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Understanding the scene is crucial for automated bridge inspection. Traditionally, bridges are measured using
3D sensors that produce large point clouds. Manually interpreting the captured data is time-consuming and
error-prone. This paper proposes an unsupervised and semi-supervised domain adaptation approach for 3D
bridge segmentation using labeled synthetically generated data and no or limited real-world data. To achieve
this, a pipeline was developed for automatically generating artificial scenes of bridges and virtually scanning
them with an artificial sensor. This data, along with real-world data, is utilized for the proposed methods.
In the unsupervised approach, a deep feature alignment method integrates real-world data into the training
procedure. Instead of feature alignment, a semi-supervised method is proposed to guide the training using only
a small amount of annotated real-world data. The findings demonstrate that performance can be enhanced in
an unsupervised manner. However, performance gains are significantly amplified when 10 % of real-world
data is integrated with synthetic data and used in the proposed guided training. The approaches are validated

using two distinct deep learning architectures.

1. Introduction

Bridges are essential components of infrastructure that contribute to
connectivity, trade, accessibility, resilience, tourism, economic growth,
and urban development. Their importance goes beyond the simple
transportation infrastructure, affecting various aspects of society, econ-
omy, and culture [1]. Therefore, it is essential to maintain and invest in
bridges to ensure the continued functionality, safety, and sustainability
of infrastructure networks worldwide. In Germany, for instance, the
federal highway system includes over 40,000 bridges. According to
the March 2023 report of the Federal Highway Research Institute
(BASt) [2], 4.6% of these bridges are classified as being in insuffi-
cient or worse condition. Furthermore, while a considerable number
of bridges are currently in satisfactory or acceptable condition, it is
imperative to maintain consistent monitoring and inspection of these
structures to identify potential issues at an early stage. This process
can be time-consuming and error-prone, but it is necessary to ensure
the safety and reliability of the structures [3].

One possible approach is to automate and speed up the process.
In this scenario, the Scan-to-BIM or Scan2BIM method [4] can help
to produce high quality data in a timely manner to facilitate main-
tenance decision making. Scan2BIM involves creating detailed three-
dimensional (3D) digital models from data captured in the real world

and enriching it with semantic information. The captured 3D data
consist mainly of point clouds, and the first step for Scan2BIM is to
understand the given scene [5]. One of the most common ways to
interpret a scene is to segment it semantically. Deep learning is the de
facto state of the art for solving such perceptual tasks [6].

A disadvantage of deep learning is that it requires a large amount
of training data, which can be costly to produce. The data must first be
collected, which can be difficult in some cases. It is also necessary to
ensure that the data has sufficient variance to cover as many different
scenarios as possible. Once the data has been pre-processed, it needs
to be annotated in the case of supervised learning. The complexity
of the annotation depends largely on the data and the given list of
classes. For example, annotating 3D point clouds is much more time-
consuming and error-prone than annotating 2D images [7]. To avoid
the mentioned disadvantages, one option is to generate data synthet-
ically. However, applying this approach to real-world problems may
not be straightforward due to potential domain gaps. These gaps can
be caused by various factors, such as a lack of realism, a distribution
shift between the synthetic data and the real-world ones, or not being
accurately compared to the complexity and variability of real-world
scenarios. It is worth noting that domain gaps may arise not only when
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irtual scanner

(c) Data captured by a BLK2GO (d) Randomized virtual scanner

Fig. 1. Point clouds acquired by different real sensors (Leica Geosystems) and different
virtual sensors.

transferring synthetic data to real-world data, but also within real-
world data itself. These variations can be caused by different factors,
such as changing sensors, differences in sensor setup, or biases within
the data collection process. All the reasons mentioned lead to variations
in data distribution. Fig. 1 illustrates the differences in distributions
between similar scenes captured by various real and synthetic sensors.

The main idea of learning from different domains is to learn domain
invariant representations by aligning the source and target domains [8].
In [9] transfer learning is divided into three categories: inductive trans-
fer learning, transductive transfer learning, and unsupervised transfer
learning. The categories are mainly distinguished by whether the task
to be solved is different or the domain between the target and the
source. Domain Adaptation (DA), which is a special case of inductive
transfer learning, refers to the training of machine learning models on
data from a different distribution (domain) than the one on which the
model is used. The aim is to improve the performance of the model on
the target domain. According to [10], DA can be further categorized
into four types: closed set, open set, partial, and universal DA. In
the closed set, the source and target domains share the same classes,
whereas in the open set, the source classes are considered to be a subset
of the target classes. The partial DA is the opposite of the open set,
which means the target classes are only a subset of the source classes.
The universal DA assumes no prior knowledge of the source and target
domains.

Most of the work in DA is done with images and mainly with
classification problems. However, dealing with point clouds has some
disadvantages, as mentioned in [11], which further increase the possi-
ble domain gap. A further issue, particularly in the context of bridge
applications, is that the scenes to be processed can be of significant
size. Indeed, some bridges may extend to hundreds of metres in width,
height, or even both dimensions. In Germany, for instance, more than
50% of the federal highway bridges are longer than 30 m, with 7%
exceeding 100 m in length [12]. As a result, the scene must be subdi-
vided into smaller sub-clouds, which further increases the difficulty of
segmenting the bridge and applying DA techniques. This is because it
cannot be guaranteed that the sub-clouds will be of the same sub-part of
the bridge or even of the same semantic class. Moreover, the sub-clouds
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exhibit considerable variation in size and point density.

The main contributions of this paper are the automatic generation of
synthetic training data and an easy-to-use joint optimization procedure
for the semi-supervised reduction of the domain gap for 3D bridge seg-
mentation. First, a generic and fully automated approach for automatic
bridge generation using a component catalog is presented. A 3D scene
can be generated by combining the approach with open-source 3D
objects. The resulting scene can then be measured with a virtual sensor
using virtual viewpoints and ray tracing, which in turn allows for the
automatic generation of synthetic annotated point clouds. In total, 24
artificially measured bridges are generated. Secondly, to illustrate the
extent to which synthetic data (source domain) can enhance semantic
segmentation performance, two real bridges (target domain) were used
for aligning purposes, in addition to eight real bridges for valida-
tion. This allows us to demonstrate the transferability of the acquired
knowledge. Four distinct approaches are employed, comprising two
for Unsupervised DA (UDA) and two for Semi-Supervised DA (SSDA).
In our first baseline, only the source data is used for training and
the trained network is applied to the target domain. For the second
experiment, we follow the idea of feature alignment to allow the use
of target data without supervision. The second baseline experiment
simply mixes the source and target domain randomly using a small
amount of real data within optimization. In contrast to the utilization
of feature alignment techniques, we propose the concept of employing
similar sub-clouds during the optimization process. This involves the
selection of a random synthetic sub-cloud, which is then paired with
a comparable real-world sub-cloud for joint optimization. Our main
contributions can be summarized as follows:

» A automatic pipeline to create bridge environments that take
whole scenes into account, making the approach more realistic,
without the need of existing data.

Automatic generation of annotated point cloud data of the created
scenes without the necessity for human oversight or supervision.
Investigation of the application of closed set DA for the purpose
of 3D point cloud segmentation of large scenes.

Approach for SSDA with only a small amount of annotated target
data.

Extensive experiments in four cross-domain scenarios showing
that our approach achieves state-of-the-art performance.

2. Related work
2.1. 3D semantic segmentation

3D semantic segmentation is a computer vision technique that clas-
sifies objects within a point cloud on a point-by-point basis, providing a
detailed understanding of the point cloud content. Today, 3D segmen-
tation is approached in a variety of ways. A general overview is given
in [13]. In general, these methods can be divided into four different
approaches: projection-based methods, discretization-based methods,
point-based methods, and hybrid methods. In [14] the point cloud is
projected into a spherical image and processed by 2D convolutions. The
point cloud can be discretized into voxels and processed by 3D convolu-
tion [15]. Sparse 3D tensors are introduced in [16] to allow processing
of large discretized scenes with more efficient sparse 3D convolutions.
KPConv of [17] defines kernel points that can be used to process point
clouds directly. Another way to work directly on the point cloud is
introduced in PointTransformer [18]. Here attention mechanisms are
used instead of convolutions. The idea has been extended by using
grouped vector attention and grid-based pooling in [19] and further
optimized by serializing points and an increased receptive field in [20].
In Swin3D [21], the idea of using hierarchical vision transformers
with shifted windows [22], is adapted to 3D. A hybrid method using
different representations is shown in [23], where the spherical and
bird’s eye projections are fused using a KPConv layer.
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Table 1
Overview of point cloud datasets with semantic annotations. Number of classes used
to evaluate and total number of classes annotated in brackets.

Dataset Sensor Scene Points Classes
ScanNet [34] RGB-D Indoor 242 M 20
S3DIS [35] TLS Indoor 215 M 13
Oakland3d [36] MLS Outdoor 1.6 M 5 (44)
Semantic3d [37] TLS Outdoor 4000 M 8
Paris-Lille-3D [38] MLS Outdoor 143 M 9 (50)
SemanticPOSS [39] MLS Outdoor 216 M 14
SemanticKITTI [40] MLS Outdoor 4549 M 25 (28)
SynLiDAR [41] Synthetic Outdoor 19482 M 32
DALES [42] MLS Aerial 505 M 8 (9)
ISPRS [43] MLS Aerial 1.2 M 9
SensatUrban [44] UAV Aerial 2847 M 13 (31)
STPLS3D [45] Synthetic Aerial 150.4 M 18
CLOI [46] TLS MEP 140 M 10
Unnamed [47] TLS MEP 80 M 5 (6)

A general overview of deep learning for point clouds in the con-
struction industry can be found in the following article [24]. It is
evident that the majority of current research is concentrated on indoor
building structures and outdoor roads, which frequently emerge from
autonomous driving objectives, mechanical, electrical, and plumbing
(MEP) systems, or urban scenes. Table 1 presents a selection of publicly
accessible state-of-the-art datasets with a primary focus on 3D semantic
segmentation. The sensing devices and technologies utilized for each
dataset include Terrestrial Laser Scanning (TLS), Mobile Laser Scan-
ning (MLS), Unmanned Aerial Vehicle (UAV) photogrammetry, RGB-D
cameras, and synthetic environments.

Given the unique structure of bridges, it is not feasible to make use
of the presented datasets with their predefined classes to the problem
of semantically segmenting bridges. However, some research has been
conducted on the aforementioned task. Instead of using deep learning
approaches, [25] uses slicing algorithms and detects and segments pier
caps using their surface normal, and beams using oriented bound-
ing boxes and density histograms. To improve efficiency, the authors
propose BridgeNet [26], a 3D deep learning neural network that can
automate segmentation. To address the scarcity of labeled point cloud
data, they create a synthetic dataset to train BridgeNet. However, the
authors focus solely on masonry arch bridges and do not consider the
environment. A weighted superpoint graph method is used in [27].
Again, synthetic data is used and the real bridges are separated from
the environment for validation. The method is further improved in
[28] using deep metric learning methods, but still following the idea
of separating the whole object from the given environment. In [29] a
pipeline for truss bridges using synthetic data is proposed. An adapted
JSNet [30] is trained for semantic and instance segmentation. Like the
others, it uses only the object itself. The [25] data combined with 10
more realistic synthetic bridges is used to train a RandLA-Net [31] in
[32]. The synthetic bridges are virtually scanned using [33].

However, all studies demonstrate that semantic segmentation for
bridges is achievable, even when combining synthetic data. Neverthe-
less, they solely focus on the object and indicate an improvement in
performance when using synthetic data, but do not address the use of
real data or the required quantity.

2.2. Domain adaptation

DA attempts to address the distribution gap by focusing on general
machine learning. While UDA only allows the source domain to be
labeled, SSDA involves learning to classify unseen target data with a
few labeled and many unlabeled target data along with many labeled
source data from a related domain [48]. Semi-Supervised Learning
(SSL) aims to make use of the large amount of unlabeled data with
limited labeled data to improve classifier performance. The primary
distinction between SSL and SSDA lies in the nature of the data utilized
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for analysis. SSL employs data derived from a single distribution,
whereas SSDA utilizes data from two distinct domains, each exhibiting
a domain discrepancy as a fundamental characteristic [49].

Approaches to tackle DA can be broadly divided into shallow and
deep architectures [50]. In shallow DA, the discrepancy is reduced
either by reweighting the source samples and training on the weighted
source samples [51], or by generally learning a common shared space
in which the distributions of the two datasets are matched [52]. Deep
DA typically uses neural networks to bridge the domain gap. There
are discrepancy-based, reconstruction-based, and adversarial-based ap-
proaches. Several methods in the Deep DA category use distance met-
rics borrowed from shallow approaches to measure discrimination be-
tween feature representations at different layers of the network.

One way to ensure that the representations learned by a model are
consistent across different data distributions or modalities is to use a
commonly shared feature space. This can be obtained through feature
alignment methods. Many approaches use a distance metric, such as
Maximum Mean Discrepancy (MMD) [53], KL divergence or Earth
Mover’s Distance (EMD) (also known as Wasserstein distance) [54],
to quantify the disparity between the source and target domains. The
authors of CORAL [55] introduced an unsupervised domain adaptation
technique that utilizes a linear transformation to align the second-order
statistics of the source and target distributions. They also extend this
method to Deep CORAL [56], which learns a nonlinear transformation
to align correlations of layer activations in deep neural networks. The
correlation loss looks as follows:

1

Le=751Cs = Crll €Y
With || - ||fr being the squared matrix Frobenius norm and the feature
covariance matrices Cg and C; for the source and target data:

Cg = FsAFY and Cp = FpAFL @)

with A being the centering matrix. In [57] a Progressive Feature
Alignment Network (PFAN) is proposed to align the discriminative
features across domains progressively and effectively, via exploiting the
intra-class variation in the target domain.

Both [58,59] are using higher-order correlations since using second-
order or lower order statistics might not be enough for complex and
non-Gaussian distributions. The complexity of the introduced trico-
variance grows exponentially with the dimension of the latent feature
representation (9(z%). Regarding to [60], measuring correlation align-
ments with the Euclidean metric (Eq. (1)) is inadequate since it fails
to capture the internal geometry of the data. For this reason, the
Minimal-Entropy Correlation Alignment (MECA) is introduced using
the log-Euclidean distance, which serves as a geodesic distance. This
changes the calculation of the covariance matrix as follows:

log _ : C C T
€ = Udiag(log(4; ), ... .log(A;5))U

3)
log _ s C; C T
C% = vdiag(log(A), ... log(A )V

with U and V' are the matrices which diagonalize Cg and Cr, respec-
tively, and Aics s /1,.CT for i = 1,...,d are the corresponding eigenvalues.
Instead of correlation alignment, maximizing Mutual Information
(MI) refers to the process of increasing the amount of information
shared between two random variables. It aims to find the optimal
configuration of the variables that maximizes the MI between them.
MI measures the dependence between the variables and can be used in
various fields such as information theory, machine learning, and data
analysis. MI is closely related to the entropy H and is obtained by
subtracting the marginal entropy of both sets from the joint entropy:

MI(X;Y)=H(A,B)— H(A)— H(B) 4
= H(Y|X)— H(Y) ®)
- / / p(x. y)log <M> dxdy ®)

yJx p(x)p(y)

In [61], a random transformation is used to obtain a pair of images,
and the goal is to maximize the MI between the class assignments
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of each pair. This way the authors can classify and segment images
unsupervised. [62] follows the same idea but introduces an adversarial
training scheme and operates on superpixels instead of single pixels.
A module has been developed with the aim of maximizing MI, with
the intention of learning features that are invariant across domains
and sharing segmentation knowledge between them in [63]. The au-
thors use this approach for the segmentation of brain structures from
magnetic resonance images.

For 3D DA, an overview of its application to LiDAR perception for
autonomous driving is given in [64]. In order to transfer the knowledge
already gained from the 2D field, a common approach is to transfer
the point cloud to a 2D representation. In [65] the point cloud is
transformed into the bird’s eye view and a deep cycle-consistent gener-
ative adversarial network (CycleGAN) [66] is used to solve the domain
adaption task between real and synthetic generated point clouds, to
detect vehicles. The point cloud is transformed into the spherical view
in [67] and a three staged pipeline containing learned intensity render-
ing, geodesic correlation alignment, and progressive domain calibration
is proposed for reducing the domain shift. For geodesic correlation
alignment, they feed a batch of synthetic data and a batch of real data
into the network at each training step. The synthetic one is labeled,
while the real one is not. The focal loss [68] is computed on the labeled
batch and the geodesic distance [60] between the synthetic and the real
one is computed. The total loss is the combination of both losses. Both
use the real-world KITTI dataset [69] to validate their results.

There are already some approaches that remain within the 3D space.
In [70] a concept is proposed that involves distorting certain areas
of the input shape and then using a neural network to reconstruct
it, demonstrating a large improvement over previous work on both
synthetic and real furniture data. To reduce the domain gap in both
the input space and the feature space, [71] developed a point cloud
style transfer network and a feature discrimination network based on
the CycleGAN architecture. The authors [72] suggested an approach
to unsupervised domain adaptation on point clouds, which involves
utilizing a self-supervised task that focuses on acquiring knowledge
about geometry-aware implicits. A method is proposed to synergize
contrastive learning and optimal transport for effective UDA in [73].
They focus on the reduction of domain shift and the learning of trans-
ferable point cloud embeddings. For object detection, a mixing method
between domains is proposed in [74] that generates an intermediate
domain to learn invariant features.

3. Data generation

A pipeline was developed to automatically generate 3D artificial
scenes of bridges. The entire data generation pipeline is shown 2.
This pipeline employs a bridge component catalog for the individual
subparts of bridges, as well as open-source data models for common
environmental objects, in order to generate complete scenes. The full
scene is generated using a simple rule-based approach that uses all
3D objects. The bridge is scanned using virtual sensor models and
scan positions to generate a fully annotated synthetic point cloud. The
following subchapters describe the subparts in more detail.

3.1. Bridge model generation

Bridges consist of several main components. The superstructure
spans the obstacle, while the abutments support the superstructure at
the ends of the bridge. For longer bridges, piers are added to support
the superstructure between the abutments. The deck is the surface of
the bridge on which people, vehicles, or other loads travel. Railings are
added to the sides for safety reasons to prevent people or vehicles from
falling off the bridge. The most prominent and important classes for
our work have been covered, and we will not discuss any other bridge
classes here. The relevant parts generated can be seen in Fig. 3. All
components are modeled as parametric families in Autodesk Revit [75]
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and consolidated into a component catalog.

To ensure accurate and complete modeling and correct component
assignment, and to define and process both geometric and alphanu-
meric information of the bridge elements, Autodesk Dynamo [76] and
the data management package Clockwork [77] are used for genera-
tion. Geometric relationships between different components are defined
within a cartesian coordinate system, and the terrain model is aligned
with the geometric features of the bridge model. To emulate natural
terrain characteristics, the z coordinates of selected points within the
terrain are randomized uniformly. The parameters height (4), length
(1), width (w), and thickness () of the supports are pivotal input
variables for bridge generation. These values are systematically chosen
from standard cross sections, thus ensuring conformity with industry
norms [78]. The adjustment process begins with both abutments, fol-
lowed by the superstructure, columns, and finally the topology of the
terrain.

3.2. 3D scene generation

In order to enhance the realism of the scene and to introduce addi-
tional elements that may occur in real-world scenarios, we have added
additional 3D objects to our generated bridge. We use pedestrians,
vehicles, bicycles, road signs, trees, and other vegetation from various
3D model sources [79-82] to create a variation of different objects. To
sample the different objects, we use only three predefined rules. Road
users such as pedestrians, vehicles, and bicycles can only be generated
on the road. Trees and other vegetation must be placed on the ground
and must not intersect any of the generated bridge parts. Finally, traffic
signs are only allowed near the edge of the road. The number of allowed
objects is randomly determined by the size of the given bridge model.
To further increase the variation of vegetation objects such as trees,
bushes or shrubs, the randomly selected objects are scaled by a random
factor before being integrated into the scene.

3.3. Point cloud generation

A terrestrial laser scanner is selected as the reference model for
the virtual sensor. It rotates about two of its axes and emits laser
pulses to collect distance measurements, generating a point cloud that
represents the 3D coordinates of surfaces in the scanned environment.
The captured environment is centered in the local coordinate frame,
making it suitable for emulation using ray tracing methods. Given that
the majority of the information is assumed to be contained within the
3D geometry, it is not necessary to render material properties for the
sake of simplicity.

The origin of the virtual sensor is given by O,. We use r = 1,
0 € [0,x] and ¢ € [0,27] to generate the rays. To follow the idea
of terrestrial scanners, the values for 40 and A¢ are configurable and
could be set to the vertical and horizontal angle resolution of a real
sensor. The visualized sensor model can be seen in Fig. 4. In theory,
the angle resolution could be set to a very high resolution. However, in
practice, the points have to be downsampled in order to achieve a more
general distribution and a reduced number of points. Consequently, the
resolution is reduced to 0.1°. For the randomized sensor model, we
simply define the maximum number of points and sample uniformly
angles 0 and ¢ between the above defined intervals. Subsequently, the
calculated spherical coordinates are mapped to Cartesian coordinates,
enabling the seamless integration of multiple scan positions.

The calculated vectors are regarded as rays starting at the origin
O. We define the distance (in Meter) to be in range 1.5 < d <
120, dropping all hits missing the defined region. To make the scan
even more realistic, we add different noise levels for different objects
following the uniform distribution U'(a, b):

1
= b
f) {0

for x € [a,, b,] @

otherwise
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Fig. 4. Spherical sensor model. The virtual scanner is located at the origin O. The
horizontal and vertical angle resolution of the sensor are based on the configurable
parameters A¢ and 46.

with gy = 0.5, ¢; = 0.1, a, = 0.2, a3 = 0.001, g, = 0.001, a5 =
0.001, a4 = 0.1, a; = 0.1, ag = 0.01 and b, = —a, for the defined
classes. For example, the bridge deck, which is man-made and likely
flat, experiences less distortion than the vegetation.

Once all viewpoints have been measured using the virtual sensor,
they are merged into a global coordinate system to obtain the desired
point cloud of the entire scene.

4. Method
4.1. Problem statement and notation

A domain set is defined as D = {X,Y,p(x,y)} with the input
feature space X € RM*3 represented as point cloud with N points
and its coordinates (x;, y;, z,-)f;’ L the label space ) € R and the joint
probability distribution p(x, y) over the input and label space. For closed
set domain adaptation we have a source domain S and a target domain
T where Yg = Yr. The objective is to develop a universal classifier
that accounts for differences in the distributions of source and target
domains. The point cloud, irrespective of its origin, serves as the input,
while a semantic feature vector j represents the required output. The
network parameters will be denoted as ¢ in the following.

All approaches will be performed using an adapted version of
3DUNet [15] and the PointTransformer [18] architectures. We aim
to ensure that any architecture can be used within this procedure,
regardless of its theoretical background. We have chosen them be-
cause they differ greatly in the representation used. In contrast to
PointTransformer, which operates directly on the point cloud and
employs nearest neighbor to delineate the region of focus, 3DUNet
employs a discretization of the given scene, extending the concept of
two-dimensional convolution to the third dimension. PointTransformer
incorporates geometry by using multilayer perceptrons for encoding the
point positions. Structured convolutions, such as 3DUNet, are by nature
geometric encodings.

The networks comprise an initial encoding layer with no down-
sampling, followed by four downsampling layers and four upsampling
layers, and a final class prediction layer. We will only use the x,y, z
coordinates for training and not the color information, even if it should
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(b) Semi-supervised alignment approach.

Fig. 5. Networks processing data in an unsupervised manner (a) and a semi-supervised manner (b).

be given. The selection of the parameters of the architectures was
conducted in accordance with the specifications outlined in the re-
spective publications. The following downsampling rates are employed
in the PointTransformer: N — % - % - % - % Conversely,
the feature dimension per point was expanded in each layer: 32 —
64 — 128 — 256 — 512. The number of neighboring points used was
limited to k = 16. In the 3DUNet model, the grid size and feature
dimensions are doubled after each layer. This started with 32 and ended
with the same number of feature channels as the point-based method.
For our baseline, we only train the models on our synthetic data and
simply validate them on the real data. For this reason, the optimization

procedure simply looks like the following:

min [£(Xs. Ys)] (8)

4.2. Unsupervised domain adaptation

Due to the fact that the correlation is computed for the second order
statistics of the feature space (Eq. (1)), the resulting covariance matrices
are shaped like the feature space. This allows this approach to be used
even when the amount of points between the source and target clouds
are different. The networks are split into encoder € and decoder D. For
every iteration the network sees a sub-cloud from the source domain
X and the target domain X . For the feature alignment we make use
of the following:

1 1
Le=lCE — )2 ©
We get rid of the factor ﬁ because we will scale the correlation

loss within our target later. As mentioned in [55], the alignment can
be done in several steps within the network. For this reason, we align
the feature matrix within the latent space Elc and the logit output of
D, which is noted as LZZC. The available labels Y are also used within
the loss. The resulting minimization problem with 4;, 4, > 0 looks like
the following:

. 1 2
min [£(Xs, V) + 4 Lo + A Le] 10)

For each point cloud Xg, a point cloud X is also inserted into
the network. The selection of the point clouds is random. The whole
procedure is visualized in 5(a). The values for 4, and 4, are critical
and will be discussed in Section 5.3.

4.3. Semi supervised domain adaptation

The objective is to facilitate learning by utilizing comparable sub-
clouds instead of aligning features. This implies that the network should
only be exposed to a limited amount of real-world data that displays
identical object classes but with varying appearances. To measure the
similarity of point clouds, labels are used. The principle is that point
clouds with the same classes are considered similar, while those with
different classes are not. For each sub-cloud, we create the label vectors
Ig € R¢ and 1; € R° holding the amount of points belonging to each
class. To measure the similarity, we simply use the cosine similarity
between the two vectors:

lg -1y
T an

During the training, we will present a synthetic sub-cloud X¢ and
the real sub-cloud X, that is as similar to it as possible before the
optimization. The labels of both sub-clouds will be used for calculating
the loss:

min [£(Xs, V) + L(Xp, V)] 12)

sim(lg,1;) =

Given the limited quantity of available target data, it is possible that
the same target data may be seen on more than one occasion within an
epoch. A more detailed examination of this topic will be presented in
Section 5.4. The full approach is visualized in 5(b).

5. Experiments
5.1. Dataset and baseline

Our data is generated as described in 3. For testing, we use the
data provided by [25], where 10 bridges around Cambridgeshire have
been recorded and annotated. With minor adjustments, they match
our generated data quite well in terms of labels. Preprocessing all the
given point clouds and downsampling them to 1 cm voxels results in the
number of points given in Table 2. An example for a real world bridge
and a synthetic generated point cloud can be seen in Fig. 6. Since we
do not render colors within our pipeline we use the labels for easier
visualization.

The division of the real-world data is contingent upon the chosen
approach. In the case of the SSDA approach, bridges 2 and 10 are
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(a) Real world bridge

(b) Synthetic bridge with label

Fig. 6. Point clouds showing a bridge from [25] and a bridge which was automatically generated. Labels are used for easier visualization (color code is defined in Table 2).

Table 2

Semantic segmentation class list with amount of points belonging to it.
Class ID Synth Real

SSDA Test

Unlabeled . 0 628.371 271.324 1.498.550
Ground . 1 66.630.880 7.738.267 32.243.140
High vegetation . 2 10.532.641 2.090.353 4.769.581
Abutment . 3 10.838.768 579.530 3.581.851
Superstructure . 4 42.497.680 4.605.359 16.920.609
Top surface . 5 48.302.362 1.919.373 7.921.600
Railing |:| 6 2.169.738 954.108 3.457.193
Traffic signs I:‘ 7 341.185 2.635 14.372
Pillar |:| 8 3.462.674 944.899 6.429.369
> 185.404.299 19.105.848  76.836.265

utilized for training purposes, while all other bridges are employed
for testing. It is essential to note that the bridges exhibit considerable
similarity, with a consistent presence of a road that serves as an
obstacle.

Two baseline experiments are conducted. The first employs exclu-
sively synthetic data for training and exclusively real-world data for
testing. This experiment is also used to ascertain the actual discrepancy
between the different domains. The second experiment serves as the
baseline for the SSDA approach, incorporating the two real-world
bridges into the training data. This results in a mixture of synthetic and
real data, comprising 12 times more synthetic bridges than real ones.
In order to determine the impact of the 3D representation, both of the
described architectures were employed.

5.2. Implementation details

All experiments will employ voxel downsampling as a preprocessing
technique with a voxel size of 10 cm. It was determined that a relatively
high voxel size would be advantageous for the purposes of eliminating
at least some of the scanning pattern and to allow for increasing the
size of the subsequent defined sub-areas. As the point clouds cover
large areas, we sample sub-areas X of the entire point clouds P using
spherical neighborhoods with a radius of 5 m around a random chosen
x, resulting in X? = {x; € P | ||x;—x_|| < r}. We sample as many centres
x, as necessary to get each point at least once. For the discretization-
based approach, we follow the same idea but make use a cube with an
edge length of 2 times the radius, resulting in X7 = {x; € P | |x] — x}| <
r, |xiy —-x)| <, |z7 — xZ| < r}. The network is then trained on these sub-
clouds. To improve generalization, these sub-clouds are regenerated
every 10 epochs by randomly sampling new centering points x,. To
further avoid overfitting the sub sampled data gets augmented. In the
initial step, a random number of points, specified by the distribution
1°(0,0.3), is selected for removal. Subsequently, the coordinates of each
point gets altered by the value of U°(-2,2). The point cloud is subject
to random rotation around the z-axis, with an angular range between
30° to 330°. The point cloud gets scaled by a value of (0.8, 1.2) and
Gaussian noise with M(u = 0,62 = 0.02) is added. It is noted that each
augmentation, with the exception of the initial augmentation, is applied
independently, with a probability of 0.5.

For evaluation we use the mean Intersection over Union (mlIoU) and
the mean accuracy (mAcc):
TP
mloU = 1 Z - (13)
C & TP, +FP,+FN,
TP,
mAcc = 1 2 — (14
C & TP.+FN,
where TP,, FP, and FN, refer to the number of points categorized as
true positive, false positive and false negative with respect to class c.
In addition, the mean class Accuracy (mAcc) is also calculated using all
true positives and the total amount of predicted points.

It is evident that the classes contained within the dataset are imbal-

anced (see Table 2). We calculate a weight for each class w, = \lﬁ and
use it within the cross-entropy loss Lq: ‘
1
Lo =——o w.y,logy, (15)
wce Zcec wc L;‘ c/c c

Given our interest in achieving a high mloU, the Lovasz-Softmax
loss L5 [83] is integrated into our loss calculation. It is defined as:

Ly = —ﬁ Y 4, (e(e) a6)

ceC
where e(c) is the vector of pixel errors for class ¢ and 4 J. is the Lovéasz
extension of the IoU. The employment of a linear combination of both
losses £ = L. + L), allows the optimization of pixel-wise accuracy
and the IoU.

All implementations were done with PyTorch [84]. The Stochastic
Gradient Descent (SGD) optimizer is employed in conjunction with a
momentum term set to 0.9 and a weight decay parameter set to 0.0001.
The initial learning rate is set to 0.01, and the exponential decay factor
is given by 0.95.

5.3. Unsupervised domain adaptation

By combining the minimization problem defined in Eq. (10) with
the loss function defined in Section 5.2 the overall loss function looks
like the following:

L(Xg, Vg Xp) = 0.5L ee(Xg, V)
+ 0.5L15(Xg, V)
+ MLL(Z5. 2Zr)
+ LL(Xg, Xp)

a7

The values for 4; and A, are considered hyperparameters and are
varied with the current epoch z. It is ensured that the sum equals one.
The values for 4, and A, are varied with each epoch ¢, using the idea
of [85]. To ensure that the values run in opposite directions, we adjust
the equation as follows:

=)
v
Tmax

1
A= A + E("tmax = Aomin) <1 + cos <
t 1 Q t
Ay = Apin + E(Amax — Apin) | 1 —cos T T
max
with 4,,, =0.2, 4, = 0.8 and T,,,, being the final epoch.
To enhance the evaluation of behavior, the error functions are

tracked independently. Fig. 7 displays the results. You can clearly see
that the loss with the labels Y decreases continuously, as usual. The
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Quantitative comparisons of approaches using IoU. Results for the baseline, UDA, random combination, and SSDA, respectively. (In this table, PointTransformer is abbreviated as

PT and UNet3D as U3D.)

Xg, Vs X Yy Model  Unlabeled Ground High vegetation = Abutment  Superstructure  Top surface  Railing  Traffic signs  Pillar mloU  mAcc
Y U3D 0.336 0.475 0.324 0.079 0.704 0.463 0.543 0.0 0.549 0.386  0.662
PT 0.004 0.573 0.412 0.213 0.484 0.551 0.495 0.0 0.255  0.332  0.623
v v U3D 0.196 0.595 0.64 0.256 0.732 0.371 0.343 0.0 0.605 0.415 0.701
PT 0.11 0.477 0.555 0.121 0.355 0.604 0.388 0.0 0.327 0.326  0.532
v v v U3D 0.775 0.867 0.72 0.49 0.822 0.776 0.824 0.014 0.772  0.673 0.885
PT 0.907 0.905 0.926 0.276 0.749 0.724 0.838 0.0 0.0 0.592  0.881
Y Y v U3D 0.932 0.894 0.796 0.544 0.852 0.81 0.855 0.0 0.744  0.714  0.903
PT 0.554 0.831 0.786 0.383 0.706 0.767 0.718 0.0 0.606 0.594 0.783

L(Xs,Vs)

Epoch

Fig. 7. Loss over epochs. The segmentation loss £(Xg,Ys) (red) decreases while the
correlation loss E? initially increases but stabilizes over the epochs.

correlation alignment loss, on the other hand, first increases and then
stabilizes over time. Interestingly, the recalculation of the data after 10
epochs is not visible within the loss.

5.4. Semi supervised domain adaptation

The loss function changes as follows because both the source and
target domain labels are used:

L(Xs, Vs, X1, V1) = Liyee(Xs, V)
+ L1(Xg, Ys)
+ Loyee(&Xr, Yr)
+ Ls(Xr, Vr)
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The Eq. (11) is used to calculate similar sub-point clouds and guide
the network accordingly. An illustration of which point clouds are
similar and which are not can be found in Fig. 8. It is evident that
the similarity measure operates as expected. Given that the vectors
can be calculated within the preprocessing and that there are only
¢ elements, this can be implemented in a timely and straightforward
manner, readily integrated into the training routine.

As previously stated in Section 5.1, we employ a greater number
of synthetic bridges during training than real ones. Consequently, it is
possible for the same real sub-cloud X; to be displayed multiple times
within an epoch. Fig. 9 depicts the tracked center points, x., over a
selected frequency. The training has run for 10 epochs, and it is evident
that the partial point clouds in the areas surrounding the abutment are
selected at a significantly higher rate than those that only show the
ground or the vegetation zones. The most frequently selected point was
selected 182 times during the 10 epochs, indicating that this sub-cloud
was used 18 times more frequently for optimization than one of the
synthetic sub-clouds.

5.5. Comparison and results

The results of all experiments are summarized in Table 3. The
initial section presents the baseline results for the exclusive utilization
of synthetic data during training. The subsequent section illustrates
the UDA outcomes. The Section 3 represents our baseline for the
random combination of real and synthetic data. The final section shows
our proposed SSDA approach using similar sub-clouds for guidance.
The UDA approach does achieve a slight improvement over the base-
line experiment using the discretization-based approach. However, the
continuous-based approach results in a slight decrease in performance
when aligning the feature unsupervised. Regardless of the approach
chosen, the use of a limited set of labels is associated with a sig-
nificant improvement in performance. The guided training approach
yields further improvements in results. Notably, the mIoU remains
unchanged for the continuous approach, but it does increase when
only relevant bridge parts are considered. It should be noted that no
synthetic training data was employed in the testing process. This was
done intentionally, as it was believed that overfitting was occurring
with the training data in use. Nevertheless, this is not a substantial
problem, as the objective is to generalize as much as possible to the real
data, which was validated using one of the SSDA bridges on a regular
basis during training.

The results of the SSDA approaches are additionally shown in
Fig. 10. The first column displays the colored point cloud, the second
column presents predictions employing the discretized method, and the
third column showcases the model utilizing the continuous approach.
The initial five bridges originate from the dataset referenced by [25],
whereas the last four bridges were recorded in Freiburg, Germany. For
the bridges in Freiburg, we have chosen bridges that are as different
as possible to the ones given. We also used a different sensor (Leica
Geosystems RTC360). The outcomes for the bridges from [25] are
promising, with the majority of classes predicted accurately. As ex-
pected, by modifying the bridge type and sensor, the outcomes have de-
teriorated. However, they remain reasonable for both approaches. The
outcomes predicted by the discretization-based approach are slightly
better than those achieved by the continuous approach.

5.6. Limitations

A potential limitation of this study is the similarity in the typology
of bridges utilized, as all bridges are of the same type, namely a
beam bridge. Although the bridge parts generated are of varying sizes,
situated in different environments and employing disparate shapes, this
homogeneity in typology may nevertheless introduce bias in the data.
This gives rise to two principal questions, which remain unanswered
in the present study due to the unavailability of the requisite data.
Firstly, is the variance of generated beam bridges sufficient to allow
for the segmentation of even the most dissimilar bridges of this type?
Secondly, how do the models perform in the event of encountering a
different bridge type, such as an arch bridge? We suggest that these
questions could be investigated in future work.
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(a) Selected synthetic sub-cloud

(b) Similiar real sub-cloud
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(c) Not similar real sub-cloud

Fig. 8. Similar (middle) and different (right) calculated sub-clouds. The first column shows the selected synthetic cloud (Color code is defined in Table 2.).

Fig. 9. Selected positions for similar sub-cloud for 10 epochs. Color is scaled linear between 1 (blue) to 182 (red).

6. Discussion

It is crucial to highlight that, in the UDA approach, a random
selection between sub-clouds from the source and target domains is
not necessary to achieve a match. This is because the similarity match
was not employed in this experiment. Nevertheless, we conducted an
experiment where the similarity measure was utilized to identify the
optimal matching cloud. Our objective was to enhance the metric in
this manner, with the eventual goal of modifying the similarity measure
to obviate the necessity for labels. Unfortunately, the performance
only marginally improved, yet it remains considerably inferior to that
achieved by employing a minimal number of labels within the opti-
mization process. The results indicate that the use of the MECA method
to align networks at multiple locations has the potential to enhance
performance, although the extent of this improvement is limited.

Another noteworthy observation is that, across all experiments con-
ducted across diverse domains, the discretization approach demon-
strated superior performance compared to the continuous approach.
This was evidenced in all four experiments, where only synthetic
data was used for training, the UDA approach for feature alignment,
the SSDA approach using guiding as well as the simple approach of
shuffling the data and training on all data led to this realization. It has
been demonstrated that the continuous approach, trained on the real-
world domain, yields superior outcomes compared to the discretization

approach. It can be postulated that the discretization step may elimi-
nate certain specific scanning patterns, rendering this approach more
suitable for generalization across different domains. Conversely, the
continuous approach may be more conducive to the learning and
utilization of patterns within a specific domain.

It is evident that utilizing a small proportion of the target data set
in conjunction with the annotation during the training phase can result
in a considerably greater performance increase than simply using them
in an unsupervised manner. Furthermore, by employing the approach
presented here to show similar point clouds from different domains in
parallel during optimization, the result can be improved even further.
This raises the question of whether the generalization for real objects
can be further improved by selecting the most diverse real objects
possible and incorporating additional synthetic data.

Another crucial question is how the performance metrics change
when the sensor is switched. Our experiments demonstrated that per-
formance does degrade when the sensor is changed, but we cannot
determine if the change in sensor or the change in bridge environment
is the cause. For this reason, further investigation will be conducted in
a subsequent study, where the integration of multiple real sensors into
the guiding process will be explored.

7. Conclusion

This paper addressed the problem of 3D semantic segmentation
of bridges. A data generation pipeline that is fully automated was
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(a) Colored bridges

(b) 3DUNet

(c) PointTransformer

Fig. 10. Prediction results using the SSDA approaches. The Section 1 presents the outcomes of the data provided by [25]. The Section 2 presents the outcomes of the data
recorded on bridges in Freiburg, Germany using a different sensor. Color code is defined in Table 2.

developed because there was not enough annotated data. Using this
pipeline, we have generated 24 annotated point clouds of bridges
and their surroundings. We propose an unsupervised method that
employs feature alignment and a semi-supervised approach to guide
training using a limited number of annotated real-world bridges. To
validate our proposed methods, we scanned and manually annotated
real-world bridges. To validate the results against different 3D repre-
sentations, two different deep learning architectures were used for both
approaches. By incorporating the real-world data in an unsupervised
manner, we observed a slight improvement. However, this is still
significantly less than what can be achieved with the semi-supervised
approach. The incorporation of approximately 10% of real-world data
into the training data set resulted in a notable enhancement in the
evaluation metric, nearly doubling the baseline. Using the similarity
between the training data and the real-world data to guide the joint
optimization resulted in an even more significant improvement, par-
ticularly with respect to the relevant classes of bridges. Despite the
success of this work in automatic semantic segmentation for bridges,
further investigation is necessary on several topics. For instance, it is
necessary to examine the extent to which performance is affected by
the use of a different sensor and the degree to which generalization

10

can be achieved using the approach. Additionally, the transferability
of the approach to different bridge types, such as arch bridges, should
be investigated. To this end, a greater number of different bridge types
should be measured.
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