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H I G H L I G H T S

A data-driven modeling approach to es-
timate the open circuit voltage of LFP
cells.
Utilizing adversarial machine learning
to effectively capture hysteresis depen-
dencies.
Conditional matrix of temperature, SOC
path and aging enhances model adapt-
ability.
Comprehensive hysteresis data was col-
lected under various conditions.
Modeling results are compared with three
state-of-the-art hysteresis models.
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A B S T R A C T

The hysteresis effect represents the difference in open circuit voltage (OCV) between the charge and discharge
processes of batteries. An accurate estimation of open circuit voltage considering hysteresis is critical for precise
modeling of LiFePO4 batteries. However, the intricate influence of state-of-charge (SOC), temperature, and
battery aging have posed significant challenges for hysteresis modeling, which have not been comprehensively
considered in existing studies. This paper proposes a data-driven approach with adversarial learning to model
hysteresis under diverse conditions, addressing the intricate dependencies on SOC, temperature, and battery
aging. First, a comprehensive experimental scheme is designed to collect hysteresis dataset under diverse
SOC paths, temperatures and aging states. Second, the proposed data-driven model integrates a conditional
generative adversarial network with long short-term memory networks to enhance the model’s accuracy and
adaptability. The generator and discriminator are designed based on LSTM networks to capture the dependency
of hysteresis on historical SOC and conditional information. Third, the conditional matrix, incorporating
temperature, health state, and historical paths, is constructed to provide the scenario-specific information for
the adversarial network, thereby enhancing the model’s adaptability. Experimental results demonstrate that
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the proposed model achieves a voltage error of less than 3.8 mV across various conditions, with accuracy
improvements of 31.3–48.7% compared to three state-of-the-art models.
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1. Introduction

Accurate estimation of open circuit voltage (OCV) is crucial for
attery modeling and developing an advanced battery management

system [1–3]. As the key energy storage components, lithium iron
hosphate (LFP) batteries have been widely used in large-scale energy
torage and automotive applications due to the advantages of cost-
fficiency, exceptional stability, and environmental benignity. How-
ver, the hysteresis observed in open-circuit voltage complicates the
imple one-to-one SOC-OCV curve, posing a significant challenge for
attery modeling and diagnosis [4,5]. Hysteresis manifests as different

OCV values for the same SOC level, depending on whether the cell was
previously charged or discharged through different paths [6]. It is influ-
enced by many factors, including state-of-charge (SOC), temperature,
and battery aging [7–9]. A quantitative characterization of hysteresis
and an accurate modeling method is fundamentally important for
effective battery management.

Many methods have been proposed for the accurate modeling of
open-circuit voltage hysteresis. Generally, these methods can be di-
vided into two categories, analytic-based [10], and data-driven meth-
ods. The analytic-based methods establish an analytic formula between
SOC and OCV to capture hysteresis [11,12]. For example, in the one-
state model, open circuit voltage hysteresis is formulated as a differ-
ential relationship with state-of-charge [13,14]. Meanwhile, operator-
ased methods simulate battery hysteresis as a weighted sum of oper-
tors. Based on the different kinds of operators, these methods include
he Preisach model [15], Krasnosel’skii–Pokrovskii (KP) model [16],

and Prandtl–Ishlinskii (PI) model [17,18]. Subsequently, the hystere-
is model can be integrated with equivalent circuit model [19] and
dvanced Kalman filter [20] for battery state estimation and diagno-
is [21]. The analytic-based methods rely on the analytical equations

established under specific conditions and thus will be less flexible when
applied to varying conditions such as temperature changes and battery
degradation [22].

Data-driven methods utilize experimental hysteresis data to es-
tablish black-box models for estimating open-circuit voltage through

achine learning [23]. Several works have been made using different
algorithms, e.g., the forward neural network [24], Gaussian process
regression [25] and the recurrent neural network [26,27]. In [24],
a compensation module based on a feed-forward neural network is
designed to learn the dynamic hysteresis, along with other unmodeled
dynamics during charge and discharge transitions. Ko et al. [25] em-
ployed a Gaussian process regression model, with partial relaxation
voltage data as input, to estimate OCV at charging and discharging.
However, the dependency of hysteresis on historical state-of-charge has
not been thoroughly explored during modeling.

To mitigate hysteresis influence on open circuit voltage modeling,
Xu et al. [26] designed a weighting factor to determine the actual
alue of open circuit voltage. A long short-term memory network is

employed to learn this factor from two major OCV curves during
ull charge and discharge. However, the hysteresis of minor loops
uring partial charge and discharge has been neglected. In response,
i et al. [27] developed a long short-term memory network with two

hidden layers to specifically capture minor loop hysteresis. However,
he influence of temperature and battery degradation has not been fully
nvestigated during modeling, while hysteresis is affected by these two
actors significantly [4,8]. Incorporating these factors into modeling is

necessary but difficult due to their intertwined influence on hysteresis.
Thus, it is necessary to develop a new hysteresis modeling method for
LFP batteries by taking these factors into account.
2 
As a new learning paradigm, adversarial learning trains two net-
works simultaneously in a competitive manner. During the interplay
etween the generator and discriminator, additional information can
e added to condition the model and to enhance the model’s robustness
nd adaptability. In this paper, the adversarial learning is utilized to

accurately model the open circuit voltage hysteresis at different temper-
atures and aging states. Instead of only using the current state-of-charge
information, the sequential learning features of the stacked long short-
term network are utilized to better capture the dependency of hysteresis
on the historical path of state-of-charge to increase modeling accuracy.

o enhance the model’s adaptability in various situations, two external
factors, temperature and battery aging, together with the historical SOC
are encompassed as the conditional matrix in a generative adversarial
network. The inherent characteristics of hysteresis with these factors
an be extracted by using these condition labels during adversarial
raining process. The experimental hysteresis dataset is obtained by us-
ng a very low current rate of C/30 to charge and discharge the batteries
nder different SOC trajectories. Results demonstrate that the proposed
odel can generate accurate estimation even under unseen scenarios,

and a voltage error of less than 3.8 mV is achieved across diverse con-
ditions. The modeling accuracy increases by 31.3–48.7% compared to
three state-of-the-art models, the one-state model, the Prandtl–Ishlinskii
model, and a data-driven LSTM model. The contributions of this paper
are summarized as follows:

(1) The open circuit voltage hysteresis model is established by
using a conditional generative adversarial network integrated with long
short-term networks to capture the historical dependency of hysteresis
on state-of-charge and improve the estimation accuracy.

(2) Temperature, health state, and historical SOC are constructed
s the conditional matrix to provide the scenario-specific information
or the network, which increases the adaptability by extracting the
ependencies the open circuit voltage hysteresis on various external

factors.
(3) A comprehensive experimental scheme is designed to collect

ysteresis data for model training and validation. The hysteresis tests
nvolve six scenarios, each conducted at five varying temperatures and
our different health states, with each test requiring hundreds of hours.

The organization of this paper is as follows. Section 2 presents the
experiment design and hysteresis test procedures. Section 3 elucidates
the proposed hysteresis modeling framework, detailing the architecture
nd training process of the machine learning model. Section 4 presents
he results of the hysteresis modeling under various temperatures and
ging conditions and compares them with three other state-of-the-art
odels. Finally, Section 5 concludes the paper and outlines future

work.

2. Dataset description

2.1. Experimental setup

To comprehensively investigate hysteresis dependence on battery
operating conditions, an experimental scheme was developed and the
ysteresis dataset was produced. First, major loop tests were conducted
o obtain the OCV curve during full charge and discharge. Minor loop
ests were then conducted to capture hysteresis behaviors during partial
harge and discharge. To account for temperature and aging effects, the
forementioned tests are repeated at five different temperatures using
our cells with varying health states.

The overall experimental sets, as illustrated in Fig. 1, encompass six
distinct scenarios involving various hysteresis test cases, five different
temperatures, from 0 to 55 ◦C, and four distinct SOHs, 86%, 88.5%,
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Fig. 1. The experimental set of 4 distinct SOHs, 5 varying temperatures, and 6 different
cenarios.

Table 1
Specifics of the tested LiFeO4 battery.

Parameters Value

Battery type APR18650m1A
Chemistry LiFeO4/graphite
Nominal capacity 1100 mAh
Nominal voltage 3.3 V
End of charge voltage 3.6 V
End of discharge voltage 2 V

89.5%, and 90.5%. Each test combination is visually represented by a
arker.

These six scenarios are distinguished by the charge/discharge path
and SOC interval. Scenario 1: charging hysteresis tests initiated at
various SOC levels from 10% to 90% with a 5% increment; Scenario 2:
discharging hysteresis test. These tests started at different SOC points
from 95% to 20%, also with a 5% interval, capturing hysteresis during
discharge; Scenario 3: bidirectional hysteresis test, starting and ending
at different SOC levels with a 5% interval; Scenario 4: charging hystere-
sis test with a wider 10% interval; Scenario 5: discharging hysteresis
test with a 10% interval; Scenario 6: bidirectional hysteresis test are
repeated but with a 10% SOC interval. Scenarios with denser SOC
intervals are represented by darker colors, while lighter colors indicate
wider SOC intervals.

The specific experimental setup for hysteresis characterization is
shown in Fig. S1, which includes five parts, (1) Thermal chamber:
o maintain ambient temperature for the tested cell; (2) Temperature
cquisition instrument and thermocouple sensor (PT100): responsi-
le for measuring cell surface temperature and transmitting data to

computer; (3) Battery tester. This device controls the charge and dis-
charge process and collects voltage and current data of batteries; (4)
Computer, equipped with monitoring software, manages operational
settings and logs experimental data; (5) Battery. A specific type of LFP
cell, APR18650m1 A, is used in the experiments. The specifications of
the tested cell are presented in Table 1.

2.2. Temperature and aging dependency

The impact of temperature on hysteresis behaviors is significant [8].
To quantitatively characterize the temperature dependency, we con-
ducted repetitive hysteresis tests, including major and minor loop tests,
at five distinct temperatures, 0, 10, 25, 40, and 55 ◦C. Fig. 2(a)
llustrates the influence of temperature on the major SOC-OCV loops.
s temperature rises, the curve transitions from light to dark red. Solid

ines represent charging OCV curves, while dashed lines correspond to
ischarge curves. The hysteresis voltage between charge and discharge
urves increases as the temperature drops from 55 ◦C to 0 ◦C.

Observations reveal that discharging curves consistently lie be-
low charging curves, with the voltage difference diminishing as the
temperature rises. Besides, the temperature fluctuations exert a more
3 
Fig. 2. The fully charged and discharged major loop at different temperatures.

Fig. 3. The fully charged and discharged major loops at different health states.

pronounced effect on discharging curves than on charging curves. The
voltage difference between charge and discharge curves can be up to
80 mV at 0 ◦C. These characteristics have reemphasized the necessity
of accurate hysteresis modeling.

Previous studies have demonstrated that aging is another key factor
nfluencing hysteresis [4]. Health state, defined as the ratio of remain-

ing capacity to nominal capacity [28]. The LFP batteries tested in the
experiments, with cathode materials of LiFeO4, and graphite anode,
have a nominal capacity of 1100 mAh. To determine the remaining
capacity of each cell, the constant current and constant voltage (CCCV)
protocol is applied to charge the cell, followed by a constant current
discharge. The capacity test is repeated 3 times to obtain an average
discharge capacity value.

In this study, four cells with different health states of 90.5%, 89.5%,
8.8%, and 86%, respectively, are tested in parallel to capture the
ysteresis dependency on aging. Fig. 3(b) compared the OCV curve

of cells with different health states. The color of the curves changes
from dark blue to light blue as the cell’s capacity deteriorates. The OCV
curves are shifting to the left during this decrease process.

2.3. Major and minor loop characterization

The major loop test characterizes the OCV curves during the full
charge and discharge process. First, the cell undergoes charging from
a SOC of 0 to 100% using a small current rate of C/30. Then, the
low current method is applied to discharge the cell to SOC = 0%.
This sequence yields the major hysteresis loop. Using the low current
method, kinetic effects are negligible, and the voltage response is
primarily governed by thermodynamic contributions [29]. By applying
a current that is small enough, it is assumed that the cell’s internal state
remains in an equilibrium or quasi-equilibrium state. Thus, the voltage
drop caused by internal resistances can be ignored, and the measured
voltage can be approximated as the open circuit voltage.
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Fig. 4. Charge, discharge, and bidirectional minor loop OCV tests that lie inside between the fully charged and discharged major loop, with their corresponding process of SOC
variation. All three minor loop tests are conducted with a current rate of C/30 at 25 ◦C.
Minor loop tests aim to characterize the minor hysteresis loops at
various SOC levels during charge and discharge processes. Three differ-
ent types of minor loop tests are conducted to comprehensively capture
hysteresis during charge, discharge, and simultaneous bidirectional
loops.

The purpose of the charging hysteresis test is to characterize hys-
teresis during battery charging, specifically by varying the SOC starting
points while maintaining a consistent ending SOC level. Specifically,
the test starts with a cell at SOC = 95%, and the cell undergoes
repetitive discharge and charge cycles using a small current (C/30).
The sequence begins with discharging the cell from SOC = 95% to
10%. Then the cell is charged back to 95%, followed by another
discharge from 95% to 15%. This cyclic process continues until the cell
is discharged from 95% to 85%, after which it is charged back to 95%.
Fig. 4(a) illustrates the major hysteresis curves represented by gray
dashed lines for charge and discharge. Minor loops enclosed by these
major curves exhibit hysteresis behavior during the charging process (in
red). The discharging process is in blue. Each charging curve originates
from a distinct SOC starting point, ranging from 10% to 85%, with a 5%
SOC increment. Intuitively, the OCV curve during the discharge period
will remain consistent with the major discharge curve. However, the
OCV curves during the charging process differ from the major charge
curve due to the hysteresis effect. Fig. 4(d) depicts the time-dependent
variation of SOC during the charging hysteresis test.

The purpose of the discharge hysteresis test is to characterize volt-
age hysteresis during battery discharge, specifically by varying the
SOC starting points. During this test, the cell is charged from 10% to
various SOC levels and discharged to a consistent ending SOC level.
Fig. 4(b) illustrates the tests starting at SOC = 10%. First, the cell is
charged to 95% and discharged back to 10%. This process continues,
varying the SOC starting points from 95% to 30% during discharge.
During charging, the OCV curves remain consistent with the major
charge curve. However, during discharge, the OCV curves exhibit vari-
ations depending on the SOC points. The SOC variation versus time is
presented in Fig. 4(e).

A third type of test, the bidirectional hysteresis test, is concentrated
to simultaneously capture the hysteresis during both the charge and
discharge processes. Initiating with a fully charged cell, it is first
discharged to SOC = 95%. After being discharged with C/30 to SOC
= 10%, the cell is charged back to 90%. This cycle continues, decre-
menting the SOC by 5% during each charge and discharge process.
Finally, the cell is discharged from SOC = 60% to 45% and then
4 
charged to 55%. Fig. 4(c) displays the SOC-OCV curves obtained from
the bidirectional test, where the charging curves are depicted in red,
while the discharge curves are shown in blue. The SOC variation of
the aforementioned charge and discharge process is plotted in Fig. 4(f).
For convenience, the datasets from these three scenarios are referred
to as dense datasets as the SOC increment between each loop is 5%.
Conversely, scenarios 4–6 are termed sparse datasets, given the SOC
gap is 10%.

The aforementioned hysteresis test datasets can be used for model
training and validation. To capture hysteresis accurately, and to en-
hance the model’s adaptability under various conditions, a data-driven
OCV hysteresis model which integrates conditional generative adver-
sarial network and long short memory networks is introduced in the
next section.

3. Data-driven hysteresis modeling

3.1. The proposed modeling framework

Conceptually, hysteresis is characterized by the system’s responsive-
ness to its input history [5]. In OCV hysteresis modeling, it is essential
to consider the temporal dependencies and nonlinearities between the
historical SOC and the current OCV [30]. Besides, factors including
temperature and aging state must be considered during modeling due
to their impact on hysteresis behavior.

Machine learning methods are adept at depicting nonlinear rela-
tionships. Among these, LSTM networks were specifically designed for
sequence learning, which excels in learning from historical informa-
tion and handling complex long-term dependencies. Therefore, it is
reasonable to consider using LSTM to capture this intricate relationship
inherent in battery hysteretic behaviors.

To further enhance the model’s adaptability under different sce-
narios, e.g., different temperatures, and aging states, a conditional
generative adversarial network (CGAN) is incorporated with the LSTM
networks to integrate the aforementioned conditional information into
the adversarial learning process. This allows the model to capture the
intricate dependencies of hysteresis on external factors while leveraging
the sequential learning capabilities of LSTM networks. Unlike tradi-
tional GANs, CGANs can generate scenario-specific outputs, making
them particularly suitable for modeling hysteresis under diverse oper-
ating conditions. Besides, the model can remain accurate even under
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Fig. 5. The proposed conditional generative adversarial networks for OCV hysteresis modeling.
unseen conditions owing to the dynamic adaptability of adversarial
learning.

Fig. 5 provides an overview of the proposed data-driven modeling
method for OCV hysteresis, which is divided into two major parts,
experimental data collection and hysteresis modeling. The hysteresis
data are collected across six distinct scenarios, five varying temper-
atures, and four SOHs. After preprocessing, the experimental data of
each parameter combination are prepared for subsequent modeling. To
achieve accurate and robust hysteresis modeling, the proposed method
integrates a conditional generative adversarial network with long short-
term memory (LSTM) networks to capture the historical dependencies
of hysteresis. The conditional matrix, incorporating battery state infor-
mation, are utilized to enhance the model’s adaptability by providing
scenario-specific information during adversarial training.

Specifically, both the generator and discriminator are designed
based on the LSTM networks. Temperature, the health state of batteries,
and the historical SOC are provided as scenario-specific information to
construct the conditional matrix, which is then used as input for the
generator to estimate the open circuit voltage. The discriminator out-
puts a probability to determine whether a sample is from measurement
or generation. The estimation accuracy is improved through the con-
tinuous adversarial learning process. To conserve testing resources and
enhance modeling efficiency, data collected from sparse loops (scenario
4–6 with a 10% SOC interval) are utilized to train the network. The
model is then tested on denser loop datasets (scenario 1–3 with a 5%
SOC interval), which include scenarios not encountered during train-
ing. The model demonstrates robust interpolation and extrapolation
capabilities across diverse operating conditions.

3.2. Conditional generative adversarial network

A conditional generative adversarial network (CGAN), as an im-
provement in the basic GAN architecture, can associate the generated
data with conditional information. This network is composed of two
major parts, a generator 𝐺 and a discriminator 𝐷. The former generates
new plausible samples similar to the original data, aiming to deceive
the discriminator, the main task of which is to determine whether a
sample is from measurements or generation. The generator and dis-
criminator continue to evolve until they reach a Nash equilibrium [31].
The training process is finished when the discriminator cannot tell the
difference between the real data and the generated data.

For the discriminator, 𝐷, it is expected to have a higher probability
of 𝐷(𝒙) for the real samples 𝒙 while a lower probability of 𝐷(𝐺(𝑧)) for
5 
the generated sample 𝐺(𝑧). Thus, the loss function can be formulated
as follows,
𝐿𝐷 = − E𝒙∼𝑃 (𝒙)[log𝐷(𝒙)]

− E𝑧∼𝑃 (𝑧)[log(1 −𝐷(𝐺(𝑧)))]
(1)

where 𝒙 represents the real data samples that include the historical
SOC sequence 𝑠 and battery external factors, ambient temperature 𝑇
and battery health state 𝑄. 𝑧 represents random noise input, which is
used to generate synthetic OCV samples by the generator 𝐺. 𝑃 (𝑥) and
𝑃 (𝑧) are the distribution of the real data samples and noise input 𝑧,
respectively. E denotes expectation.

For the generator, 𝐺, the goal is to maximize the probability 𝐷(𝐺(𝑧))
for the generated sample.

𝐿𝐺 = E𝑧∼𝑃 (𝑧)[log(1 −𝐷(𝐺(𝑧)))] (2)

For the conditional generative adversarial network architecture, the
objective function 𝐿(𝐷 , 𝐺) is formulated to balance the adversarial
training process between the generator 𝐺 and the discriminator 𝐷. The
objective function is defined as follows:
min
𝐺

max
𝐷

𝐿(𝐷 , 𝐺) = E𝑥∼𝑃 (𝑥)[log𝐷(𝑥|𝑞)]

+ E𝑧∼𝑃 (𝑧)[log(1 −𝐷(𝐺(𝑧|𝑞)))]
(3)

where 𝑞 represents the conditional information. In this model, temper-
ature, health state, and historical SOC path are selected as inputs for
extra information, which helps the model capture the features under
various conditions. Both the generator and discriminator comprise a
stacked LSTM network, where the output of the former is the estimated
OCV value and the discriminator outputs a probability of the real
sample.

3.3. Long short-term memory network

LSTM networks were specifically designed for sequence learning,
which excels in learning from historical information and handling
complex long-term dependencies. Therefore, it is reasonable to consider
using LSTM to capture this intricate relationship inherent in battery
hysteretic behaviors. The special memory units enable the network
to learn long-term dependencies in sequential data. Each memory
cell is equipped with an internal state, represented by 𝐶, and many
multiplicative gates, including the input gate 𝐼 , the forget gate 𝐹 , and
the output gate 𝑂 that control the flow of information.

In this study, a stacked 3-layer LSTM is established to capture the
complex dependency of hysteresis in battery open circuit voltage. A
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fully connected layer is appended to the LSTM layer for the output at
ime step 𝑡. The model input is a vector comprising three parameters
enoted as 𝒙𝑡 = [𝑠𝑡, 𝑇 , 𝑄]. 𝑠𝑡 is the historical SOC path up the current

time step 𝑡. 𝑇 represent the temperature and 𝑄 denotes the health state
of the battery. Both temperature 𝑇 and capacity 𝑄 are normalized using
the equations as follows,

𝑇 =
𝑇𝑐 𝑒𝑙 𝑙

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
(4)

𝑄 =
𝑄𝑐 𝑒𝑙 𝑙 − 0.8 ∗ 𝑄𝑛𝑜𝑚
(1 − 0.8) ∗ 𝑄𝑛𝑜𝑚

(5)

where 𝑇𝑐 𝑒𝑙 𝑙 is the surface temperature of the cell, and 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛
are the maximum and minimum operating temperatures of the cell
respectively. In this work, 𝑇𝑚𝑎𝑥 is 60 ◦Cand 𝑇𝑚𝑖𝑛 is −30 ◦C. For battery
state of health, 𝑄𝑐 𝑒𝑙 𝑙 represents the current capacity of the cell, and
𝑄𝑛𝑜𝑚 is the battery nominal capacity. The health state 𝑄 is normalized
to a value between 0 and 1, reflecting the battery’s condition relative
o its nominal capacity. Specifically, when the SOH drops to 80% of its
ominal value, the battery is considered to have reached the limit of its
irst service life. This normalization ensures that both temperature and
ealth state are scaled appropriately for input into the LSTM network.

The input 𝒙𝒕 and the hidden state 𝐻𝑡−1 of the previous time step
are fed into the LSTM gates. The LSTM gates include the input gate 𝐼𝑡,
the forget gate 𝐹𝑡, and the output gate 𝑂𝑡, as shown in Eqs. (6)–(8).
These gates are computed using fully connected layers with sigmoid
activation functions (𝜎), which map the input values to the interval
(0, 1). The equations for these gates are as follows:

𝐼𝑡 = 𝜎(𝑊𝑖 × 𝒙𝒕 + 𝑈𝑖 ×𝐻𝑡−1 + 𝑏𝑖) (6)

𝐹𝑡 = 𝜎(𝑊𝑓 × 𝒙𝒕 + 𝑈𝑓 ×𝐻𝑡−1 + 𝑏𝑓 ) (7)

𝑂𝑡 = 𝜎(𝑊𝑜 × 𝒙𝒕 + 𝑈𝑜 ×𝐻𝑡−1 + 𝑏𝑜) (8)

𝐶̃𝑡 = t anh(𝑊𝑔 ⋅ 𝒙𝒕 + 𝑈𝑔 ×𝐻𝑡−1 + 𝑏𝑔) (9)

𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 + 𝐼𝑡 ⊙ 𝐶̃𝑡 (10)

𝐻𝑡 = 𝑂𝑡 × t anh(𝐶𝑡) (11)

Additionally, the input node 𝐶̃𝑡 is introduced to compute the candi-
ate cell state. This node uses a t anh activation function, which maps
he input to the interval (−1, 1). The cell state 𝐶𝑡 is updated based
n the aforementioned gates, which can store specific information
hat the LSTM processes continuously, enabling the long-term memory
echanism. Finally, the hidden state 𝐻𝑡 is calculated by a point-wise
ultiplication between the output gate 𝑂𝑡 and the cell state 𝐶𝑡 with a

 anh operation.
The LSTM network is designed to capture the long-term dependen-

cies in the historical SOC path, while also incorporating the influence
f temperature and health state. This enables the model to accurately
stimate the open circuit voltage with hysteresis, even under varying
perating conditions.

3.4. Model training and evaluation

The hyperparameters employed during the training process are
outlined in Table 2. The LSTM network is configured with an input size
f 3, a hidden size of 128, a stack size of 3, and an output size of 1.
he training epoch number is set as 2000 to ensure sufficient training
o capture the complex dependencies in the data. A batch size of 32,
nd a learning rate of 0.001 is chosen to balance convergence speed and
tability. During each epoch, the mean square error between the ground
ruth and simulated values is chosen as the loss function. The ‘Adam’
ptimizer is utilized to compute and update the model parameters,

inimizing the fitting error. To avoid the overfitting problem during s

6 
Table 2
Hyperparameters of the LSTM network and training settings.

Criteria Value

Model parameters

Input size 3
Hidden size 128
Output size 1
Stack size 3

Training settings

Epoch 2000
Batch size 16
Learning rate 0.001
Optimizer Adam
Loss function Mean square error

network training, early termination of the training process is adopted
if the model’s performance on the test set deteriorates.

The proposed networks were implemented on Python 3.9 with
yTorch 2.1.1. All experiments ran on a laptop with an i7-12700H
PU, 16 GB random access memory and an RTX 3050 GPU with 4 GB
emory. The computation time for the training and testing processes

o evaluate the efficiency of the proposed model. The training process,
hich involved 2000 epochs, required a total of 50.23 min. The testing
rocess, conducted on the charge hysteresis dataset with over 4800
amples, took 0.17 s of computation time. Once the model is trained,
he relatively low computation time for testing indicates that it could
e deployed in real-time applications with minimal latency.

Three evaluation matrices, the mean relative error (MRE), mean
square error (MSE), and root mean square error (RMSE), are calculated
between the estimated and measured OCV for evaluating the model’s
performance. The formulas for these matrices are presented below,

MRE = 1
𝑛

𝑛
∑

𝑘=1

|

|

(𝑦̂𝑘 − 𝑦𝑘)∕𝑦𝑘|| (12)

MSE = 1
𝑛

𝑛
∑

𝑘=1

(

𝑦̂𝑘 − 𝑦𝑘
)2 (13)

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1

(

𝑦̂𝑘 − 𝑦𝑘
)2 (14)

Accuracy = (1 −
|

|

𝑦̂𝑘 − 𝑦𝑘||
𝑉 𝑀 𝐴𝑋
ℎ𝑦𝑠

) × 100% (15)

where 𝑦̂𝑘 represents the estimated voltage of the hysteresis model at
time step, and 𝑦𝑘 is the measured voltage. 𝑛 represents the length of

he voltage sequence. 𝑉 𝑀 𝐴𝑋
ℎ𝑦𝑠 in Eq. (15) represents the maximal voltage

ifference between the charge and discharge major curve.

4. Results and discussion

4.1. Model evaluation under different temperatures

First, the proposed model was tested under different temperatures
on an individual cell. The hysteresis dataset is partitioned into a sparse
loop part (with a 10% SOC gap, i.e., scenarios 4–6) and a dense loop
part (with a 5% SOC gap, i.e., scenarios 1–3). The model is trained
using sparse loop data collected at three temperatures: 0 ◦C, 25 ◦C, 55
◦C. Then, the dense loop data at these three temperatures is utilized to
evaluate the model’s estimation accuracy at different SOC levels. Last,
the dense loop data at 10 ◦C and 40 ◦C is assigned to a second test set
to verify the model’s ability to interpolate to unseen test conditions.

The estimation results of the interpolation model at five tempera-
ures in scenario 6 are illustrated in Fig. 6. Subfigure (a)–(e) depicts

the comparison between the measured voltage (represented by a black
ine) and the estimated voltage (shown as a blue dashed line). It can be
een that the model trained on sparse loop data can accurately capture
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Fig. 6. The modeling results of open circuit voltage hysteresis under five different temperatures.
Table 3
The evaluation of the proposed model under five different temperatures.

Temperature Scenario Interpolation Extrapolation

MRE (×10−4) MSE RMSE (mV) MRE (×10−4) MSE RMSE (mV)

0 ◦C
1 4.335 5.141 2.267 11.91 33.98 5.829
2 5.704 6.325 2.515 11.14 26.31 5.129
3 4.753 5.858 2.420 9.451 19.43 4.409

10 ◦C
1 7.560 12.83 3.582 5.207 6.172 2.484
2 5.819 9.458 3.075 3.909 2.926 1.711
3 5.576 8.557 2.925 4.596 4.298 2.073

25 ◦C
1 5.307 6.327 2.515 4.883 5.285 2.299
2 5.853 4.980 2.232 4.230 2.927 1.711
3 5.846 5.859 2.421 4.439 3.300 1.817

40 ◦C
1 4.404 4.346 2.085 4.036 2.420 1.556
2 3.102 2.139 1.463 3.976 2.442 1.563
3 3.711 3.429 1.852 4.287 2.797 1.672

55 ◦C
1 4.380 4.136 2.034 5.294 5.572 2.361
2 4.627 3.166 1.779 5.393 5.086 2.255
3 4.737 5.207 2.282 4.767 5.116 2.262
t
m
t

a
4
R
o
a

the hysteresis behaviors, even on the test set of dense loop data. As
he temperature decreases from 55 ◦C to 0 ◦C, the measured hystere-
is becomes more pronounced. This phenomenon arises because the

hysteresis voltage between charge and discharge major loops is larger
t lower temperatures. Besides, the minor loop hysteresis gradually

approaches two major hysteresis curves during charge or discharge.
To further validate the model’s ability to extrapolate across different

emperatures, first, the sparse loop data collected at 10 ◦C, 25 ◦C, 40
C is utilized to train the model. Then the dense loop data at 0 ◦C and
5 ◦C is employed to test the model’s ability to extrapolate to different
onditions as these two temperatures are beyond the measuring range
f the training set. The error between estimated and measured voltage
nder each scenario and temperature is calculated to evaluate modeling
ccuracy. Fig. 7 shows the distribution of accuracy at each test condi-
ion in the form of split violin charts. The dashed line in the middle of
ach density plot shows the ends of the first and third quartiles of the

error sequence, with a black line in the center representing the median
error.
 t

7 
Fig. 7 illustrates the modeling accuracy across five different tem-
peratures and three scenarios. In each test condition, the left half of
he violin plot corresponds to the performance of the ‘‘interpolation’’
odel, while the right side represents the results from the ‘‘extrapola-

ion’’ model. The quantitative modeling results are detailed in Table 3.
It can be seen that the RMSE of the interpolation model remains below
2.6 mV at 0 ◦C, 25 ◦C, and 55 ◦C. The model demonstrates satisfactory
results when interpolated to 40 ◦C, whereas an average RMSE of
3.2 mV is observed during testing the model at 10 ◦C. The pronounced
variation in hysteresis at lower temperatures likely contributes to this
phenomenon.

The RMSE of the ‘‘extrapolation’’ model can be reduced to 1.6 mV
t 40 ◦C, while the error remains below 2.5 mV at 10 ◦C, 25 ◦C, and
0 ◦C. When extrapolating the model to 0 and 55 ◦C, the average
MSE is 5.12 and 2.29 mV, respectively. Comparing the performance
f interpolation and extrapolation at 0 ◦C, it is obvious that the model
chieves better results when interpolating. This could be attributed
o that interpolation occurs within the range of observed data, which
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Fig. 7. The accuracy distribution of the OCV estimation results of the proposed model under different temperatures and scenarios.
Table 4
The evaluation of the proposed model on four cells with different SOHs.

Cell No. Scenario MRE (×10−4) MSE RMSE (mV)

Cell 1 (SOH = 86%)
1 7.125 14.38 3.793
2 5.510 6.654 2.579
3 5.091 6.738 2.595

Cell 2 (SOH = 88.5%)
1 3.964 4.114 2.028
2 2.906 1.836 1.355
3 3.335 2.773 1.665

Cell 3 (SOH = 89.5%)
1 5.979 6.508 2.551
2 5.097 5.035 2.244
3 5.248 5.489 2.342

Cell 4 (SOH = 90.5%)
1 7.914 11.86 3.444
2 6.804 7.828 2.798
3 7.705 10.31 3.211
a
a

w
s
d

O

t

T

t

i
L
I
i
m

enables the model to have more information to make an accurate
stimation.

4.2. Model evaluation under different SOHs

To further verify its generalization ability to battery aging, the
model is tested on cells with different SOHs. Four cells with ascending
OHs from 86% to 90.5% are tested in this study. The dataset from
hree batteries is selected as the training set, and the model is tested
n the 4th cell. For example, sparse loop data under 0 ◦C, 25 ◦C, 55
C from cell 1–3 are used to train the model. Then, the model is tested
n the dense loop data of cell 4 at 10 and 40 ◦C. The modeling results
n four cells at 40 ◦C are presented in Table 4.

The model consistently performs well across various cells. Specifi-
cally, it achieves an average RMSE of 1.68 mV for cell 2 and 2.38 mV
for cell 3 in three scenarios. In contrast, the average RMSE for cell 1 and
 is 2.99 mV and 3.15 mV, respectively. Notably, the average RMSE for
ell 2 and 3 is lower than those for cell 1 and 4. This difference could be
ue to the model’s training process: interpolation occurs during training
n cell 1, 3, 4, and testing on cell 2, while extrapolation occurs during
esting on cells 1 and 4.

It can also be noted that the model’s performance may slightly
degrade as the battery ages, but it remains robust within the tested SOH
range. Future work will focus on further validating the model’s long-
erm performance and exploring strategies to mitigate any potential
egradation in accuracy over extended periods of use.

4.3. Comparison with other hysteresis models

The proposed hysteresis model is rigorously evaluated against three
rominent state-of-the-art models, namely, the Plett single state model
10], the Prandtl–Ishlinskii model [32], and another machine learning
odel [27]. The PSS model formulates hysteresis as a differential

relationship with battery SOC, serving as a benchmark of physics-
based hysteresis model due to its simplicity and interpretability. The PI
model, as another prominent physics-based model, simulates hysteresis
8 
using operators, which is often used in applications where hysteresis
needs to be captured with high accuracy. The LSTM model serves as
 representative data-driven model for comparison with the proposed
pproach. This comparison aims to demonstrate the superiority of

the proposed method in accuracy, generalization, and adaptability to
diverse operating conditions. These three models are parameterized

ith the same dataset used to train the proposed model. The specific
tructure and parameterization methods for the PSS and PI models are
etailed in the supplementary materials.

The modeling results of four different methods in three scenarios
at 25 ◦C are shown in Fig. 8. The measured voltage is shown as a
black line, while the other four modeling methods are represented by
lines with different colors and types. Fig. 8(a) illustrates the estimated

CV of different models on a segment of scenario 1, with a magnified
view of the interval between 400 and 500 min. Fig. 8(b) illustrates
he simulated voltage of the three models versus the measured voltage.

The black line, with a slope equal to 1 represents the actual voltage.
he red represents the ML model, the blue symbolizes the PSS model

and the green corresponds to the PI model. The closer these points are
to the black line, the more accurate the result. Fig. 8(c) demonstrates
the probability of modeling error occurring within each interval. We
extend our analysis to scenario 2 and 3. Fig. 8(d) ∼ (f) presents the
est result of these three models on scenario 2, while Fig. 8(g) ∼ (f)

compares these models on scenario 3. Notably, the error distribution of
the proposed model mainly lies within the range of [−3 3] mV, which
is more accurate than the other three. Detailed quantitative evaluation
metrics are summarized in Table 5.

The quantitative evaluations of these four models are summarized
in Table 5. The proposed model achieves an average RMSE of 2.39 mV
n three scenarios, while the RMSE of the other three models: the
STM model (3.48 mV), the PSS model (4.66 mV), and the Prandtl–
shlinskii model (4.47 mV). The modeling error of the proposed model
s decreased by 31.3%, 48.7%, and 46.5% compared with the LSTM
odel, the PSS model, and the PI model.

The proposed model’s ability to handle both temperature and SOH
variations highlights its strength as a data-driven approach. Unlike the
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Fig. 8. Comparisons of the OCV estimation and error distributions of different methods in three scenarios. (a)∼(c) demonstrate the modeling results on scenario 1; (d)∼(f) depict
the comparisons on scenario 2, and (g)∼(i) illustrate the modeling results for all four models on scenario 3.
Table 5
The evaluation of the proposed model with three other modeling methods.

Model Scenario MRE (×10−4) MSE RMSE (mV)

The proposed model
1 5.307 6.327 2.515
2 5.853 4.980 2.232
3 5.846 5.859 2.421

LSTM [27]
1 8.534 10.747 3.278
2 8.776 11.941 3.455
3 9.453 13.732 3.706

PSS [14]
1 10.59 20.75 4.555
2 13.27 26.45 5.143
3 10.66 18.21 4.267

PI [18]
1 11.80 36.82 6.068
2 8.827 15.43 3.929
3 7.523 11.61 3.407
other two physics-based models, which often require reparameteriza-
tion for different operating conditions, the proposed model leverages
machine learning techniques to learn the complex dependencies of hys-
teresis directly from data. This makes it more versatile and adaptable
9 
to real-world scenarios. Additionally, the adversarial training process
in CGAN allows the model to refine its estimates iteratively, leading
to higher accuracy in capturing the nuances of hysteresis behavior. In
contrast, the PSS model, being a differential-based approach, struggles
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with the nonlinear and path-dependent nature of hysteresis, while the
PI model, although more flexible, still relies on predefined operators
hat may not fully capture the complexity of the data.

5. Conclusions

Establishing an accurate relationship between open circuit voltage
and the state of charge is crucial for precise battery modeling. In
this paper, a novel data-driven approach is proposed to accurately
model open circuit voltage hysteresis in LiFePO4 batteries, consider-
ing the complex dependencies on state-of-charge, temperature, and
attery aging. A comprehensive experimental scheme was designed
o quantify hysteresis under diverse conditions, providing a robust
ataset for model training and validation. An accurate and robust hys-
eresis model combining conditional generative adversarial networks
nd long short-term memory networks is proposed to capture the his-
orical dependencies and enhancing adaptability through conditional
nformation. The most significant advantage of the proposed model
ver existing hysteresis models lies in its robust adaptability across
ifferent temperatures and aging conditions. By incorporating these fac-
ors as conditional information in the adversarial training process, the
roposed model maintains its accuracy even when deployed under dif-
erent operating conditions. The modeling results demonstrate an RMSE
f 2.37 mV during interpolation and 2.61 mV during extrapolation
cross different temperatures. The comparative analysis demonstrates
hat the proposed model achieves an average RMSE of 2.39 mV in three
est scenarios under 25 ◦C, which is decreased by 31.3%, 48.7%, and
6.5% compared with the LSTM model, the PSS model, and the PI
odel, respectively. Future work will focus on integrating the proposed
ysteresis model with an equivalent circuit models or electrochemical
odels to further enhance its performance in real-world applications.
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