trend is encouraged by the
manufactures focus on electric powertrains, annually increasing the
volume of available models by 15% [1]. Considering continuity, a break
even point with available internal combustion engine (ICE) models
could be reached by the end of this decade [1]. This is supported not
only by the superior efficiency advantage of electric systems, but also
by a growing clean energy economy [2].

∗ Correspondence to: Teaching and Research Area Mechatronics in Mobile Propulsion, RWTH Aachen University, Forckenbeckstraße
4, 52074, Aachen, Germany.

E-mail address: andert@mmp.rwth-aachen.de (J. Andert).

Nevertheless, this is not accounting for all vehicle classes, for exam-
ple electrified heavy-duty trucks with a global share of 1%, suffering
from the competitiveness in the total cost of ownership (TCO) against
their ICE counterparts [2]. Moreover, electrified systems rely mostly
on critical minerals, like rare earth materials for permanent magnet
synchronous machines (PMSM) or lithium for battery production. This
demand is rapidly reaching the highest share between renewable ener-
gies and grid systems [2]. As a result, the development of electrical
systems needs to be continuously optimized, whether for improved
battery technologies or increased range, while still addressing sus-
tainability and affordability [3,4]. These challenges and requirements
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Nomenclature
Abbreviations

AC Alternating current
AGS Active grille shutter
ARD Automatic relevance determination
AWD All-wheel drive
BEV Battery electric vehicle
BO Bayesian optimization
DC Direct current
DoE Design-of-experiment
EGW Ethylene glycol water
EM Electric machine
EMS Energy management strategy
EV Electric vehicle
FEA Finite element analysis
GA Genetic algorithm
GP Gaussian process
HEV Hybrid electric vehicle
HEX Heat exchanger
HV High voltage
ICCU Integrated charging control unit
ICE Internal combustion engine
IGBT Insulated-Gate-Bipolar-Transistor
LPTN Lumped parameter thermal network
MiL Model-in-the-Loop
MPC Model predictive control
NMPC Nonlinear model predictive control
NVH Noise vibration harshness
OCP Optimal control problem
PMSM Permanent magnet synchronous machine
RB Rule-based
RMSE Root mean square error
RL Reinforcement learning
RPC Remote procedure call
RTI Real time iteration
SUV Sport utility vehicle
TCO Total cost of ownership
Greek Symbols
𝛼 Thermal parameter in [−]
𝜂 Efficiency in [%]
𝜃 Vector of hyperparameters in [−]
𝜎𝑓 Variance of the (noise free) signal in [−]
𝜎𝑛 Noise variance in [−]
𝜙 Opening proportion of actuator in [−]
𝜇 Prior mean function of the GP in [−]
𝜌 Weighting factor in [−]
𝜒 Domain of objective function in [−]

necessitate advancements in the design of each new system. To over-
come the challenges of suboptimal EV designs, a necessary combination
of size and control optimization, using machine learning techniques for
faster prediction of system behavior was concluded in [4]. One compo-
ent of uttermost interest, impacting the on-board energy conversion
nd accounting for a major loss source during traction operation, is the
lectric machine (EM) [5]. One way to minimize the loss generation

is an electromagnetic right-sizing in combination with a thermal con-
ditioning of the component, which also helps to achieve performance
and efficiency requirements. In the past, multiple studies have been
executed analyzing and optimizing the EM regarding these challenges,
see Table 1.

In general, these can be clustered by their respective optimization
layers, applied methods and use-cases. The optimization layers consider
2 
Latin Symbols
𝑉̇ Volume flow in

[

l
min

]

f∗ Gaussian process (posterior) prediction
𝐟∗ Gaussian process posterior mean
p Parameter trajectory
s Slack variable vector
u Input/Control vector
x State vector
𝐱Design Vector of design training inputs
𝐲MPC Output vector of MPC
𝐲 Observed values resulting from observations

at locations 𝐱Design
𝑎 Thermal parameter in [−]
𝐴𝑆 𝑢𝑟𝑓 Front surface in [m2]
𝑏 Thermal parameter in [−]
𝐵 𝐹 Iron Loss Build Factor in [−]
𝑐𝑑 Drag coefficient in [−]
𝑑 Dimension in [−]
𝐷 Diameter in [mm]
D Dataset
𝐸𝐻 𝑉 ,𝐵 𝑎𝑡 Battery capacity in [kWh]
𝑓𝑟 Rolling friction coefficient in [−]
𝐻 Height in [mm]
i Index of samples in [−]
𝑖𝑅𝑀 𝑆 Root-Mean-Square of AC current in [A]
𝑖𝑇 𝑜𝑡,𝑅𝑒𝑎𝑟 Gear ratio of the rear drive unit in [−]
𝐼 Unit matrix
𝐽 Cost function in [−]
𝑘 Scaling factor in [−]
𝐾 Covariance matrix
𝑙𝑚 Characteristic length scale
𝐿 Length in [mm]
𝑚 Maximum modulation index in [−]
𝑚𝑉 𝑒ℎ𝑖𝑐 𝑙 𝑒 Weight of vehicle in [kg]
𝑀 Torque in [N m]
𝑛 Rotational speed in [r pm]
N Gaussian normal distribution
𝑝 Pole pair number in [−]
𝑃 Power in [W]
𝑟𝑑 𝑦𝑛 Dynamic wheel radius in [m]
𝑅 Resistance in [Ω]
𝑡 Time in [s]
𝑇 Temperature in [◦C]
𝑈 DC voltage in [V]
𝑊 Width in [mm]
𝑋 Matrix of training inputs
𝑋∗ Matrix of test inputs
𝑧𝑙 Linear penalization in [−]
𝑍𝑙 Quadratic penalization in [−]

thermal system control and component design, as well as a combina-
tion of both. For applied methods, either numerical optimization or
machine learning techniques have been used. Even a combination of
both approaches is applicable to optimize the two different use-cases of
a hybrid electric vehicle (HEV) or fully battery electric vehicle (BEV).

Multiple optimization potentials for thermal system control ap-
proaches exist, including efficiency, performance, safety and waste heat
ecovery objectives [6,7]. For example in [8,9] a thermal optimization
f the EM has been focused, utilizing the temperature dependency
f electrical losses in a model predictive control (MPC) approach.
ther contributions shift the objectives from an EM efficiency to an

EM performance point of view and extend the MPC control strategy,
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Table 1
Publications that consider application optimization potentials by using system control
strategies and/or component design enhancements for EMs. The color coding refers to
the applied use-cases, namely hybrid electric vehicle (orange), battery electric vehicle
(green) and not defined system boundaries (black).

Optimizing electric vehicles by considering

Thermal system
control

EM design Co-design of EM
and control

Numerical
optimization

[8][9][12][10]
[11]

[13] [14][15][16]

Machine learning [17][18]
[19]

[20][21]
[22][23]
[24][25]
[26]

[27]

Combination of
machine learning
and numerical
optimization

[28][29] [30] This paper
[31]

minimizing track time or maximizing reference tracking by traction
torque actuation and thermal derating mitigation [10,11]. As these
ublications feature a white or gray box system identification and
epresentation, numerical optimization methods were used for system
ontrol purposes. For further overviews on thermal system controls for
M temperature conditioning, it is referred to [9].

In order to decrease online computation effort of numerical opti-
ization methods, machine learning derived control strategies with a

lack-box system character in form of neural nets can be used [19,
32,33]. A predominant example is the energy management strategy
EMS) for BEV using reinforcement learning (RL) in [17] or [18],

including powertrain heat dissipation and cabin heating. In both cases
the thermal system actuation, which encompasses heating, ventilation,
and air conditioning control, such as the compressor and fan speed,
was the variable subjected to optimization. In [17], the objective func-
ion included energy consumption, battery aging and cabin comfort,
ut leaving EM operating point affection out of scope as a constant
fficiency gain is assumed. The same assumption accounts for [18],

where besides the cabin temperature root mean square error (RMSE),
power consumption of the positive temperature coefficient heater, fan
nd compressor is minimized.

In recent publications, a combination of machine learning and MPC
echniques for EMS in HEV has been proposed to overcome the inherent
eaknesses of each approach, such as the real-time capability of MPC
nd the costly learning process of RL [28,29]. Therefore, the authors

in [28] propose a model-based RL method, learning the optimal control
sequence for fuel consumption and state of charge deviation minimiza-
tion under numerous driving conditions. Herein, the EM efficiency is
presented as a function of the operating point, but neither the temper-
ature dependence nor the active influence of controls is modeled. The
ower split focus of ICE and EM is maintained in [29], combining long

short-term memory neural networks for velocity prediction with a fuel
consumption MPC, also penalizing gradient controls of each gear and
mode switch. Only the work in [29] includes temperature effects, but
ust from battery component perspective.

Regarding the EM design process, various optimization studies have
already been carried out, focusing performance, efficiency, thermal and
noise vibration harshness (NVH) objectives [4,34]. In [13], analytically
derived powertrain designs are convexified and solved regarding the
minimum TCO, yielding global optimality guarantees. To achieve this
ystem simplification, high-level assumptions were made for the EM de-
ign, leveraging single component model accuracy. Unfortunately, the
rade-off for accuracy inside a multi-objective optimization is typically
ot following a convex trend, which lacks global optimum potential for
radient-based numerical optimization methods [35].

Therefore, stochastic methods gained significant attentions in past
years. Apart from design-of-experiment (DoE) derived surrogate mod-
eling [23] or meta heuristic approaches [21], mainly two different
3 
algorithms were used when it comes to machine learning techniques.
This includes genetic algorithms (GA) [22,24,25,30] and Bayesian opti-

ization (BO) in [20,26]. Both can be characterized as active learning
methodologies, exploring the parameter space for the optimized solu-
tion, whereas GA have been found to be more common in EM design
for the past decades. These techniques have been applied to a diverse
range of machine types. For instance, in [30], they were employed to
optimize torque ripple in direct current (DC) machines through rotor
eeth geometry adaptation. Herein, a direct search method has been
ombined with a GA to enhance the convergence of the estimated con-
ex hull. Other examples include efficiency [25] or torque density [22]

optimizations of PMSM. In most cases the design space included more
than ten continuous or integer parameters. Comparing the simulated
candidate designs, in all GA cases far more than 100 iterations have
been executed, which adds up to a significant evaluation time for
computing time intensive design functions. To overcome challenges
with low convergence rates, BO has drawn far more attention in the
past years as a probabilistic regression and prediction routine for costly
function evaluations [26,36]. In [26], BO algorithm needed much fewer
valuations than GA for the same quality of the results and in [20] a

Nissan Leaf EM has been optimized for better efficiency in a worldwide
harmonized light vehicles test cycle with less then 100 iterations.

The third optimization column in Table 1 is marked by co-design ap-
proaches, accommodating controller and component design/dimension,
to achieve a system-level optimum [15]. They can be classified in
nested and simultaneous methodologies [37]. Purely gradient-based
numerical optimizations allow for simultaneous control and design
optimization in case the system model is differentiable and can be
discretized over time in the respective use-cases [14–16]. In [16], an
energy optimal sizing for a BEV application is targeted, considering
maximum EM power, battery capacity and gear ratio as design param-
eters, motor power and selected gear ratio as control variables. Even
though this problem formulation allowed for a comparably infinite pre-
diction horizon, as the cycle is optimized at once, the optimal control
problem (OCP) lacks implementation capability due to computational
effort. Furthermore, the EM operation is actively tuned by size and
gear ratio selection into the most efficient energy conversion area,
but thermal effects were left out of scope. The contribution of [14]
employs a nearly identical set of control and design variables for TCO
ptimization, including the dimensioning of thermal management in

terms of EM and transmission heat losses. Since the EM was once
gain represented by convex models, the investigation did not include
he nonlinearities, resulting from thermal losses. Another simultaneous
o-design publication in [15] focus on the HEV use-case with fuel

consumption and capital cost minimization, while maintaining a system
robustification regarding design decision variables. While EM scaling
nd torque control has been optimized, thermal dependencies have not
een investigated.

When accounting for global optimality of nonlinear problem formu-
lations, the usage of stochastic models is necessary [15], which could be
chieved in a nested optimization manner as implemented in [27,31].

In [27], a GA methodology aims to minimize fuel consumption and
emissions by introducing design variables for EM and ICE power as
well as control variables of the heuristic control strategy in each gene.
While the heuristic strategy is designed around hybrid mode switches,
no online optimization is covered, whereas the work in [31] extends
he HEV component sizing with online energy management adaption,
djusting proportional integral controller gains regarding optimal EMS.
evertheless, the control strategy itself is still rule-based.

In conclusion, current EM design processes still lack a comprehen-
ive strategy for optimal thermal system control, including
emperature-dependent electromagnetic loss effects. The main contri-
utions of this paper in that research field are as follows:

1. Integration of Electromagnetic Design and Thermal System
Control in EM Development Processes: This paper addresses a
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Table 2
Reference system parameters of the SUV benchmark vehicle with performance values
given on EDU output shafts [38].

Parameter Specification

Dimensions (𝐿∕𝑊 ∕𝐻) (4635∕1890∕1605) mm
Powertrain layout AWD
Maximum torque 𝑀Peak,System 605 N m
Maximum power 𝑃Peak,System 225 k W
Battery capacity 𝐸HV,Bat 72.6 k Wh
Curb weight 𝑚Vehicle 2095 k g
Front surface 𝐴Surf 2.5 m2

Rolling friction Coeff. 𝑓r 0.0146 −
Drag Coeff. AGS open 𝑐d,open 0.302 −
Drag Coeff. AGS closed 𝑐d,close 0.288 −
Dynamic wheel radius 𝑟dyn 0.35 m
Gear ratio rear drive 𝑖Tot,Rear,Ref 10.65 −

critical gap in state-of-the-art EM design processes by introduc-
ing a co-optimization methodology to satisfy system objectives,
while considering the correlations of component design and
optimal thermal control.

2. Mission-Specific Powertrain Optimization: The proposed
methodology enhances performance capabilities, due to
‘‘mission-specific right-sizing’’ of the powertrain for the desig-
nated use-cases, scaling the electromagnetic performance, while
ensuring a predictive active temperature conditioning to maxi-
mize the peak operation time.

3. Improved Thermal Efficiency via Machine Learning: By
leveraging machine learning, the paper presents an approach
to enhance thermal efficiency related effects by learning the
EM heat dissipation and optimally controlling its distribution
between the components.

For this reason, the paper starts with the introduction of the refer-
ence system and the problem formulation in Section 2, which includes
the respective optimization parameters and objective functions. Fol-
lowed by the detailed representation of the automated design and
control derivation of the system in Section 3, the active learning
methodology is going to be explained in Section 4. Finally the re-
sults of three parameter studies with different multi-design-objective-
weightings are investigated in Section 5. Section 6 summarizes the
paper and is giving an outlook to future contributions.

2. Problem setup

This section sets up the problem formulation of the contribution. At
first, the initial system architecture with its EM parameters and control
strategy variables is presented. This sets the baseline for subsequent
optimization potential evaluations. Thereafter, the objective functions
for control and design are going to be introduced and reformulated into
a nested 2-layer optimization framework.

2.1. Vehicle system architecture

The reference vehicle for the derivation of the system model descrip-
tion is an all-wheel drive (AWD) battery electric and state-of-the-art
sport utility vehicle (SUV) with a curb weight of 2095 kg and a 800 V
boardnet architecture. It achieves a maximum system power of 225 kW
and a combined torque of 605 N m on the EDU output shaft, propelled
from two PMSMs. As part of a teardown and benchmarking study all
component layouts and system data has been available. Table 2 summa-
rizes the most relevant system specifications for this work. It depicts the
benchmark vehicle system parameters, which are mainly responsible
for the force excitation at the wheel. Noteworthy is the adjustable
drag reduction by implementing an active grille shutter (AGS) with
its opening ratio 𝜙S, allowing for an online control degree of freedom
on the powertrain load points. The drag coefficient with opened AGS
4 
Fig. 1. Electrical and mechanical system architecture of the reduced vehicle system
configuration [38,39]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Control parameters for the online system optimization [9].

Parameter Description

𝑛Pump,EGW EGW Pump Speed Request in rpm
𝑛Fan Fan Speed Request in rpm
𝜙S AGS Position Request in %
𝜙Rad Bypass Valve Position Request in %
𝑛Pump,Oil Oil Pump Speed Request in rpm

𝑐d,open has been relatively determined with the assumptions from [8].
Over the front and rear gear stages with a total ratio of 𝑖Tot,Rear =
𝑖Tot,Front the traction torque in the AWD vehicle system configuration
is transferred from the EM output shafts to the wheel.

For the initial implementation and verification of the co-design
approach, the amount of powertrain components and complexity has
been reduced, changing the electrical and mechanical architecture to a
rear-wheel-drive (RWD) configuration, as depicted in Fig. 1.

The main changes arise from the front electric-drive-unit (EDU)
neglection, so that the main powertrain components are the rear PMSM,
inverter and gear stages, as well as the integrated charging control
unit (ICCU), high voltage (HV) battery and low voltage (LV) thermal
auxiliaries. Consequently, the thermal architecture encapsulates this
components as shown in Fig. 2.

Hence, the first thermal system loop is the ethylene glycol water
(EGW) circuit, using a 50/50 mixture, with the ICCU, rear inverter, the
4-way and 6-way heat exchanger, as well as the radiator as the main
heat transferring components [38]. Whereas the ICCU combines the on-
board-charging control with the DCDC conversion, the inverter feds the
thermally separated located PMSM with a three phase current [38]. The
oil circuit is connected via the 4-way heat exchanger (HEX) to the EGW
circuit, with its main tasks of lubricating the transmission and cooling
the rear PMSM. The PMSM itself has a direct oil cooling concept with
a spray cooling ring in front of the end-windings and a cooling bar on
top of the outer stator surface applied. Furthermore, the hollow shaft
is flooded with oil and equipped with centrifugal nozzles. Due to data
availability reasons, the battery and the refrigerant thermal circuit are
modeled as system disturbances with constant inlet conditions at the
6-way HEX [38]. Building up upon those available thermal data traces
from the benchmarking study, a model identification and validation
has been made upfront for the thermally integrated components in
Fig. 2. Validation traces for individual components are provided in
Figs. A.19 through A.23.

Finally, the system facilitates five control possibilities, one the AGS
already mentioned. All the controls are highlighted in Fig. 2 and listed
in Table 3.

This includes the two pumps, the fan and the bypass valve to
mitigate heat transfer to the environment through the radiator.

For the electromechanical energy conversion the 160 kW rear
PMSM is used, incorporating 350 N m of torque, propelled by 4 rotor
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Fig. 2. Mid temperature water–glycol system of the reference vehicle, coupled with the high temperature electric-drive-unit (EDU) oil circuit and constant fluid assumptions for
the 6-way linking to the battery and refrigerant loop (System controls are marked with red arrows) [38,39]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 4
Reference parameters of the SUVs rear PMSM [39].

Parameter Specification

Length 𝐿EM,ref 238 mm
Diameter 𝐷EM,ref 200 mm
Pole pair number 𝑝 4 −
Number of slots 48 −
Peak torque 𝑀Peak,EM,Rear 350 N m @ 60 ◦C
Peak power 𝑃Peak,EM,Rear 160 k W @ 60 ◦C and 720 V
Base-speed point 4000 1

min @ 720 V
Magnet array Two layer interior V
Estimated magnet material N42UH
Cooling method Direct oil-cooling

Fig. 3. Cross section and 3D view of reference PMSM model [39,40].

pole pairs and 48 stator slots. All relevant PMSM specifications and
cross section views of the reference design are visualized in Table 4
and in Fig. 3, respectively.

In line with the data of Table 4 the PMSM features a double layer
interior V magnet array, containing N42UH magnet material [39].
The identification and estimation of the magnet material took part
during the teardown and re-engineering of the rear PMSM, regarding
the manufacturer performance data [39]. The validated peak torque
characteristic of this EM FEA model is given in Fig. A.24.

From the remaining parameters, given in Table 4, the most in-
fluential parameters on the electromagnetic energy conversion and
performance are the active machine length 𝐿EM and diameter 𝐷EM [20,
41,42]. According to the referenced contributions, they have been se-
lected to open up the design parameter space. As part of the load point
5 
Table 5
Design optimization parameters 𝐱Design for the metamodel creation with their respective
upper and lower constraints.

Parameter Minimum Maximum

Length 𝐿EM 151 mm 300 mm
Diameter 𝐷EM 162 mm 250 mm
Gear ratio 𝑖Tot,Rear 2 − 17.9 −

determining design parameters, the gear ratio has already been pointed
out and is chosen as the third design degree of freedom. All in all,
the design parameters 𝐱Design are listed in Table 5 with their respective
lower and upper bounds, which align to the packaging constraints [38].

Besides the upper packaging constraints, also explorations of smaller
EMs with numerous gear ratio possibilities shall be emphasized, which
is achieved by the boundary scattering around the reference values
from Tables 2 and 4.

2.2. Formulation of design and control objectives into multi-layer optimiza-
tion problem

After definition of the component design and control variables, the
objective functions for each of the domains, control and design, need
to be defined. To also focus on interaction potentials between those
two, both single problems are transferred into optimization layers of a
nested co-optimization approach, depicted in Fig. 4.

From system perspective the thermal controls open up the first and
innermost layer of the problem formulation. Therewith, the system
operation during the use-cases shall be optimized, by minimizing the
control objectives, facilitating system output power, temperatures and
power losses. A gradient-based numerical solver should be applied
based upon past research in that field, due to its handling capabilities of
physics informed state–space system models [8,9]. These contributions
also include the beneficiary outcomes of a predictive numerical solver
deployment in terms of energy consumption minimization. The first
layer is superimposed with the system and component design layer,
because of its a-priori definition and dimensioning. That includes the
already introduced design degrees of freedom inside their specific
boundaries in Table 5. Their tuning shall achieve the optimum feedback
of the innermost layer. Commonly formulated requirements for BEV in
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Fig. 4. Nested EM Co-Optimization approach with stochastic and numerical layer.

this layer focus the efficiency, performance, durability, cost, charging
and lifetime-assessment of the final system design [43,44]. Hence, en-
ergy consumption, performance and thermal load, again minimizing an
objective function, have been chosen. For optimization purposes on this
upper layer, only a data-driven stochastic method is applicable, because
of the non-differentiable inner optimization loop of the controls in the
system environment. Due to this restriction and further computational
effort requirements on the controller side, a consecutive execution of
the two layers has been emphasized.

Looking deeper into the environment of the innermost layer, the
use-cases, i.e. the ‘‘missions’’, need consideration, as the system should
compromise a good long haul behavior on the highway and facilitate
an agile performance in the city. Thus, two real-world use-cases were
picked [9]. The city use-case is a cycle around Aachen, encouraging a
dynamic start- and stop behavior, as plotted in Fig. 5(a). It is charac-
terized with a maximum and average vehicle velocity of 73.1 kph and
23.1 kph respectively. Additionally, a moderate slope profile has been
prevalent. The highway drive in Fig. 5(b) comes at a maximum velocity
of 134.2 kph and average speed of 107.68 kph. However, the slope in the
pendulum cycle between Aachen and Cologne is flat over large parts.

Both cycles have to be accomplished by the vehicle and will con-
sider the online optimization function 𝐽Control, which has been derived
in previous publications in [8,9]:
𝐽Control =𝑃𝐿,EM + 𝑃𝐿,INV + 𝑃𝐿,ICCU + 𝑃Pump,EGW

+ 𝑃Pump,Oil + 𝑃fan + 𝑃Shtr,switch − 𝑃Shtr,Pos
(1)

The control objective function 𝐽Control describes the additional elec-
trical power, besides traction power, for the use-case velocity tracking,
considering high-voltage component losses and low-voltage power con-
sumption of the systems thermal actuators. This includes power loss of
the EM 𝑃L,EM, divided in copper, iron and mechanical loss components,
as well as inverter switching and conduction losses, consolidated in
𝑃L,INV [8]. The low voltage power consumption is reflected by the ICCU
switching and conduction losses 𝑃L,ICCU and electric power demand
of the coolant pumps 𝑃Pump,EGW, 𝑃Pump,Oil, the fan 𝑃fan and the AGS
actuator 𝑃Shtr,switch. 𝑃Shtr,Pos represents the reduction in wheel power
demand due to shutter closure, by reducing the drag coefficient from
𝑐d,open to 𝑐d,close.

Besides the control objective for the online system optimization a
design objective function needs to be specified. The multi-objective
system design function 𝐽Design, which is used in this paper, consists of
weighted terms for efficiency, performance and durability:

𝐽Design = 𝜌Eff
𝐸Tot,HV
𝐸Tot,HV,0

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Efficiency-Indicator

+ 𝜌Perf
max(𝛥𝑣Ref-Act)

max(𝛥𝑣Ref-Act,0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Performance-Indicator

+

𝜌Dur ⋅ 𝑒
max(𝑇max,i−𝑇lim,i)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Durability-Indicator

(2)
6 
Fig. 5. Primary use-cases for system optimization [9].

The first two objectives of energy consumption 𝐸Tot,HV and perfor-
mance max(𝛥𝑣Ref-Act) are normalized based on the particular reference
values 𝐸Tot,HV,0 and max(𝛥𝑣Ref-Act,0). Here, energy demand considers
the amount of energy being taken from the HV battery between start
and end of the two use-cases. The performance criterion evaluates
the velocity control deviation, which is inherently combined to the
available system output torque. Therefore, the maximum difference
to the reference vehicle cycle is calculated and normalized with the
initial system behavior. Lastly, the durability objective punishes all
temperature limits exceedances exponentially, for example an over-
temperature detection of the PMSM, assuming an under-rated system
design with instabilities inside the use-cases. After setting up the multi-
layer optimization problem for design and control, the underlying
iterative methodology will be presented in detail in the upcoming
sections.

3. Methodology

As previously pointed out, designing and optimizing systems is
a combination of creating suitable component designs and defining
proper control strategies for the application. Inevitable both system
parts add up to the holistic system behavior. That is why the method-
ology makes use of the stated nested co-optimization in Fig. 4 and
restructures it to a continuous iterative development process. The
whole workflow of this framework is depicted in Fig. 6.

Briefly summarized each new parameter set re-scales the geometry
of the investigated reference SUV machine. In the next step electro-
magnetic and thermal simulations of the machine are conducted in
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Fig. 6. Iterative machine learning methodology for holistic system optimization of
control and hardware design [36].

ANSYS MOTORCAD® by remote procedure call (RPC) requests from
MATLAB® [40]. Using the derived loss maps and thermal traces ob-
tained from the simulation, a low-fidelity model is generated, which
will serve as a foundation for the applied nonlinear model predictive
control strategy (NMPC). The NMPC predicts future system states and
enables an online optimization, minimizing electromagnetic losses and
power consumption. Finally, the entire setup of the vehicle is simulated
in a model-in-the-loop (MiL) environment, considering the applications
specific use-cases to find the scalar objective value. In the following
sections, the framework is described in detail.

3.1. Geometry parameter space setup

In the first step the geometric entities of the PMSM are created,
using parameters which allow mathematical representation and manip-
ulation of the machine designs. Here, the design process is initiated
with the reference vehicle machine. In each following iteration step a
new parameter vector leads to a geometrical scaling of the reference
machine design.

In fact there are three established scaling methodologies for PMSMs
machines, namely axial, radial and rewinding [20,41,42]. This work is
focusing the axial and radial scaling as already illustrated in Fig. 3,
maintaining small geometrical changes to leave the rewinding unaf-
fected.

The axial scaling procedure modifies lengthwise dimensions of the
EM, including stator core length, rotor core length, housing length and
overall axial dimensions, using an axial scaling factor 𝑘a,i [41]:

𝑘a,i =
𝐿EM,i
𝐿EM,ref

(3)

As shown in Eq. (3) the axial scaling factor is calculated from the
motor length quotient of the current machine candidate 𝐿EM,i and the
reference machine 𝐿EM,ref. The index 𝑖 assigns for the current iteration
step.

For the radial scaling the cross sectional dimensions are altered
proportionally, such as the diameter of stator and rotor, as well as the
thickness of magnets, air gap and other components. Therefore a radial
scaling factor 𝑘r,i is introduced [41]:

𝑘r,i =
𝐷EM,i
𝐷EM,ref

(4)

The scaling factor in Eq. (4) describes the relation between the
stator lamination diameter 𝐷EM,i of machine candidate 𝑖 to the refer-
ence diameter 𝐷EM,ref. During the radial scaling process the relative
proportions between components were maintained to ensure a proper
alignment between the MOTORCAD geometry and the more detailed
7 
Fig. 7. Custom rotor geometry of re-engineered SUV machine.

Table 6
Electromagnetic system constraints for PMSM loss calculation in ANSYS MOTORCAD
[45].

Electrical parameter Value

DC bus voltage 𝑈Bat 700 V
Maximum stator current 𝑖RMS,Max 240 Ar ms
Maximum modulation index 𝑚 0.95 −
Iron loss build factor 𝐵 𝐹 1.5 −

custom dxf-rotor-geometry visualized in Fig. 7. The new derived de-
signs set up the finite element analysis (FEA) simulation foundation for
the following electromagnetic analysis.

As the initial purpose of this study is centered around setting up
and evaluating the multi-system domain methodology, the parameter
space is kept small inside this work scope. Nevertheless the generic
framework should allow for easy extension of the parameter space in
future works.

3.2. Electromagnetic model building

After geometrical scaling of the machine candidates in ANSYS MO-
TORCAD, the electrical winding configuration of slot- and end-winding
regions is reconsidered to fit the geometry constraints. Hence, the
copper slot- and end-winding fill factor is adapted. An electromagnetic
description of each PMSM candidate was created using an analysis of
the designs over the entire operating envelope, achieved by coupling
EMagnetics FEA solvers with thermal modules in ANSYS MOTORCAD.
This results in loss maps and peak torque characteristics of the PMSMs,
which will be used at later stages in each function iteration. For the
electromagnetic system the constraints in Table 6 have been selected.

The DC bus voltage is centered around the average system volt-
age, while the maximum stator current was taken from the hardware
specifications [38]. Maximum modulation index and iron loss build
factor were selected from literature, respectively [45,46]. Based on
these constraints the loss calculation considers stator, rotor and magnet
iron losses, mechanical losses as windage and friction losses, as well
as DC and alternating current (AC) copper losses. All loss components
are modeled in dependence of the winding and magnet temperature to
evaluate system level optimization potential for an active temperature
control. For more details regarding the physical loss effects it is referred
to [8]. In the end, the loss maps 𝑃L,EM are extracted as a function of
speed, torque, winding and magnet temperature:

𝑃L,EM = 𝑓 (𝑛, 𝑀 , 𝑇Wdg, 𝑇Pm) (5)
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Fig. 8. Differential loss map of reference PMSM at 𝑇Wdg = 20 ◦C.

Table 7
Input parameter vector bounds for thermal behavior analysis.

Parameter Minimum Maximum

Speed 𝑛 0 1
min

17 000 1
min

Torque 𝑀 0 N m 𝑓 (𝑘a , 𝑘r )
Volume flow shaft 𝑉̇SG 0 l

min
12 l

min

Inlet temperature shaft 𝑇SG 0 ◦C 100 ◦C

Volume flow spray 𝑉̇SC 0 l
min

12 l
min

Inlet temperature spray 𝑇SC 0 ◦C 100 ◦C

Ambient temperature 𝑇Amb 0 ◦C 40 ◦C

For temperature set points, two winding temperatures 𝑇Wdg =
[20; 160] ◦C and four magnet temperatures 𝑇Pm = [−10; 20; 90; 160] ◦C
are chosen. The reason for the high discretization of the magnet tem-
perature is to depict the effect of active thermal field weakening. As
an example for the mentioned effect, Fig. 8 visualizes the magnet
emperature dependency on the losses from the reference SUV PMSM:

While a negative loss difference points out the benefit of a cooler
magnet temperature at low speed and high torque operation, a high
magnet temperature gets advantageous for the energy conversion at
igh speeds [12]. Considering such electromagnetic models, active

temperature control approaches can result in energy savings at a later
stage of the methodology.

3.3. Thermal trace generation

As not only an electromagnetic model of the machine is needed, but
lso a thermal model for the plant and controller, the high resolution
umped parameter thermal network (LPTN) from ANSYS MOTORCAD
s used to identify a transient behavior of the current PMSM candidate.

Subsequently, the machine is tested virtually in different driving con-
ditions to understand the thermal flow across the design. As this stage
s needed to achieve a model order reduction with subsequent global

system identification, four short transient simulations with constant
system inputs in a latin hypercube input parameter sampling are taken
into account to minimize computation cost. Table 7 summarizes the
input dimensions.

While the maximum torque for the thermal analysis depends on
he machine scaling 𝑘a and 𝑘r the other input dimensions have fixed

bounds based on mechanical system limitations and fluid properties.
ence, each input parameter vector results in an independent thermal
xcitation and heat transfer, using the specified electromagnetic loss
aps from the previous stage and the LPTN of ANSYS MotorCAD.
8 
3.4. Reduced thermal system identification

As the control strategy shall include temperature prediction poten-
tials based upon LPTNs, the trade-off between accuracy and compu-
tational cost requires an order reduction of the ANSYS MOTORCAD
LPTN. In [9] a model reduction approach for a PMSM has been pre-
sented, lumping components in a similar temperature range as a single
node. This approach has been adapted to a more general architecture
as shown in Fig. 9.

Besides the loss lumping to the winding and magnet region node,
he network should facilitate a generic cooling layout character, allow-
ng for different temperature conditioning of stationary and rotating
omains. Exemplary for the reference vehicle PMSM its a direct oil
ooling, split in end-winding spray and hollow-shaft cooling. Especially
or the transient behavior thermal masses are lumped considering
he same methodology, while the convective heat transfer between
ifferent nodes can be generally modeled by thermal resistances as a
unction of fluid volume flow 𝑉̇ and inlet temperature 𝑇in [47]:

𝑅𝑖−𝑗 = 𝑅th,𝑖−𝑗

(

𝑉̇ref
𝑉̇

)𝑏th−𝛼th
(

1− 𝑇ref
𝑇in

)

(

𝑇ref
𝑇in

)𝑎th
(6)

Here 𝑅𝑖−𝑗 represents the resistance to the heat flow from component
i to component j. The factors 𝑏th, 𝛼th, 𝑎th are identified using a global
system identification approach by minimizing the error vector between
the high fidelity model thermal trace and the low fidelity state space
model output [8,48,49]. To maintain a robustness of the identification
process to a low amount of sample points, the methodologies in [48,49]
have been extended in two ways, whereas the latin hypercube sampling
of the model excitation is stage one. But secondly, a global constraint

as added to each of the four cycles, to ensure the energy equilibrium
s maintained in this non-uniform thermal architecture. This constraint
lso supports the automatic design process for multiple cooling tech-
iques by penalizing the deviation of possible heat rejection for each
ooling flow.

3.5. Reduced electrical system identification

After achieving a thermal simplification of the system for the control
trategy, the electromagnetic is transformed into differentiable poly-
omial equations. The reduced electromagnetic system is modeled,
sing the curve fitting toolbox in MATLAB [50]. The 4D-loss maps are

reduced by polynomial fit of third order as a function of speed and
second order as a function of torque, while a linear influence regarding
winding and magnet temperature is assumed [9]. For both temperature
dependencies sample points at 20 ◦C and 160 ◦C are used. Hence, two
sets of coefficients coeff20 and coeff160 are extracted for winding and
magnet node losses individually and linearly interpolated during the
ystems runtime to calculate the current losses 𝑃Loss,NMPC as follows [8]:

coeff = coeff20 +
𝑇PM − 20 ◦C
160◦C − 20 ◦C

(

coeff160 − coeff20
)

(7)

𝑃Loss,NMPC = 𝑓 (𝑛3, 𝑀2, 𝑇Wdg, coeff) (8)

To ensure integrity throughout the design process, the loss maps are
lumped the same way as presented in Section 3.4. For a certain magnet
nd winding temperature the 2D losses, occurring in the winding node,
re compared in Fig. 10.

Although the torque and speed tendencies keep matching quite
well between the polynomial output and FEA maps in most operation
scenarios, there are still some minor differences. One is the nearly
frequency independent winding loss in the base speed range and the
other one the changed torque influence on the losses at high frequen-
cies. Nevertheless, it is concluded that throughout a fixation of the
polynomial orders in consecutive design iterations, the same trends
will occur, allowing for similar and comparable electromagnetic system
simplifications in the control strategy.
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Fig. 9. Generic Lumped-Parameter-Thermal-Network (LPTN) for thermal predictions of a PMSM.
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Fig. 10. Exemplary polynomial fitting of losses in winding node.

3.6. Nonlinear model predictive control approach

Nonlinear model predictive control was chosen to ensure an
ptimization-based, yet modular, adaptive and parameterizable control

strategy [51]. Therewith the previously derived component descrip-
tions are combined to a system state–space formulation as presented
in [8,9]:

̇ = 𝑓 (𝐱,𝐮, 𝑡) (9)
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𝐲MPC =

⎡

⎢

⎢

⎢
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⎢

⎢

⎢

⎢
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𝑃L,EM
𝑃L,INV

𝑃Pump,EGW
𝑃Pump,Oil

𝑃fan
𝑃Shtr,switch
𝑃Shtr,Pos

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑓 (𝐱,𝐮, 𝑛Mot, 𝑀Mot) (12)

where 𝑥̇ denotes the system state dynamics as a function of the thermal
ctuator inputs 𝐮 and the current system states 𝐱 at a given time 𝑡.
he system states describe different component and coolant temper-
tures and are bounded by their respective minimum and maximum
emperatures. The component temperatures are namely the inverter
unction 𝑇J,INV, the winding 𝑇W,EM, permanent magnet 𝑇Pm,EM and the
CCU junction 𝑇J,ICCU temperature. All the coolant temperatures 𝑇Co
re modeling downstream temperatures of each component, which are
quivalent to the next inlet temperature inline, due to adiabatic and
ossless tube simplification [9]. The constraints to the temperature

states are set according to the temperature limits and physical lim-
itations of the components. The system controls have already been
introduced in Section 2.1 and are depicted in Eq. (10) with their
espective limitations. While the position actuators are controlled with

continuous percentage requests, the pumps have requirements for a
certain idle speed, in case of the EGW pump 𝑛Pump,EGW, or minimum
speed for lubrication purposes, in case of the oil pump 𝑛Pump,oil.

The system’s gray-box character allows electrical, thermal and me-
hanical parameter changes to be quickly compiled and tested in
 virtual environment. Therefore the following OCP of the acados-
ramework for nonlinear programs is being applied [51]:
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Fig. 11. Scheme of system simulation to derive design objective values [9].

min
𝐱(⋅),𝐮(⋅),𝐬(⋅) ∫

𝑇

0
𝑙(𝐱(𝜏),𝐮(𝜏),𝐩)+
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2
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𝑧𝑇1 0 0

⎤
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⎥

⎦

⎡

⎢

⎢

⎣

𝑠1(𝜏)
0
1

⎤

⎥

⎥

⎦

𝑑 𝜏
(13)

ubject to:

𝐱̇ = 𝑓 (𝐱,𝐮, 𝑡), 𝐱(0) = 𝐱0 (14)

𝐱min ≤ 𝐱 ≤ 𝐱max (15)

𝐮min ≤ 𝐮 ≤ 𝐮max (16)

where 𝑙 denotes the Lagrange cost term, defining the stage cost de-
pending on the external cost 𝐽Control from Eq. (1), as well as external
arameters 𝐩 (e.g. torque), temperature states 𝐱 and thermal actuator
ontrol inputs 𝐮. Moreover, the Lagrange cost term is extended with
 slack variable penalization, introducing soft constraints for the state
ariables to enhance solver feasibility [51]. In that regards, 𝑍1 is the

quadratic and 𝑧1 the linear penalization. On the one hand, an equal
weighting is applied inside the Lagrange cost term to each addend
in Eq. (1), due to the same physical representation of power loss
nd power consumption. On the other hand, the penalization of the
lack variables 𝑍1 and 𝑧1 have been selected in the same order of
agnitude as the Lagrange cost term, to ensure a well conditioned
CP. Eqs. (14)–(16) summarize the main system dynamics with its
onstraints.

During the online phase of the system, the OCP uses future load
tates over a defined prediction horizon of 600 s to optimize the control

trajectory regarding the scalar control objective function presented
in Eq. (1). Accordingly, the system state derivative 𝐱̇ is integrated
by an implicit Runge–Kutta 1st order. Because of the nonlinearity of
the system model, the sequential-quadratic programming algorithm in
a real-time iteration (RTI) scheme with multiple shooting discretiza-
tion [51–53] is applied. Each subsequent quadratic problem is then
ackled using a high-performance interior point solver [54]. The execu-
ion time of the NMPC is herein 1 s, during which new control outputs

are send to the actuators.

3.7. System evaluation framework

Once the necessary sections for the system framework are created,
the vehicle and its powertrain are simulated in a virtual MiL environ-
ment to acquire performance and efficiency information of the current
PMSM candidate and powetrain inside the use-case. The comprehen-
ive system framework is adapted from [9] and has been extended
o the new system architecture in Fig. 2 inside MATLAB/Simulink,

encompassing three key subsystems: predictive data acquisition, NMPC
controller, and the high-fidelity plant model (see Fig. 11).

The main system model consists of two internal loops and one ex-
ternal loop. The internal loops are centering the co-simulation between
the high fidelity thermal EM model and the residual thermal system [9].
10 
Fig. 12. Design function evaluation trace over 30 consecutive iterations.

Therefore ANSYS MOTORCAD is interfaced by RPCs to facilitate in-
teraction within the plant model regarding thermal inlet conditions
as well as heat sources [40]. The heat injection is interpolated with
the derived loss maps from an earlier stage in Eq. (5), using the latest
known winding and permanent magnet temperatures.

Meanwhile, the external loop describes the control strategy of the
system. On the one hand, it requires the state feedbacks, including
all observed temperature states for initialization purposes of the OCP
in Eq. (14). On the other hand, it needs the cycle data of the use-
case for a forward driver model to project the future load points into
 parameter trajectory p, which is as well an input to the OCP in

the Lagrange objective term in Eq. (13) [9]. Based on this, the NMPC
minimizes the cost function by calculating the optimal control sequence
and passes its first entry to the plant model.

The residual plant model with its thermal system is mainly based
upon [8] and has been extended with parameter sets from available
enchmark data of the reference vehicle (SUV) to the new architecture.
hus, the electrical and thermal model of the inverter and ICCU are
uilt upon the available benchmark measurements mentioned in Sec-
ion 2.1, using the curve fitting toolbox and global system identification

techniques for LPTN networks [8,50,55]. The actuators as pumps, fans
and the active grill shutter use polynomial equations derived from [8,9]
adapted to the new system layout and available parameter sets. Radi-
ator and HEX are modeled by using the 𝜖-NTU Theorem for crossflow
HEX [8,56,57].

Throughout the use case analysis, the energy demand and the speed
offset to the reference and thermal safety margins are tracked to sum
he weighted design target value from Eq. (2).

4. Surrogate modeling using Bayesian optimization

To efficiently cover the multi-dimensional parameter space, an ac-
ive learning approach was chosen, to minimize the computation time

until an optimized solution is reached [26]. The training includes the
esign degrees of freedom, listed in Table 5 and their respective singu-

lar design objective values. Highlighting the expansive design evalua-
ion process the turnaround times for single iterations are visualized in

Fig. 12.
The data in Fig. 12 has been acquired on a 10-Core 12th Gen

ntel(R) Core(TM) i7-1255U with 16 GB of RAM available, without
parallelization applied. For this parameter study the turnaround time
reaches 352 min peak, and 243 min average which makes the utilization
of DoE methods not manageable. Consequently, for this problem setup
BO has been selected as a suitable algorithm to cover the exploration–

20,26].
exploitation trade-off with a minimum amount of iterations [
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Besides the system’s nested OCP, BO is applied in the second opti-
ization layer generally defined as [26,36]:

𝐱∗Design ∈ ar g min
𝐱Design∈𝜒

𝐽Design(𝐱Design) (17)

The goal of the algorithm is to find a parameter vector 𝐱∗Design
ithin the domain 𝜒 ; 𝐽Design ∶ 𝜒 → R that holds the minimum

of the objective function 𝐽 ∗
Design. For this, a sequential approach is

applied during BO, that is executed with a fixed amount of iterations
as termination condition. The outline of the methodology is shown in
the Algorithm 1 [36,58]

Algorithm 1 Bayesian Optimization for Design Tuning
Input: Initial dataset D = {(𝐱Design,0, 𝐉Design,0)}

1 repeat
2 𝐱Design ← POLICY(D)
3 𝐽Design ← OBSERVE(𝐱Design)
4 D ← D ∪ {(𝐱Design, 𝐽Design)}
5 until maximum number of iterations;
6 return D

At first an input is defined, which initializes the algorithm with
a certain dataset of a design parameter 𝐱Design,0 and objective value
𝐉Design,0 trace. This also enables a continuation of the optimization
process for previously terminated studies. In the end the returned
dataset holds the initial and new design data evaluations from the
iterative process.

The main iterative process is divided into three tasks, executed until
he maximum number of iterations is reached. In this study, this pa-
ameter is set to 30. In the beginning a regression model is trained from
ataset D in line 2, being used to derive an optimized parameter vector

𝐱Design given a certain objective function. Subsequently the observation
task in algorithm 1 line 3 is called, which has already been discussed
n detail in Section 3. It mainly holds the call of the design function

with the new parameter set 𝐱Design. After the new data is acquired the
dataset D is extended to a new dataset.

Typically, Gaussian processes (GP) are used in a BO regression
routine as they represent a closed form of modeling predictions and
uncertainties in multivariate Gaussian distributions [26,36,59,60]. In
particular, this means the objective is modeled as a distribution on
unctions inside the parameter space 𝑓Design(𝐱Design). Therein, the mod-

eling of uncertainties is crucial to the application of a BO algorithm,
or balancing the adaptive trade-off between exploration (sampling
reas with high variance) and exploitation (sampling areas with low
redictive mean value), which is one of the major characteristics in an
ctive learning algorithm. For a basic overview on GP’s it is referred
o [61]. In the beginning of algorithm 1 a prior distribution of the GP

is defined, which is separated into a mean 𝜇 ∶ 𝜒 → R and positive
definite covariance function 𝐾 ∶ 𝜒 × 𝜒 → R [60,61]:

𝜇(𝐱Design) ∶= E[𝑓Design(𝐱Design)], (18)
𝐾(𝐱Design, 𝐱′Design) ∶= E[(𝑓Design(𝐱Design) − 𝜇(𝐱Design))⋅
(𝑓Design(𝐱′Design) − 𝜇(𝐱′Design))]

(19)

While the mean value 𝜇(𝐱Design) holds the expected design objective
value E[𝑓Design(𝐱Design)] at a certain point 𝑥Design in the parameter space,
the covariance function 𝐾(𝐱Design, 𝐱′Design) portrays the correlation of
two different parameter locations 𝑥Design and 𝑥′Design. As the covariance
is intrinsic to the chosen kernel function, the available system design
data has been taken into account for the choice of an appropriate kernel
function. For that reason a non periodic, rather exponential behavior
is favored. As the selected optimization parameters yield difference

influence on the objective value an automatic relevance determination a

11 
(ARD) Matern 5/2 kernel has been selected [60]:

𝐾(𝐱, 𝐱′|𝜃) = 𝜎2𝑓 (1 +
√

5𝑟 + 5
3
𝑟2)exp(−

√

5𝑟)

with ∶ 𝑟 =

√

√

√

√

𝑑
∑

𝑚=1

(𝑥𝑚 − 𝑥′𝑚)2

𝑙2𝑚

(20)

The hyperparameters 𝜃 of this kernel can be expressed as 𝜃 =
𝜎𝑓 , 𝑙1, 𝑙2,… , 𝑙𝑚}, where 𝜎𝑓 denotes the variance and 𝑙𝑚 represents the
haracteristic length scale in the 𝑚th dimension of the kernel [60].

During the model regression after a new parameter observation, these
are updated, maximizing the marginal likelihood of the GP [60,61].

After selecting the kernel and gathering the first observation data
the posterior distribution of the GP is fitted, based upon the general
GP assumption that discretized data from the prior and training data
are jointly distributed [26,36,61]. Due to missing prior knowledge of
the system’s behavior in the selected use-cases, the mean functions of
he GP prior are set to zero:
[

𝐲
𝐟∗

]

∼ N

(

𝟎,
[

𝐾(𝑋 , 𝑋) + 𝜎2𝑛𝐼 𝐾(𝑋 , 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])

(21)

In Eq. (21) 𝑋 and 𝑋∗ denote the training/observation and test
nputs, with their respective outputs 𝐲 and 𝐟∗. As the multi-stage design
rocess is assumed to be not deterministic, a noise variance 𝜎2𝑛 has
een added to the training data covariance 𝐾(𝑋 , 𝑋), whereas the
ther matrices describe the covariance between training and test inputs
(𝑋 , 𝑋∗) and its transpose 𝐾(𝑋∗, 𝑋), as well as between test inputs
(𝑋∗, 𝑋∗).

For system predictions and the application of an optimization policy
routine the GP posterior is derived by conditioning the joint distribu-
tion [36,61]:

𝐟∗ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋 , 𝑋) + 𝜎2𝑛𝐼]
−1𝐲, (22)

cov(𝐟∗) = 𝐾(𝑋∗, 𝑋∗) −𝐾(𝑋∗, 𝑋)
[𝐾(𝑋 , 𝑋) + 𝜎2𝑛𝐼]

−1𝐾(𝑋 , 𝑋∗)
(23)

Eqs. (22) and (23) yield the trained GP with posterior mean 𝐟∗
nd the covariance cov(𝐟∗), which are being updated sequentially in
lgorithm 1 line 2 during the application of the policy.

Consequently, the GP is used for model predictions in every iteration
number greater than 1 in the policy to actively determine the next
arameter set of length, diameter and gear ratio. The policy, i.e. the
cquisition function, determines the search behavior of the BO. This
s done by quantifying and optimizing the exploration–exploitation
rade-off. In this contribution the commonly used acquisition function
‘expected-improvement’’, which evaluates the marginal gain of utility,
as been selected [36,58,62]:

𝐸 𝐼(𝐱, 𝐟∗) = E𝐟∗ [max(0, 𝐟∗(𝐱best) − 𝑓 (𝐱))] (24)

To maximize the acquisition function the posterior GP mean is
irstly sampled several times to approximate the lowest feasible mean

inside the parameter bounds 𝐟∗(𝐱best) [58]. Secondly the posterior GP
𝑓 (𝐱) is sampled several more times over 𝐱 and the resulting expected
improvement is evaluated with Eq. (24) [58]. This includes the sparse
confidence at earlier iterations, leading to a higher amount of exploring
parameter choices. The parameter set 𝑥 that is maximizing the expected
improvement value is finally selected as the new observation parameter
set and closing the BO loop.

5. Results

In this section the results of three parameter studies for different
esign objective weightings in the combined city and highway use-
ase shall be discussed. Specifically, the effect on the performance and
fficiency objective, as well as the coordination of the control strategy
daption to the optimized design will be focused. Table 8 summarizes
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Table 8
System energy consumption reduction and performance increase for optimized EM design with thermal NMPC at three different design objective weightings

Efficiency : Performance weighting 1:1 1:0.01 1:0

Energy consumption compared to reference system with RB control (32.79 k Wh
100 k m ) +0.08 k Wh

100 k m (+0.32%) −0.18 k Wh
100 k m (−0.78%) −0.35 k Wh

100 k m (−1.52%)

Energy consumption compared to reference system with NMPC control +0.1 k Wh
100 k m (+0.43 %) −0.16 k Wh

100 k m (−0.67%) −0.33 k Wh
100 k m (−1.42%)

Energy consumption compared to optimized system with RB control −0.026 k Wh
100 k m (−0.11%) −0.028 k Wh

100 k m (−0.12%) −0.021 k Wh
100 k m (−0.09%)

Performance +19.62% +12.94% −353.52%

Ref. Parameters [𝐿 [mm]; 𝐷[mm]; 𝑖Tot[−]] [238; 200; 10.65] [238; 200; 10.65] [238; 200; 10.65]
Opt. Parameters [𝐿 [mm]; 𝐷[mm]; 𝑖Tot[−]] [198.9; 250; 10.73] [197.6; 225.79; 10.36] [200.3; 249.3; 7.32]
a
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the performance and efficiency gains of the design and control opti-
ized systems. They are evaluated against the reference system with
 NMPC approach, as well as a re-engineered rule-based (RB) control
pplication of the reference and optimized system design. Furthermore,
t facilitates the optimized design parameters for length, diameter and
inal gear ratio. The multi-stage control architecture of the RB approach
as been previously published in [8] and was calibrated, considering
he benchmark vehicles behavior [38,39] (see Fig. B.26).

Generally there is a clear impact of the three weighting factors 𝜌Eff,
Perf and 𝜌Dur on the final design recognizable, when comparing the

optimized parameter vectors. Due to the normalization of each indica-
or in Eq. (2), an equal weighting has been applied at first. However,
fter analyzing the first results, a difference of two orders of magnitude
as been observed between the efficiency and performance indicator.
or that reason, a weighting of 1:0.01 has been selected to enlarge the

possible improvements in the BO routine for efficiency gains. At last,
the third parameter study should reveal the maximum capabilities in
terms of energy consumption reduction, where performance is of lower
matter for the end-customer. Ultimately, these indicator weightings
shall be chosen with respect of the certain system application during
the concept study phase, depending on key buying factors of end-
customers, company philosophies or policy regulations. Differentiating
the results of these three studies, the length of the machine is reduced in
every scenario, while the diameter is found to be increased to minimize
the objective 𝐽Design (see Eq. (2)). An exception applies for the final gear
atio, which stays nearly constant as long as the performance objective

is included inside the BO routine (see Fig. B.25).
By comparing the two design objectives it is noticeable, that the

performance criterion is more sensitive against parameter changes
than the efficiency. While the energy consumption spreads around 2%
the performance objective differentiates around 373%. Evaluating the
energy consumption reduction, a clear deviation between design and
control dependency is recognizable. Hence, the EM design of the second
and third parameter study accounts for roughly 85%, respectively 94%,
of the energy savings. Compared to prior studies utilizing a thermal
NMPC approach as described in [9], the minimization of energy con-
sumption relative to the baseline strategy is less pronounced. On the
one hand, it is due to the wider EM dimensions and less heat losses, that
would allow for a more transient heating and cooling behavior. On the
other hand, the use-case selection in this work is not sufficient to realize
 high power demand on the system. Future contributions need to take
 durability cycle with higher wheel power and ambient temperatures
nto account, as well as a NMPC adjustment to different cooling topolo-
ies with individual cooling actuation, extending the control space and
onlinearities. Nevertheless, the NMPC consistently outperforms the RB
pproach by up to −0.11%, even in the first study, where the design
alls short of realizing an energy consumption reduction. The following
ubsections should allow for a more in-depth analysis of the values and
heir fundamental background.

5.1. Optimized EM characteristics

Every adaption of the reference machine is leading inherently to
 change in the EM characteristics. This includes new performance

ratings as well as energy conversion efficiencies in the selected use-
cases. Fig. 13 visualizes the maximum performance changes and the
12 
shifted energy conversion heat maps, which were generated by binning
speed and torque into 50 bins, followed by additional smoothing.

Only the first and fourth quadrant for powering and recuperation
re shown, with speed on the x-axis and torque output on the y-axis.
he solid and dashed envelope lines characterize the maximum torque
utput of the optimized machine and the reference machine, respec-
ively, at a machine temperature of 20 ◦C and a constant maximum
urrent. Inside the envelope the isolines for the total machine losses
re drawn.

At first the attention shall be paid to Figs. 13(a) and 13(b). Both of
these optimized systems have been driving the use-cases with a similar
inal gear ratio, resulting in a nearly identical location of the energy
onversion map and the operating points. Moreover, both machines

are of almost identical length, but as the second design diameter is
lightly smaller, the flux guiding area and magnetic flux density is
ower, keeping the same electrical input parameters, which arises in a

reduced peak torque capability and higher base speed point. This also
hifts regions with the same amount of frequency dependent iron losses

to higher speeds, stretching the total loss map to a reduction of up to
50% in the use-cases [8,63]. Predominant is the effect especially for the
ighway use-case and will lower the heat injection into the reference

vehicle’s system, see Section 5.3. Considering the performance gain,
both design changes allow for an increased acceleration capability in
the field weakening area of the machine, underlined by the operation
points above the dashed envelope torque line. This effects the per-
formance objective drastically, as the vehicle can follow the velocity
trajectory more closely, driven by a vehicle with much lower weight
and just slightly lower power capabilities.

Coming to the third parameter study, the machine dimensions are
found nearly identical to study one, except for a slight increase in
length. For that reason, there is also no major difference in the peak-
torque characteristics. The major difference is the 𝛥𝑖Tot = −31.3% lower
gear ratio, shifting the operation points and energy conversions at a
constant power into lower speed and higher torque areas, where the
lowest energy losses in terms of the scaled reference PMSM occur.
Hence, the whole system consumption in the two use-cases could be
decreased by −0.35 kWh

100 km . Again, the major consumption influence
is recognizable for the highway use-case, while the city use-case now
suffers from decreased wheel torque capabilities. That is noticeable
in the drastically changed performance objective to −353.52% and the
ellow areas around the peak torque in the base speed region. Conse-
uently, the vehicle is not capable of following the dynamic standstill
ccelerations. Nevertheless, the average velocity deviation with 0.05 m

s
is just slightly affected. For a further analysis on these system trends,
t is referred to Section 5.5.

5.2. City use-case controls

In this subsection the control strategy adaption in the city use-case is
nalyzed. For this, the five different controls and four EM temperatures
re depicted in Fig. 14.

Overall no cooling demand or investment in heat shifting for ac-
tive temperature control is detectable, leaving the pumps and fans
at minimum speed. Just for the third optimized system in Fig. 14(c)
little actuation of the EGW pump during high acceleration and decel-
eration phases occurs, leveraging the temperature rise of the inverter
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Fig. 13. Energy conversion of the analyzed use-cases in PMSM loss map. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

junction temperature. For the temperature-dependent loss effects of an
Insulated-Gate-Bipolar-Transistor (IGBT) module the reader is referred
to [8,64]. Condensed the conduction losses increase proportionally to
temperature and higher current demands, arising from a high torque
request in acceleration and deceleration phases.
13 
Fig. 14. Transient system controls in city use-case at 𝑇Amb = 20 ◦C.

The temperature-dependent conduction losses outweigh the control
strategy behavior of the city use-case, as can be seen in the subplots
of the active grille shutter and bypass control, as well as the EM
temperatures (see Fig. B.27). It should be noted, that due to the low
heat losses in the city use-case the spray cooling outlet and winding
temperature the graphs are on top of each other. Here, the overall EM
temperatures can be considered almost redundant in every optimized
system design, as the total amount of EM losses inside the system are
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Fig. 15. Transient system controls in highway use-case at 𝑇Amb = 20 ◦C.

rather low and not differ greatly from each other. The potential for
an active EM temperature control is therewith marginal. But as the
load point is shifting due to the gear ratio decrease from first to third
parameter study, the effective current of the IGBT modules increases
and subsequently the losses. To achieve a reduction of the losses the
NMPC opens the shutter and bypass to achieve earlier cooling. The
actuation strategy is here chosen under a trade off between cooling
under beneficial circumstances, while maintaining maximum possible
 a

14 
heat inside the system. All in all, the automatic adaption of the con-
rol strategy to the new system designs showed a plausible behavior,
aximizing the systems potential.

5.3. Highway use-case controls

Next is the highway use-case, which is maintaining a high EM
peed with intermediate acceleration and deceleration phases. First up,

Section 5.1 already revealed that the EM losses are two to three times
higher compared to the city driving scenario. Moreover, it has been
stated before, that the machine losses are continuously reduced from
parameter study one to three. Fig. 15 is capturing the NMPC control
ehavior and EM temperature increase.

At first the attention should be payed to the speed control of
pumps and fan. It stands out, that an increase in system efficiency,
especially the EM, leads to less optimization potential for the NMPC
to achieve further power consumption reduction. That being said, the
advantage to invest in active temperature control to achieve a hot
magnet temperature and a cool winding temperature is leveraged with
an already better energy conversion in the driven operating points.

For all three system designs the NMPC tries to maintain a closed
active grille shutter to mitigate higher air drag, especially because it
is not needed for higher cooling demands. The heat transfer over the
radiator due to the air leakage volume flow seems to be sufficient to
achieve a component temperature control.

The system design one with less efficiency objective optimization
is at most trying to lever this drawback with a fast EM temperature
heat up, for the usage of active thermal field weakening [9]. Before
the deceleration and acceleration phase in the middle of the highway
ycle the NMPC ramps up the EGW pump speed and closing the bypass
o achieve a higher heat extraction of the oil circuit. Thereby the
ominating temperature proportional winding losses are minimized,
hile the magnet temperatures is nearly unaffected due to a higher

thermal resistance to the heat sink.
In the second and third system design the shifted load points in-

crease the inverter conduction losses, which are temperature contra-
dictory to the beneficial higher magnet temperature (see Fig. B.28).

hus, the control strategy adapts to close the bypass early, reducing
the EM temperature increase rate, which is lower after all due to the
higher efficiency. Additionally, it is limiting the rise of the inverter
temperature, being more beneficial for the temperature proportional
inverter conduction losses. This holds for the complete cycle with
design three. However, in the second design highway use-case, the
bypass valve is opened again before the standstill phase and kept open
throughout the second phase. This is because the magnet temperature
reached a higher level, compared to design three and the NMPC control
strategy evaluates energy consumption benefits over the next 10 min
by maintaining heat inside the system for the upcoming high speed
section, to make use of active thermal field weakening. In the end it
yields a higher energy consumption improvement by EM loss reduction
ue to a magnet temperature increase, compared to the disadvantages

on the inverter side at higher temperature.

5.4. System efficiency evaluation

For a detailed system efficiency evaluation the optimized systems
are compared against their reference with a RB control approach. The
influence on HV system efficiency is evaluated referring to [9]. Fig. 16
sets the component-wise efficiency changes in contrast. While the main
analysis from controls and EM characteristics in the use-cases has been
made in the previous sections, the efficiency changes shall align and
verify these observations.

The actuator power consumption make up for the lowest impact
n the system efficiency increase. Minor differences arise from the
esser pump actuation of system two and three, and the slightly higher
mount of shutter opening in the city use-case of system three. To
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Fig. 16. Comparison of HV energy consumption impact between RB baseline system
and NMPC optimized system.

sum it up, in the selected use-cases the influence of the actuators
is more or less neglectable, compared to the PMSM and inverter. In
future contributions, extending this methodology, already mentioned
worst-case and durability scenarios have to be added into the design
process, to verify the system’s feasibility with the implemented actuator
capabilities under the harshest conditions.
15 
The suspected opposing trends between inverter and PMSM from
system one to three, cannot just be found from control strategy point of
view, but also from power consumption. Starting with the inverter, the
adjustments of the gear ratios from 10.65 → 10.73 → 10.36 → 7.32 have
an immediate effect on the inverter losses 𝑃Loss,Inv = 𝑓 (𝑛, 𝑀 , 𝑇J, 𝑇Wdg),
governing the trend from system one to three [8]. This negative trend
is partly damped from the control strategy, keeping the junction tem-
perature as low as possible, if it makes sense from overall system
perspective, as has been seen for the highway use-case in Fig. 15(b).

Compared to the inverter the absolute PMSM efficiency trend dom-
inates the systems influence. Accordingly, the PMSM efficiency rises
from −0.55% over 0.74% to 1.83%. Responsible is on the one hand
side the wider machine diameter, increasing the slot area and anti-
proportionally decreasing wire resistance and DC-copper losses (see
B.29). On the other hand, load point adjustments to lower speed and
higher torque is reducing the frequency dependent iron losses succes-
sively, so that all loss components could be optimized in system design
three.

5.5. System trend analysis

To extend the evaluation of the system interaction potential, a sys-
tem trend analysis is carried out. With this predictive approach, using
the posterior mean values of the trained GPs, trade-offs between design
parameters and their influence on design objectives and controller
outputs can be visualized. Therefore, 3D-slices of the multi-dimensional
parameter space, crossing the reference parameter set, are created. The
results of this method are shown for the objectives in Fig. 17 and
in Fig. 18 for the control outputs, respectively. As no necessary fan
actuation in the selected use-cases has been observed, a trend analysis
is excluded in Fig. 18.

In the top row of Fig. 17 the total energy consumption predic-
tion is depicted, reaching its minimum in a sweet spot with a gear
ratio roughly below 10. For higher gear ratios the system efficiency
decreases, because of increased frequency losses on EM and inverter
side. The same trend exists when going to even lower gear ratios,
where increased torque leads to higher conduction and copper losses.
Second trend can be slightly encountered by increasing the diameter or
reducing the length, as has happened in all three final designs. While
reducing the gear ratio from the reference value helps lowering energy
consumption, a clear performance pareto front is recognizable for a
gear ratio again shortly below 10. Besides the velocity deviation in
the city cycle at this configuration, climbing capabilities would also be
affected, but have not been part of the first methodology implementa-
tion yet. Increasing EM torque output by maximizing PMSM length and
diameter is the only possibility to lower the pareto front marginally. In
further contributions a hard performance constraint on feasible system
designs, for example as an outcome of a customer survey, shall be
included in the BO process as an error model. A mitigation opportunity
of the performance degradation in this work would be to introduce
a switchable two-speed transmission to satisfy the trade-off between
agility and energy consumption [65]. In terms of temperature trade-offs
in the bottom row, the reference design is already close to the sweet
spot of the lowest temperature progression, which is around a gear ratio
of 10 and machines with maximized dimensions. The first observation
results from the same worse operating point shifts as has been men-
tioned for the energy consumption trends. The second conclusion is
simply because of the increased thermal mass in bigger machines. All
in all no critical temperatures are observed, which highlight the need
of a broader use-case coverage in future contributions.

The control outputs of the NMPC in Fig. 18 are showing a similar
trend as the total energy consumption predictions. In the upper row,
the pumps power consumption is visualized. Depending on the EM
dimensions a minimum in pump speed is observed, when reducing
the length and increasing the diameter at the same time. This trend
is mainly governed from the electrical winding resistance trend in the
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Fig. 17. Design objective trends for variation of PMSM length, diameter and total gear ratio.
stator slots. The more dominating trend to higher pump speeds, are
machines with really small or big dimensions and high or low total gear
ratios. First statement is underlining the ‘‘right-sizing’’ effect on the
whole system requirements. A bigger machine would be operated at less
efficiency in the selected use-cases, and higher thermal dissipation rates
need to be considered, while secondly the inverter needs to provide
more current in a smaller machine. This results in overall increased
inverter losses. Second statement for the gear ratio trend undergoes
the same argumentation as for the energy consumption, only that the
effect is governed due to higher thermal requirements, when scattering
higher or lower around the reference design. As mentioned for the
pump cooling with smaller EM dimensions and low gear ratios, also
the shutter opening is affected by increased inverter losses to dissipate
heat to the ambient and bringing the inverter junction temperature
down. Hence, the shutter power consumption could be decreased by
increasing EM dimensions, especially the diameter and therewith rotor
flux accordingly. Lastly, equivalent bypass opening time is shown in
the bottom row of Fig. 18. It has already been pointed out, that bypass
and shutter control are closely coupled, as they affect the lowest circuit
temperature equally. Generally speaking, reduced EM dimensions and
gear ratios, lead to more frequent openings of the bypass and shutter
to create a precise mixture temperature. This ensures to maintain high
EM magnet temperatures on the highway, while precisely cooling the
inverter junction in acceleration phases. Looking at the whole picture
and understanding the EM length reduction, the advantages of overall
lower energy consumption, pump power consumption reduction and
higher EM temperatures for thermal field weakening, outweigh the
effect of increased shutter and bypass control to overcome inverter loss
16 
challenges with such machines. This finally underlines the need of a
system perspective analysis, including control and design, in an EV
development process.

6. Conclusion

In this contribution a novel methodology for an EM development
process has been introduced, including a combination of electromag-
netic design and online thermal system control optimization within
a multi-layer nested framework. This approach ensures alignment
with system objectives by integrating specific system use-cases and
therewith emphasizing a ‘‘mission-specific’’ powertrain optimization
strategy. The methodology leverages Bayesian Optimization (BO) and
gradient-based Nonlinear Model Predictive Control (NMPC) algorithms,
achieving a performance increase of 13% and energy consumption
reduction of −0.18 kWh

100 km at the same time regarding the derived
reference system.

Two distinct objective functions were necessary for each optimiza-
tion layer, addressing energy, performance and durability optimality
criteria. For system evaluation purposes, an automatic system setup
and design process has been established, ranging from the geometrical
component candidate derivation, over the thermal and electromagnetic
model building, till the NMPC compilation and system simulation. In
the end, three parameter studies revealed critical trade-offs between
efficiency and performance. A counteracting trend was observed in the
EM and inverter characteristics, where reducing the final gear ratio led
to increased EM efficiency by shifting load points, particularly those
from the energy-intensive highway cycle, into high-efficiency regions,
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Fig. 18. NMPC control actuation trends for variation of PMSM length, diameter and total gear ratio.
 of
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while the inverter effectiveness decreased. This finding outlines the
necessity of system impact analysis of each individual component de-
sign process, which is one key driver of the presented co-optimization
framework. Control optimization and system adaptation were achieved
across the city and highway cycles. Systems with lower PMSM base
efficiency and higher heat losses demonstrated a preference for active
temperature control, whereas systems with higher PMSM base effi-
ciency exhibited reduced actuation frequency, focusing on minimizing
inverter losses. These findings underscore the potential of integrating
thermal and control aspects into an early system and component design
stage. For further enhancements in future contributions, the design
use-cases shall be expanded to include worst-case scenarios, such as
elevated ambient temperatures or climbing conditions. Additionally,
the framework could be extended to incorporate alternative EM config-
urations, powertrain architectures, and thermal system layouts, offering
opportunities to further improve system performance and adaptability.

Finally, this study has revealed the potential benefits of integrat-
ing control and hardware design to enhance system performance and
energy efficiency. However, the design parameter space still needs
extension for an active learning of the cooling layout. Moreover, NVH
and optimal motion control objectives have not been part of the process
yet. Both enhancements of the problem formulation shall facilitate
the generalizable character of this approach, but will increase the
computational effort for the NMPC online system optimization. Here,
a possible solution would be combining RL and NMPC to achieve a
simultaneous imitation learning of the optimized controls for certain
trajectories.
17 
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Appendix A. Component model validation

See Figs. A.19–A.24.

Fig. A.19. Comparison of the radiator coolant outlet temperature: SC03 test bench
measurement vs. component model simulation.

Fig. A.20. Comparison of the ICCU junction/housing and coolant outlet temperatures:
SC03 test bench measurement vs. component model simulation.

Fig. A.21. Comparison of the inverter junction/housing and coolant outlet tempera-
ures: SC03 test bench measurement vs. component model simulation.
18 
Fig. A.22. Comparison of the 4-way HEX water-glycol and oil outlet temperatures:
C03 test bench measurement vs. component model simulation.

Fig. A.23. Comparison of the PMSM housing and merged spray/shaft cooling outlet
temperatures: SC03 test bench measurement vs. component model simulation.

Fig. A.24. Peak torque characteristic validation of rear PMSM FEA model against
manufacturer data.
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Appendix B. Extended results

See Figs. B.25–B.29.

Fig. B.25. Observation parameter trace during Bayesian Optimization algorithm.
19 
Fig. B.26. Transient control and temperatures of referenced system with rule-based
ontrol strategy.
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Fig. B.27. Transient system controls in city use-case at 𝑇Amb = 20 ◦C, focusing inverter
influence.
20 
Fig. B.28. Transient system controls in highway use-case at 𝑇Amb = 20 ◦C, focusing
inverter influence.
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Fig. B.29. Comparison of PMSM loss effects between baseline and optimized system
for three different design objective weightings.

Data availability

Data will be made available on request.
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