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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Modellierung von Energiesystemen für den
optimalen Entwurf und Betrieb unter Unsicherheit, sowie mit der effizienten Lösung der
resultierenden Optimierungsprobleme.

Zu diesem Zweck entwickelten wir das open-source Python-Paket COMANDO
(component-oriented modeling and optimization for nonlinear design and operation), wel-
ches eine strukturierte und flexible Modellierung von Energiesystemen unter detaillierter
Berücksichtigung von Nichtlinearitäten, dynamischem Verhalten und diskreten Entschei-
dungen ermöglicht. COMANDO verbindet Ansätze zur strukturierten Modellierung aus
algebraischen Modellierungssprachen und differentiell-algebraischen Modellierungsframe-
works mit der Flexibilität einer allgemeinen Programmiersprache, um benutzerspezifische
Problemformulierungen und Lösungsroutinen zu ermöglichen. Wir demonstrieren die Fä-
higkeiten von COMANDO anhand von Fallstudien, in denen automatische Linearisierung,
dynamische und stochastische Optimierung sowie neuronale Netze als datengetriebene Er-
satzmodelle in der deterministisch globalen Optimierung zur Anwending kommen.

In einem realistischen Anwendungsfall verwenden wir COMANDO um einen luftgekühl-
ten geothermischen Organic Rankine Cycle für den Betrieb unter variablen Umgebungs-
temperaturen auszulegen. Dazu erstellen wir detaillierte Komponentenmodelle, von Pum-
pen, Wärmetauschern, Turbinen und Kondensatoren und verwenden künstliche neuronale
Netze zur genauen Vorhersage von Fluideigenschaften sowie Off-designeigenschaften der
Komponenten. Wir optimieren Design und Betrieb global, wobei wir gleichzeitig mehrere
Betriebspunkte betrachten, um den erwarteten annualisierten Gesamtumsatz zu maximie-
ren. Unsere Ergebnisse zeigen, dass die alleinige Betrachtung einzelner Betriebszustände
im Allgemeinen zuSystemdesigns führt, die nicht über den gesamten Bereich der Umge-
bungstemperaturen betrieben werden können. Die Ergebnisse der Systemoptimierung für
einzelne Temperaturen können jedoch bei der Suche nach einem optimalen Design, das den
gesamten Betriebsbereich abdeckt, hilfreich sein.

Um realistische Design- und Betriebsprobleme effizienter und skalierbarer zu lösen, ent-
wickeln wir einen neuen Dekompositionsalgorithmus namens MUSE-BB (multi-section
branch & bound), welcher mehrere potentielle Schwachstellen existierender Methoden
adressiert. Zu diesem Zweck kombiniert MUSE-BB das gleichzeitige Branchen auf meh-
reren Betriebsvariablen mit einer Branch &Bound Suche, die explizit sowohl Design- als
auch Betriebsvariablen berücksichtigt. Unsere theoretischen und numerischen Ergebnisse
zeigen, dass MUSE-BB sowohl mit standard Branch & Bound, als auch mit bestehenden
Dekompositionsalgorithmen konkurrieren kann.

Die Arbeit schließt mit einer Diskussion der Implikationen unserer Ergebnisse und mit
Vorschlägen für die zukünftige Forschung auf dem Gebiet der Modellierung und Optimie-
rung von Energiesystemen.
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Summary

This thesis deals with the modelling of energy systems for optimal design and operation
under uncertainty, as well as the efficient solution of the resulting optimization problems.

For this purpose, we have developed the open-source Python package COMANDO
(component-oriented modeling and optimization for nonlinear design and operation),
which enables structured and flexible modelling of energy systems with detailed consid-
eration of nonlinearities, dynamic behavior and discrete decisions. COMANDO combines
structured modeling features of algebraic modelling languages and differential-algebraic
modelling frameworks with the flexibility of a general-purpose programming language to
allow for user-specific problem formulations and solution routines. We demonstrate the
capabilities of COMANDO through case studies involving automatic linearization, dy-
namic and stochastic optimization, and the use of artificial neural networks as data-driven
surrogate models in deterministic global optimization.

In a realistic use-case we employ COMANDO to design an air-cooled geothermal organic
Rankine cycle for operation under variable ambient temperatures. For this, we create de-
tailed component models for pumps, heat exchangers, turbines and condensers, and make
use of artificial neural networks to accurately predict fluid properties and off-design char-
acteristics of the components. We globally optimize the system design and operation under
simultaneous consideration of multiple operating points, to maximize the expected total
annualized revenue. Our results show that the consideration of individual operating points
generally results in designs that cannot be operated over the full range of ambient temper-
atures. Nevertheless, the results from optimizing the system for individual temperatures
can be used to support the search for an optimal design that covers the entire operating
range.

For a more efficient and scalable solution of realistic design and operation problems, we
develop a new decomposition-based algorithm called MUSE-BB (multi-section branch &
bound), which addresses several potential issues of existing methods. To do this, MUSE-BB
combines simultaneous branching of multiple operational variables with a branch & bound
search that explicitly considers both design and operational variables. Our theoretical and
computational results indicate that MUSE-BB can be competitive with respect to both
standard branch & bound, as well as existing decomposition algorithms.

The thesis concludes with a discussion of the implications of our results and with sug-
gestions for future research in the field of power system modelling and optimization.
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1. Introduction
Meeting the ever-increasing demand for energy while simultaneously reducing greenhouse
gas emissions is one of the largest challenges faced by humanity today. Key characteristics
of future energy systems, capable of achieving this goal, are high efficiency and flexibility
in adapting to the variability of available feedstocks and demands (Liu, Georgiadis, and
Pistikopoulos, 2010). Adequately (re-)designing energy systems to this end also requires
accounting for their prospective operation (Frangopoulos, Von Spakovsky, and Sciubba,
2002). Naturally, future operating conditions, such as demands, prices, weather and other
operational aspects are not known precisely, resulting in significant planning uncertainty
that renders the design and operation of energy systems a challenging decision process
(Pistikopoulos, 1995; Sahinidis, 2004). In the following, we formalize this decision process
as a mathematical programming problem, give a overview of solution approaches for vari-
ants of this problem, and briefly discuss existing modeling tools. We highlight the need
for advanced modeling tools and solution algorithms, motivating the presented work, and
end this chapter with an outline of this thesis.

1.1. Energy System Design and Operation under
Uncertainty

Addressing energy system design and operation requires system models that accurately
capture the impact of individual decisions in the face of variable or uncertain operating
conditions. For this purpose, energy systems can be seen as networks of interconnected
components that transform and transport energy using a set of renewable or fossil resources
to satisfy various kinds of demands (Beller, 1976). A model of a given energy system can
thus be created by appropriately modeling all subsystems and individual components,
their interaction, and their dependence on design and operating decisions as well as on
uncertain parameters. While the subsequently discussed modeling tools and algorithms
can be applied to a much wider range of systems – even outside of the energy domain –
in this thesis we are primarily concerned with energy systems of intermediate size, e.g.
buildings, industrial sites, and power plants.

In practice, models for such systems are frequently used for what is also known as “what-
if ” or “scenario analysis”. Here, system operation is simulated for a given (i.e., fixed)
design, and operating conditions (Gilman, Lambert, and Lilienthal, 2006; Subramanian,
Gundersen, and Adams, 2018), or an “ideal” operational-strategy is sought via operational
optimization. Prospective costs, emissions, and other metrics can be estimated over the
lifetime of the system by performing such scenario analyses for a range of different condi-
tions. Repeating this procedure for different candidate designs provides alternatives among
which the most promising option can be selected (e.g., Seeling-Hochmuth, 1997). While
this sequential approach is pragmatic, the separate determination of design and operation
is ad-hoc, and thus may yield suboptimal results.

1



1. Introduction

An alternative is to formulate an optimization problem in which both design and op-
eration are considered simultaneously (e.g., Papoulias and Grossmann, 1983; Andiappan,
2017; Frangopoulos, 2018; Demirhan et al., 2019). This is frequently done as a variant of
the above scenario analysis, i.e., design and operation are optimized for a single, repre-
sentative scenario, corresponding to “average”, “nominal” or “design” conditions (Dembo,
1991). While in contrast to sequential approaches this will indeed result in a system de-
sign that is optimally suited for the selected operating point, there is still no guarantee
of good overall performance. In particular, the resulting system may even be infeasible
for operation in conditions that differ sufficiently from the assumed scenario. More impor-
tantly, even analyzing how changes in the uncertain parameters affect a given solution, e.g.,
via parametric optimization or sensitivity analysis (Pistikopoulos and Diangelakis, 2016;
Mavromatidis, Orehounig, and Carmeliet, 2018; Ginocchi, Ponci, and Monti, 2021; Usher
et al., 2023), generally is not sufficient to determine whether it is also good solution in the
stochastic setting, see, e.g., Wallace, 2000 for simple counterexamples. Furthermore, even
if many or all solutions obtained via scenario analysis share common features, e.g., energy
storage is not part of any optimal scenario solution, this does not imply that these features
are also part of an optimal solution in the uncertain setting. Ultimately, this is because
scenario analysis implicitly assumes perfect foresight, i.e., the optimization is carried out in
a deterministic setting. This disregards the changing availability of information over time,
and as a result, flexibility has no value in these approaches (also see King and Wallace,
2012).

1.1.1. Two-Stage Stochastic Programming

To avoid the issues of sequential approaches and what-if analyses, it is possible to formulate
an optimization problem for the combined design and operation, that considers multiple
operating conditions simultaneously. A suitable approach for this is two-stage stochastic
programming (Wallace and Fleten, 2003; Yunt et al., 2008; Birge and Louveaux, 2011; Li
and Barton, 2015), typically applied when long-term (“here and now”) decisions must be
taken prior to the realization of a given scenario, in response to which recourse (“wait and
see”) decisions can be taken. The resulting two stage problem (TSP) can be expressed in
the general form

min
x∈X

fI(x) +
∑

s∈S

[
ws min

ys∈Ys

{
fII,s(x,ys)

∣∣ gII,s(x,ys) ≤ 0
}]

s. t. gI(x) ≤ 0,

TSP

where design and operational decisions are captured by the variable vectors x, and ys, with
the associated domains X , and Ys, respectively, the functions fI and fII,s represent design
and operational objectives, respectively, e.g., capital and operating expenditures, and the
functions gI and gII,s encode limitations that the taken decisions must adhere to, e.g.,
resulting from physical/thermodynamical laws, empirical rules or political requirements.
For each scenario s from the overall set of scenarios S, the corresponding instances of fII,s

and gII,s represent the operational objective and constraints associated to a different set of
operating conditions, with appropriate weights ws reflecting the frequency or probability
with witch the respective conditions occur. In this sense, the above stochastic programming
paradigm may also be applied to future events, that occur repeatedly, rather than just
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1.1. Energy System Design and Operation under Uncertainty

once with a given probability, i.e., the scenarios do not not necessarily need to represent
an uncertain, but may also represent a time-variable future (e.g., as in Yunt et al., 2008).

Early works addressing optimization problems of the form TSP, almost date back to the
beginnings of mathematical programming, and consider linear programming (LP) variants,
where all functions (fI, fII,s, gI, gII,s) are linear in the variables x and ys, and X and Ys do
not impose integrality on any of the variables (Massé, 1946; Dantzig, 1955). Even today,
LP formulations still constitute the most widely used variant of TSP, as they allow for the
analysis of systems at the scale of entire nations, and the coupling with economical models
(Beller, 1976; Kydes, 1978; Fishbone and Abilock, 1981; Schrattenholzer, 1981; Loulou
and Labriet, 2007). Unfortunately, the arithmetic solution complexity of TSP scales at
least polynomially with the number of considered scenarios (Anstreicher, 2001), so even LP
variants can quickly become intractable when large numbers of scenarios are considered.
To some extent, this issue can be addressed by specialized decomposition algorithms that
exploit the inherent problem structure. Instead of solving the original problem directly,
such algorithms employ problem transformation, such as projection, dualization, restric-
tion, and relaxation (Geoffrion, 1970b; Geoffrion, 1970a) to derive various subproblems.
As the resulting subproblems are much smaller than the original problem, they are signif-
icantly easier to solve and can be used to generate intermediate solutions that iteratively
approach the solution of the original problem.

The two principal algorithmic approaches for exploiting the structure of TSP are stage-
wise (or primal) and scenario-wise (or dual) decomposition. Stage-wise decomposition
typically relies on variants of classical Benders decomposition (BD) (Benders, 1962) (bet-
ter known in the stochastic programming community as L-shaped decomposition (Van
Slyke and Wets, 1969)). While it only applies to LP variants of TSP in its original form,
an generalization by Geoffrion (Geoffrion, 1972), known as generalized BD (GBD), ex-
tends this method to cover a particular subclass of convex nonlinear programming (NLP)
problems, using nonlinear duality theory. BD-based approaches iteratively construct an
outer-approximation of the second-stage optimal value functions fYs

II,s(x), and thus fail to
guarantee convergence if there are nonconvexities in the second stage. Whereas the focus
on linear, or at least convex subclasses of TSP is natural from the perspective of compu-
tational tractability, and often sufficient for system analysis, ensuring an adequate level
of detail for technical design and operation often requires introducing nonconvexities into
a model. One example for this are discrete decisions, which may be required at the level
of both, design (e.g., selection and connectivity of components), and operation (e.g., op-
erating modes, unit commitment). Other sources of nonconvexity are nonlinearities that
arise from the consideration of, e.g., component efficiencies, thermodynamic properties, or
data-driven models such as ANNs. For problems of this type, several extensions of BD
exist, that address mixed-integer LP (MILP) (e.g., Laporte and Louveaux, 1993; Angulo,
Ahmed, and Dey, 2016), convex mixed-integer NLP (MINLP) (Li and Grossmann, 2018; Li
and Grossmann, 2019a) as well as nonconvex MINLP (Li, Tomasgard, and Barton, 2011;
Chen et al., 2011; Li, Sundaramoorthy, and Barton, 2014) variants of TSP.

Scenario-wise decomposition on the other hand typically relies on Lagrangian duality
(Geoffrion, 2009; Fisher, 1981; Guignard and Kim, 1987; Dür and Horst, 1997) and are
typically combined with branch and bound (B&B) (Horst and Tuy, 1996) to address non-
convexity. A classical example is Carøe and Schultz, 1999, which addresses MILP variants
of TSP, while Karuppiah and Grossmann, 2007; Khajavirad and Michalek, 2009; Cao and
Zavala, 2019 address the nonconvex MINLP subclass. Several methods also combine these
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two principal decomposition approaches, resulting in powerful methods that can efficiently
address general variants of TSP (e.g., Kannan, 2018; Li and Grossmann, 2019b).

The large number of existing decomposition algorithms essentially covers all of the dif-
ferent subclasses of TSP, however, efficiently solving large-scale problems arising from
realistic applications remains a challenge. Furthermore, while the demand for good scaling
with a large number of scenarios has resulted in a focus on methods that employ projec-
tion (see also Geoffrion, 1970b; Geoffrion, 1970a), in order to restrict the primary search
to the design variables (Carøe and Schultz, 1999; Karuppiah and Grossmann, 2007; Cao
and Zavala, 2019; Kannan, 2018; Li and Grossmann, 2019b), recent research suggest that
this approach may face some theoretical issues (Robertson, Cheng, and Scott, 2020).

1.1.2. Alternative Approaches for Addressing Uncertainty

Apart from two-stage problems, the field of stochastic programming addresses many other
related and generalized problems, relevant to energy system design and operation, such as
chance constrained programming (e.g., Charnes and Cooper, 1959), robust optimization
(e.g., Ben-Tal and Nemirovski, 2002), and in particular multistage stochastic program-
ming (e.g., Massé, 1946; Birge, 1985; Carøe and Schultz, 1999; Pereira and Pinto, 1991;
Rockafellar and Wets, 1991).

In addition to stochastic programming, several alternative approaches for addressing
uncertainty exist. Examples include Markov decision processes and reinforcement learn-
ing (Puterman, 2014; Perera and Kamalaruban, 2021), Bayesian approaches (Sorourifar,
Choksi, and Paulson, 2021; Borunda et al., 2016) and the concepts of fuzzy sets and
numbers (Zadeh, 1965; Bellman and Zadeh, 1970; Martinsen and Krey, 2008), also see
the reviews Wets, 1996; Sahinidis, 2004; Soroudi and Amraee, 2013; Aien, Hajebrahimi,
and Fotuhi-Firuzabad, 2016; Grossmann et al., 2016. Finally, there are even attempts to
unify all existing approaches to decision making under uncertainty in a single, overarching
framework (Powell, 2021).

In this thesis, however, we restrict our focus to the two-stage formulation TSP. Also
we assume a fixed, sufficiently representative scenario set S exists and thus do not address
approaches relying on continuous random variables or repeated sampling (e.g. Norkin,
Pflug, and Ruszczyński, 1998; Higle and Sen, 1991; Kleywegt, Shapiro, and Homem-de-
Mello, 2002; Dantzig and Infanger, 2010; Shao and Scott, 2018). Our focus is motivated
by the fact that combined design and operation is an “inherently two-stage process” (King
and Wallace, 2012), where the primary interest is the resulting design. While alternative
approaches to deal with uncertainty may result in more accurate representations of the real
decision process, they primarily affect the resulting operational policies, whereas the effect
on the optimal design is typically negligible, provided the set S is sufficiently representative.

1.1.3. Modeling Tools

After reviewing the theoretical aspects of formulating and solving optimization problems
related to energy system design and operation, we next consider how a problem of the form
TSP can be set up in practice. General-purpose algebraic modeling languages (AMLs),
e.g., GAMS (Bussieck and Meeraus, 2004) or Pyomo (Hart, Watson, and Woodruff, 2011)
are the de-facto standard for formulating optimization problems such as the optimal design
and operation of energy systems, offering flexibility in the choice of algebraic formulation
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and solution approach. However, more specialized energy system modeling frameworks
(ESMFs), e.g., OSeMOSYS (Howells et al., 2011) or oemof (Hilpert et al., 2018) are avail-
able, that offer a component-oriented modeling approach, i.e., system models are created by
specifying connections between component models. This approach simplifies the modeling
process, model maintenance, and model re-use.

Established ESMFs typically employ linear programming (LP) (Schrattenholzer, 1981;
Fishbone and Abilock, 1981; Loulou and Labriet, 2007; Bakken, Skjelbred, and Wolfgang,
2007; Howells et al., 2011; Hunter, Sreepathi, and DeCarolis, 2013; Dorfner, 2016) or
mixed-integer linear programming (MILP) (Pfenninger and Keirstead, 2015; Hilpert et al.,
2018; Atabay, 2017; Brown, Hörsch, and Schlachtberger, 2018; Johnston et al., 2019) for-
mulations, well-suited for techno-economic analysis of large-scale systems (Connolly et al.,
2010; Pfenninger, Hawkes, and Keirstead, 2014; Beuzekom, Gibescu, and Slootweg, 2015).
In contrast, technical system design and operation requires a more detailed representation
of system behavior, often giving rise to nonlinearities and dynamic effects that are difficult
or impractical to represent with MILP formulations (see e.g., Li et al., 2011; Goderbauer
et al., 2016; Schäfer et al., 2019b; Schäfer et al., 2019a). Decisions taken in the early
stages of system design often have a large impact on overall cost and deviating from them
at a later stage is generally very difficult (Pistikopoulos, 1995; Mitsos et al., 2018). This
motivates the development of new modeling tools which are capable to provide a useful
level of abstraction, capturing the modular nature of energy systems, while still being
flexible enough to incorporate the necessary level of modeling detail to produce accurate
results. Furthermore, while the presented stochastic programming literature indicates that
a rich set of approaches for the design and operation problems is available, many existing
modeling tools do not fully exploit these methods.

1.2. Goals of this Thesis

This thesis aims to address the challenges of structured and flexible modeling of energy
system design and operation, as well as the efficient solution of the resulting optimization
problems in the general nonlinear, nonconvex setting. To this end, we developed the next-
generation ESMF for component-oriented modeling and optimization for nonlinear design
and operation (COMANDO), which we present in Chapter 2. COMANDO is an open-
source Python package that enables modeling of energy systems at a high level of detail,
including general nonlinearities, dynamic behavior, and discrete decisions. In addition to
generic modeling capabilities available in AMLs, COMANDO offers a structured, modular
generation of system models from subsystem and component models. Furthermore, it
benefits from the full flexibility of a general, high-level programming language, useful
for interfacing with a wide range of existing software, and formulating custom problem
transformations and solution routines. We demonstrate features of COMANDO via case
studies, including automated linearization, dynamic optimization, stochastic programming,
and the use of nonlinear artificial neural networks as surrogate models in a reduced-space
formulation for deterministic global optimization

Following this, we apply COMANDO to a realistic energy systems problem in Chapter 3,
where we design an air-cooled geothermal organic Rankine Cycle (ORC) under considera-
tion of the variable ambient temperature. For the resulting design and operation problem
we consider realistic off-design behavior of the heat exchangers and turbine and employ
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artificial neural networks (ANNs) as surrogate models for accurate fluid properties, and
as computationally efficient representations of off-design parameters. We illustrate the
issues with scenario analyses already discussed in Chapter 1, i.e., that designs resulting
from problems considering only individual ambient temperatures are generally suboptimal
or even infeasible for the entire operating range. However, in the considered case, the
associated objective bounds guarantee global optimality of the the best feasible solution
to the overall problem (where multiple ambient temperatures are considering) with suffi-
cient accuracy. This is in contrast to the much weaker bounds, obtained directly from the
state-of-the-art B&B solver addressing the overall problem.

Whereas our relatively simple solution approach ensures a sufficiently good solution in
the specific case, considered in Chapter 3, this cannot always be expected. In general,
reasonable solution times for realistic design and operation problems may only be achiev-
able via suitable decomposition algorithms. However, existing algorithms, applicable to
TSP in the general, nonconvex case may face certain practical and theoretical challenges.
We therefore propose an alternative decomposition algorithm, that aims to address these
potential issues in Chapter 4. The proposed algorithm combines simultaneous branching
of multiple operational variables with a branch and bound search that explicitly considers
both design and operational variables and is thus called multi-section branch & bound
(MUSE-BB). We prove finite termination with an εf -optimal solution, provide favorable
convergence properties, relevant to the mitigation of clustering, and present promising
numerical results that highlight the potential of MUSE-BB to outperform standard B&B
algorithms on problems of the form TSP.

Finally, we draw conclusions and suggest directions for future research in Chapter 5.
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2. COMANDO: Modeling Energy
Systems for Optimal Design and
Operation

In this chapter we consider the modeling of energy systems with a primary focus on op-
timizing their design and operation. To this end, we propose a next-generation ESMF
for component-oriented modeling and optimization for nonlinear design and operation
(COMANDO), which we implemented in an open source Python package (COMANDO
Repository). COMANDO borrows a generic, nonlinear representation of mathematical
expressions and features for algorithm development from AMLs, and the representation
of differential equations and more general system model aggregation from differential-
algebraic modeling frameworks (DAMFs) such as gPROMS (Process Systems Enterprise,
1997–2023), MODELICA (Elmqvist and Mattsson, 1997), or DAE Tools (Nikolić, 2016).
While the vast majority of existing ESMFs are implemented on top of an AML, CO-
MANDO is based on the computer algebra systems SymPy (Meurer et al., 2017) and
symengine (Čertík et al., 2019). These systems provide data structures for representing
and manipulating mathematical expressions. These features facilitate the creation of au-
tomatic reformulation routines (e.g., automatic linearization), custom interfaces to AMLs
or solvers, and user-defined solution algorithms.

With this combination of features, COMANDO incorporates flexible nonlinear and dy-
namic modeling into the modularity of an ESMF. Among other applications this enables
the formulation and solution of two-stage stochastic programming problems for combined
design and operation of energy systems under uncertainty. While this is the principal use-
case of COMANDO, the framework can also be employed in many other settings such as,
e.g., multi-objective optimization, scenario-analysis (i.e., sequential design and operation),
or purely operational applications such as optimal scheduling and control, (stochastic)
model-predictive control, or simulation.

This chapter is structured as follows: In Section 2.1, we give a brief review of the state of
the art in optimization-based energy-system design and operation and identify the need for
an open-source tool, dedicated specifically to the technical design and operation of energy
systems. To this end, we present COMANDO in Section 2.2. In Section 2.3, we present
four case studies highlighting important features of COMANDO. Section 2.4 concludes
this chapter.
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2.1. Optimization-based energy system design and
operation

As discussed in Chapter 1, it is possible to cast the combined optimization of design and
operation of energy systems as a two-stage stochastic programming problem of the form
TSP. In Section 2.1.1 we present a variant of TSP that is specifically tailored towards com-
bined design and operation problems, by additionally incorporating differential equations.
This generalization additionally enables the representation of system dynamics, making the
resulting problem formulation suitable for detailed operational problems such as optimal
control.

In Section 2.1.2, we briefly summarize advantages and disadvantages of the three major
classes of tools that can be used to formulate and solve variants of this problem, namely
algebraic modeling languages (AMLs), energy system modeling frameworks (ESMFs) and
differential-algebraic modeling frameworks (DAMFs). Subsequently we motivate the need
for a new modeling framework, that specifically addresses the challenges of technical design
and operation.

2.1.1. Optimal Design and Operation

In this chapter we consider a variant of the generic two-stage formulation TSP from Chap-
ter 1 that is more specific to energy system design and operation. In particular, we explic-
itly account for dynamic effects that can be relevant for system operation and thus slightly
adjust notation:

min
x

fI(x) +
∑

s∈S

ws f
∗
II,s(x)

s. t. gI(x) ≤ 0

hI(x) = 0

f ∗
II,s(x) = min

ys(·)
fII,s(x,ys(·)) =

∫

Ts
ḟII
(
x,ys(t),ps(t)

)
dt

s. t. yd
s (t = 0) = yd

s,0

ẏd
s (t) = ψ

(
x,ys(t),ps(t)

)

gII
(
x,ys(t),ps(t)

)
≤ 0

hII

(
x,ys(t),ps(t)

)
= 0

ys(t) = [yd
s (t),y

a
s(t),y

c
s(t)]

ys(t) ∈ Ys(t) ⊂ Rny× Zmy





∀t ∈ Ts

Ts = [0, Ts]





∀s ∈ S

x ∈ X ⊂ Rnx× Zmx

S = {s1, s2, · · · , s|S|}

(D&O)

The two-stage structure of (D&O) distinguishes between design- and operation-related
variables, constraints, and objectives. We group design decisions into the vector x and op-
erational decisions into one vector ys(·) (consisting of differential states, algebraic states,
and controls, identified via the superscripts d, a, and c, respectively) for each scenario s,
with associated probability of occurrence ws. Further, the operational decisions are func-
tions of time t from a continuous operating horizon Ts = [0, Ts] (in general, each scenario
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may consider a different time horizon). Likewise, for different scenarios s the input data,
i.e., the values of model parameters ps(·), may be functions of time t. The objective func-
tion of the first stage is comprised of design costs fI and the expected value of the optimal
operating costs. For a given design x and scenario s, the optimal operating costs f ∗

II,s

correspond to the optimal objective value of the second stage. The operating costs are
described by an integral over the operating horizon Ts of the momentary operating costs
ḟII . The set of feasible design and operational decisions is described via constraints gI ,
gII , hI , and hII (with an appropriate number of elements in hII , allowing for degrees of
freedom), as well as bounds and integrality restrictions in the form of X and Ys(t), with n
and m corresponding to the number of continuous and discrete decisions, respectively. Ad-
ditionally, for the subset of operational variables that correspond to differential states, yd

s,0

denotes the associated initial state and ψ denotes the vector of state transition functions
(right-hand side of the differential equations).

Formulation (D&O) covers both mixed design and operation problems, as well as pure
operational problems (with fixed design decisions x). If the values of ws are interpreted
as frequencies of occurrence for a certain operational setting, the corresponding scenarios
can also be viewed as typical operating points or periods, as done e.g., in Yunt et al.
(2008) and Baumgärtner et al. (2019a), respectively. Such scenarios can be derived from
standardized reference load profiles, or via clustering of historical data (see, e.g., Schütz
et al., 2018). While we do not consider this in the present work, additional constraints
coupling different scenarios can be added to formulation (D&O), to incorporate long-term
effects such as seasonal storage (see, e.g., Gabrielli et al., 2018; Baumgärtner et al., 2019b).

As discussed in Chapter 1, the two-stage formulation (D&O) can be cast into an equiva-
lent single-stage formulation, also referred to as the deterministic equivalent, which can be
solved with general-purpose solvers. While solvers interfaced from DAMFs, as well as some
specialized dynamic optimization algorithms (Caspari et al., 2019; Scott and Barton, 2015),
directly accept continuous-time problem formulations and take care of time-discretization
internally, almost all solvers available via AMLs and ESMFs require discrete-time formu-
lations as input. To obtain a discrete-time formulation, a particular discretization scheme
must be chosen, and ys(·), fII,s(x,ys(·)), and ψ

(
x,ys(t),ps(t)

)
are replaced by corre-

sponding discrete-time counterparts.
An alternative to solving the deterministic equivalent is to employ an algorithm capable

of exploiting the special constraint structure of the two-stage formulation (D&O). Such
an algorithm decomposes (D&O) into multiple subproblems that are solved iteratively to
obtain increasingly tighter bounds on the solution of (D&O). As outlined in Chapter 1,
many different decomposition algorithms are available, depending on the presence and
location of nonlinearity, nonconvexity and integrality; for a concise overview, we also refer
to Li and Grossmann (2019b).

2.1.2. Tools

Both deterministic equivalent formulations as well as suitable decomposition algorithms
can be implemented in AMLs such as AMPL (Fourer, Gay, and Kernighan, 1990), GAMS
(Bussieck and Meeraus, 2004), or AIMMS (Bisschop, 2006). In recent years, several AML
extensions have been developed that can be leveraged for energy system modeling. In par-
ticular, stochastic programming related functionality has been incorporated widely, both
in commercial AMLs such as AMPL (Fourer, Gay, and Kernighan, 1990; Valente et al.,
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2009) and GAMS (Bussieck and Meeraus, 2004; Ferris et al., 2009), as well as in the
open-source AMLs Pyomo (Hart, Watson, and Woodruff, 2011; Watson, Woodruff, and
Hart, 2012) and JuMP (Dunning, Huchette, and Lubin, 2017; Huchette, Lubin, and Petra,
2014; Biel and Johansson, 2022). Further modeling constructs tailored towards special
problem structures have been incorporated through block-oriented modeling (Friedman
et al., 2013) in Pyomo and through Plasmo.jl (Jalving et al., 2017; Jalving, Cao, and
Zavala, 2019) in JuMP. Finally, Pyomo.DAE (Nicholson et al., 2018) enables the direct
representation of differential equations within optimization problems expressed in Pyomo
and provides various options for automatic discretization. Through the combination of
features offered by these extensions, newer AMLs are in principle well suited to model and
optimize energy system design and operation. However, their abstract nature can com-
plicate implementation, code maintenance, and re-use, and renders the resulting problem
formulations difficult to comprehend. Development on the Pyomo AML has resulted in
the modeling tool IDAES (Miller et al., 2018), which employs methodologies from process
systems engineering with the aim of advancing fossil energy systems (IDAES homepage).
In particular, IDAES provides models for thermal power plants and associated compo-
nents. These systems are considered in the form of process flowsheets, i.e., components
are modeled as control volumes with in- and outflows, whose steady-state and dynamic
behavior can be specified via so-called property packages.

Compared to AMLs and their various extensions, ESMFs provide an even higher level of
abstraction, allowing to model generic energy systems comprised of utilities for generating,
converting, or storing different energy forms. This higher level of abstraction is commonly
achieved via an interface layer on top of an AML that separates component and system
modeling from problem formulation. In a first modeling step, models of energy system
components, e.g., boilers, combined-heat-and-power units, or heat pumps are created.
These component models contain variables, parameters and constraints specifying possible
in- and outputs as well as the internal component behavior. In a second modeling step,
system models are aggregated by specifying the connections between different components.
Finally, component- and system-level constraints are combined with an objective, e.g., the
minimization of total annualized cost (TAC) or global warming impact (GWI), yielding a
problem formulation that can be passed to an appropriate solver.

The modular, object-oriented nature of modern ESMFs such as oemof (Hilpert et al.,
2018) allows component and system models to be implemented as classes, inheriting reoc-
curring functionality, e.g., from generic models representing generation, transformation,
storage or consumption of different energy commodities. Such inheritance allows for
more structured modeling, thereby simplifying model maintenance and re-use compared
to AMLs, e.g., through the creation of component libraries. However, the vast majority
of ESMFs are based on either linear programming (LP) or mixed-integer linear program-
ming (MILP) formulations, i.e., all participating functions must be linear in the decision
variables x and y. In such ESMFs, the user must provide linear approximations for all
nonlinear expressions. While this is usually not considered a limitation in the context
of system analysis, i.e., the principal focus of most ESMFs (cf. Pfenninger, Hawkes, and
Keirstead, 2014), problems concerned with technical design and operation need to represent
systems in more detail, often giving rise to nonlinearities that are difficult or impractical to
linearize. In the presence of such nonlinearities, it is often sensible to use the original non-
linear equations or nonlinear surrogate models such as artificial neural networks (ANNs),
as, e.g., in Schäfer et al. (2020), which however is not possible in MILP-based ESMFs.
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Besides AMLs and ESMFs, differential-algebraic modeling frameworks (DAMFs) consti-
tute a third class of tools that can be used to model energy systems. DAMFs also employ
a component-oriented modeling approach, which, however, is more general than in a typi-
cal ESMF: In DAMFs, components may correspond to actual physical machinery or to a
particular physical phenomenon (e.g., heat transfer) and can constitute subsystems, which
are themselves composed of other components. Additionally, the information exchanged
between components is not restricted to a particular kind of quantity, such as energy.
DAMFs are particularly focused on detailed operational aspects, allowing for differential
equations and nonlinear expressions within component models. They provide powerful
features for operational simulation of the resulting models for which a fixed design is as-
sumed. Design optimization is also possible in several DAMFs, (e.g., Smith, 1997; Pfeiffer,
2012), and the commercial tool gPROMS (Process Systems Enterprise, 1997–2023) even
allows for the direct consideration of parametric uncertainty using formulations similar to
Problem (D&O), (see, e.g., Bansal et al., 2000). In contrast, noncommercial, open-source
tools such as Open-Modelica (Thieriot et al., 2011) or Optimica (Åkesson et al., 2010) are
currently limited to a single set of operational data, impeding design optimization under
uncertainty. Furthermore, DAMFs usually offer less freedom in the choice of problem for-
mulation, solver or algorithm in comparison to AMLs. In particular, many tools employ
gradient-based methods, (e.g., Pfeiffer, 2012; Navarro and Vassiliadis, 2014; Magnusson
and Åkesson, 2015) yielding only local solutions, or heuristic global optimization meth-
ods, e.g., random search, genetic algorithms, or simulated annealing (Thieriot et al., 2011;
Pfeiffer, 2012; Kim et al., 2018), which treat the system model as a black box and cannot
reliably locate global solutions.

AMLs, ESMFs and DAMFs each exhibit strengths related to a particular aspect of mod-
eling and optimizing energy system design and operation. ESMFs are tailored to energy
systems modeling and offer a component-oriented approach that benefits model mainte-
nance and re-usability. However, their principal focus is on system analysis. In particular,
their restriction to LP or MILP formulations makes them less suited for applications con-
cerned with technical design and operation. Both AMLs and DAMFs lift the restriction
to (MI)LP formulations, but AMLs lack high-level component-oriented abstractions for
generic energy systems and DAMFs lack control over the choice of problem formulation
and optimization algorithm. We therefore propose a next-generation ESMF that allows
for flexible, component-oriented modeling, including nonlinear and differential-algebraic
formulations, parametric uncertainty, and the possibility to specify specialized solution al-
gorithms. Its basic structure is presented in the following Section. A summary of the above
discussion, highlighting the roles of each tool class and their influence on COMANDO is
given in Tab. 2.1.
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Tab. 2.1. Overview of the three tool classes that inspired COMANDO: algebraic modeling languages (AMLs), energy system modeling
frameworks (ESMFs), and differential-algebraic modeling frameworks (DAMFs)

tool
class

representative
examples

typical domain
of application

features adopted
in COMANDO

AMLs • AMPL (Fourer, Gay, and Kernighan, 1990)
• GAMS (Bussieck and Meeraus, 2004)
• AIMMS (Bisschop, 2006)
• PYOMO (Hart, Watson, and Woodruff, 2011)
• JuMP (Dunning, Huchette, and Lubin, 2017)

development of detailed, application-
specific (MI)LP/(MI)NLP problem for-
mulations for arbitrary applications and
specialized solution routines

• free choice of modeling approach
• possibility to specify alternative prob-

lem formulations
• development of user-defined algo-

rithms

ESMFs • MESSAGE (Schrattenholzer, 1981)
• MARKAL/TIMES (Fishbone and Abilock, 1981;

Loulou and Labriet, 2007)
• eTransport (Bakken, Skjelbred, and Wolfgang,

2007)
• OSeMOSYS (Howells et al., 2011)
• Temoa (Hunter, Sreepathi, and DeCarolis, 2013)
• calliope (Pfenninger and Keirstead, 2015)
• urbs (Dorfner, 2016)
• ficus (Atabay, 2017)
• oemof (Hilpert et al., 2018)
• PyPSA (Brown, Hörsch, and Schlachtberger,

2018)
• Switch 2.0 (Johnston et al., 2019)

system analysis (superstructure opti-
mization, capacity expansion planning)
for large scale national/international en-
ergy systems, typically using (MI)LP
formulations

• component-oriented modeling
• focus on energy systems
• separation of modeling and problem

formulation
• open-source availability

DAMFs • gPROMS (Process Systems Enterprise, 1997–
2023)

• MODELICA (Elmqvist and Mattsson, 1997)
• DAE Tools (Nikolić, 2016)

detailed operational simulation; vary-
ing degrees of optimization capabilities,
typically local solutions to NLP formu-
lations

• modeling with differential equations
• generic bidirectional connectivity
• modularity for definition of subsys-

tems
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2.2. The COMANDO ESMF

modeling
Section 2.2.1

component models
parameters, variables, states,

constraints, expressions

system models
used component models and
their connections, additional

parameters, variables, states, . . .

problem formulation
Section 2.2.2

min AC/min CO2

MINLP ?→ MILP
design/operation problem

time steps, scenarios,
objective, parameter values,

additional constraints

alternative formulations optional:
- piecewise linearization
- steady-state asumptions

- . . .

solution
Section 2.2.3

user-defined
algorithms

AML interfaces:
Pyomo,

GAMS, . . .

solver interfaces: Gurobi, MAiNGO, BARON, . . . solver options

optimal system design and operation

Fig. 2.1. Workflow for modeling, problem formulation, and optimization using COMANDO.

2.2. The COMANDO ESMF

The goal of COMANDO is to provide an open-source ESMF which allows to generate
detailed models of energy system components, including differential-algebraic and nonlinear
elements, and aggregate them to system models with the primary purpose of optimization.
Traditional ESMFs are typically oriented towards techno-economic analysis of systems
at national or international scales, where (MI)LP formulations are an asset that ensures
computational tractability. In contrast, COMANDO is oriented towards the technical
design and operation of small- to medium-scale systems, e.g., district energy systems,
industrial sites, or energy conversion processes. At these scales, investigation of realistic
component and system behavior is possible via the consideration of technically relevant
effects such as part-load and dynamic behavior.

Unlike most ESMFs, which are commonly based on an AML, COMANDO is imple-
mented as a flat, optimization-specific modeling layer on top of the computer algebra
system SymPy (Meurer et al., 2017). This choice provides: i) data structures for the
mathematical expressions used to describe components and systems, as well as ii) several
routines useful for creating automatic reformulations and user-defined algorithms, such as
automatic differentiation, substitution of expressions or solution of nonlinear systems of
equations. As a modeling framework, COMANDO itself does not provide any specialized
solution methods. Instead, it allows for component-oriented modeling at a high level of
abstraction, while at the same time granting users access to low-level data structures. This
allows for both intuitive modeling, as well as advanced use cases such as problem refor-
mulations and the development of user-defined algorithms, simplifying the development of
tailored solution approaches. During the development of COMANDO, we made an effort
to maximize chances of its adoption by following best-practices for code development. This
includes the creation of automated unit and integration tests, provision of documentation
(both in the source code and as a standalone document (COMANDO Documentation), and
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2. COMANDO: Modeling Energy Systems for Optimal Design and Operation

design variables
xc

operational variables
yc

parameters
pc

expressions of interest
ec
(
xc,yc,pc

)

differential states
ẏd

c = ψc
(
xc,yc,pc

)

constraints
gc
(
xc,yc,pc

)
≤ 0

hc
(
xc,yc,pc

)
= 0

cc,1
(
xc,yc,pc

)

cc,2
(
xc,yc,pc

)

...

cc,N
(
xc,yc,pc

)

connectors

Fig. 2.2. Structure of a generic component c in COMANDO. Mathematical expressions are
specified based on symbols that are either design variables (xc), operational variables (yc), or
parameters (pc). These expressions can be kept for later reference (ec), constitute the right-hand
side of differential equations (ψc), form part of algebraic constraints (gc,hc), or describe possible
in- and/or outputs through connectors (cc,i).

the inclusion of the full code for running the case studies as detailed usage examples. In
order to further encourage adoption, we provide a generic parsing routine to translate in-
dividual COMANDO expressions to alternative textual or object-oriented representations,
allowing users to easily link COMANDO to other software. An overview of the structure of
COMANDO and the typical workflow of modeling, problem formulation and optimization
is given in Fig. 2.1.

In Section 2.2.1 we describe the process of creating models for components and systems
in COMANDO. Section 2.2.2 provides details on how optimization problems can be created
from a system model and how alternative formulations of these problems can be obtained.
Finally, the different options for solving the formulated problems are given in Section 2.2.3.

2.2.1. Modeling Process

The goal of the modeling phase is to generate a model describing the behavior of a given
energy system. For the creation of such a system model, models for its constituting com-
ponents as well as information on their connectivity are required.

We begin with the description of component models, which are used to represent ele-
mentary parts of an energy system. Fig. 2.2 depicts the structure of the Component class
used for that purpose. A model of a component c consists of several types of mathematical
expressions, given in symbolic form. Following the notation introduced in Section 2.1, the
expressions describing the component contain different symbols corresponding to quantities
which are either parameters (pc), i.e., placeholders for values that are assumed to be given
before an optimization, or design or operational variables (xc and yc, respectively), i.e.,
placeholders for scalar and vector values that are to be determined during optimization.

To instantiate a Component, a unique name must be provided, which serves as an identi-
fier for the component. The names of parameters, variables, and constraints associated to
the component are prepended with this identifier, in order to distinguish quantities from
different instances of the same component model. The Component class can either be used
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2.2. The COMANDO ESMF

directly or subclassed to specify specialized component classes with custom behavior. To
create and add symbols to a component, the Component class provides three methods:

• make_parameter,
• make_design_variable, and
• make_operational_variable.

All three methods require a name for the symbol that is used to represent the quantity.
The methods for creating variables provide optional arguments for the specification of
variable bounds, domain (integer/real) and a scalar value for initialization, while the pa-
rameter creation method only provides a single optional argument for the specification of
its value. Note that time- and scenario-specific values for operational quantities are set in
the problem formulation phase after the time and scenario structure, has been specified,
see Section 2.2.2.

Based on variables and parameters, mathematical expressions can be formed using the
overloaded Python operators +, -, *, /, **, or any of the functions implemented in SymPy
(e.g., exp, log, trigonometric, and hyperbolic functions). Any intermediate expressions ec

that are of interest can be assigned an identifier and stored in the component using the
add_expression method. These expressions can simply be used for evaluation or as parts
of more complex expressions, e.g., system-level constraints, or an objective function, cf.
Section 2.2.2. Vectors gc and hc contain inequality and equality constraints associated to
the component c and their elements can be specified using the methods

• add_le_constraint,
• add_eq_constraint, and
• add_ge_constraint.

Each of these methods takes two expressions and an optional name for the resulting relation
as arguments. Explicit distinction into first and second stage expressions and constraints
is not necessary and occurs automatically, based on the symbols present in the respective
expressions.

Dynamic behavior can be represented by specifying right-hand side expressions ψc for
the time derivatives of differential states yd

c (recall that yd
c constitutes a subset of the oper-

ational variables yi). Previously created operational variables may be declared differential
states using the declare_state method or differential states may be created directly using
the make_state method. The first method requires an existing variable and an expression,
corresponding to entries of the vectors yd

c and ψc as mandatory arguments and allows for
the specification of an initial state as well as bounds and an initial guess for the value of the
derivative. The method results in the creation of a new operational variable, corresponding
to an element in ẏd

c , and an equality constraint, linking the time derivative with the given
expression in ψc. An explicit relation between the state and its derivative is not specified
at this point, as it depends on the desired time-discretization which is handled by the
solution interfaces, cf. Section 2.2.2. The make_state method creates a new operational
variable corresponding to the differential state and then calls declare_state.

To allow for the aggregation of components to systems, individual expressions in ci can
be assigned to connectors (cf. Fig. 2.2). Connectors are generally bidirectional, but may
be specified to only allow for in-, or output. In- and output connectors restrict the assigned
expression to a nonnegative or nonpositive range, respectively.
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2. COMANDO: Modeling Energy Systems for Optimal Design and Operation

∑

i∈{Aout,Bin,Cflow}

ci = 0A

cAout ≤ 0

B

cBin ≥ 0

C cCflow

Fig. 2.3. A connection formed by
connecting three connectors to a
bus: The components A, B, and
C each define a connector for a
particular quantity. The connec-
tors of A and B are marked as
outputs and inputs, respectively,
restricting the sign of the associ-
ated expression, while the connec-
tor of C is not restricted. The con-
nection of Aout,Bin, and Cflow via
a bus results in the creation of a
balance constraint in the system
model. This graphical notation is
also used for the case studies in
Section 2.3.

A system model can be created as an instance of the System class, whose instantiation
again requires a unique label that serves as an identifier. Optionally, a list of components
and the connections between them can be passed to the constructor of the System class.
Each connection is specified via a label and a list of associated connectors. The connectors
are connected to a “bus” at which the quantities associated to them are balanced and a
corresponding constraint is created automatically, see the graphical notation in Fig. 2.3,
which is also used for the case studies in Section 2.3. The elementary connections provided
by COMANDO’s System class, handle only simple balance equations. More complicated
connectivities such as mixing streams with different temperatures, concentrations or other
qualities are most naturally implemented as a dedicated component within COMANDO.
Instead of specifying the complete structure during construction of a System instance,
components and connections can also be added sequentially via corresponding methods,
allowing for procedural model generation. As in DAMFs, a nested creation of systems
from subsystems is possible by exposing connectors of individual components or extend-
ing existing connections via additional connectors. For instance, a neighborhood can be
represented as a system composed of buildings as subsystems, which are in turn composed
of heating, cooling and power equipment. As with component models, system models can
be assigned their own variables, parameters, expressions and constraints describing their
behavior. These two features are accomplished by letting the System class inherit from
the Component class. The system superstructure can be considered explicitly by including
appropriate design decisions within component models. More advanced approaches where
the superstructure is not specified a-priori, e.g., superstructure-free synthesis (Voll et al.,
2012), or automated superstructure generation and expansion (Voll et al., 2013), can be
easily incorporated in the form of user-defined algorithms.

2.2.2. Problem Formulation

Based on a system model, different kinds of optimization problems considering system
design and/or operation can be created. To this end, COMANDO provides the Problem
class, instances of which can be created by the create_problem method of the System class.
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2.2. The COMANDO ESMF

0 t1 t2 · · · tN

T =
∑N

j=1∆tj

∆t1 ∆t2 · · ·

timesteps = {
‘t_1’: Delta_t_1, ‘t_2’: Delta_t_2,
· · · , ‘t_N’: Delta_t_N

}

0 t1 t2 · · · tN

∆t1=∆t2= = T
N

T =
∑N

j=1∆tj

· · ·

timesteps = (
[‘t_1’, ‘t_2’, · · · , ‘t_N’],
T

)

Fig. 2.4. Alternative ways to specify time steps for a particular scenario: For variable length an
ordered mapping (left) and for constant length a list and the total length (right) can be specified.
If multiple scenarios with different time structures are to be considered, one such description is
given per scenario.

As the system model defines a constraint set which is parameterized by the parameters p,
only the objective terms fI and ḟII as well as a time and scenario structure and appropriate
data (i.e., values for the parameters p) need to be specified in the create_problem method
to obtain a complete problem formulation, corresponding to (D&O). Note that the user
may decide which units to use for data and time steps but must ensure they match. The
units used for the case studies in Section 2.3 are given in the nomenclature at the beginning
of this thesis.

To define the objective terms, the System class provides the aggregate_component_ex-
pressions method. For a given expression identifier, it returns the sum of all ex-
pressions stored under that identifier in the individual components. The resulting ex-
pressions can be used for the objective terms fI and ḟII , depending on whether they
consist exclusively of first stage (i.e., scalar) quantities or not. A second use for the
aggregate_component_expressions method is to create expressions for system-level con-
straints involving contributions from multiple components.

The time and scenario structure is specified in terms of the considered scenarios s ∈ S
and the corresponding discretized time horizons T̂s. The T̂s are required by COMANDO’s
solver or AML interfaces for the automatic discretization of the differential equations. If
more than one operational scenario is considered, the different scenarios can either be
specified as a list of M scenario identifiers, corresponding to scenarios with probability
1/M , or by a series of scenario identifiers and associated weights ws. In the latter case, the
weights are not required to sum to one, allowing for a more general weighting. Similarly,
individual time points for each time horizon are either specified via a mapping of time
point labels t to the corresponding lengths ∆s,t or in the case of equidistant time steps via
a list of labels and an end-time Ts, see Fig. 2.4. If the time horizons are identical for all
scenarios, a single time horizon can be specified, otherwise, one specification per scenario
is required.

Parameter values corresponding to the resulting time and scenario structure can be
specified during problem creation and may later be updated using the data attribute of
the Problem instance. Similarly, design and operational variable values can be updated
using the design and operation attributes, respectively. Values for design variables must
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2. COMANDO: Modeling Energy Systems for Optimal Design and Operation

be scalar while values for parameters and operational variables may be provided as scalars
or as time- and/or scenario-dependent data.

After the abovementioned steps, a problem in the form of (D&O) is fully specified.
However, it may be desirable to adapt the original problem formulation in different ways.
Adaptations to the problem formulation range from simply adding further constraints to
the reformulation of expressions in the problem. One generic reformulation routine imple-
mented in COMANDO is the automatic linearization of arbitrary continuous multivariate
expressions via convex-combination or multiple-choice linearization (Vielma, Ahmed, and
Nemhauser, 2010). More generally, custom reformulations may be created making use of
existing algorithms provided by SymPy (Meurer et al., 2017), e.g., for automatic differenti-
ation, analytic solution of different kinds of nonlinear equation systems, or symbolic substi-
tution of subexpressions. Note that reformulations do not have to result in approximations
but can also be used to create alternative formulations that possess better properties than
the original one, e.g., tighter relaxations for deterministic global optimization.

2.2.3. Problem Solution

A fully specified problem formulation can be directly passed to a suitable solver or to an
AML. In this step, the problem structure and data are translated from the COMANDO
representation to a new representation, matching the syntax of the target solver or AML.
For this purpose, COMANDO contains a generic parsing routine that can be used to cre-
ate new interfaces based on target-specific representations of the symbols and operations
occurring within the different expressions of the problem formulation. Interfaces may be
text-based, resulting in an input file for a solver or AML, or they can be object-oriented,
resulting in a translation of the problem formulation using the target-API. Currently im-
plemented interfaces are:

• text-based:
– BARON (Sahinidis, 2020) (solver)
– GAMS (Bussieck and Meeraus, 2004) (AML)
– MAiNGO (Bongartz et al., 2018) (solver)

• API-based:
– Pyomo (Hart, Watson, and Woodruff, 2011) (AML)
– Pyomo.DAE (Nicholson et al., 2018) (AML)
– Gurobi (Gurobi Optimization, LLC, 2020) (solver)
– MAiNGO (Bongartz et al., 2018) (solver)

All of these interfaces provide methods to solve the deterministic equivalent formulation
of Problem (D&O) with a given set of options, and to write back the obtained results
to COMANDO. Note that a problem formulation may contain differential equations if
states were defined in the component or system model. Since most solvers and AMLs
do not support differential equations, the corresponding interfaces can specify different
schemes for automatic time discretization. All existing interfaces implement implicit Euler
discretization. More advanced schemes are available through the Pyomo.DAE interface.

Instead of directly solving a problem, it can also be addressed with a user-defined algo-
rithm. User-defined algorithms can range from simple preprocessing routines based on the
system model and available data to more advanced methods, such as decomposition tech-
niques, commonly used in stochastic programming (see, e.g., Li and Grossmann, 2019b).
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2.3. Case Studies

The architecture of COMANDO allows for manipulation at the level of component and
system models as well as at the level of the resulting optimization problems. In particular
the Problem class can also be used to specify the sub-problems that may occur within
user-defined algorithms, allowing them to be passed to any of the available interfaces.

2.3. Case Studies

We now demonstrate key features of COMANDO in four case studies, which are illus-
trative of the kinds of design and operation problems we address with COMANDO. The
case studies focus on different aspects of energy systems and vary in their approaches for
modeling the considered systems and their components. The complete source code for all
case studies can be found in the examples directory of the COMANDO Repository.

The first case study, based on our previous work (Voll et al., 2013; Sass and Mitsos,
2019), consists of the greenfield design and operation of an industrial energy system con-
sidering both economic and environmental impact. The component models account for
nonlinearities in part-load behavior and investment cost, and differential equations for the
state of charge of battery and thermal energy storage units, resulting in a mixed-integer
dynamic optimization (MIDO) problem. Here, the automatic implicit Euler discretization
as well as the automatic linearization implemented in COMANDO are employed to obtain
a MILP formulation, and a simple user-defined algorithm for multi-objective optimization
is demonstrated.

In the second case study, the operation of a simple building energy system is optimized,
considering forecasts for electricity price and ambient temperature. The system model
makes use of differential equations to describe the thermal behavior of the building, allowing
to represent dynamic aspects of demand response via a MIDO problem. The interface to
Pyomo.DAE (Nicholson et al., 2018) is used to apply orthogonal collocation on finite
elements as an advanced time discretization method.

The third case study is a variation of the benchmark problem from (Saelens et al., 2019),
integrating low-temperature waste heat into a district heating network via heat pumps.
The explicit consideration of thermal losses and temperatures at different points of the net-
work results in a nonconvex mixed-integer quadratically-constrained quadratic program-
ming (MIQCQP) problem. For the implementation in COMANDO, repeated structures
within the system are abstracted via subsystems, allowing for re-use of the models and re-
ducing modeling effort. A stochastic formulation considering multiple operational scenarios
based on clustered historical data is solved to obtain an optimal system design.

The fourth case study is a reimplementation of our previous work (Huster, Schweidt-
mann, and Mitsos, 2019), where the power production of an organic Rankine cycle is
maximized, based on Ghasemi et al., 2013b. The detailed thermodynamic behavior of the
working fluid is described via artificial neural networks (ANNs), capable of predicting fluid
properties with high accuracy. The ANNs result in a highly nonconvex, but reduced-space
NLP formulation that can be solved to global optimality with our in-house solver MAiNGO
(Bongartz et al., 2018).

All case studies are solved on a desktop PC with an i7-8700 CPU (3.20GHz), 32GB
RAM, running Windows 10 Enterprise LTSC. An overview of the presented case studies
and their key characteristics is given in Tab. 2.2.
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Tab. 2.2. Overview of the presented case studies

case study system structure problem class
(reformulations)

problem
type

operational horizon
representation demonstrated features

industrial energy
system
(Section 2.3.1)

superstructure with
CHP subsystem, 15
instances of 11
components

MINLP
(MILP, NLP)

design 6 scenarios: 4 typical days
with 4 time steps of varying
length, each, and two isolated
time steps representing
extreme demands, implicit
Euler time discretization

• superstructure optimization
• automatic linearization
• user-defined algorithm
• re-use of model for multiple prob-

lem formulations

building demand
response
(Section 2.3.2)

9 instances of 4
components

MIDO (MILP) operation 24 h horizon with 15min time
steps, each with 4 collocation
points

• abstract components
• modeling with differential equa-

tions
• advanced time discretization

via collocation in Pyomo.DAE
(Nicholson et al., 2018)

low-temperature
district heating
network
(Section 2.3.3)

superstructure with 9
instances of 2
subsystems (linking,
consumer group), 26
instances of 6
components

MIQCQP design 11 scenarios, each
representing a static
operating point

• modular model generation
• superstructure optimization
• stochastic programming

organic Rankine
cycle
(Section 2.3.4)

8 instances of 4
components

NLP operation single operating point • hybrid modeling with ANNs
• reduced space formulation
• integration with different

solver/AML interfaces
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2.3. Case Studies

GG CHP B TESh

HPPG

BAT PVOB PVEF CC AC

TESc

DEM

Fig. 2.5. Superstructure for the indus-
trial energy system case study: gas-grid
(GG), power-grid (PG), boiler (B), com-
bined heat-and-power unit (CHP), com-
pression chiller (CC), absorption chiller
(AC), heat pump (HP), photovoltaic
units on office buildings (PVOB) and on
experimental facilities (PVEF), thermal
energy storage for hot water (TESh) and
cooling water (TESc), a battery (BAT),
and a demand (DEM). Natural gas is
shown in green, electricity in yellow, hot
water in red, and cooling water in blue.

2.3.1. Case Study 1: Greenfield design of an industrial energy
system

This case study is inspired by our previous work (Sass et al., 2020). For demonstration, we
consider a simpler system, allowing only up to one component of each type. We make use of
inheritance to abstract common model aspects of conversion and storage components into
generic classes and then derive specialized variants that implement more specific behavior.
Furthermore, we take advantage of automatic linearization and discretization routines to
obtain MILP problems from the originally dynamic and nonlinear component models of
Sass et al. (2020).

The industrial energy system needs to satisfy given time-dependent demands for heating,
cooling, and electricity with minimal total annualized costs (TAC) and global warming
impact (GWI). To satisfy these demands, multiple conversion and storage components are
available in the superstructure of the system (Fig. 2.5). For self-containment, we briefly
repeat the description of the conversion and storage components here. More detailed
information can be found in Sass et al. (2020) and in the source code for this case study,
available in the COMANDO Repository.

The conversion components c ∈ Cconv{AC, B, CC, CHP, HP} (cf. Fig. 2.5) are modeled
with nonlinear investment cost and part-load efficiency curves. Additionally, minimal
part-load requirements are considered by introducing binary variables. The investment
cost reflect decreasing marginal investment costs CI,c with increasing nominal component
output Ėnom,c, i.e.,

CI,c = Cref,cĖ
Mc
nom,c ∀c ∈ Cconv, (2.1)

where Cref,c and Mc are technology-specific parameters. The part-load efficiency ηc is
expressed via a base efficiency multiplied with a rational function of the part-load fraction
Ėo,c/Ėnom,c, and describes the relationship of input Ėi,c and output Ėo,c:

Ėo,c = ηcĖi,c ∀c ∈ Cconv (2.2)

The HP and CHP models have variable base efficiencies that depend on temperatures
and the nominal size, respectively. We create a generic conversion component class with
an unparametrized nonlinear efficiency and investment cost model (Eqs. (2.1) and (2.2)).
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2. COMANDO: Modeling Energy Systems for Optimal Design and Operation

From this conversion component class, we derive the individual conversion technologies as
subclasses. Three instances of the CHP model with different ranges for the nominal size
are considered, accounting for the size-dependence of the conversion efficiencies for heat
and electricity. The three CHP models are aggregated into a subsystem which enforces
that at most one of them is built. The subsystem can then be incorporated into other
system models like any other component.

The storage components c ∈ Csto = {BAT, TESh,TESc} are modeled with the differen-
tial equation

dEc

dt
= ηi,cĖi,c −

1

ηo,c
Ėo,c −

1

ct,c
Ec ∀c ∈ Csto, (2.3)

where the state Ec is the stored energy, ηi,c and ηo,c are constant charging and discharging
efficiencies, Ėi,c and Ėo,c are the charging and discharging rates, and ct,c is a time constant
describing self-discharging. As with the conversion components, we create a generic storage
component class and derive technology-specific sub-classes, e.g., batteries. For each com-
ponent we additionally consider a binary variable and associated constraints, representing
whether the component is built or not.

We use the aggregated data from the supplementary material of Sass et al. (2020),
which originate from clustering a full year of data for demands, weather, prices, and global
warming impacts via the method described in Bahl et al., 2018. The aggregated data
represent the full year via four typical days, each with four time steps of varying lengths
(between 1 and 17 hours), and two isolated time points of length zero, representing peak
heating and cooling demands. For a similar design problem, Bahl et al., 2018 showed that
even coarse time resolutions such as this one provide optimal objective values, sufficiently
close to those obtained with a full year at hourly resolution. In COMANDO we can consider
such a time structure via six scenarios, corresponding to the four typical days and the two
isolated time points for peak demands. The scenarios corresponding to typical days are
weighted by number of days associated to them during clustering, and the scenarios for
peak demands are assigned a weight of zero, i.e., they have no effect on the objective but
are considered for feasibility, cf. formulation (D&O).

Due to the storage dynamics Eq. (2.3), problems derived from this system model will be
MIDO problems. In our previous work (Sass et al., 2020), we manually implemented the
MILP formulation resulting from explicit Euler discretization and a case-specific lineariza-
tion in GAMS. As this process and subsequent changes are labor-intensive and error-prone,
we instead make use of COMANDO’s automatic routines for discretization and piecewise
linearization.

The augmented ε-constraint method (Mavrotas, 2009) is implemented as a user-defined
algorithm, in which two design optimization problems with either TAC or GWI as objective
function are repeatedly solved. For the solution of the two problems we use Gurobi 9.1.1
with a relative optimality tolerance of 1%. Generating 8 designs from the Pareto front
for TAC and GWI, shown in Fig. 2.6, takes about 3.6 hours. Note that a Pareto-optimal
design can only improve upon one of the two objectives by worsening the other.

The total GWI can be reduced by 50% (from 1.152 to 0.577 kt/a) when accepting
a fourfold increase in TAC (from 0.539 to 2.6 Mio. AC) (Fig. 2.6, bottom). Solutions
with lower TAC are characterized by small component capacities with lower investment
costs, whereas solutions with lower GWI rely on large conversion and storage components
(Fig. 2.6 inner bars, top). As these results were obtained with a linearization of the original
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Fig. 2.6. Bottom: eight Pareto-
optimal designs, determined from
multi-objective optimization regard-
ing total annualized cost (TAC) and
global warming impact (GWI). Top:
corresponding capacities of conver-
sion (left) and storage components
(right) from the MILP (inner bars)
and NLP (outer bars) formulations.
CHP: Combined heat and power
unit, PV: photovoltaic array, AC:
absorption chiller, HP: heat pump,
TESh: hot thermal energy storage,
TESc: cold thermal energy storage,
BAT: battery. Note that boilers and
compression chillers are not part of
any design and thus excluded from
the legend.

model, they are only approximate and the corrsponding designs may not be feasible with
respect to the nonlinear model.

However, correcting the infeasibilities is straightforward in COMANDO as the original,
nonlinear model formulation is available. We first obtain the MINLP problem resulting
from implicit Euler discretization of the original formulation with TAC as the objective.
We then repeat the multi-objective optimization with the same algorithm but using the
MINLP formulation. For each iteration, we set the appropriate upper bound on GWI and
fix binary variables to the values of the corresponding MILP solution, obtaining an NLP
formulation. The values of the remaining variables are used as an initial point and the
resulting formulation is passed to BARON 20.10.16 using default options, except for a
relative optimality tolerance of 1% and a time limit of one hour for the subproblems.

In three cases the subproblems are terminated due to the time limit (with 3.5% relative
gap for the TAC minimization of iteration 3 and 4, and 7.5% relative gap for the GWI
correction of iteration 3). The remaining subproblems take at most 78 s to be solved to the
desired optimality. Thus, all cases result in a design and an operational strategy that are
feasible with respect to the original nonlinear formulation. The resulting solutions exhibit
slightly lower TAC values and slightly higher GWI values than their MILP counterparts,
with the exception of iteration 1, where the GWI value is 25% lower than for the MILP
approach (433 t/a vs. 577 t/a). The corresponding designs can be seen in the outer bars
in Fig. 2.6 (top). While the MILP and NLP solutions of iterations 2 and 5–8 are similar,
iterations 1, 3 and 4 exhibit larger conversion components and smaller storages in the
NLP case. In summary, the approach provides MINLP-feasible system designs that allow
a trade-off between the TAC and GWI of the resulting system.
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HTwall,E

Mwall HTair,wall Mair

HTcore,wall Mcore

HTair,core
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air

Tmin
air ≤Tair≤Tmax

air
Fig. 2.7. Structure of the consid-
ered building energy system and im-
plementation in COMANDO: three
instances of the thermal mass class
(Mair, Mcore, Mwall), four instances
of the heat transfer class (HTair,wall,
HTwall,E, HTair,core, HTcore,wall),
heat pump (HP), and power grid
(PG). Red arrows represent heat
flows and yellow arrows electric
power flows.

2.3.2. Case Study 2: Demand response of a building energy
system

To illustrate how to formulate and solve optimization problems with more pronounced
dynamic effects in COMANDO, we model an illustrative building energy system. The
system is heated by a heat pump (HP) and is capable of performing load shifting via
concrete core activation, i.e., a concrete core with a high thermal inertia can be heated
directly. We investigate a demand response (DR) case, where we optimize the operation
of the building energy system over the horizon of one day with given profiles for electricity
price and ambient temperature.

The considered building energy system consists of three thermal zones: air, outside wall,
and concrete core. Occupant comfort has to be ensured by maintaining the air temperature
between minimal and maximal temperatures Tmin

air and Tmax
air , respectively. To do so, the air

in the room can be heated via a direct heat flow to the air Q̇air,i, or indirectly through the
concrete core, which can be heated via the heat flow Q̇core,i. We consider a zero-dimensional
model of each thermal zone. For instance, the energy balance of the air zone is given by

ρairVaircp,air
dTair

dt
= Q̇core,air − Q̇air,wall + Q̇air,i, (2.4)

where Tair, Vair, ρair, and cp,air are the air temperature, volume, density, and specific heat
capacity, respectively, and Q̇core,air and Q̇air,wall are heat exchange flows with the adjacent
zones. The heat flow Q̇A,B between two zones A and B is calculated depending on the
temperatures TA and TB, the area AA,B, and the heat transfer coefficient UA,B:

Q̇A,B = UA,BAA,B(TA − TB) (2.5)

The structure of the model is shown in Fig. 2.7. To model thermal masses, we introduce
a component M, which is instantiated by specifying volume, density, and specific heat
capacity, and optionally allows to specify minimal and maximal temperatures. The heat
transfer is abstracted as a component HT, implementing Eq. (2.5), and the heat pump is
again modeled with a temperature-dependent efficiency, but with the option of splitting
the output to multiple connectors.

Based on the model of the building energy system, we define a DR optimization problem,
i.e., we minimize the integral over the electricity costs for a given electricity price profile.
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The resulting operational objective function is thus chosen as ḞII = CelPHP, where Cel and
PHP are the electricity costs and electric input power of the heat pump, respectively.

As we consider a minimum part-load constraint for the heat pump, the resulting problem
is a MIDO problem. The time horizon is a 24 hour period considered at quarter-hourly
resolution and the input data consists of hourly electricity price data and ambient temper-
ature data at quarter-hourly resolution. We use a full discretization approach (Cuthrell
and Biegler, 1987) via the COMANDO interface to Pyomo.DAE (Nicholson et al., 2018).
Specifically, we use Legendre-Radau collocation with four elements per hour and fourth-
order polynomials. Since the model contains exclusively linear expressions and we use
collocation with a fixed time grid, we obtain a MILP problem after discretization. The
resulting formulation has 6931 constraints and 6257 variables, 96 of which are binary. The
problem can be solved with Gurobi 9.1.1 to global optimality in less than one second of
CPU time. Results are visualized in Fig. 2.8, where the temperatures of the three thermal
zones, the ambient temperature, the heat flow supplied by the heat pump, and the elec-
tricity price are shown. During times of low prices, the concrete core is heated to store
energy. During times of high prices, the concrete core transfers the stored heat to the air
zone and cools down such that the heat pump has to supply less heat. Thus, load is shifted
to times of favorable prices, while the air temperature remains within the comfort range.

Using the introduced component models for general thermal masses and heat transfers,
the extension to a larger building energy system with several rooms, thermal masses, and
heat transfers is straightforward. We note that it is also possible to perform rolling horizon
optimization in COMANDO by defining an appropriate user-defined algorithm, e.g., as in
our previous publication (Shu et al., 2019), where a preliminary version of COMANDO
was used.
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Tab. 2.3. Clustering of neighbouring buildings into consumer groups. Buildings within a group
are assumed to have identical heating curves.

Consumer Tmax
fl Tmin

fl
group (Tair=−12 ◦C) (Tair=20 ◦C)

CG40 40 °C 35 °C
CG50 50 °C 40 °C
CG70 70 °C 50 °C
CG85 85 °C 60 °C

2.3.3. Case Study 3: Design of a low-temperature district heating
network

In this case study, we extend components of previous work (Hering, Xhonneux, and Müller,
2021) to describe a district heating network and apply them to a design optimization of
the network described by Saelens et al., 2019. The system comprises a source of waste
heat, a distribution network, and 16 consumers. We aggregate the 16 consumers into four
consumer groups, comprising four consumers each, and assume linear heating curves for
the flow temperature Tfl. The heating curves are described by the flow temperatures Tmax

fl
and Tmin

fl , at ambient air temperatures of −12 °C and 20 °C, respectively, see Tab. 2.3.
The source of waste heat supplies heat to a network to which each consumer group may

be connected or not. Both waste heat and consumer groups are linked to the network via
a heat exchanger or a heat pump, and connecting a consumer group additionally requires
the necessary pipes to be built. Independently of whether a consumer group is connected
or not, it may also be equipped with a gas-fired boiler or an electric heating rod. The
superstructure of the heating network is shown in Fig. 2.9.

The system is modeled using components for a source of waste heat (WH), the distribu-
tion network (NW), the power grid (PG) and the gas grid (GG). As both the linking unit
and the consumer groups are composed of multiple components and occur more than once,
they are modeled as subsystems. The linking subsystem (L) contains a heat pump (HP)
and a heat exchanger (HX) and the consumer group subsystem (CG) contains a linking
subsystem, a demand (DEM), and two instances of a generic heat source with different
parametrizations, representing a boiler (HSB) and a heating rod (HSHR).

The design decisions comprise binary variables for the type of linking component (heat
exchanger, heat pump, or none) and the type of additional heat source (gas boiler, electric
heater, or none) to be built, as well as continuous variables for component sizing and the
maximum and minimum return temperature of the network Tmax

NW,re and Tmin
NW,re, respec-

tively. Finally, four pipe segments can be added to the network model separately using the
decision variables, bNW,p. The linking components for the consumer groups can only be
built if all necessary pipe segments of the network are built. The demand component has
a parameter for the required heat demand and computes the required flow temperature
based on the ambient air temperature. The heat demand is based on Saelens et al. (2019),
while the flow temperature is assumed to depend linearly on the ambient air temperature
(cf. Tab. 2.3). The network return temperature TNW,re also depends linearly on the am-
bient air temperature Tair and the design variables Tmax

NW,re and Tmin
NW,re, while the network

flow temperature TNW,fl is assumed to be 15 K higher than TNW,re.
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Fig. 2.9. Superstructure with components for the gas grid (GG), power grid (PG), waste heat
source (WH) and network (NW) as well as subsystems for linking (L) and consumer groups (CG),
see top. The superstructure of each linking subsystem contains a heat pump (HP) and a heat
exchanger (HX); the superstructure of each consumer group subsystem contains two heat source
(HS) components, parameterized as a heating rod (HSHR) and a boiler (HSB), a demand (DEM),
and a decentralized linking subsystem. To connect the different consumer groups, the necessary
pipe segments (depicted as gray bars within NW) need to be built.

We aggregate the whole network into one pipe network with two branches, cf. Fig. 2.9.
The central linking component is connected to the center of the network with TNW,fl and
TNW,re. Despite being located at different distances from the center, we assume that
all consumer groups receive and reject water at the same flow and return temperatures,
TNW,fl − ∆TNW,fl,loss and TNW,re + ∆TNW,re,loss, respectively. For this simplification to be
conservative, we use the total length of the network, lNW, calculated as

lNW =
∑

bplp, (2.6)

to calculate the temperature drops, where bp is the build decision and lp is the length of
each pipe segment p, cf. Fig. 2.9. To obtain the temperature differences in the flow and
return pipes, ∆TNW,fl,loss and ∆TNW,re,loss, respectively, we consider energy balances of the
water for both the flow (fl) and return (re) pipe of the network, i.e.,

ṁNW cp∆TNW,fl,loss = UNW lNW (TNW,fl − Tgr) (2.7)
ṁNW cp ∆TNW,re,loss = UNW lNW (TNW,re +∆TNW,re,loss − Tgr) (2.8)

where ∆TNW,fl,loss and ∆TNW,re,loss are operational variables describing the temperature
drop in the respective pipe, cp is the constant specific heat capacity of water, UNW =
0.035 W

mK is the specific heat transfer coefficient and lNW is the pipe network length, and
Tgr = 8 ◦C is the average ground temperature.
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Tab. 2.4. Specific and fixed costs for heating equipment according to (BMVBS, 2012) and
(BBSR, 2014)

Component Cspec Cfix

central HP 500AC/kW 0AC
decentral HP 620AC/kW 0AC
HX 90AC/kW 0AC
HSHR 10AC/kW 100AC
HSB 111AC/kW 4300AC

The heat pump model in each linking component is modeled via the following set of
equations:

Q̇HP ≤ bHP 400 kW (2.9)

PHP TCON,re ηCOP = Q̇HP(TCON,re − TEVA,re) (2.10)
ṁEVAcp (TEVA,fl − TEVA,re) + PHP = ṁCONcp (TCON,re − TCON,fl) (2.11)

Here, Q̇HP, PHP, ṁEVA, ṁCON, TEVA,fl, TEVA,fl, TCON,re and TCON,fl are operational vari-
ables, and ηCOP = 0.6 is the heat pump efficiency relative to the carnot efficiency. The
outgoing heat flow for the heat pump (Q̇HP) is bounded by zero or the maximum allowable
nominal size of 400 kW through Eq. (2.9). The input power PHP is coupled to Q̇HP via
Eq. (2.10). In the energy balance Eq. (2.11), enthalpy differences at the evaporator and
condenser side are described by the associated mass flows ṁEVA and ṁCON, and flow and
return temperatures TEVA,fl, TEVA,fl, TCON,fl and TCON,re.

For the investment cost, we assume linear cost correlations with a specific cost Cspec and
a fixed cost Cfix according to Tab. 2.4.

Additionally, we consider the costs for each pipe segment of the network based on Jentsch
et al., 2008. Thus, the total investment costs of the system includes the investments into
heating components and piping.

To obtain an economical design, we minimize TAC. We use k-means clustering (Pe-
dregosa et al., 2011) to aggregate the original set of ambient temperatures and heat de-
mands into representative clusters. Each resulting cluster center is a pair of daily mean
values for temperature and heat demand and can be considered as a representative op-
erating scenario. To reduce computational demand, the data is clustered into 11 such
scenarios, including one scenario representing the maximum heat demand. Demand data
with zero heat demand are dropped from the data set. Fig. 2.10 shows the resulting 11
clusters.

We use the clusters as scenarios in the COMANDO framework, with the fraction of data
points in each cluster as the corresponding scenario weight. Considering the data in this
way ensures that the final design is feasible for all considered scenarios and is optimized
with regards to the expected value of TAC. The resulting problem is a MIQCQP with
526 continuous variables, 147 binary variables and 275 quadratic constraints. An optimal
design with 0% optimality gap is obtained within six minutes of CPU time, using the
Gurobi API interface with Gurobi 9.1.1 and 12 threads. The global optimal solution
corresponds to the system shown in Fig. 2.11.
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Fig. 2.11. Optimal system structure: A central heat pump HP supplies waste heat from WH
to the network NW. Consumer groups CG40 and CG50 are connected to NW via heat exchangers
(HX) and use heating rods (HR) for peak demands. Consumer groups CG70 and CG85 are not
connected and satisfy their heat demand via boilers (B).

The network is designed with a variable return temperature between 25 °C and 35 °C
and is connected to the waste heat source using a 102 kW heat pump. Consumer groups
CG40 and CG50 are connected to the network using heat exchangers and have additional
electric heating rods installed. Consumer groups CG70 and CG85 are not connected but
satisfy their heat demand using gas-fired boilers instead. The TAC of this design are
22 095AC. At an annual heat demand of 322.7MWh this corresponds to a specific heating
cost of 68.5AC/MWh. In order to assure that the obtained system design is feasible for
the original demand data, we perform a second optimization for which we fix the design
(i.e., system structure and component sizes) and perform a purely operational optimization
using the full set of demands. The design proves to be feasible, with the corrected TAC
increasing by less than 2% to 22 414AC.

2.3.4. Case Study 4: Optimal operation of an organic Rankine
cycle (ORC)

Finally, we consider a case study from our previous work (Ghasemi et al., 2013b; Hus-
ter, Schweidtmann, and Mitsos, 2019), where an optimal operating point of an organic
Rankine cycle (ORC) with respect to net power production is sought. The original system
under consideration was presented in Ghasemi et al., 2013b, where the off-design behavior
for different ambient temperatures is analyzed. Subsequently, Huster, Schweidtmann, and
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Fig. 2.12. System model of the ORC process from Huster, Schweidtmann, and Mitsos (2019).
The components are a pump (P), a recuperator (HXREC), an economizer (HXECO), an evaporator
(HXEVA), a superheater (HXSUP), a turbine (T), a condenser (HXCON), and a cooling system
(CS). Flows of geothermal brine, the working fluid isobutane, and cooling water are depicted in
red, gray, and blue, respectively. Electrical power is consumed by pump (PP) and cooling system
(PCS) and produced by the turbine (PT).

Mitsos, 2019 investigated the impact of accurate working fluid models via ANNs (Schwei-
dtmann and Mitsos, 2018; Schweidtmann et al., 2019) on the system design. With this
case study, we demonstrate how COMANDO can handle complex modeling features such
as accurate fluid properties via ANNs and a sequential modeling approach that gives rise to
reduced-space formulations beneficial for global optimization (Bongartz and Mitsos, 2017).

Again, we give a short overview of the case study for self-containment. In the considered
process, the working fluid isobutane (ib) is first pressurized by a pump and then preheated
in a recuperator before being heated to evaporation temperature, evaporated and super-
heated by cooling geothermal brine (br) from 408K to 357K. After expanding in a turbine,
the working fluid is used in the recuperator to preheat the pressurized fluid and is finally
condensed and cooled to its original state using cooling water at 288K. The heat passed
from the condenser to the cooling water (cw) is dissipated by a cooling system consisting
of multiple fans.

The ORC is modeled as a system consisting of 4 types of components, i.e., a pump
(P), a turbine (T), a cooling system (CS), and five heat exchangers (condenser HXCON,
recuperator HXREC, economizer HXECO, evaporator HXEVA, and superheater HXSUP). All
components have connectors for enthalpy in- and out-flows that are connected as depicted
in Fig. 2.12 to obtain the system model.

As discussed in Bongartz and Mitsos (2017), reduced-space formulations, i.e., formula-
tions in which a large number of variables and constraints are eliminated by substitution,
are well suited for global optimization of power cycles such as the present ORC. To obtain
a reduced-space formulation, model generation begins with an empty system model to
which different component models are added sequentially. First, the decision variables are
specified at the system level as follows: The mass flow ṁ of the working fluid, the pressures
p1 and p2 before and after the pump, and the specific enthalpy after the recuperator h2r,
as well as the isentropic specific enthalpy after the turbine h6,is. All other quantities of
interest are defined in terms of these five variables.

In our previous work (Schweidtmann and Mitsos, 2018; Schweidtmann et al., 2019), the
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use of artificial neural networks (ANNs) in combination with our inhouse global MINLP
solver MAiNGO (Bongartz et al., 2018) has been shown to result in tight relaxations, ben-
eficial for deterministic global optimization. In Huster, Schweidtmann, and Mitsos (2019),
we trained several ANNs to learn the relations between various quantities of different ther-
modynamic phases of the working fluid isubutane, using data generated from the equations
of state implemented in the thermophysical property library CoolProp (Bell et al., 2014).
The ANNs are used as data-driven surrogte models for the equations of state, which cannot
be used directly within the optimization, as they are not available as analytical expressions
(Schweidtmann et al., 2019). The validity of the ANNs used for this case study was ex-
tensively analyzed and discussed in the original publication (Huster, Schweidtmann, and
Mitsos, 2019). Each ANN has two hidden layers with six neurons each, all of which use
tanh as the activation function. The ANNs express individual output quantities in terms
of either pressure p, pressure and specific enthalpy h, or pressure and specific entropy ϵ
(note that we already use s to represent a scenario), as inputs. As a result of training,
we thus obtain explicit analytical expressions for various quantities. In this case study,
eight of the ANNs from Huster, Schweidtmann, and Mitsos (2019) are used as analytical
surrogate models for the following quantities:

hliq(p, ϵ) liquid enthalpy
Tliq(p, h) liquid temperature
hsat,liq(p) enthalpy of saturated liquid
ϵsat,liq(p) entropy of saturated liquid
Tsat(p) saturation temperature

hsat,vap(p) enthalpy of saturated vapor
ϵvap(p, h) vapor entropy
Tvap(p, h) vapor temperature

The enthalpy flows of pump and turbine are described via mass flow and specific en-
thalpies, and the electrical power consumed by the pump (PP) and provided by the turbine
(PT) are modeled as

PP = ṁ
hP,is − hP,i

ηP,is
, (2.12)

PT = ṁ (hT,i − hT,is) ηT,is, (2.13)

where ηP,is and ηT,is are known, constant isentropic efficiencies and the required specific
enthalpies h are determined via the appropriate ANNs.

For each heat exchanger, the differences of enthalpy flows at the hot (h) and cold (c)
side are either defined in terms of a mass flow and specific enthalpies (ib) or in terms of a
specific heat capacity flow ṁcp and temperatures (cw and br):

Q̇h =

{
ṁh (hh,i − hh,o), h = ib
(ṁcp)h (Th,i − Th,o), h ∈ {cw, br}

(2.14)

Q̇c =

{
ṁc (hc,o − hc,i), c = ib
(ṁcp)c (Tc,o − Tc,i), c ∈ {cw, br}

(2.15)
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As heat losses are neglected, the energy balance reduces to

Q̇h = Q̇c. (2.16)

Since we aim for a reduced-space formulation, no variables are introduced for the left-
hand sides of Eqs. (2.12)–(2.15) and the corresponding right-hand side expressions are used
directly, avoiding the addition of constraints. In particular, where possible, Eq. (2.16) is
automatically reformulated to obtain a definition for one of the temperatures or specific
enthalpies in the right-hand sides of Eqs. (2.14) and (2.15) in terms of the other quan-
tities. The heat-exchanger model is configured to perform the appropriate reformulation
automatically, based on the provided quantities.

A pinch point is assumed in the condenser, i.e., the temperature of the cooling water at
the pinch point, Tpinch, is assumed to lie ∆Tmin = 10K below the evaporation temperature
Tsat(p1). Through this assumption, it is possible to compute the heat capacity flow of the
cooling water, (ṁcp)cw, as

(ṁcp)cw =
ṁ (hpinch − h1)

max(10−5 K, Tpinch − Tcw,i)

=
ṁ
(
hsat,vap(p1)− hsat,liq(p1)

)

max
(
10−5 K, Tsat(p1)− 10K− 288K

) . (2.17)

Note that the max function and the constant 10−5 in Eq. (2.17) are introduced to avoid
division by zero. The electrical power PCS, required to run the fans of the cooling system,
is modeled to be proportional to the specific heat capacity flow of the air (ṁcp)air passing
through them and is computed as

PCS =
V̇air ∆pfan

ηfan

=
(ṁcp)air ∆pfan

cp,air ρair ηfan
, (2.18)

where ∆pfan = 170Pa and ηfan = 0.65 are the pressure drop and efficiency of the fan, V̇air,
cp,air = 1000 J

kgK and ρair = 1.2 kg
m3 are the volume flow, specific heat capacity and density

of the air, respectively. With the assumption that

(ṁcp)air = (ṁcp)cw, (2.19)

the power of the cooling system is fully determined. For the complete formulation, the
reader is referred to the model source code.

The reduced space formulation results in a system model with relatively few expressions,
however, since several quantities that are described by ANNs are themselves inputs to other
ANNs or used in reformulations within the heat exchangers, the model expressions become
deeply nested. For this particular use case, the standard SymPy backend (implemented
in pure Python) proved to be inefficient as model generation takes about 45 minutes.
Therefore, SymEngine (Čertík et al., 2019), a C++ implementation of a subset of SymPy,
was integrated as an alternative backend for COMANDO. Although SymEngine has a
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Fig. 2.13. Processes resulting from the optimization using BARON and MAiNGO and bound-
aries of pressure variables p1 and p2.

reduced feature set compared to SymPy, all functionality relevant for the presented case
study is provided. The use of SymEngine reduces the model generation time to about 0.1
seconds. Nevertheless, the nested expressions in the model result in very large input files
that can take substantial time when written to disk. For instance, when using only a single
scenario and operating point and maximizing the net power production

Pnet = PT − PP − PCS, (2.20)

the resulting optimization problem has only 5 variables and 32 constraints.
In order to solve this problem with BARON (Sahinidis, 2020), the nonsmooth max

function in Eq. (2.17) is approximated with max(a, b) ≈ 0.5(a+ b+[(a− b+10−4)2]0.5) and
the tanh(x) function present in the ANNs is equivalently expressed as 1− 2/[exp(2x) + 1].
Generating the BARON input file takes around 1 minute and results in a file size of about
40MB. This input file is passed to BARON 20.10.16 with absolute and relative optimality
tolerances set to 1e-3. BARON reports finding a feasible solution with an objective value
of Pnet = 16.48MW during preprocessing and terminates after the first iteration and 8 s
of CPU time. Although a lower bound within the optimality tolerance is given in the log
file, BARON states that it cannot guarantee global optimality due to missing bounds for
certain nonlinear subexpressions.

To prove the global optimality of this solution, we use the COMANDO interface to the
API of our inhouse solver MAiNGO (Bongartz et al., 2018). MAiNGO automatically pro-
vides relaxations of the nested expressions by propagating McCormick relaxations through
subexpressions (Mitsos, Chachuat, and Barton, 2009). The COMANDO interface uses a
SymEngine implementation of common subexpression elimination to find subexpressions
that occur more than once within the problem description. By creating intermediate vari-
ables and replacing all occurrences of these subexpressions, a small (21 kB) input file for
MAiNGO can be created. Since MAiNGO is capable of propagating McCormick relax-
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ations, the user does not need to provide bounds on these intermediate variables and they
are not treated as decision variables, maintaining the reduced-space formulation. Solving
the resulting problem via MAiNGO version 0.3 with the solution returned by BARON as
an initial point takes 22 s and confirms its global optimality (see Fig. 2.13), matching the
results reported in Huster, Schweidtmann, and Mitsos (2019).

2.4. Conclusion

In this chapter, we presented COMANDO, our flexible open-source framework for
component-oriented modeling and optimization for nonlinear design and operation of
energy systems. COMANDO combines desirable features of existing tools and provides
layers of abstraction suitable for structured model generation and flexible problem formu-
lation. The behavior of individual components can be represented with detailed models,
including dynamic and nonlinear effects based on mechanistic, data-driven, or hybrid mod-
eling approaches. The component models are then aggregated to energy system models,
based on which different optimization problems concerning the design and/or operation
of the energy system can be formulated. COMANDO natively allows to consider multiple
operating scenarios via stochastic programming formulations, allowing to find system de-
signs that are suitable for operation under uncertainty. The resulting problem formulations
can either be manipulated in user-defined algorithms, or be passed to algebraic modeling
languages or directly to solvers.

COMANDO allows for flexible model creation beyond the capabilities of existing MILP-
based energy-system modeling tools and provides a wide range of options for problem
formulation. Contrary to classical algebraic modeling frameworks, it allows for modular
component and system representations, and is dedicated to energy system design and oper-
ation. Through four case studies, we demonstrate how COMANDO can be used to create
modular and reusable component and system models of various types of energy systems.
Further, we formulate and solve associated optimization problems. With COMANDO, we
facilitate and enhance workflows of computer-based analysis of future integrated energy
systems.

In the following chapter, we apply COMANDO to a significantly extended version of
the case study from Section 2.3.4. To do this, we create more detailed component models
that incorporate design decisions in addition to operational decisions, and furthermore take
into account the variability of ambient conditions. Based on the resulting system model we
simultaneously optimize the system design and operation, considering multiple operating
points. COMANDO allows to create the detailed system model in a component-oriented
manner, which greatly simplifies the modeling process and makes it easier to maintain and
understand than a comparable implementation using an AML.
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3. Optimal Design and Operation of
an Air-cooled Geothermal Organic
Rankine Cycle

In this chapter we employ the COMANDO modeling framework presented in Chapter 2
to create a detailed model of an air-cooled geothermal organic Rankine cycle (ORC). We
employ deterministic global optimization to simultaneously optimize the system design
and operation, while considering the effect of variable ambient temperature, resulting in a
system that maximizes total annualized revenue (TAR).

ORCs are an established technology for the conversion of heat to electricity, with geother-
mal applications constituting around three quarters of installed ORC capacity worldwide
(Tartière and Astolfi, 2017). For a recent review of geothermal energy systems in general
see, e.g., Lee, Tester, and You, 2019. Due to their high availability, geothermal ORC
systems can serve as a clean and renewable base load technology with the possibility for
a high degree of autonomy (Kaplan, Sfar, and Shilon, 1999; Kyriakarakos, Ntavou, and
Manolakos, 2020), with system capacities ranging from a few kW to several MW (Macchi
and Astolfi, 2017a; Tartière and Astolfi, 2017). For inlet temperatures of the geothermal
brine below 180 °C ORCs are economically preferable to dry or flash steam cycles (Nazif,
2011).

In regions where cooling water is not available, an air-cooled condenser (ACC) is the
only option for heat rejection, making them a common choice for geothermal applications
(Macchi and Astolfi, 2017a). As the heat transfer coefficient for air is low, large exchanger
areas are needed, making ACC costs a major fraction of overall equipment costs (Mines and
Wendt, 2013). In addition to ACC size, ambient temperature is another factor affecting
cooling capacity, and parasitic losses of the ACC, and thus overall cycle efficiency. As a
result, an optimal tradeoff between low investment costs and low parasitic losses in different
operating conditions is crucial for a technically and economically viable system.

A large body of literature exists for optimization of ORCs in various fields of application,
with focus on many different aspects, such as

• selection of optimal working fluids (e.g., Macchi, 2013; Lampe et al., 2014; Schilling
et al., 2015; Schilling et al., 2017) or working fluid mixtures (e.g., Huster, Schweidt-
mann, and Mitsos, 2020a),

• turbine design (e.g., Macchi and Perdichizzi, 1981; Lazzaretto and Manente, 2014;
Casartelli et al., 2015; Meroni et al., 2016; La Seta et al., 2016) or heat exchangers
(e.g., Pierobon et al., 2013; El-Emam and Dincer, 2013; Erdogan, Colpan, and Cakici,
2017; Astolfi et al., 2017),

• superstructure optimization (e.g., Kalikatzarakis and Frangopoulos, 2016; Huster et
al., 2020).
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For preliminary design optimization, system operation is commonly represented by a sin-
gle operating point, e.g., Astolfi et al., 2014a; Astolfi et al., 2014b perform thermodynamic
and thermoeconomic optimizations of an air-cooled ORC system for different cycle config-
urations, fluids, and brine temperatures but consider a single fixed ambient temperature of
15 °C. To ensure reliable performance, it is important that such preliminary optimizations
are followed by so-called off-design analyses, where the operation under conditions other
than the design point is considered. For a review considering small- to medium-scale ap-
plications see Liu et al., 2018. These off-design analyses may again leverage optimization;
often this is done via operational optimizations which seek optimal operating strategies
for a fixed design at different operating conditions. For instance, Manente et al., 2013
investigate off-design control strategies for an air-cooled ORC, maximizing net power for
variations of ambient and brine temperatures from the values assumed during the de-
sign phase. However, generalizations of conclusions from such off-design analyses to other
systems must be done with care. An example is the frequently stated observation that su-
perheating results in reduced thermodynamic performance for subcritical cycles and that
the use of a superheater is of little use or even detrimental (e.g., Saleh et al., 2007; Mago
et al., 2008; Astolfi et al., 2014b; Song et al., 2020). Other design assumptions or operating
conditions can however yield contradicting results, e.g., Ghasemi et al., 2013c; Ghasemi
et al., 2013b demonstrated that considering the off-design performance for an ORC us-
ing isobutane, superheat is valuable at high ambient temperatures. To obtain an overall
optimum for a particular system, it is thus important to consider the effect of off-design
explicitly during the design phase. A common approach for this is to repeatedly run a sim-
ulation model and select the design yielding the best results. Calise et al., 2014 perform
multiple simulations of a solarthermal ORC at fixed design conditions, varying geometries
of the heat exchangers. After determining the geometry that minimizes system costs they
perform a second set of simulations to determine performance in off-design conditions.
Similarly, Gómez-Aláez et al., 2017 consider an ORC recovering waste heat from hot flue
gases of a gas turbine in a gas pipeline recompression station. They obtain a design point
by fixing flue gas mass flow rate and temperature to their annual mean and maximizing net
power. Subsequently they simulate off-design behavior, keeping turbine reduced mass flow
and heat exchanger areas constant. In such simulation-based optimization approaches, all
degrees of freedom must be pre-specified by appropriate assumptions or user inputs, hence
the resulting designs are only optimal among the finite number of designs corresponding
to the considered inputs.

An alternative approach is to let an optimization algorithm determine the optimal values
for the degrees of freedom and other variables. For this, several works employ two-step
approaches, first optimizing the system at design conditions, and subsequently with the
obtained design at multiple off-design conditions. To avoid selecting a design that is sub-
optimal, such approaches are commonly iterated in different ways. Nusiaputra, Wiemer,
and Kuhn, 2014 devise a modular ORC for operation in different wellhead and ambient
conditions and develop a control strategy under the assumption of fixed nominal net power
and exergy input. In the first phase, component sizes and a design point are calculated
based on fixed wellhead and ambient temperature. In the second phase, turbine nozzle
opening, pump speed, and fan speed are varied for different off-design conditions via an
evolutionary algorithm. The two phases are repeated for a grid of design conditions and the
design point yielding the best results is selected as the optimum. The procedure is applied
to three different climate regions and specific investment costs or mean cash flow are used
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Fig. 3.1. Schematic of the considered ORC process. The working fluid isobutane is pressurized
in a pump (P) requiring power PP, split evenly, and preheated on the shell side of two recu-
perators (REC). The two streams are again mixed and heated, evaporated, and superheated on
the shell side of an economizer (ECO), evaporator (EVA) and superheater (SUP), respectively,
via geothermal brine. The working fluid is split again and expanded in two turbines (T), each
producing power PT, followed by heat recuperation. Finally it is desuperheated and condensed
back to its original state in air cooled condenser, using electrically powered Fans (F), requiring a
total power PF.

as the selection criteria. Similarly, Capra and Martelli, 2015 extend their previous work
(Martelli, Capra, and Consonni, 2015) to include the consideration of part-load operation
during the design of an ORC for a combined heat and power application. The authors
employ a sequential quadratic programming algorithm to optimize part-load in various
operating conditions for fixed designs and a derivative-free black-box algorithm (Martelli
and Amaldi, 2014) to search for better designs. Kalikatzarakis and Frangopoulos, 2016
consider an ORC recovering waste heat at different operating conditions of a marine diesel
engine and additionally include the system synthesis in the optimization. The optimization
is based on a genetic algorithm which switches to an sequential quadratic programming
algorithm when progress stagnates. Pili, Spliethoff, and Wieland, 2019 consider an air-
cooled ORC for waste heat recovery from a steel billet reheating furnace with variations
in the mass flow and temperature of the heat source, and the ambient temperature. In
addition to the typical two phases of design and off-design under quasi-steady state con-
ditions, results from the off-design optimizations are interpolated and used as setpoints in
a dynamic simulation considering the inertia of the heat exchangers. In this way, a more
detailed performance evaluation over the entire operating profile becomes possible.

All of the mentioned two-phase approaches have in common that some aspects of the
system model are kept hidden from the optimizer and are only used for subsequent eval-
uation. As a consequence, the design found by these approaches may not be optimal for
the overall problem of design and operation. An alternative is to employ a mathematical
programming model, which incorporates both system design and operation, and to give
the optimizer access to all model equations. An early example of this approach is given
in Yunt et al., 2008, where the design and operation of man-portable power generation
systems is considered, and the equivalence of the resulting problem structure to stochastic
programming problems (Birge and Louveaux, 2011; Kall and Wallace, 1994) is discussed.

In this chapter we apply such a stochastic programming formulation to simultaneously
optimize the design and operation of an air-cooled geothermal ORC. Based on flexible
component models, which incorporate the effects of size and operating condition on effi-
ciency and cost, we formulate and solve optimization problems that maximize expected
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total annualized return (TAR) for different sets of operating scenarios, represented by one
or more ambient temperatures. Through the use of artificial neural networks (ANNs) as
surrogate models, we incorporate detailed fluid properties and component characteristics
while maintaining computational tractability. In Section 3.1 we present the models for the
ORC system and its components, and our approach for quickly generating ANN surro-
gate models from data. In Section 3.2 we present computational results and Section 3.3
concludes this chapter.

3.1. Models and Methods

We consider the maximization of total annual return (TAR), calculated as

TAR = −(1 + Fop)Fann CI,tot + Cel P net Top. (3.1)

The first term corresponds to annualized capital expenses, where CI,tot are the the total
investment costs and we assume an operational cost factor Fop = 0.06, a project lifetime
of 20 years and a discount rate of 6%, resulting in an annuity factor of Fann = 0.087 1/a.
The second term is the revenue from electricity production with an assumed electricity
price Cel = 80US$/(MWh), the annual weighted average power production P net and the
annual operating time Top = 8000 h/a.

The total investment costs CI,tot are

CI,tot = CI,E&D + (1 + FBOP)
∑

c∈C

CI,c (3.2)

where CI,E&D are investments for exploration and development of the geothermal resource,
assumed to be 15 · 106 US$, C is the set of installed components (turbines, heat exchangers,
pumps, etc.) and the factor FBOP = 0.3 takes into account balance of plant costs (Macchi
and Astolfi, 2017a). Details on the investment costs for individual components, CI,c, will be
given in the following sections. We point out that the assumed cost data are only given for
replicability: they affect the numerical results, but not the proposed methodology, which
is the focus of this work.

For a finite set of operating scenarios S, with assumed relative likelihoods ws, s ∈ S,
P net can be expressed as

P net =
∑

s∈S

ws Pnet,s, (3.3)

where Pnet,s is the net power for steady state operation in operational scenario s. Note
that while dynamic effects play a crucial role for system control, quasi-steady state models
as employed here are sufficiently accurate for techno-economic optimization as shown, e.g.,
by Pili et al., 2019b.

The system we consider is adapted from Ghasemi et al., 2013b. General assumptions
are:

• A constant mass flow of ṁbr = 660 kg/s of geothermal brine (an aqueous solution
of various minerals) with an inlet temperature of Tbr,i = 135 ◦C and a pressure of
pbr = 897 kPa is available.
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• The minimum reinjection temperature is Tbr,o,min = 60 ◦C and the specific heat ca-
pacity is assumed to be constant, cp,br = 4.1 kJ/(kgK).

• The cycle to be considered is subcritical, recuperated, and uses the dry working fluid
isobutane.

• Before expansion, the working fluid mass flow is split equally between two identical
groups of turbines, recuperators and ACC banks.

• A direct ACC is employed, i.e., the working fluid is cooled via an air flow over finned
condenser pipes, driven by a series of fans.

• In contrast to Ghasemi et al., 2013b, we consider a dedicated heat exchanger for su-
perheating, and a single row of fans in each ACC bank instead of three. Additionally
we only consider a single working fluid pump instead of three parallel ones, as power
consumption of pumps – and thus their investment costs – are minor for subcriti-
cal cycles, see e.g., Huster et al., 2020. Consequently modeling multiple pumps is
expected to have little effect on the TAR.

• Pressure drops for the working fluid are negligible, which means there are only two
pressure levels.

The resulting system structure is depicted in Fig. 3.1. With the above assumptions, the
net electric power in each operating scenario is

Pnet = 2PT −NF PF − PP, (3.4)

where the subscripts T, F, and P identify turbine, ACC fans, and pump, respectively, and
NF is the total number of fans. The nominal power for each of these components must be
an upper bound to all occurring power levels:

Pc,nom ≥ Pc,s ∀s ∈ S, ∀c ∈ {T, F, P} (3.5)

Together with these nominal values, the system design is specified via the heat exchanger
geometries, the maximum pressure, the design enthalpy drop of the turbine and the design
volumetric flow rate at its outlet, see the top of Tab. 3.1. System operation in each
considered operating scenario is determined by the low and high pressure levels p1 and p2,
the working fluid mass flow ṁ, specific enthalpies h at states 2r and 3 (cf. Fig. 3.1), the
brine outlet temperature, the minimum temperature difference in the ACC, the electrical
powers on the right-hand side of Eq. (3.4), and the relative enthalpy drop of the turbine
as well as the relative volumetric flow rate at its outlet, see the bottom of Tab. 3.1.

To describe the remaining thermodynamical quantities of the working fluid in different
states (circled labels in Fig. 3.1), we use existing ANNs, which have been trained and
validated in Huster, Schweidtmann, and Mitsos, 2019. These ANNs are explicit, analyt-
ical representations of individual fluid properties, and thus avoid the need for lookups
or iterative computations required when using database-based property models directly.
While models incorporating database-based property models typically require black-box
optimization, using local or stochastic global approaches, the functional form of the ANN
representations allows for their incorporation into deterministic global optimization via our
open-source solver MAiNGO.

Some additional functional relationships are expressed via newly generated ANN surro-
gate models as described in Section 3.1.1. This allows all model quantities to be explicitly
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Tab. 3.1. Design and operational variables and their lower and upper bounds. The bounds for
the specific enthalpies h2r and h3 correspond to the saturated liquid at p = p2,LB and p = p2,UB,
respectively.

design variable symbol lower bound upper bound unit

inner shell diameter ECO ds,ECO 0.7 2.5 m
inner shell diameter EVA ds,EVA 0.7 2.5 m
inner shell diameter SUP ds,SUP 0.7 2.5 m
inner shell diameter REC ds,REC 0.7 2.5 m
relative tube length ECO Lt,ECO/ds,ECO 4 12 –
relative tube length EVA Lt,EVA/ds,EVA 4 12 –
relative tube length SUP Lt,SUP/ds,SUP 4 12 –
relative tube length REC Lt,REC/ds,REC 4 12 –
relative baffle spacing ECO LB,ECO/ds,ECO 0.2 1 –
relative baffle spacing SUP LB,SUP/ds,SUP 0.2 1 –
relative baffle spacing REC LB,REC/ds,REC 0.2 1 –
ACC heat transfer area AACC 1 · 104 1 · 106 m2

maximum pressure pmax 3 25 bar
nominal fan power PF,nom 37 200 kW
nominal pump power PP,nom 0.1 2 MW
nominal turbine power PT,nom 1 15 MW
design volumetric flow rate V̇T,o,d 1 50 m3/s
design specific enthalpy drop ∆hT,d 10 65 kJ/kg
Stodola coefficient KS 0.01 0.05 m2

operational variable symbol LB UB unit

mass flow rate of isobutane ṁ 50 1500 kg/s
low pressure level p1 1.1 20 bar
high pressure level p2 3 25 bar
specific enthalpy before ECO h2r 76.105 335.50 kJ/kg
specific enthalpy after ECO h3 76.105 335.50 kJ/kg
fan power PF 0 200 kW
pump power PP 0.1 2 MW
turbine power PT 1 15 MW
relative volumetric flow rate V̇o,rel 0.2 1.2 –
relative specific enthalpy drop ∆hrel 0.2 1.2 –
Brine outlet temperature Tbr,o 333.15 403.15 K
ACC min. temperature difference ∆Tmin,ACC 1 55 K

expressed in terms of the variables from Tab. 3.1 and the ambient temperature. In Sec-
tions 3.1.2–3.1.4 we give additional detail on the models of the individual components.

Note that the component models are based on a combination of existing modeling ap-
proaches from different literature sources. While this allows for the conceptual process
design and operation studied in this work, these models should be validated against real
plant data before use in a real-world application.
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3.1.1. Explicit Functions from Data via ANNs

Functional relationships between one or more input quantities and an output quantity
may be represented as artificial neural networks (ANNs). The benefit of using ANNs as
surrogate models within global optimization is twofold:

1. They can be used as explicit alternatives to functional relationships which are oth-
erwise only given implicitly, e.g., in the form of raw data, or via functions containing
iterative elements or control structures that cannot be handled by global optimizers
directly (e.g., Huster, Schweidtmann, and Mitsos, 2019; Huster, Schweidtmann, and
Mitsos, 2020b).

2. The propagation of tight relaxations for the used activation functions (e.g., tanh) via
McCormick relaxations usually results in good relaxations for the overall functional
relationship, cf. Schweidtmann and Mitsos, 2018. Furthermore, these relaxations are
typically much tighter than those of alternative representations for regression models,
such as polynomials, see e.g., Schweidtmann et al., 2019. These tighter relaxations
generally improve convergence of global optimization.

By varying the number of neurons in each layer and their activation function, different
ANN formulations can be generated. The choice of the activation is an active research
topic, with common choices being the rectified linear unit (ReLU) and the hyperbolic
tangent (tanh). While ReLU networks are inherently nonsmooth, they possess the desir-
able property of piecewise linarity, and thus can be cast as MILP formulations (see, e.g.,
Grimstad and Andersson, 2019; Lueg et al., 2021). However, for the present work we
preferred the nonlinear but smooth tanh activation, as we already consider several other
nonlinearities in our model. All resulting ANN surrogate models used in this work provide
sufficient accuracy with a single hidden layer containing up to four neurons. More detailed
information on the training is available in the supplementary material.

3.1.2. Pump

As noted above, the pump only has a minor effect on both Pnet and TAR. Consequently
we use a simple model with constant values for the mechanical efficiency ηm = 0.95, and
the isentropic pump efficiency ηP = 0.80. With this, the electrical power consumption of
the pump is given as:

PP = ṁ
h2,is − h1

ηm ηP
(3.6)

For the investment costs we use the correlation proposed by Astolfi et al., 2014b, converted
from AC2014 to US$2021:

CI,P = 11 066US$

(
PP,nom

200 000W

)0.67

(3.7)
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3.1.3. Turbines

As the overall mass flow rate is split equally between the turbines, we model the electrical
power produced by a single turbine as

ṁT =
ṁ

2
, (3.8)

PT = ṁT (h5 − h6,is) ηg ηT, (3.9)

with a generator efficiency of ηg = 0.95. However, as the turbines are a major contributor to
both overall cost and Pnet, we consider the effect of design (i.e., turbine size) and operation
(i.e., part-load) on the turbine efficiency ηT, which can be represented as

ηT = ηT,d(SP,VR, Tcrit) r
(
∆hrel, V̇o,rel

)
, (3.10)

where the subscript D refers to the design point. Here the maximum achievable isentropic
efficiency ηT,d is a function of the turbine size parameter SP =

V̇ 0.5
o,is,d

∆h0.25
is,d

, the turbine volume

ratio VR = V̇o,is,d

V̇i,d
and the used working fluid, represented by the respective critical tem-

perature (Macchi and Perdichizzi, 1981; Lio, Manente, and Lazzaretto, 2016), and the
reduction coefficient r is a function of the relative enthalpy drop ∆hrel and the relative
volumetric flow V̇o,rel of the turbine (Ghasemi et al., 2013b; Pili et al., 2019a):

∆hrel =
∆h

∆hd
(3.11)

V̇o,rel =
V̇o

V̇o,d
(3.12)

Lio, Manente, and Lazzaretto, 2016 computed ηT,d for isobutane and several other work-
ing fluids. The resulting values show little variation for low values of VR. As in all con-
sidered optimizations of the present work VR stayed below 4.25, we assume a fixed value
of ηT,d = 0.88, for simplicity.

Ghasemi et al., 2013b give a correlation for r1 that is split into two separate factors, rh,
and rV̇ , described by polynomials. In order to improve the relaxations of these expressions,
we replace the original polynomial form with the following ANN surrogate models:

rh = 0.21395

+ 0.77056 tanh(0.064155 + 1.7140∆hrel)

+ 0.10029 tanh(2.8276− 2.1628∆hrel) (3.13)
rV̇ = 0.70472

− 0.27582 tanh(0.39630− 3.7982 V̇o,rel)

− 0.020017 tanh(3.1786− 5.0984 V̇o,rel) (3.14)

The comparison with the original correlation and the absolute error can be seen in Fig. 3.2.

1Note that the journal publication is missing a 0 in one of the coefficients, the correct correlation can be
found in the preprint (Ghasemi et al., 2013a).
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ing errors as a function of
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Another important performance aspect is the relationship between reduced mass flow
rate ϕ, defined as

ϕ =
ṁT√
ρ5 p5

, (3.15)

and pressure ratio
PR =

p6
p5

=
p1
p2
. (3.16)

For classical Rankine cycles, Stodola’s ellipse law is commonly used to describe this re-
lationship. Despite the fact that this correlation is only valid for an infinite number of
unchoked stages (Cooke, 1984), it is frequently used for modeling ORC turbines, see, e.g.,
Calise et al., 2014; Capra and Martelli, 2015; Mazzi, Rech, and Lazzaretto, 2015; Pili et al.,
2017, even though ORC turbines commonly have between one and three stages (Macchi
and Astolfi, 2017a).

As cycles operating with isobutane allow for high efficiencies at low volume ratios (see,
e.g., Lio, Manente, and Lazzaretto, 2016), a reasonable initial assumption for the number
of stages nst is 1, as this keeps the turbine compact and thus cheap (Macchi and Astolfi,
2017b). We therefore assume a single stage turbine and use a generalization of Stodola’s
ellipse law proposed by Cooke, 1984. Cooke’s generalization accounts for choking if PR
sinks below the value corresponding to an isentropic expansion to sonic conditions PR∗,
also see Fig. 3.3,

PR∗ =

(
2

κ+ 1

)nst κ
κ−1

, (3.17)

KS =
ϕ√

1−
(

max(0,PR−PR∗)
1−PR∗

)2 , (3.18)

where we use a fixed isentropic expansion coefficient for isobutane of κ = 1.08, nst is the
number of turbine stages, and KS is the Stodola coefficient, a design variable proportional
to the flow cross-section of the turbine.

For the cost of turbine and generator, we use a correlation from Astolfi et al., 2014b
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nst = 3

nst =∞

Fig. 3.3. Comparison of Stodola’s ellipse
law (nst = ∞), presenting reduced mass
flow rate ϕ, limited by the Stodola coeffi-
cient (KS), as a function of pressure ratio
(PR), and Cooke’s adaption (Cooke, 1984)
for finite stage number (nst) and possibly
choked conditions (∗) for the working fluid
isobutane (κ = 1.08).

that takes into account both the number of stages nst, and the turbine size parameter SP
for the costs of the turbine, as well as the turbine power PT, for the costs of the electrical
generator. Again costs have been converted from AC2014 to US$2021:

CI,T = 972 241US$
(nst

2

)0.5( SP

0.18m

)1.1

+ 15 809US$

(
PT,nom

5MW

)0.67

(3.19)

Note that the problems solved in this work assume a fixed stage number of nst = 1 for
simplicity, however, the presented model can also handle higher numbers, or even the
introduction of nst as a design variable.

3.1.4. Heat Exchangers

We assume that the economizer (ECO), superheater (SUP), and recuperator (REC) are
fixed tube sheet shell & tube exchangers, while the evaporator (EVA) is a shell and tube
reboiler, and that heat is rejected via an air-cooled condenser (ACC).

It is common practice to model total heat transfer coefficients UHX in off-design condi-
tions as

UHX = UHX,d

(
ṁ

ṁd

)FU,HX

, (3.20)

where FU,HX is a constant, obtained from simulations or measurements (see e.g., Capra and
Martelli, 2015; Pili et al., 2019b). However, apart from ṁ, UHX generally also depends on
pressures, temperatures, and heat exchanger geometry, which is not reflected in Eq. (3.20).
Instead of Eq. (3.20), we therefore use empirical correlations for the total heat transfer
coefficients UHX, which explicitly account for heat exchanger geometries. The heat transfer
area AHX is correlated with thermal quantities via

AHX = Q̇HX U−1
HX∆T−1

ln,HXF
−1
T,HX. (3.21)

Here Q̇HX is the exchanged heat, ∆Tln,HX the logarithmic mean temperature difference, and
FT,HX a correction factor for a particular heat exchanger HX. For UHX, the denominators
of Eqs. (3.47), (3.73) and (3.78) are used for the respective inverse terms in Eq. (3.21).
Further details on the component-specific correlations for UHX and AHX can be found in
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Sections 3.1.4.1 and 3.1.4.2. In the following, we drop the subscript HX whenever it is not
necessary for clarity.

The inverse of the logarithmic mean temperature difference is a convex function of
Th,i − Tc,o and Th,o − Tc,i, and takes the form

∆T−1
ln =

ln
(

Th,i−Tc,o
Th,o−Tc,i

)

(Th,i − Tc,o)− (Th,o − Tc,i)
, (3.22)

where the subscripts h and c refer to the hot and cold fluid, and i and o to the inlet and
outlet, respectively. Instead of directly using the right-hand side of Eq. (3.22) in Eq. (3.21),
we use an internal function, implementing ∆T−1

ln and making its convexity visible to the
optimizer, resulting in better relaxations (cf. Mistry and Misener, 2016; Najman and Mit-
sos, 2016b). The logarithmic mean temperature difference is valid for pure cross-flow or for
the case where one fluid is isothermal, i.e., for evaporation or condensation. For other situ-
ations a temperature correction factor FT ≤ 1 is used to adjust the temperature difference,
see, e.g., Kuppan, 2013; Serth, 2007.

The cost for the heat exchangers is calculated via the established cost correlations from
Turton et al., 2018, adjusted to US$2021 via the Chemical Engineering Plant Cost Index
(CEPCI):

CI,HX,ref = CGuthrie(Ao,HX, FHX,1, FHX,2, FHX,3) (3.23)
FHX,ref = FHX,4 + FHX,5 FHX,mat FHX,p (3.24)

CI,HX =
CEPCI2021
CEPCI2001

CI,HX,ref FHX,ref, (3.25)

where CGuthrie is the Guthrie cost function

CGuthrie(x, a, b, c) = 10a+b log10(x)+c log10(x)
2

, (3.26)

and the pressure correction factor is calculated as

p̂HX = pmax − 1 bar (3.27)
FHX,p = CGuthrie(p̂HX, 0.03881,−0.11272, 0.08183), (3.28)

except for FACC,p which is 1. The values of the numerical coefficients FHX,i, i ∈ {1, · · ·, 5},
and FHX,mat are given in Tab. 3.2. For the shell & tube exchangers, the overall outer tube
area Ao,HX corresponds to the total heat exchange area AHX, while for the ACC, the latter
is larger due to the use of finned tubing, also see Section 3.1.4.2. The velocities of all
fluids flowing within the tubes and the shells are limited to vmax = 3m/s for liquids and
to vmax = 20m/s for gases.

3.1.4.1. Shell & Tube Heat Exchangers

For the shell and tube type exchangers, we assume triangular tube arrangement and fixed
values for the tube pitch Lp, outer and inner tube diameter do and di according to Ghasemi
et al., 2013b, while the tube length Lt and baffle spacing LB are expressed via variable
ratios with respect to the inner shell diameter ds, c.f. Tab. 3.1. The number of tube passes
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Tab. 3.2. Coefficients for heat exchanger cost correlations, taken from Turton et al., 2018.
For ECO, SUP, and REC, we take the coefficients for fixed-tubesheet exchangers, and for EVA
those for U-tube exchangers. Note that the coefficients for the kettle-reboilers which might be
considered as an alternative for EVA are only valid for small units up to 100 m2. We assume all
shell & tube exchangers are manufactured from stainless steel and the ACC from carbon steel.

ECO, SUP, REC EVA ACC

FHX,1 4.324 7 4.464 6 4.033 6
FHX,2 −0.303 0 −0.527 7 0.234 1
FHX,3 0.163 4 0.395 5 0.049 7
FHX,4 1.63 1.63 0.96
FHX,5 1.66 1.66 1.21
FHX,mat 2.75 2.75 1

Tab. 3.3. Geometry for shell and tube type exchangers. The values for Ntp were assumed, the
remaining values are taken from Ghasemi et al., 2013b.

HX Ntp Lp [mm] do [mm] di [mm]

EVA 2 20.64 15.88 14.23
ECO 1 20.64 15.88 14.23
SUP 1 20.64 15.88 14.23
REC 1 39.69 31.75 29.64

Ntp is assumed to be 2 for the evaporator and 1 for all other exchangers, resulting in FT = 1
in all cases. The resulting geometry is summarized in Tab. 3.3.

With the assumed parameters, the tube bundle diameter dtb, tube number Nt and heat
exchanger area Ao can be obtained as discussed by Kuppan, 2013:

dtb = ds −
(
0.005m +

0.012m

ds

)
(3.29)

Nt =
1.56√

3

(
dtb − do

Lp

)2

(3.30)

Ao = π doLtNt (3.31)

Additionally, we consider the cross-sectional areas available for tube- and shell-side flow
(index t and s, respectively):

At,cs = π
d2i
4

Nt

Ntp
(3.32)

As,cs = LB

(
ds − dtb + (dtb − do)

(
1− do

Lp

))
(3.33)
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Using these cross-sectional areas, we can express limits on the flow velocities

V̇t,max ≤ At,cs vmax, (3.34)

V̇s,max ≤ As,cs vmax, (3.35)

where vmax is set to the limit for liquids or gases, depending on the phase of the respective
fluid.

Exchangers with Single Phase Fluids
In the economizer, superheater and recuperater both hot and cold fluids are all single phase
shell and tube exchangers. For the hot fluid (subscript h), which flows on the tube-side,
the Gnielinski correlation (Gnielinski, 1976; Gnielinski, 1983) is used:

Ret =
4 ṁh Ntp

π di Nt µh
(3.36)

FD = (0.782 ln(Ret)− 1.51)−2 (3.37)

Fe = 1 +

(
di

Lt

)2/3

(3.38)

Nut =
FD/8 (Ret − 1000)Prh

1 + 12.7
√

FD/8
(
Pr2/3h − 1

) Fe (3.39)

αt = Nut
kh

di
(3.40)

Here FD is the Darcy friction factor and Fe a correction for entry effects. The fluid prop-
erties µh, Prh, and kh are evaluated at (T, p) = (T h, ph).

For the cold fluid (subscript c) flowing on the shell-side, we use the simplified Delaware
method as described by Kern and Kraus, 1972 (also see Serth, 2007), to describe the heat
transfer coefficient:

deq =
2
√
3L2

p

πdo
− do (3.41)

Res =
deq ṁc

As,cs µc
(3.42)

FC =
1 + LB

ds

2

(
0.08Re0.6821s + 0.7Re0.1772s

)
(3.43)

Nus = FC Pr1/3c

(
µc

µc
(
Tw, pc

)
)0.14

(3.44)

αs = Nus
kc

deq
(3.45)

Here FC is the Colburn factor and the fluid properties µc, Prc, and kc are evaluated at
(T, p) = (T c, pc) and

Tw =
T c + T h

2
. (3.46)
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The overall heat transfer coefficient is then given by

U−1
S&T =

do

di

1

αt
+ do

ln(do/di)

2 kt
+

1

αs
+ FR, (3.47)

where we use kt = 16W/(mK) as the thermal conductivity of the tube material (stainless
steel, Serth, 2007), and a factor for fouling resistance of FR = 1.3·104m2K/W (Hernandez-
Galan and Plauchu, 1989).

Evaporator
For the tube side heat transfer coefficient, we again use Eqs. (3.36)–(3.40) while for the shell
side, where the isobutane is boiled on horizontal tubes, we follow the approach proposed
in Serth, 2007 and correct a coefficient for nucleate boiling (subsctipt nb) to account for
convective effects. The resulting heat transfer coefficient for boiling (subscript b) can then
be obtained through the following correlations:

pc,rel =
pc

pc,crit
(3.48)

∆Tw = Tw − Tsat (3.49)
Fp = 1.8 p0.17c,rel + 4 p1.2c,rel + 10 p10c,rel (3.50)

αnb = 1.469 2 · 10−15 p2.3c,crit ∆T 7/3
w F 10/3

p (3.51)

Fb = 1 + 0.1

(
0.90644

dtb do

L2
p
− 1

)0.75

(3.52)

αb = αnb Fb + 250 (3.53)

Eq. (3.51) is the Mostinski correlation for nucleate boiling, adjusted to SI units.
The overall heat transfer coefficient is again calculated via Eq. (3.47) with αb instead of

αs. Following Serth, 2007, we use the saturation temperature for all calculations related
to ∆Tln and FT , instead of the inlet temperature of the potentially subcooled liquid. Note
that by fixing the geometry, the working fluid at the evaporator inlet will not necessarily
be saturated when considering multiple operating points, but instead is determined by
Eq. (3.21). We therefore introduce the enthalpy of the working fluid at the outlet of the
economizer as an auxiliary variable, and limit its value to lie between 95%–100% of the
saturated value at the given pressure.

3.1.4.2. Air-Cooled Condenser (ACC)

For the ACC, we assume horizontal bundles of finned tubes, arranged in multiple rows,
again following Ghasemi et al., 2013b, but allowing for different heat exchanger areas via a
variable number of tubes Nt. The resulting values for tube and fin dimensions and spacing
are given in Tab. 3.4, for the assumed geometry, see Fig. 3.4.
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Tab. 3.4. Assumed tube and fin geometry for air cooled condenser. The number of tube passes
and tube length (=̂ 36 ft) are typical values (Serth, 2007), the remaning values are taken from
Ghasemi et al., 2013b.

Ntp [–] Lt [m] Lp [mm] df [mm] do [mm] di [mm] Lf [mm] θf [mm]

4 10.97 69.85 63.5 31.75 27.53 1.9 0.41

. . . . . .

θf

Lf

Lp

di

do

df

ntp

√
3nt

2ntp
Lp Lt

. . . . . .

θf

Lf

Lp

di

do

df

ntp

√
3nt

2ntp
Lp Lt

Fig. 3.4. Assumed geom-
etry for the ACC: Number
of tubes Nt, tube passes
Ntp, tube length Lt, tube
pitch Lp, diameters of in-
ner tube di, outer tube do,
and fin df, fin thickness
θf, and spacing Lf. Left:
cross-section, right: side
view. Note that each tube
pass corresponds to a sin-
gle tube row.

The tube number Nt can then be expressed as a linear function of the overall heat
transfer area AACC, i.e.,

Nt =
AACC

Lt π

[
do +

d2f −d2o
2

+θf (df−do)

Lf+θf

]

= 0.050307AACC, (3.54)

where df is the fin diameter, θf the fin thickness and Lf the fin spacing, also see Fig. 3.4.
Note that since Nt is in the order of 1000 – 10 000, the effect of its integrality is negligible.

For the air-side heat transfer coefficient we first calculate the Reynolds number based
on the maximum air velocity as given in Serth, 2007:

Aface =

√
3Nt

2Ntp
LpLt (3.55)

vface =
ṁair

ρair(Tair,i)Aface
(3.56)

vair,max =
vface Lp (Lf + θf)

Lp − do − (df − do) θf
(3.57)

Reair =
do vair,max ρair

µair
(3.58)

For the calculation of the heat transfer coefficient, we use the correlation of Ganguli, Tung,
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and Taborek, 1985:

Ao,rel =
Ao

AACC
(3.59)

Nuair = 0.38Re0.6air Pr1/3air A0.15
o,rel (3.60)

αair = Nuair
kair

do
(3.61)

Here AACC is the total area that is in contact with air, including the fin surface, and
ρair, µair,Prair, and kair are evaluated at (T, p) = (T air, 1 atm).

The desuperheating (DES) and condensation (CON) sections need to be considered sepa-
rately, as these regions may exhibit very different heat transfer coefficients and temperature
differences.

While in the condensing section the isobutane is isothermal, and hence, FT,CON = 1,
FT,DES needs to be determined via an appropriate correlation. In preliminary calculations
with various ambient temperatures, desuperheating occured mostly within the first tube-
row of the ACC. We therefore determine FT,DES based on the correlation of Schedwill, 1968
for a single row of finned tubes, also see Kuppan, 2013:

eh =
T6r − Tpinch

T6r − Tair,pinch
(3.62)

ec =
Tair,o − Tair,pinch

T6r − Tair,pinch
(3.63)

FT,DES =
ec ln

(
1−eh
1−ec

)

(eh − ec) ln
(

ec
eh

ln(1− eh) + 1
) (3.64)

Here eh and ec are the effectiveness of the hot and the cold stream, i.e., isobutane and air,
respectively. The temperatures Tpinch and Tair,pinch refer to the isobutane and air tempera-
tures at the point of minimal temperature difference, i.e., the beginning of condensation.
Note that Eq. (3.64) is indeterminate for eh = ec as well as for

ec ≥ ec,lim = − eh

ln(1− eh)
, (3.65)

also see Fig. 3.5. These two facts complicate the use of Eq. (3.64) in global optimization.
We thus generate an ANN representing the inverse of FT,DES, needed in Eq. (3.21). As
pointed out by Ahmad, Linnhoff, and Smith, 1988 and Smith, 2005, both low values of
FT , as well as regions where FT has a steep slope should be avoided, as they correspond to
an excessive temperature cross and the risk for larger errors in the predicted heat transfer,
respectively. To achieve this, we scale the limit in Eq. (3.65) by 90% and consider only
data that satisfies

ec ≤ −
eh

ln(1− eh/0.9)
. (3.66)
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Fig. 3.5. Left: Schedwill correlation for FT for cross-flow over a finned tube (Eq. (3.64)). Note
that the function is indeterminate for eh = ec as well as for ec ≥ ec,lim (Eq. (3.65)). Right:
Error for the resulting ANN representing inverse FT and contours for FT based on the original
correlation and the fit.

The resulting ANN surrogate model takes the form

F−1
T,ANN(eh, ec) = 0.60127− 1.9843 tanh(3.1595− 2.3103 eh − 1.6979 ec)

+ 1.9843 tanh(3.8096 + 2.0196 eh − 2.3837 ec)

− 0.22447 tanh(9.6024− 6.5102 eh − 9.3455 ec)

+ 0.61916 tanh(2.8588− 2.7623 eh − 1.2156 ec)

(3.67)

and has its largest error of about 1% close to the boundary of the domain, also see Fig. 3.5.
For the desuperheating section, αt is calculated using Eqs. (3.36), (3.37), (3.39)

and (3.40) and FE = 1 since di << Lt. Neglecting fouling and the contact resistance
between fins and tubing, the overall coefficient based on AACC can then be computed as
described in Serth, 2007:

Ff =
df + θf − do

2

[
1 + 0.35 ln

(
df + θf

do

)]
(3.68)

Fα =

√
2αair

kf θf
(3.69)

ηf =
tanh(Ff Fα)

Ff Fα

(3.70)

ηwf =
Ao,air + ηf Af

AACC
(3.71)

Ai,rel =
Ai

AACC
(3.72)

U−1
DES =

1

αt Ai,rel
+

AACC

π Lt

ln (do/di)

2 kt
+

1

αair ηwf
(3.73)

Here Ao,air is the outer tube area that is in direct contact with air, i.e., excluding area in
contact with fins, Af is the total fin area, kf = 237 W

mK
is the thermal conductivity of the

aluminum fins and ηwf is the weighted fin efficiency.
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In the condensation section, the local heat transfer coefficient within the tubes can be
described by Shah’s correlation (Shah, 1979; Shah, 2009):

Fx = (1− q)0.8 +
3.8 q0.76(1− q)0.04

p0.38h,rel
(3.74)

αCON(q) = 0.023Re0.8sat

0.4

Pr
h,sat

kh,sat

di
Fq, (3.75)

where q is the vapor quality. Here Resat is calculated as in Eq. (3.36) with µh replaced by
µh(Th,sat, ph), and similarly Prh,sat and kh,sat are evaluated at (T, p) = (Th,sat, ph). As pro-
posed by Shah, we assume a linear variation of the vapor quality and integrate Eq. (3.74) to
obtain an average heat transfer coefficient that may be used for the complete condensation:

F q = 5/9 +
2.0434

p0.38h,rel
(3.76)

αCON = 0.023Re0.8sat

0.4

Pr
h,sat

kh,sat

di
F q (3.77)

As in the desuperheating section the overall heat transfer coefficient can be computed as:

U−1
CON =

1

αCON Ai,rel
+

AACC

π Lt

ln (do/di)

2 kt
+

1

αair ηwf
(3.78)

With the respective quantities for the desuperheating and condensing sections, the overall
area of the ACC must satisfy

AACC = ADES + ACON

=
(
Q̇U−1∆T−1

ln F−1
T

)
DES

+
(
Q̇U−1∆T−1

ln

)
CON

. (3.79)

Note that for the condensation section FT is equal to 1 due to the isothermal phase change.

The electrical power for each fan is calculated as

PF =
∆pFV̇air

NF ηF
, (3.80)

where NF is the total number of fans and an overall efficiency of ηF = 0.7 is assumed. The
necessary pressure difference ∆pF, provided by the fan is derived from the air-side pressure
drop based on correlations from Ganguli, Tung, and Taborek, 1985:

Reeq = Reair
2Lf

df − do
(3.81)

Fair =
Lp − df

do
(3.82)

FRe =
1 + 2 exp(−Fair/4)

1+Fair

0.021 + 27.2
Reeq

+ 0.29
Re0.2eq

(3.83)
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∆pair = 2FRe Ntp ρair v
2
air,max (3.84)

∆pF = 1.2∆pair (3.85)

In Eq. (3.85) we follow the assumption from Serth, 2007 and account for 20% of additional
losses caused by the support structure, screens, etc.

The number of fans is determined from the total width of the ACC, see Fig. 3.4. Di-
viding this width by two gives the width of each of the banks, and as the fan bays are
approximately square, dividing by Lt and flooring yields the number of bays per bank.
Doubling this value gives the total number of bays which by assumption is equal to the
number of fans NF, i.e:

Wtot =

√
3nt

2ntp
Lp (3.86)

NF = 2

⌊
Wtot

2Lt

⌋
(3.87)

Fan costs are modeled as in Smith, 2005, with costs adjusted from US$2000 to US$2021:

CI,F = 18 991US$NF

(
PF,nom

50 kW

)0.76

(3.88)

3.2. Computational Results

We implemented the component models presented in Section 3.1 and aggregated them
to a system model representing the considered ORC, using our open-source model-
ing framework COMANDO (Langiu et al., 2021). The source code is available under
examples\ORC_off-design in the COMANDO repository. Based on this system model,
we define multiple optimization problems considering TAR as the objective. By slight
abuse of notation, we occasionally use Tamb instead of s in the following, as our operational
scenarios are fully characterized by the considered ambient temperatures. As in Ghasemi
et al., 2013b, we consider the ORC system to be built at a location exhibiting an ambient
temperature distribution as shown in Fig. 3.6, with a weighted average temperature of
T amb = 15.85 ◦C (289K). The different problems we consider are solved using our open-
source deterministic global optimization solver MAiNGO (Bongartz et al., 2018) on an
Intel i7-8700 CPU (3.20 GHz) with 32GB of RAM. Solutions to these problems consist of
optimal design decisions and one set of optimal operational decisions for each considered
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Fig. 3.6. Assumed distribution of daily am-
bient temperatures considered for the case
study, adjusted from Ghasemi et al., 2013b.
The vertical line depicts the weighted aver-
age of T amb = 15.85 ◦C.
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value of Tamb, according to Tab. 3.1.
In all performed optimizations, only a single local solution is found during preprocessing.

Note that due to the nonconvexity, the problems may in principle have multiple local
solutions. Given the large number of variables (19+12×|S|), it is not possible to perform
a dense search of the entire feasible space during preprocessing, and the ten randomly
generated initial points might all converge to the same local minimum. To obtain a global
solution, MAiNGO employs branch and bound, however, the level of detail considered in
the system model results in a large formulation (4+81×|S| inequality, and 11×|S| equality
constraints) and as a consequence, in high computational cost. In particular, the upper
bounds decrease very slowly for the considered optimizations, and the local solution from
preprocessing is never improved, even for computation times up to one day.

Note that we use a reduced-space formulation, i.e., we directly use expressions describ-
ing intermediate quantities within other expressions instead of introducing optimization
variables for them. A typical full-space formulation would introduce variables and add
corresponding equality constraints for temperatures and enthalpies in all states, as well as
for several other intermediate quantities, required for the calculation of component behav-
ior. For the present problem this would amount to about 120 × |S| additional variables
and constraints. While an even smaller reduced-space formulation than the used one is
possible by eliminating the auxiliary variables AACC, pmax, PF, PF,nom, PP, PP,nom, KS,
V̇o,rel, ∆hrel, PT, and PT,nom, preliminary optimization results indicated that this does not
improve computational time due to the resulting deterioration of relaxations.

To improve computational performance, we scaled all variables to a unit range and inves-
tigated different branching strategies. Compared to the default branching strategy, where
all variables have branching priority 1, giving all design variables a higher priority of 2, 5,
or 10 improves the performance somewhat, although the difference between choosing 5 and
10 is negligible. We found that a much better performance can be achieved by maintaining
a priority 1 for the auxiliary variables mentioned above, whose value is determined by
other variables or constraints, and setting the priority of all other variables to the heuristic
value 1 + n2, where n is the number of functions each variable is present in.

3.2.1. Optimization for the average ambient temperature

Optimizing the system for any single ambient temperature results in a design that will
generally be suboptimal, and may even be infeasible for other temperatures. To illustrate
this point, we consider the optimization for a single operational scenario, corresponding to
the weighted average of ambient temperatures from Fig. 3.6, i.e., S = {T amb}, wT amb

= 1.
When fixing the optimal design decisions obtained for this average ambient temperature

case, we can optimize the operational decisions for different ambient temperatures. For
temperatures up to 15 °C MAiNGO finds a local optimum in preprocessing, and proves
these local optima to be global within few seconds of branch and bound. The remaining 5
temperatures (cf. Fig. 3.6), however, are found to be infeasible within few seconds of branch
and bound, also see Fig. 3.7. This is because the original optimization selects a design that
is optimal for the average temperature but is operated at the boundary of the feasibility
region for this temperature: The fans operate at their peak power and tube-side velocities
for EVA and REC and shell-side velocities for ECO, REC, and SUP are at their maximum
bounds for temperatures close to T amb. As long as the brine mass flow ṁbr is fixed to its
maximum value, the states of the working fluid are constrained to remain identical for all
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Fig. 3.7. Comparison of performance for the designs resulting from optimizations considering
the average temperature only (ATD), or all 11 temperatures from Fig. 3.6 (MTD). The closeup
shows that around the average temperature, the ATD slightly outperforms the MTD, however,
running operational optimizations on a finer temperature resolution (≤ 1 K) using the average
(ATO) or multiple-temperature (MTO) design shows that the former is only feasible for a subset
of all considered temperatures. When allowing for an increase in fluid speeds and a decrease in
the brine mass flow, operation can be extended slightly (+). For ambient temperatures above
22.4 °C operation with the ATD is infeasible.

ambient temperatures. If the velocity limits are relaxed and ṁbr is allowed to be reduced
by making it an operational variable, additional feasible points can be found for higher
ambient temperatures (red crosses in Fig. 3.7). For ambient temperatures above 22.4 °C,
however, operational problems remain infeasible. Similarly, optimizing the system for any
other single operating scenario, results in designs that only allow for feasible operation
close to the respective temperature. For example, optimizing for the maximum expected
ambient temperature results in a design that becomes infeasible for ambient temperatures
below 0 °C as Reair approaches the lower limit of the validity range for the use of the
Ganguli correlation, see Eq. (3.60).

3.2.2. Comparing results for single and multiple operating points

The results from the previous section suggest that we might find a more robust system
design via an optimization for a single ambient temperature if we artificially restrict oper-
ational constraints, in order to obtain a more conservative design that leaves room for the
necessary variations in operating points during off-design. While this may in fact produce
a design that is feasible for all ambient temperatures, it is not clear which constraints to re-
lax or how to balance conservatism and optimality. A more straightforward approach is to
directly consider multiple operating points in a single optimization problem, e.g., as done
in Yunt et al., 2008. By assigning appropriate weights to the objective contributions of
different operational scenarios, the optimizer will automatically select the design that pro-
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duces the best results based on the weighted average, also compare Fig. 3.7. A particular
benefit of the presented model is that no explicit characterization of design and off-design
operation is necessary. Instead, the design is automatically adjusted by the optimizer to
account for all considered operating points.

Fig. 3.8 shows a qualitative comparison of the optimal variable values resulting from
optimizations considering a single ambient temperature, each (ST), and an optimization
that considers multiple operating points, corresponding to the 11 temperatures shown in
Fig. 3.6 (MT), each weighted by the respective likelihood. It can be seen that some design
quantities are similar or even identical for all cases while for other quantities, very different
values are optimal depending on the considered ambient temperature. Furthermore, while
the optimal design of the MT optimization is close to the weighted average of the ST
designs for most quantities, the optimal value from the MT optimization for ds,ECO is
smaller and the Lt,SUP/ds,SUP and LB,ECO/ds,ECO ratios are larger than in all ST cases. As
with the optimal designs, the ranges of optimal operational values for the ST optimizations
vary significantly for some of the variables. The solution of the MT optimization on the
other hand exhibits approximately constant values for Tamb below 10 °C for all operational
quantities, except for PF and ∆Tmin,ACC.

Generally, feasibility for operational scenarios not considered during the optimization
determining the system design cannot be guaranteed. However, for the present case study
the monotonicity of operational variable values for the MT case in Fig. 3.8 suggests that
the MT design might be feasible for all ambient temperatures from −10 to 40 °C. Indeed,
when fixing the design variables to the values from the MT solution and optimizing the
operational strategies for intermediate temperatures in steps of 1K, MAiNGO finds feasible
solutions in all cases, also see Fig. 3.7. This is in contrast to the optimal design from the ST
optimization considering only T amb (cf. Section 3.2.1), and demonstrates the robustness
of the proposed approach.

3.2.3. Global optimization with reduced variable ranges

Even after 24 h of CPU time, relative gaps for the ST optimizations are between 13 and
124 %, and that of the MT optimization is at 121%. As a result, it is not clear whether
a significantly better design is possible. To obtain better bounds on the optimal objective
value, we repeat the optimizations from the previous section with the reduced ranges shown
in Fig. 3.8.

As before, MAiNGO does not improve the feasible point found during preprocessing for
any of the considered optimizations. The design values corresponding to the best feasible
point of the MT optimization are given in Tab. 3.5. For the ST optimizations, both net
power and overall efficiency increase almost linearly with decreasing temperature until
−5 °C. In contrast, the values from the MT solution reach a plateau for temperatures
below 10 °C in both cases, and always lie below those of the ST optimizations, see Fig. 3.9.

A well-known result from the literature on two-stage stochastic programming (see, e.g.,
Madansky, 1960) is that the weighted average of the globally optimal objective value of
so-called wait-and-see subproblems (where it is assumed that separate first-stage decisions
may be taken for each scenario) is an optimistic bound to the optimal objective value for the
here-and-now problem (where first-stage decisions need to be taken before the realization
of uncertain parameters). In the context of the present work, the first-stage decisions are
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Fig. 3.8. Comparison of the variable ranges for single-temperature and multiple-temperature
(all) optimizations, left: design, right: operation with results for single-temperature optimizations
superimposed over those for the multiple-temperature optimization. A reduction of the considered
variable ranges is proposed based on the results and indicated via hatched vertical lines (left hatch:
new lower bound, right hatch: new upper bound). Design quantities for which the overall variation
is less than 1% of the original range are considered constant, i.e., they are fixed to the value of
the multiple-temperature optimization.
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Fig. 3.9. Comparison of the net power Pnet, total efficiency η = Pnet/Q̇br, and TAR resulting
from single-temperature (ST) and multiple-temperature (MT) optimizations. Solid vertical lines
correspond to weighted averages, dashed vertical lines to upper bounds. The dashed blue line
extending over the full height corresponds to the wait-and-see bound obtained by taking the
weighted average of the ST bounds.

design decisions, the wait-and-see problems correspond to the ST design problems and
the here-and-now problem corresponds to the MT problem. In lack of a globally optimal
objective value, the upper bounds on the ST problems can be used to obtain the wait-and-
see bound. In the following we show that within the same time-frame, this wait-and-see
bound can be much tighter than the upper bound from the MT optimization.

After 24 h, the upper bound for the TAR obtained from the direct optimization of the
MT problem (dashed orange line in the right plot in Fig. 3.9) is still 93% larger than the
value for the best solution with a TAR of 7.81 · 106 US$/a (solid orange line in the right
plot in Fig. 3.9). In contrast, the bound obtained by taking the weighted average of the
upper bounds from the ST optimizations (dashed blue line in the right plot in Fig. 3.9)
is only 11% larger than the best found TAR. Note that while multiple ST optimizations
are necessary to generate this wait-and-see bound, it does not necessarily take more time
than generating the direct bound from the MT problem, as the ST problems (and the MT
problem) may be solved in parallel on separate CPUs.

The solid blue vertical line in the right plot in Fig. 3.9 corresponds to the lowest possible
bound we can hope to obtain using the wait-and-see approach. It would be obtained, if
the bounds of the subproblems converged to the respective objective values of the best
feasible solutions. Unlike the MT optimization, the wait-and-see-approach is therefore not
guaranteed to converge. If no better feasible point is found, the best possible wait-and-see
bound would result in a gap of 7%. It is however possible to improve the wait-and-see
approach via a decomposition algorithm as has been done by, e.g., Kannan, 2018; Cao and
Zavala, 2019; Li and Grossmann, 2019b.
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Tab. 3.5. Numerical results from the MT optimization. Top: geometry of the shell and tube
exchangers, middle: remaining design variables, bottom: TAR and bounds (in million US$/a).
Note that baffle spacing for the evaporator is missing as it does not occur in the considered
correlations.

HX ds,HX [m] Lt,HX
ds,HX

[ – ] LB,HX
ds,HX

[ – ]

ECO 1.43 12 0.476 5
EVA 1.285 12 –
REC 1.959 4 0.315 9
SUP 1.366 4 1

AACC Pc,nom [MW] V̇T,o,d ∆hT,d KS

[m2] F P T [m3/s] [kJ/kg] [cm2]

1×106 0.037 1.28 12.44 24.13 62.66 20.83

TAR wait-and-see bound direct bound

7.81 8.70 15.1

3.3. Conclusion

In this chapter, we presented a detailed model of an air-cooled geothermal ORC, simul-
taneously taking into account system design as well as operational decisions for multiple
operational scenarios. Through the incorporation of ANNs as data-driven surrogate mod-
els, accurate working fluid properties as well as component characteristics are incorpo-
rated while maintaining computational tractability. We implement this model using our
open-source modeling framework COMANDO and formulate a mathematical program-
ming problem, maximizing total annualized revenue. We solve several instances of this
problem for different sets of operating scenarios, corresponding to single or multiple am-
bient temperatures using our open-source global optimization solver MAiNGO. If only a
single temperature is considered, e.g., the average or maximum ambient temperature, we
obtain a system design that enables optimal operation for that temperature, but becomes
infeasible for temperatures that are far from the considered one. In contrast, considering
multiple operating points along with their relative likelihood during the optimization re-
sults in a robust design that can be operated over the entire operating range and allows
for an operation providing maximum expected total annualized revenue.

Our contribution is twofold: first, we demonstrate the importance of considering multiple
operating points within design problems, instead of a single one. Second, we show that
single-temperature optimizations can still provide valuable bounding information that can
be used to improve the bound obtained from multiple-temperature optimization. For the
present case study, we are able to reduce the upper bound on the total annualized return
from 93% to 11%.

Given the significant uncertainties in early cost estimates, the resulting solution can be
deemed sufficiently accurate. However, it is unlikely that solutions of similar accuracy

59



3. Optimal Design and Operation of an Air-cooled Geothermal Organic Rankine Cycle

can be obtained for other simultaneous design and operation problems in general. In such
cases, obtaining solutions of sufficient quality in reasonable time may require the use of
decomposition algorithms, which exploit the special problem structure for more a efficient
solution. In the following chapter, we therefore review existing decomposition methods,
identify potential issues with the state of the art, and develop a new decomposition algo-
rithm applicable to general nonconvex design and operation problems.
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4. MUSE-BB: A Decomposition
Algorithm for Nonconvex
Two-Stage Problems using Strong
Multisection Branching

In this chapter, we develop a new decomposition algorithm, applicable to solve the two-
stage stochastic programming problem TSP, introduced in Chapter 1. In particular, we
consider the general case, where any of the participating functions may be nonconvex in
both the first- and the second-stage variables. The generality of this problem class makes
our algorithm ideally suited for the technical design and operation of energy systems, which
may often include significant nonconvexities in both the first- and second-stage.

For ease of exposition, we restate the problem TSP here, considering the individual
stages separately. The first-stage corresponds to the original two-stage problem.

fX ,Y := min
x∈X

fI(x) +
∑

s∈S

ws f
Ys
II,s(x)

s. t. gI(x) ≤ 0,

TSPX ,Y

whereas the second-stage corresponds to the recourse problem (RP) for a fixed value of x,
and second-stage domain Ys:

fYs
II,s(x) :=min

ys∈Ys

fII,s(x,ys)

s. t. gII,s(x,ys) ≤ 0.
RPYs

s (x)

In contrast to the original formulation, we introduced the optimal value fX ,Y , the
second-stage optimal value functions fYs

II,s (also known as optimal recourse functions), as
well as the explicit dependence of these functions and the associated optimization problems
on the domains X ∈ IRNx , Ys ∈ IRNy , and Y ∈ IRNsNy , which are assumed to be bounded
hyperrectangles, and thus compact sets. Throughout this work, we use the notation I• to
denote the set of nonempty, hyperrectangle subsets of some set • ⊆ Rm.

Here we use the overall domain Y :=×s∈S Ys for conciseness. Throughout this chapter,
we omit such parametric dependencies from the labels of optimization problems, if they are
immaterial, e.g., we occasionally still use the simpler notation TSP. As before, the decisions
that need to be made in the first and second stage are captured by the variable vectors
x and ys, and the functions fI : X 7→ R and fII,s : X × Ys 7→ R denote the scalar-valued
first- and second-stage objective functions, and gI : X 7→ RNI and gII,s : X ×Ys 7→ RNII the
vector-valued first- and second-stage constraint functions. The set of considered scenarios
S is assumed to have finite cardinality Ns := |S| ≥ 1.
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Since our formulation of TSPX ,Y is motivated by the application to design and operation
of energy systems, it assumes an equal number of second-stage variables Ny, and second-
stage constraints NII, to be equal for all scenarios (which represent different operational
conditions in our context). While the generalization to different numbers Ny,s, and NII,s,
for each scenario s does not pose substantial complication, we herein restrict our attention
to the simpler case for ease of exposition. Furthermore, we effectively assume that the
weights ws correspond to probabilities, i.e., ws ∈ (0, 1],

∑
s∈S ws = 1. This assumption

makes the sum in the objective a convex combination, allowing for more concise definitions
and proofs. Note that other weights can be equivalently used via appropriate scaling and
redefinition of the objective. For conciseness, we aggregate the vectors ys into the overall
vector of second-stage variables y ∈ Y :

y :=



y1
...
yNs


 =




y1,1
...

y1,Ny

...
yNs,Ny




(y)

We denominate any scalar element ys,i of y or ys as a second-stage variable and refer to
the collection of elements at the same position i in ys for different values of s as instances
of a second-stage variable. Furthermore, we define the scenario objective functions fs :
X × Ys 7→ R

fs(x,ys) := fI(x) + fII,s(x,ys) (fs)

and the overall objective function f : X × Y 7→ R

f(x,y) := fI(x) +
∑

s∈S

ws fII,s(x,ys) (f)

=
∑

s∈S

ws(fI(x) + fII,s(x,ys))

=
∑

s∈S

ws fs(x,ys),

where the equalities follow from our assumptions on the weights ws.
Using these definitions, TSPX ,Y can be equivalently stated as the following single-stage

optimization problem, also known as the ‘extensive form’ or the ‘deterministic equivalent’ :

fX ,Y = min
x∈X
y∈Y

f(x,y)

s. t. gDE(x,y),

DEX ,Y

where the vector-valued constraint function gDE : X × Y 7→ RNDE
g , groups all
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NDE
g := NI +NsNII constraints in DE, and is defined as

gDE(x,y) =




gDE,1(x,y)
...

gDE,NDE
g

(x,y)


 :=




gI,1(x)
...

gI,NI(x)
gII,1,1(x,y1)

...
gII,Ns,NII(x,yNs)




. (gDE)

The two problems TSPX ,Y and DEX ,Y are equivalent in the sense that their globally
and locally optimal solution points and optimal objective values coincide if they exist,
whereas if one of the formulations is infeasible or unbounded, so is the other, see e.g.,
(Yunt et al., 2008). We are interested in the case where all functions in DE may be
nonconvex. We limit the theoretical considerations, implementation, and numerical results
to continuous variables. Thus, we do not explicitly address issues pertaining to discrete
variables in the following. The presence of discrete variables would however not pose
substantial complication.

The remainder of this chapter is structured as follows: Section 4.1 revisits solution ap-
proaches for TSP, highlights challenges of existing methods, and motivates the development
of a new decomposition approach. Section 4.2 briefly reviews decomposable bounding sub-
problems used in scenario decomposition algorithms for TSP. In Section 4.3 we motivate
the use of multisection branching of second-stage variables. Following this, we outline two
alternative variants of multisection that allow for efficient incorporation of decomposable
bounding problems in a B&B algorithm, branching on both x and y. Section 4.4 presents
the MUSE-BB algorithm, incorporating one variant of multisection branching. It includes
implementation details followed by a formal statement of the MUSE-BB algorithm and
subroutines. In Section 4.5 we present convergence results for both our lower bounding
problems, and the overall algorithm. We show that under mild conditions MUSE-BB con-
verges to an εf -optimal solution in finite time for any εf > 0. Section 4.6 presents the
results of computational experiments on a small test problem, highlighting the effect of
different parameters on MUSE-BB, and Section 4.7 concludes this chapter.

4.1. Solution Approaches: Challenges of Existing
Methods and New Ideas

Solving TSPX ,Y by applying general-purpose branch and bound (B&B) solvers (e.g., An-
droulakis, Maranas, and Floudas, 1995; Vigerske and Gleixner, 2017; Bongartz et al., 2018;
Belotti, 2019; Sahinidis, 2024) to DEX ,Y is possible, typically amounting to solution of re-
laxations of DEXn,Yn

in every B&B node. Here X n ∈ IX and Yn ∈ IY , where IX and IY
denote the sets of nonempty, compact interval subsets of X and Y . However, as B&B is
intrinsically exponential in the number of (branched) variables, this approach has worst-
case exponential runtime in the number of scenarios. This has motivated the development
of decomposition algorithms capable of exploiting the special structure of TSP for a more
efficient solution. In these algorithms, multiple independent subproblems are solved in-
stead of instances of DE, which can result in a reduction of computational time required
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for the solution, as the subproblems are generally much smaller and thus cheaper to solve.
In the best case, such decomposition algorithms achieve linear scaling with the number
of scenarios Ns, i.e., an arithmetic complexity of O(Ns). Furthermore, the subproblems
are independent and may thus be solved in parallel, resulting in significant additional
reductions of wall time.

Historically, decomposition strategies have predominantly been developed for certain
subclasses of TSP, e.g., those restricted to linear functions and either only continuous
(e.g., Dantzig and Wolfe, 1960; Benders, 1962) or mixed-integer variables (e.g., Laporte
and Louveaux, 1993; Carøe and Schultz, 1999), or those restricted to convex nonlinear
functions (e.g., Generalized Benders Decomposition (GBD) Geoffrion, 1972). More re-
cently, algorithms addressing subclasses of TSP allowing for certain nonconvexities, but
imposing additional structural assumptions have also been proposed (e.g., Li, Tomasgard,
and Barton, 2011; Li, Sundaramoorthy, and Barton, 2014; Li and Cui, 2024). In the most
general case, any of the functions in TSP may be nonconvex, and no additional structural
assumptions are imposed. Two algorithm variants addressing this case are proposed by
Ogbe and Li, 2019, however, both variants consider elements of y which introduce non-
convexity as complicating variables in addition to x. Thus, in the worst case subproblems
have a similar size as the original problem, diminishing the benefits of decomposition.

Three further recent algorithms all employ B&B exclusively on the first-stage variables:
(i) Kannan, 2018 propose a modified Lagrangian relaxation in which so called nonanctic-
ipativity constraints (cf. Section 4.2) are dualized. The resulting Lagrangian problem is
thus still a nonconvex two-stage problem but exhibits additional structure and can thus
be solved in a decomposable manner using the algorithm proposed by Li, Tomasgard, and
Barton, 2011; Li, Sundaramoorthy, and Barton, 2014. As a result, only the continuous
first-stage variables need to be branched. (ii) Cao and Zavala, 2019 propose another B&B
algorithm that obtains lower bounds in each node via global solutions to separate, but
generally nonconvex scenario subproblems, resulting from simply dropping the nonantic-
ipativity constraints. (iii) Li and Grossmann, 2019b use mixed integer linear or convex
mixed integer nonlinear relaxations based on DE as lower bounding problems, which are
solved via GBD. Cuts from Lagrangean subproblems are added to a Benders master prob-
lem and cutting planes for convexification are added to the Benders subproblems. All
three algorithms (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019b), solve
Ns independent subproblems on X n × Ys at each B&B node n, where X n ∈ IX. While
this implies that the computational work of the bounding operation scales linearly in Ns,
and further, that the subproblems can be solved in parallel, linear scaling of the overall
algorithms with Ns would additionally require that the number of nodes in the outer B&B
search is independent of the number of scenarios. Note, however, that within a family
of problems with variable number of scenarios, the quality of the lower bounds can be
expected to depend on the number of scenarios. For a given tolerance, the number of
nodes visited by the outer B&B search may therefore depend on the number of scenarios,
despite branching only on x. Of course, a similar argument also holds for other algorithms
that are commonly thought to scale linearly with the number of scenarios, e.g., classical
Lagrangian dualization for convex problems. While such algorithms are typically much
more efficient for solving DE compared to general-purpose B&B, and empirically do ex-
hibit linear scaling, they have not been rigorously proven to scale linearly with the number
of scenarios in the general case.

Recently Robertson, Cheng, and Scott, 2020 observed that all three algorithms, ad-
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dressing general nonconvex instances of TSP (Kannan, 2018; Cao and Zavala, 2019; Li
and Grossmann, 2019b) fall into the category of projection-based decomposition algorithms
(PBDAs). Algorithms in this category directly solve TSPX ,Y (which can be considered a
projection of DEX ,Y onto the X space) by considering only the first-stage variables via
second-stage optimal value functions fYs

II,s. Robertson, Cheng, and Scott, 2024 argue that
this approach likely suffers from the cluster effect, a phenomenon of some spatial B&B
algorithms, where a large number of nodes may need to be visited near approximate global
minimizers (Kearfott and Du, 1993; Du and Kearfott, 1994; Wechsung, Schaber, and Bar-
ton, 2014). To avoid this effect, the relaxations of both objective and constraints need
to have a sufficiently high convergence order (Kannan and Barton, 2017b). Note that
throughout the article we refer to convergence order in the sense of Hausdorff, unless
stated otherwise. The convergence order of relaxations typically used in algorithms for
(mixed-integer) nonlinear programs has been analyzed in a series of articles (cf. Bompadre
and Mitsos, 2011; Najman and Mitsos, 2016a; Kannan and Barton, 2017b; Cao, Song,
and Khan, 2019). Robertson, Cheng, and Scott, 2024 show that as a result of performing
search in the X domain only, PBDAs need to construct relaxations of the so-called scenario
value functions :

fX ,Ys
s (x) :=

{
fI(x) + fYs

II,s(x), x ∈ FX ,Ys
s

+∞, otherwise
,

where FX ,Ys
s are the feasible subsets of X in scenario s:

FX ,Ys
s := {x ∈ X | gI(x) ≤ 0,∃ys ∈ Ys : gII,s(x,ys) ≤ 0}.

Adopting the convention for the minimum of an infeasible problem to be infinite, the
weighted sum over the scenario value functions is equivalent to the objective of TSP.
Robertson, Cheng, and Scott, 2024 demonstrate that only branching on x generally causes
fX ,Ys
s to be nonsmooth, which in turn limits the achievable convergence order. In particular,

even the ideal PBDA, which uses the tightest-possible relaxation for each fX ,Ys
s , i.e., the

convex envelope, generally has a convergence order below 1, and only achieves first-order
convergence if all fX ,Ys

s are Lipschitz. On the other hand, they show that this ideal
relaxation has second-order convergence if fX ,Ys

s are twice continuously differentiable, and
furthermore, that the algorithm of Li and Grossmann, 2019b is equivalent to using this ideal
relaxation, if optimal dual multipliers λ∗

s are used. Note that in general, generating convex
envelopes of arbitrary fX ,Ys

s (via optimal dual multipliers or otherwise) is prohibitively
expensive. Furthermore, even for convex f , gI and gII,s, and even in the absence of discrete
variables, the fX ,Ys

s are not guaranteed to be smooth, but rather only lower semi-continuous
(cf., e.g., Theorem 35, Chapter 3 of Birge and Louveaux, 2011). In summary, using PBDAs,
i.e., branching on x only, limits convergence order to below one in general. As a result
Robertson, Cheng, and Scott, 2024 state that PBDAs are expected to suffer from clustering,
and suggest to search for alternative decomposition approaches, rather than for better
relaxations in PBDAs. While a higher convergence order can certainly be advantageous,
we point out that this conclusion might be overly pessimistic, as the occurrence of clustering
is determined by the interplay of both convergence order, and growth order of the objective
and constraint functions (also see Kannan and Barton, 2017b).

Nevertheless, the three aforementioned PBDAs (Kannan, 2018; Cao and Zavala, 2019;
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Li and Grossmann, 2019b) may potentially have further issues. First, for each node n with
domain X n ∈ IX , visited by the outer B&B algorithm searching on X , an inner algorithm
searches on X n × Ys during the solution of the subproblems. The consideration of x in
both levels will therefore result in repeated consideration of the same domain, constitut-
ing a duplication of work. Second, in the general case, where there are nonconvexities in
the second stage (through nonconvex objectives or constraints, or integer variables), the
lower bounding subproblems must at least occasionally be solved globally to guarantee
convergence. In addition, Kannan, 2018 and Cao and Zavala, 2019 also solve their up-
per bounding problems globally, while Li and Grossmann, 2019b do not explicitly state
whether their solutions are local or global. Finally, the nesting of these expensive bounding
routines in an outer B&B algorithm, bears resemblance to early ideas for solving general
mixed-integer nonlinear programming problems, which considered branching on the inte-
ger variables and globally solving a continuous nonconvex problem in each node. However,
such ideas have been abandoned since nested exponential approaches are considered com-
putationally unfavorable (Smith and Pantelides, 1997).

To improve convergence orders of the relaxations, and to avoid duplication of work and
the nesting of expensive search routines, we propose an alternative decomposition algorithm
for TSP. Similar to solving DE via a classical B&B algorithm, we explicitly branch on first-
and second-stage variables, however, we still make use of the structure inherent to TSP
to obtain decomposable bounding subproblems for each scenario. We call our proposed
algorithm MUSE-BB, as it combines classical scenario decomposition with multisection
(Karmakar, Mahato, and Bhunia, 2009) in a B&B algorithm. Efficient branching on
multiple instances of a particular second-stage variable is made possible by the fact that
bounding subproblems for each scenario are independent of second-stage variable instances
from other scenarios: While branching a node on Ns second-stage variables results in 2Ns

child nodes, only 2Ns independent subproblems need to be solved to update their lower
bounds. Each child node can then be generated by combining bounds and variable domains
from Ns out of the 2Ns independent subproblems. To limit memory requirements as well
as the number of generated child nodes with poor lower bounds, we filter the Ns candidate
bisections based on strong-branching scores, and allow for selecting a further subset of
these bisections, ensuring an upper limit on the total number of generated child nodes.

Like classical B&B algorithms, MUSE-BB searches the full variable space. Thus in the
worst-case, its runtime is expected to be exponential in Ns. However, the combination of
decomposition with multisection allows for a more efficient exploration of the search space
than with classical full-space algorithms. Moreover, we analyze the convergence order of
the lower bounding scheme used in MUSE-BB. We show that while this convergence order
is generally lower than in classical B&B algorithms, it is at least as high as in PBDAs,
and can be strictly larger when the scenario value functions fX ,Ys

s are not Lipschitz. In
particular we show that the lower bounding scheme of MUSE-BB is (at least) first-order
convergent if all functions and convex relaxations are Lipschitz. While our lower bounding
scheme is generally not second-order convergent, we discuss a possible extension of MUSE-
BB, whose lower bounding scheme achieves second-order convergence at unconstrained
minimizers by dualizing nonanticipativity constraints instead of dropping them. Overall,
the results indicate that MUSE-BB and its extension at least partially avoid issues with
the cluster effect.
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4.2. Decomposable Bounding Subproblems for TSP

In this section we review how bounds on TSP can be obtained from separate subproblems
for each scenario. Since this approach trivially enables both parallelization and linear
scaling of the computational work for bounding with Ns, its variants are the basis of
many existing decomposition algorithms, as well as for MUSE-BB. The principal idea for
decomposable bounding routines is that first-stage variables are complicating, because they
appear in the objectives and constraints of all scenarios. Therefore, the problem can be
decoupled by scenario, by either introducing independent copies of x, or fixing its value.
As shown in the following, these two cases result in subproblems which respectively provide
lower and upper bounds on the optimal objective value fX ,Y of TSPX ,Y .

An equivalent representation of DEX ,Y and thus TSPX ,Y is the lifting obtained by in-
troducing a copy xs of x for each scenario s and enforcing the equality of these copies,
resulting in the following nonanticipativity problem.

fX ,Y = min
xs∈X
y∈Y

∑

s∈S

wsfs(xs,ys)

s. t.
∑

s∈S

Hsxs = 0

gI(xs) ≤ 0 ∀s ∈ S
gII,s(xs,ys) ≤ 0 ∀s ∈ S.

DEX ,Y
NAC

In DENAC, the first set of constraints enforces equality of all xs, thus, the coupling is
moved to these so called nonanticipativity constraints (NACs), whereHs are appropriately
shaped, sparse matrices.

For simplicity, we assume the following, specific form of the NACs, also used, e.g., in Li
and Grossmann, 2019b:

x1 − xs = 0 ∀s ∈ S\{1}. (NACs)

Due to the linearity of the NACs, dualizing them with Ns − 1 multiplier vectors πs ∈
RNx , s ∈ S\{1} removes the coupling, as it allows to define the vector λ := (λ1, · · · ,λNs),
consisting of scenario-specific multiplier subvectors

λ1 := −
∑

s∈S\{1}

πs/ws,

λs := πs/ws s ∈ S\{1}.
(λ)

Note that inherently, ∑

s∈S

wsλs = 0. (4.1)

The resulting dualization gives rise to the Lagrangian relaxation

fX ,Y
LR (λ) :=min

xs∈X
y∈Y

∑

s∈S

ws

[
fs(xs,ys) + λ

⊺
sxs

]

s. t. gI(xs) ≤ 0 ∀s ∈ S
gII,s(xs,ys) ≤ 0 ∀s ∈ S.

LRX ,Y

67



4. MUSE-BB: A Decomposition Algorithm for Nonconvex Two-Stage Problems using
Strong Multisection Branching

By weak duality, the value fX ,Y
LR (λ) provides a lower bound to fX ,Y for any λ satisfying

Eq. (4.1) (cf. e.g., Dür and Horst, 1997). Furthermore, this bound can be obtained by
solving the Ns separate Lagrangian subproblems

fX ,Ys

LSP,s(λs) :=min
xs∈X
ys∈Ys

fs(xs,ys) + λ
⊺
sxs

s. t. gI(xs) ≤ 0

gII,s(xs,ys) ≤ 0,

LSPX ,Ys
s

and calculating the Lagrangian relaxation based lower bound as

fX ,Y
LR (λ) :=

∑

s∈S

ws f
X ,Ys

LSP,s(λs) ≤ fX ,Y . (LRLB)

The best such bound is obtained by solving the Lagrangian dual, which can be written as

fX ,Y
LR (λ∗) := max

λ∈RNsNx∑
s∈S λs=0

fX ,Ys

LSP,s(λs). LX ,Y

It can be shown that if the sets FX ,Ys
s have a nonempty intersection, the resulting bound

corresponds to the minimum of the weighted sum of convex envelopes of scenario value
functions, (Robertson, Cheng, and Scott, 2024), i.e:

fX ,Y
LR (λ∗) = min

x∈X

∑

s∈S

ws convf
X ,Ys
s (x).

In that sense fX ,Y
LR (λ∗) constitutes the best bound obtainable via convex relaxation in the

framework of scenario decomposition. Unfortunately, obtaining optimal dual multipliers
λ∗ is both computationally expensive and numerically challenging (Oliveira et al., 2013).
We therefore only consider the implications of updating the dual multipliers in Section 4.5,
whereas in the remainder of this chapter, we focus on the simpler case, also considered by
Cao and Zavala, 2019, where all multipliers are fixed to zero. In that case, the scenario
relaxation of DEX ,Y consists of Ns scenario problems of the form

fX ,Ys

SP,s := min
xs∈X
ys∈Ys

fs(xs,ys)

s. t. gI(xs) ≤ 0

gII,s(xs,ys) ≤ 0.

SPX ,Ys
s

In Section 4.4.1 we will introduce further subproblems, obtained from additional relax-
ations of SPs. To distinguish the different optimal objective values, we use corresponding
subscripts. The globally optimal objective values fX ,Ys

SP,s of problems SPX ,Ys
s can be used to

obtain a lower bound fX ,Y
SP on the optimal objective value fX ,Y of DEX ,Y , i.e.,

fX ,Y
SP :=

∑

s∈S

ws f
X ,Ys

SP,s ≤ fX ,Y . (SPLB)

While the resulting first-stage solutions obtained for each scenario will generally differ from
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each other, the bound can be made arbitrarily tight by exhaustive branching on x. PBDAs
like Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019b use this fact: while
they branch on xs and ys during the global solution of the subproblems SPs, the outer
B&B search only requires branching on x to ensure convergence. As shown by Robertson,
Cheng, and Scott, 2024, however, the convergence order of such lower bounding schemes
is inherently limited due to the nonsmoothness of fYs

II,s(x), incurred by projection, also cf.
TSP and Section 4.1.

Upper bounds on fX ,Y can generally be obtained by evaluating any feasible point. Fixing
x to an arbitrary point x̃ ∈ X that is feasible with respect to gI, gives rise to Ns instances
of RPs. If each of these problems has at least one feasible point ỹs, the function values
fII,s(x̃, ỹs) provide an upper bound on fYs

II,s(x̃), and thus the upper bounding function f ,
defined as

f (x̃, ỹ) := fI(x̃) +
∑

s∈S

ws fII,s(x̃, ỹs) ≥ fX ,Y (UB)

provides an upper bound on the optimal objective value fX ,Y . Thus, given a candidate
for x̃, values for ỹs can be obtained by local or global solutions of RPYs

s (x̃). Candidates
proposed in the literature are commonly based on the individual solutions x∗

s from the lower
bounding subproblems. A common candidate is the (ws-weighted) average x̃ = xavg =∑

s∈S ws x
∗
s (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019b). However,

since the feasible set of TSPX ,Y is generally nonconvex, this point may be infeasible. An
alternative candidate that is at least guaranteed to be feasible with respect to gI, and
gII,srep , is x̃ = x∗

srep , such that srep is a representative scenario for which x∗
srep is closest to

xavg with respect to the relative Euclidean distance, i.e,

srep ∈ argmin
s∈S

Nx∑

i=1

(
xavg
i − x∗

s,i

xi − xi

)2

, (srep)

where xi, and xi denote the original lower and upper bounds of xi (Li and Grossmann,
2019b). Note that while x∗

srep is trivially feasible in srep, it is generally not in other scenarios.
Furthermore, if a candidate x∗

srep does happen to be feasible, there is no guarantee that
local solutions to the corresponding instances of RPs are found.

As with any spatial B&B method, in the general nonconvex case, a guarantee to find
a feasible point allowing for termination is only given if the feasible set of DEX ,Y has a
nonempty interior at a global minimizer, also compare with the analysis for single-stage
programs in Kirst, Stein, and Steuermann, 2015. Furthermore, Example 3.1 in Kirst,
Stein, and Steuermann, 2015, where upper bounds are obtained simply from feasible lower
bounding solutions, shows that even when the interior is nonempty, certain combinations
of problem instances, branching, and node selection rules can lead to sequences of lower
bounding solutions that never include a feasible point. In such cases, an adaption of the
tested candidates, such as the approach proposed by Kirst, Stein, and Steuermann, 2015
may be necessary. Unfortunately such approaches may not address the more general situ-
ation of an empty interior, e.g., due to the presence of equality constraints, although there
are approaches that produce upper bounds without guaranteeing to find feasible points
(Füllner, Kirst, and Stein, 2020). On the other hand, feasible, and even (approximately)
globally optimal solutions can often be produced relatively easily for many applications.
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Because of this, we neither implement the methods presented in Kirst, Stein, and Steuer-
mann, 2015 in MUSE-BB, nor analyze this issue further. Instead we follow the common
approach to perform upper bounding via local solutions from candidate points, and con-
centrate this work on the issues pertaining to lower bounding.

In summary, by solving instances of the separable subproblems SPX ,Ys
s and RPYs

s (x̃), we
can bound the desired optimal solution value of the original problem DEX ,Y from below
and above:

fX ,Y
SP ≤ fX ,Y ≤ f (x̃, ỹ).

Assuming that arbitrarily good feasible points are found during the successive partitioning
of the variable domains, the bounds can be tightened until some satisfactory accuracy
εf > 0 is reached. The upper bound f then serves as an ε-optimal solution to problem
DEX ,Y . In the following section we present a special branching scheme that efficiently
combines the decomposable subproblems with partitioning of both X and Y .

4.3. Multisection Branching for Decomposable
Bounding Schemes

To avoid several issues associated with the nested branching of PBDAs (cf. Section 4.1), we
propose to combine decomposable bounding schemes with explicit branching of both first-
and second-stage variables. As argued below, standard branching of individual variables
would eliminate some of the benefits of decomposable bounding schemes. We therefore
propose a special branching scheme that either partitions a single first-stage variable or
multiple second-stage variable instances in each iteration. To refer to the partition elements
containing the lower/upper part of a branched variable domain, we say the respective
variable was branched down/up.

We first present the concept of multisection as used in the MUSE-BB in Section 4.3.1.
Following this, in Section 4.3.2 we outline an alternative idea that may be seen as a hybrid
between the variant presented in Section 4.3.1, and existing PBDAs.

4.3.1. Multisection in MUSE-BB

In a B&B algorithm for TSP using separable lower and upper bounding problems, branch-
ing on elements of x and y has different implications for the resulting nodes: each node n
is characterized by the domains X n ∈ IX and Yn ∈ IY , where Yn :=×s∈S Yn

s ; Yn
s ∈ IYs.

To obtain a lower bound on n, variants of the Ns subproblems SPXn,Yn
s

s are solved. While
branching on an element of x bisects X n into two subdomains, e.g., X d and X u, which
generally results in changed bound contributions from all subproblems (compare cases a)
and b in Fig. 4.1), branching on an element of y, e.g., ys,i, only bisects the second-stage
variable domain Yn

s of the associated scenario s (compare cases b) and c in Fig. 4.1).
Thus, if we were to only branch on ys,i, each of the two resulting child nodes would have
Ns − 1 unchanged subproblems with respect to n. An example for this situation is given
by the case c) of Fig. 4.1. In the parallel setting, where at least two subproblems can
be solved simultaneously, this implies that standard branching on second-stage variables
leaves some processing capacity unused. In other words, we could only exploit the par-
allelizable solution of subproblems when processing nodes obtained from branching on
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x

y1

y2

x

y1

x

y2

a) b) c) d) e) f) g)

Fig. 4.1. Implications of branching in scenario decomposition. We consider nodes from solving
an instance of DE with Nx = Ny = 1, and Ns = 2. In this case, each node corresponds to a 3D
domain (bottom) and updating the lower bounds requires solving two bounding subproblems on
a 2D domain (top). These subproblems can be considered projections on the X ×Y1 and X ×Y2
faces of the node domain (dark and light blue colors, respectively). b): Branching the node from
a) on x affects both subproblem domains. c): Branching the node from b) on a single instance
of y, here y1, only affects the associated subproblem domain, while the subproblem for the second
scenario remains unchanged. d) through g): Alternatively to c), branching on all instances of
y simultaneously results in four nodes instead of two. However, out of the eight subproblems
associated with these nodes only four are distinct. When processing two complementary nodes,
e.g., node d) (where both y1 and y2 are branched down), and node e) (where both y1 and y2
are branched up), all distinct subproblems are solved. Thus, explicitly processing the remaining
nodes, i.e., f) and g) in our example, is unnecessary. Instead, bounds for these nodes can be
generated by combining the results from the subproblems solved for d) and e).

first-stage variables.
To enable parallelism when processing nodes produced from second-stage branching, we

can branch on all Ns instances of a particular second-stage variable, instead of a single
one. Note that such a multisection is equivalent to Ns sequential bisections, i.e., it splits
the original node into 2Ns child nodes instead of two, also see the cases d) through g)
of Fig. 4.1. Multisection has previously been used in different B&B algorithms for gen-
eral nonlinear problems. Mostly this was in the form of branching the domain of a single
variable at multiple points (also called “multisplitting”) (Csallner, Csendes, and Markót,
2000; Markót, Csendes, and Csallner, 2000; Kazazakis, 2017), but there are also exam-
ples of using multisection in the present sense, i.e., branching once on multiple variables
(Karmakar, Mahato, and Bhunia, 2009). While these works showed that multisplitting and
multisection can result in better computational performance than bisection, the considered
B&B algorithms used standard bounding procedures and thus needed to process all of the
resulting nodes individually. In contrast, when solving TSP, the use of separable bounding
subproblems such as SPn

s allows us to generate bounds for the exponential number of nodes
resulting from multisection without explicitly processing each one individually: for each
scenario s, branching on the associated second-stage variable instance bisects the domain
Yn

s into two subdomains, Yd
s , and Yu

s . Combining these new domains with the unchanged
domain X n therefore results in two different subproblems (i.e., SPXn,Yd

s
s , and SPXn,Yu

s
s ) per
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scenario, i.e., multisection of second-stage variables only results in 2Ns distinct subprob-
lems. Each child node simply corresponds to one of the possible combinations of selecting
one of the two subproblems for each scenario. This means that to update lower bounds
on all 2Ns child nodes, only the 2Ns distinct subproblems need to be solved. Note that
this can be achieved by processing any two of the 2Ns nodes that contain complementary
subproblems. One such choice consists of the pair of nodes resulting from branching all in-
stances of the selected second-stage variable down, or up. In the following we respectively
call these two nodes the lower and upper sibling nodes.

In summary, if a first-stage variable is selected for branching, we perform standard
bisection resulting in two child nodes, whereas if a second-stage variable is selected, we
instead perform multisection branching of all associated variable instances for different
scenarios, resulting in 2Ns nodes. In both cases, only two nodes need to be processed
after branching a given node n: after first-stage branching, these two nodes are simply
the child nodes with domains (X d,Yn) and (X u,Yn). After second-stage branching, we
process the sibling nodes, with domains (X n,Yd) and (X n,Yu), where Yd :=×s∈S Yd

s and
Yu :=×s∈S Yu

s . While theoretically one could generate 2Ns nodes after each second-stage
branching, this poses several issues in an actual implementation. To address this, it is
possible to filter the candidate bisections contributing to the final multisection, i.e., to
keep only a “promising” subset and thus produce a small number of high quality nodes.
The process we use for this will be presented in Section 4.4.4.

We point out that while the proposed multisection procedure may appear to avoid a
computational cost for node processing that is exponential in Ns, this is only true at the
level of an individual iteration. Whereas the cost for generating the child nodes from
multisection branching is indeed linear in Ns, their number, and thus the overall computa-
tional cost for further processing is still exponential in Ns. In the following, we outline an
alternative use of our multisection idea that may avoid this exponential scaling but bears
resemblance to PBDAs. While we do not pursue this idea further in the present work, we
believe it to be fruitful for future research.

4.3.2. Projected Multisection

The only conceivable path to avoid exponential scaling with Ns in the context of
multisection-based second-stage branching is to avoid the explicit generation of the result-
ing child nodes. One approach for this is to maintain information related to second-stage
variable domains and objective bounds at the subproblem level, without combining this
information from different scenarios into individual B&B nodes. One can still compute a
lower bound related to the first-stage domain by combining the lowest lower bounds from
each scenario. Furthermore this bound can be refined by further partitioning of the re-
sulting subproblem domains and organizing the resulting subproblem nodes in a separate
B&B tree for each scenario. Similar to PBDAs, this results in ‘nested’ B&B trees: The
outer tree contains nodes based on first-stage domains, each of which maintains a state
of progress for the search in the second-stage domains and associated lower bounds in Ns

separate second-stage trees. In contrast to existing PBDAs, branching of first- and second-
stage variables is carried out exclusively in the outer and inner trees, respectively. This
not only avoids duplication of first-stage variables, but also the exhaustive exploration of
the second-stage trees in each iteration, since their state is passed on to child nodes from
branching on first-stage variables in the outer tree. The number of nodes in the outer
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tree is exponential in Nx. In the worst case, each such outer node is associated to Ns full
second-stage trees, the size of which is exponential in Ny. Thus a total of Nsa

NxbNy nodes
may need to be processed, i.e., it appears that this approach would avoid the exponential
scaling with Ns and indeed scale linearly with Ns.

While this linear scaling appears promising, avoiding the generation of nodes from ex-
plicit combinations of subproblem data results in lower bounds based on the lowest lower
bounds from the second-stage trees. Since this may be seen as a ‘projection’ of bounding
information, it is unclear whether this approach can be considered a full-space or rather a
projected search. We suspect the convergence order of this approach to be limited as with
PBDAs, and therefore focus the remainder of this work on the previously presented idea.

4.4. Proposed Algorithm

We now present the spatial multisection B&B algorithm MUSE-BB for the solution of
TSPX ,Y . Algorithm 1 presents a formal statement of MUSE-BB; the relevant subroutines
will be presented in the following. For conciseness, we assume throughout this section that
given a node n, we have access to its domains X n and Yn, and lower bound fn, as well as
the domains X n

s and Yn
s , and lower bounds fn

s
of the corresponding subproblems. Under

this assumption, it suffices to provide nodes to the subroutines instead of all associated
data. If a node n can be fathomed by infeasibility, we set its lower bound to ∞.

On a high level, MUSE-BB only differs from a standard B&B algorithm in the use of
different kinds of iterations for nodes obtained from branching on first- and second-stage
variables. In both cases, the bounds of unprocessed nodes are updated, and the nodes are
either fathomed (by infeasibility or value dominance, i.e., fn ≥ f ) or branched.

Each iteration begins with the selection of a node n from a list of nodes N (Algorithm 1
in Algorithm 1). The selected node is either an unprocessed node (the root node or one
of the two child nodes obtained from standard bisection of a first-stage variable) which is
processed via a “normal iteration”, similar as in a standard B&B algorithm (Algorithms 1–
1), or it is a placeholder for two unprocessed sibling nodes that will be addressed via a
special “sibling iteration” (Algorithms 1–1). In the latter case, n is the parent of the sibling
nodes that was processed and multisected, (i.e., branched on Ns second-stage variables as
presented in Section 4.3) in a previous iteration. In that case, there is an entry in Msib,
mapping n to the sibling nodes d and u (Algorithm 1), which are processed together, using
some of the bound and domain information from their parent, n (Algorithm 1). During
this step we also search for an upper bound within the domain of the parent node. If
possible, we use such a bound to update the best known upper bound (Algorithm 1) and if
this does not allow the parent node to be fathomed (Algorithm 1), we use the results from
the sibling iteration to generate processed child nodes whose number is exponential in the
number of branched variables. However, instead of using all Ns bisections of the original
multisection, we filter them, selecting only a subset for the final multisection (Algorithm 1,
also see Section 4.4.4). We only consider branching via partitioning of the original domain
through hyperplanes, orthogonal to the branched variable dimensions. Because of this
and the related concept of an orthant, i.e., the intersection of k mutually orthogonal half-
spaces in k-dimensional Euclidean space, we refer to the nodes resulting from the filtered
multisection as “orthant nodes” in the following. The mapM and the list L, returned from
the filtered multisection, determine the subproblem data (from n, d, or u) to be used for a
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Algorithm 1: MUSE-BB
Input : Instance of TSPX ,Y , tolerance εf , effective bisection limit kmax,

strong-branching threshold τ
Output: Incumbent point (x†, y†), incumbent objective value f , certificate f

1 n← X × Y; fn ← −∞;N ← {n}; f ←∞;Msib ← empty Map;
2 while N ̸= ∅ do // there are nodes to be processed
3 n← select a node and remove from N ;
4 if n ∈Msib then // do a “sibling iteration”

// n is the previously processed parent node, re-entered into N as a
placeholder for the sibling nodes

5 (d, u)←Msib[n]; // recover the sibling nodes to be processed
// see Subroutine 3 in Section 4.4.3

6 (fn, f
n
,xn,yn)← processSiblings(n, d, u);

7 if f
n
< f then (x†,y†, f )← (xn,yn, f

n
); // update best upper bound

8 if fn < f then
// see Subroutine 4 in Section 4.4.4

9 (M,L)← filteredMultiSection(n, d, u);
10 foreach i ∈ {0, · · · , 2|L| − 1} do

// see Subroutine 5 in Section 4.4.4
11 o← generateOrthantNode(i, n, d, u,M,L);

// see Subroutine 1 in Section 4.4.3
12 if fo < f then branchNode(o);
13 end
14 end
15 else // do a “normal iteration”
16 (fn, f

n
,xn,yn)← processNode(n) ; // see Subroutine 2 in Section 4.4.3

17 if f
n
< f then (x†,y†, f )← (xn,yn, f

n
); // update best upper bound

18 if fn < f then branchNode(n); // see Subroutine 1 in Section 4.4.3
19 end
20 f ← minn∈N fn; // update lowest lower bound
21 if f + εf > f then return (x†, y†, f , f);
22 end
23 return (x†, y†, f , f);

particular orthant node o. The number k of orthant nodes to be generated is determined
by the length of L (Algorithm 1). As the orthant nodes are already in a processed state,
we immediately branch them, provided they cannot be fathomed (Algorithm 1).

In the course of the algorithm, unprocessed nodes are either fathomed or branched,
until the lower and upper bounds converge to εf optimality (Algorithm 1) or the list N
is exhausted (Algorithm 1, possibly indicating infeasibility of TSPX ,Y). On termination,
MUSE-BB either provides an incumbent (x†, y†), with an associated objective value f =
f(x†,y†) that is at most εf larger than the global lower bound f , or a certificate of
infeasibility (f =∞).

We implement MUSE-BB as an extension of our deterministic global optimization solver
and open-source project MAiNGO (Bongartz et al., 2018). In Sections 4.4.1–4.4.2 we detail
how lower bounding and range reduction schemes available in MAiNGO are adapted to
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subproblems from Section 4.2 to obtain the decomposable bounding schemes used in the
processing subroutines. Since node processing comprises the main computational work,
the respective subroutines are parallelized in our implementation. The main theoretical
results we present in Section 4.5 do not depend on the presented bounding schemes, i.e.,
alternative ones may be employed analogously. Next, we discuss the branching of first-
and second-stage variables (Subroutine 1) via standard bisection and the multisection from
Section 4.3.1, and detail how the resulting nodes are respectively processed in “normal”
and “sibling iterations” (Subroutines 2 and 3) in Section 4.4.3. Finally, we present the
subroutines for the filtered multisection and orthant node generation in Section 4.4.4.

4.4.1. Lower and Upper Bounding

Our deterministic global solver MAiNGO (Bongartz et al., 2018) employs a general-purpose
B&B algorithm with lower bounding problems obtained via McCormick-based relaxation
techniques (McCormick, 1976; Tsoukalas and Mitsos, 2014; Villanueva, 2015; Chachuat et
al., 2015; Najman and Mitsos, 2016a; Najman, Bongartz, and Mitsos, 2021). When solving
TSP via equivalence to DE, we generate and solve such relaxations based on DEXn,Yn

for
each node n. In the following, we abbreviate DEXn,Yn

as DEn.

PBDAs like Cao and Zavala, 2019, on the other hand, only branch on the first-stage
variables and solve Ns subproblems SPXn,Ys

s (or variants thereof) in each node. To ensure
convergence, the three reviewed algorithms (Kannan, 2018; Cao and Zavala, 2019; Li and
Grossmann, 2019b) at least occasionally solve these subproblems to global optimality. This
generally also requires branching on xs and ys, albeit not in the outer algorithm.

In MUSE-BB we also generate lower bounds based on SPs, however, we partition both
the X and Y domains in the same B&B tree and thus consider subproblems based on
SPXn,Yn

s
s (abbreviated as SPn

s in the following) instead of SPXn,Ys
s . In contrast to PBDAs,

the explicit partitioning of the Y domain, renders global solution of subproblems unneces-
sary for convergence. We therefore further relax the subproblems SPn

s , resulting in cheaper
lower bounding problems. In particular, we make use of the available relaxation techniques
in MAiNGO to construct the following McCormick based convex relaxations of SPn

s :

fn
MC,s := min

xs∈Xn

ys∈Yn
s

f cv,n
s (xs,ys)

s. t. gcv,n
I (xs) ≤ 0

gcv,n
II,s (xs,ys) ≤ 0,

MCn
s

where f cv,n
s , gcv,n

I , and gcv,n
II,s are the McCormick based convex relaxations of the functions

fs, gI, and gII,s, on X n ×Yn
s , respectively (McCormick, 1976; Tsoukalas and Mitsos, 2014;

Najman, Bongartz, and Mitsos, 2021). These problems are further linearized based on
subtangents at one or more linearization points (cf. Najman and Mitsos, 2019). By default
(and in all experiments in Section 4.6) we only linearize at the midpoint of the node domain.
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The resulting lower bounding problems take the form:

fn
LP,s := min

xs∈Xn

ys∈Yn
s

v∈R

v

s. t. subn
fs(xs,ys) ≤ v

subn
gI
(xs) ≤ 0

subn
gII,s

(xs,ys) ≤ 0

LPn
s

Here, subn
ϕ are subtangents of the convex relaxation of the function ϕ at the center of the

domain of node n, i.e.,

subn
ϕ(•) := ϕcv,n(m•) + ∇̌ϕcv,n(m•)

⊺(• −m•) (subtangent)

where the superscript ‘cv,n’ denotes the corresponding convex relaxation, m• denotes the
midpoint of either X n or X n × Yn

s (depending on the passed variables), and ∇̌ denotes
a subgradient, i.e., ∇̌ϕcv,n(m•) ∈ ∂ϕcv,n(m•), where ∂ϕcv,n(m•) is the subdifferential of
ϕcv,n at m•. Since fn

LP,s are valid lower bounds on the globally optimal objective values
f
Xn,Yn

s
SP,s of SPn

s , they provide a valid lower bound for node n, i.e:

fn
LP :=

∑

s∈S

ws f
n
LP,s ≤ fn

SP ≤ fXn,Yn

. (LPLBn)

Evidently this bound is generally weaker than the one obtained via global solution (see
SPLB), but it is also much cheaper to compute.

For upper bounding, we solve instances of the form RPYn
s

s (x̃n) (abbreviated as RPn
s in

the following), instead of RPYs
s (x̃n) as in PBDAs. Furthermore, in contrast to Kannan,

2018 and Cao and Zavala, 2019 who solve their upper bounding problems globally, we
again aim to reduce computational cost by solving RPn

s locally. We obtain x̃n from the
lower bounding solution corresponding to srep (see Section 4.2). If the corresponding local
solutions of RPn

s result in a feasible ỹn = (ỹ1, · · · , ỹNs), the corresponding objective values
fII,s(x̃

n, ỹn
s ) ≥ f

Yn
s

II,s(x̃
n) can be aggregated to a globally valid upper bound f

n, via the
upper bounding function (UB), i.e:

f
n
:= f (x̃n, ỹn) ≥ fX ,Y (UBn)

If fn is smaller than the previously best upper bound f , the incumbent (x†, y†) and f
are updated with (x̃n, ỹn) and f

n, respectively.

4.4.2. Range Reduction

In this section we discuss decomposable range reduction routines for tightening variable
bounds in B&B algorithms for TSP. We first consider two general points, namely, how the
NACs can enable fathoming by infeasibility after application of these routines, and how
dominance rules give rise to scenario-specific objective cuts. We then present the specific
routines employed in MUSE-BB. While range reduction is not necessary from a theoretical
standpoint, it can improve the efficiency of the algorithm by reducing the search domain.
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Based on decomposable bounding problems such as SPn
s or LPn

s , one can obtain de-
composable range reduction routines by applying reduction techniques to the subproblems
instead of the full problem DEn. Standard techniques for feasibility-based reductions can
be applied. As will be discussed in the following, however, optimality-based reductions
require modified upper bounds instead of objective values of points, feasible in the sub-
problems. In both cases, the independence of subproblems allows for parallel updates of
the bounds for the variables (xs,ys) of each scenario s. After each round of range reduc-
tion, the NACs can be used to tighten the first-stage variable bounds. More explicitly, if
X n

s denotes the tightened first-stage variable domain for node n and scenario s after any
of the presented decomposable range reduction routines, a valid reduction of the overall
domain X n is evidently given by the intersection X n′:

X n′ :=
⋂

s∈S

X n
s (X n

s aggregation)

In particular, if X n′ is empty, node n can be fathomed by infeasibility.
If an upper bound f is known, dominance rules can be used to derive objective cuts

for range reduction routines. Since in a decomposable bounding scheme objective values
obtainable in any particular node n are limited from below by the local lower bound fn

SP,
all nodes for which fn

SP > f holds can be fathomed by dominance. To derive a scenario-
specific cutoff based on a given value of f , we rewrite the dominance condition in terms of
scenario-specific lower bounds. Using (SPLB), a node is dominated if

∑

s∈S

ws f
Xn,Yn

s
SP,s > f .

Note that replacing any f
Xn,Yn

s
SP,s by a smaller value (say fn

SP,s
) results in an even stronger

condition, that implies the above. Thus for any particular scenario s, the node is dominated
if

fn

SP,s
>

f − ∑
s′∈S\{s}

ws′ f
n

SP,s′

ws

=: f
n

s (s-domination)

The above approach is a slight generalization to the scenario-specific upper bounds pro-
posed by Li and Li, 2015 for the ‘primal problems’ in their decomposition method. In
particular, any valid lower bounds fn

SP,s
can be used. In MUSE-BB we use the maximum

of fn
LP,s and an interval arithmetic based lower bound based on the objective of SPn

s .
MAiNGO implements three range reduction techniques: constraint propagation (CP, cf.

e.g. Schichl and Neumaier, 2005), optimization-based bounds tightening (OBBT, cf. e.g.
Gleixner et al., 2016), duality-based bounds tightening and probing (both referred to as
DBBT in the following, cf. e.g. Ryoo and Sahinidis, 1995).

CP essentially refers to the inverse propagation of feasible intervals of the constraint
values, i.e., (−∞, 0] in our case, to the variables (Schichl and Neumaier, 2005). This allows
to determine conservative variable ranges for which the constraints can be fulfilled and thus
enables domain reduction by intersecting the variable domains with these valid ranges.
Thus, applying CP to the subproblems SPn

s instead of DEn directly gives a decomposable
routine.

The OBBT procedure consists of minimizing or maximizing a selected variable v subject
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to the (relaxed) constraints of the original problem (Gleixner et al., 2016). In our case,
we consider scenario-specific OBBT-problems, based on the lower bounding subproblems
LPn

s , i.e., they take the form:

v\v =min \max
xs∈Xn

ys∈Yn
s

v

s. t. subn
fs(xs,ys) ≤ f

n

s

subn
gI
(xs) ≤ 0

subn
gII,s

(xs,ys) ≤ 0

OBBTn
s,v

While no finite upper bound f is known, the first constraint is dropped. For each iteration,
we initially consider all variables for OBBT, and apply a variant of the trivial filtering
heuristic from Gleixner et al., 2016 after each pass. Similar OBBT based problems have
been proposed, e.g., by Li and Li, 2016; Kannan, 2018; Cao and Zavala, 2019 for their
respective algorithms.

DBBT uses objective bounds and duality information from the node subproblems that
are typically solved in spatial B&B algorithms (Ryoo and Sahinidis, 1995) to tighten
variable domains. In our case, if all subproblems LPn

s are feasible, the solutions (x̃s, ỹs),
associated reduced cost multipliers (rx,s, ry,s), and lower bounds fn

LP,s are available. If
in addition a finite upper bound f is known, we can compute scenario-specific f

n

s values
from s-domination and perform DBBT. For variables v for which the solution value v∗

corresponds to the respective lower or upper bound, the complementary bound may be
tightened:

if v∗ = v, set v = min

(
v, v +

f
n

s − fn
LP,s

r

)

if v∗ = v, set v = max

(
v, v +

f
n

s − fn
LP,s

r

) (DBBT)

where r is the corresponding entry in rx,s or ry,s, which must be positive in the first case
and negative in the second one. For variables for which the solution lies between the
bounds, two probing variants of LPn

s can be solved: in these probing LPs, the variable is
temporarily fixed to one of its bounds and DBBT is applied based on the new reduced
cost multipliers and optimal objective values. As probing is relatively expensive, it is
deactivated by default (and in all experiments of Section 4.6).

Since each subproblem contains only part of the information of DEn, the presented
range-reduction routines will generally be less effective than their full space counterparts.
Thus, the use of parallelized range reduction needs to result in sufficiently large reductions
of wall time to warrant the looser variable bounds. In comparison to the solution time of a
lower bounding problem, CP is computationally very cheap, which makes its decomposable
variant less appealing. Nevertheless it must be used when processing sibling nodes obtained
from multisection branching (cf. Section 4.3), as the resulting domains are needed for the
generation of orthant nodes, also see Subroutine 5 in Section 4.4. OBBT on the other
hand is a relatively expensive procedure. This typically causes OBBT to dominate the
computational work done per iteration and thus makes a decomposable OBBT variant
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Subroutine 1: branchNode(n)
1 v ← select a variable from (x, y) maximizing relative domain width × branching priority;
2 if v ∈

{
xi, | i ∈ {1, · · · , Nx}

}
then // v corresponds to some xi

3 (d, u)← bisect n along the domain of v;
4 N ← N ∪ {d, u};
5 else // v corresponds to ys′,i for some s′

6 i← index for which v = ys′,i;
7 d← n; u← n; // Initialize d and u as copies of n
8 foreach s ∈ S do // branch d/u down/up on all instances of v
9 v ← ys,i;

10 d← lower half of bisecting d along the domain of v;
11 u← upper half of bisecting u along the domain of v;
12 end

// Since n, d, and u all share the same lower bound, the former
is re-entered into N and the latter two are stored in Msib

13 N ← N ∪ {n};
14 Msib[n]← (d, u);
15 end

more appealing. Finally, the use of decomposable lower bounding problems inherently
requires the use of decomposable DBBT, as duality information necessary for a full space
variant is not available.

4.4.3. Branching and Node Processing

In this section, we present the branching and processing routines of Algorithm 1. In
Subroutine 1, we first present how processed nodes are branched, as this determines the
kind of iteration that will be performed for the child nodes. Following this, we present
the processing of nodes obtained from first- and second-stage branching in Subroutines 2
and 3.

Any processed node n that is not fathomed is branched on either a first-stage variable
or on multiple second-stage variable instances, as outlined in Subroutine 1. For this, we
select some first- or second-stage variable v, maximizing the product of relative domain
width (i.e., current over original interval width) and branching priority (assumed to be
nonzero), to ensure exhaustive partitioning. If v is an element of x, i.e., v = xi, we bisect
the associated domain X n

i = [xi, xi] at some branching point xb
i , and add the two resulting

nodes with the lower and upper part of the original domain (i.e., [xi, x
b
i ] and [xb

i , xi]) to the
list of open nodes (Subroutine 1 in Subroutine 1). In MUSE-BB, xb

i always corresponds
to the center of the interval, i.e., 0.5 (xi + xi).

If instead, v is an element of y, i.e., v = ys′,i, for some s′, we perform the proposed
multisection branching. As pointed out in Section 4.3, the child nodes of this multisection
can subsequently be generated from the results of two complementary nodes. Therefore
we only need to generate the lower and upper sibling node at this point. Taking the
example from Fig. 4.1: multisecting a parent node p, corresponding to node b) in Fig. 4.1,
results in sibling nodes d, and u, corresponding to nodes d), and e), respectively, which
we create by branching all Ns instances of the selected second-stage variable ys,i down /
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Subroutine 2: processNode(n)
1 do CP based on DEn; fathom by dominance or infeasibility;
2 do OBBT based on LPn

s ; fathom by dominance; apply X n
s aggregation, fathom by

infeasibility ;
3 solve LPn

s and set fn
s
← fn

LP,s ∀s ∈ S, use LPLBn, set fn ← fn
LP, fathom by dominance or

infeasibility ;
4 x̃n ← solution of LPn

s with s = srep;
5 (ỹns , f

n
s )← solution and objective value of RPn

s ∀s ∈ S, update (ỹn, f
n
) via UBn, fathom

by dominance ;
6 do DBBT based on LPn

s , fathom by dominance;
7 return (fn, f

n
, x̃n, ỹn)

up (Subroutines 1–1).
For a practical algorithm, we need to limit the number of nodes that will be generated

in the sibling iterations, as will be outlined in Section 4.4.4. This is done via a filtered
multisection which requires domain and bound data from the parent node n as well as the
sibling nodes. We therefore return the parent node to the list of open nodes and create the
mapping n 7→ (d, u) in Msib (Subroutine 1). When the node n is selected a second time
in Algorithm 1, this is detected via a lookup in Msib and we perform a sibling iteration
instead.

For the root node and all nodes resulting from first-stage branching, we do a “normal
iteration”, i.e., the respective node is processed as specified in Subroutine 2, and either
fathomed, or branched as specified in Subroutine 1. The only difference of Subroutine 2
with respect to a standard B&B algorithm is the possible use of decomposable bounding
and range reduction routines from Section 4.4.1 and Section 4.4.2. In our implementation,
we solve scenario subproblems for OBBT (Subroutine 2 of Subroutine 2), lower and upper
bounding (Subroutine 2), and DBBT (Subroutine 2) in parallel, while the computationally
cheap CP (Subroutine 2) is done using the full problem, DEn. To generate a candidate
solution x̃n for upper bounding (Subroutine 2), we use a representative scenario srep as
outlined in Section 4.2.

With sibling nodes, obtained from second-stage branching, we do a “sibling iteration”.
Before we give the formal statement of the combined processing of siblings in Subroutine 3,
we recall that child nodes from multisection can be generated by combining the results from
different subproblems of both siblings (cf. Section 4.3). In contrast to Subroutine 2, the use
of decomposable range reduction and bounding routines is thus mandatory in Subroutine 3.
Moreover, we cannot perform X n

s aggregation after doing range reduction routines on
n ∈ {d, u}, because the resulting tightening would only be valid for the respective sibling
node. However, we can first propagate results form range reduction of both siblings to the
parent node p, whose multi section resulted in d and u, and then back to the siblings: let
X d

s , X u
s and Yd

s , Yu
s denote the tightened variable domains obtained after applying some

range reduction to the subproblems of d and u for scenario s. Then the unions of the first-
and second-stage domains are a valid tightening of the corresponding domains from the
parent node p, i.e:

X p
s ← conv

(
X d

s ∪ X u
s

)

Yp
s ← conv

(
Yd

s ∪ Yu
s

) (parent s-domain tightening)
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Subroutine 3: processSiblings(p, d, u)
1 foreach s ∈ S do
2 foreach n ∈ {d, u} do
3 CP based on SPn

s ; fathom by dominance or infeasibility
4 end
5 apply parent s-domain tightening; fathom by infeasibility;
6 end
7 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
8 foreach s ∈ S do
9 foreach n ∈ {d, u} do

10 OBBT based on LPn
s ; fathom by dominance

11 end
12 apply parent s-domain tightening; fathom by infeasibility;
13 end
14 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
15 foreach s ∈ S do
16 foreach n ∈ {d, u} do
17 solve LPn

s , set fn
s
← fn

LP,s, and fathom by infeasibility
18 end
19 check for s-domination; fathom by dominance;
20 end
21 foreach s ∈ S do
22 foreach n ∈ {d, u} do
23 do DBBT based on LPn

s ; fathom by dominance
24 end
25 apply parent s-domain tightening; fathom by infeasibility;
26 end
27 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
28 x̃p ← solution of LPn

s with s from a variant of srep that considers all feasible scenarios for
n ∈ {d, u};

29 foreach s ∈ S do
30 (ỹps , f

p
s)← solution and objective value of RPp

s, check for s-domination; fathom by
dominance;

31 end
32 update (ỹp, f

p
) via UBp;

33 return (fp, f
p
, x̃p, ỹp)

Here, the use of the convex hull of the unions is purely for ease of implementation, as it
ensures the resulting domains are representable as hyperrectangles. Once we have applied
parent s-domain tightening for all scenarios, we can use the resulting X p

s for X p
s aggregation.

Intersecting the resulting X p′ with X d
s and X u

s results in a valid tightening of the sibling
domains:

X d
s

′ ← X d
s ∩ X p′

X u
s
′ ← X u

s ∩ X p′ (sibling s-domain tightening)

With this in place we can now review Subroutine 3. For each scenario, we execute the
range reduction and lower bounding routines for the corresponding subproblem of both
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siblings. Any of these routines may indicate that either d or u can be fathomed because
the subproblem for some scenario s is dominated or infeasible. However, the results from
the remaining subproblems of the fathomable sibling can still be combined with the results
of the subproblem for s from the other sibling to generate child nodes. Thus we continue
the sibling iteration as long as for each scenario there is at least one feasible, undominated
subproblem from either sibling. For lower bounding (Subroutines 3–3 in Subroutine 3)
we solve the subproblems LPn

s , using the associated domains after CP (Subroutines 3–
3) and OBBT (Subroutines 3–3). Following this, we perform DBBT (Subroutines 3–3).
We perform all range reduction (Subroutines 3–3, Subroutines 3–3, and Subroutines 3–3),
as well as bounding (Subroutines 3–3, and Subroutines 3–3) in parallel. Based on the
final variable domains and objective bounds, we can generate processed orthant nodes as
detailed in Section 4.4.4. In analogy to Subroutine 2, we could solve one upper bounding
problem for each such orthant node, however, this would result in an exponential number of
upper bounding problems. Instead, we choose to solve only a single set of upper bounding
problems RPYp

s
s (x̃p) (Subroutines 3–3 in Subroutine 3), using the Yp

s domains, resulting
from parent s-domain tightening after DBBT. We select x̃n to be one of the first-stage
solutions of the feasible subproblems of both siblings, based on a representative scenario
srep, that takes into account the subproblems of both siblings.

4.4.4. Filtered Multisection

In this section we present a filtered multisection that addresses issues pertaining to the
inherently exponential number of child nodes resulting from multisection branching, as
presented in Section 4.3. After motivating this filtered multisection we give a formal
statement in Subroutine 4. Following this, we comment on the possibility of adapting
a related approach used in Cao and Zavala, 2019, for branching on first-stage variables.
Finally we present the generation of orthant nodes in Subroutine 5.

The ability to generate 2Ns bounded child nodes by processing and recombining the
results from just two sibling nodes may seem attractive, however, handling an exponential
number of nodes for arbitrary Ns can quickly become an issue in practice. Consider for
instance a simple problem with Nx = Ny = 1; simply storing the variable bounds of child
nodes from a single second-stage branching as 8 byte double values requires 16 (1+Ns) 2

Ns

bytes, e.g., more than two terabytes of memory for Ns = 32. At least in principle, we could
avoid this memory issue by generating the nodes on demand in later iterations, however,
doing this in an appropriate order, e.g., by increasing lower bound would require additional
computations. More importantly, it is possible that for some of the bisections neither of
the two subproblems improves the lower bound of the parent node significantly. This can
result in a large number of nodes with weak objective bounds that all need to be processed
separately, slowing down the algorithm.

To address this issue, we can select a subset of the Ns bisection candidates that allows for
a significant increase of the lower bound or reduction of the overall domain size, compared
to the parent node. We then revert the original multisection in favor of a second, filtered
multisection, comprising only the variable instances corresponding to the selected bisection
candidates. For this, we use Subroutine 4, which will be presented in the following. Note
that each bisection candidate corresponds to a particular scenario s, a branched variable
instance ys,i, and two associated sibling subproblems with complementary domains for ys,i.
For each bisection candidate we get one of three results:
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Subroutine 4: filteredMultiSection(p, d, u)
1 M← empty map; // mapping s with single feasible subproblem

to the corresponding sibling
2 L ← empty list; // containing s for which both sibling

subproblems are feasible
3 foreach s ∈ S do
4 if fd

s
=∞ then

5 M[s] = u; // variable corresponding to s will be branched
6 else if fu

s
=∞ then

7 M[s] = d; // variable corresponding to s will be branched
8 else
9 append s to L; // variable corresponding to s might

be branched (see
Subroutines 4–4)

10 end
11 end
12 σmax = maxs∈L σs;
13 if σmax ≤ ε2σ then
14 replace σs and σmax with scores based on relative widths of variable domains
15 end
16 delete all s for which σs ≤ τσmax from L;
17 delete all but the kmax best entries from L;
18 return (M, L);

Case 1) Both subproblems are infeasible, this immediately implies infeasibility of the
parent node p.

Case 2) Exactly one subproblem is infeasible, only the domain of the feasible subproblem
can contribute to the generation of feasible orthant nodes, i.e., selecting this
bisection candidate does not increase their number.

Case 3) Both subproblems are feasible, selecting this bisection candidate doubles the
resulting number of orthant nodes.

Since Case 1) is already addressed by the fathoming rules in Subroutine 3, Subroutine 4
only needs to address Cases 2) and 3). We select all bisection candidates from Case
2) (Subroutines 4–4 in Subroutine 4), as they effectively result in a domain reduction,
without affecting the number of generated nodes. The feasible subproblems associated with
these bisection candidates are stored in the mapM. The remaining bisection candidates,
corresponding to Case 3), are collected in L (Subroutine 4).

As the number k ≤ Ns of bisection candidates selected from Case 3) determines the
resulting number of child nodes, we call k the “effective number of bisections”. To determine
which bisection candidates should be selected, we use a heuristic based on strong-branching
scores (Applegate et al., 1995; Achterberg, Koch, and Martin, 2005): given sibling nodes
d and u obtained from the parent node p, each bisection candidate, i.e., each scenario s, is
assigned a strong-branching score σs. For this, we employ the default scoring function of
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p

...

...

d
· · ·

...

...

u
· · ·

branch yNs,i

branch y2,i

branch y1,i

original multisection
p

...

· · ·

... branch ysk,i

branch ys1,i

branch y2,i

filtered multisection

Fig. 4.2. Example for multisection branching and filtered multisection. In the original multi-
section (left) the parent node p is branched on all second stage variable instances ys,i for a given
variable index i. Instead of generating all 2Ns nodes, we only generate the leftmost and rightmost
node, corresponding to branching all variable instances down (d) or up (u), respectively. We
process these sibling nodes (blue) by solving the resulting subproblems (squares). In the exam-
ple, the subproblem for s = 2 of d is infeasible (red) while all other subproblems are feasible
(green). Right: based on the subproblem results, we perform a second, filtered multisection of
p, involving a subset k of the original Ns bisection candidates (right). This can be interpreted
as generating a new tree of k sequential bisections: we keep all bisections producing exactly one
feasible subproblem (here only the bisection of y2,i), as they do not increase the total number of
child nodes. For the bisections resulting in two feasible subproblems, we consider the bound im-
provement w.r.t. the corresponding subproblems of p to compute the associated strong-branching
scores σs. The bisection candidates are then filtered based on the values of σs and the algorithm
parameters τ and kmax. We reject bisections for which improvement is considered insufficient, i.e.,
those with σs < τσmax, for a threshold τ ∈ (0, 1]. The remaining ones are sorted by descending
strong-branching score, resulting in an ordering of the associated scenarios (i.e., s1, ..., sk). Of
these bisections, we keep at most kmax. Finally, we generate the corresponding 2k orthant nodes
(green) using appropriate combinations of domains and bounds from the feasible sibling subprob-
lems.

SCIP, proposed in Achterberg, 2007, which is calculated as

σs := max(fd

s
− fp

s
, εσ)max(fu

s
− fp

s
, εσ) (σs)

Here the constant εσ ensures a nonnegative score for cases where only one sibling improves
upon the parent bound.

We only keep scenarios from L with a score of at least τσmax, where τ ∈ (0, 1] and σmax

is the largest of the scores Subroutine 4. Additionally, a maximum number of effective
bisections kmax is imposed to ensure that the filtered multisection produces at most 2kmax

child nodes (Subroutine 4). If all scores are smaller than ε2σ, we instead rank and select
bisection candidates based on relative widths of the associated variable domains (Subrou-
tine 4). This ensures exhaustive partitioning in the limit, necessary for the convergence
of MUSE-BB, also see Lemma 4.1 and Corollary 4.3 in Section 4.5. A visualization of the
proposed multisection branching procedure is given in Fig. 4.2.

The use of strong-branching scores in Subroutine 4 suggests a relation between filtered
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multisection and standard strong-branching, where alternative bisections of a set of Nv

variables are considered. While standard strong-branching requires processing 2Nv full
nodes to select a single bisection, i.e., generate 2 child nodes, we only process 2Ns sub-
problems (equivalent to 2 full nodes) and may generate an exponential number of nodes
in each filtered multisection. Nevertheless, standard strong-branching might also be useful
in MUSE-BB, as indicated by its use in the related algorithm of Cao and Zavala, 2019 for
the selection of first-stage variables: in each iteration, the authors consider all elements
of x via strong-branching, solving LP relaxations of the associated instances of DEn for
the 2Nx child nodes. For the two nodes of the selected bisection, they then perform the
global solution of the subproblems SPs, required for the convergence of their algorithm.
While a similar approach could also be adopted in MUSE-BB, we do not require expensive
global bounding routines for convergence; hence solving full-space LP relaxations based
on DEn is relatively expensive in our case. Alternatively we could solve the decomposable
LP relaxations LPn

s , and aggregate the strong-branching scores σs, e.g., via a ws-weighted
sum. As pointed out above, this would require to process 2Nx nodes instead of just 2.
Due to the importance of first-stage branching for TSP (also see Section 4.6), this effort
may in fact be warranted, however, we do not consider this idea further here, and instead
branch only on individual first-stage variables as indicated in Subroutine 1.

The map M, and list L, returned by Subroutine 4 are used within Subroutine 5 for
the generation of individual orthant nodes. For this, we collect the appropriate variable
domains and subproblem objective values for each orthant from one of the siblings or the
parent node (Subroutines 5–5 in Subroutine 5). For each scenario s, the respective node
is determined, based on whether the associated bisection was selected (s ∈ M or s ∈ L)
or not (Subroutines 5–5). If s is in the map M, we only use the data from the feasible
subproblem of the associated sibling node (Subroutine 5). If instead, the scenario is in L,
appropriate subproblem data is taken based on the orthant index i (cf. Algorithm 1 of
Algorithm 1) to determine the sibling node from which to use data (Subroutines 5–5 in
Subroutine 5). Otherwise the bisection is rejected, i.e., we use the data from the parent
(Subroutine 5). Note that the latter case does not imply that the solution of the associated
subproblems was in vain, as it may still result in tightened variable bounds due to parent
s-domain tightening (Subroutine 3 in Subroutine 3). Once data for all scenarios has been
collected, we aggregate the overall second-stage domain and scenario-weighted lower bound
(Subroutine 5). Finally we test whether the orthant node is infeasible or dominated and
return it (Subroutine 5).

4.5. Theoretical Results

In this section we present convergence results for the lower bounding schemes used in
MUSE-BB, and highlight the connection to the convergence of the algorithm itself. When
applied to the domains of individual B&B nodes, the lower bounding problems presented
in Section 4.4.1 give rise to different lower bounding schemes (LBSs). Their quality is de-
termined by their underestimation of the true optimal value, and their capacity to quickly
detect infeasible subdomains. In the following we analyze the asymptotic behavior of
these two qualities for LBSs relevant to MUSE-BB, as the size of B&B nodes diminishes.
In particular, we consider the LBSs based on: (i) dropping or dualizing the NACs, corre-
sponding to the subproblems SPn

s , or LSPn
s , respectively, (ii) the McCormick relaxations
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Subroutine 5: generateOrthantNode(i, p, d, u,M,L)
1 b← vector of |L| bits, representing i;
2 X o ← X p;
3 foreach s ∈ S do
4 if s ∈M then

// use data from the feasible subproblem of bisection s
5 n←M[s];
6 else if s ∈ L then

// use data from the sibling subproblem corresponding to orthant id i
7 j ← position of s in L;
8 if bj = 0 then
9 n← d;

10 else
11 n← u
12 end
13 else

// use parent data (bisection s was filtered in Subroutines 4–4 of
Subroutine 4)

14 n← p;
15 end
16 X o ← X o ∩ X n

s ;
17 Yo

s ← Yn
s ;

18 fo
s
← fn

s
;

19 end
20 Yo ←×s∈S Y

o
s ;

21 fo ←∑
s∈S ws f

o
s
;

22 if X o = ∅ or fo > f then fo =∞;
23 return o;

of subproblems from (i), and (iii) the linear programming relaxations, resulting from sub-
tangent relaxation of subproblems from (ii). Formally, the asymptotic behavior of a LBS
for a sequence of descendant nodes is quantified by the convergence order (Kannan and
Barton, 2017a). We first introduce additional notation and definitions related to this con-
vergence order in Section 4.5.1, and then present conditions under which different LBSs
achieve first- and second-order convergence, respectively in Sections 4.5.2 and 4.5.3. As a
result of the first-order convergence, we show that MUSE-BB guarantees finite termination
with an εf -optimal solution in Section 4.5.2. In Section 4.5.3 we analyze an extension of
MUSE-BB in which the NACs are dualized instead of dropped. We show that employing
this dualization within MUSE-BB is equivalent to adding the terms λ⊺

sxs, to the objective
function relaxations in the subproblems LPn

s , and performing dual iterations to update
the multipliers λs. Provided optimal multipliers λ∗

s are obtained, we show that this re-
sults in stronger convergence properties, with implications for the so-called cluster effect
(Kearfott and Du, 1993; Du and Kearfott, 1994). In particular, while theoretical results
of Kannan and Barton, 2017b indicate that the current implementation of MUSE-BB may
mitigate clustering around typical constrained minimizers, mitigating clustering around
typical unconstrained minimizers may require an extension such as the one presented in
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Section 4.5.3.
Before we give the formal definition of a LBS and the associated convergence order, we

highlight the impact of the quality of lower bounds via two examples. For this we define
the width of an interval.

Definition 4.1 (width of a multidimensional interval). A measure for the width of a
multidimensional interval V =×i∈{1,··· ,m} [vi, vi] ∈ IRm is given by:

W(V) := max
i∈{1,··· ,m}

(vi − vi)

As shown by Kannan and Barton, 2017b, the occurrence of clustering is related to the
convergence order of the LBS, which in turn is defined in terms of the ‘size of B&B nodes’,
i.e., the width of the domain of branched variables, measured by Definition 4.1 (also see
Kannan and Barton, 2017a). In algorithms like PBDAs, this node size is given by W(X n),
whereas in algorithms like MUSE-BB it is given by the width of the overall variable domain,
i.e., W(Zn). While MUSE-BB will of course require more branching than PBDAs to reach
a given node size, the LBSs used in MUSE-BB may achieve a higher convergence order
than the scheme SPXn,Ys

s , used in PBDAs.
The following example illustrates this situation for LBSs based on SPs, i.e., the simplest

scenario relaxation, corresponding to dropping the NACs from DEX ,Y
NAC: while the scheme

SPXn,Ys
s , where only X is partitioned, results in an absolute optimality gap that diminishes

with
√

W(X n), the gap produced by the scheme SPXn,Yn
s

s , which additionally partitions Y ,
diminishes with W(Zn).

Example 4.1. Consider the following instance of DEX ,Y with Nx = Ny = 1, Ns = 2
and an original domain with X = Y1 = Y2 = [0, 2]. Take

w1 f1(x1, y1) = −y1; gII,1(x1, y1) = −x1 + y21
w2 f2(x1, y2) = 2 y2; gII,2(x2, y2) = x2 − y22

The objectives imply that at the optimum zDEn
= (xDEn

1 , yDEn

1 , yDEn

2 ) of DEn, yDEn

1

is maximized and yDEn

2 is minimized. For any feasible node n with Zn = [xn, xn] ×
[yn

1
, yn1 ] × [yn

2
, yn2 ], the bounds and constraints imply yDEn

1 ≤ min
{√

xDEn
, yn1
}

and
yDEn

2 ≥ max
{√

xDEn
, yn

2

}
. We have yDE

1 = yDE
2 =

√
xDE on the original domain,

and thus f(xDE, yDE
1 , yDE

2 ) =
√
xDE, which is minimized at zDE = (xDE, yDE

1 , yDE
2 ) =

(0, 0, 0), with objective value 0.
Now consider the lower bounds generated by lower bounding schemes based on SPs

on any nested sequence of nodes converging to the optimum zDE. Since all nodes in
such sequences satisfy xn = yn

s
= 0, the optimal solutions of the associated instance

of SPs satisfy ySP
n

1 = min{
√
xn, yn1} and ySP

n

2 = max{√xn, yn
2
} = 0, and thus from

the constraint gII,2, we have xSPn

2 = ySP
n

2 = 0.
In SPXn,Ys

s , only x is branched, and the width of a node n corresponds to W n =
W(X n) = xn, while W(Yn

s ) = yns = 2 remains constant. Since xn < 2, we have:
ySP

n

1 =
√
W n, and thus fn

DE − fn
SP =

√
W n.

In SPXn,Yn
s

s , both x and ys are branched, and the width of a node n corresponds to
W n = W(Zn). For a given width W n, the largest value for fn′

DE − fn′
SP over all nodes

n′ with W(Zn′
) = W n will be produced by the node n with xn = yns = W n. Once
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W n < 1, we have that
√
W n > W n, and thus ySP

n

1 = W n, and fn
DE − fn

SP = W n.

While Example 4.1 shows that for certain problems the scheme SPXn,Ys
s will produce

weaker bounds than SPXn,Yn
s

s for a given node width, the following example demonstrates
that this is not always the case, i.e., both LBSs may produce absolute optimality gaps that
diminish linearly (and not better) with the node width.

Example 4.2. Take Example 4.1, but change the constraints to

gII,1(x1, y1) = −x1 + y1; gII,2(x2, y2) = x2 − y2.

which implies that yDE
1 = yDE

2 = xDE on the original domain, and thus
f(xDE, yDE

1 , yDE
2 ) = xDE. This is again minimized at zDE = (xDE, yDE

1 , yDE
2 ) =

(0, 0, 0), with objective value 0. Now for both SPXn,Ys
s , and SPXn,Yn

s
s , it is easy

to see that xSPn

2 = ySP
n

2 = 0, and xSPn

1 = ySP
n

1 = W n, resulting in fn
DE − fn

SP = W n,
i.e., an optimality gap that decreases exactly linearly with the node width.

As we shall see in Section 4.5.1, β-order convergence of a LBS requires that the op-
timality gap decreases proportionally to (W n)β, with β > 0, i.e., a higher value of β is
associated with a better quality of the LBS. Robertson, Cheng, and Scott, 2024 showed
that the convergence orders below one of LBSs used in PBDAs are inherent to the projec-
tion resulting from running a B&B in the X space only. In particular, even LBSs based on
the ideal relaxation, i.e., on convex envelopes of the scenario value functions fXn,Ys

s may
have less than first-order convergence, unless fXn,Ys

s is Lipschitz, which is not guaranteed
in general. In contrast, we show in Section 4.5.2 that the scheme SPn

s = SPXn,Yn
s

s , obtained
by simply dropping the NACs, has at least first-order convergence under the much milder
assumption that the objective and constraint functions of DE are Lipschitz. If additionally,
the used convex relaxations are Lipschitz, subsequent convex and linear relaxations used
in MUSE-BB preserve this first-order convergence.

As demonstrated by Examples 4.1 and 4.2, the convergence order may still be as low
as one, despite branching on second-stage variables. In Section 4.5.3 we show that this
limitation is inherent to dropping the NACs, and that dualizing them instead results in a
LBS that is as least as strong as the presented one, but additionally guarantees second-
order convergence at unconstrained minimizers.

Despite this promising outlook for MUSE-BB, we need to point out that the seemingly
superior convergence order of LBSs for MUSE-BB compared to that of PBDAs may be
relativized by the fact that the occurrence of clustering is not exclusively determined by
convergence order, but also by the local growth order of objective and constraint functions,
see Kannan and Barton, 2017b. Even if for a given problem, a LBS for MUSE-BB has a
higher convergence order than a comparable scheme for a PBDA, the lower order might still
be sufficient to mitigate clustering in PBDAs. This is because by operating in the projected
space, the relevant growth order for PBDAs is that of of the scenario value functions
fX ,Ys
s , which may also be reduced compared that of the original objective functions fs. In

Example 4.1, e.g., we have fX ,Y1

1 (x) =
√
x, and thus a growth order of 1/2, matching the

convergence order of the scheme SPXn,Ys
s , indicating that clustering might still be avoided,

despite the reduced convergence order. Conditions for which PBDAs or algorithms like
MUSE-BB will show superior performance are thus not immediately clear from the present
analysis.
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4.5.1. Preliminaries

To avoid the so-called cluster effect (Kearfott and Du, 1993; Du and Kearfott, 1994; Wech-
sung, Schaber, and Barton, 2014) where a B&B algorithm visits a large number of nodes
near approximate global minimizers, LBSs need to exhibit a sufficiently large convergence
order. Early works on clustering (Kearfott and Du, 1993; Du and Kearfott, 1994; Wech-
sung, Schaber, and Barton, 2014) focused on clustering around unconstrained minimizers,
where the convergence order of LBSs is equivalent to the convergence order of the re-
laxations used for the objective function. Around constrained minimizers, on the other
hand, one additionally needs to consider the effect of relaxing the feasible set, leading to
an extended notion of convergence order (Kannan and Barton, 2017b; Kannan and Bar-
ton, 2017a), which additionally depends on the convergence orders of the relaxations used
for the constraint functions. In B&B for general nonlinear programming problems, relax-
ations of objective and constraints are typically generated by convex relaxation methods.
In Bompadre and Mitsos, 2011 we therefore analyzed the convergence order of McCormick
(McCormick, 1976), α-BB (Adjiman and Floudas, 2008), and convex hull relaxations.
Convergence orders for (further) relaxation through polyhedral outer approximation were
investigated by Rote, 1992; Tawarmalani and Sahinidis, 2004; Khan, 2018. While Kannan
and Barton, 2017b consider a classical LBS for general nonlinear programming problems
based on convex relaxation, their conclusions are not dependent on this type of LBS. Kan-
nan and Barton, 2017a present a more general definition of a LBS, and give conditions
under which convex and Lagrangian relaxations with appropriate convergence orders result
in first- and second-order convergent LBS.
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In preparation for Definition 4.4, where we use an extended notion of convergence order
of a LBS in the sense of Kannan and Barton, 2017a, we introduce additional nomenclature
and definitions. For each B&B node n and the corresponding subproblem domains Zn

s :=
X n × Yn

s , we introduce the scenario-specific feasible sets

Fn
s := {(x,ys) ∈ Zn

s : gI(x) ≤ 0, gII,s(x,ys) ≤ 0}.

Similarly, for the overall domains Zn := X n×Yn, associated with each node n, we express
the feasible set of DEn = DEXn,Yn

as

Fn := {(x,y) ∈ Zn : (x,ys) ∈ Fn
s ∀s ∈ S}.

Furthermore, since we branch on both x and y, the distinction between them be-
comes irrelevant in many parts of the following analysis. For conciseness, we there-
fore aggregate the first- and second-stage variables, i.e., we introduce the notation
(x,y) = (x,y1, · · · ,yNs) =: z ∈ Zn ∈ IRNz , and (x,ys) =: zs ∈ Zn

s ∈ IRNz,s , where,
Nz := Nx +NsNy and Nz,s := Nx +Ny.

Definition 4.2 (distance between two sets). A measure for the distance of two sets
Z1,Z2,⊂ Rm is given by:

d(Z1,Z2) := inf
z1∈Z1
z2∈Z2

∥z1 − z2∥

Throughout this text, ∥•∥ denotes the Euclidian norm.

Definition 4.3 (violation measure). A measure for the minimum constraint violation
of some optimization problem P̃(V) with variable domain V ∈ IRNv and constraints
gP̃ : RNv → RN P̃

g , on some subdomain Vn ∈ IV is given by:

vion
P̃
:= d

(
{gP̃(v) : v ∈ Vn},RN P̃

g

−

)

= min
v∈Vn




N P̃
g∑

j=1

max
{
gP̃,j(v), 0

}2




1/2

,

where R− denotes the nonpositive orthant.

Alternative to Definition 4.3, one may also define the violation in terms of, e.g., the ∞-
norm, which would yield min

v∈Vn
max

j∈{1,···N P̃
g }

max{0; gP̃,j(v)}. We chose Definition 4.3, following

Kannan and Barton, 2017b; Kannan and Barton, 2017a, who use it, within their definitions
of convergence order of LBSs (Definition 8 and 14, respectively). For clarity, we separate
the definition of violation from that of convergence order.

We adapt Definition 14 of Kannan and Barton, 2017a to scenario-based LBSs of TSPX ,Y .
All such schemes effectively lift the deterministic equivalent formulation DEn to the equiv-
alent nonanticipativity formulation DEX ,Y

NAC, which introduces separate first-stage variables
and constraints for each scenario and couples them via the NACs. Following this, scenario-
based LBSs obtain relaxations of TSPX ,Y , by dropping or dualizing the NACs from DEX ,Y

NAC,
potentially followed by further relaxations of the objective and constraints.
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Definition 4.4 (Hausdorff convergence order of scenario-based LBSs). Denote the optimal
objective value of DEn as fn

DE, and let Rn be any relaxation of DEn that decomposes into
the Ns scenario relaxations of the form:

fn
R,s := min

zs∈Fn
R,s

fR,s(zs) Rn
s

where for each s, the feasible set Fn
R,s contains Fn

s , and the objective functions fR,s are
such that the weighted sum of the optimal objective values fn

R,s underestimates fn
DE, i.e.,

fn
R :=

∑

s∈S

ws f
n
R,s ≤ fn

DE.

We say that (the LBS based on) Rn
s has:

1. βf -order (Hausdorff) convergence at a feasible point z ∈ Z if there exists cf > 0 such
that for every Zn ∈ IZ with z ∈ Zn,

fn
DE − fn

R ≤ cf W(Zn)βf

2. βg-order (Hausdorff) convergence at an infeasible point z ∈ Z if there exists cg > 0
such that for every Zn ∈ IZ with z ∈ Zn,

vionDE− vionR ≤ cg W(Zn)βg

We say that (the LBS based on) Rn
s has (Hausdorff) convergence of order β on Z if is has

β-order (Hausdorff) convergence at each z ∈ Z.

The generic scenario-based relaxation Rn
s encompasses all LBSs we consider: LSPn

s ;
SPn

s ; the additional relaxation of these problems, resulting from replacing all functions by
their McCormick relaxations on Zn (i.e., MCn

s in the case of SPn
s ); and the linear outer

approximation of MCn
s through subtangents, LPn

s . In all cases, the convergence order is
with respect to DEn, i.e., feasibility and infeasibility are always to be understood with
respect to the original variables and constraints. As in Definition 14 of Kannan and Bar-
ton, 2017a, the convergence order at feasible [infeasible] points establishes an upper bound
on the underestimation of the optimal objective value [minimal constraint violation] in
terms of the node width. Thus, the theoretical results of Kannan and Barton, 2017b are
directly applicable. In particular, assuming sufficiently small prefactors cf and cg, and that
all minimizers are strict, the previous analyses indicate that second-order convergence at
feasible points mitigates clustering around unconstrained minimizers located at points of
differentiability (Wechsung, Schaber, and Barton, 2014; Kannan and Barton, 2017b), while
first-order convergence suffices for unconstrained minimizers if they are located at points
of nondifferentiability (Wechsung, 2014; Kannan and Barton, 2017b). At constrained min-
imizers, on the other hand, first-order convergence may mitigate clustering if the objective
and active constraints grow linearly around the minimizer Kannan and Barton, 2017b.

Note that according to Definition 4.3, the constraint violations vionDE and vionR are de-
fined relative to the overall constraints of the respective problems. In contrast to DEn, all
scenario relaxations Rn

s by definition have separate copies of the first-stage variables x and
the first-stage constraints gI (or their relaxations) for each scenario s. Hence, the total
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number of variables and constraints of the Ns subproblems Rn
s are Nξ := Ns(Nx+Ny), and

NR
g := Ns(NI +NII), respectively. Similarly to gDE, we define gR by aggregating the con-

straint functions of Rn
s for all s; i.e., gR is the vector-valued function gR : (×s∈S Zs) 7→ RNR

g ,
such that for ξ = (x1,y1, · · · ,xNs ,yNs,Ny) ∈ (×s∈S Zs) ∈ IRNξ we have:

gR(ξ) :=




gR,1(ξ)
...

gR,NR
g
(ξ)


 ,

e.g., when using LSPn
s or SPn

s for Rn
s , we define these entries as

gLSP(ξ) = gSP(ξ) =




gI,1(x1)
...

gI,NI(xNs)
gII,1,1(x1,y1)

...
gII,Ns,NII(xNs ,yNs)




.

Since the bounds in Definition 4.4 are relative to the width of the overall variable domain
Zn, it is only meaningful for B&B algorithms for which this width diminishes to 0. MUSE-
BB clearly satisfies this condition, as shown for completeness in the following result.

Lemma 4.1 (Exhaustive Subdivision). The branching scheme used in MUSE-BB is ex-
haustive, i.e., in the limit all infinite sequences of descendant nodes converge to some
accumulation point.

Proof. In Subroutine 1 of Subroutine 1 we eventually select the variable corresponding
to the dimension of Zn with largest relative domain width (since the effect of different
branching priorities is canceled after a finite number of iterations). While the bisection
of the selected variable can still be rejected during variable filtering (Subroutine 4 in
Subroutine 4), this can only happen a finite number of times, as the strong-branching
scores are based on lower bound improvements which inherently tend to zero. Thus, the
width of all variable domains tends to zero.

Note that since PBDAs only partition X , W(Zn) would need to be substituted with
W(X n) in the bounds of Definition 4.4 to obtain an appropriate alternative definition for
PBDAs, also see the related Definition 14 and Section 5 of Kannan and Barton, 2017a.

4.5.2. First-Order Convergence

As we shall see in Lemma 4.2, branching on second-stage variables y in addition to first-
stage variables x, resolves the possibility of convergence orders below one, i.e., SPn

s can be
guaranteed to have (at least) first-order convergence under the weak assumption of Lip-
schitz continuity of the objective and constraint functions. Furthermore, Corollaries 4.1
and 4.2 show that the additional relaxations used in MUSE-BB preserve first-order con-
vergence.
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Assumption 4.1 (Lipschitz, factorable functions). All constraint and objective functions
are Lipschitz, i.e., there exist constants Lg,I,i > 0; i = 1, · · · , NI, and for all s ∈ S there
exist constants Lg,II,s,j > 0, j = 1, · · · , NII; Lf,s > 0, such that:

|gI,i(x)− gI,i(x
′)| ≤ Lg,I,i ∥x− x′∥ ∀x,x′ ∈ X , i = 1, · · · , NI,

|gII,s,j(zs)− gII,s,j(z
′
s)| ≤ Lg,II,s,j ∥zs − z′s∥ ∀zs, z′s ∈ Zs, j = 1, · · · , NII,

|fs(zs)− fs(z
′
s)| ≤ Lf,s ∥zs − z′s∥ ∀zs, z′s ∈ Zs.

The following Lemma shows first-order convergence of the LBS based on SPn
s . Its proof

relies on the fact that in any given node n, points from the domains Zn
s = X n × Yn

s of
scenario subproblems are at most

√
Nx +Ny W(Zn

s ) apart. Furthermore, the overall node
domain is Zn = X n×Yn and thus W(Zn

s ) ≤W(Zn). We point out that all of the algebraic
steps in the following proof would also hold when replacing SPn

s with the LBS SPXn,Ys
s used

in PBDA. Thus in fact, both LBS have first-order convergence in the Z space. However,
while for MUSE-BB W(Zn) tends to zero by Lemma 4.1, it does not for PBDAs, where
Yn = Y for all nodes n, and hence only W(X n) tends to zero. A meaningful convergence
order for SPXn,Ys

s would therefore require bounds in terms of W(X n) instead of W(Zn),
also see the note before Lemma 4.1 and the related Definition 14 and Section 5 of Kannan
and Barton, 2017a.

Lemma 4.2 (first-order convergence of SPn
s ). Under Assumption 4.1, SPn

s has a conver-
gence order of β ≥ 1.

Proof. Recall that Definition 4.4 considers convergence orders at feasible and infeasible
points with respect to DEn, leading to a natural proof outline.

Convergence Order at Feasible Points: First consider some arbitrary point z̃ ∈ Z
that is feasible in DE. Note that both DEn, and by extension, also its relaxation SPn

s

have optimal solutions for any subset Zn ∈ IZ containing z̃. For any such subset, let
zDEn

= (xDEn
,yDEn

) = (xDEn
,yDEn

1 , · · · ,yDEn

Ns
) ∈ Zn be an optimal solution to DEn,

and define zDEn

s = (xDEn
,yDEn

s ) ∈ Zn
s . Similarly, let zSPn

s = (xSPn

s ,ySPn

s ) ∈ Zn
s be an

optimal solution to SPn
s . Using the Lipschitz property of fs, we can immediately express

the difference in optimal objective values as:

fn
DE − fn

SP =
∑

s∈S

ws

(
fs(z

DEn

s )− fs(z
SPn

s )
)

≤
∑

s∈S

wsc
SP
f,s W(Zn)

where cSP
f,s := Lf,s

√
Nx +Ny. Since z̃ and Zn were selected arbitrarily, SPn

s has at least
first-order convergence at all feasible points with cf =

∑
s∈S wsc

SP
f,s.

Convergence Order at Infeasible Points: Now consider a point z̃ that is infeasible
in DE, i.e., z̃ /∈ F . Any subset Zn ∈ IZ containing z̃, either contains feasible points or
it does not. By Definition 4.3, these two cases correspond to vionDE = 0, and vionDE > 0,
respectively. In the former case we also have vionSP = 0 by the fact that SP is a relaxation,
i.e., the properties from Definition 4.4 hold trivially.

The remainder of the proof is concerned with the latter case, i.e., vionDE > 0. Let
z̃DEn

= (x̃DEn
, ỹDEn

) = (x̃DEn
, ỹDEn

1 , · · · , ỹDEn

Ns
) ∈ Zn and ζDEn ∈ RNDE

g

− be points at
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which the minimum constraint violation vionDE is attained, i.e., vionDE =
∥∥g(z̃DEn

)− ζDEn∥∥.
Similarly, let ξ̃SPn

= (x̃SPn

1 , ỹSPn

1 , · · · , x̃SPn

Ns
, ỹSPn

Ns
) ∈×s∈S Zn

s and ζ̃SPn ∈ RNSP
g

− be points at

which the minimum constraint violation vionSP is attained, i.e., vionSP =
∥∥∥gSP(ξ̃SPn

)− ζ̃SPn
∥∥∥.

Furthermore, define z̃DEn

s = (x̃DEn
, ỹDEn

s ) ∈ Zn
s and z̃SPn

s = (x̃SPn

s , ỹSPn

s ) ∈ Zn
s .

To derive an upper bound on vionDE− vionSP, we first give a lower bound on the minimum
constraint violation vionSP. For this we drop positive terms in the definition of vionSP,
corresponding to the first-stage constraints of all but the first scenario:

vionSP =
∥∥∥gSP(ξ̃SP

n

)− ζ̃SPn
∥∥∥

=




NSP
g∑

j

∣∣∣gSP,j(ξ̃SP
n

)− ζ̃SP
n

j

∣∣∣
2




1/2

=
(∣∣∣gI,1(x̃

SPn

1 )− ζ̃SP
n

1

∣∣∣
2

+ · · ·+
∣∣∣gI,NI(x̃

SPn

1 )− ζ̃SP
n

NI

∣∣∣
2

+ · · ·+
∣∣∣gI,NI(x̃

SPn

Ns
)− ζ̃SP

n

NsNI

∣∣∣
2

+
∣∣∣gII,1,1(z̃

SPn

1 )− ζ̃SP
n

NsNI+1

∣∣∣
2

+ · · ·+
∣∣∣gII,Ns,NII(z̃

SPn

Ns
)− ζ̃SP

n

NSP
g

∣∣∣
2)1/2

≥
(∣∣∣gI,1(x̃

SPn

1 )− ζ̃SP
n

1

∣∣∣
2

+ · · ·+
∣∣∣gI,NI(x̃

SPn

1 )− ζ̃SP
n

NI

∣∣∣
2

+
∣∣∣gII,1,1(z̃

SPn

1 )− ζ̃SP
n

NsNI+1

∣∣∣
2

+ · · ·+
∣∣∣gII,Ns,NII(z̃

SPn

Ns
)− ζ̃SP

n

NSP
g

∣∣∣
2)1/2

=:
∥∥g̃SPn − ζSPn∥∥

(4.2)

Note that this corresponds to a projection of the associated points from RNSP
g onto RNDE

g ,
i.e., g̃SPn

, ζSP
n ∈ RNDE

g .

We can now derive the desired upper bound on vionDE− vionSP. By Definition 4.3, we
have

vionDE− vionSP =
∥∥g(z̃DEn

)− ζDEn∥∥−
∥∥∥gSP(ξ̃SP

n

)− ζ̃SPn
∥∥∥,

and underestimation of the subtracted part by the projection from 4.2 gives

vionDE− vionSP ≤
∥∥g(z̃DEn

)− ζDEn∥∥−
∥∥g̃SPn − ζSPn∥∥,

By definition of the infimum in vionDE, we have
∥∥g(z̃DEn

)− ζDEn∥∥ ≤
∥∥g(z̃DEn

)− ζ
∥∥ for all

ζ ∈ RNDE
g

− , in particular, choosing ζSPn results in

vionDE− vionSP ≤
∥∥g(z̃DEn

)− ζSPn∥∥−
∥∥g̃SPn − ζSPn∥∥.

Applying the reverse triangle inequality gives

vionDE− vionSP ≤
∥∥g(z̃DEn

)− g̃SPn∥∥,
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and thus by definition of the Euclidian norm and g̃SPn :

vionDE− vionSP ≤
(∣∣gI,1(x̃

DEn

)− gI,1(x̃
SPn

1 )
∣∣2 + · · ·+

∣∣gI,NI(x̃
DEn

)− gI,NI(x̃
SPn

1 )
∣∣2

+
∣∣gII,1,1(z̃

DEn

1 )− gII,1,1(z̃
SPn

1 )
∣∣2

+ · · ·+
∣∣gII,Ns,NII(z̃

DEn

Ns
)− gII,Ns,NII(z̃

SPn

Ns
)
∣∣2
)1/2

.

By Lipschitz continuity of each individual constraint function, all differences can be
bounded by the respective Lipschitz constants

vionDE− vionSP ≤
(
(
LgI,1

∥∥x̃DEn − x̃SPn

1

∥∥)2 + · · ·+
(
LgI,NI

∥∥x̃DEn − x̃SPn

1

∥∥
)2

+
(
LgII,1,1

∥∥z̃DEn

1 − z̃SPn

1

∥∥)2

+ · · ·+
(
LgII,Ns,NII

∥∥z̃DEn

Ns
− z̃SPn

Ns

∥∥
)2
)1/2

.

Finally, since the maximum distances of points in X n and Zn are
√
Nx W(X n) and√

Nx +Ny W(Zn
s ), respectively, and since both W(X n) and W(Zn

s ) can be overestimated
by W(Zn) we have:

vionDE− vionSP ≤
((

LgI,1

√
Nx W(X n)

)2
+ · · ·+

(
LgI,NI

√
Nx W(X n)

)2

+
(
LgII,1,1

√
Nx +Ny W(Zn

s )
)2

+ · · ·+
(
LgII,Ns,NII

√
Nx +Ny W(Zn

s )
)2
)1/2

≤ cg W(Zn)

Since z̃ and Zn were selected arbitrarily, SPn
s has at least first-order convergence at all

infeasible points with

cg =

√√√√Nx

NI∑

i=1

L2
g,I,i + (Nx +Ny)

∑

s∈S

NII∑

j=1

L2
gII,s,j

.

Conclusion: As the LBS based on SPn
s has convergence orders of β ≥ 1 at both feasible

and infeasible points, it has convergence order of β ≥ 1.

Unsurprisingly, when the Assumption 4.1 is not satisfied, the convergence order of
MUSE-BB can also be below 1. For instance, take Example 4.1 but use w1f1 = −√y1;
this gives a convergence order of 0.5.

Next we show that both the McCormick based LBS, MCn
s , as well as its linearization

via subtangents, LPn
s , inherit the first-order convergence of SPn

s under mild additional
assumptions. For both of these convergence results, we require the following assumption:
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Assumption 4.2 (first-order pointwise convergent relaxations). The objective function fs
and all elements of the constraint functions gI and gII,s have first-order pointwise convergent
relaxations, i.e., there exist constants cMC

f,s > 0, s ∈ S, cMC
g,I,i > 0, i = 1, · · · , NI, and

cMC
g,II,s,j > 0, s ∈ S, j = 1, · · · , NII, such that for all Zn ∈ IZ and any s, the convex

relaxations f cv,n
s , gcv,n

I and gcv,n
II,s in MCn

s satisfy

fs(zs)− f cv,n
s (zs) ≤ cMC

f,s W(Zn
s ), ∀zs ∈ Zn

s ,

gI,i(x)− gcv,n
I,i (x) ≤ cMC

g,I,i W(X n), ∀x ∈ X n, i = 1, · · ·NI,

gII,s,j(zs)− gcv,n
II,s,j(zs) ≤ cMC

g,II,s,j W(Zn
s ), ∀zs ∈ Zn

s , j = 1, · · ·NII.

In fact, for many functions McCormick relaxations satisfying an even stronger variant of
Assumption 4.2, with second- instead of just first-order pointwise convergence are known
(also see Bompadre and Mitsos, 2011). For our purposes, however, Assumption 4.2 is
sufficient.

Corollary 4.1 (first-order convergence of MCn
s ). Under Assumptions 4.1 and 4.2, MCn

s

has a convergence order of β ≥ 1.

Proof. By Lemma 4.2, the scheme SPn
s has first-order convergence with respect to the

original problem DEn. Furthermore, under Assumption 4.2, the LBS MCn
s has at least

first-order convergence with respect to SPn
s by Theorem 1 of Kannan and Barton, 2017a.

Combining these results implies first-order convergence of MCn
s with respect to DEn.

For the first-order convergence of LPn
s , we additionally require the following assumption:

Assumption 4.3 (Lipschitz convex relaxations). For any node n the convex relax-
ations f cv,n

s , gcv,n
I , and gcv,n

II,s in MCn
s are Lipschitz, i.e., there exist constants LMC

f,s > 0,
LMC
g,I,i > 0; i = 1, · · · , NI, and LMC

g,II,s,j, j = 1, · · · , NII, that constitute upper bounds on
the norm of the respective subgradients. In particular, this implies:

∥∇̌f cv,n
s (zs)

⊺(z′s − zs)∥ ≤ LMC
f,s

√
Nx +Ny W(Zn

s ), ∀zs, z′s ∈ Zn
s

∥∇̌gcv,n
I,i (x)⊺(x′ − x)∥ ≤ LMC

g,I,i

√
Nx W(X n), ∀x,x′ ∈ X n, i = 1, · · ·NI,

∥∇̌gcv,n
II,s,j(zs)

⊺(z′s − zs)∥ ≤ LMC
g,II,s,j

√
Nx +Ny W(Zn

s ), ∀zs, z′s ∈ Zn
s , j = 1, · · ·NII.

Assumption 4.3 is satisfied if the relaxations used for all intrinsic functions are Lipschitz
(cf. Scott, Stuber, and Barton, 2011). This in turn is the case for standard relaxations of
a wide class of functions, provided they are Lipschitz themselves.

Corollary 4.2 (first-order convergence of LPn
s ). Under Assumptions 4.1–4.3, LPn

s has a
convergence order of β ≥ 1.

Proof. We structure the proof as in Lemma 4.2.
Convergence Order at Feasible Points: First consider some arbitrary point z̃ ∈ Z

that is feasible in DE. For any subset Zn ∈ IZ with z̃ ∈ Zn, let zDEn

s and zLPn

s be solutions
of DEn, and LPn

s , respectively, and note that

fn
LP,s = subn

fs(z
LPn

s ) = f cv,n
s (mn

zs) + ∇̌f cv,n
s (mn

zs)
⊺(zLP

n

s −mn
zs),
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where mn
zs is the midpoint of Zn

s , see subtangent. We can bound the difference of opti-
mal values of DEn, and LPn

s by subtracting and adding the terms fs(m
n
zs) and applying

Assumptions 4.1–4.3:

fn
DE − fn

LP =
∑

s∈S

ws

(
fn
DE,s − fn

LP,s

)
=
∑

s∈S

ws

(
fs(z

DEn

s )− subn
fs(z

LPn

s )
)

=
∑

s∈S

ws

(
fs(z

DEn

s )− fs(m
n
zs) + fs(m

n
zs)− f cv,n

s (mn
zs)

− ∇̌f cv,n
s (mn

zs)
⊺(zLP

n

s −mn
zs)
)

≤
∑

s∈S

wsc
LP
f,s W(Zn)

where cLP
f,s :=

(
(Lf,s + LMC

f,s )
√

Nx +Ny + cMC
f,s

)
. Thus LPn

s has first-order convergence at
feasible points with cf =

∑
s∈S wsc

LP
f,s.

Convergence Order at Infeasible Points: Now consider some arbitrary infea-
sible point z̃, and any subset Zn ∈ IZ such that z̃ ∈ Zn. As in the proof of
Lemma 4.2, let z̃DEn

= (x̃DEn
, ỹDEn

) = (x̃DEn
, ỹDEn

1 , · · · , ỹDEn

Ns
) ∈ Zn, and ζDEn ∈

RNDE
g

− be points at which the minimum constraint violation vionDE is attained, i.e.,
vionDE =

∥∥g(z̃DEn
)− ζDEn∥∥, and, let ξ̃LPn

= (x̃LPn

1 , ỹLPn

1 , · · · , x̃LPn

Ns
, ỹLPn

Ns
) ∈×s∈S(Zn

s )

and ζ̃LPn ∈ RNLP
g

− be points at which the minimum constraint violation vionLP is attained,
i.e., vionLP =

∥∥∥gLP(ξ̃LPn
)− ζ̃LPn

∥∥∥, where gLP is the vector-valued function containing the
constraints of all LPn

s , i.e., the subtangents of the entries in gSP, see subtangent.

Using the same arguments as in the proof of Lemma 4.2 with gLP(ξ̃LP
n
) instead of

gSP(ξ̃
SPn

) we can bound the difference in violation measures of DEn and LPn
s , resulting in:

vionDE− vionLP ≤
(∣∣∣gI,1(x̃

DEn

)− subn
gI,1

(x̃LPn

1 )
∣∣∣
2

+ · · ·+
∣∣∣gI,NI(x̃

DEn

)− subn
gI,NI

(x̃SPn

1 )
∣∣∣
2

+
∣∣∣gII,1,1(z̃

DEn

1 )− subn
gII,1,1

(z̃SP
n

1 )
∣∣∣
2

+ · · ·+
∣∣∣gII,Ns,NII(z̃

DEn

Ns
)− subn

gII,Ns,NII
(z̃SP

n

Ns
)
∣∣∣
2)1/2

as with the objective function, we can bound the differences between each constraint
function and the respective subgradient, using Assumptions 4.1–4.3, which results in

vionDE− vionLP ≤ cLPg W(Zn),

where

cLPg :=

(
NI∑

i=1

(
(Lg,I,i + LMC

g,I,i)
√

Nx + cMC
g,I,i

)2

+
∑

s∈S

NII∑

j=1

(
(Lg,II,s,j + LMC

g,II,s,j)
√
Nx +Ny + cMC

g,II,s,j

)2
)1/2

.
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Thus LPn
s has first-order convergence at any infeasible point with cg = cLPg .

Conclusion: As the LBS based on LPn
s has convergence orders of β ≥ 1 at both feasible

and infeasible points, it has convergence order of β ≥ 1.

We are now in the position to prove finite εf -convergence of MUSE-BB.

Corollary 4.3 (finite termination of MUSE-BB). Under Assumptions 4.1–4.3, MUSE-
BB terminates finitely for any optimality tolerance εf > 0, either providing an εf -optimal
solution or a certificate that the problem is infeasibile.

Proof. By Lemma 4.1, each sequence of descendant nodes converges to some accumulation
point z̃. We show that the use of any LBS Rn

s with convergence order of β > 0 implies
that all such sequences finitely reach a node that can be fathomed by value dominance or
infeasibility.

Convergence at Feasible Points: First consider sequences for which z̃ is feasible.
After a finite number of iterations, any such sequence will produce a node n, for which

W(Zn) ≤
(

εf
cf

)1/β
, which implies that fn

DE − fn
R ≤ εf , i.e., that n is fathomed by value

dominance.
Convergence at Infeasible Points: Next consider sequences for which z̃ is infeasible,

and which are not terminated finitely because some descendant node can be fathomed by
value dominance. By compactness of the feasible set, any such sequence will eventually
produce a node ñ that contains no feasible point, and thus has a positive violation measure
vioñDE. Since the violation measure increases monotonically for descendants of node ñ,
the sequence is terminated when or before the descendant node n is produced, for which

W(Zn) ≤
(

vioñDE

cg

)1/β
, as this implies 0 ≤ vionDE− vioñDE ≤ vionR, i.e., infeasibility is detected

by the scheme Rn
s , and node n is fathomed by infeasibility.

Conclusion: In summary, each node sequence terminates finitely and since the original
domain is compact, the total number of sequences must be finite. By Corollary 4.2, the
assumptions imply that the LBS Rn

s = LPn
s , used in MUSE-BB has a convergence order

of β > 1, thus MUSE-BB terminates finitely, once all sequences of descendant nodes are
terminated.

After demonstrating first-order convergence of the LBS employed by MUSE-BB and the
resulting εf -convergence, we now consider in which cases these convergence properties may
be sufficient to mitigate clustering. As indicated by Kannan and Barton, 2017b, clustering
may be mitigated around individual minimizers of DE, if the convergence order of the LBS
is larger or equal to the order at which objective and constraint functions grow around this
minimizer. While Example 4.2 demonstrates that SPn

s (and by extension, also LPn
s ) may

have a convergence order as low as one at constrained minimizers, objective and constraint
functions often grow at a linear rate around such points (Kannan and Barton, 2017b).
Therefore LPn

s may mitigate clustering around certain constrained minimizers, provided
the respective coefficients cf and cg are sufficiently small (Kannan and Barton, 2017b). On
the other hand, at partially or unconstrained minimizers, where f is differentiable, f grows
quadratically or faster in some of the feasible directions. As a result, a LBS needs to have at
least second-order convergence at unconstrained minimizers to to mitigate clustering (Du
and Kearfott, 1994; Wechsung, Schaber, and Barton, 2014; Kannan and Barton, 2017b).
Unfortunately, the convergence order of SPn

s may also be as low as one at unconstrained
minimizers, as shown by the following example.
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Example 4.3. Consider an instance of DE with Nx = 1, Ny = 0, Ns = 2 and an
original domain X = [−1, 1]. Take

w1 f1(x1) = 0.5(x1 − 1)2; w2 f2(x2) = 0.5(x2 + 1)2

such that f(x) = x2 + 1, and thus the optimal solution and objective value are
xDE = 0, and f(xDE) = 1, respectively. For any nested sequence of nodes converging
to this optimum, the solutions xDEn of the node problem DEn lie in X n = [xn, xn],
and thus xn ≤ 0, xn ≥ 0. For such nodes, the solutions of SPn

s are xSPn

1 = xn, and
xSPn

2 = xn, respectively. Hence the difference in objective values is:

fn
DE − fn

SP = 1− 0.5
(
(xn − 1)2 + (xn + 1)2

)

= −0.5 (xn)2 + xn − xn − 0.5 (xn)2

Now consider a sequence for which xn = W n, xn = 0; for this sequence the above
expression simplifies to

fn
DE − fn

SP = W n − 0.5(W n)2.

Now for any cf > 0 this expression becomes larger than cf (W
n)2 for the node n0, for

which

W n0 <
1

cf + 0.5
,

i.e., SPn
s is at best first-order convergent at the unconstrained minimizer xDEn .

In summary, the present implementation of MUSE-BB may suffer from clustering around
unconstrained minimizers. To address this, an alternative LBS with at least quadratic
convergence order is required. In the following section we analyze an extension of MUSE-
BB whose LBS has this property.

4.5.3. Second-Order Convergence

In this section we show that using LSPn
s instead of SPn

s , i.e., dualizing the NACs instead
of dropping them, enables at least second-order convergence at unconstrained minimizers.
Additionally, we consider the resulting effect on the implementation, i.e., how the LBS
LPn

s needs to be adapted when using LSPn
s .

A necessary condition for a LBS to have β-order convergence is that the relaxations used
for its construction have β-order convergence, also see Kannan and Barton, 2017a. While
this condition is generally not sufficient for β-order convergence of the resulting LBS, it is
sufficient for β-order convergence around Slater points, i.e., unconstrained feasible points
(Corollaries 2, 3 of Kannan and Barton, 2017a).

Corollary 6 of Robertson, Cheng, and Scott, 2024 shows that the optimal objective
value fXn,Y

LR (λ∗), obtained from the subproblems LSPXn,Ys
s , where the NACs are dualized

instead of dropped, is equivalent to minimizing the ws-weighted sum of convex envelopes
of fXn,Y

s . As a result, fXn,Y
LR (λ∗) constitutes a (constant valued) relaxation of the objective

function f on the domain X n×Y . Furthermore, they show that this relaxation is at least
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second-order convergent with respect to W(X n), i.e., for some c > 0

min
x∈Xn

∑

s∈S

fXn,Ys
s (x)− fXn,Y

LR (λ∗) ≤ cW(X n)β

with β ≥ 2, provided the scenario value functions fXn,Ys
s are C2, i.e., twice continuously

differentiable. We point out that in fact, the slightly weaker assumption that fXn,Ys
s merely

has bounded second-order directional derivatives, i.e., that it is C1,1, is already sufficient
for second-order convergence of fXn,Y

LR (λ∗), also see Zlobec, 2005. In the special case
where the fXn,Ys

s are convex, β above may take any positive value, i.e., the convergence
is arbitrarily high. Note that β-order convergence of fXn,Y

LR (λ∗) immediately implies β-
order convergence of the LBS LSPXn,Ys

s at unconstrained feasible points (and in particular
at unconstrained minimizers), because around such points fn

DE, i.e., the optimal value of
DEn, is equivalent to min

x∈Xn

∑
s∈S f

Xn,Ys
s (x), also see Corollaries 2 and 3 of Kannan and

Barton, 2017a. Furthermore, β-order convergence with respect to W(X n) implies β-order
convergence with respect to W(Zn), since W(X n) ≤ W(Zn). As a result, the same line
of argument naturally also holds for the scheme LSPn

s := LSPXn,Yn
s

s , which for any X n

produces stronger bounds than LSPXn,Ys
s . Hence, the relaxations fXn,Yn

LR (λ∗) are at least
second-order convergent, and Corollaries 2 and 3 of Kannan and Barton, 2017a ensure
second-order convergence of LSPn

s at unconstrained feasible points. The following example
demonstrates the improvement of convergence order of LSPn

s over SPn
s .

Example 4.4. Take the problem from Example 4.3. The optimal dual values for this
problem are λ∗

s = (2,−2), such that the objectives of LSPn
s are fs(xs)+λsxs = (xs∓

1)2±2xs = x2
s+1. Hence, both subproblems are solved at xLSPn

1 = xLSPn

2 = xDEn
= 0,

and the difference in objective values is:

fn
DE − fn

LSP = 1− 0.5
(
(0 + 1)2 + (0 + 1)2

)
= 0,

i.e., LSPn
s is exact and as such has arbitrarily high convergence order at the uncon-

strained minimizer xDEn .

Note that the arbitrarily high convergence order in Example 4.4 results from the fact that
the scenario value functions fX ,Ys

s are convex. If fX ,Ys
s are not convex, at least second-order

convergence is guaranteed by the previous arguments.
Several results from nonlinear parametric programming provide different regularity con-

ditions under which fXn,Ys
s are C2. In particular, if we assume f is C2, and that the

second-order sufficient condition (SOSC):

∇f(zDE) = 0

∇2f(zDE) ≻ 0
(SOSC(zDE))

holds at an unconstrained minimizer zDE = (xDE,yDE) of DE, the fact that fXn,Ys
s are C2

follows from the Implicit Function Theorem (Fiacco, 1983, cf., e.g., Corollary 3.2.3).
Other variants of the Implicit Function Theorem provide similar results for unconstrained

minimizers that do not satisfy SOSC(zDE), e.g., Theorem 3.3 of Ginchev, Torre, and Rocca,
2009, or even for constrained minimizers, satisfying certain regularity conditions, related
to the growth of the Lagrangian of f , e.g., Fiacco, 1983 and Stechlinski, Khan, and Barton,
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2018.
We next show how the stronger convergence properties of the LBS LSPn

s can be in-
corporated into MUSE-BB via an adaption of the lower bounding problems subproblems
LPn

s . Recall that LPn
s result from three subsequent levels of relaxation: after dropping the

NACs from DEX ,Y
NAC (i), the resulting subproblems SPn

s are further relaxed via McCormick’s
method (ii) and outer approximation (iii), resulting in the linear lower bounding problems
LPn

s . In this context, dualizing the NACs, corresponds to replacing the subproblems SPn
s

with LSPn
s , and performing the subsequent relaxations. Note that the only difference be-

tween SPn
s and LSPn

s are the additional terms λ⊺
sxs. The McCormick relaxation of the

sum of the original, nonlinear objective fs(xs,ys), and the linear term λ⊺
sxs is simply

f cv,n
s (xs,ys) + λ

⊺
sxs (cf. Proposition 2 of Bompadre and Mitsos, 2011). Next we consider

the subtangents of these terms: if ∇̌f cv,n
s is the subgradient of f cv,n

s , used in the origi-
nal instance of LPn

s , then ∇̌f cv,n
s + λs is a valid subgradient of f cv,n

s (xs,ys) + λ
⊺
sxs (cf.

Proposition 2.3.3 of Clarke, 1990). As a result, replacing SPn
s with LSPn

s in MUSE-BB
is equivalent to adding λs to the coefficients of xs in the first set of constraints, of the
subproblems LPn

s .
While conceptually, the multipliers can be updated by performing dual iterations with

these modified linear lower bounding subproblems, such updates will generally not con-
verge to the optimal multipliers of the original problem LSPn

s . Even though convergence
over a sequence of nodes can be expected, as the node size diminishes and the McCormick
relaxations, and linear relaxations converge towards the original functions, such a conver-
sion in the limit may not be sufficient to yield second-order convergence of the resulting
lower bounding scheme.

In summary, similar to PBDAs, the LBS used in MUSE-BB may be made second-
order convergent at certain minimizers by dualizing the NACs instead of dropping them.
However, the use of optimal dual multipliers λ∗ appears to be a requirement for second-
order convergence, and, as already pointed out in Section 4.4.1, obtaining such multipliers
is generally very challenging. The fact that SPn

s can be interpreted as an instance of LSPn
s

with the suboptimal multipliers λ = 0, indicates that suboptimal multipliers may result in
a first-order convergent LBS, also see the related result on a Lagrangian dual-based LBS
for general nonlinear programming problems in Theorem 6 of Kannan and Barton, 2017a.
While it may be sufficient to limit multiplier updates to small nodes suspected to contain
the neighborhoods of critical minimizers, we leave the investigation of such approaches for
future work.

4.6. Computational Results

We now present computational results obtained with the parallelized decomposition algo-
rithm MUSE-BB, and outline how it compares against solving the deterministic equivalent
formulation DEX ,Y with the standard version of MAiNGO. MUSE-BB performs upper
bounding based on the subproblems SPn

s , and OBBT, lower bounding, and DBBT, based
on the separable subproblems LPn

s . All scenario subproblems are solved simultaneously,
using one thread per scenario. MAiNGO performs upper bounding based on DEn and all
other routines based on a linearization of DEn, using a single thread.

We do not compare with other deterministic global solvers as these generally employ
different routines for management of the B&B tree, generating relaxations of individual
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functions, and solving individual lower and upper bounding problems, distorting the effect
of the decomposition. Further, we focus our computational experiments on the effects
of individual algorithm parameters, rather than conducting larger-scale computational
studies, as the latter would require access to a library of two-stage test problems, which
is currently unavailable. While previous works do consider some larger-scale problems,
the implementations are either unpublished (e.g., the test library “GOSSIP” from Kannan,
2018) or a generic formulation is given while the concrete problem data is not (see, e.g.,
Section 7.1 in Li and Grossmann, 2019b).

We consider variants of a simple test problem with Nx = Ny = 1 and Ns = 4, 8, and 16,
i.e., with different size based on the number of scenarios. The test problem is a simplified
design and operation problem for a combined heat and power (CHP) system, based on
stochastic heat and power demands. Scenarios for demand data are generated from a
seeded pseudorandom sampling, ensuring identical instances upon repetition for a given
Ns value. The problem involves nonlinearities related to economies of scale, thermal and
electrical efficiencies, and the implementation of a minimal part-load constraint. A detailed
description of the problem is given in Appendix B.

We focus on the performance difference of the lower bounding routines, hence all exper-
iments are performed with initial points based on dense uniform sampling of 1000 values
in each of the x and ys domains, which always results in εf -optimal initial points, that
are never improved during the course of the algorithm. We use the default settings of
MAiNGO, including a relative optimality tolerance of 1%. All computational experiments
are performed on the RWTH Compute Cluster “CLAIX-2018”. Each compute node has 2
Intel Xeon Platinum 8160 Processors with 2.1GHz, 24 cores each, i.e., there is a total of
48 cores per compute node, and 4GB of main memory per core. In initial tests we ob-
served significant variation of run times, both for MAiNGO and MUSE-BB. We attribute
this variation to execution on particular – likely overloaded – compute nodes which con-
sistently require longer solution times compared to other compute nodes. To reduce the
effect of this variation, we repeat the solution of each considered instance 20 times and
report median values of the resulting solution times and optimality gaps.

4.6.1. Importance of Branching Priority

Initially we will focus on the case kmax = 1, i.e., we branch only on second-stage variable in-
stances that either produce infeasible subproblems or produce the highest strong-branching
score. This means each multisection of second stage variables results in at most 2 child
nodes being created, i.e., as in a standard B&B algorithm like MAiNGO.

In problems like DE, exhibiting two-stage structure, the first-stage variables appear in
all of the scenario subproblems, while the second-stage variable instances only appear in
one, each. This suggests a higher importance of branching on first-stage vs. second-stage
variables, especially with increasing Ns. In B&B algorithms, the priority with which vari-
ables are branched is typically controlled via branching priorities for individual variables,
which are multiplied with the relative interval width before selecting a variable to branch
on, also cf. the description of Subroutine 1. As a result, it seems intuitive that B&B
algorithms solving DE may generally benefit from relatively high branching priorities for
the first-stage variables compared to the second-stage variables, independent of whether
decomposition is used or not. For this reason, we compare how MAiNGO and MUSE-BB
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perform with different branching priority ratios

ρ =
first-stage branching priority

second-stage branching priority
,

which in the present case (Nx = Ny = 1) correspond to the branching priority of x (the
priority for ys being 1).

Fig. 4.3. Variation of solution time for de-
terministic equivalent (MAiNGO) and par-
allel decomposition (MUSE-BB) with ρ for
Ns ∈ {4, 8, 16} over 20 runs each. Parame-
ter combinations without data points did not
terminate within 3600s, also see Tab. 4.1.

Tab. 4.1. Median B&B wall times in seconds
over 20 runs, or remaining relative optimality
gaps in % (computed as 1 - ratio of lower to up-
per bound) after 3600 s for solving the CHP siz-
ing model with different number of scenarios and
branching priorities, using MAiNGO and MUSE-
BB. Two out of the 20 runs for the instance
Ns = ρ = 16, solved with MUSE-BB, timed out.
The median is computed with respect to the re-
maining 18 runs. Minima for each column (high-
lighted in bold) indicate that the performance of
MUSE-BB relatively to MAiNGO improves with
an increase of scenarios, and thus problem size.

algor. MAiNGO MUSE-BB

ρ\Ns 4 8 16 4 8 16

1 1.7 145 17% 2.6 2.4% 20%
2 1.1 77 8.8% 0.82 62 7.6%
4 1.1 59 4.6% 0.42 12 2.8%
8 1.4 55 3.7% 0.33 4.3 1292

16 2.2 98 3.8% 0.43 3.5 765
32 3.9 142 4.3% 0.75 5.2 329
64 8.2 342 5.0% 1.6 7.8 295

128 16 550 5.7% 3.0 14 436

Fig. 4.3 shows the wall times spent in B&B when using MAiNGO and MUSE-BB on
problem instances with Ns ∈ {4, 8, 16}. Both individual times (colored dots), as well as
the median times (horizontal lines) are depicted. Tab. 4.1 lists the median wall times and
relative gaps for instances which do not terminate within the time-limit of one hour. In
general, the ρ values minimizing average wall time for each scenario are much lower for
MAiNGO than for MUSE-BB. However, low ρ values lead to significantly worse perfor-
mance for MUSE-BB than for MAiNGO, e.g., all runs for (Ns, ρ) = (8, 1) time out after
one hour with a median remaining gap of 2.4%. For Ns = 16, all instances solved with
MAiNGO time out, while for MUSE-BB almost all instances with ρ values above 4 ter-
minate (with the exception of two outliers for ρ = 16). This indicates the importance of
appropriate branching priorities when solving stochastic problems in general, and when
using MUSE-BB in particular. When comparing the best ρ values for each scenario (bold
in Tab. 4.1), MUSE-BB outperforms MAiNGO in terms of wall time by a factor of 3.5
and 15 for Ns = 4 and Ns = 8, respectively. For Ns = 16 the value is expected to be
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significantly larger than 3600/295.3 ≈ 12.
Even for these relatively small problem sizes, the performance improvement of MUSE-

BB over MAiNGO is already comparable to, or even exceeds the number of scenarios and
thus the number of used threads. This implies that MUSE-BB can be more favorable than
more general parallelization approaches such as, e.g., the MPI parallelization of MAiNGO,
where open nodes are processed by different CPUs (not used in this chapter). While
such general parallelization approaches are more widely applicable, they do not exploit
the special problem structure of DE. Consequently they may be used in conjunction with
the parallel processing of individual B&B nodes presented in this chapter to optimally use
computational infrastructure.

The results indicate that optimal branching priority ratios (i.e., ρ values resulting in
minimal median wall time) may increase with the number of scenarios considered. Nev-
ertheless, a projection-based approach, where only the first-stage variables are branched
(corresponding to ρ → ∞) appears unfavorable, as wall times increase significantly for
large ρ-values.

4.6.2. Effect of Multisection

We next consider the effect of the multisection parameters kmax, and τ . Recall that every
time a second-stage variable is selected for branching, we solve the 2Ns independent sub-
problems, resulting from the multisection involving the corresponding Ns variable instances
for different scenarios. We then use the results to compute strong-branching scores σs for
each scenario, and create up to 2kmax child nodes, with the actual number being controlled
by the value of the strong-branching threshold τ ∈ (0, 1], i.e., we reject scenarios with a
strong-branching score below τσs, see Section 4.4.4.

For each Ns value, we take the three ρ values for which MUSE-BB performed
best at kmax = 1, and perform further experiments for kmax ∈ {2, 4, 8}, and τ ∈
{0.1, 0.2, 0.5, 0.8, 1}. Increasing values of kmax, and decreasing values of τ allow a larger
number of child nodes to be created from each multisection, i.e., the maximum is 28 = 256
for (kmax, τ) = (8, 1). We point out that multiple variables may achieve the maximum
strong-branching score. Hence, even for τ = 1, the settings kmax = 1, and kmax > 1, may
produce different B&B trees (and thus wall times) for a given problem instance, as the
latter setting allows creating more than 2 child nodes, while the former does not.

As before, we repeat the solution for each parameter combination 20 times. Since com-
binations with Ns = 4, and Ns = 8, show no clear trend for the effect of kmax, or τ , we only
focus on combinations with Ns = 16, the results of which are depicted in Fig. 4.4. The B&B
wall times of all investigated combinations are visualized in Fig. C.1 in Chapter C. Only a
small set of parameter combinations results in improvements over the best median wall time
for kmax = 1, (i.e., 295 s for ρ = 64). However, these improvements are mostly insignificant,
with the best median wall time of 272 s (achieved for (kmax, ρ, τ) = (4, 32, 1)) corresponding
to an improvement of less than 8%. For the remaining parameter combinations median
wall times remain the same or increase. While combinations with (Ns, kmax) = (16, 2) show
no clear trend for the effect of τ , for (Ns, kmax) = (16, 4), and (16, 8), an increase of τ results
in reductions of wall time. We point out that setting the strong-branching threshold τ to
a value of 1 produces very similar results as setting kmax to 1, since only bisections that
produce the highest strong-branching score may be selected. In fact, for the considered
parameter combinations, the total number of iterations for kmax > 1 only depends on τ ,
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Fig. 4.4. Variation of solution times for solving the CHP sizing problem using MUSE-BB with
kmax ∈ {1, 2, 4, 8}, and τ ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest
median wall times for (kmax, Ns) = (1, 16). For each parameter combination, a set of 20 runs is
performed. For (kmax, ρ, τ) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2, and 3 runs timed out
after 3600 s, respectively. Medians with respect to the remaining runs are depicted as horizontal
black lines and the lowest median time for kmax = 1 is depicted as a dashed red line for reference.
Increasing kmax generally results in larger wall times, and for kmax = 4 and 8, increasing τ results
in smaller wall times.

with the corresponding values being around 0.06% lower than those for kmax = 1.
For the considered problem, increasing kmax and reducing τ tends to result in increases

of median wall times, however, the generality of this finding needs to be investigated with
a larger group of problems. In particular, it is conceivable that for problems in which
multiple variable instances have a comparatively strong effect on the objective or feasible
set, values of kmax > 1 and τ < 1 may be preferable.

For kmax = 1 or τ = 1, the behavior of MUSE-BB is very similar to that of a standard
B&B algorithm solving the deterministic equivalent with a strong-branching heuristic.
While this is not commonly done, range reduction similar to that of MUSE-BB, i.e., using
the intersections of variable domains from rejected bisections for the selected one, may also
be done on the basis of full-space bounding problems within classical strong-branching.
Whereas MUSE-BB solves smaller, independent subproblems, the bounds obtained from
such an adapted strong-branching routine in a standard B&B are naturally stronger. This
trade-off appears to be worth further study in future work.

4.6.3. Scaling with Ns

As we pointed out in Section 4.1, the fact that MUSE-BB employs a B&B search in the
full variable space implies that the number of nodes visited, and thus computational effort,
scales exponentially with Ns in the worst-case. This is despite the fact that the proposed
multisection branching allows processing an exponential number of nodes with an effort
that is linear in Ns, since each of the resulting nodes may need to be further branched and
processed.

The computational results from previous sections confirm this expected superlinear scal-
ing with Ns, but also highlight the superiority of MUSE-BB over the solution of the de-
terministic equivalent via MAiNGO. For MAiNGO the computational time of the best
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parameter combinations increases by a factor of 50 (55 s / 1.1 s) when going from Ns = 4
to Ns = 8.(cf. bold times in Tab. 4.1). In contrast, for MUSE-BB, the corresponding
factor is only 10.6 (3.5 s / 0.33 s).

The optimal value of ρ appears to scale approximately linearly with Ns. Thus it may
appear that for large numbers of scenarios, MUSE-BB will behave somewhat like a PBDA,
in the sense that branching is done primarily on x. However, recall that each time a
particular second-stage variable instance is selected for branching, the current implemen-
tation chooses all other instances of that variable for multisection. Since the number of
second-stage variable instances increases linearly with Ns, a fixed value of ρ would thus
result in more frequent branching on a given second-stage variable instance. Therefore the
observed increase of ρ does not necessarily imply a more frequent branching of x, but can
rather be seen as a compensation for the above-mentioned behavior. Furthermore, unlike
PBDAs, MUSE-BB avoids the global solution of subproblems. This difference in compu-
tational effort complicates direct comparisons based on individual iterations of MUSE-BB
and PBDAs. Again, a more comprehensive comparison with a larger set of test problems
will be needed to determine which class of algorithms is best suited to different types of
problems.

4.7. Conclusion

In this chapter, we presented MUSE-BB, a multisection B&B-based decomposition algo-
rithm for the deterministic global optimization of general nonconvex nonlinear two-stage
problems. We prove finite εf -convergence, show favorable convergence order of our lower
bounding scheme, compared to existing algorithms, and provide initial computational re-
sults indicating good scalability of MUSE-BB with the number of scenarios.

Existing decomposition algorithms for two-stage nonconvex MINLP problems (Kannan,
2018; Cao and Zavala, 2019; Li and Grossmann, 2019b) have been classified as PBDAs
(Robertson, Cheng, and Scott, 2020; Robertson, Cheng, and Scott, 2024), since they all
employ spatial B&B in the first-stage variables. PBDAs achieve this by solving decompos-
able subproblems of both first- and second-stage variables in each node. To obtain good
lower bounds, these subproblems are solved globally via a nested spatial B&B. Instead, we
propose to branch on both first- and second-stage variables within a single B&B tree, and
to further relax subproblems, avoiding duplicate branching on first-stage variables, and
the nesting of spatial B&B procedures. We either branch normally on a single first-stage
variable, or we simultaneously branch on multiple second-stage variables from different
scenarios. While such multisection produces an exponential number of child nodes, the
total number of distinct subproblems is linear in the number of bisected variables, by
virtue of the decomposition. Thus, we only need to process the distinct subproblems and
can generate child nodes by appropriately combining the subproblem results. To avoid an
excessive number of child nodes with poor lower bounds, we only use a subset of bisections
(reverting the remaining ones). We select the bisections based on their associated strong-
branching scores, which are readily available after processing. This allows to only generate
child nodes corresponding to the most promising bisections with highest strong-branching
scores.

Our theoretical results show that by branching on all variables, the lower bounding
scheme of MUSE-BB generally has a convergence order of one, if all functions are Lipschitz.
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This is in contrast to lower bounding schemes of existing decomposition algorithms, which
may have convergence orders below one, in general (Robertson, Cheng, and Scott, 2024).
Whether or not this improved convergence order actually translates into an advantage
with respect to the occurrence of clustering is however not clear at this point, and requires
further investigation.

We perform initial computational experiments with a small test problem, which despite
its size still incorporates relevant nonlinearities found in applications. Our results highlight
the importance of choosing appropriate branching priorities for both general B&B and de-
composition algorithms. Moreover, the results show that even for this small problem and
small numbers of scenarios, MUSE-BB can significantly outperform the standard version of
our open-source deterministic global solver MAiNGO, applied to the deterministic equiva-
lent formulation. For the considered problem instances, the best wall times of MUSE-BB
are achieved when essentially limiting the number of child nodes resulting from multisec-
tion to two. In this case, MUSE-BB behaves very similar to a B&B algorithm solving
the deterministic equivalent using a strong-branching heuristic that employs certain range
reduction with the rejected bisections. Naturally a comparison of MUSE-BB with such a
heuristic constitutes promising future work.
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5.1. Conclusion

Designing energy systems for operation in uncertain or variable conditions requires accurate
modeling, tractable problem formulations, and efficient solution algorithms of the resulting
optimization problems. This thesis addresses open challenges and provides software for all
of these areas.

In Chapter 2, we motivated and presented a new framework for structured energy sys-
tem modeling called COMANDO. By combining desirable features from algebraic modeling
languages (AMLs) and differential-algebraic modeling frameworks, COMANDO offers ad-
vanced modeling capabilities, not available in existing energy system modeling frameworks.
The implementation of COMANDO as an open-source Python package allows users to in-
corporate customized routines for model creation, problem formulation and transformation,
and solution. Furthermore the existing set of interfaces to AMLs and solvers can be eas-
ily extended by domain experts to interface with additional software. We demonstrated
the broad applicability of COMANDO via four case studies: the greenfield design and
operation of an industrial energy system, demand response of a building energy system,
waste-heat integration into a district heating network, and globally optimal operation of
an organic Rankine cycle (ORC).

In Chapter 3, we showcased how COMANDO can be applied to create detailed com-
ponent and system models for an air-cooled geothermal ORC. Due to the variability of
ambient temperature, the ORC design needs to account for a wide range of operating con-
ditions. We build a detailed model of the overall process by aggregating models for the
pump, heat exchangers, turbine and air-cooled condenser. The component models incor-
porate correlations for accurate prediction of operational behavior and the resulting costs,
which account for changes in design quantities, as well as varying ambient conditions. We
formulate an optimization problem of the form TSP, with the aim of maximizing expected
total annualized revenue by simultaneously optimizing the design and operation under the
consideration of multiple ambient temperatures. Whereas previous works frequently treat
the design and operation of ORCs sequentially, consider only on individual system compo-
nents in detail, or use nondeterministic approaches for optimization, we demonstrate that
the problem we formulate can be optimized globally despite the high level of detail. We
show that systems designed for individual operational scenarios are generally infeasible,
but also, that the results of such scenario-analysis provide guarantees on the quality of
the solution to the overall problem, where multiple operating conditions are considered
simultaneously.

In Chapter 4, we propose a new decomposition algorithm termed MUSE-BB, which
addresses recent observations of potential issues with state-of-the-art decomposition algo-
rithms for the general, nonconvex form of TSP. While these algorithms aim to achieve
scalability by projecting the original problem into the space of first-stage variables (corre-
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sponding to design decisions in our context), this approach may suffer from both practical
and theoretical drawbacks. Instead, we propose an alternative partitioning procedure that
considers both stages (i.e., design and operation) explicitly. To do this efficiently, we pro-
pose to perform multisection, i.e., simultaneous branching, on all scenario instances of
a particular operational variable. We show that the convergence order of the resulting
lower bounding scheme is generally higher than in existing methods, which indicates that
MUSE-BB may be less likely to suffer from clustering. Numerical results show that even
for a small test problem, using MUSE-BB is generally faster than solving the deterministic
equivalent using the standard version of our state-of-the-art B&B solver MAiNGO, both
in CPU as well as wall time. Furthermore, the constant size of subproblems and parallel
nature of MUSE-BB resulted in more significant improvements with an increasing number
of considered scenarios. While further experiments with larger problems are warranted, a
similar trend we expect a similar trend as computational complexity increases superlinearly
with problem size.

The contributions of this thesis improve several parts of the workflow for modeling and
optimizing the design and operation of of energy systems under uncertainty. As we have
shown, some realistic energy system design and operation problems can already be ad-
dressed with the tools presented in this thesis, however, their use can require a significant
level of expertise. Further research to sharpen our understanding of good modeling prac-
tices and the impact of algorithmic parameters may help guide users, or even allow for
automation of certain parts of the workflow, thus lowering the barrier to entry.

5.2. Outlook

In the following, we propose directions for future work. In particular, we suggest extensions
and improvements to COMANDO, emphasize the need to better understand how differ-
ent modeling choices affect computational tractability, suggest several enhancements for
MUSE-BB, and highlight the particular importance of branching priorities in design and
operation problems. Finally we point out the need for further research on the implications
of low convergence orders in projection-based decomposition algorithms (PBDAs), and
outline, how some of the other potential issues with existing PBDAs could be addressed.

Via its MAiNGO interface, COMANDO provides access to MUSE-BB, and thus, to a de-
composition method for generic energy system design and operation problems of the form
TSP. Furthermore, MAiNGO offers an MPI parallelization of its B&B algorithm. This
tree-parallelism allows for distributed solution of deterministic equivalent problems and
can even be employed in conjunction with the node-parallelism of MUSE-BB. Naturally,
additional interfaces to other state-of-the-art methods such as those of Kannan, 2018; Cao
and Zavala, 2019; Li and Grossmann, 2019b, or to existing software packages for MILP de-
composition methods (Gamrath and Lübbecke, 2010; Kim and Zavala, 2017) or parallelized
solution of the deterministic equivalent (Munguia, Oxberry, and Rajan, 2016) would be
desirable. Being able to use multiple solution approaches from COMANDO would enable
computational comparisons for different problem classes; in particular, offering insights
into which approach is preferable in different settings, e.g., depending on the number of
design and operational variables, and scenarios. To this end, the collection of relevant test
problems from the literature seems desirable. While the current focus of COMANDO is
on combined design and operation, its infrastructure is already capable of supporting al-
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ternative uses, such as system analysis, or detailed operational optimization (e.g. Caspari
et al., 2019), and can in principle be further extended to address multiperiod problems
such as capacity expansion, or other approaches to long term planning (e.g. Baumgärtner
et al., 2019b).

Modeling a complete energy system such as the ORC from Chapter 3 at a sufficient
level of detail requires a lot of attention to ensure the resulting optimization problems
remain tractable. While this issue is evidently not exclusive to optimal design and opera-
tion under uncertainty, the latter setting is especially susceptible to problem tractability.
Apart from the possibility of applying dedicated solution algorithms like MUSE-BB to
improve tractability, it will thus also be crucial to further develop modeling practices that
explicitly take into account the impact of modeling choices on tractability. In partic-
ular, component-oriented modeling approaches may deteriorate tractability compared to
monolithic approaches when the coupling of component models introduces many additional
variables and constraints. One approach we already employed to address this in Chapter 3
is to combine component-orient modeling with reduced-space formulations. This hides
intermediate expressions from the optimizer instead of introducing additional variables
that need to be accounted for by the optimizer. Previous work highlighted the benefits of
reduced-, compared to full-space formulations, including the reduced dimensionality of the
space that needs to be partitioned in B&B search, a reduced size of bounding subproblems,
a reduced number of bound tightening subproblems, effects resembling constraint propa-
gation (Bongartz and Mitsos, 2017). Nevertheless, reduced-space formulations commonly
result in reoccurring nonlinear subexpressions which may result in weaker relaxations com-
pared to full-space methods (Tsoukalas and Mitsos, 2014; Najman, Bongartz, and Mitsos,
2021). In particular, this issue may arise when using ANNs for the prediction of fluid
properties and process states (Huster, Schweidtmann, and Mitsos, 2019; Schweidtmann
et al., 2019), as done in Chapter 3: The predicted quantities are expressed as nonlinear
functions of the ANN inputs, and are used for the calculation of several other quantities.
This can be particularly critical when the quality of relaxations is not considered during
training, as two ANNs with a given accuracy may result in vastly different relaxations.
Naturally, similar issues also exist with more classical data-driven models, such as, e.g.,
polynomial fits. To this end, data driven models for the use in global optimization of en-
ergy systems need to explicitly account for relaxation quality. While, the introduction of
auxiliary variables allows for a trade-off between the relaxation quality and problem size,
this process can be extremely time-consuming and error prone. While the introduction
of auxiliary variables can be automated to some extent, much more research is needed to
identify clear guidelines for this process.

Several improvements and generalizations are also conceivable for MUSE-BB. As with
existing decomposition algorithms, our lower bounding scheme may be improved by dual-
izing the coupling (nonanticipativity) constraints instead of dropping them. As we showed
in Chapter 4, the resulting lower bounding scheme would have second-order convergence
at minimizers satisfying certain regularity conditions. However, this extension requires
optimal dual multipliers, which are expensive to compute in general. The details of when
such an extension is beneficial and how it can be implemented efficiently still need to be
clarified. Furthermore, it may be interesting to generalize the current implementation to
problems with different numbers of second-stage variables and constraints. A related ex-
tension would allow branching on arbitrary combinations of second-stage variables from
different scenarios, instead of limiting multisection to scenario instances of a particular
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second-stage variable. Of particular interest is the proper selection of branching priorities
in more general cases. Our computational results confirm our intuition that first-stage
priorities become more important with an increase in the number of scenarios. How-
ever, further research is needed to clarify how the branching priority ratio between first-
and second-stage variables generalizes to more realistic problems and more generally, how
branching priorities should be chosen in design and operation problems. Finally, the de-
composable bounding routines of MUSE-BB may also enable efficient strong-branching in
problems that do not fall into the category of two-stage programming problems, but still
exhibit block structures, coupled by complicating constraints.

An important topic that warrants further investigation is the effectiveness of PBDAs.
Similar to the use of reduced-space formulations in modeling, their use of projection sig-
nificantly reduces the domain to be searched. This is advantageous for scalability but may
potentially incur a reduced convergence order of the lower bounding scheme (Robertson,
Cheng, and Scott, 2020). While current research does not yet permit a clear answer on
the practical implications of this reduced convergence order, one concern is that it may
result in clustering (Du and Kearfott, 1994; Wechsung, Schaber, and Barton, 2014; Kan-
nan and Barton, 2017b). Even if this concern turns out to be unfounded, the duplicate
consideration of first-stage variables in the inner and outer algorithms of current PBDAs
seems wasteful. It is conceivable for a PBDA to globally solve the scenario subproblems in
a procedural manner instead of repeating this process for each node of an outer B&B tree.
This is achievable by maintaining separate B&B trees for each scenario subproblem while
using the respective least lower bounds for bounding. Such an algorithm would still enjoy
the benefits of projection, while avoiding the duplicate search in the first-stage variable
domain and the nesting of two B&B methods.
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Appendix A.

Details on geothermal ORC design
and operation

A.1. Training of ANNs

For this work, we trained ANN surrogate models for the three quantities:

1. rh(∆hrel): off-design turbine efficiency reduction due to enthalpy drop according to
Ghasemi et al., 2013b

2. rV̇ (V̇rel): off-design turbine efficiency reduction due to volume flow rate Ghasemi et
al., 2013b1

3. F−1
T,DES(eh, ec): inverse of mean temperature correction factor for desuperheater, based

on the correlation of Schedwill, 1968 for a single row of finned tubes, also see Kuppan,
2013.

We provide a comparison of training approaches using Keras (Chollet et al., 2015) and
nonlinear least squares regression. The ANNs used for the computational study were
trained using the latter approach.

A.1.1. Data Generation

For the training of both rh(∆hrel), and rV̇ (V̇rel), we used 1000 equidistant data points in
the domain [0.2, 1.2]. For F−1

T,DES, we filter from a grid of 45× 45 equidistant data points
in the domain [0, 1]2 all points that had a not-a-number (NaN) value or that lie above the
line defining the 90% limit, i.e., points (eh, ec) for which

eh > 0.9 ec W

(
−0.9 exp(−0.9/ec)

ec

)
, (A.1)

where W is the principal solution of the Lambert W function, i.e., x = W(x) eW(x). Note
that Eq. (A.1) corresponds to the inverse of Eq. (3.66) in Section 3.1.4.2. We filtered using
Eq. (A.1) instead of Eq. (3.66), as the former is numerically more stable due to the vertical
slope of the limit for eh → 0.9. Along the limiting line we added an additional 100 data
points for a total of 1124 used data points to ensure a good resolution of this region of

1Note that the journal publication is missing a 0 in one of the coefficients, the correct correlation can be
found in the preprint (Ghasemi et al., 2013a)
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Fig. A.1. Top: Training, validation and test data points used for the quantities rh(∆hrel) and
rV̇ (V̇rel). Bottom: Training history for training Keras models with MSE as loss function using
Adam over 10000 epochs.

high slopes. In all cases, the resulting data sets are shuffled and split into 70% training,
15% validation and 15% test points. The resulting data points after normalizing inputs
and outputs to the domain [0, 1] are shown in the top part of Fig. A.1, and in the left part
of Fig. A.2, respectively.

A.1.2. Training with Keras

After preliminary tests, we decided to use a single hidden layer with two tanh-activated
neurons for both rh(∆hrel), and rV̇ (V̇rel), and four tanh-activated neurons for F−1

T,DES. For
comparison with regression training we used sequential Keras models with mean squared
error as loss function, trained using the Adam optimizer (Kingma and Ba, 2014). For each
quantity, we trained ten ANNs. The training histories for the best performing ANNs (i.e.,
the ones with the lowest maximum absolute errors over the test data sets) are shown in
the bottom of Fig. A.1, and the right of Fig. A.2, respectively.

A.1.3. Training via Nonlinear Regression

The training of ANNs can also be formulated as the nonlinear regression problem

minw,b

∑

x∈Xtrain

(f(x)− ANN f (w, b, x))2/|Xtrain| (A.2)

where w and b are the vectors of weights and biases, respectively, f is the function to be
approximated, Xtrain is the training data, and ANNf is the ANN to be trained.
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Fig. A.2. Left: Training, validation and test data points used for the quantity F−1
T,DES(eh, ec).

Right: Training history for training Keras models with MSE as loss function using Adam over
40000 epochs.

We formulated the respective problems for each of the three quantities, and performed
multiple local searches using IPOPT (Kawajir, Laird, and Wächter, 2011) via the mul-
tistart option of BARON (Sahinidis, 2020). For this we allowed the same time as was
used for the training of the best-performing ANN using Keras. The results are given in
Tab. A.1. It can be seen that the ANNs obtained from regression outperform the Keras
training on average. Furthermore, on the test set regression-based ANNs outperform the
best Keras-based ANNs for rV̇ in terms of MSE, and those for FT,DES in terms of both
MSE and MAE.

rh MSE train MSE validation MSE test MAE train MAE validation MAE test
Keras mean 2.565e-05 2.452e-05 2.658e-05 0.01549 0.0136 0.01501
Keras best 6.875e-08 5.957e-08 6.518e-08 0.0006913 0.0005441 0.0006532
regression 7.389e-08 5.301e-08 7.77e-08 0.001394 0.001122 0.001323
rV̇ MSE train MSE validation MSE test MAE train MAE validation MAE test
Keras mean 1.968e-05 2.318e-05 1.999e-05 0.01802 0.01833 0.01637
Keras best 5.171e-06 5.19e-06 4.706e-06 0.007552 0.006692 0.007442
regression 4.439e-06 4.537e-06 4.13e-06 0.008073 0.007215 0.007964

F−1
T,DES MSE train MSE validation MSE test MAE train MAE validation MAE test

Keras mean 0.0001038 0.0001236 0.0001413 0.04251 0.04568 0.04523
Keras best 5.009e-05 5.937e-05 5.767e-05 0.02809 0.02594 0.02587
regression 2.511e-05 1.993e-05 2.243e-05 0.01607 0.0153 0.01559

Tab. A.1. Comparison of the mean squared error (MSE), and maximum absolute error (MAE)
over test, validation, and training data resulting from the ANNs obtained via training with Keras,
and the regression approach, for the three considered quantities.
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A.2. Resulting Processes

The diagrams of temperature over specific entropy for the average-temperature design
(ATD) and the multiple-temperature design (MTD) are shown in Fig. A.3. The ATD
is optimized considering only the average ambient temperature. The resulting design is
optimized for this ambient temperature to such a degree that it constrains operation in
other ambient temperatures to use the same operational states for the working fluid. For
temperatures above approximately 17.49 °C this operational rigidity renders the problem
infeasible under the original assumptions. Allowing for a partial use of the available brine
mass flow and tolerating a violation of the assumed limit of 20 m/s for the shell velocity of
the superheater (maximum velocity about 20.1m/s), operation for ambient temperatures
up to about 22.4 °C becomes possible. However, higher temperatures remain infeasible as
the ACC fans already operate at their peak load. For the MTD such an issue does not
occur: The optimization considers operation at 11 ambient temperatures from −10–40 °C
and allows for the working fluid states to be adjusted to the ambient temperature.
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Fig. A.3. Temperature-entropy diagrams for operation at feasible ambient temperatures for
the average-temperature design (ATD, top), and for all considered ambient temperatures for the
multiple-temperature design (MTD, bottom). In the ATD case, process states are identical for
all ambient temperatures while in the MTD case, operation can be adjusted to the ambient tem-
perature. The values for ṁ, Pnet, pressures and state labels shown correspond to the average and
the lowest ambient temperature (15.85 °C and −10 °C) for the ATD and MTD case, respectively.
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Appendix B.

Test Problem: CHP Sizing

We consider the design of a combined heat and power (CHP) unit, i.e., an equipment
sizing problem whose aim is to satisfy given heat and power demands at minimum cost,
see Fig. B.1. The size of the CHP is expressed as a nominal heat output Q̇nom, which

CHP

ηel

ηth

∑
= 0

∑
= 0

Grid

Ėgas

Q̇out

Pout Pdem

Q̇dem

Pbuy Psell

Q̇diss

Fig. B.1. Conceptual CHP operation

corresponds to the maximum thermal output Q̇out. The actual output at any given point
is determined by a relative heat output Q̇rel:

Q̇out := Q̇nom Q̇rel (B.1)

The energy input to the CHP in terms of lower heating value of natural gas, Ėgas, can be
calculated via the thermal efficiency ηth, which is a function of Q̇nom and Q̇rel:

Ėgas :=
Q̇out

ηth(Q̇nom, Q̇rel)
(B.2)

Following this the power output Pout can be computed via the electrical efficiency ηth,
which is also a function of Q̇nom and Q̇rel:

Pout := Ėgas ηel(Q̇nom, Q̇rel) (B.3)
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The functional form of the efficiencies ηth and ηel is given by:

ηth(Q̇nom, Q̇rel) := ηth,nom(Q̇nom) ηth,rel(Q̇rel) (B.4)

ηth,nom(Q̇nom) := 0.498− Q̇nom

21.17MW
(B.5)

ηth,rel(Q̇rel) := 1.10− 0.0768 (Q̇rel + 0.130)2 (B.6)

ηel(Q̇nom Q̇rel) := ηel,nom(Q̇nom) ηel,rel(Q̇rel) (B.7)

ηel,nom(Q̇nom) := 0.372 +
Q̇nom

21.17MW
(B.8)

ηel,rel(Q̇rel) := 1.02− 0.435 (0.774 Q̇rel − 1)2 (B.9)

A heat shortage, defined as
Q̇short := Q̇dem − Q̇out (B.10)

must be avoided (i.e., Q̇short must be negative). Correspondingly, the power shortage can
be defined as:

Pshort := Pdem − Pout (B.11)

A power shortage can be addressed by purchasing power from the grid, i.e.:

Pbuy := max(0, Pshort) (B.12)

If Pshort or Q̇short are negative, the excess power can be sold to the grid at a reduced
price, while the excess heat can be dissipated into the environment:

Ṗsell := max(0,−Pshort) (B.13)

Q̇diss := max(0,−Q̇short). (B.14)

With these definitions we can formulate a reduced-space problem that contains the
nominal heat output as the only first-stage variable, i.e: x = (Q̇nom) ∈ [1.4MW, 2.3MW],
and the part-load in each scenario as the only second-stage variable, i.e: ys = (Q̇rel,s) ∈
[0, 1].

We choose total annualized costs (TAC) in million AC as the objective function. The
first-stage objective function describes the annualized investment costs (according to an
economy of scales approach) and the second-stage objectives correspond to the annual
operating costs in each scenario:

fI(x) = 149 567AC/a

(
Q̇nom

1MW

)0.9

× 10−6 (B.15)

fII,s(x,ys) = Top( pgas Ėgas,s

+ pel,buy Pbuy,s

− pel,sell Psell,s)× 10−6 (B.16)

Where Top = 6000 h/a, pgas = 80AC/(MWh), pel,buy = 250AC/(MWh), pel,sell =
100AC/(MWh)

We approximate the requirement that the CHP unit must either be inactive or operate
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above a minimal part-load threshold of 50% with quadratic second-stage constraints of the
form

0.0619263− (Q̇rel,s − 0.25115)2 ≤ 0 (B.17)

which restrict the relative outputs Q̇rel,s to less than 0.1%, or more than 50% part-load.
An additional constraint is that

Q̇short,s ≤ 0, (B.18)

also see Eq. (B.10). Note that Eq. (B.17) implies that heat demands corresponding to
part-loads between 0.1% and 50% cannot be satisfied. To ensure the considered instances
have a feasible solution, the randomly generated heat demands are set to 0 if they fall into
this range. Similarly, the generated power and heat demands are capped to the highest
possible production.
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Appendix C.

Effect of effective partition limit kmax

and strong-branching threshold τ
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Fig. C.1. Variation of solution times for solving the CHP sizing problem using MUSE-BB
with kmax ∈ {1, 2, 4, 8}, and τ ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest
median wall times for Ns = 4, 8, and 16, with kmax = 1. For each parameter combination, a set of
20 runs is performed. For (kmax, ρ, τ) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2, and 3 runs
timed out after 3600 s, respectively. Medians with respect to the remaining runs are depicted as
horizontal black lines and the lowest median time for kmax = 1 is depicted as a dashed red line
for reference. Whereas for Ns = 4, and 8, no clear trend is discernible, for Ns = 16, increasing
kmax generally results in larger wall times, and for kmax = 4, and 8, increasing τ results in smaller
wall times.
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