
The aim of this thesis was to develop and optimize deep learning models specifically 
designed for the identification of tool wear on microscopic images of cutting tools 
and cutting tool edges. Cutting tool wear has an impact on dimensional accuracy and 
surface quality of parts, ultimately affecting the costs associated with meeting part 
quality criteria.

To accomplish this objective, the creation of a tool wear model based on empirical tool 
life trials was conducted. An outcome of the trials was the generation of a dataset 
of images, which were then utilized to develop a deep learning model capable of 
segmenting cutting tool flank wear. To ensure the effectiveness of the deep learning 
model, a screening analysis was conducted to investigate various dataset properties 
and model hyperparameters that could influence the quality of predictions. The 
screening analysis helped identify the key factors that significantly impacted the 
performance of the model. Building upon the insights gained from the screening 
analysis, the thesis proceeded with an in-depth investigation of the most influential 
factors. This investigation led to the development of a decision model that could guide 
the selection of dataset-specific hyperparameters for optimal performance. To validate 
the effectiveness of the model optimization strategy, a machine tool integrated 
measurement setup was employed, utilizing a microscope as well as a camera. These 
use cases provided a practical assessment of the developed deep learning model and 
its ability to identify and assess tool wear in a real-world manufacturing scenario.

By developing and refining deep learning models for tool wear identification on 
microscopic images, this thesis contributes to enhancing the understanding and 
management of tool wear in the manufacturing industry. The optimized models have 
the potential to facilitate timely maintenance interventions, minimize production 
errors, and reduce costs associated with part quality deviations. Moreover, the decision 
model for dataset-specific hyperparameter selection provides a valuable framework for 
researchers and practitioners working on similar image-based classification problems.
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Abstract 
Zusammenfassung 
 

The aim of this thesis was to develop and optimize deep learning models specifically 
designed for the identification of tool wear on microscopic images of cutting tools and 
cutting tool edges. Cutting tool wear has an impact on dimensional accuracy and sur-
face quality of parts, ultimately affecting the costs associated with meeting part quality 
criteria. 

To accomplish this objective, the creation of a tool wear model based on empirical tool 
life trials was conducted. An outcome of the trials was the generation of a dataset of 
images, which were then utilized to develop a deep learning model capable of seg-
menting cutting tool flank wear. To ensure the effectiveness of the deep learning 
model, a screening analysis was conducted to investigate various dataset properties 
and model hyperparameters that could influence the quality of predictions. The screen-
ing analysis helped identify the key factors that significantly impacted the performance 
of the model. Building upon the insights gained from the screening analysis, the thesis 
proceeded with an in-depth investigation of the most influential factors. This investiga-
tion led to the development of a decision model that could guide the selection of da-
taset-specific hyperparameters for optimal performance. To validate the effectiveness 
of the model optimization strategy, a machine tool integrated measurement setup was 
employed, utilizing a microscope as well as a camera. These use cases provided a 
practical assessment of the developed deep learning model and its ability to identify 
and assess tool wear in a real-world manufacturing scenario. 

By developing and refining deep learning models for tool wear identification on micro-
scopic images, this thesis contributes to enhancing the understanding and manage-
ment of tool wear in the manufacturing industry. The optimized models have the po-
tential to facilitate timely maintenance interventions, minimize production errors, and 
reduce costs associated with part quality deviations. Moreover, the decision model for 
dataset-specific hyperparameter selection provides a valuable framework for research-
ers and practitioners working on similar image-based classification problems. 

  



 

  



Zusammenfassung 
Abstract 

Das Ziel dieser Arbeit war es, Deep-Learning-Modelle zu entwickeln und zu optimie-
ren, die speziell für die Erkennung von Werkzeugverschleiß auf mikroskopischen Bil-
dern von Zerspanungswerkzeugen und Schneidkanten konzipiert sind. Der Verschleiß 
von Zerspanungswerkzeugen beeinflusst die Maßgenauigkeit und die Oberflächen-
qualität von Bauteilen, was sich letztlich auf die Kosten auswirkt, die mit der Einhaltung 
der Qualitätskriterien für die Bauteile verbunden sind. 

Um dieses Ziel zu erreichen, wurde die Erstellung eines Werkzeugverschleißmodells 
auf der Grundlage empirischer Standzeitversuche durchgeführt. Ein Ergebnis der Ver-
suche war die Erstellung eines Satzes von Bildern, die dann zur Entwicklung eines 
Deep-Learning-Modells verwendet wurden, das in der Lage ist, den Verschleiß auf der 
Freifläche von Zerspanungswerkzeugen zu segmentieren. Um die Effektivität des 
Deep-Learning-Modells zu gewährleisten, wurde eine Screening-Analyse durchge-
führt, um verschiedene Datensatzeigenschaften und Modellhyperparameter zu unter-
suchen, welche die Qualität der Vorhersagen beeinflussen könnten. Mit Hilfe der 
Screening-Analyse konnten die Schlüsselfaktoren identifiziert werden, welche die Leis-
tung des Modells erheblich beeinflussten. Aufbauend auf den aus der Screening-Ana-
lyse gewonnenen Erkenntnissen wurde in dieser Arbeit eine eingehende Untersu-
chung der einflussreichsten Faktoren durchgeführt. Diese Untersuchung führte zur 
Entwicklung eines Entscheidungsmodells, welches die Auswahl von datensatzspezifi-
schen Hyperparametern für eine optimale Leistung anleiten kann. Um die Effektivität 
der Modelloptimierungsstrategie zu validieren, wurde ein in eine Werkzeugmaschine 
integrierter Messaufbau unter Verwendung eines Mikroskops sowie einer Kamera ein-
gesetzt. Diese Anwendungsfälle lieferte eine praktische Bewertung des entwickelten 
Deep-Learning-Modells und seiner Fähigkeit, Werkzeugverschleiß in einem realen 
Fertigungsszenario zu erkennen und zu bewerten. 

Durch die Entwicklung und Verfeinerung von Deep-Learning-Modellen zur Identifizie-
rung von Werkzeugverschleiß auf mikroskopischen Bildern trägt diese Arbeit dazu bei, 
das Verständnis und das Management von Werkzeugverschleiß in der Fertigungsin-
dustrie zu verbessern. Die optimierten Modelle haben das Potenzial, rechtzeitige War-
tungseingriffe zu erleichtern, Produktionsfehler zu minimieren und die mit Qualitätsab-
weichungen von Teilen verbundenen Kosten zu senken. Darüber hinaus bietet das 
Entscheidungsmodell für die datensatzspezifische Auswahl von Hyperparametern ei-
nen wertvollen Rahmen für Forscher und Praktiker, die an ähnlichen bildbasierten 
Klassifikationsproblemen arbeiten. 
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1 Introduction 
Einleitung 

The global metal cutting tools market refers to the market for tools used in the 
manufacturing industry to cut metal. These tools are used in a variety of machining 
applications, including milling, turning, drilling, and grinding. The market had a size of 
approximately USD 76 billion in 2022 and is driven by factors such as the increasing 
demand for metal products and the growing need for precision and efficiency in 
manufacturing processes [FORT22]. About 65 % of metal cutting tools are made from 
cemented carbide due to its high hardness, wear resistance, and toughness [PERS19, 
KLOC18]. Cemented carbide is made of tungsten carbide and cobalt. The proportion 
of cobalt is in the range of 5 to 12 % [ISO513:2012]. 

There are several factors that might lead to an increase in the consumption of cobalt 
and tungsten, including economic growth, rising standards of living across the globe 
and technological advancements: Electric vehicles, smart devices and renewable 
energy systems require cobalt for their batteries. Especially, the trend of intelligent 
transportation systems with Battery Electric Vehicles (BEV), which are growing at a 
Cumulative Annual Growth Rate (CAGR) of 17 % [STAT 22a], leads to an increased 
demand for the ressources and therefore significant price increases for cutting tools 
may be expectable in the coming years. In 2022 prices for cutting tools increased 
between 5 - 25 % across major cutting tools manufacturers [SEIS22].  

During manufacturing of aerospace engine components, high tool wear is generated. 
This is due to the use of hard to cut materials such as nickel-based alloys which are 
often required to produce aerospace engine components. Their outstanding properties 
make it difficult to machine and lead to severe milling tool wear, which can affect the 
quality of the product [MOHA20]. The decrease in product quality due to tool wear and 
the resulting machine downtime due to frequent tool changes are the main challenges 
in machining [BIND17]. Tool wear is thus responsible for high production costs and 
poor surface qualities, resulting in an increased need for optimization especially in 
workpiece surface generating finish milling operations. For the estimation of the tool 
life, empirical wear models may be applied, which require complex and cost-intensive 
experiments for the generation of the model data [ZHOU18].  

Apart from the literature study, interviews with experts from the metal cutting industry 
were conducted to size the importance of the cutting tool wear problem. Especially in 
manufacturing of aerospace components, the tool costs currently amount 
approximately 8 % of the costs of goods sold, according engineers from the industry, 
see also Section 4.1, Surveys with Industry Professionals. In actual practice, there are 
three ways to cope with the cutting tool wear problem usually applied in series 
production, in research and development and in small batch production: 

1. Fixed tool life from prior experiments with a safety margin to account for outliers 
2. Creation of tool life models to allow a prediction of tool life across a range of cutting 

speed and/or other cutting parameters 
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3. Optical observation and assessment of the tool status by the machine tool operator 

The first approach requires costly testing and is applicable for series production with 
highly repetitive processes and fixed process conditions. The safety margin applied to 
account for outliers, which are tools that fail earlier, results in a waste of numerous 
good tools. The second approach, tool life modelling, is complex and cost-intensive 
since many experiments are required for the generation of the model data. The last 
approach is common in single part or small batch production, it relies on experience of 
the machine tool operator and is thus not automated. 

The above-mentioned data and argumentation provide motivation to increase cutting 
tool utilization. Making the best use of each individual tool regarding its tool life, could 
be achieved through intelligent assistance and automation solutions. This thesis aims 
to explore potential methods for addressing tool wastage in the future through the 
utilization of inline metrology, specifically, the capture of images within the machine 
tool, coupled with AI-based image processing. Specifically, an approach to segment 
flank wear on cutting tool edges with a U-Net model architecture is presented.  
Furthermore, an investigation of the influence of model hyperparameters and dataset 
properties on the neural network model’s performance is conducted. Based on the 
findings, an approach to creating a decision model for hyperparameter optimization 
based on dataset properties is developed for these most influential factors. Finally, the 
approach is used to train a U-Net for a specific dataset made with an inline microscope 
that acquires cutting tool edge images within a machine tool. 
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1  Einleitung 
Introduction 

Der Weltmarkt für Zerspanungswerkzeuge bezieht sich auf den Markt für Werkzeuge, 
die in der Fertigungsindustrie zum Zerspanen von Metall verwendet werden. Diese 
Werkzeuge werden in einer Vielzahl von Bearbeitungsanwendungen eingesetzt, 
darunter Fräsen, Drehen, Bohren und Schleifen. Der Markt hat ein Volumen von 
ca. 76 Mrd. USD im Jahr 2022 und wird durch Faktoren wie die steigende Nachfrage 
nach Metallprodukten und den wachsenden Bedarf an Präzision und Effizienz in 
Fertigungsprozessen angetrieben [FORT22]. Etwa 65 % der Zerspanungswerkzeuge 
werden aufgrund ihrer hohen Härte, Verschleißfestigkeit und Zähigkeit aus Hartmetall 
hergestellt [PERS19, KLOC18]. Sinterkarbid wird aus Wolframkarbid und Kobalt 
hergestellt. Der Anteil an Kobalt macht zwischen 5 bis 12 % aus [ISO513:2012]. 

Es gibt mehrere Faktoren, die zu einem Anstieg des Verbrauchs von Kobalt und 
Wolfram führen könnten, darunter das Wirtschaftswachstum, der steigende 
Lebensstandard auf der ganzen Welt und der technische Fortschritt: Elektrofahrzeuge, 
intelligente Geräte und erneuerbare Energiesysteme benötigen Kobalt für ihre 
Batterien. Insbesondere der Trend zu intelligenten Verkehrssystemen mit 
batteriebetriebenen Elektrofahrzeugen (BEV), die mit einer jährlichen Wachstumsrate 
von 17 % wachsen [STAT 22b], führt zu einer erhöhten Nachfrage nach den 
Ressourcen, so dass in den kommenden Jahren mit einem erheblichen Preisanstieg 
für Zerspanungswerkzeuge zu rechnen ist. Im Jahr 2022 stiegen die Preise für 
Zerspanungswerkzeuge bei den wichtigsten Herstellern von Zerspanungswerkzeugen 
zwischen 5 und 25 % [SEIS22]. 

Bei der Herstellung von Triebwerkskomponenten für die Luft- und Raumfahrt kommt 
es zu einem hohen Werkzeugverschleiß. Dies ist auf die Verwendung von schwer 
zerspanbaren Werkstoffen wie Nickelbasislegierungen zurückzuführen, die in 
Triebwerkskomponenten für die Luft- und Raumfahrt eingesetzt werden. Ihre 
hervorragenden Eigenschaften erschweren die Bearbeitung und führen zu einem 
hohen Verschleiß der Fräswerkzeuge, was die Qualität des Produkts beeinträchtigen 
kann [MOHA20]. Die Abnahme der Produktqualität aufgrund von Werkzeugverschleiß 
und die daraus resultierenden Maschinenstillstandszeiten aufgrund häufiger 
Werkzeugwechsel sind die größten Herausforderungen bei der Bearbeitung [BIND17]. 
Der Werkzeugverschleiß ist somit für hohe Produktionskosten und schlechte 
Oberflächenqualitäten verantwortlich, was zu einem erhöhten Optimierungsbedarf 
insbesondere bei werkstückoberflächenerzeugenden Schlichtfräsoperationen führt. 
Zur Abschätzung der Werkzeugstandzeit können Verschleißmodelle eingesetzt 
werden, die komplexe und kostenintensive Experimente zur Generierung der 
Modelldaten erfordern [ZHOU18]. Neben der Literaturstudie wurden Interviews mit 
Personen aus der Zerspanungsindustrie geführt, um die Bedeutung des 
Verschleißproblems bei Zerspanungswerkzeugen zu ermitteln. Insbesondere bei der 
Herstellung von Bauteilen für die Luft- und Raumfahrt belaufen sich die 
Werkzeugkosten nach Angaben von acht Forschungs- und Entwicklungsingenieuren 
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aus der Branche derzeit auf etwa 8 % der Umsatzkosten des Produkts, siehe Abschnitt 
4.1, Surveys with Industry Professionals. In der Praxis gibt es drei Möglichkeiten zur 
Bewältigung des Werkzeugverschleißproblems, die in der Regel in der 
Serienfertigung, in Forschung und Entwicklung und in der Kleinserienfertigung 
angewandt werden: 

1. Festlegen der Standzeit aus einer vorherigen Prüfung mit einer Sicherheitsmarge, 
um Ausreißer zu berücksichtigen 

2. Erstellung von Standzeitmodellen, die eine Vorhersage der Werkzeugstandzeit 
über einen Bereich von Schnittgeschwindigkeiten und/oder anderen Schnittpara-
metern ermöglichen 

3. Optische Beobachtung und Bewertung des Werkzeugstatus durch den Bediener 
der Werkzeugmaschine 

Der erste Ansatz erfordert kostspielige Versuche und ist für die Serienproduktion mit 
sich stark wiederholenden Prozessen und festen Prozessbedingungen geeignet. Die 
Sicherheitsmarge, die zur Berücksichtigung von Ausreißern, d. h. Werkzeuge die 
früher versagen, angewandt wird, führt dazu, dass zahlreiche Werkzeuge 
verschwendet werden. Der zweite Ansatz, die Modellierung der Werkzeugstandzeit, 
ist komplex und kostenintensiv, da viele Versuche für die Generierung der Modelldaten 
erforderlich sind [ZHOU18]. Der letzte Ansatz ist in der Einzelteil- oder 
Kleinserienfertigung üblich, er beruht auf der Erfahrung des Werkzeugmaschinen-
bedieners und ist daher nicht automatisiert. 

Die oben genannten Daten und Argumente motivieren dazu, die Ausnutzung der 
Zerspanungswerkzeuge zu erhöhen. Um jedes individuelle Werkzeug möglichst gut 
auszunutzen, könnten intelligente Assistenz- und Automatisierungslösungen genutzt 
werden. Ziel dieser Arbeit ist es, potenzielle Methoden zu erforschen, um den 
Werkzeugverschleiß in der Zukunft durch den Einsatz von Inline-Messtechnik, 
insbesondere durch die Erfassung von Bildern innerhalb der Werkzeugmaschine, in 
Verbindung mit KI-basierter Bildverarbeitung, zu reduzieren. Konkret wird ein Ansatz 
zur Segmentierung des Freiflächenverschleißes an Schneidkanten mit einer U-Netz-
Modellarchitektur vorgestellt.  Darüber hinaus wird eine Untersuchung des Einflusses 
der Modellhyperparameter und Datensatzeigenschaften auf die Leistung des 
neuronalen Netzmodells durchgeführt. Auf der Grundlage der Ergebnisse wird ein 
Ansatz zur Erstellung eines Entscheidungsmodells für die Hyperparameteroptimierung 
auf der Basis von Datensatzeigenschaften für diese einflussreichsten Faktoren 
entwickelt. Schließlich wird der Ansatz verwendet, um ein U-Netz für einen 
spezifischen Datensatz zu trainieren, der mit einem Inline-Mikroskop erstellt wurde, 
das Bilder von Schneidkanten in einer Werkzeugmaschine erfasst. 
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2 Fundamentals and State of the Art 
Grundlagen und Stand der Technik 

This chapter gives a brief overview about the following topics: Section 2.1, Tool Wear 
in Metal Cutting, Section 2.2, Quantification of Tool Wear, and Section 2.3, Image 
Processing with Deep Learning. The chapter provides necessary background 
information and highlights gaps in the field of automated cutting tool wear image 
analysis.  

2.1 Tool Wear in Metal Cutting 
Werkzeugverschleiß bei der Metallzerspanung 

This section contains the fundamentals that are required to understand the degradation 
of cutting tools in the milling process. It gives a definition of the process itself and the 
cutting part. Further the loads and conditions that lead to tribological effects and finally 
cause cutting tool wear are described. 

2.1.1 Basic Concepts on the Cutting Part of Cutting Tools 
Grundbegriffe zur Schneide des Zerspanwerkzeugs 

Milling according to DIN 8589-3 is a cutting manufacturing process with circular cutting 
movement of a tool to produce workpiece surfaces [DIN8589-3] . According to the clas-
sification of manufacturing processes according to DIN 8580, it belongs to the main 
group 3, cutting, with the group 3.2, cutting with geometrically determined cutting edge  
[DIN8580]. The latter means that in a milling process the number of cutting edges and 
the orientation and geometry of the tool are known, as opposed to e.g., the grinding 
process. The flute, or tooth, of a cutting tool exhibits several surfaces that interact with 
the workpiece material during the milling process. As an example, the ball end milling 
cutter is presented on the left in Figure 2-1.  

 
Figure 2-1: Schematic of ball end milling cutter, sectional view of a tooth and wedge 

of cutting tool with geometric characteristics as in [ISO8868-2, p. 6] 
Schema eines Kugelkopffräsers, Schnittansicht einer Schneide und eines 
Schneidkeils mit geometrischen Abmaßen wie in [ISO8868-2, S. 6] 

The functional part of the tool incorporating the cutting edge is called cutting part 
[CIRP04, p. 4]. The cutting edge is not perfectly sharp but has a radius, rβ, as shown 
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in Figure 2-1 on the right. The cutting edge and eventually a part of the wedge pene-
trate the workpiece material. The wedge is the portion of the cutting tool enclosed be-
tween the rake and the flank faces. Rake face, Aγ, is the tool surface over which the 
chip flows, the tool orthogonal rake angle, γ0, is between rake face and the plane per-
pendicular to the cutting direction. Flank face, Aα, is the tool surface directed at the 
newly generated machined surface, the tool orthogonal clearance angle, α0, is between 
the flank face and the cutting direction. The cutting direction is approximately the di-
rection of cutting speed, vc.  

On the flank face there is radial land that is in contact with the workpiece surface during 
the cut, see Figure 2-1 [ISO3002-1]. Tool wear that occurs on the major (and minor) 
flank is called flank wear [CIRP04, p. 34]. Flank wear results in a loss of orthogonal 
clearance angle on the flank face of the tool. The interaction of tool and workpiece 
described above lead to different degradation effects acting on the tool. The tribology 
and the chain of effects resulting in cutting tool wear are described in the following 
subsections. 

2.1.2 Tribology in Metal Cutting 
Tribologie in der Zerspanung 

Tribology is an interdisciplinary field that deals with the study of wear and friction prob-
lems. It is a relatively new field of science and technology, which was only established 
in the middle of the 20th century by Peter Jost. In the so-called Jost Report, tribology 
is defined as follows:  

“Tribology is the science and technology of interacting surfaces in relative motion and 
of related subjects and practices“ [CZIC10, p. 4] 

The tools of tribology can be used to describe and optimize friction- and wear-related 
processes of technical systems. For a tribological analysis, the material properties and 
interactions of the structural elements involved as well as the load spectrum are of 
decisive importance, since even small deviations from the system variables result in 
different wear progressions [SOMM10, p. 3]. The structure of the tribological systems 
include the base body, counter body, intermediate materials and ambient medium 
[SOMM10, p. 4]. Figure 2-2 shows the schematic structure of the tribosystem.  

In a machining process, the tool is considered as a basic body that is worn by a counter 
body, usually hard abrasive particles [KLOC18, p. 80]. The use of a cooling lubricant 
or minimum quantity lubrication can be regarded as an intermediate material  
[CZIC10, p. 565]. In interrupted cutting, which includes milling, the cutting part of the 
tool is subject to a strong mechanical alternating stress. This mechanical stress can 
be illustrated by the chip formation process. The tool cutting edge initially penetrates 
the material and deforms it both elastically and plastically. When the maximum allow-
able material dependent shear stress is exceeded, the material starts to flow and forms 
a chip due to the given cutting part geometry. 



2.1 Tool Wear in Metal Cutting 

   7 

For plastic deformability, the amount and direction of the load play a decisive role in 
addition to the materials properties [PULS14]. This in turn means that the cutting 
speed, feed per tooth or cutting depth influence the amount of stress [KLOC18, p. 50]. 
The interrupted cut also leads to a thermal alternating stress on the tool. The tool cut-
ting edge heats up to high temperatures during tool engagement and cools down again 
after exiting the workpiece. The temperature distribution depends on many factors in 
addition to the process parameters. For example, different cutting part geometries, 
material properties and cooling lubricants lead to different temperature developments 
[KLOC18, p. 78–83].  

This means the tribology in metal cutting is a complex matter due to the high number 
of influencing factors. The load spectrum acting on the tool in metal cutting may be 
broken down into several key components, including the cutting force, cutting speed, 
cutting temperatur and duration of cut [CZIC10, p. 10]. It can even be further subdivided 
into mechanical, thermal and chemical loading as discussed by experts in the field 
[CIRP04, p. 32]. The following subsection elaborates on the intricate chain of effects 
in cutting tool wear, which originates from the comprehensive load spectrum described 
above. 

2.1.3 Chain of Effects in Cutting Tool Wear 
Wirkungskette beim Zerspanwerkzeugverschleiß 

The chain of effects in metal cutting tool wear starts with the load spectrum which may 
be broken down to mechanical, thermal, and chemical loading (Figure 2-3). The cutting 
tool experiences localized loads at the cutting edge [KALP10, p. 574]. Particles and 
surfaces slide along between the workpiece surface and the tools flank face as de-
scribed in the former subsection. Through the complex load spectrum of the cutting 
part, several wear mechanisms occur.  

1
Base
Body

2
Counter 

Body

4
Load

5
Movement

6
Temperature

3
3a Interm. Materials
3b Ambient Medium

Friction and Wear

1

2

3b

3a

6

5

4
Tribological System

Structure: Material and Form Load Spectrum: Introduced Energy

Figure 2-2: Structure of tribological system [SOMM10, p. 4] 
Struktur eines tribologischen Systems [SOMM10, S. 4] 
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Wear mechanisms are physical and chemical interactions in the contact area of a tribo-
logical system. This triggers elementary processes, which in turn are responsible for 
material and shape changes of the contacting surfaces [CZIC10, p. 117]. Depending 
on the type and duration of load, different wear causes occur on the tool, since the 
cutting edges are exposed to deformation, separation, and friction processes during 
milling.  

 
Figure 2-3: Chain of effects in metal cutting tool wear [CIRP04, p. 32–34] 

Wirkungskette beim Zerspanwerkzeugverschleiß [CIRP04, S. 32-34] 

In general, a distinction is made between the following mechanisms, see Annex  A.1: 
Adhesion, abrasion, tribochemical reaction and surface disruption [KLOC18, p. 75]. 
Other authors seek a more granular distiction of wear mechanisms but oftentimes fail 
at distinguishing mechanisms and wear forms [SHAW05, p. 178]. At very high cutting 
temperatures, diffusion processes also occur, which reduce the wear resistance in par-
ticular and thus promote abrasion wear [KLOC18, p. 78]. 

 
Figure 2-4: Characteristic wear forms on the cutting part in turning [KLOC18, p. 100] 
        Charakteristische Verschleißformen der Schneide beim Drehen [KLOC18, S. 100] 
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The chain of effects from loads to wear mechanisms leads to the wear forms. These 
phenomena must be distinguished from the causes. The tool is subject to various forms 
of wear, which vary in intensity depending on the type and duration of the load. Wear 
on the rake face is called crater wear. If wear occurs on the minor or major flank faces, 
this is referred to as flank wear [CIRP04, p. 32–36]. But differentiating wear forms with 
location of occurrence is not sufficient because of differences in tool deterioration phe-
nomena, see Figure 2-4. Attempts have been made to classify not only flank and crater 
wear but also chipping, flaking, cracks and catastrophic failure [ISO8868-2, p. 8–14].  

2.1.4 Impact of Cutting Tool Wear 
Auswirkungen von Zerspanwerkzeugverschleiß 

In a machining process, wear of the cutting tool causes a continuous change of the 
process state variables in the cutting zone like forces and temperatures acting on the 
workpiece and tool [KLOC18, p. 75]. Those continuously changing process conditions 
on their part influence the mechanisms that generate the tool wear and therefore affect 
its form and rate. Apart from workpiece and tool material properties and process con-
ditions such as coolant and vibrations, the tool wear rate depends mainly on cutting 
speed [STEP16, p. 162]. Flank wear is the most influencal wear form in metal cutting 
[STEP16, p. 508] because the rubbing of wear land against the machined surface leads 
to an increase in temperature and forces which increase deflections and reduce di-
mensional accuracy [STEP16, p. 530]. Another effect is the displacement of the cutting 
edge that results in a reduced depth of cut and therefore potentially reduces cutting 
force and cutting temperature and hence tool wear [KLOC18, p. 4]. Flank wear also 
results in a loss of orthogonal clearance angle on the flank face of the tool leading to 
increased frictional resistance [SHAW05, p. 179]. The proportion of each of the effects 
described above are hard to quantify or to model for a specific operation. Generally, 
the tool wear and specifically the flank wear, progresses in a distinct shape over cutting 
time or other tool life parameters. After a break-in period, in which the flank wear rises 
rapidly, the curve enters the steady regime where its slope becomes constant. As soon 
as the first chipping of cutting-edge fragments occurs, flank wear accelerates until the 
cutting edge finally fails completely, that is cutting edge breakage, removal of one or 
more tool flutes or tool shaft shear off. The next chapter gives an overview regarding 
methods to quantify tool wear and to model tool wear curves for specific cutting oper-
ations.  

The technical issues with tool wear described above lead to economic issues: Tool 
wear is a cost driver in the metal cutting industry. Besides costs for the cutting tools 
themselves, further costs appear - equipment downtime for tool changes, machining 
costs and nonproductive costs, see Annex A.2. Additionally, hard to quantify costs such 
as  reworking of damaged surfaces, scrap parts and damages to the machine tool in 
the worst case [SHAW05, p. 170, STEP16, p. 529, BERG20]. Consequently, tools 
need to be monitored and exchanged on a regular basis, usually measured in time, 
tool travel path or parts produced, or at a defined tool wear state [EZUG99, WANG18]. 
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To determine the useful tool life for a specific operation, a tool wear model is neces-
sary. Cutting speed is the main driver for tool wear but also determines the productivity 
of a metal cutting process [TAYL06]. For this reason, an economical optimization of a 
cutting process with regards to unit costs is the search for the optimal cutting speed 
[STEP16, p. 751–771]. This Section 2.1, Tool Wear in Metal Cutting, gave an overview 
regarding the the basic concepts of the milling process and its cutting part. The former 
two are a tribological system that results in cutting tool wear. The complexity of the 
tribological system hampers the analytical or numerical calculation and prediction of 
cutting tool wear. The chain of effects in tool wear starts with loads acting on the tool, 
leading to wear mechanisms, that results in observable wear forms. The visible wear 
forms are quantifiable using cutting tool wear metrics, like VB, which may inform on 
the tool’s condition in terms of a specific cutting operation. The subsection concludes 
with the impact of tool wear from a technological and economical viewpoint and the 
necessity of tool wear quantification for process optimization. 

2.2 Quantification of Tool Wear 
Quantifizierung des Werkzeugverschleißes 

The quantification of tool wear is discussed in this section. Specifically, a standardized 
tool life testing procedure and the necessary direct measurement of cutting tool wear 
are elaborated. The direct and indirect approach to cutting tool wear measurement is 
contrasted. Furthermore, approaches for the automated processing of microscopic tool 
wear image data are presented. 

2.2.1 Terminology of Tool Life 
Terminologie der Werkzeugstandzeit 

For a mutual understanding of words and their meaning in the context of a scientific 
subject, the terminology must be clear. There is a contradiction of terminology in one 
of the standards for cutting tool wear [DIN6583] in comparison to the more recent 
standards. In this work, the term “tool life criteria” stands for the criteria that can be 
used to describe the tools end of useful life. This terminology is consensus in most of 
the standards [CIRP04, ISO3685, ISO8868-2]. Examples for tool life criteria are tool 
wear, change of workpiece surface roughness or change of cutting forces. Apart from 
that, the framework of terminology of tool life is described using the conflicting norm 
[DIN6583]. Since there is no established translation of the german word “Standver-
mögen”, the english term “cutting tool permanence” is used from now on. The following 
paragraphs contain a description of important terms of cutting procedure and their in-
terconnections within the context of cutting tool wear testing and modelling. This in-
cludes explanations of the terms cutting tool permanence, cutting conditions, tool life 
criteria and tool life parameters. Figure 2-5 gives an impression of the relationship be-
tween the terms and their content technology-wise.   
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Cutting Tool Permanence  
Standvermögen 

Cutting tool permanence is the main term used to describe the performance of cutting 
and workpiece material during machining. It is defined according to DIN 6583 as the 
ability of a working pair, which is tool and workpiece, to withstand a specific machining 
process. The cutting tool permanence is an interplay of three assessment criteria: Cut-
ting conditions, tool life criteria and tool life parameters. If two of these assessment 
criteria are constant, the third one can be determined through tool life testing 
[DIN6583]. The testing procedure is described in more detail in the next Subsection 
2.2.2, Tool Life Testing in . The meaning and interaction of the assessment criteria with 
regards to the cutting ability and edge durability is explained in the following para-
graphs. 

 

Cutting Conditions 
Standbedingungen 

The cutting conditions in a cutting operation respectively in cutting tests consists of 
several components and their properties (Figure 2-5): Cutting tool, workpiece, machine 
tool, cutting process and ambient [DIN6583, p. 2].  

The properties of the cutting tool that influence the permanence are among others, 
geometry of the cutter, geometry of the cutting part, the tools material and the tools 
coating. The temperature in the cutting zone has mostly the strongest influence on tool 
wear [AUGS18, KLOC18]. That is why the cutting speed, which is a proxy for cutting 
temperature, is often used as the independent variable for various approaches of mod-
elling tool life [GRZE17, p. 224–227]. 

 

Figure 2-5:  Terms of cutting procedure - Tool life terms [DIN6583] 
Begriffe der Zerspantechnik – Standbegriffe [DIN6583]  
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Tool Life Criteria 
Standkriterien

Tool life criteria are threshold values for undesirable alterations of cutting tool, work-
piece, or process state [DIN6583, p. 2]. To determine an end of life for cutting tools, 
either for the sake of process safety or part quality, the respective standards recom-
mend the use of the type of deterioration that is believed to be most important to the 
end of useful tool life. Once the predominant wear form with high informative value is 
known, a wear metric can be derived. Depending on the operation type and its speci-
fications, it may also be flank wear, crater wear, flaking or chipping. Based on occur-
rence in literature flank wear is popular, which may be measured with the tool-life cri-
teria width of flank wear land VB. This most commonly used criterion can be further 
specified to uniform wear, i.e. VB averaged over all teeth, or localized wear, i.e. maxi-
mum VB on an individual tooth [ISO8868-2, p. 14, STEP16, p. 537]. In case of turning 
operations the standard breaks VB down into local zones along the cutting edge for a 
finer differentiation [ISO3685, p. 12]. Apart from a specific tool wear form and its re-
spective wear metric, the cutting force or surface roughness could be used as a tool 
life criterion [DIN6583, p. 1]. Since the latter two are still more elaborate to quantify, 
the tool wear is the most common criterion for tool life determination. 

Tool Life Parameter 
Standgröße

Figure 2-6:  Qualitative plot of VB over tool life time, double-logarithmic vT-diagram 
and VB over cutting speed [TAYL06, KLOC18, p. 82] 
Qualitative Grafik zu VB über die Schnittzeit, doppellogarithmisches vT Dia-
gramm und VB über der Schnittgeschwindigkeit [TAYL06, KLOC18, P. 82]  

Built-up edge

Thermal softening
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For practical reasons in production environments, a tool life parameter is of interest to 
determine tool life time, travel path, volume or the quantity of produced parts until a 
certain tool life criterion is reached [CIRP04, p. 40, DIN6583, p. 2]. The tool life time is 
a common tool life parameter.  

The spread of this parameter is explainable due to its practical use in manufacturing, 
especially turning, since TAYLOR introduced the systematic investigation and modelling 
of tool life using vT-curves [TAYL06].  The vT-diagram is a characteristic curve or dia-
gram describing tool life time, T, as a function of cutting speed, vc, in a log-log plot 
(Figure 2-6). Nevertheless, the diagrams may also be presented using other tool life 
parameters such as tool life travel path. It is also possible to derive a VB-vc diagram 
using intersections of tool wear curves at constant cutting time, see Figure 2-6. The 
vT-diagram is valid in a range that is specific to the process investigated. This range is 
usually constrained by Built-up Edge (BUE) formation at low cutting velocities and 
capped by thermal softening of the work material towards higher cutting velocities. 

2.2.2 Tool Life Testing in Metal Cutting 
Standzeituntersuchungen in der Zerspanung 

As noted in Section 9.1, tool life depends as much on part requirements as on the tool 
material and cutting conditions, making it difficult to develop general methods of pre-
dicting tool life [STEP16, p. 549]. The standard for tool life testing in milling for end 
milling cutters has been derived from the ISO 3685 for tool-life testing with single-point 
turning tools [ISO8868-2, p. 1, ISO3685]. The standard applies to end milling opera-
tions for high-speed steel. Since the general procedure is not different for carbide tools, 
this standard serves as a framework for tool life testing. The purpose of tool life testing 
can be manifold: 

 To benchmark for example tool coatings, cutting fluids, tool materials, workpiece 
materials or tool geometries with regards to their effect on tool life. 

 For investigations regarding favorable cutting parameters or cutting conditions for 
a specific operation 

 To determine the useful end of life for a specific working pair consisting of work-
piece material and cutting tool material. 

 In scientific qualification of a cutting process there are four criteria for evaluation of 
machinability: tool wear, chip form, cutting force and surface quality. 

ISO8868-2 covers five distinct types of tests, their purpose and number of investigated 
variables are shown in Table 2-1. Before carrying out the test runs for the tool life 
testing, a preliminary test is recommended to select a useful range of cutting speeds, 
feed values and time intervals between tool wear measurements. For the assessment 
of tool deterioration, e.g. the width of flank wear land measurement, the standard 
recommends the application of a toolmakers microscope and a mounting device for 
the cutting tool [ISO8868-2, p. 15]. 
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Table 2-1: Types of tests for tool life testing in machining as in [ISO8868-2] 
     Testtypen für Standzeitversuche in der Zerspanung [ISO8868-2] 
 

Type Purpose Vars. 
 

 
A Benchmarking of two or more process specifications  0 

 

 
B A characteristic vT-curve with variable cutting speed  1 

 

 
C Same as B but with variable feed, otherwise constant parameters 2 

 

 
D Same as C but with variable axial and radial depth of cut 3-4 

 

 
E Machining characteristics such as cutting forces, machined sur-

face, and chip formation for one set of process parameters 
1 

 

 

 
Figure 2-7:  Log-log characteristic tool life diagram also called vT-diagram 
      Doppellogarithmisches Standzeitdiagramm, auch vT-Diagramm genannt 

Once the cutting test have been conducted in accordance with, e.g., test type B 
requirements, the statistical evaluation of tool life data follows. Before constructing 
characteristic diagrams, the statistical significance of differences between the test 
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conditions must be proven. In the calculations the variable x represents a tool life 
parameter such as tool life time or tool travel path. First, the arithmetic mean, μ, and 
standard deviation, σ, of each test condition is determined with the number of test-runs 
within one test condition, n.  

௠௔௫/௠௜௡ݔ̅  = ߤ ± ݐ ݊√ߪ − 1 (1) 

The boundaries of the confidence interval, x̅max  and x̅min, as in Equation (1), indicate 
where further tool life results would be located with an assumed probability. The 
students |tα| value for determining significant difference is calculated using the following 
formula in Equation (2), where nA and nB are the number of test runs for two of the 
compared conditions A and B: 

 
|ఈݐ| = ஺ݔ̅) − (஻ݔ̅ ඨ݊஺ × ஺ଶߪ + ݊஻ × ஻ଶ݊஺ߪ + ݊஻ − 2 × ቀ 1݊஺ + 1݊஻ቁ൚  

(2) 
 

If |tα| is greater than t(nA + nB – 2) at the chosen confidence level a significant difference 
exists between the two considered test runs A and B. After a significant difference 
between the runs of all test conditions is proven, the calculation of tool life curves for 
the characteristic diagram is performed (Figure 2-7), which is a natural log-log-chart 
originating from TAYLOR [TAYL06].  

The regression analysis requires the number experimental observations, n, the 
independent variable for regression, x, which is usually the natural logarithm of cutting 
speed and the dependent variable, y, which is usually the natural logarithm of tool life 
time. The best straight line shall be fitted to the graph of x and y. The tangent of the 
angle between the x-axis and the regression line is k. The theoretical intersection 
of x-axis and the regression line is C. The calculation of the Taylor tool life parameters 
is complete. The Taylor equation may be used for determining cutting time at a specific 
cutting speed, as in Equation (3), or the cutting speed required for a targeted tool life 
time, as in Equation (4). Additional statistical indications for the goodness of fit can be 
calculated, such as dispersion, significance and confidence interval limits for the line 
or the individual constants [ISO3685]. 

 ܶ =  ݁௞∙୪୭୥(௩೎/஼) (3) 

௖ݒ  = ݁୪୭୥( ೎்)௞  ା ୪୭୥(஼) (4) 

This subsection covered the techniques for tool life testing and modelling as suggested 
by the standards in the cutting tool wear domain. From an economic perspective, costs 
for tool life testing may exceed the value of the results [ISO3685]. This means there is 
a need for more efficient methods for tool life testing and the tool wear problem in metal 
cutting in general. A weak point is the complex test procedure and especially the direct 
microscopic wear measurement which will be covered in the next subsection.  
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Other attempts to tool life modelling apart from the Taylor-based methods presented 
here, may be found in textbooks and publications [SHAW05, p. 171–177] [GRZE17, 
SOMM10, HOLS21]. Some of them consider wear mechanisms and build formulas 
around physical equations for these mechanisms. Others rely on numerical simulations 
and feedback the information into tool life equations. A commonality of all approaches 
to tool life modelling is their requirement for fundamental material scientific 
experiments or empirical cutting experiments, mostly to a greater extent than the Taylor 
based approach.  

2.2.3 Direct Tool Wear Measurement 
Direkte Werkzeugverschleißmessung 

In the realm of measurement techniques for cutting tool wear measurement, there are 
two basic categories: direct measurement using, for example optical devices, and in-
direct measurement, utilizing condition monitoring sensors.  

 
Figure 2-8:  Examples of different tool wear measurement methods  

Beispiele für unterschiedliche Verschleißmessmethoden 

Direct measurement means directly observing and quantifying wear on cutting tool 
edges with optical sensors which tend to give higher accuracy compared to indirect 
methods [JEON88].  Direct measurements offer a direct view of the tools condition, 
allowing for the identification of various wear forms and their extent. On the downside, 
direct measurements are confined to line-of-sight observations. Cutting fluid or chip 
accumulation, ambient lighting conditions and vibrations can obstruct the optical view. 
Uncertainties arise from the measurement process and the interpretation of image 
pixel data by human operators who manually determine a metric, like the width of flank 
wear land VB [CIRP04]. Some direct sensing methods, such as 3D scanning, cannot 
yet be performed “Online”, i.e., parallel or in temporal proximity to the process, eco-
nomically. In manufacturing companies, it is widespread practice to inspect cutting 
tools with a lense and let the operator assess the tool condition based on experience. 
Another possibility is the laser bridge to measure cutting edge set back. Tool life meas-
urements and especially a high number of measurements that are necessary for test-
ing are elaborate. Especially the requirement for manual, direct measurements of cut-
ting tool wear may hinder an efficient creation of tool life or indirect monitoring models. 

Online

Direct Sensing
- Tactile Probes
- Optical Sensors

Offline

Tool Wear Measurement Methods

Direct Sensing
- Optical Sensors
- 3D Scanning Probes

Indirect Sensing
- Force Sensors
- Acoustic Sensors



2.2 Quantification of Tool Wear 

   17 

Indirect measurements, in contrast, are made by taking a substitutional value that has 
a particular relation to the actual measurand [JEON88]. Indirect measurements do not 
require direct access to the cutting zone. This enables measurements to be taken with-
out interrupting the ongoing machining process. However, the measurements from 
sensors can be influenced by external factors, such as machine dynamics, making the 
interpretation of data more complex and potentially less reliable. Additionally, certain 
wear patterns might not be accurately represented through indirect measurements 
alone, introducing the risk of missing critical information. Finally, indirect measurement 
methods rely on frequent tuning by a direct measurement, especially when process 
variables change. 

Figure 2-9:  Direct offline measurement of cutting tool wear using a microscope 
Direkte Offline-Messung von Zerspanwerkzeugverschleiß mit Mikroskop 

2.2.4 Computer Vision for Automated Tool Wear Detection 
Computer-Vision zur automatisierten Detektion von Werkzeugverschleiß 

Since direct measurement of wear on cutting tool edges using optical sensors and 
human interpretation are elaborate, attempts have been made to automate the analy-
sis of microscopic tool edge images with regards to tool wear using Computer Vision 
(CV) algorithms. Rule-based feature detectors for image processing, like sobel, canny
and the active contour method [CANN86, KANO88, KASS88], are widely applied in
literature to detect tool wear on cutting tool edges [D’AD17, ALEG09, MOLD17]. An-
other approach is the use of machine learning methods solely or in combination with
feature detectors [D’AD13, DHAN15, XION10].

Common CV algorithms are transparent, compute efficient and optimized for specific 
tasks, while Deep Learning (DL) methods can be used for versatile environments, 
given the training data reflects the variance [MAHO20]. Some typical disturbances in 
an industrial environment with metal cutting processes are changing light exposure, 
different coating colors, changing orientation, blurry image acquisition conditions due 
to fluids or tool macro geometry, cold welded chips that disturb the view of the actual 
cutting edge and are difficult to differentiate from flank wear, dirt and changing tool 
geometries. A typical failure mode of CV for cutting tool wear detection is shown in 
Figure 2-10. This failure occures due to fixed thresholds that result in a high sensitivity 
towards variance in brightness for example. In case of a DL approach this weakness 
is adressed through providing training data that reflects real or artificial changes in 
brightness in the images. 
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Figure 2-10:  Rule-based CV fails as opposed to DL when applied to inference data  

Regelbasierte CV versagt im Gegensatz zu DL angewandt auf Inferenzdaten 

2.3 Image Processing with Deep Learning 
Bildverarbeitung mit Deep Learning  

Traditional CV methods have difficulties to fulfil the task of tool wear identification on 
microscopic images of cutting edges when there are small deviations compared to the 
image they were tuned on, see figure above. Although it is possible to use CV for this 
task in very restricted and homogeneous use cases, the spread in the industry has so 
far failed to materialize with this approach. Deep learning approaches promise to han-
dle heterogeneous data better than classical CV algorithms [GREE16]. 

A literature review of the Artificial Intelligence (AI) topics relevant for this thesis is dis-
cussed in this section. The major topic of discussion is Fully Convolutional Networks 
(FCN), which are applied for semantic segmentation of images, and the appropriate 
background that led to their development. Firstly, an introduction to Artificial Neural 
Networks (ANN) is given in Subsection 2.3.1 followed by a description of the NN train-
ing process and the hyperparameter tuning process in Subsection 2.3.2. In the follow-
ing Subsection 2.3.3, Convolutional Neural Networks (CNN) and Image Processing 
with Artificial Intelligence are discussed thoroughly. Subsequently, Tool Wear Identifi-
cation with Deep Learning with a focus on FCNs is described in Subsection 2.3.4. 
FCNs are a type of network that is designed for dealing with image data and pixelwise 
classification specifically. The very network used for the task of semantic image seg-
mentation in the cutting tool wear use case is an architecture which was initially de-
signed for medical image processing. Specifically, for identification of pathological tis-
sue for data from medical imaging techniques [RONN15]. This underscores the versa-
tility of FCNs, bridging the gap between seemingly disparate domains and showcasing 
their adaptability in solving complex problems. 
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2.3.1 Fundamentals of Machine Learning 
Grundlagen des maschinellen Lernens 

Machine Learning (ML) is a branch of artificial intelligence that systematically applies 
algorithms to generate underlying relationships between data and information 
[AWAD15, p. 1]. General application areas of machine learning are, for example, 
speech recognition, next word prediction or weather forecasts [WITT19, p. 24–30]. In 
contrast to classical statistics which is based on probability theory and focusses on 
estimating parameters from a sample of data, machine learning takes a more flexible 
approach to modelling data and often involve more complex algorithms. ML is divided 
into three main categories depending on the type of learning: Supervised learning, un-
supervised learning, and reinforcement learning. Within this thesis only the first one is 
used, since it requires high accuracy evaluation results [WANG20]. In supervised 
learning, the algorithm learns from training data, which is divided into input and output 
data. The inputs and outputs form pairs and must be determined before training. An 
algorithm finds rules to put these pairs into relationships. An example of such modeling 
is the regression method, in which a linear or nonlinear relationship between two vari-
ables can be represented as a function. With the help of regression, the parameters of 
this function are determined, and a model is created which allows predictions of the 
output variables [GÉRO19].  

Artificial Neural Networks or simply Neural Networks are designed by taking motivation 
from their biological counterparts and thus are a crude approximation of neural sys-
tems existing in nature [ROSE58, MCCU43]. The perceptron, also called artificial neu-
ron, is the simplest Neural Network (NN) existent, see Figure 2-11 left. It emerged as 
an artificial abstraction of a real neuron and takes one or more input numbers, denoted 
xi, connected via weights, denoted wi, to the neuron itself which contains a summation 
and an activation function f, generating an output, y. The bias term, b, shown in Figure 
2-11 may shift the activation function left or right on the x-axis to allow offsetting it to
positive or negative values.

Figure 2-11:  Perceptron (left) and Multilayer Perceptron (right) 
Perzeptron (links) und Multilayerperzeptron (rechts) 

The perceptron in the figure has an input layer and a hidden layer that functions as 
output layer at the same time. Equation (5) gives the mathematical expression of a 
perceptron [RUSS04, p. 896]. 
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ݕ  = ݂ ൭෍ݓ௜ݔ௜ + ܾ௜ ൱ (5) 

The Multilayer Perceptron (MLP) is a wiring of several perceptrons, into a network with 
at least one hidden and one output layer, each having possibly several perceptrons in 
parallel, see Figure 2-11 right. A single perceptron can only learn simple tasks, but for 
problems that are more complex multilayer perceptrons are required. A NN with two or 
more hidden layer is called a Deep Neural Network (DNN), see Figure 2-11. For sim-
plification, each circle shown below represents an artificial neuron with summation and 
activation function to process the weighted inputs shown as arrows. 

Activation Functions 
Aktivierungsfunktionen 

Activation function layers are applied after hidden or outputs layers of a network. They 
calculate weighted sums of inputs and biases. In CNNs the most commonly used acti-
vation function following a hidden layer is the Rectified Linear Unit (ReLU) due to its 
performance improvements compared to nonlinear activations like Sigmoid, its fast 
computation and its property of preventing vanishing gradients problem which other-
wise increases training time [NWAN18, VINO10].  

For ReLU, all non-positive values are changed to 0 and the positive values scaled 
linearly. At activations below zero, the gradient will be 0, hence the weights will not get 
adjusted during descent. Therefore, neurons stop responding to variations in input, this 
is called the dying ReLU problem. Exponential Linear Unit (ELU) is an activation func-
tion that solve the dying ReLU problem through a factor, which is smoothly reached 
below activations of zero. ELU tends to produce more accurate results across different 
learning rates compared to ReLU [PEDA18]. The sigmoid activation function produces 
and output value that is scaled between (0,1). Due to this squashing behavior, it is 
commonly used for predicting probabilities for example in the output layer of a neural 
network to produce a classification, see Figure 2-12. 

 
Figure 2-12:  ReLU, ELU and Sigmoid activation functions  

ReLU, ELU und Sigmoid Aktivierungsfunktionen 
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2.3.2 Neural Network Training 
Training eines neuronalen Netzes 

This section gives a brief introduction to basic concepts with regards to NN training 
and its related challenges. 

Backpropagation 
Fehlerrückführung 

An efficient method for calculating gradients that are needed to carry out optimization 
of weights is backpropagation [RUME86]. The solution of the resulting optimization 
problem is a particular set of weights which minimise or maximise the objective func-
tion. The loss function should be continuously differentiable since this method requires 
the calculation of gradient of the objective function at every iteration step. The network 
weights are randomly initialised within a predefined range, for example between (-1,1). 
At this point, the network cannot make meaningful predictions for input because no 
functional mapping is present between the input and its labeled output. The weights 
are updated as the input and the respective labeled output class are fed into the net-
work while training. In the following, the two passes (forward and backward) required 
for training a neural network are described. The process of feeding the output of one 
layer as the input to the next layer in a forward direction is referred to as the forward 
pass. To achieve the goal of minimising loss, the weights are modified by taking deriv-
atives for all weight values present in the network starting from the output and moving 
backward. This process of updating the weights in the negative direction of the loss 
function gradient in a backward manner is known as backward pass. 

In short: During the network training, with the backpropagation algorithm, one row of 
data is passed as input through the network [LECU88]. The produced output is com-
pared to the true output yielding an error. The error is propagated back through the 
network, layer by layer, updating the weights to the amount they contribute to the error. 
This way all rows of the dataset train the network repeatedly to produce an abstract 
representation of the data through weights in the NN.  

Optimization Function 
Optimierungsfunktion 

The optimisation function is used for minimising or maximising the objective function 
or the loss function. The most common optimisation function and the one used in this 
thesis is the Stochastic Gradient Descent (SGD). It calculates an approximation of the 
true gradient using only one or a subset of training dataset. This method minimises the 
loss function L(θ) parameterized by θ.  

௧ߠ  = ௧ିଵߠ −  (6) (ߠ)ܮఏ∇ߟ

To decrease the value of the loss function the parameters θ are updated in the non-
positive gradient direction of the loss function ∇θL(θ). The step size is determined by 
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the learning rate η. The iteration of Equation (6) stops when a local or global minimum 
is reached. SGD is known as mini-batch SGD when using only a subset of training 
dataset. 

Objective Function 
Zielfunktion 

Objective function also known as loss function L is calculated as the difference be-
tween the output image obtained after propagating it through the network and the user 
labelled output image. Two commonly used loss functions are: 

The Quadratic Loss Function or the Mean Squared Error (MSE) loss function, see 
Equation (7), is one of the simplest loss functions used in training neural networks. 
With xi being the neurons output, x̂i the desired neurons output and N the number of 
training images.  

ܮ  = 1ܰ ෍(ݔ௜ − ො௜)²ேݔ
௜ୀଵ  (7) 

The Cross Entropy Loss Function, as shown in Equation (8) is commonly used in train-
ing convolutional neural networks [ZHAN18]. Loss is calculated during network training 
and validation and its interpretation shows how well the model performs for these two 
sets. 

ܮ  =  1ܰ ෍(ݔො௜ ln(ݔ௜) + (1 + (ො௜ݔ ln(1 − ௜))ேݔ
௜ୀଵ  (8) 

Unlike accuracy, loss is not a percentage. It is a sum of the errors made for each ex-
ample in training or validation sets. An accuracy metric is used to measure the algo-
rithms performance in an interpretable way. 

Hyperparameter Tuning 
Hyperparameter-Abstimmung 

The performance of neural networks is largely affected by the hyperparameters cho-
sen. As explained previously in the paragraph Backpropagation neural network train-
ing is achieved by an optimization process. The hyperparameters include for example 
the above-mentioned Optimization Function and Objective Function (or Loss Func-
tion). The tuning of hyperparameters is a significant and complicated part of neural 
network training [YU20]. Generally, tuning is based on experience gained while training 
these networks (for example as rule of thumb the learning rate is set as 0.0001) rather 
than any established theory. The process is not straightforward because the space of 
possible hyperparameter settings is extremely large. Nevertheless, it is recommended 
to investigate hyperparameters systematically in a design of experiments and use in-
ference data from the real world domain for model assessment if possible [D'AM20]. 
These measures aim to prevent so called underspecification, which expresses via 
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good model performance of ML pipelines on test sets but model failure in the real-world 
application, i.e., inference domain. The evidently present underspecification in various 
applications of deep learning image processing use cases implies, that small variations 
in hyperparameters or training setup (e.g. random seed) may produce models that 
succeed in training and testing but fail on slightly different real world data [D'AM20]. 

2.3.3 Image Processing with Artificial Intelligence 
Bildverarbeitung mit KI 

For image processing tasks the above-mentioned, so-called Fully Connected (FC) net-
works can be applied but they have a major downside concerning training time. A low-
resolution input greyscale image of (32 x 32) pixels with 1024 neurons in the first layer 
and the same amount in two hidden layers leads to more than two million trainable 
parameters considering weights and biases. Scaling this up to relevant architectures 
with several layers and higher image resolution, the approach gets infeasible. There-
fore, FC networks are not scalable for image processing tasks [RASC18].  

Deep learning models for image processing tend to generalize well when enough data 
is present for the training process. Also, these models have proven to defeat traditional 
approaches in the image processing challenge ImageNet since 2012 [KRIZ17]. Aug-
mentation methods allow to enlarge the database while bringing artificial variations into 
the dataset, such as orientation, light conditions, contrast, etc. making the models more 
robust to changes in the acquisition environment. Tool wear detection is a texture 
recognition task rather than an object recognition task. A recent study reveals, that 
CNNs trained on the ImageNet dataset, which contains e.g. cat pictures, are biased 
towards recognizing textures and not object shapes as previously thought [GEIR19]. 
This means CNNs probably could recognize texture variations coming from wear phe-
nomena on metal cutting tools. 

Convolutional Neural Networks 
Faltendes neuronales Netzwerk 

Image classification is discussed before as it is a precursor of image segmentation. 
Image classification aims to label entire images whereas image segmentation labels 
all pixels within an image. In 1998, while researching and developing neural networks 
LeCun et al. published a paper citing useful applications of Convolutional Neural Net-
works (CNNs) in document recognition [LECU98]. In 2012, CNNs regained spotlight 
as Krizhevsky et al. improved the CNN architecture, mainly through a much deeper 
architecture of layers. Over the last few years DL for CV tasks has garnered much 
popularity and new architectures are being published frequently [META22]. 

CNNs have applications in object detection, text recognition, pose estimation and 
many more [ALOY17]. They contain several different hidden layer types that bring a 
solution for the efficiency problem in image processing described earlier. The first CNN, 
as mentioned above, applied for digit recognition is called LeNet-5. It takes (32 x 32) 
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greyscale images, has roughly 340,000 connections but only 60,000 trainable param-
eters [LECU98]. An explanation how this is possible is briefly described in the following 
paragraphs. For a better overview, Figure 2-13 shows a CNN architecture conceptu-
ally. 

 
Figure 2-13:  Schematic presentation of a simple CNN architecture  

Schematische Darstellung einer einfachen CNN-Architektur 

Convolution Layer 
Faltungsschicht 

This layer extracts features from an image, e.g., lines and dots, and compresses the 
image. Using a filter, also called kernel, which slides along the input image, a smaller 
representation of an image is created (Figure 2-14). An image is a matrix containing 
color information (numbers ranging 0-255) in the form of color codes and may be for-
malised as a matrix with heigth, width and depth (h x w x d). Convolutional layers gen-
erate a stack of feature maps from input images using kernels (or filters). For a kernel 
K with a rows, b columns and d depth, the notation can be formalised as (Ka x Kb x d). 
This kernel has a receptive field of (Ka Kb). The kernel produces a feature map by 
sliding over the image in a linear fashion. This process is repeated with different kernels 
to produce different feature maps over the same receptive field of the image. 

 
Figure 2-14:  Convolution operation (left), convolutional layer schematic depiction 

with image, kernel and feature maps (right)  
Faltungsoperation (links), Faltungsschicht schematische Darstellung mit Bild, 
Kernel und Feature Maps (rechts) 

The sliding over images is referred to as the convolution operation and is mathemati-
cally defined as the sum of element-wise multiplication of a kernel and the original 
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image, holding the depth constant. The number of pixels by which the kernel slides 
after each convolution is called a stride. The stride s of a kernel is a hyperparameter 
which needs to be specified at training time. The output generated by a convolutional 
layer reduces its size due to the nature of convolution operation. Further, using a stride 
greater than one results in an output that has even lesser rows h and columns w. For 
example, applying a (3 x 3) filter with (1 x 1) stride, which means one pixel each step, 
on a (6 x 6) image yields an output, called feature map, of size (4 x 4) that means a 
complexity reduction of more than 50 %. Handcrafting of kernels is possible, exempla-
rily the diagonal line detection in Figure 2-14. CNNs learn filters during the training 
process automatically in context of the network task, respectively the training data. In 
a CNN there are several filters applied in each convolutional layer leading to several 
feature maps stacked upon each other. Due to the kernel sizes, closely located pixels 
relationship is preserved by the convolution operation, which is beneficial for image 
data where context of nearby pixels holds information about the content [CHOL18].  

Pooling  
Pooling 

The two major reasons for applying pooling layers are decreasing the number of net-
work weights and reducing overfitting to training data [SCHE10]. Pooling layer is cal-
culated by taking a particular value of input within a kernel based on a specified metric 
(maximum, minimum, etc.). This results in an output size that is smaller than the input. 
The pooling method most used is max pooling (Figure 2-15). Other methods include 
average pooling and L2 norm pooling. The strides of the pooling kernel are equal to its 
length, e.g., a (2 x 2) kernel has a stride of s = 2. Thus, max pooling ends up reducing 
the spatial dimension of the input. The use of pooling layers has been found to be 
particularly effective in CNNs applied to image and speech recognition tasks, where 
reducing the input size while preserving key features is crucial for efficient processing. 

 
Figure 2-15:  Max pooling operation (left), average pooling operation (right)  

Max pooling Operation (links), Average pooling Operation (rechts) 

Regularization  
Regulierung 

Overfitting occurs when a ML model is too complex and learns to fit the noise in the 
training data, resulting in poor performance on new, unseen data. Regularization tech-
niques aim to address this problem by reducing the complexity of the model, preventing 
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over-reliance on specific features, and encouraging the learning of more generalized 
representations of the input data. 

Dropout is a popular regularization method that addresses this problem by randomly 
deleting neuron outputs during training [SRIV14]. This technique helps to prevent over-
reliance on specific features and encourages the model to learn more generalized rep-
resentations of the input data. 

Another widely used regularization method is Batch Normalization (BN) [IOFF15]. 
This method involves normalizing and scaling neuron outputs to a mean of zero and a 
standard deviation of one. This normalization step helps to stabilize the learning pro-
cess and reduce the internal covariate shift. BN has been shown to significantly im-
prove the performance of deep learning models and is now a standard component of 
many state-of-the-art architectures. 

Flattening and Fully Connected Layer  
Abflachende und vollständig verbundene Schicht 

The Flattening Layer is one such layer that is used to reshape the 3D arrays produced 
by the convolutional layers into 1D vectors. This layer is necessary because most FC 
layers in NNs require inputs in the form of 1D vectors. 

The Fully Connected (FC) layer is another important layer in CNNs. This layer takes 
the flattened output from the previous layer and applies a set of weights and biases to 
learn non-linear combinations of the features. This allows the model to capture more 
complex relationships between the inputs and outputs and improve its ability to make 
accurate predictions. This FC layer can be seen as an MLP, see subsection 2.3.1 Fun-
damentals of Machine Learning, because it consists of one or more layers of fully con-
nected neurons that learn to model the non-linear relationships between the input fea-
tures and output classes.  

In summary, the Flattening Layer is required to reshape 3D arrays into 1D vectors, te 
FC layer to learn non-linear combinations of the features coming from the convolutional 
layers, see Figure 2-13.   

Fully Convolutional Neural Networks  
Vollständig faltbare neuronale Netzwerke 

With the popularity of DL in recent years, many semantic segmentation problems were 
addressed using architectures, like CNNs. This approach outperforms others in terms 
of accuracy and efficiency. Semantic segmentation means that, instead of classifying 
an image or an object in an image, each pixel in the image is labelled. This enables 
scene understanding for autonomous driving and analysis of biomedical images for 
identification of pathological structures [MENN18, LUND19]. 

The general architecture for semantic image segmentation tasks is an encoder, which 
is often a pre-trained CNN for image classification and a decoder network that classi-
fies each pixel from the features learnt by the encoder. An example for this approach 
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to semantic segmentation is Fully Convolutional Networks (FCN) [LONG15]. In 2015, 
the concept of FCNs as a modification of CNNs for the application of pixel-wise se-
mantic image segmentation is introduced. The Fully Connected (FC) layers of CNNs 
are replaced by convolutional layers in an FCN. This specific architecture of neural 
networks used for semantic image segmentation captures both the global and local 
information present in images. It does so through its two major parts: a downsampling 
path to capture contextual information and an upsampling path to recover spatial infor-
mation. Vanilla CNNs, i.e., networks for image classification tasks, have a drawback of 
losing information about location of classes due to the FC layer at the end that outputs 
a single class. However, FCNs can predict locations per class. FCNs take, other than 
classical CNNs, arbitrary sized images since they do not make use of FC layers.  

U-Net Architecture
U-Net-Architektur

U-Net is designed for biomedical image segmentation purposes. In 2015, the Interna-
tional Symposium on Biomedical Imaging (ISBI) cell tracking challenge in San Fran-
cisco was won by this network. U-Net is an FCN based architecture that learns to seg-
ment images in an end-to-end setting which means it takes in a raw image and puts
out a segmentation map or mask  [RONN15]. Note that it does not use any FC layer.
As consequences, the number of parameters of the model is reduced and it can be
trained with a comparably small dataset [RONN15].

Figure 2-16:  U-Net architecture [RONN15] 
U-Net-Architektur [RONN15]

The network consists of symmetric encoder and decoder layers connected. Moreover, 
the U-Net architecture has shown to be highly flexible and easily customizable, allow-
ing users to adapt the model to their specific research needs. Another important benefit 
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of the U-Net architecture is its efficient use of memory and computational resources, 
making it suitable for use on standard computing hardware [RONN15]. The input image 
is fed into the network at the beginning and the data propagated through the network 
layers along all possible paths resulting in a segmentation map. The layers are stacked 
such that they form a U-shape, hence the name U-net. This architecture combines 
lower and higher-level feature maps with skip connections, thus improving high reso-
lution features with localization. 

Each grey box corresponds to a multi-channel feature map. The size and number of 
featured channels are denoted in the Figure 2-16. Most of the operations are convolu-
tions followed by a nonlinear activation function. In detail, there is a standard (3 x 3) 
convolution followed by a Rectified Linear Unit (ReLU). The next operation in the U-
Net is a max pooling operation which reduces the size of the feature map as illustrated 
by a red downward arrow. The max pooling operation acts on each channel separately 
and propagates the maximum activation from each (2 x 2) window to the next feature 
map. All these sequence of convolutions and max pooling operations result in a spatial 
contraction where there is a gradual increase of “what is in the image” and at the same 
time decrease of “where is it in the image”. [BERG20] 

CNNs for classification tasks end after the contraction and map all features to a single 
output vector. U-Net has an additional expansion path to create a high-resolution seg-
mentation map. This expansion path consists of a sequence of upconvolutions and 
concatenation with the corresponding high-resolution features from the contracting 
path. This upconvolution uses a learned kernel to map each feature vector to the (2 x 2) 
pixel output window again followed by a nonlinear activation function that outputs the 
segmentation map. Accurate segmentation can be obtained with relatively small train-
ing data sets. The final resolution of the output map is increased by the deconvolutional 
layers. Many feature maps per convolutional layer are applied in the encoder and de-
coder layers, thus resulting in a transfer of contextual information to higher resolution 
layers. 

Other notable architecture that could be used for tool wear detection in the future in-
clude Regions Based CNN (R-CNN) that has three output branches to split the tasks 
of localization, classification and segmentation [HE17]. Other architectures that may 
be used for the task aim at context awareness, such as DeepLabv3+ and Pyramid 
Scene Parsing Network [CHEN18, ZHAO16]. These networks did very well on the Cit-
yscape dataset for autonomous driving, scoring above 80 measured in mIoU 
[CORD16]. Finally, there are transformer architectures originating from natural lan-
guage processing. Researchers have proposed various transformer-based architec-
tures for semantic image segmentation, which typically consist of an encoder-decoder 
structure. One transformer architectures that is adapted for segmentation tasks is 
TransUNet, which combines the U-Net architecture with transformers for improved 
medical image segmentation [CHEN21].  



2.3 Image Processing with Deep Learning 

   29 

Performance Metrics for Semantic Image Segmentation Models 
Leistungsmetriken für Modelle zur semantischen Bildsegmentation 

The common metrics to evaluate the goodness of models for semantic image segmen-
ation are the Sørensen-Dice Coefficient (Dice) and Intersect over Union (IoU). Consid-
ering every individual pixel in terms of a confusion matrix, the Dice cefficient [SØRE48], 
also called F1 Score, is defined as in Equation (9): 1ܨ = ݁ܿ݅ܦ =  2ܶܲ2ܶܲ + ܲܨ + ܰܨ (9) 

Where the variables are defined as True Positive, TP, False Positive, FP and False 
Negative, FN. In terms of the segmentation, it can also be defined as two times the 
intersect of two areas divided by the sum of both areas, see Figure 2-17. The Jaccard 
Index or IoU, is defined as the intersect of two areas divided by their union, as the name 
suggests, also see Figure 2-17 [JACC12]. In terms of a confusion matrix the IoU is 
defined as in Equation (10): ܷ݋ܫ =  ܶܲܶܲ + ܲܨ + ܰܨ (10) 

Figure 2-17:  Graphical representation of IoU and Dice Coefficient 
Grafische Darstellung des IoU- und Dice-Koeffizienten 

There are examples for usage of both, IoU and Dice, in semantic image segmentation 
for pixel-wise classification. IoU is also commonly used in object detection besides 
other metrics. Object detection is a task that involves detecting and localizing objects 
within an image by classifying patches of the image into different object classes. IoU is 
often used in object detection as one of the key metrics to measure the overlap be-
tween the predicted and ground truth bounding boxes. As opposed to semantic image 
segmentation where each pixel is assigned to a class. The Dice coefficient, on the other 
hand, is typically used in the context of binary segmentation, where the task is to clas-
sify each pixel in the image as either foreground or background. The Dice coefficient 
provides a measure of the similarity between the predicted binary mask and the ground 
truth mask. While both metrics provide a measure of overlap, Dice coefficient is gener-
ally more favorable as it can handle cases where the intersection between the predicted 
and ground truth masks is very small. 

Figure 2-18 shows the relation between IoU and Dice. Dice gives more favorable re-
sults, especially far away from the domain boundaries. It is important to note that there 
is currently no established standard for which evaluation metric to use, and the choice 
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of metric can vary between different research studies or applications. The decision 
whether to use either of both is up to the individual author.  

 
Figure 2-18:  Mathematical relation between IoU and Dice Coefficient  

Mathematische Beziehung zwischen IoU- und Dice-Koeffizient 

2.3.4 Tool Wear Identification with Deep Learning 
Erkennung von Werkzeugverschleiß mit KI 

Recent advancements in Tool Condition Monitoring (TCM), specifically automated 
analysis or microscopic image of cutting tool wear, have been achieved using Deep 
Learning (DL), a subfield of Machine Learning (ML), which is an Artificial Intelligence 
(AI) technology [BERG20]. The approaches to tool wear identification mentioned below 
belong to the domain supervised ML, which describes the ability of a computer program 
to automatically find an optimal code that solves the problem, given multiple solved 
examples of that problem [GOOD14].  

The first occurrence of DL in the cutting tool wear domain is an approach to tool wear 
form classification on indexable inserts with a VGG-16 architecture. The CNN yields 
96 % precision rate in differentiating four wear forms and a mean absolute percentage 
error in wear measurement of less than 5 % using traditional image processing meth-
ods [WU19].  

LUTZ put out the second occurrence of DL in the cutting tool wear image analysis uses 
a CNN with a small sliding window to perform a tool wear form classification task: Spe-
cifically, differentiate background, undamaged insert body and three different wear 
forms, namely flank wear, grooves and build up edge, on an indexable insert dataset. 
An overall accuracy of 91.5 % was reached with highest accuracy in the classes back-
ground and undamaged insert body (Figure 2-19). Further the hyperparameters num-
ber of CNN blocks, kernel size and number of neurons in the FC layer are investigated 
with regards to accuracy performance. Three optima are identified with the same ac-
curacy of 91.5 % [LUTZ19]. In the paper’s conclusion LUTZ states: 

“As this research focused only on the same insert, in the future, the process must be 
investigated and adopted for the analysis of multiple different inserts with different op-

tical properties due to different coatings or other effects.” [LUTZ19] 
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Figure 2-19: Images of indexable inserts (a,b) and respective mask (c,d) [LUTZ19] 

Bilder der Wendeschneidplatten (a,b) und die jeweilige Maske (c,d) [LUTZ19] 

BERGS published the next approach to semantic image segmentation which is con-
ducted using pixel-wise classification of cutting tool wear on microscopic images 
[BERG20]. A U-Net architecture trained on a heterogeneous dataset consisting of 400 
images with magnification levels between 20 and 200 is investigated. The dataset con-
sists of eight different tool versions from three different tool types: Milling tools (end 
milling cutters and ball end milling cutters), indexable inserts and drilling tools. The 
authors use image augmentation, i.e., basic image manipulation like flipping and rotat-
ing, to increase the dataset size and introduce more variance into the dataset for better 
generalizability of the model. The mean IoU (mIoU) for held out test data is 0.73. The 
authors also made predictions on inference data, that is unknown tool versions that 
were not included in the train, validation, or test data. Those inference data images are 
acquired under artificially altered conditions, for example blurred due to incorrect focus 
or overexposed. The base images of the inference data set result in an mIoU of 0.48, 
whereas the whole inference dataset including disturbed images yields an mIoU of 
0.37 (Figure 2-20).  

The authors also investigate whether it makes sense to train one model with all images 
or if it makes sense to train the models tool type specific. For the more homogeneous 
individual datasets the test score is superior to the one-for-all model. The drilling tool 
dataset with a fixed magnification and therefore very homogeneous data gives an 20 % 
better mIoU of 0.87 as compared to the one-for-all model. Individual datasets including 
several magnifications leading to quite heterogeneous data has around 4 % worse 
mIoU scores [BERG20]. In the same paper, the authors propose a pipeline of tool type 
classification prior to segmentation by individual models. A first attempt to tool type 
classification is conducted using a CNN that yields an accuracy of 95.6 % on held-out 
test data. The authors suggest that a machine tool integrated inspection system for 
inline measurements would benefit from the proposed approach of automated tool 
wear identification. In the paper’s conclusion BERGS states: 
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“Data preparation requires more time and attention for segmentation networks com-
pared to the classification network since the ground truth masks must be made man-
ually with great care. […] Methods for model improvement using unlabelled data or 

artificial data generation using Generative Adversarial Networks (GAN) could help ac-
celerating the data generation and increasing the database artificially.” [BERG20] 

 
Figure 2-20:  Different capturing settings with predicted mask and IoU coefficient of 

an indexable insert from the inference dataset, taken with different set-
tings on a measuring microscope [BERG20]  
Verschiedene Aufnahmeeinstellungen mit prädizierter Verschleißmaske und 
IoU-Koeffizienten von einer Schneidplatte des Inferenzdatensatzes, aufge-
nommen mit verschiedenen Einstellungen auf einem Standmessmikroskop 
[BERG20] 

WALK conducts tool wear form classification with a CNN, specifically with a VGG-16 
architecture [WALK20]. One network is trained to distinguish between indexable in-
serts with and without flank wear, another one is trained to distinguish between index-
able inserts with and without chipping. A Matthews Correlation Coefficient (MCC) of 
0.878 is reached for the flank wear CNN and 0.644 for the chipping CNN respectively. 
In the same paper the authors seek answer to the question whether a system can be 
designed for deep-learning-based computer vision to automatically determine the lo-
cation and extent of wear phenomena on images from worn tools. They conclude that 
the approach of semantic image segmentation of cutting tool wear using a U-Net ar-
chitecture may be used for the task. In a successive paper, the same authors plan to 
conduct this very task [WALK20]. In the paper’s conclusion WALK states: 

“Another technical limitation is our (so far) limited consideration of only the flank of a 
worn cutting edge. […] However, domain experts confirmed the usefulness of an au-
tomatic characterization of the flank side. Thus, we believe this is a reasonable scope 

for now and leave this aspect for future work.” [WALK20] 

TREISS and two other authors from the paper mentioned above, published another work 
in the field of cutting tool wear image analysis. They used a Monte-Carlo based dropout 
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method to estimate the networks uncertainty regarding the tool wear detection  
(Figure 2-21). A technique that GAL introduced since they found that the probabability 
of the softmax outputs does not represent model uncertainty accurately [GAL15]. 
TREISS showed that prediction quality and model uncertainty have a linear relation with 
an R2 = 0.72, allowing for an estimation of prediction goodness [TREI20]. Therefore, a 
possibly bad prediction of the network can be automatically identified and queued for 
relabeling. Further TREISS demonstrates that in an uncertainty-based human-in-the-
loop system for tool wear image annotation, i.e., labeling, the performance of resulting 
models is higher compared to the random selection of images for relabelling. To prove 
the generalizability they conduct the same study on the publicly available Cityscape 
dataset [TREI20]. In the paper’s conclusion TREISS states: 

“A human-in-the-loop system can be beneficial for all types of automation tasks, in 
which human experts display superior performance than automated systems, but in 
which the automated system is more cost efficient. An example for such a system 

would be an industrial quality control system.” [TREI20] 

 
Figure 2-21:  Image, Label, Prediction and Uncertainty map of an indexable insert 

[TREI20]  
Bild, Label, Prädiktion und Unbestimmheitskarte einer Wendeschneidplatte 
[TREI20] 

LUTZ compares the sliding window approach from the 2019 publication with several 
one-pass networks like U-Net using a homogeneous indexable insert dataset 
[LUTZ20]. The task is the segmentation of five different classes: Specifically, differen-
tiate background, undamaged insert body and three different wear forms, namely flank 
wear, grooves and build up edge (Table 2-2). The benchmarking of the pixel-wise seg-
mentation networks results in favor of LinkNet [CHAU17] which reaches an overall 
mIoU of 0.8 across all classes when trained with augmented data. The LinkNet also 
reaches the highest mIoU of 0.55 for the individual class flank wear compared to  
U-Net and three other networks. The U-Net architecture gives a maximum overall mIoU 
of 0.69 using the not augmented dataset in this investigation. The one-pass networks 
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are compared to the sliding window approach in combination with the Google Cloud 
AutoML framework were an mIoU of 0.94 was reached across all classes and the flank 
wear specific mIoU amounts to 0.76. The authors state that the approach is not yet 
tested for heterogeneous datasets, i.e., general usibility is not yet rated: 

“In future work, a more diverse dataset containing multiple different types of tools 
should be investigated, thus allowing the approaches to be rated based on their gen-

eral usability.”  [LUTZ20] 

Table 2-2: Scores (mIoU and IoU) with and without augmentation and scores on in-
dividual classes for five network architectures 
Werte (mIoU and IoU) mit und ohne Augmentation sowie Werte für die 
einzelnen Klassen für fünf Netzarchitekturen 

  
Aug. (mIoU) Individual class scores (IoU) 

 
 

Architecture without with Backg. Tool Wear Groove BUE 
 

 
FCN 0.32 0.36 0.94 0.87 ~0 ~0 ~0 

 
 

U-Net 0.69 0.63 0.95 0.85 0.07 0.80 0.50 
 

 
SegNet 0.47 0.31 0.78 0.76 ~0 ~0 ~0 

 
 

LinkNet 0.67 0.80 0.99 0.96 0.55 0.70 0.79 
 

 
PSPNet 0.68 0.73 0.97 0.93 0.41 0.80 0.54 

 
 

MIAO applies the U-Net apprach to tool wear area detection on indexable insert  
[MIAO21]. Figure 2-22 contains red boxes that show areas which are almost indisti-
guishable for humans but are successfully identified by the NN. The authors conduct 
three distinct investigations: Firstly, a method for using layer-wise objective functions 
is implemented, additionally to the overall objective function [LEE14]. This increases 
the prediction quality in terms of Dice by 2.5 % applied on their own dataset. Secondly, 
different loss functions are tested with the assumption of tackling data imbalance is-
sues. The effect is not significant for the three compared loss functions Binary Cross 
Entropy (BCE) loss, IoU based loss and MCC based loss.  Thirdly, Miao investigates 
the performance of a U-Net with attention gates, a method aiming to enhances im-
portant parts of the input data while diminishing less important parts [VASW17]. The 
U-Net with attention mechanism and layer-wise objective functions yields a Dice coef-
ficient on the test data of 0.97 [MIAO21]. Finally, in a manual manner the width of flank 
wear land, VB, is extracted from a greyscale converted prediction mask of an indexable 
insert. A possible weakness in MIAOS results is that the dataset of 186 images stems 
from only 14 tools of the same tool version. In the paper’s conclusion MIAO states: 

“However, this combination is a good one but may not be the best one. Many other 
good network structures and customized loss functions are worth trying.” [MIAO21] 
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Figure 2-22: Prediction results by U-Net with layer wise objective functions and MCC 

loss on indexable insert images of the test dataset [MIAO21]  
Prädiktionsergebnisse des U-Net mit schichtweisen Zielfunktionen und MCC-
Verlustfunktion auf Bildern von Wendeschneidplatten der Testdaten [MIAO21] 

BERGS proposed the synthesis of image data through Generative Adversarial Networks 
(GAN) for the cutting tool use case [BERG20]. It is conducted for the first time in the 
manufacturing domain for the use case of blanking tool wear identification [MOLI21]. 
Recently, LUTZ used a GAN approach to reduce the labelling effort for a homogeneous 
indexable insert dataset [LUTZ21]. A Deep Learning Augmentation (DLA) is performed 
with a network derived from the pix2pix architecture for image-to-image translation. A 
domain adaption is reached to convert data from one domain to another [ISOL16]. This 
method requires labelled data from the source domain, with more available data, and 
the target domain, with little available data. Using the GAN, a training dataset for the 
target domain is created from artificially created images and their masks stemming 
from the source domain (Figure 2-23).  

 
Figure 2-23: Images after GAN training with one (left) and ten (right) images [LUTZ21]  
      Bilder nach GAN-Training mit einem (l) und zehn (r) Bildern  [LUTZ21] 

The artificial dataset is further used to train a segmentation model for the target do-
main. With this approach an overall mIoU for the five considered classes of 0.72 could 
be reached with ten images instead of 32 images using the prior training procedure. 
The score for the isolated flank wear class is 0.65. For the indexable insert dataset the 
labelling effort is reduced by more than 68 %. In the paper’s conclusion LUTZ states: 

“With the proposed algorithm, it is possible to reduce the labelling effort significantly, 
however, manual labelling is still required while some defect classes are hard to pre-

dict using the proposed approach.” [LUTZ21] 
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On basis of the work and proposals in the previous paper by BERGS and some of the 
same authors [BERG20], HOLST published a method consisting of a pipeline of DL 
operations [HOLS22]. The pipeline consists of a CNN for tool detection and a U-Net 
for tool wear segmentation. It processes tool wear images collected with a digital mi-
croscope and is complemented by a rule-based approach to measuring wear along the 
cutting edge of machining tools. The end-to-end approach allows fully automated tool 
wear detection and measurement that can be used for inline measurements within 
CNC machine tools for machining applications. For the specific use case of ball end 
milling cutters, a dataset of 80 images is used for training and no augmentation meth-
ods are applied. The Dice for held-out test data amounts to 0.85. The VB measure-
ments through a bounding box algorithm yield a linear fit with R2 = 0.99 for inline meas-
urements agains measurements with a stand microscope. VB values below 150 μm 
where not present in the dataset though [HOLS22]. In the paper’s conclusion HOLST 

states: 

“Possible next steps in this research activity are: […] Study effects of network size, 
hyperparameters, activation functions and data augmentation on model perfor-

mance.” [HOLS22] 

In summary this subsection treated the following research: Successful usage of a CNN 
for image classification in a tool wear identification use case [WU19]. The general 
methods and tools required for automated image analysis for cutting tool wear detec-
tion were established [BERG20, WALK20, LUTZ20]. TREISS and LUTZ established dif-
ferent approaches to reducing the labeling effort in their specific use case [TREI20, 
LUTZ21]. Methods to reduce required data, namely testing of loss functions and U-Net 
derivatives, were investigated by MIAO with a small dataset [MIAO21]. Finally, the need 
for an understanding of the effect of hyperparameters on model performance and pos-
sible optimizations was pointed out [HOLS22]. 

2.4 Interim Conclusion 
        Zwischenfazit 

The Chapter 2 Fundamentals and State of the Art gave a brief overview about the 
following topics: Section 2.1, Tool Wear in Metal Cutting, Section 2.2, Quantification of 
Tool Wear, and Section 2.3, Image Processing with Deep Learning.  

Section 2.1, Tool Wear in Metal Cutting, gave a brief introduction to the cutting part of 
the cutting tool as a complex tribological system. It also covered the impact of tool wear 
on the manufacturing process, resulting costs and hence the importance of knowledge 
about tool condition. Section 2.2, Quantification of Tool Wear, covers the terminology 
and methods required for an understanding of the tool life testing procedure. Tool life 
testing is elaborate and especially the quantification of cutting tool wear hinders an 
efficient creation of tool life models or indirect tool condition monitoring models. The 
section also covers direct measurement of cutting tool wear and attempts to computer 
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vision solutions for automated image analysis in the domain. Section 2.3, Image Pro-
cessing with Deep Learning, treats image analysis with artificial intellicence algorithms, 
specifically DL for tool wear identification. This field of research dates to 2019 and is 
currently being addressed by several research groups with different foci, mainly due to 
their respective use cases within the niche of metal cutting tool wear. The table in 
Annex A.16 provides a summary of the research conducted to date in the field of au-
tomated image processing for cutting tool wear monitoring with deep learning. 

The literature emphasises that there are many differences concerning the use case 
and methods. Concerning the use cases there are differences in the number of tool 
variants (mostly one tool variant) and tool types (mainly indexable inserts), the availa-
ble labeled database, and the image size. Regarding the methods there is also differ-
ent approaches to data augmentation, network type, training / validation / test dataset 
split, the used metric for determining the prediction goodness and the test scores itself. 
This heterogeneity makes comparison difficult, but nevertheless, or precisely because 
of this, recommendations and blind spots can be identified. Problems that have already 
been adressed by research include: 

 The extensive label effort that consumes time of specialized experts may be re-
duced using TREISS’ uncertainty-based human in the loop approach to labeling new 
data and LUTZ’ GAN approach to creating synthetic data for new application do-
mains [TREI20] [LUTZ21].  

 The use of different evaluation metrics to determine the goodness of prediction 
(test score) of the models is a minor concern since the most used metrics Dice and IoU can be calculated from each other.  

 An investigation of the effect of data augmentation, specifically Basic Image Ma-
nipulation (BIM), on test data performance using different segmentation model ar-
chitectures has been conducted for a dataset of indexable inserts. 

A collection of problems in the domain of automated image analysis for cutting tool 
wear segmentation with deep learning algorithms that have not been addressed yet 
include the following: 

1. Datasets are not publicly available; this makes identification of superior ap-
proaches to tool wear detection hardly possible.

2. Failed predictions remain mostly unpublished, though they could provide infor-
mation on commonalities in failure modes.

3. Knowledge about effects of train/val/test split, image size and number of im-
ages on performance of a DNN for tool wear segmentation is not investigated yet.

4. A set of metrics to characterize and compare datasets has not been explored
and established yet.

5. Overfitting is not reported in the form of a concise metric that allows comparison
across datasets or even different use cases
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6. Underspecification is likely due to lacking real world application assessment and 
a lacking systematical approach to hyperparameter optimization. 

The progress and deficits in the research domain of automated image analysis for cut-
ting tool wear segmentation with deep learning have been summarized in this section. 
In the next chapter conclusions are drawn from this information with regards to the 
content and structure of this thesis. 
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3 Objectives and Approach 
Zielsetzung und Vorgehensweise 

3.1 Objectives and Research Methodology 
Zielsetzung und Forschungsmethodik 

As seen in the previous chapters, tool wear and the quantification of tool wear in the 
machining process are relevant topics for manufacturers today. The two main 
technical-economic problems are:  

 Cutting tool wear during machining reduces the efficiency of the process and in-
creases the manufacturing costs due to its influence on dimensional accuracy and 
surface quality. 

 The measurement process is manual, subjective, and elaborate which promotes 
arbitrary decisions, makes documentation laborious, hinders automation, promotes 
waste, and prevents further processing of data for sustainable problem mitigation. 

The automation of cutting tool wear quantification is sought after by the manufacturing 
industry. Recent research in automated cutting tool wear identification with deep 
learning yields promising results regarding the semantic image segmentation for pixel-
wise classification of flank wear and other wear forms on microscopic images of cutting 
tool edges (Section 2.3). This thesis aims at addressing blind spots elaborated in the 
chapter above in the field of image analysis for automated cutting tool wear 
segmentation with deep learning algorithms. Open questions regard the data 
assessment and preprocessing, others regard the optimization and qualification of 
semantic image segmentation models. In detail, there is no system of key metrics for 
characterizing an image dataset. This prevents targeted AI-modelling based on dataset 
characteristics and hinders comparing datasets. There was no attempt yet to 
investigate the influence of dataset and model properties on model performance. 
Especially, an assessment of the performance of tool wear segmentation models in 
the real-world domain, such as inline imaging within machine tools.  

In view of the above, this dissertation aims to develop and optimize models for the 
identification of tool wear on images of cutting tools and cutting tool edges. The 
developed image processing and model optimization approach shall contribute to a 
more efficient and reliable process monitoring and shall increase the ability to obtain 
process understanding, paving the way for a better understanding of the tool wear 
phenomenon with regards to the process and its manifold variables. The objective 
pursued is summarized in the following: 

Objective of the thesis 

The objective of this work is the optimization of tool wear segmentation and meas-
urement on microscopic images of cutting tool edges. 
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Based on the described problems and objective, the following research hypothesis 
was formulated: 

Research hypothesis 

The assessment of dataset properties enables a systematic, model-based hyperpa-
rameter optimization of the AI-model for cutting tool wear segmentation, reducing the 
need for iterative optimization cycles. 

To verify the research hypothesis, the following research questions need to be inves-
tigated. 

Research questions 

1. How can image processing be applied to automatically segment tool wear on
microscopic images of cutting tool edges?

2. What are the dataset and model properties with the highest impact on model
performance for tool wear segmentation?

3. How can a systematic choice of hyperparameters with regards to dataset prop-
erties be employed to improve model performance for tool wear segmentation?

4. How can the optimized segmentation model be applied for an inline approach to
cutting tool wear measurement within machine tools?

3.2 Procedure and Setup of the Thesis 
Vorgehensweise und Aufbau der Dissertation 

This dissertation is based on the research process of applied sciences according to 
Ulrich [ULRI01], see Figure 3-1. Based on practice-relevant problems a methodology 
was generated which allowed to automatically segment tool wear on microscopic 
images of cutting tool edges (Research Question 1). The effect of dataset and model 
properties on prediction quality of the segmentation model was investigated in 
statistically validated experiments (Research Question 2). The findings of the previous 
screening experiments were used to create a decision model. This model allowed the 
selection of model properties based on the dataset properties to achieve the highest 
possible prediction quality of the tool wear segmentation model (Research Question 
3). Finally, a pre-optimized model was tested and evaluated in a validation experiment 
with an inline microscope and a camera inside machine tools (Research Question 4). 
The structure of this thesis and the research methodology is shown in the following 
figure. 

The concepts relevant to a common understanding of the tool wear topic in metal 
cutting were covered in the introduction (Chapter 1), which also elaborated on the 
motivation of the thesis. Subsequently, an overview to the cutting tool wear topic was 
given (Chapter 2). The state of the art was presented, as well as methods that 
standards recommend for tool life modeling. Current topics of research with regards to 
image analysis of microscopic tool wear images were discussed, which are currently 
indispensable for tool wear quantification. Furthermore, deficits were highlighted, 
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regarding the current research in semantic image segmentation for cutting tool flank 
wear identification. On that basis the requirements for research and the objectives of 
the work were deduced (Chapter 3).  

Figure 3-1: Structure of the thesis based on research methodology by ULRICH
[ULRI01]
Gliederung der Arbeit auf Basis des Forschungsprozesses nach ULRICH

[ULRI01]   

A tool life model creation with methods recommended in the respective standards was 
made. The data created during this task served as a basis for further image processing 
investigations. A pipeline for the DL model creation in the use case of automated tool 
wear segmentation was presented (Chapter 4). Successively, dataset and model prop-
erties were investigated using a screening design of experiment, to determine the most 
important factors influencing prediction quality. Based on the results an in-depth inves-
tigation of the important factors was conducted and a decision model for the dataset-
specific choice of hyperparameters was created (Chapter 5). Machine tool integrated 
measurement setups using a microscope and a camera serve as use cases for as-
sessment of the model optimization strategy (Chapter 6). In the last chapter, the find-
ings were summarized and critically reflected. Furthermore, an outlook was given on 
newly arising questions regarding the application of inline measurements of tool wear 
and other possibilities that arise through the automated tool wear segmentation and 
measurement aided by deep learning methods (Chapter 7). 

Research process of applied sciences Structure of the thesis

Identification and standardization of
problems with practical relevanceA

Identification and interpretation of problem-
specific theories and hypotheses in the 
field of empiric fundamental sciences

B

Identification and specification of problem-
specific methods in the field of formal 
sciences

C

Identification and specification of relevant 
context of applicationD

Derivation of assessment criteria, design 
rules and theoretical modelsE

Practical testing of the derived criteria, 
rules and modelsF

Consulting the industrial target groupG

Introduction1.

Fundamentals and State of the Art2.

Objective and Approach3.

Model Performance Optimization5.

Tool Wear Modelling and 
Segmentation4.

Validation of AI-based Automated 
Tool Wear Measurement6.

Summary and Outlook7.
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4 Tool Wear Modelling and Segmentation 
Modellierung und Segmentierung von Werkzeugverschleiß 

This chapter covers the following topics:Section 4.1, Surveys with Industry Profession-
als, presents the results from surveys regarding the topic of tool wear. Section 4.2, 
Framework of Investigation, describes the exemplary use case of finishing hard-to-cut 
materials. Section 4.3, Process Specification, contains the materials and methods nec-
essary to conduct a tool wear model creation as per standard, described in Section 
4.4, Empirical Investigation of Tool Wear. Finally, in Section 4.5, Model Design for Tool 
Wear Segmentation, the first Research Question is answered: 

RQ1: How can image processing be applied to automatically detect tool wear on mi-
croscopic images of cutting tool edges? 

4.1 Surveys with Industry Professionals 
Umfragen mit Experten aus der Industrie 

There is a lack of published literature on the dealing with cutting tool wear in the man-
ufacturing industry. This scarcity of information hampers the ability of professionals to 
make informed decisions and implement effective strategies. Therefore, addressing 
this gap becomes crucial for enhancing machining processes and optimizing tool per-
formance. 

As part of consortium projects at the Fraunhofer IPT, surveys were conducted with 
industry experts about cutting tool wear. The surveys aimed to utilize their experiences, 
identify challenges, and gather practical strategies. The surveys involved professionals 
from manufacturing and engineering: Twenty-two machine tool operators from tool and 
die making companies were surveyed in 2020. Eight research and development engi-
neers from the aerospace industry, specifically turbomachinery component manufac-
turers, were interviewed in 2021. Finally, 34 employees from different industries were 
surveyed in 2023, including 20 % from tool and die making companies and 13 % from 
the aerospace industry. The surveys had different scopes, but there was an intersec-
tion in the questionnaires that is used as a basis in this thesis. The intersections of 
topics in the questionnaires included a prognosis of price progression for cutting tools, 
the safety margin that is applied on tool life and finally the fraction of tool cost relative 
to the cost of goods sold. The following paragraph summarizes the results of the sur-
veys. Figure 4-1 shows selected results of the three surveys as barcharts. 

The last two surveys asked for a forecast on the price development of cutting tools. In 
these surveys, 71 % and 76 % of the participants responded that they expected prices 
for cutting tools to rise. Data was collected on the following points in all three surveys. 
Accordingly, weighted average values are available for a total of 65 completed ques-
tionnaires. The average applied margin of safety is 23 % with a standard deviation of 
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7.5 %. This means that about 77 % of the tool life is utilized. The average share of the 
cost of cutting tools in the cost of goods sold is 10 % with a standard deviation of 2.8 %. 

 
Figure 4-1:  Results of three surveys focussing on cutting tool wear  

Ergebnisse von drei Umfragen zum Zerspanungswerkzeugverschleiß 

4.2 Framework of Investigation  
Untersuchungsrahmen  

The outstanding properties of alloy 2.4668, also known as Inconel 718™, (Figure 4-2) 
make it difficult to machine and lead to severe milling tool wear, which can affect the 
quality of the product.  

 
Figure 4-2:  Effect of temperature on tensile strength for various materials according 

to SUN and MACHERAUCH  [SUN10, p. 664, MACH11, p. 174] 
Einfluss der Temperatur auf die Zugfestigkeit verschiedener Werkstoffe ac-
cording to [SUN10, p. 664, MACH11, p. 174]   

The decrease in product quality due to tool wear and the resulting machine downtime 
due to frequent tool changes are the main challenges in high performance machining 
[MOHA20]. Tool wear is thus responsible for high production costs and poor surface 
qualities, resulting in an increased need for optimization in finish milling operations.  
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For the estimation of the tool life, wear models are usually applied, which require com-
plex and cost-intensive experiments for the generation of the model data [ZHOU18]. 
The framework of investigation in this work is the finish milling of alloy 2.4668 with ball 
end milling cutters. The relevance of the use case results from climate policy in avia-
tion, aerospace-specific part quality requirements that suffer from tool wear and the 
technical predisposition of alloy 2.4668 with regards to tool wear, which is outlined in 
the next section in more detail. 

4.3 Process Specification 
Prozessspezifikationen 

This section presents the process specifications for a classical tool wear model crea-
tion. Specifically, a Taylor model was created following the respective standard. This 
standard demands a complete description of the following prerequisites described in-
dividually in the following paragraphs. 

Workpiece  
Werkstück 

The material alloy 2.4668 (according to EN 10027-2:1992-09) is a nickel-based alloy 
characterized by good corrosion resistance and outstanding high-temperature 
strength. Due to its material properties, Alloy 2.4668 is particularly suitable as a con-
struction material for the aerospace industry, for example for the manufacture of com-
pressor and turbine blades [KLOC18, p. 346].  

The workpiece used in the fundamental trials has the dimensions 100 x 101 x 109 mm 
measured with a digital sliding caliper. The material is heat treated with the aerospace 
specification AMS 5663. The machinability of nickel-base alloys is investigated by 
EZUGWU based on various publications [EZUG99]. The material strength remains 
largely unchanged during machining due to the good high-temperature properties. 
Poor thermal conductivity of nickel-based alloys produces high temperature on the tool 
cutting edge and strong temperature gradients in the tool. The hard abrasive carbides 
in the superalloys, lead to strong abrasive wear on the tool. 

Figure 4-3: Cutting edge radius and wedge angle measurement with Alicona Edge 
Master  
Schneidkantenradius- and Keilwinkelmessung mit Alicona Edge Master 
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Cutting Tool  
Zerspanwerkzeug 

The finishing operations for turbine blades in turbomachinery manufacturing is con-
ducted with barrel or ball end milling cutter. In this case a ball end milling cutter is 
applied for fundamental milling trials on a solid block workpiece. All cutting tools were 
inspected prior to the experiment regarding defects, see Figure 4-3.  

Table 4-1: Cutting tool specification 
     Werkzeugspezifikation 
 

Specification Value 
 

 
Tool Type / Coating Ball end milling cutter / TiAlCN 

 

 
Material Tungsten carbide (10 % cobalt, grain size 0.8 μm) 

 

 
Diameter D [mm] 12 

 

 
Number of flutes z 2 

 

 
Helix angle λ0 [deg] 30 

 

 
Rake angle γ0 [deg] -10 

 

 
Clearance angle α0 [deg] 0 

 

 Cutting edge radius rε [μm] 3  

 

The detailed cutting tool specifications and geometric parameters can be found in Ta-
ble 4-1. Cutting fluid was not used during the trials to realize a higher wear rate. The 
shaft of the ball end milling cutter was clamped 39 mm into a Regofix tool holder. 

Machine Tool 
Werkzeugmaschine 

 
Figure 4-4:  Machine tool (left), workpiece (middle) and cutting tool (right)       
      Werkzeugmaschine (links), Werkstück (mitte) und Zerspanwerkzeug (rechts) 

The machine tool used for the finishing process in the proposed setup is a a Makino 
D500, see Figure 4-4. It is a 5-axis vertical machining center and the positioning accu-
racy of the linear axes is 2.5 μm and therefore in accordance with the standard 
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[ISO1701-1]. No vibrations were observed during the trials that could have manipulated 
the results of this experiment.  

Process Parameters 
Prozessparameter 

For the cutting experiments a parameter set of (semi-)finishing conditions was chosen. 
The feed per tooth was set to fz = 0.1 mm, the axial and radial depth of cut were 
ap = 0.5 mm and ae = 0.5 mm. The milling process was a fundamental milling experi-
ment, compare Figure 4-4 and Figure 4-5, with a tool axis inclination of βfn = 70° be-
tween axis of milling spindle and working plane. 

Figure 4-5:  Schematic illustration of cutting experiment 
  Schematische Darstellung der Zerspanungsexperimente  

4.4 Empirical Investigation of Tool Wear 
Empirische Verschleißuntersuchung 

The empirical investigation of tool wear was conducted in accordance with the respec-
tive standards described in Subsection 2.2.2. This section starts with a description of 
the experimental design in Subsection 4.4.1, Design of Experiments. Subsection 4.4.2, 
Analysis of Occurring Tool Wear, describes the measuring method and type of tool 
wear regarded in this investigation. Finally, in Subsection 4.4.3, Tool Wear Model Cre-
ation, the calculations to create the model are shown. 

4.4.1 Design of Experiments 
Versuchsplan 

Cutting experiments were planned and evaluated according to guidelines in the rele-
vant standards [ISO8868-2, ISO3685]. Specifically, a tool wear investigation of type B 
according to the classification in ISO8868-2 was chosen. This means one vT-curve 
was determined with the cutting speed as a variable for a particular combination of 
other cutting variables. In literature the investigated cutting speed range for alloy 
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2.4668 usually lies between 20 and 120 m/min [ROY18, WANG18, ZHU13]. For the 
investigation in this thesis the lowest test point was chosen at vc,max = 70 m/min. For 
each successive test point, the maximum cutting speed was increased in 10 m/min 
steps.  

Since the minimum repetitions required for each experimental point is unknown previ-
ously, two repetitions were planned with further capacity to increase the number of 
repetitions. Later a third repetition was added to strengthen the statistical informative 
value of a tool wear model created with the data. Concluding, six test points with three 
repetitions each were investigated, resulting in a total of 24 cutting tests, respectively 
cutting tools, see Table 4-2. 

Table 4-2: Experimental plan for type B tool wear model creation 
     Experimenteller Plan für die Verschleißmodellerstellung nach Typ B 

 Specification Values  

 Test point 1 2 3 4 5 6  
 

vc,max [m/min] 70 80 90 100 110 120 
 

 nrpm [1/min] 1936 2228 2494 2785 3051 3342  
 

Experimental runs / Tools 4 4 4 4 4 4 
 

 

4.4.2 Analysis of Occurring Tool Wear  
Analyse des auftretenden Werkzeugverschleißes 

The cutting tool wear was inspected using a Keyence VHX-6000 microscope and a 
DinoLite USB microscope. The visual tool wear inspection was conducted after one 
meter of tool travel path Lf. For measuring the maximum width of flank wear land metric, 
VBmax, of each cutting edge the Keyence software was used, see Figure 4-6. 

 
Figure 4-6:   VB measurement using the Keyence VHX-6000 microscope 
       VB Messung mit dem Keyence VHX-6000 Mikroskop 
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A typical tool wear curve, as in Subsection 2.1.4 on page 9 was created from the suc-
cessive tool wear measurements of a single tool. The wear follows the typical course 
of a third-degree polynomial, see Figure 4-7.  

 
Figure 4-7: VBmax against feed travel for a ball end milling cutter at vc,max = 110 m/min 

VBmax über Vorschubweg für einen Kugelkopffräser bei vc,max = 110 m/min 

The VBmax on the ordinate is the mean of the individual VBmax measurements of both 
cutting edges. Cutting speed is defined as the instantaneous velocity of the primary 
motion of a selected point on the cutting edge relative to the workpiece [CIRP04]. The 
maximum cutting speed, vc,max, in this experiment refers to the cutting speed at the top 
of the theoretical engagement line along the cutting edge. That means the theoretical 
cutting speed at the maximum diameter of the ball end milling cutter is higher. For 
example, the cutting speed of the experiment in the figure was vc,max = 110 m/min 
whereas the theoretical cutting speed was vc,th = 115 m/min. In the table above the 
respective milling spindle rotations per minute are documented. 

In the Figure 4-8 the progression of wear along the feed travel is shown for one flute 
of the ball end milling cutter at 50x magnification. For the sake of readibility the VBmax 
values are displayed with increased font. Also the measurements taken were amplified 
with red lines and arrows. The top left image shows the initial state of the cutter at 30x 
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magnification. The tool in the figure is the very tool that constitutes the wear curve in 
the figure above. Up until a VBmax value of 122 μm in Figure 4-8 a typical flank wear 
may be observed, as well as a mostly linear wear progression in Figure 4-7, compare 
gray, semi-transparent box. The transition from the linear wear progression to the pro-
gressive wear regime is found as a beginning cutting edge chipping in Figure 4-8 start-
ing at 156 μm. 

 
Figure 4-8: VBmax of one flute of the ball end milling cutter at vc,max = 110 m/min 

VBmax einer Schneide eines Kugelkopffräsers bei vc,max = 110 m/min 

4.4.3 Tool Wear Model Creation 
Erstellung des Werkzeugverschleißmodells 

The tool wear model and necessary precalculations are shown in Subsection 2.2.2. A 
characteristic vT-curve with variable cutting speed for a particular set of process pa-
rameters is classified as Type B [ISO8868-2]. The precalculations are necessary to 
determine whether the means of two neighboring test points are sufficiently different 
for model creation.  

The null hypothesis for this kind of hypothesis test states that the population means 
are equal. A significance level of α = 0.1 for a two-tailed data distribution indicates a 
10 % risk of concluding that a difference exists when there is no actual difference be-
tween the means of two test points. Here, the tool life parameter tool travel path Lf of 
the four tools within one test point was used to calculate the test points mean value 
and standard deviation required for the hypothesis test. In the case of the first two test 
points the p-value of p = 0.047 or 4.7 % is lower than our chosen alpha (risk of 10 %), 
therefore the null hypothesis was rejected. This means a statistically significant differ-
ence between the two test points exists. Still the experimental point at cutting speed of 
70 m/min was rejected from further calculations since it is obviously not following a 
possible linear relation, see Figure 4-10.  
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Figure 4-9: Two examples of BUE formation at vc,max = 70 m/min 
Zwei Beispiele für Aufbauschneidenbildung bei vc,max = 70 m/min 

As shown conceptually in Figure 2-6 these tools were operated in the domain of pos-
sible build-up edge (BUE) formation. Figure 4-9 shows the BUE formation on two of 
the cutting edges at the respective cutting speed. 

Figure 4-10: Boxplots of four runs each with a travel path Lf (VBmax = 150 μm) at the 
six test points  
Boxplots der vier Durchläufe mit Vorschubweg Lf (VBmax = 150 μm) an jedem 
der sechs Testpunkte 

For the data given a one-way analysis of variance (ANOVA) is means of choice instead 
of manually calculating each test point with a hypothesis test as described above. At 
the chosen alpha level of α = 0.1 there is a significant main effect for cutting speed, the 
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test points differed significantly, F(4,15) = 2.86 with Fcritical = 2.36, p < 0.061. The sta-
tistical requirements are met to build a model from the data underlying the consolidated 
data in Table 4-3.  

Table 4-3: Experimental plan for type B tool wear model creation 
     Experimenteller Plan für die Verschleißmodellerstellung nach Typ B 

 Specification Values  

 Test point 1 2 3 4 5 6  
 

vc,max [m/min] 70 80 90 100 110 120 
 

 
Experimental runs / Tools 4 4 4 4 4 4 

 

 μ(Lf(VBmax = 150 μm) [m]) 8.474 14.827 11.045 10.314 9.125 6.974  

 σ(Lf(VBmax = 150 μm)  [m]) 1.701 4.080 3.887 2.273 1.439 1.514  

 

Applying the calculations introduced in Subsection 2.2.2, Tool Life Testing in , a log-
log characteristic tool life diagram, also called vT-diagram is created. Since the tool life 
parameter is tool life time T, instead of tool travel path Lf the values are converted 
according to Equation (11) below. The mean and standard deviation tool wear of the 
tools teeth of each test point are displayed in A.3 to A.8. 

 ܶ = ௙ݒ௙ܮ  =  ௖,௧௛ (11)ݒ ݖ ௭݂ܦ ߨ ௙ܮ

The Taylor equation, given in the chart and below, may be used for determining tool 
life time at a specific cutting speed, as in Equation (12), or vice versa, as in Equa-
tion (13). The parameters in the model are the slope, k = -2.49, and intersection of the 
x-axis, C = 321. The coefficient of determination of this model is R2 = 0.987, the ad-
justed R2 to penalize for required parameters calculates to 0.983. For example, if a 
cutting time of 15 minutes is desired for the modelled process, a cutting speed of 
108 m/min should be set.  

 ܶ =  ݁௞∙୪୭୥(௩೎/஼) (12) 

௖ݒ  = ݁୪୭୥(்)௞  ା ୪୭୥(஼) (13) 

The calculation of the model equation and confidence intervals shown in Figure 4-11 
were performed according to the respective ISO standards [ISO3685, ISO8868-2]. To 
assess significance of the regression model an F-test was conducted. The F-value was 
calculated to F(1,3) = 238 with Fcritical = 5.54 at an alpha level of α = 0.1 which means 
the null hypothesis was rejected. The null hypothesis states that the variables, k and 
C, have no explanatory power. Using the p-value a risk of less than 0.06 % was calcu-
lated of being wrong about this statement, i.e., p < 0.000592.  
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Figure 4-11: vT-diagram calculated from acquired experimental data 
       vT-Diagramm berechnet aus aufgenommenen experimentellen Daten 

The experiments described in this subsection revealed weaknesses of the approach 
of classical cutting tool wear model creation: 

 The parameter domain boundaries, in this case cutting speed, for the model crea-
tion is not exactly known prior to testing which causes additional effort. 

 A high variance in tool life travel path occurs for some repetitive experiments, es-
pecially at cutting speeds of vc,max = 80 and 90 m/min, which may undermine the 
statistical prerequisites for a flawless model creation. The high variance is mostly 
due to a not well performing tool at 80 m/min and a very well performing tool at 90 
m/min. No abnormalities were observed in these experiments that could explain 
these outliers. 

 The required resolution of the parameter domain is not known, which can lead to 
additional effort without benefits to model usefulness. 

 A variation in the process parameters or process conditions will most likely render 
the model useless, unless additional experiments are conducted to extend the valid 
range. 

In general, the problems described above demonstrate the need for an individual ob-
servation of tool performance, which is currently labour-intensive and therefore not 
economically feasible in most of the cutting industry. To solve this problem, an auto-
mated analysis of microscopic tool wear images and an automated measurement pro-
cess of cutting tool wear is required. An approach to tackle the former is covered in the 
following section. 
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4.5 Model Design for Tool Wear Segmentation 
  Modellerstellung zur Segmentation von Werkzeugverschleiß 

This section gives an answer to Research Question 1: “How can image processing be 
applied to automatically segment tool wear on microscopic images of cutting tool 
edges?”. Subsection 4.5.1 lists the most important hardware and software used for the 
experiments in this section. Subsection  4.5.2, Labeling Areas of Interest in the Image 
Data, briefly describes the workflow required for dataset creation for the creation of a 
segmentation model. In Subsection 4.5.3, Model Setup and Training, the model archi-
tecture and hyperparameters are shown. Subsection 4.5.4, Evaluation of Model Per-
formance, describes the methods to assess segmentation model quality. The content 
of this section has partially been published by BERGS in the Proceedings of the North 
American Manufacturing Research Conference (NAMRC) [BERG20]. 

4.5.1 Experimental Setup 
  Experimenteller Aufbau 

The workflow to arrive at a U-Net model for tool wear segmentation described in this 
Section is highly recursive, since each of the steps possibly influences the next step 
and, further down the line, also influences the model performance.  

  
Figure 4-12: Overview of the iterative workflow for model optimization in ML  

Überblick zum iterativen Arbeitsablauf bei der ML-Modelloptimierung  
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The model and its hyperparameters described in this chapter resulted from more than 
40 heuristic iterations. Each iteration included changes of one or more hyperparame-
ters which, according to human discretion, could possibly lead to an enhanced model 
performance. Figure 4-12 shows a schematic of the said workflow which ends once 
the operator is satisfied with the models’ performance.  

For NN training a Lenovo workstation type ThinkStation P920 with a NVIDIA Quadro 
P4000 Graphical Processing Unit (GPU) was used. The GPU accelerates NN training 
compared to Central Processing Units (CPU) mainly due to their higher memory 
bandwidth. GPUs can process large amounts of data in parallel. NVIDIA, a GPU 
manufacturer, provides an application-programming interface (API) named CUDA to 
enable using GPUs efficiently for general computation tasks like DL with support for 
several DL libraries.  

Apart from the Python programming language and DL libraries, an open-source 
software called labelme applies for creating the image masks with information about 
the occurrence of wear on the tool [KENT21]. The created masks are called ground 
truth because they reflect the true answer about the wear localization. This information 
is required to train an AI model for the segmentation task. The following subsection 
describes the labeling process and its importance. 

4.5.2 Labeling Areas of Interest in the Image Data 
Markierung der relevanten Bereiche in den Bilddaten 

Segmentation in image processing with deep learning is a supervised learning task. 
This means a training data set of images and label maps is required. The label maps 
are basically black and white images where everything is black except for the area of 
interest on the image, see Figure 4-13. The pair consisting of input image and the 
respective label map are used in the training process together with other pairs for net-
work training. The label process is crucial since training data quality has several impli-
cations with regards to the training and evaluation process of image segmentation 
models. The more accurate the annotation, the better a network learns to differentiate 
the area of interest from background. On top of that the annotations are used for net-
work evaluation on unsee test data. If the test data is poorly labeled a network that 
does accurate predictions will get bad mean scores of accuracies.  

Figure 4-13: Original image (left), image with annotation (middle), label mask (right) 
 Originalbild (links), Bild mit Annotation (mitte), Labelmaske (rechts) 
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4.5.3 Model Setup and Training 
Modellaufbau und -training 

For a semantic segmentation task, there are more than 50 possible architectures 
available [ACTI19]. As described in Subsection 2.3.3, U-Net was derived from the FCN 
architecture and is the most influencial architecture with regards to its more than 
40,000 citations. Apart from its popularity, the use case of tool wear detection 
resembles the medical image segmentation task U-Net was made for. This includes 
the comparably high image resolution and the small size of available data. The U-Net 
architecture consists of two main parts: a contracting path that captures context and a 
symmetric expanding path that enables precise localization. The contracting path is 
composed of convolutional layers followed by max pooling layers, while the expanding 
path consists of upsampling layers followed by convolutional layers.  

 
Figure 4-14: U-Net architecture with layers convolution (yellow), pooling (orange), up-

sampling (blue), softmax (violet) and skip connections (violet arrows) 
U-Net Architektur mit Schichten Faltung (gelb), Pooling (orange), Hochtasten 
(blau), Softmax (lila) und Übersprungverbindungen (lila Pfeile) 

The U-Net architecture also includes skip connections that allow information from the 
contracting path to be directly passed to the corresponding location in the expanding 
path, see Figure 4-14. These skip connections bring the following feature that likely 
lead to the popularity of the architecture: They help retain high-resolution features that 
would otherwise be lost during downsampling. The U-net architecture performs 
semantic segmentation since it classifies each pixel of the input image. 

Table 4-4: Image data and network specifications 
     Spezifikationen der Bilddaten und des Netzwerkes 

 Parameter Value  

 Image Size 512x512x3  

 Epochs 200  

 Trainable Parameters 1,941,105  

 Learning Rate 0.0001 (ADAM)  

 Train / val / test split 0.8 / 0.1 / 0.1  
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Parameters of image and training properties used in the U-Net training process for 
semantic segmentation are given in Table 4-4. The full architecture can be found in 
A.9, U-Net Layers and their corresponding output feature map and kernel size. A more 
in-depth introduction fo U-Net is given in Section 2.3, Image Processing with Deep 
Learning. 

 
Figure 4-15: Samples of image data used for network training 
      Stichprobe der Bilddaten für das Netzwerktraining 

The image size was chosen as a compromise between computational demand on the 
available hardware and the preservation of details required for the task of tool wear 
identification. The other parameters were chosen after a series of heuristic optimization 
trials. The image database consists of 400 microscopic images recorded with measur-
ing microscopes. Magnifications levels of the images range from x20 to x200.  
Figure 4-15 shows a subset of images used for the network training. Table 4-5 contains 
metadata from the various tools’ cutting operations. 

Table 4-5: Metadata of the cutting tool images used for NN training 
     Metadaten zu den Zerspanungswerkzeugen für das NN-Training 

Tool Type Workpiece 
Material Operation Opera-

tion Type Th. Cutting 
Speed [m/min] 

Ball End Mill-
ing Cutter 2.4668 Turbine Blade Milling Finishing 30-80 

Ball End Mill-
ing Cutter 1.2379 Fundamental Cutting 

Test, Linear Cuts Finishing 300-500 
End Milling 

Cutter 3.7165 Fundamental Cutting 
Test, Linear Cuts 

Semi- 
Finishing 150 

End Milling 
Cutter 2.4668 Fundamental Cutting 

Test, Linear Cuts Finishing 50-100 
Insert 2.4668 Cylindrical turning Roughing 160 
Insert various Cylindrical turning unknown unknown 

Drilling unknown unknown unknown unknown 
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The image dataset contains cutting edges of end milling cutters, ball end milling cutters, 
indexable inserts and drilling tools as shown in Figure 4-15. Using Basic Image 
Augmentation (BIM) methods, the dataset is increased to 3000 augmented variations 
of the original images.  

This means from each original image seven to eight derivatives were created. In 
general there are BIM methods such as rotation, horizontal flip, vertical flip, zoom, 
translation, brightness adjustment, contrast adjustment, shear, color jittering such as 
hue, saturation and brightness, cropping and resizing. The augmentation setting 
implemented with the imaug library are shown in Table 4-6. 

Table 4-6: BIM methods and values respectively value ranges 
     BIM-Methoden und Werte bzw. Wertebereiche 
 

Method Values 
 

 
Flip 0.5 

 

 
Multiply 4.9 – 1.1 

 

 
Rotate - 90° – + 90° 

 

 
Blur Sigma 1 

 

 
Contrast Normalization 0.9 – 1.1 

 

 

Figure 4-16 shows an example of augmented images and respective annotations cre-
ated in this process. In the specific case of the figure, the images belong to a dataset 
of microscopic drilling tool edge images. The augmented images in the figure are all 
based on the same tool, through the image manipulation the images appear to be quite 
different from each other. It is crucial for the training of the neural network, that the 
label masks belonging to the images experience the exact same augmentation to en-
sure that the model learns to locate the area of interest correctly. 

 
Figure 4-16: Augmented drilling tool cutting edge and respective labels 
      Augmentierte Bohrwerkzeugschneiden und die jeweiligen Label 
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4.5.4 Evaluation of Model Performance 
  Evaluierung der Modellperformanz 

There are quantitative and qualitative methods to evaluate the performance of a model. 
Most common are KPIs to determine a mean accuracy of test results. Apart from that 
an expert can evaluate if she/he is satisified with the prediction quality for a specific 
use case. As introduced in Section 2.3 the Dice coefficient is a common quality metric 
for semantic image segmentation tasks. The mean Dice coefficient of the training da-
taset is mDicetrain = 0.96. The mean Dice coefficient of the validation dataset is  
mDiceval = 0.88. The mean Dice coefficient of the test dataset is mDicetest = 0.84.  

There are five examples of test data given in Figure 4-18. For each example the figure 
contains the original image on the very left. A manually annotated ground truth, over-
layed in white color, in the middle. The predicted tool wear, overlayed in red color, as 
well as the respective Dice coefficient is displayed on the right. The overall perfor-
mance is satisfying since the tool wear is detected on the images. In the second row 
however, there is an example where a reflection of light is misclassified as tool wear. 
That means the model is prone to making errors when external disturbances are pre-
sent.  

Unknown and disturbed tool wear images, as in the inference dataset, yields a mean 
Dice of mDiceinf = 0.54 with tendency of the network to misrecognize irrelevant edges 
and scratches as well as missing out bits of large worn areas. This means a generali-
zation that allows inferring the model to make reliable predictions on unknown image 
data with disturbances could not be reached. An example of a misrecognition of an 
edge as tool wear is visible in Figure 4-18. In the second row and third column there is 
a white circle enhancing the said misrecognition.  

A further approach to train models only on one individual tool type yield similar results 
compared to the model trained on a mixed dataset, see Table 4-7. The models for 
individual tool types have a very comparable or even higher accuracy in terms of train-
ing and test Dice coefficient. These models are trained with only one tool type and are 
therefore based on a fraction of the data in terms of number of images.   

Table 4-7: Approaches to model creation with mixed and individual datasets 
  Ansätze zur Modellerstellung mit gemischtem und einzelnem Datensatz 

Dataset 
Size 

Dataset 
Size (BIM) Tool Type 

mDi-
ce-
train

mDicetest 

400 3000 Mixed dataset 0.96 0.84

100 750 Individual ball end milling cutter 0.95 0.82 

100 750 Individual end milling cutter 0.96 0.83 
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100 750 Individual indexible insert 0.98 0.83 

 

In conclusion this means for further work it is a viable approach to train a classifier 
model as proposed in the original paper to distinguish tool types and then pass over 
the segmentation task to a network specialized for this very tool type. The two general 
approaches of a general model and tool-type-specific models is shown conceptually in 
Figure 4-17. 

 
Figure 4-17: Visualization of an approach to train one general model for all tool type 

(left) or to train a classifier model and tool-type-specific segmentation 
models (right) 
Visualisierung eines Ansatzes zum Trainieren eines Modells für alle 
Werkzeugtypen (links) oder zum Trainieren eines Klassifikatormodells und 
werkzeugtypspezifischer Segmentierungsmodelle (rechts) 

A generalization that allows inferring the model trained with a mixed dataset to make 
reliable predictions on indexable inserts, although it was trained on ball end milling 
cutters and end milling cutters, could not be reached. This goal might be attainable 
with more training examples. Inference predictions with the tool-type-specific models 
did not give valuable results. Figure 4-19 shows inference data samples in the same 
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manner as Figure 4-18 for the test data. Both figures contain predictions made by the 
general model that was trained on the mixed dataset.  

 
Figure 4-18: Examples of original, ground truth and wear detection on test data 

Beispiele der Originale, Labelmasken und Detektionen von Verschleiß auf 
Testdaten 
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Figure 4-19: Examples of original, ground truth and wear detection on inference data 

Beispiele der Originale, Labelmasken und Detektionen von Verschleiß auf In-
ferenzdaten 
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4.6 Interim Conclusion 
Zwischenfazit 

Chapter 4 Tool Wear Modelling and Segmentation gives an answer to Research Ques-
tion 1: “How can image processing be applied to automatically detect tool wear on 
microscopic images of cutting tool edges?” 

A Deep Learning approach using the U-Net architecture was used to perform semantic 
image segmentation for the sake of automated tool wear analysis of metal cutting tool 
edges. In more detail the following steps were necessary: 

 Aggregation and selection of microscopic images with worn cutting tools 

 Manual label process to create masks of the areas of interest (tool wear) on each 
of the images. The label masks serve as ground truth for network training 

 BIM methods were applied to increase the dataset size and enhance the variance 
in the data base. GAN-based data synthesis was proposed for future investigations 

 An iterative selection of dataset properties and model hyperparameters such as 
dataset split, network size, learning rate and dropout rate was conducted 

 Conduction of model training process, i.e., backpropagation algorithm 

 Evaluation of model performance with metrics that describe model accuracy and 
robustness regarding test dataset was performed 

The tool wear segmentation approach using the U-Net architecture for semantic seg-
mentation presented in this chapter achieved a mean Dice coefficient of 
mDicetest = 0.82 on test data. Training data consisted of 3000 augmented images orig-
inating from 400 raw images. Eight different cutting tool datasets with 50 images each 
and various levels of magnification made up the heterogeneous raw image dataset. 
On an inference dataset, which contains unknown images recorded with disturbances 
like increased or decreased brightness, the network yielded a Dice coefficient of 
mDiceinf = 0.54. Additionally, it was found that models trained on individual, homoge-
neous datasets tend to perform at least as well as larger mixed models on their held-
out test data using the U-Net architecture.  

The workflow described above is highly recursive since each of the steps possibly in-
fluences the next step and, further down the line, also influences the model perfor-
mance. The model and its hyperparameters described in this chapter resulted from 
more than 40 heuristic iterations. Each iteration included changes of one or more hy-
perparameters or dataset properties which, according to human discretion, could pos-
sibly lead to an enhanced model performance. Figure 4-12 shows a schematic of the 
said workflow which ends once the operator is satisfied with the models’ performance. 
The following chapter describes a systematic method to reduce the need for a heuristic 
search of a well performing image segmentation model. 
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5 Model Performance Optimization 
Optimierung der Modellperformanz 

This chapter describes a method to create a decision model for hyperparameter 
selection in deep learning semantic image segmentation based on the dataset 
properties. The approach for model performance optimization is described in Section 
5.1, Methodology. Section 5.2, Prerequisites and Definitions, introduces basic terms in 
NN modelling to understand the investigated factors. The approach explained in 
Section 5.1 is split into the following three major steps, detailed in Section 5.3 to 5.5. 
Section 5.3 contains a screening analysis to grade possibly important factors, 
answering the second research question: 

RQ2: What are the dataset and model properties with the highest impact on model 
performance for tool wear segmentation? 

Section 5.4, Full Factorial Analysis, contains a consolidated analysis of possibly 
important factors with regards to model evaluation metrics. Finally, in Section 5.5, a 
decision model is created based on the the experimental data of the former section to 
answer the third research question: 

RQ3: How can a systematic choice of hyperparameters with regards to dataset 
properties be employed to improve model performance for tool wear segmentation? 

5.1 Methodology for Model Performance Optimization 
Methodik zur Optimierung der Modellperformanz 

The deficits described in the final paragraph of the last chapter shall be solved using a 
systematic approach to hyperparameter selection based on dataset properties.  

 
Figure 5-1: Outline of the approach to Model Performance Optimization 

Übersicht zum Ansatz der Optimierung der Modellperformanz 
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As displayed in Figure 5-1 the approach is split into three distinct steps. In the figure, 
grey indicates dataset properties, whereas turquois indicates model hyperparameters. 
In step one a screening Design of Experiments (DOE) is made including a broad se-
lection of hyperparameters and dataset properties. The respective experiments are 
conducted and analysed with regards to the model evaluation metrics. In step two the 
most important hyperparameters and dataset properties are selected and processed 
into a full factorial DOE. Again, the respective experiments are conducted and ana-
lysed. Finally, in step three the results from the full factorial DOE are used to create a 
decision model that enables the selection of favorable hyperparameters based on da-
taset properties. The approach is further compared to benchmark models to validate 
the findings. A reader familiar with the ML topic may skip Section 5.2, Prerequisites 
and Definitions, and head to Section 5.3, Screening Analysis.  

5.2 Prerequisites and Definitions 
Voraussetzungen und Definitionen 

Subsections 5.2.1, Model Hyperparameters, and 5.2.2, Dataset Properties, introduce 
factors investigated in the following sections. Subsection 5.2.3, Model Evaluation Met-
rics, describes the assessment criteria applied for NN model optimization. 

5.2.1 Model Hyperparameters 
Modell-Hyperparameter 

In this work hyperparameters are defined as any parameter in the NN configuration 
that is not directly learnable during the training process. This definition includes net-
work architecture parameters such as number of network layers, i.e., network depth, 
and kernel size for convolutions and pooling, i.e., network width. Other hyperparame-
ters are activation functions, learning rate, momentum, dropout rate and batch size 
(the number of training data samples that are used in one epoch). In this section some 
hyperparameters important for further procedure are briefly described. 

Activation Functions 
Aktivierungsfunktionen 

These functions are covered in Subsection 2.3.1, Fundamentals of Machine Learning. 

Learning Rate 
Lernrate 

A major difficulty in training neural networks is determining the appropriate hyperpa-
rameters like learning rate because large learning rates might overshoot the solution 
surface and low learning rates end up being too slow while converging on a solution. 
To improve performance, learning rate scheduling is used as an extension of the SGD 
algorithm [KIEF52]. The learning rate can be described as a decreasing function of the 
iteration number. Thus, first few iterations have larger learning rates causing larger 
change in parameters and as the iterations continue the learning rate decreases. An 
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overview of some gradient descent optimization algorithms is given in the paragraph 
below [RUDE17].  

Momentum 
Momentum 

Momentum speeds up SGD in the relevant direction by adding a fraction α of the pre-
vious update to the current update. The Momentum update rule is given in Equa-
tion (14). With the following variables: momentum parameter, Δθ, fractional hyperpa-
rameter, αθ, learning rate, η, and finally the gradient direction of the loss function, ∇θL(θ). The loss function parameter θ calculates according to Equation (15). Δߠ௧ = ௧ିଵߠఏ Δߙ −  (14)  (ߠ)ܮఏ∇ߟ

௧ߠ = ௧ିଵߠ + Δߠ௧ (15) 

RMSprop is an adaptive learning rate method which tackles the problem of accumula-
tion of squared gradients [HINT19]. The learning rate of RMSprop is divided by an 
exponentially decaying average of squared gradients. Adadelta reduces the problem 
of decreasing learning rate  [ZEIL12]. The range of accumulated squared gradients is 
restricted to a certain fixed size. The adaptive learning rate for each parameter is also 
determined by Adaptive Moment Estimation (ADAM) optimizer [KING14]. An exponen-
tially decaying average of past squared gradients vt are stored by Adadelta and 
RMSprop but ADAM also keeps an exponentially decaying average of past gradients 
mt. The estimates of the mean and the uncentered variance of the gradients are given 
by vectors vt and mt respectively which are biased towards zero. These bias-corrected 
estimates v̂t and m̂t are calculated for the update rule where ߳ is a smoothing constant. ߠ௧ = ௧ିଵߠ − ߟ ෝ݉௧ඥݒො௧ + ߳ (16) 

Dropout Rate 
Dropout-Rate 

A major problem in neural network training is overfitting. This means loss in the gener-
alizing capacity of the model i.e., the model learns to map the noise in training dataset 
too. Overfitting can be caused by training a high parameter network on a small training 
dataset [RUSS04, p. 909]. Dropout layers are used for preventing overfitting in neural 
network models. Different nodes and its connections are randomly dropped from the 
network during dropout. This results in the neuron units not being overfit to the same 
data and being able to adapt to rest of the training set [SRIV14]. Additionally, the drop-
out layers may be used for uncertainty estimation of the network’s prediction through 
repeated inferences with random dropout. In Subsection 2.3.4, Tool Wear Identification 
with Deep Learning, the so-called Monte-Carlo based dropout is briefly described.  
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Network Size 
Netzwerkgröße 

The network size dimensions are depth and width. In this investigation the depth is 
constant due to the selection of vanilla U-Net as model architecture. The network width 
depends on the number of kernels, d, which produce the feature maps within the layer. 
The number of parameters within one convolutional layer calculates as in Equa-
tion (17). The parameters in all convolutional and FC layers combined yield the total 
number of network parameters, compare Subsection 2.3.3, Image Processing with Ar-
tificial Intelligence. 

 ݊௖௢௡௩ = ቀ൫ℎ ݓ ݀௣௥௘௩௜௢௨௦൯ + 1ቁ ݀௖௨௥௥௘௡௧ (17) 

5.2.2 Dataset Properties 
Datensatzeigenschaften 

In this work, dataset properties are defined as parameters that describe the dataset. 
This definition includes the dataset size, the image size, the dataset split as well as the 
similarity of the images within the dataset. Dataset split could also be attributed to the 
hyperparameters and not dataset properties. For the sake of clarity this work assigns 
dataset split as a dataset property. Since data augmentation was covered in literature, 
this work abstains from including it into the scope of investigation. The following para-
graphs include a brief description of the four factors assigned to dataset properties. 

Dataset Size 
Datensatzgröße 

The number of raw images, without count of each images respective label mask, in-
cluded in a dataset for network training is defined as the dataset size. The typical rep-
resentation for dataset property dataset size is simply a scalar, such as 50 images. 

Image Size 
Bildgröße 

The number of pixels along the xy-plane, i.e., image resolution, of the images included 
in a dataset for neural network training is defined as image size. A typical representa-
tion of this dataset property is (x-pixels, y-pixels). In an example this could be 
(512, 512) which means there are 512 pixels along the x and y dimension of an image. 
That means the image contains 262,144 pixels on the xy-plane, not considering pos-
sible color channels along the z-axis of the image matrix. 

Dataset Split 
Datensatz-Aufteilung 

Seperating a dataset for machine learning model creation into training dataset, valida-
tion dataset and test dataset is defined as dataset split. It determines what fraction of 
the data is used in the training process and in the model assessment, i.e., testing, 
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process. It also determines what fraction of data is reserved for an unbiased evaluation 
of the current model during the training process, to prevent the model from optimizing 
the hyperparameters for a local minimum of the objective function.  

In other words, the validation data split is required to prevent the neural network model 
from quickly overfitting, i.e., memorizing the training data. A typical representation of 
the dataset split is (training dataset, validation dataset, test dataset). In an example 
where 80 % of the data is used for the training dataset and 10 % for the other two the 
nomenclature for dataset plit is (0.8 / 0.1 / 0.1). 

Dataset Similarity 
Datensatz-Ähnlichkeit 

The homogeneity, or respectively the heterogenity, of a dataset may be a good de-
scriptor for the variance of the problem domain a neural network has to learn during 
training. In heuristic approaches to hyperparameter optimization, as mentioned in Sec-
tion 4.6, it became apparent to the operators, that the perceptual similarity of images 
within a dataset influence the sensitivity of model performance dependant on hyperpa-
rameter choice.  

To confirm or neglect this hypothesis the dataset similarity was included into to scope 
of this investigation. Since there are several methods available to quantify image sim-
ilarity, a study was conducted to assess their performance and agreement. In the scope 
of this study two different groups of tasks were prepared: quantification of inner and 
outer similarity. Inner similarity describes the mean similarity of pairwise comparisons 
of all images within a specific dataset. Outer similarity describes the mean similarity of 
pairwise comparison of images between two different datasets. For the assessment of 
the image similarity algorithms, an operator rating of the similarity was produced addi-
tionally.  

The aim of this investigation is to find an algorithmic metric that has the highest agree-
ment with a human operator assessment of the similarity between two datasets. The 
human assesment is taken as a benchmark since human brains are wired to process 
visual information quickly and efficiently, and can easily recognize patterns, shapes, 
colors, and other features in images [THIB17]. A recent study suggest that humans are 
still able to outperform AI models in cases of categorization [VINT19]. Using a correla-
tion analysis, specifically Pearson’s r defined in Equation (18), the algorithm with the 
highest human operator agreement was identified for further analysis.  

ݎ = (௜ݕ௜ݔ∑)݊ ௜ଶݔ∑݊)√௜ݕ∑௜ݔ∑− − ௜ଶݕ∑݊)(ଶ(௜ݔ∑) − (ଶ(௜ݕ∑) (18) 

Where n is the number of samples and xi and yi are the individual values of the varia-
bles x and y. In detail, the inner similarity of six datasets with 30 images each was 
calculated for each unique pairwise combination of image for each algorithm, allowing 
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the calculation of a mean correlation coefficient with regards to the operator assess-
ment, rinner, see Figure 5-2. The complete data is in A.10 Inner similarity calculations. 

For the outer similarity, see Figure 5-3, each of the unique combinations of pairs of two 
of the six datasets where calculated. Further the mean correlation coefficient with re-
gards to the operator assessment was calculated, router.  

 
Figure 5-2:  Exemplary data for display of inner similarity analysis  

Beispielhafte Bilddaten zur Darstellung der Analyse der inneren Ähnlichkeit 

The figure shows conceptually that for each pair of images between two datasets of 
30 images the similarity metrics are determined. This procedure was conducted for 
each combination of datasets, which is not displayed in the figure for the sake of clarity. 
The complete data is in Annex A.11, Outer similarity calculations, and A.12, Outer sim-
ilarity values at different dataset size levels. 

 
Figure 5-3:  One example of the conduction of an outer similarity analysis 

Ein Beispiel für die Durchführung der Analyse der äußeren Ähnlichkeit 

The following algorithms were applied on a test dataset, including tool images and ar-
tificial images with adverse brightness levels, upfront the main investigation:  

 Root Mean Square Error (RMSE) described by [MÜLL20] 
 

 Peak Signal-to-Noise Ratio (PSNR) described by [MÜLL20] 
 

 Structural Similarity Index (SSIM) described by [MÜLL20] 
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 Signal to Reconstruction Error ratio (SRE) described by [MÜLL20] 
 

 Spectral Angle Mapper (SAM) described by [MÜLL20] 
 

 Universal Image Quality index (UIQ) described by [MÜLL20] 
 

 Information Statistic Similarity Measure (ISSM) described by [MÜLL20] 
 

 Feature-based Similarity index (FSIM) described by [MÜLL20] 
 

 Learned Perceptual Image Patch Similarity (LPIPS) described by [ZHAN18]  

The FSIM was omitted since it failed at cases of strong dissimilarity between two im-
ages. UIQ, ISSM and LPIPS were excluded due to their computational requirements 
which would have led to unacceptable compute time when applied to the actual task. 
Besides the remaining algorithms to measure image similarity, the human operator 
estimation was added to the metrics to find the highest correlation between one of the 
above algorithms and the human assessment.  

For the investigation regarding inner similarity, that is similarity within one dataset, the 
similarity metrics were calculated between each unique combination of two images 
within one dataset. The mean similarity for each dataset was calculated for each metric 
from these pairwise similarity values. Afterwards the correlation between each similar-
ity metric was calculated yielding the following correlation matrix, see Figure 5-4.  

 PSNR SSIM SRE SAM Human 
RMSE 0.99 0.90 0.63 0.52 0.89 
PSNR  0.88 0.61 0.51 0.89 
SSIM   0.89 0.83 0.91 
SRE    0.97 0.68 
SAM     0.66 

 

Figure 5-4:  Mean Pearson's correlation matrix for metrics compared with human 
opinions on datasets for assessing inner similarity 
Durchschnittliche Pearson-Korrelationsmatrix für Metriken im Vergleich zur 
menschlichen Meinung zur Beurteilung der inneren Ähnlichkeit. 

Surprisingly, some of the different image similarity metrics have a very uneven corre-
lation with each other for this task, especially the SRE and SAM. Whereas the RMSE, 
PSNR and SSIM correlate strongly. The same is true with regards to the correlation of 
the different metrics compared to the human operator.  

The RMSE, PSNR and SSIM show a correlation of approximately 90 % with the human 
estimation of mean similarity within one dataset. For the investigation regarding outer 
similarity, that is similarity between two datasets, the similarity metrics were calculated 
between each unique combination of two images from two datasets.  
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The mean outer similarity for each dataset was calculated for each metric from these 
pairwise similarity values. Afterwards the correlation between each similarity metric 
was calculated yielding the following correlation matrix shown in the Figure 5-5.  

 PSNR SSIM SRE SAM Human 
RMSE 0.99 0.86 0.76 0.53 0.36 
PSNR  0.82 0.68 0.45 0.33 
SSIM   0.85 0.82 0.58 
SRE    0.70 0.48 
SAM     0.44 

 

Figure 5-5:  Mean Pearson's correlation matrix for metrics compared with human o-
pinions on datasets for assessing outer similarity  
Durchschnittliche Pearson-Korrelationsmatrix für Metriken im Vergleich zur 
menschlichen Meinung zur Beurteilung der äußeren Ähnlichkeit 

The RMSE, PSNR and SSIM show a strong correlation among each other, as in the 
inner similarity investigation. The SRE shows mediocre to strong correlation with the 
other metrics. Between SRE and SSIM the correlation is at 0.85. The SAM has the 
worst correlation with the other metrics. The agreement with the human operator in 
terms of Pearson’s correlation regarding the outer similarity is significantly lower, that 
is between 30 to 50 %, than for the task of inner similarity across all the image similarity 
metrics investigated in this study. 

As described above, the Structural Similarity Index (SSIM) turned out to be the most 
suitable algorithm for the required tasks. The implementation of SSIM from the python 
library for image processing scikit-image was used [AVAN09, WANG04]. A typical rep-
resentation of image similarity in terms of SSIM is a scalar between zero and one, 
where zero is not similar and one identical. The calculation of the SSIM can be con-
ducted on various windows of images or on the complete images. In this case the 
image size as well as the window size is 512x512 and the SSIM is calculated using the 
following formula: 

(2ݓ,1ݓ)ܯܫܵܵ  = ௪ଶߤ௪ଵߤ2) + ܿଵ)(2ߪ௪ଵ௪ଶ + ܿଶ)(ߤ௪ଵଶ + ௪ଶଶߤ + ܿଵ)(ߪ௪ଵଶ + ௪ଶଶߪ + ܿଶ) (19) 

Where μw1 and μw2 are the pixel sample means of the first and second image or win-
dow. The variance of these values is σ²w1 and σ²w2 respectively. The covariance of 
image one and two is denoted σw1w2. The variables c1 and c2 stabilize the division if the 
denominators are otherwise too small. As described above in more detail, for calcula-
tion of the similarity metric in the task of inner and outer similarity in this subsection, 
the similarity was calculated in terms of the mean SSIM of the pairwise unique combi-
nation of images. 



 5.2 Prerequisites and Definitions 

                                      73 

5.2.3 Model Evaluation Metrics 
Bewertungsmetriken für Modelle 

Model evaluation metrics are required to assess a model’s performance and to com-
pare different models with each other. To capture the two most important model per-
formance properties in machine learning, which are goodness of fit and generalization 
capability, two different metrics are required. 

Accuracy Metric 
Genauigkeitsmetrik 

F1 or Dice coefficient is a widely used evaluation metric in machine learning that 
measures the performance of a classification model [DAVI06]. It is the harmonic mean 
of precision and recall, which are two important metrics used to evaluate a classifier's 
performance. Precision indicates the ability of a classifier not to label a sample as pos-
itive that was negative. In other words, it measures how accurate the classifier is when 
it identifies positive cases. On the other hand, recall evaluates the ability of the classi-
fier to find all positive samples. It measures how well the classifier identifies all positive 
cases, including the ones that are missed or misclassified. The Dice coefficient is a 
specific way of calculating F1 that is commonly used in image segmentation tasks. It 
is calculated by taking two times the area of overlap between two images and dividing 
it by the total number of pixels in the two images. For more details on this method, 
please refer to Subsection 2.3.3.  

To calculate the Dice coefficient, two masks are required: a manually labeled ground 
truth mask and the respective wear mask predicted by the model. This metric is re-
ported as a mean of all images from a specific dataset, such as a test dataset Dicetest, 
as datasets typically contain many images. Overall, the Dice coefficient is an important 
metric that provides a reliable measure of how well a classification model performs. By 
calculating this metric, we can determine the accuracy of the model's predictions and 
compare different models to select the one that performs the best. 

Overfitting Metric 
Überanpassungsmetrik 

Overfitting refers to a machine learning model that learns to model the training data 
too well. That is, noise is picked up and learned as important concept by the model, 
leading to poor performance when data is presented which is not part of the training 
dataset. Simply put, overfitting means good performance on the training data, poor 
generalization on other data. Currently, there is no standard metric to measure overfit-
ting. A common definition of overfitting during NN training is the Epoch at which training 
and validation loss start to diverge, see Figure 5-6. Typically, the training and validation 
accuracy also starts to diverge at the same time, because the relation between loss 
and accuracy is inversly proportional.  
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Since loss functions and their scale are less intuitive, here, an overfitting metric is con-
structed using the accuracy values, which range between zero and one for the 
F1 score, respectively the Dice Coefficient. Furthermore, the overfitting metric con-
structed for the purpose of model evaluation and comparison is normalized, to obtain 
a percentual metric, see Equation (20). Additionally, using the Dice as a basis allows 
to construct a derative of this metric for test data as well. 

 ܱ ்ܲ௏ = ௧௥௔௜௡݁ܿ݅ܦ  − ௧௥௔௜௡݁ܿ݅ܦ௩௔௟݁ܿ݅ܦ  (20) 

In short, the OPTV (Overftting Percentual Training Validation) describes the percentual 
difference between training and validation accuracy. In terms of Figure 5-, the relative 
distance between the green and blue curve. The notation is chosen to allow a con-
sistent derivation of similar metrics, such as OPTT (Overftting Percentual Training Test) 
or OPVT (Overfitting Percetual Validation Test). In this thesis the Overfitting Percentual 
Training Test is chosen as an overfitting metric for the following reasons: It indicates 
cases with higher test accuracy than training accuracy with negative values, which 
allows filtering for model that are good by chance, due to unfavorable dataset split. 
This is especially important for small datasets. The OPTT also covers cases where the 
training accuracy is very high, and the test accuracy is high in absolute terms. In such 
cases, it is hard to identify overfit networks solely based on test accuracy. 

 
Figure 5-6:  Loss and Accuracy during training of a NN  

Verlust und Genauigkeit während des Trainings eines NN 
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5.3 Screening Analysis 
         Einflussgrößenanalyse 

The above Section 5.2 Prerequisites and Definitions introduces the model training, the 
factors of interest and the metrics required to answer the second Research Questions: 

RQ2: What are the dataset and model properties with the highest impact on model 
performance for tool wear segmentation? 

This section contains a description of the necessary steps to perform a Screening 
Analysis. It consists of Subsection 5.3.1, Preparation, followed by the Subsection 5.3.2, 
Significance Analysis, to determine which effects are significant, followed by Subsec-
tion 5.3.3, Effect Size Analysis, to determine the magnitude of said effects, concluding 
with Subsection 5.3.4, Discussion of findings. 

5.3.1 Preparation 
Vorbereitung 

This subsection contains paragraphs describing the necessary steps to set up a 
screening analysis including the DOE, the sample size estimation, and the dataset 
itself. 

Design of Experiments 
Statistische Versuchsplanung 

The Generalized Subset Design (GSD) is a generalization of traditional fractional fac-
torial designs to problems where factors can have more than two levels [SURO17]. 
Previous reduced designs cannot provide this feature. Moreover, full multi-level facto-
rial designs cover this as well, but they produce a non-economical number of experi-
ments. Besides the arbitrary factor levels, the GSD can be used for problems with 
many factors to be investigated, because it allows a user-specified reduction factor. 
This allows the thinning out screening designs of experiment where the main goal is 
the separation of more and less important factors. The Table 5-1 shows all factors and 
their respective levels for the screening analysis. In a full factorial design with two lev-
els, also denoted 2k, this setup would yield 512 test points. This might seem feasable 
at first but considering required repetitions to account for the variance of identical ex-
perimental runs, the number of experiments quickly escalates. 

Table 5-1: Screening DOE Factors and Levels 
     Faktoren und Faktorstufen des Versuchsplans zur Einflussgrößenanalyse 

 Dataset Properties Model Hyperparameters 
Factors / 

Levels 
Dataset 

Size 
Image 
Size 

Dataset 
Split 

Data Si-
milarity 

Act. 
Func-
tion

Learn-
ing Rate 

Dropout 
Rate 

Network 
Size 

Momen-
tum 

0 50 256 0.8 / 0.1 / 
0.1 0.67 ELU 0.0001 0.2 122k 0.8 

1 400 512 0.9 / 0.05 
/ 0.05 0.77 ReLU 0.0005 0.6 486k 0.9           
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Moreover, the two levels would allow only linear terms if we were to create a model 
from the DOE. In summary, the GSD is suitable for a screening analysis with many 
factors and/or varying number of levels in the factors. Therefore, it is a suitable choice 
for the setup described above with a total of nine factors with two levels each. 

Sample Size Estimation 
Abschätzung der Stichprobengröße 

To prepare the screening analysis a determination of the minimum sample size for 
each test point is required. From previous repeated model training it is known that the 
expected standard deviation, σ, of Dicetest is 0.0575 from an experiment with ten repe-
titions, denoted N, which correspond to a normal distribution. The acceptable percen-
tual error threshold, E, is set to 0.05, that is 5 % Dice. The zN value of 1.96 results from 
the standard normal distribution for the targeted confidence level of 95 %.  

 ݊ ≥ ேଶݖଶߪ ଶݖ ܰ  ଶߪ  + (ܰ − ଶܧ (1 = 4.69 (21) 

According to Equation (21), the number of experiments in each test point should be 
greater than 4.69, that is five [BUND21]. With the repetitions set to five and a reduction 
factor of six the number of experiments in the GSD DOE reaches 255. 

Dataset 
Datensatz 

The image datasets for the analysis are constructed as described in the instructions 
specified in the DOE. The data consist of images and their respective label mask. Fig-
ure 5-7 below shows examples of original images next to an image with a manually 
created label mask overlay displayed in the figure white color.  

 
Figure 5-7:  Examples of image data used in the screening analysis: a) Ball end mill-

ing cutter, b) Drilling tool edge, c) End milling cutter, d) Indexable insert  
Beispiele von Bilddaten, die im der Einflussgrößenanalyse eingesetzt wurden: 
a) Kugelkopffräser, b) Bohrer, c) Schaftfräser, d) Wendeschneidplatte 
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Below is an example for a set of parameters in a test point within the screening DOE. 
Dataset properties: Assume the number of images to be 50, with an image size of 
256x256 pixels, a dataset split of (0.8 / 0.1 / 0.1) and a dataset similarity of 0.67. 
Model hyperparameter: Assume the activation function to be ELU, the learning rate of 
0.0001, the dropout rate of 0.2, the network size of 121.725 parameters and momen-
tum of 0.8. Due to the necessary repetitions derived in the above paragraph this set of 
parameters is used to train five neural networks with random initial seed and a ran-
domised dataset split with regards to the utilized data for each subset, i.e., training, 
validation, and test dataset. 

5.3.2 Significance Analysis 
Signifikanzanalyse 

The evaluation of results from the screening experiment is divided into the paragraphs 
for dataset properties and model hyperparameters. For each set of parameters, the 
results are analysed with regards to accuracy and overfitting, which are covered in 
detail in Subsection 5.2.3, Model Evaluation Metrics. The analysis below is based on 
the Lenth’s method for identifying active contrasts in sparse DOEs [LENT89]. A signif-
icant standardized effect calculated from the t-statistic gives confidence, that the ob-
served difference between two groups, i.e., a factor and a target variable, is not due to 
chance. The implementation of Minitab is used to conduct the analysis. A description 
of the algorithm is given in A.13, Identification of the statistically significant effects in 
factorial experiment based on Lenth's Analysis. 

Dataset Properties 
Datensatzeigenschaften 

The investigated factors are dataset size and split as well as image similarity and size. 
According to the screening experiments there is a significant standardized effect for all 
dataset properties with regards to the mean accuracy of the test dataset mDicetest.  

Figure 5-8:  Standardized effect of dataset properties with regards to accuracy in 
terms of mDicetest of the test dataset  
Standardisierter Effekt der Datensatzeigenschaften mit Bezug auf 
Genauigkeit, gemessen in mDicetest der Testdaten 
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Dataset Split

Image Size

Image Similarity

Dataset Size

Standardized Effect (Accuracy)
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The analysis ranks the dataset properties with regards to their importance in terms of 
a standardized effect based on a t-statistic as in Figure 5-8. Moreover, a significance 
threshold (orange) is calculated using a confidence level of 95 % with five degrees of 
freedom derived by the Lenth’s method. 

Figure 5-9 contains the analysis of the standardized effect of the dataset properties 
with regards to mean overfitting mOPTT. This analysis yields a different factor im-
portance than the one ranking factors with regards to accuracy. Only two factors have 
a significant standardized effect on overfitting. Compared to above, dataset split, and 
image similarity have switched ranks. The factors dataset size and dataset split have 
exceeded the significance threshold (orange). 

 
Figure 5-9:  Standardized effect of dataset properties regarding mean overfitting in 

terms of mOPTT of the test dataset  
Standardisierter Effekt der Datensatzeigenschaften mit Bezug auf gemittelte 
Überanpassung, gemessen in mOPTT, der Testdaten 

Model Hyperparameters 
Modell-Hyperparameter 

The investigated factors are the NNs dropout rate, the network size, the learning rate, 
the activation function, as well as the momentum. A description of these model hy-
perparameters may be found in the Subsection 5.2.1, Model Hyperparameters. Addi-
tional information on the training process of the NN and effects of the hyperparameters 
are given in Subsection 2.3.2, Neural Network Training. 

According to the screening experiments there is a significant standardized effect for all 
investigated model hyperparameters with regards to the mean accuracy of the unseen 
test dataset. The analysis ranks the model hyperparameters with regards to their im-
portance in terms of a standardized effect based on a t-statistic as in Figure 5-10. 
Moreover, a significance threshold (orange) is calculated using a confidence level of 
95 % with ten degrees of freedom derived by the Lenth’s method. A description of the 
Lenth’s method and specifically the algorithm may be found in the Annex A.13, Identi-
fication of the statistically significant effects in factorial experiment based on Lenth's 
Analysis. 
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Figure 5-10:  Standardized effect of hyperparameters with regards to accuracy in 

terms of Dicetest of the test dataset  
Standardisierter Effekt der Hyperparameter mit Bezug auf die Genauigkeit, ge-
messen in mDicetest, der Testdaten 

Figure 5-11 contains the analysis of the standardized effect of hyperparameters with 
regards to mean overfitting, mOPTT. This analysis of the overfitting yields a different 
factor importance than the one ranking factors with regards to accuracy. Only two fac-
tors have a significant standardized effect on overfitting. The factors dropout rate and 
and learning rate have exceeded the significance threshold (orange). Whereas the 
other factors network size, activation function and momentum are well below the 
threshold. 

 
Figure 5-11:  Standardized effect of dataset properties regarding overfitting in terms 

of mOPTT, of the test dataset  
Standardisierter Effekt der Datensatzeigenschaften mit Bezug auf Überan-
apssung, gemessen in mOPTT, der Testdaten 
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5.3.3 Effect Size Analysis 
Analyse der Effektstärke 

A significant standardized effect calculated with Lenth’s method gives confidence, that 
the observed difference between two groups is not due to chance. Therefore, it is a 
good metric to identify whether a factor is relevant.  

Contrary to what the name suggests, the effect size of the factors is not known through 
Lenth’s method. However, there is no information in small p-values about the effect 
size, to understand the magnitude of change that one variable imposes in the target 
variables [SULL12]. To evaluate the effect size of each relevant factor the Pearson’s 
correlation coefficient, r, is used. Pearson’s correlation measures the degree of linear 
relationship between to variables, in this case a factor and a target variable, like  
mDicetest. Figure 5-12 shows effect size over significance of the dataset properties and 
hyperparameters with regards to the target variable of accuracy, mDicetest.  

Figure 5-13 shows effect size over significance of dataset properties and hyperparam-
eters with regards to the target variable of overfitting, OPTT. Factors that were identified 
as having an influence on the target variables due to chance have no black edge in the 
plot. The information of direction of the effect of factors on the target variables is con-
tained within the figure. For example, dropout rate seems to have a negative correla-
tion with accuracy. This means lower dropout values tend to cause higher accuracy, 
which is favorable. Since the analysis is based on a sparse DOE, a more detailed 
analysis of effect size and direction of factors with regards to the target variables is 
saved for the next Section 5.4, Full Factorial Analysis.  

 
Figure 5-12:  Pearson’s r over Standardized effect of accuracy for Dataset Properties 

(left column) and Model Hyperparameters (right column)  
Pearson’s r über standardisiertem Effekt der Genauigkeit für die Datensatzei-
genschaften (linke Spalte) und die Modell-Hyperparameter (rechte Spalte) 
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Figure 5-13:  Pearson’s r over Standardized effect of overfitting for Dataset Properties 

(left column) and Model Hyperparameters (right column)  
Pearson’s r über standardisiertem Effekt der Überanpassung für die Daten-
satzeigenschaften (linke Spalte) und die Modell-Hyperparameter (rechte 
Spalte) 

The following Subsection 5.3.4 Discussion of findings contains the conclusions drawn 
from the successive significance and effect size analysis. That is the decision which 
factors will be considered in the dense DOE. 

5.3.4 Discussion of findings 
Diskussion der Ergebnisse 

The analysis of dataset properties and model hyperparameters yields valuable results 
with respect to the relevance and effect size of factors for predicting the target variables 
accuracy and overfitting. In the first step in Subsection 5.3.2 a significance analysis 
was conducted to observe which factors are relevant with respect to accuracy and 
overfitting. The analysis shows that all considered factors are relevant with regards to 
accuracy. It also shows that dataset split, learning rate and dropout rate are also rele-
vant with regards to overfitting. Dataset size has a high significance, but the effect size 
is negligible in comparison with dataset split. In general, the effect size of the factors 
with respect to accuracy are clearly higher than with respect to overfitting. To bring this 
into perspective, an ANOVA was performed for the accuracy in terms of mDicetest and 
the overfitting in terms of mOPTT.  

The ANOVAs yield a linear regression. A metric to quantify the quality of a regression 
is the coefficient of determination, which describes the proportion in variance in one 
variable explained by another variable. The adjusted coefficient of determination pe-
nalizes the metric in terms of the number of parameters required for the fit. The ad-
justed coefficient of determination for predicting accuracy based on the factors is 
R² = 0.88.  
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The adjusted coefficient of determination for predicting overfitting based on the factors 
is R² = 0.42. The results show that overfitting is harder to predict from dataset proper-
ties and model hyperparameters than accuracy. Hence, for deciding on whether to 
drop factors from further analysis and model creation or not, an according weighting of 
the factors is appropriate. 

 Regression-weighted Effect = ஽௜௖௘೟೐ೞ೟ݎ   ܴ஽௜௖௘೟೐ೞ೟ଶ + ை௉೅೅ݎ  ܴை௉೅೅ଶ  (22) 

 
Figure 5-14:  Regression-weighted effect for all investigated factors  

Regressionsgewichteter Effekt für alle untersuchten Faktoren 

The above Equation (22) defines the scoring function applied for each factor of dataset 
properties and model hyperparameters. Each factor’s individual Pearson’s 
correlation, r, for mDicetest and mOPTT is calculated and, in each case multiplied with 
the adjusted coeffcient of determination R² from the respective ANOVA regression, 
either for mDicetest or mOPTT.    

Weighting the individual factors according to their effect size and importance with 
respecting the accuracy or overfitting regression score yields the ranking shown in 
Figure 5-14. The two highest ranked factors from each group (see Figure 5-14, framed 
bars) are chosen for further analysis. The analysis above answers the second 
Research Question: “What are the dataset and model properties with the highest 
impact on model performance for tool wear segmentation?”. Based on the screening 
analysis performed in this section and the successive discussion, the answer to this 
question is: 

Dataset properties: 

 Dataset size   
 Image similarity  

Model hyperparameters: 

 Dropout rate 
 Network size 
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5.4 Full Factorial Analysis 
        Vollfaktorielle Analyse 

This section contains a description of the necessary steps to perform a Full Factor 
Analysis of the dataset and model properties with the highest impact on the model 
evaluation metrics. It consists of Subsection 5.4.1, Preparations describing the DOE, 
sample size estimation and the datasets. Followed by Subsection 5.4.2, Exploratory 
Analysis and Subsection, and Subsection 5.4.3, Outlier Analysis. In Subsection 5.4.4, 
Interaction Analysis, and Subsection 5.4.5, Main Effect Analysis, the factors interde-
pendence and effects on model evaluation metrics are investigated. The section is 
closed with Subsection 5.4.6, Discussion of Findings.  

5.4.1 Preparations 
Vorbereitungen 

Design of Experiments 
Statistische Versuchsplanung 

The Table 5-2 shows all factors and their respective levels for the full factorial analysis. 
In a full factorial design this setup yields 81 test points without repetitions. This seems 
feasable as the Generalized Subset Design (GSD) from the screenig analyis had a 
count of 255 in total. The three-level design, also denoted 3k, allows modelling possible 
quadratic terms between each factor and the response or target variables.  

In summary, the full factorial design is suitable for a model creation with four factors 
and three levels. The next paragraph elaborates on the required repetitions. The other 
parameters omitted from the full factorial DOE are fixed and set to the following values: 
Image size is fixed at (512 x 512 x 3), the training epochs are fixed at 300, the learning 
rate is set to 0.001 with momentum at 0.9, the train / val / test dataset split is set to  
(0.8 / 0.1 / 0.1). For the activation functions within the network are the ELUs are chosen 
since they produce smoother activation values than ReLU and are less prone to be-
coming inactive during training. 

Table 5-2: Full Factorial DOE Factors and Levels 
     Faktoren und Faktorstufen des Versuchsplans zur Vollfaktoriellen Analyse 

 Dataset Properties Model Hyperparameters 

Factors / Levels Dataset Size 
Data 

Similarity 
Network Size Dropout Rate 

0 50 0.67 120k 0.2 

1 100 0.77 650k 0.4 

2 400 0.87 2000k 0.6 

 

  



5 Model Performance Optimization 

84 

Sample Size Estimation 
Abschätzung der Stichprobengröße 

To prepare the full factorial analysis a determination of the minimum sample size for 
each of the 81 test points is required. Findings from the previous screening analysis 
conducted with five experiments for each test point indicate that the required sample 
size can be reduced in the full factorial analysis.  

 
Figure 5-15:  Dicetest over OPTT and mDicetest over mOPTT of five identical experiments 

each 
Dicetest über OPTT und mDicetest über mOPTT von jeweils fünf identischen Ex-
perimenten 

In Figure 5-15 it is possible to see a cluster of successful network trainings around 
Dicetest of 0.8 and OPTT of 0.1. It appears that successful network trainings tend to 
scatter less with repeated identical experiments than unsuccessful trainings with high 
overfitting or low accuracy.  

The representation of data in Figure 5-16 supports this thesis. When defining a suffi-
ciently successful neural network training by a minimum mean accuracy  
mDicetest ≥  0.7, compare grey area in the figure, the mean standard deviation is at 
μ(σDicetest) = 0.0366, compare black cross in the figure.  
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Figure 5-16:  Standard deviation of Dicetest over mDicetest of screening analysis data 
Standardabweichung von Dicetest über mDicetest für die Daten der Einflussgrö-
ßenanalyse  

The sample size estimation for the full factorial analysis is set up according to Equa-
tion (23). The expected standard deviation from the screening experiment is σ = 0.0366, as stated above. The number of repetitions is five, denoted N. The ac-
ceptable percentual error threshold, E, remaining at 0.05, that is 5 % Dice. The zN value 
of 1.96 results from the standard normal distribution for the targeted confidence level 
of 95 %.  ݊ ≥ ேଶݖଶߪ ଶݖ ܰ  ଶߪ  + (ܰ − ଶܧ (1 = 1.70 (23) 

According to the formula, the number of experiments in each test point should be 
greater than 1.70. For a more conservative approach and to be more confident in pos-
sible outlier detection the sample size of three is chosen for each test point in the full 
factorial DOE. With the repetitions set to three and a reduction factor of zero the num-
ber of experiments in the full factorial DOE arrives at 243. 

Dataset 
Datensatz 

The datasets are created from the instructions specified by the DOE. The data consist 
of images and their respective label mask. Below, in Figure 5-17, there are examples 
of original images row-wise grouped by image similarity. A human perceiving the top 
row as most homogeneous, the bottom row as most heterogeneous and the middle 
row as something in between, agrees with the image similarity metric SSIM applied in 
this thesis.  

Due to the necessary repetitions derived in the above paragraph a random initial seed 
and a randomised dataset split is utilized in each experimental run for each subset of 
data, i.e., training, validation, and test dataset. This ensures that there is no favourable 
or unfavourable dataset split that effects the model evaluation metrics and dilutes the 
information of the observed results. 
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Figure 5-17:  Examples of image data from three dataset with a mean inner similarity 

metric of a) SSIM = 0.87, b) SSIM = 0.77 and c) SSIM = 0.67 
Beispielbilddaten von drei Datensätzen mit einer mittleren, inneren Ähnlichkeit 
von a) SSIM = 0.87, b) SSIM = 0.77 und c) SSIM = 0.67 

5.4.2 Exploratory Analysis 
Explorative Analyse 

To get familiar with the data produced in the full factorial design, a visual data analysis 
was conducted. It aimed at identifying general trends of factors with respect to the 
model evaluation metrics accuracy and overfitting.  

 
Figure 5-18:  Dicetest over OPTT with color indication of dataset properties 

Dicetest über OPTT mit farblicher Indikation der Datensatzeigenschaften 
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Figure 5-18 indicates where dataset property levels are grouped within the Dicetest over 
OPTT scatter plot. Color and symbol are assigned to each experiment’s marker based 
on the factor level. The attribution of the color and symbol to the factor levels is given 
in the legend above each plot.  

Some general trends are observable from this visualization: A higher dataset similarity 
tends to lead to better models in terms of accuracy and overfitting. The sample is ob-
servable for dataset size, where a larger dataset tends to lead to higher accuracy and 
less overfitting. 

 
Figure 5-19:  Dicetest over OPTT with color indication of model hyperparameters 

Dicetest über OPTT mit farblicher Indikation der Modellhyperparameter 

Figure 5-19 indicates where model hyperparameter levels are grouped within the  
Dicetest over OPTT scatter plot. Color and symbol are assigned to each experiment’s 
marker based on the factor level. The attribution of the color and symbol to the factor 
levels is given in the legend above each plot. A higher dropout rate tends to lead to 
better accuracy and especially less overfitting. Albeit some models with high dropout 
reach accuracies as low as Dicetest = 0.3. An increase in network size tends to lead to 
higher accuracies. 

Table 5-3: Best model in each dataset similarity group and its dataset properties 
and model hyperparameters 
Das beste Modell in jeder Datensatzähnlichkeits-Gruppe und dessen Daten-
satzeigenschaften und Modell Hyperparameter 

 
Dicetest OPTT Dataset  

Similarity 
Dataset  

Size 
Dropout  

Rate 
Network  

Size 

 

 
0.956 0.011 High 400 0.2 1.941k 

 

 
0.859 0.010 Medium 400 0.6 1.941k 

 

 
0.810 0.110 Low 400 0.2 1.941k 
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The individual best models for each dataset similarity group created in the full factorial 
design, see Table 5-3, mostly support the tendencies found in the exploratory analysis 
above. These are: a high dataset size tends to produce the best models across the 
three similarity classes. Further, a low dropout rate and a high network size tend to 
produce the best models across the three similarity classes. 

5.4.3 Outlier Analysis 
Ausreißeranalyse 

The outlier analysis aims at identifying data points that differ significantly from other 
observations. For reasons of rigourousity the outliers are split into two categories: tech-
nical outlier means system malfunction where the network trainings failed catastrophi-
cally and discretionary outliers where the training did not produce networks with suffi-
cient model evaluation metrics. 

Technical Outliers 
Technische Ausreißer 

Occasionally, a neural network training may fail catastrophically, e.g., Dicetest ≤ 0.01, 
usually because the training process gets stuck in a local minimum of the loss land-
scape that cannot be escaped with the hyperparameter settings given. A detection of 
a failed training is possible by looking at the training curves of the neural network. 
Three experiments were made for each test point in the full factorial DOE, see Sub-
section 5.4.1 Preparations. For this reason it is also possible to calculate a standard 
deviation and identify outliers in Figure 5-20, where standard deviation of Dicetest, 
named σDicetest,  is plotted as a function of mDicetest, which is the mean of Dicetest, in 
each test point. 

 
Figure 5-20:  Standard deviation of Dicetest over mDicetest of full factorial data with outli-

ers (orange) in test points (left). Outlier removal (right) 
Standardabweichung von Dicetest über mDicetest für die Daten der vollfaktoriel-
len Analyse mit Ausreißern (orange) in den Testpunkten (links). Entfernung 
der Ausreißer (rechts) 
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The neural network trainings detected as outliers were repeated to assess the perma-
nence of the outliers. By repeating and replacing the original experiment a reduced 
σDicetest of the affected test points could be reached, compare left and right side of the 
figure.  

The repetition was performed in five different test points, see left side in Figure 5-20. 
Each of these test points had one one experiment where the NN training resulted in a 
relatively low Dice coefficient, leading to the high σDicetest. In comparison to the screen-
ing analysis, no failure of technically successful NN training with Dicetest ≤ 0.1 occurs, 
possibly due to the tendency of favorable hyperparameters in the dense DOE.  

Discretionary Outliers 
Diskretionäre Ausreißer 

As in Subsection 5.4.1 Preparations a successful neural network training is defined as 
mDicetest ≥ 0.7. Applying this filter to the data yields Figure 5-21 with mDicetest over 
mOPTT. From the original test points two thirds remain in the analysis, therefore 162 
experiments, i.e., 54 test points, remain for the model creation from the full factorial 
DOE database. 

Figure 5-21:  mDicetest over mOPTT of three identical experiments each 
mDicetest über mOPTT von jeweils drei identischen Experimenten 

5.4.4 Interaction Analysis 
Wechselwirkungsanalyse 

The exploratory and outlier analysis in the prior subsection gives an overview of gen-
eral trends in the data from the full factorial analysis. This is a good start into under-
standing the data, but it omits interaction effects between the factors. Interaction oc-
curs when the effect of one variable depends on the value of another variable. Possible 
interactions can be illustrated with the help of an interaction diagram where parallel 
lines indicate no interaction. The greater the difference in the slope between the lines, 
the greater the degree of interaction. For the planned target value optimization of hy-
perparameters based on dataset properties it is beneficial to find strong interactions 
between the variables of both groups.  
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If the main effects are of much greater magnitude, the overall optimization of the seg-
mentation model is possible, but a nuanced optimization of hyperparameters based on 
dataset properties could be difficult. In the following chapter both will be attempted and 
reevaluated. Figure 5-22 serves an example for the negligible interaction effects: There 
is interaction between dataset size and dropout rate with regards to accuracy. A higher 
accuracy can be expected for larger datasets with small dropout rate. But for high 
dropout rates the effect of dataset size is inverted. In comparison there seems to be 
no interaction between dataset similarity and dropout rate, see right hand side of Figure 
5-22. From the magnitude of effect, it is possible to estimate if an interaction effect 
could be meaningful, however it is not possible to tell whether the interaction is statis-
tically significant. To determine the statistical significance of the interaction effects an 
ANOVA is performed. Unfortunately, the p-values and F-values of a general ANOVA 
yield that there are no significant two-way or three-way interactions between the factors 
data similarity, dataset size, dropout rate and network size regarding accuracy and 
overfitting. The complete F-statistic is given in A.14, ANOVA regards to accuracy. 

 
Figure 5-22:  Interaction plot of dataset size with dropout rate (left) and dataset simi-

larity with dropout rate (right) with regards to Dicetest 
Wechselwirkungsdiagramm von der Datensatzgröße mit Dropout Rate (links) 
und der Datensatzähnlichkeit mit der Drop. Rate (rechts) in Bezug auf Dicetest 

Nevertheless, in regression analysis interaction effects can still play a role since the 
isolated consideration of interaction effects may miss changes in prediction power of a 
full and reduced regression model. 

5.4.5 Main Effect Analysis 
Haupteffektanalyse 

Since there is no significant interaction of factors, the main effects are not confounded 
and produce meaningful information [BRAM06]. Main effects are analyzed by main 
effect plots and the full ANOVA regression model to determine statistical significance. 

In the main effect plots, dataset properties are indicated with black lines and model 
hyperparameters are indicated with turquoise lines, as in the rest of this document. 
Dataset similarity has the largest main effect regarding accuracy as compared to the 
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other factors, see Figure 5-23. It also has a non-linear relationship, more specifically a 
quadratic characterstic. This means the higher a similarity, the easier it is to reach a 
high accuracy. In general, there are weak linear relationships between the other factors 
and target variable accuracy. According to the isolated F-values there was a significant 
main effect for dataset similarity, F(2, 10) = 133.38, p < .001. There was also a signifi-
cant main effect for dataset size, F(2, 10) = 20.79, p < .001. A more detailed analysis 
of the ANOVA is shown in Annex A.14, ANOVA regards to accuracy. This annex con-
tains the complete F-Statistic. 

  
Figure 5-23:  Main effect plots of the factors with regards to Dicetest

Haupteffektdiagramme der Faktoren mit Bezug auf Dicetest

In the main effect plot with overfitting, dataset similarity has the largest main effect as 
compared to the other factors, see Figure 5-24. In general, there are two non-linear, 
negative quadratic relationships between the dataset properties and target variable 
overfitting.  

Figure 5-24:  Main effect plots of the factors with regards to OPTT

Haupteffektdiagramme der Faktoren mit Bezug auf OPTT 

Dropout has an almost linear relationship. Network size has a rather non-linear rela-
tionship with overfitting. Apart from network size, high values in the other factors pro-
mote low overfitting. According to the isolated F-values there was a significant main 
effect for dataset similarity, F(2, 10) = 20.20, p < .001. There was also a significant 
main effect for dataset size, F(2, 10) = 10.76, p < .003. Finally, there was a significant 
main effect for dropout value, F(2, 10) = 9.79, p < .004. The complete F-statistic is 
given in Annex A.15, ANOVA with regards to overfitting. 
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5.4.6 Discussion of Findings 
Diskussion der Ergebnisse 

The technical outlier analysis helped identify technically failed NN trainings without in-
specting the training curve of each individual experiment. Through the analysis failed 
experiments were repeated and replaced by successful repetitions. Based on prior 
knowledge of acceptable DL segmentation models, a discretionary outlier threshold 
was set as priorily done in the screening analysis. Through this treatment the NN train-
ing settings that lead to unfavorable results with high variance are removed, see Figure 
5-25, and thus uncertainty in the subsequent modelling process can be reduced. 

 
Figure 5-25:  Individual test points boxplots with color-indication of mean values of 

accuracy below the discretionary threshold (orange) 
Individuelle Boxplots der Testpunkte mit farblicher indikation der Mittelwerten 
der Genauigkeit, die sich unter der gewählten Grenze befinden (orange) 

During interaction analysis, it is important to notice whether the main effects are con-
founded with interaction effects. When the targeted input variables and targeted output 
variables for target value optimization have little interaction, and the main effects of the 
variables are dominant, the model's behavior is largely determined by the main effects 
of each variable. This means that the target value optimization based on this data could 
become difficult, and it might be necessary to explore other variables to achieve the 
desired results. 

The main effect analysis, on the other hand, shows that dataset similarity has the larg-
est effect on accuracy and overfitting. It is important to note that overfitting occurs when 
a model becomes too complex and fits the training data too closely, resulting in poor 
performance on new data. In isolated F-tests, network size did not have a significant 
interaction or main effect with respect to the model evaluation metrics. This indicates 
that the network size may not be as important as other factors when it comes to opti-
mizing the model's performance.  
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Based on the linear and non-linear nature of the main effects, it can be concluded that 
linear and quadratic terms must be considered in regression modelling. This is because 
the relationship between the factors and the target variables may not be linear, and it 
may be necessary to account for non-linear effects to accurately model the relation-
ship. In hindsight, the non-linear main effects show that the full factorial 3k DOE was a 
necessary choice to capture the curvature in the relationship between the factors and 
the target variables. 

In general, datasets with high similarity and size tend to produce better models in terms 
of accuracy and overfitting. This is because larger datasets provide more data for the 
model to learn from, and similar datasets are more likely to have similar patterns that 
can be easily learned by the model. However, high dropout values can also lead to 
favorable overfitting metrics, but this comes at a cost of accuracy. Furthermore, large 
networks tend to produce more accurate models. Due to the flat main effect observable 
from the data, the influence of network size on overfitting is not clear with the usecase 
provided and may require further investigation. 

5.5 Decision Model 
Entscheidungsmodell 

Based on the analysis above it is known how to set up a model with high accuracy and 
low overfitting. Still the third research question remains open: 

RQ3: How can a systematic choice of hyperparameters with regards to dataset 
properties be employed to improve model performance for tool wear segmentation? 

Based on the findings of Subsection 5.5.1, Modelling Approach, a regression is con-
ducted for modelling of the data. Subsection 5.5.2, Methodology, explains the required 
steps to answer research question 3. Subsection 5.5.3, Regression Models, contains 
the information on polynomial regression for accuracy and overfitting. Subsection 
5.5.4, Target Value Optimization, explains the decision model and gives examples of 
its application.  

5.5.1 Modelling Approach 
Modellierungs-Ansatz 

To find a suitable modelling approach for making a regression of accuracy and overfit-
ting based on the model hyperparameters and dataset properties, a screening analysis 
of modelling approaches was conducted. Linear regression and a suite of ML algo-
rithms were used to create regression models for accuracy in terms of Dicetest and 
overfitting in terms of OPTT based on the factors described above, see Figure 5-26 and 
Figure 5-27.  

This procedure serves the purpose to identify a suitable regression modelling approach 
that shows good performance for both tasks, modelling of accuracy and overfitting, 
with a focus is on the accuracy as in prior investigations. 



5 Model Performance Optimization 

94 

 
Figure 5-26: Results of an algorithm screening for modelling accuracy based on the 

data from the fullfactorial DOE 
Ergebnisse eines Algorithmus-Screenings zur Modellierung der Genauigkeit 
auf Basis der Daten aus dem vollfaktoriellen DOE 

The standard implementation of the model architectures and parameters from the 
Scikit-learn library were used for this investigation [PEDR11]. Additionally, a four-lay-
ered MLP was designed using the Tensorflow library [TENS22]. For each target varia-
ble, the Dicetest coefficient, and the OPTT a regression model was fitted with each of 
the algorithms. The coeffcient of determination R2 was calculated for each algorithm to 
determine the relative performance between the approaches. Figure 5-26 shows the 
results for the regression of accuracy. 

 
Figure 5-27: Results of an algorithm screening for modelling overfitting based on the 

data from the fullfactorial DOE 
Ergebnisse eines Algorithmus-Screenings zur Modellierung der Überanapas-
sung auf Basis der Daten aus dem vollfaktoriellen DOE 
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Linear regression seems to be most suitable for the task. Similar performance was 
achieved by the algorithms XBG Regressor (XGBR), Random Forest Regressor (RFR) 
and Gradient Boosting Regressor (GBR). Other models such as K-Nearest Neighbour 
Regressor (KNNR), Support Vector Regressor (SVR) and Multi-Layer Perceptron 
(MLP) perform very poorly and in two cases worse than just using the mean leading to 
negative R2 values. 

For fitting the overfitting metric OPTT based on the factors, we get a similar result. 
Again, the MLP, SVR and KNNR fail at modelling the data. The other regression algo-
rithms range from R2 of 0.6 to 0.75, see Figure 5-27. Linear regression is the superior 
algorithm for modelling accuracy and ranks in the third place for modelling overfitting. 
Since modelling the accuracy is the most important task and for the sake of the deci-
sion model’s transparency the linear regression approach is chosen for the furher pro-
cedure. In general, the simpler model should be chosen over more complex models 
for computationally efficiency, data requirements and interpretability. 

5.5.2 Methodology for Decision Model Creation 
Methode zur Erstellung eines Entscheidungsmodells 

Based on the former investigation the linear regression approach is chosen for the 
decision model. The former investigation shows that the modelling of overfitting gives 
a worse fit compared to accuracy. To increase the prediction performance for model-
ling the overfitting a chained multi-output regression is conducted to model accuracy 
first and overfitting subsequently. Chained multi-output regression refers to using sin-
gle-output regression models in a sequence of models. The first model uses the factors 
to predict a target variable. The factors and the target variable are used in a second 
step to predict a second target variable.  

Figure 5-28: Schematic representation of the approach in Section 5.5 
Schematische Darstellung der Vorgehensweise in Abschnitt 5.5
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The chained multi-output regression is used since model accuracy is more clearly de-
pendant on the factors and since there is a linear relationship with R2 = 0.44 between 
accuracy and overfitting this two-step approach is chosen, see Figure 5-29. 

 
Figure 5-29:  Scatter plot OPTT over Dicetest with linear regression 

Streudiagramm OPTT über Dicetest mit linearer Regression 

In a second step, after the multi-output regression model is complete, a minimization 
method is applied to the accuracy regression model. This is done to find optimal values 
of dropout rate and network size for a set of images with the given properties dataset 
similarity and dataset size. Afterwards the expected overfitting may be calculated from 
the expected accuracy, the expected dropout rate and network size and the given da-
taset similarity and dataset size. In the third and final step, the minimization method is 
used for target value optimization for the dataset used in Chapter 6, Validation of AI-
based Automated Tool Wear Measurement. Figure 5-28 shows the methodology in a 
conceptual manner, where the color grey is used for dataset properties and the color 
turquois indicates model hyperparameters. 

5.5.3 Regression Models 
Regressionsmodelle 

For regression modelling a feature selections approach was chosen that adds and re-
moves polynomal features incrementally and evaluates the model using the adjusted 
coefficient of determination at each step. In the following paragraphs the result of the 
regressions is presented. 

Accuracy Model 
Genauigkeitsmodell 

Based on the prior analysis linear and quadratic main effects as well as two-way inter-
actions are considered for the accuracy regression model. For reasons of brevity, the 
following notation is chosen in this chapter for the display of target and predictor vari-
ables in the formulas: f(x) is the target variable Dicetest, i.e., accuracy. The factors or 
independent variables are dataset similarity x1, dataset size x2, dropout rate x3 and 
network size x4. The data is fitted to the following equation. For reasons of brevity the 

y = -0.49x + 0.47
R² = 0.44
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repeated patterns with the factors are replaced with three dots in the respective equa-
tion: ݂(ݔ) = ଴ߚ + ଵݔଵߚ + ⋯+ ଵଶݔହߚ + ⋯+ ଶݔଵݔଽߚ + ⋯ (24) 

Figure 5-30:  Adjusted coefficient of determination for the accuracy regression model 
with each terms’ share of explained variance  
Bereinigtes Bestimmtheitsmaß für das Genauigkeits-Regressionsmodell mit 
dem Anteil jedes Terms an der erklärten Varianz 

In Equation (24) the zeroth term is the intercept, the first to fourth term are the linear 
main effects, the fifths to eigth term are the quadratic main effect and the ninth term 
onwards are the interaction effects. The model has an adjusted coefficient of determi-
nation of R2adj = 0.88. This means 88 % of the variance in the data is explained by the 
model, see Figure 5-30. The values of the regression model parameters are shown in 
Table 5-4. 

Table 5-4: Parameters and values for accuracy regression model 
  Parameter und Werte des Genauigkeits-Regressionsmodells 

Specification Values 

Parameters β0 β1 β2 β3 β4 β5 β8 β12 

Independant 
Variables x1 x2 x3 x4 x1

2 x4
2 x2x3 

Values 2.591 -5.53 0.0934 -0.0163 0.1305 4.047 -0.0969 -0.0902 

Overfitting Model 
Überanpassungsmodell 

Based on the prior analysis linear and quadratic main effects as well as two-way inter-
actions are considered for the overfitting regression model. To prove the hypothesis 
from Subsection 5.5.2 Methodology about the regression quality increase by including 
Dicetest as a predictor in the regression of OPTT, two regression models are fitted. The 
first without and second below with Dicetest as an independent variable. For reasons of 
brevity, the following notation is chosen: ݂(ݔ) is the target variable OPTT, i.e., overfit-
ting. The factors or independent variables are dataset similarity x1, dataset size x2, 
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dropout rate x3 and network size x4. Fitting the data to the model results in an 
R2adj = 0.75.  

 
Figure 5-31:  Adjusted coefficient of determination for the overfitting regression 

model with each terms’ share of explained variance  
Bereinigtes Bestimmtheitsmaß für das Überanpassungs-Regressionsmodell 
mit dem Anteil jedes Terms an der erklärten Varianz 

This means 75 % of the variance in the data is explained by the model, see  
Figure 5-31. The values of the regression parameters are shown in Table 5-5. 
Table 5-5: Parameters and values for overfitting regression model 
     Parameter und Werte des Überanpassungs-Regressionsmodells 

 Specification Values  
 

Parameters β0 β1 β2 β3 β5 β6 
 

 Independant  
Variables 

 x1 x2 x3 x1
2 x2

2  

 
Values -1.231 3.95 0.0584 -0.1003 -2.806 -0.1039 

 

 

As stated above the prediction of overfitting with knowledge about the Dicetest, for brev-
ity named x5, yields a regression with R2adj = 0.84. The other factors are named with 
the same pattern as above.  

 
Figure 5-32:  Adjusted coefficient of determination for the overfitting regression 

model with each terms’ share of explained variance with prior knowledge 
about Dicetest  
Bereinigtes Bestimmtheitsmaß für das Überanpassungs-Regressionsmodell 
mit dem Anteil jedes Terms an der erklärten Varianz mit vorheriger Kenntnis 
über Dicetest  
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Through the multi-output regression approach the predictive power of the overfitting 
regression model is increased by 9 % measured in adjusted coefficient of determina-
tion, see Figure 5-32. See Table 5-6 for the values of the model parameters, including 
Dicetest to predict OPTT. 
Table 5-6: Parameters and values for overfitting regression model with Dicetest 

  Parameter und Werte des Überanpassungs-Regressionsmodells mit Dicetest 

Specifica-
tion Values 

Parame-
ters β0 β2 β3 β4 β5 β7 β9 β10 β17 

Independ-
ant Varia-

bles 
x2 x3 x4 x5 x2

2 x4
2 x5

2 x2x5 

Values -0.393 -0.272 0.1269 0.1202 2.00 -0.1057 -0.0893 -1.703 0.439 

As visible above the interaction terms in both, the accuracy model and the interaction 
model are small compared to the main effects. Target value optimization may be a 
challenging task when the input variables and output variables of a model have little 
interaction, and the main effects are dominant. This is because the model's predictions 
are dominated by the main effects of each input variable, rather than their interactions. 

5.5.4 Target Value Optimization 
Zielgrößenoptimierung 

In regression an optimization is usually defined as a minimization problem. Since the 
goal is to maximize the accuracy, the equation is multiplied by minus one for optimiza-
tion. The optimization method to find the roots of the multivariate function is the modi-
fied Powell method [MORÉ80]. Equation (25) is the function subject to minimization. 

௢݂௣௧(ݔ) = ଴ߚ)− + ଵݔଵߚ + ଶݔଶߚ + ଷݔଷߚ + ସݔସߚ + ଵଶݔହߚ + ଶ଼ݔ଼ߚ +  ଷ) (25)ݔଶݔଵଶߚ

With constant values for dataset similarity and dataset size, there are two variables, 
dropout rate, x3, and network size, x4, to be optimized for the optimization goal. As 
stated above the optimization goal is a low negative accuracy, i.e., a high accuracy. 
Due to the three-dimensional nature of this matter, a contourplot is chosen to present 
the result of the optimization for a specific set of dataset properties. Figure 5-33 shows 
an example of the contour plot. The figure shows that, according to the regression 
model, for the chosen dataset properties a dropout rate of 0.25 and a large network 
size should be chosen. Since the problem has not only three but rather five dimensions 
when considering the two dataset properties as input to the optimization, a collection 
of contourplots is shown in Figure 5-34 to visualize the optimization results in five di-
mensions. The x-ticks and y-ticks of each individual plot for dropout rate and network 
size are not given. Three and four levels of dataset similarity, respectively dataset size, 
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are given resulting in 12 individual contour plots of network size over dropout rate, see 
Figure 5-34.  

 
Figure 5-33:  Contour plot of normalized network size over dropout rate with accuracy 

as colorscale for dataset similarity of 0.77 and dataset size of 150 
Konturdiagramm der normalisierten Netzwerkgröße über der Dropout-Rate mit 
Genauigkeit als Skala für Ähnlichkeit von 0.77 und Datensatzgröße von 150 

Where network size is the y-dimension and dropout rate are the x-dimension of each 
plot. Network accuracy is presented as a colorscale, where blue represents high accu-
racy values, green is medium accuracy values and red indicates low accuracy values. 

 
Figure 5-34:  Collection of contour plot of normalized network size over dropout rate 

with accuracy as colorscale for the levels of dataset similarity and size 
Konturdiagramm der normalisierten Netzwerkgröße über der Dropout-Rate mit 
Genauigkeit als Farbskala für die Stufen der Datensatzähnlichkeit und -größe 
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Figure 5-35:  Contour plot of normalized network size over dropout rate with overfit-
ting as colorscale for dataset similarity of 0.77 and dataset size of 150 
Konturdiagramm der normalisierten Netzwerkgröße über der Dropout-Rate mit 
Überanpassung als Farbskala für Datensatzähnlichkeit von 0.77 und Daten-
satzgröße von 150 

Since the OPTT depends on the accuracy to a fair amount, compare Subsection 5.5.3, 
Regression Models, the check for overfitting tendency of the potentially optimized net-
work is conducted in a subsequent step.  

Figure 5-36:  Collection of contour plot of normalized network size over dropout rate 
with overfitting as colorscale for the levels of dataset similarity and size 
Konturdiagramm der normalisierten Netzwerkgröße über der Dropout-Rate mit 
Überanpassung als Farbskala für die Datensatzähnlichkeit und -größe 
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The Figure 5-35 shows that, according to the overfitting regression model, for the cho-
sen dataset properties a small dropout rate and a small network size should be chosen. 
Figure 5-36 visualizes the optimization results in five dimensions. The x-ticks and 
y-ticks of each individual plot for dropout rate and network size are not given. Refer to 
the prior figure to see where high and low values of these two hyperparameters are in 
an individual contour plot. Three and four levels of dataset similarity, respectively da-
taset size, are given resulting in 12 individual contour plots of network size over dropout 
rate. Where network size is the y-dimension and dropout rate are the x-dimension of 
each individual plot, see lower right corner in the figure. Network overfitting in terms of 
OPTT, is presented as a general colorscale, where dark blue represents low overfitting 
values, green stands for medium ovefitting values and red indicates relatively high 
overfitting values.  

Dataset similarity has an indirect influence on overfitting in the regression model, due 
to the chained multi-output regression approach. Still the dataset similarity was chosen 
in the figure to complement Figure 5-34. An alternative to display the overfitting would 
be replacing dataset similarity with Dicetest on the outer level y-axis. 

5.5.5 Model Validation 
Modellvalidierung 

An approach to train models only on one individual tool type yielded similar results 
compared to the model trained on a mixed dataset in literature, see Annex A.14, Com-
parison of cutting tool wear segmentation models. It was found that models trained on 
individual, homogeneous datasets tend to perform as well as larger mixed models us-
ing the U-Net architecture [BERG20]. This finding paired with the data scarcity in a 
niche problem like cutting tool wear showed the need for specialized models with high 
accuracy that can be successfully trained with small datasets and possibly be selected 
via image classifiers or data similarity measures, to match a new image with the best 
fitting model. To validate the decision model four cases were constructed. A small da-
taset and a large mixed dataset which are used to train an optimized model and a non-
optimized model according to the decision model. The optimized model is trained with 
network size and dropout rate that are expected to lead to a high Dice coefficient. The 
non-optimized model is trained with network size and dropout rate that are expected 
to lead to low Dice coefficients based on the findings from the decision model plots 
above in Figure 5-34. This investigation may also approve or reject the above state-
ment from the paper cited. 

Experimental Setup for Inline Measurements 
Experimenteller Aufbau für Inline-Messungen  

The setup of the experiment is almost identical to the setup described in Section 4.3, 
Process Specification. This includes the workpiece, the machine tool, and the cutting 
tool. Only one process parameter, namely cutting speed, distinguishes from the for-
merly conducted experiments. The cutting speed is chosen at a different value than 
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the ones represented in the original DOE. This way, the experiment conducted in 
scope of this chapter, serves as a validation for the tool wear model created in Sec-
tion 4.4, Empirical Investigation of Tool Wear, as a byproduct. The manual measure-
ments of cutting tool wear are conducted as displayed in Subsection 4.4.2, Analysis of 
Occurring Tool Wear, using a common measuring microscope and the provided anal-
ysis tools for human operators to extract wear metrics from the images.  

The automated measurement uses the machine tool integrated measuring device pro-
totype described in detail below to conduct an inline approach to cutting tool wear im-
age acquisition developed at Fraunhofer IPT. The prototype consists of an off-the-shelf 
USB microscope and a housing that was custom made to protect the microscope. 
Power is supplied through a plastic hose that is partially fixed at the machine tool table. 
An angular slit allows removal of coolant from the tool using pressurized air. The hous-
ing is mounted close to the tool setting laser device on the backside of the machine 
tool table, see Figure 5-37.  

With machine tool axes movement, the cutting tool is moved into a predetermined po-
sitions in the cameras focus point. Through incremental rotation of the spindle, it is 
possible to capture images of each cutting edge of the respective cutting tool. 

 
Figure 5-37:  Design of the housing for the Dino-Lite AM73915MZTL (left) and the ma-

chine tool integrated prototype (right) 
Design des Gehäuses für die Dino-Lite AM73915MZTL (links) und der maschi-
nenintegrierte Prototyp (rechts) 

The microscope used for the inline measurement approach is a Dino-Lite 
AM73915MZTL. The model offers uncompressed image quality and color reproduction 
in a compact metal housing. The mounted microscope inside the custom-made hous-
ing is shown in Figure 5-37 (right).  

The specifications of the microscope Dino-Lite AM73915MZTL are given in Table 5-7. 
Figure 5-38 shows the location and setup during measurement within the Makino D500 
machine tool in the validation trials.  
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Table 5-7: Specifications of the microscope Dino-Lite AM73915MZTL 
     Spezifikationen des Mikroskops Dino-Lite AM73915MZTL 
 

Specification Value 
 

 Sensor Type Complementary metal–oxide–semiconductor (CMOS)  
 

Resolution 5 MP (2592x1944) 
 

 
Magnification 10x - 140x 

 

 
Connector USB 3.0 

 

 
Illumination 8 LEDs (white) 

 

 Weight / Dimensions 110 g / 11.9 cm x 3.3 cm  
 

Price Range 1.000 - 1.250 € 
 

 
For the inline measurements a bright and homogenenous background is provided by 
a 3D printed shield made of thermoplastic filaments with a bright color. The magnifica-
tion is set to 30x which translates to a working distance of 72.5 mm and a field of view 
in x and y direction of 13 respectively 9.7 mm. The depth of field in this setting is ap-
proximately 3.1 mm. 

  
Figure 5-38:  Machine tool Makino D500 and integration site with microscope 

Werkzeugmaschine Makino D500 und Integrationsort mit Mikroskop 

Small dataset 
Kleiner Datensatz 

In case of a relatively small dataset produced with the inline microscope, the decision 
model was used to generate favorable and unfavorable model hyperparameters to ob-
serve the effect on the model’s accuracy and overfitting. Figure 5-39 below shows the 
non-optimized model training curves and the optimized training curves. The non-opti-
mized training on the left shows a very volatile behavior throughout the whole training, 
a convergence does not take place albeit the high number of epochs. The optimized 
training on the right shows several short breakdowns during training.  
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Figure 5-39:  Dice coefficient over Epochs of the training based on the small dataset 

for the non-optimized (left) and the optimized (right) model  
Dice-Koeffizient über Epochen des Trainings basierend auf dem kleinen 
Datensatz für das nicht optimierte (links) und das optimierte (rechts) Modell 

The overfitting cycles start with a divergence of the training and validation curve. The 
model tends to memorize the training data rather than learning to identify relevant pat-
terns in the data which leads to breakdowns. When held out test data are processed 
with the two models, the following performance is observed, see Table 5-8.  

 
Figure 5-40:  All test data predictions based on the small dataset for the non-opti-

mized (left) and the optimized (right) model 
Alle Prädiktionen von Testdaten basierend auf dem kleinen Datensatz für das 
nicht optimierte (links) und das optimierte (rechts) Modell 
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Table 5-8: Dataset properties, non-optimized and optimized model hyperparame-
ters, as well as model performance metrics for the small dataset 
Datensatzeigenschaften, nicht optimierte und optimierte Hyperparameters so-
wie die Performanzmetriken der Modelle für den kleinen Datensatz 

 Dataset  
Properties 

Model  
Hyperparameters Performance Metrics 

Experiment Dataset 
Size 

Data 
Similarity 

Network  
Size 

Dropout 
Rate Dicetest OPTT 

non-opt. 46 0.92 122k 0.6 0.54 0.08 
optimized 46 0.92 1.941k 0.2 0.85 0.12        

The optimized model has a test and train accuracy of mDicetest = 0.85 and  
mDicetrain = 0.97 respectively. The non-optimized model has an accuracy of  
mDicetest = 0.54 and mDicetrain = 0.59 respectively. Figure 5-41 shows the Dice coeffi-
cient of the individual test data points. In the right column the predicted mask is dis-
played with a white transparent marker showing mispredicions in the tool wear area, 
more specifically the segmentation was incomplete in all three cases. 

 
Figure 5-41:  Test data predictions with non-optimized model for the small dataset 

Prädiktionen auf Testdaten mit nicht optimiertem Modell auf dem kleinen 
Datensatz 
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Figure 5-42:  Test data predictions with optimized model for the small dataset 

Prädiktionen auf Testdaten mit optimiertem Modell auf dem kleinen Datensatz 

The overfitting metric for the non-optimized model is better than for the optimized 
model. This emphasises that this metric cannot be used alone. A bad training perfor-
mance and a similarly bad test performance led to a favorable overfitting metric while 
the model is not useful. Figure 5-41 shows examples of test data for the above-men-
tioned models. The red outlines indicate locations where the model misses to predict 
tool wear, as opposed to the expected ground truth identified by a human operator. 

Large dataset 
Großer Datensatz 

In case of a relatively large dataset the decision model was used to generate favorable 
and unfavorable model hyperparameters to observe the effect on the model’s accuracy 
and overfitting. The non-optimized model stagnates at an unfavorable Dice coefficient 
while the optimized model reaches favorable values. In both cases the training and 
validation curves converge early on during the training, see Figure 5-44. The optimized 
model has a test and train accuracy of mDicetest = 0.88 and a mDicetrain = 0.92 respec-
tively. The non-optimized model has a test and train accuracy of mDicetest = 0.78 and 
a mDicetrain = 0.75 respectively. Hence the overfitting metric for the non-optimized 
model is 0.5 % better than for the optimized model. Again, this emphasises again that 
this metric cannot be used alone.  
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Figure 5-43:  All test data predictions based on the large dataset for the non-optimized 

(left) and the optimized (right) model 
Alle Prädiktionen von Testdaten basierend auf dem großen Datensatz für das 
nicht optimierte (links) und das optimierte (rechts) Modell 

Figure 5-45 and Figure 5-46 show examples of test data for the non-optimized and 
optimized model. When held out test data is processed with the two models, the fol-
lowing performance is observed, see Figure 5-43 which shows the Dice coefficient of 
the individual test data points. 

 
Figure 5-44:  Dice coefficient over Epochs of the training based on the large dataset 

for the non-optimized (left) and the optimized (right) model  
Dice-Koeffizient über Epochen des Trainings basierend auf dem großen 
Datensatz für das nicht optimierte (links) und das optimierte (rechts) Modell 
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Table 5-9: Dataset properties, non-optimized and optimized model hyperparame-
ters, as well as model performance metrics for the large dataset 
Datensatzeigenschaften, nicht optimierte und optimierte Hyperparameters so-
wie die Performanzmetriken der Modelle für den großen Datensatz 

 Dataset  
Properties 

Model  
Hyperparameters Performance Metrics 

Experiment Dataset 
Size 

Data 
Similarity 

Network  
Size 

Dropout 
Rate Dicetest OPTT 

non-opt. 1200 0.78 122k 0.6 0.74 0.05 
optimized 1200 0.78 1.941k 0.2 0.88 0.09 

 

The below figure contains the original image, the ground truth image, and the predic-
tion mask of the none-optimized model. In the righmost column the mispredictions may 
be observed. Specifically, the model segmented not the complete wear area on the 
cutting edges of these tools. This kind of error may lead to mismeasurements in a 
downstream measurement algorithm to obtain industry-specific wear metrics for the 
tool status assessment. 

 
Figure 5-45:  Test data predictions with non-optimized model for the large dataset 

Prädiktionen auf Testdaten mit nicht optimiertem Modell auf dem großen 
Datensatz 
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Figure 5-46:  Test data predictions with optimized model for the large dataset 

Prädiktionen auf Testdaten mit optimiertem Modell auf dem großen Datensatz 

5.5.6 Discussion of Findings 
Diskussion der Ergebnisse 

As previously mentioned in the analysis of main effects in Section 5.4 Full Factorial 
Analysis, a high level of data similarity leads to more accurate networks across all other 
combinations of factors. Additionally, a larger dataset size also tends to result in higher 
accuracy for the networks. However, a deviation from this tendency can be observed 
for high dataset similarity values of 0.9 at a dataset size of 200. This effect can not be 
explained with certainty at this point. Possible reasons might be an insufficiency in the 
number of experiments conducted or an unfavorable combination of dataset and model 
hyperparameters leading to this deviation. 

The tendency towards better accuracies with larger networks is observed across the 
entire domain, compare Figure 5-34. This means that regardless of the properties of 
the dataset, the overall trends dominate the segmentation model accuracy. This dom-
inance of the overall tendency is also evident in the validation of the model, where both 
the small and large datasets yielded the same model hyperparameters from the deci-
sion model. While this indicates that a general optimization of the model performance 
was achieved, it also suggests that a dataset-specific optimization could not be shown. 
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Turning to overfitting, a dominant effect of network size is visible. Based on the regres-
sion model, smaller networks tend to overfit less than larger networks. This finding 
makes sense because with a high abundance of parameters, the model can learn the 
data domain with a high level of granularity, meaning it can learn the data by heart. 
However, a higher model accuracy comes with a higher tendency towards overfitting 
across the observed domain. Generally, a high model accuracy can be expected at 
dropout values from 0.2 to 0.4 and with high network sizes. At the same time, low 
overfitting values can be expected at lower network sizes, suggesting that there is a 
trade-off between accuracy and overfitting that needs to be considered when selecting 
the appropriate model hyperparameters. 

5.6 Interim Conclusion 
Zwischenfazit 

Chapter 5 Model Performance Optimization gave an answer to Research Question 2: 
“What are the dataset and model properties with the highest impact on model perfor-
mance for tool wear segmentation?” and Reasearch Question 3: “How can a system-
atic choice of hyperparameters with regards to dataset properties be employed to im-
prove model performance for tool wear segmentation?” 

Chapter 5, Model Performance Optimization, started with Section 5.1, Methodology, 
which cointains the description of the concept to create a decision model for 
hyperparameter selection in deep learning semantic image segmentation based on the 
dataset properties. Section 5.2 introduced necessary Prerequisites and Definitions to 
prepare for Section 5.3, Screening Analysis, where a fractional factorial design served 
for exploring the most influential model hyperparameters and dataset properties with 
regards to the model evaluation metrics. The identified most important factors are 
dataset size and image similarity in case of the dataset properties and dropout rate 
and network size in case of the model hyperparameters. Further in Section 5.4, Full 
Factorial Analysis, the factors identified as most important were investigated in a grid 
search design of experiment for the creation of a Decision Model in Section 5.5. The 
Decision Models predict model evaluation metrics, accuracy and overfitting, based on 
the factors described above. The model aimed for a target value optimization of 
favorable hyperparameters based on the properties of a given image dataset for cutting 
tool flank wear segmentation. The dataset similarities and dataset sizes linear and 
quadratic terms explain more than 80 % of the variance in the data. Therefore, dataset 
similarity and dataset size are good indicators to predict if a dataset yields an 
acceptable model. That means a general optimization of the hyperparameters is 
possible, but as expected from the weak interacting terms does not allow for a dataset 
property specific hyperparameter optimization. The model validation showed that for 
two different datasets in terms of dataset size and similarity the decision models yield 
the same model hyperparameters. The decision model could be used to narrow down 
the relevant range of a finer hyperparameter optimisation with, for example, the grid 
search method.  
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Annex A.14 provides a summary of the research conducted to date in the field of au-
tomated image processing for cutting tool wear monitoring with deep learning comple-
mented by the results from this chapter. The table emphasises that the optimized mod-
els perform well and in line with results from research in this field. The utilization of a 
segmentation model, that was optimized using the decision model, in a machine tool 
integrated setup is described in the following chapter. 
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6 Validation of AI-based Automated Tool Wear 
Measurement 
Validierung der KI-basierten automatisierten Werkzeugverschleißmessung 

In this chapter, the approach to NN model optimization based on dataset properties 
will be applied in a real-world use case defined in the fourth Research Question:  

RQ4: How can the optimized segmentation model be applied for an inline approach 
to cutting tool wear measurement within machine tools?  

To answer the research question, the following Section 6.1 Empirical Validation con-
tains the algorithm to derive the wear metric VB from a segmented tool wear images. 
It also contains a fundamental experiment and an application-oriented experiments for 
the use of inline hardware and the image processing software in metal cutting. An ac-
curacy assessment is given for the automated approaches in comparison with the man-
ual approach to cutting tool flank wear measurement. Section 6.2, Economic Consid-
erations, contains an approximation of the possible impact of an intelligent approach 
to tool wear measurements on the waste of cutting tools as well as a display of possible 
time savings through automated tool wear measurements in research and tool making 
facilities.  

6.1 Empirical Validation of the AI-based Measurement 
Empirische Evaluation der KI-basierten Messung 

The empirical validation is conducted using a fundamental experiment and an applica-
tion-oriented experiment. In both cases inline image acquisition and AI image pro-
cessing is used with manual measurements as a benchmark.  

6.1.1 Calculation of Width of Flank Wear Land VB  
  Berechnung der Verschleißmarkenbreite VB 

This subsection introduces algorithms to calculate wear metrics from the optimized 
segmentation model. Specifically, an algorithm is introduced to arrive at the metric 
maximum width of flank wear land VBmax from a segmented wear area.  

 
Figure 6-1:  Conceptual visualization of an algorithm to calculate VBmax based on 

[HOLS22] 
Konzeptionelle Visualisierung eines Algorithmus zur Berechnung von VBmax 
angelehnt an [HOLS22] 
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The width of flank wear land VB is the most common metric applied to quantify cutting 
tool wear in both literature and industrial practice. Below is a visual display of a possible 
algorithm to calculate the maximum width of flank wear land VBmax from a segmented 
wear area on the flank face of a cutting tool, specifically a ball end milling cutter. The 
introduced algorithm may be used to arrive at a localized VB value along the tool axis 
or the cutting edge for a more detailed resolution of wear information, see step four in 
the Figure 6-1 above. 

6.1.2 Fundamental Trial for Validation of the AI-based Wear Measurement  
Grundlagenuntersuchung zur Validierung der KI-basierten Verschleißmessung 

The setup of the fundamental experiment is identical with the setup described in Sec-
tion 4.3, Process Specification. This includes the workpiece, the machine tool, and the 
cutting tool. Only one process parameter, namely cutting speed, distinguishes from the 
formerly conducted experiments. The cutting speed is chosen at a different value than 
the ones represented in the original DOE. This way, the experiment conducted in 
scope of this chapter, serves as a validation for the tool wear model created in Section 
4.4, Empirical Investigation of Tool Wear, as a byproduct. The manual measurements 
of cutting tool wear are conducted as displayed in Subsection 4.4.2, Analysis of Oc-
curring Tool Wear, using a common measuring microscope and the provided analysis 
tools for human operators to extract wear metrics from the images. The automated 
measurement uses the machine tool integrated prototype described in detail in Sub-
section 5.5.5, Model Validation, to conduct an inline approach to cutting tool wear im-
age acquisition developed at Fraunhofer IPT.  

 
Figure 6-2:  Cutting tool wear curve obtained with a measuring microscope manually 

(black line) and automatically obtained with an inline microscope Dino-
Lite AM73915MZTL before (light grey) and after (dark gray) cleaning 
Zerspanwerkzeugverschleißkurve manuell aufgenommen mit einem 
Standmessmikroskop sowie automatisiert erfasst mit einem inline Mikroskop 
Dino-Lite AM73915MZTL vor (hellgrau) und nach (dunkelgrau) der Reinigung 
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For the validation of the AI-based wear measurement in the fundamental setup, the 
images generated with the inline approach are labeled and trained with optimized pa-
rameters obtained from the Decision Model created in Section 5.5. The dataset con-
sists of 46 individual images with a dataset similarity of 0.97. The obtained optimized 
hyperparameters are dropout rate of 0.2 and a network size of 1.941k. A mDicetest 
accuracy of 0.85 was achieved using the settings proposed by the model.  

The predictions of the optimized model are processed with the image processing pipe-
line from Subsection 6.1.1, Calculation of Width of Flank Wear Land VB, to calculate 
the VBmax values. Since there is no absolute true answer obtainable in the interpreta-
tion of cutting tool wear, the human expert knowledge presents the benchmark for this 
task. Figure 6-2 shows three tool wear curves obtained with a manual approach and 
with an automated approach to cutting tool wear measurement. The automated meas-
urement yields a very unstable tool wear curve. After a manual cleaning process of the 
cutting-edge regarding build-up edges and cold-welded chips, the prediction is more 
stable and closer to the manual measurement which serves as the benchmark. 

Figure 6-3:  Error of automated flank wear measurement using the inline microscope 
Dino-Lite AM73915MZTL and the image processing pipeline compared to 
manual measurement using a measuring microscope 
Fehler der automatisierten Freiflächenverschleißmessung bei Nutzung des In-
line Mikroskops Dino-Lite AM73915MZTL und der Bildverarbeitungskette ver-
glichen mit der manuellen Messung bei Nutzung des Standmessmikroskops 

Figure 6-3 shows the error produced by the automated tool wear measurement com-
pared to the manual measurement. Without cleaning the tools, errors up to 90 microm-
eters occur. After cleaning the tools, the maximum error is 40 micrometers. Taking the 
absolute values and calculating the mean error yields 30 micrometers in mean error 
for the automated measurement without cleaning and a mean error of twelve microm-
eters for the automated measurement after a manual cleaning step of the cutting edge. 
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At some points the curves slope in the Figure 6-2 above implies that the tool wear 
decreases locally. This behavior is not possible, i.e., cutting tool flank wear rises stead-
ily, as its visible at the manual measurement. The variations in tool flank wear to posi-
tive and negative errors result from imprecisions and uncertainties of the image pro-
cessing chain from segmentation and rule-based measurement routine. 

6.1.3 Turbine Blade Milling for Validation of the AI-based Wear Measurement  
Turbinenschaufelfräsen zur Validierung der KI-basierten Verschleißmessung 

For the validation of the AI-based wear measurement in application a fundamentally 
different setup from the prior investigations was strived for. The commonality to the 
fundamental trials is the choice of workpiece material, which is the nickel-based alloy 
2.4668 (according to EN 10027-2:1992-09). The differences are an off-the-shelf cam-
era system for inline image acquisition, a simplified turbine blade geometry, see Figure 
6-4, and the required cutting tools to produce the blade. The camera system represents 
the biggest change between the fundamental experimental setup and application-ori-
ented setup. It is a wide-angle camera with the main intention to serve consumable 
images of the cutting process. For the trials in this subsection, the one of the camera 
lenses was modified to allow acquiring close-up images of cutting edges. This setup 
showcases the general applicability of the approach, utilizing inline hardware and AI-
image processing in conjunction, for cutting tool wear monitoring in industrial practice.  

 
Figure 6-4:  Process planning in CAM, clamped raw material and machined part 

Prozessplanung in CAM, gespanntes Rohmaterial und gefertigtes Werkstück 

The machine tool for conducting the metal cutting operations is a Mikron 
HPM800U-HD, see Figure 6-5. The cutting tools used in the machining process, as 
well as the applied process parameters in the roughing, semi-finishing and finishing 
operations to produce the simplified blade geometry may be found in Table 6-1. 
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Table 6-1: Process Specifications for Validation in Application 
  Prozessspezifikationen für die Validation in der Anwendung 

Tool Specifications Roughing Semi-finishing Finishing 

Tool Type End Milling Cutter Ball End Milling 
Cutter 

Ball End Mill-
ing Cutter 

Diameter [mm] 16 16 12 

Flutes 4 4 6 

Corner Radius [mm] 2 8 6 

Coating AlTiN AlTiN AlCrN 

Process Parameters 

Cutting speed [m/min] 30 35 40 

Feed [mm] 0.2 0.2 0.15 

Depth of cut [mm] 4 1 0.4 

Width of cut [mm] 2 0.5 0.2 

The cutting tool wear was inspected using a Keyence VHX-6000 microscope, see Sub-
section 4.4.2, Analysis of Occurring Tool Wear, and a Rotoclear C2 camera, see Figure 
6-5. The specifications of the Rotoclear C2 camera are shown in Table 6-2. The unique 
value proposition of the inline camera is a rotating glass that prevents coolant fluid
droplets from obstructing the view of the process and, in this case, the cutting tool.

Figure 6-5:  Machine tool Mikron HPM800U-HD and integration site with inline camera 
Werkzeugmaschine Mikron HPM800U-HD und Integrationsort mit inline Ka-
mera 

Compared to the priorily applied Dinolite device, the inline camera has no magnifica-
tions. To apply the camera for this use case and generate images large enough to 
capture the tool wear, the focus points of the high-resolution lens on the right side of 
the camera head was manipulated to allow taking pictures at 2.5 cm proximity.  
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Table 6-2: Specifications of the camera Rotoclear C2 
     Spezifikationen der Kamera Rotoclear C2 
 

Specification Value 
 

 
Resolution 1280x720, 1920x1080, 3840x2160 

 

 
Magnification 1x 

 

 
Connector M12 x-codiert 

 

 
Illumination LEDs (white) 

 

 Weight / Dimensions 600 g / 7 cm x 5 cm  
 

Price Range 3.000 - 4.000 € 
 

 
This way, details of the cutting tool edges and the occuring tool wear can be captured. 
The visual tool wear inspection was conducted after each process step of roughing, 
semi-finishing and finishing withing a block of the blade, see Figure 6-6. 

 
Figure 6-6:  Schematic display of the machine tool integrated tool status inspection 

during turbine blade finish milling, dimensions measured in millimeters 
Schematische Darstellung der in die Werkzeugmaschine integrierten Werk-
zeugstatuskontrolle beim Schlichtfräsen von Turbinenschaufeln, Abmaße sind 
in Millimetern gegeben 
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For the automated analysis of the cutting tool wear in this application-oriented valida-
tion experiments, several tests were conducted. Models were trained on the large da-
taset from Subsection 5.5.5, Model Validation, together with the newly acquired Roto-
clear data. Additionally, a model was trained on all the newly acquired data combined. 
The large dataset with the newly acquired camera data yielded a mDicetest = 0.84 with 
an mOPTT = 0.09. The model trained with all the new camera data but without other 
existing data yielded a mDicetest = 0.76 with an mOPTT = 0.22. Compared to the prior 
model the model trained only on new data shows a significant deterioration. It uses 68 
data points as compared to the prior model using 1268 data points. The training curves 
in Figure 6-7 have different characteristics. The model trained on the large dataset, 
including historical data acquired with other devices, such as a measuring microscope, 
has a stable training. The dataset using new inline camera data only has an unstable 
training process and a significantly higher overfitting tendency. 

In addition to the two trainings described above, a model was trained with the newly 
acquired data of each process step individually, utilizing BIM to increase the dataset 
size. The results of the individual dataset models are given in Annex A.17, Comparison 
of segmentation models trained on different datasets in the application-oriented trial. 

 
Figure 6-7:  Dice coefficient over Epochs for the large and the camera dataset 

Dice Koeffizient über Epochen für den großen und den Kameradatensatz 

The Figure 6-8 contains test data of each of the models described above. The data is 
sorted by operation type, i.e., tool type for clarity. The top row contains test data of the 
three individual models, according to tool type. The white circles show flaws, were the 
models fail to predict the desired areas with flank wear or where flank wear is detected 
by the model mistakenly. Due to the large areas of flank wear on the roughing tools, 
the accuracies tend to be higher than for the semi-finishing and finishing tools, were a 
small error leads to a higher decrease in Dice coefficient. 
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Figure 6-8:  Test data of roughing, semi-finishing and finishing tools of models trai-

ned on individual camera tool datasets, all camera data and the existing 
data together with camera data  
Testdaten von Schrupp-, Vorschlicht- und Schlichtwerkzeugen von Modellen, 
die mit einzelnen Kamera-Werkzeugdatensätzen, allen Kamera-Daten und 
den vorhandenen Daten zusammen mit Kamera-Daten trainiert wurden 

Based on the segmented tool wear area, VBmax values were calculated for quantifica-
tion of the tool wear extent. The flank wear characteristics exhibit arcs along the cutting 
edge due to the cutting tools engagement with the workpiece material, especially due 
to the hub and fillet feature at the blades transition to the clamping block. For this rea-
son, the measurement routine introduced earlier in Subsection 6.1.1, Calculation of 
Width of Flank Wear Land VB, was adapted. The adaptation concerns the rectangle fit 
which can be conducted stepwise for an arbitrary number of pixels to account for the 
curvature of the wear area, which otherwise falsifies the automated VBmax measure-
ment.  
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Figure 6-9:  Finishing tool flank wear progression in terms of VBmax during turbine 
blade milling with standard deviation and polynomial regression fit  
Verlauf des Freiflächenverschleißes des Schlichtwerkzeugs beim Fräsen der 
Turbinenschaufel mit Standardabweichung und polynomialer Regression 

For the finishing tool the VBmax curve acquired using this adapted measurement algo-
rithm is displayed in Figure 6-9. The relative error between the manual measurements 
using the measuring microscope and the automated measurement is up to 30 % in 
relative terms or 20 micrometers in absolute terms, see Figure 6-10. 

Figure 6-10:  Absolute and relative error between automated and manual measure-
ment for the finishing tools‘ VBmax value per block 
Absolute und relative Abweichung zwischen automatischer und manueller 
Messung für den VBmax-Wert pro Block dss Schlichtwerkzeugs 
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Figure 6-11:  Finishing tool measuring microscope images (top) and inline camera im-

ages (bottom) with mean VBmax values of the respective process step 
Schlichtwerkzeugbilder aufgenommen mit dem Standmessmikroskop (oben) 
und mit der inline Kamera (unten) mit dem mittleren VBmax des Prozessschritts 

Figure 6-11 shows examples of images of the finishing tool acquired with the measur-
ing microscope and the camera. The individual match between cutting edges is not 
possible due to the lacking quality in the image data. The measurement shown for the 
measuring microscope images is a singular measurement of the exact cutting tool dis-
played, the values shown for the camera are mean values of the cutting edges.  

 
Figure 6-12:  Semi-finishing tool flank wear progression in terms of VBmax during tur-

bine blade milling with standard deviation and polynomial regression fit  
Verlauf des Freiflächenverschleißes des Vorschlichtwerkzeugs beim Fräsen 
der Turbinenschaufel mit Standardabweichung und polynomialer Regression 
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Figure 6-13:  Absolute and relative error between automated and manual measure-
ment for the semi-finishing tools‘ VBmax value per block 
Absolute und relative Abweichung zwischen automatischer und manueller 
Messung für den VBmax-Wert pro Block des Vorschlichtwerkzeugs 

For the semi-finishing tool, the VBmax curve acquired is displayed in Figure 6-12. The 
relative error between the manual measurements using the measuring microscope and 
the automated measurement is up to 40 % in relative terms or 60 micrometers in ab-
solute terms, see Figure 6-13. 

Figure 6-14:  Semi-finishing tool microscope images (top) and inline camera images 
(bottom) with mean VBmax values of the respective process step 
Vorschlichtwerkzeugbilder aufgenommen mit dem Standmessmikroskop 
(oben) und mit der inline Kamera (unten) mit dem mittleren VBmax  
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Figure 6-14 shows examples of images of the semi-finishing tool acquired with the 
measuring microscope and the camera. The individual match between cutting edges 
is not possible due to the lacking quality in the image data. The measurement shown 
for the measuring microscope images is a singular measurement of the exact cutting 
tool displayed, the values shown for the camera are mean values of the cutting edges. 

For the roughing tool the same analysis was not conducted since the wear form devi-
ated from the typical flank wear. Specifically, during the fourth block, one cutting edge 
experienced chipping, see Figure 6-8. Afterwards a new tool was used for the remain-
ing operations. Due to these reasons, the display of a typical flank wear curve is not 
feasible. 

6.2 Economic Considerations 
Ökonomische Betrachtungen 

The estimate of the participants of the surveys in Section 4.1, Surveys with Industry 
Professionals, for wasted tool potential is 15 - 30 % of the tools useful life. The world-
wide cutting tool market has a size of roughly 73 billion Euro per year, with a european 
share of 12.4 billion Euro [STAT 22b]. Considering a 5 % reduction in wasted tool 
potential using digital technologies as presented in this thesis, roughly 3.5 billion Euro 
worldwide and 0.62 billion Euro in Europe could be saved annually.  

Apart from that, in the research environment of public institutes or at cutting tool man-
ufacturers, a lot of manual tool wear measurements are necessary to test tool perfor-
mance, optimize tool geometries or to create tool life models as conducted in Section 
4.4, Empirical Investigation of Tool Wear. The new approach to measuring key metrics 
of cutting tool wear, presented in Section 6.1, Empirical Validation, requires a critical 
assessment of the economic feasibility of the measurement process. To do so, a direct 
comparison of the manual and automated measurement process is conducted in this 
subsection. The tool wear curve acquisition described in the beginning of this chapter 
was also used for a comparison of the manual and automated cutting tool wear meas-
urement process. In detail, nine of the twentythree measurement processes conducted 
with the manual approach were measured with a stopwatch to identify the time required 
for a typical manual tool wear measurement. The measurement process at the micro-
scope itself accounted for more than 80 % of the total time. The remaining 20 % ac-
counted to dismounting and mounting the cutting tool holder out of and into the ma-
chine tool as well as the transfer of the cutting tool between the machine and the meas-
urement device. In the beginning the manual measurements were quite fast at roughly 
150 seconds minimum. At a later stage of the cutting tool wear measurement the pro-
cess took almost 250 seconds maximum, with the mean values at roughly 180 sec-
onds. 

The automated measurement, presented in Section 6.1 Empirical Validation, includes 
movement of the tool to the inline microscope and the rotation of the tool in front of the 
camera to capture all cutting edges. The process is described in more detail in the 
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following paragraph. Firstly, a movement of the spindle with the clamped tool in front 
of the camera is conducted. Specifically, the surface to be measured must be in the 
focus point of the microscopic camera. This process may be automated with a laser 
measurement bridge determining the actual radius of the current tool beforehand. 
When the tool is well positioned in the focus point, an intermittend rotation may be used 
to rotate the tool by an angle φ and halts for a unblurry image acquisition for a specified 
time tφ. With φ = 10°, tφ = 1 second and retraction movements of around 20 seconds, 
the time totals to roughly 60 seconds. 

The the total time for the manual measurement ranges between 200 and 300 seconds. 
The mean time required for a manual measurement process is 250 seconds. In com-
parison the automated measurement takes 60 seconds on average. The variance in 
the time measures of the automated approach stems from the use of a stopwatch by 
a human operator.  

As a side note, the tool wear model created in Section 4.4, Empirical Investigation of 
Tool Wear, predicts a cutting time of 12.88 minutes for the tool investigated in this 
chapter, while in the experiment a cutting time of 11.47 minutes was measured. This 
corresponds to an error of roughly 11 %. 

6.3 Interim Conclusion 
Zwischenfazit 

In Chapter 6, Validation of AI-based Automated Tool Wear Measurement, the 
approach to NN model optimization based on dataset properties was applied in a real-
world use case to answer the fourth Research Question: “How can the optimized 
segmentation model be applied for an inline approach to cutting tool wear 
measurement within machine tools?” 

Section 6.1 Empirical Validation introduces an algorithm to calculate the flank wear on 
cutting tool edges based on the segmented flank wear area. The section demonstrates 
how an inline measurement of cutting tool edges is realized using a low-cost micro-
scope and a custom-made housing to withstand the harsh environment in the machine 
tool. Additionally, the approach was demonstrated with in an application-oriented use 
case in a different setup. With usage of the machine tool axes and the measurement 
algorithm introduced in the prior section, a cutting tool flank wear curve was recorded 
in an automated manner. At the same time the tool status was manually measured with 
a measuring microscope to generate a benchmark measurement. For the direct com-
parison of the manual and automated approach the measurement accuracy and the 
required time were acquired. The accuracy and consistency of the manual measure-
ment is higher than the automated measurement. The automated approach yields a 
mean error of 30 micrometers, without a manual cleaning step. With a manual cleaning 
step, which removes interfering bodies from the tool cutting edge, the mean error com-
pared to the manual measurement can be reduced to twelve micrometers.  In the ap-
plication-oriented setup, an industrial camera for the working area of a machine tool 
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was used to assess flank wear on cutting tools during blade milling. The error between 
the manual measurement and the automated measurement was up to 30 % in relative 
terms or 20 micrometers in absolute terms. For the semi-finishing process the error 
was to 45 % in relative and 60 micrometers in absolute terms. 

The chapter demonstrates how an optimized segmentation model can be applied in an 
industrial environment for the automated measurement of the cutting tools flank wear 
using inline hardware within a machine tool. In the next chapter, the findings are sum-
marized and critically reflected. Furthermore, an outlook is given on newly arising ques-
tions regarding the application of inline measurements of tool wear and other possibil-
ities that arise through the automated tool wear segmentation and measurement aided 
by deep learning methods. 
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7 Summary and Outlook 
Zusammenfassung und Ausblick 

Summary 
Zusammenfassung 

The motivation behind this research stemmed from the realization that the existing 
approach to addressing cutting tool wear in the metal cutting industry could benefit 
from enhancement. The following outlines the three methods presently employed in 
serial production, research and development, and small-batch production: 

1. Fixed tool life from prior test with a safety margin to account for outliers
2. Creation of tool life models to allow a prediction of tool life across a range of cutting 

speed and/or other cutting parameters
3. Optical observation and assessment of the tool status by the machine tool operator

The current widely used first method of using fixed tool life expectations with large 
margins to account for the high variance in tool life, leads to avoidable costs. 
Additionally, the absence of knowledge regarding the tools status prevents intelligent 
cutting tool management and hinders intelligent automation of manufacturing 
processes regarding demand-driven tool changes and teaching of possible indirect tool 
wear estimation models relying on other machine tool integrated sensors.  

The second approach was conducted within this thesis, see Section 4.4, revealed 
some weaknesses: The parameter domain boundaries, in this case cutting speed, for 
the model creation is not exactly known prior to testing which causes additional effort. 
Also, a high variance in tool life travel path occurs for repetitive experiments which may 
undermine the statistical prerequisites for a flawless model creation. Furthermore, the 
required resolution of the parameter domain is not known, which can lead to additional 
effort without benefits to models’ usefulness. Finally, a variation in the process param-
eters or process conditions will render the model useless unless additional elaborate 
experiments are conducted to extend the model accordingly. 

The third approach requires manual effort and relies on the experience and judgement 
of individual operators. Therefore, this approach is not scalable and the knowledge 
transfer to new operators is critical. A standardization may not be obtainable at all using 
this approach. 

This work aimed to present an alternative way to deal with the tool wear problem in 
machining by introducing a method to automate segmentation of cutting tool flank wear 
with a subsequent automated measurement using an image processing chain. Applied 
with a machine tool integrated measuring device, the proposed approach yields a 
viable solution to the problems described above. In detail, the steps to achieve the 
above stated solution was split into four research questions: 

Research Question 1: “How can image processing be applied to automatically detect 
tool wear on microscopic images of cutting tool edges?” 
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The segmentation of flank wear on microscopic images of cutting tools was achieved 
with a supervised DL approach, specifically the U-Net architecture. This NN architec-
ture is used to perform semantic image segmentation. In more detail the following steps 
were conducted: 

 Aggregation and selection of microscopic images of worn cutting tools 
 Manual label process to create masks of the areas of interest (tool wear) on each 

of the images. The label masks serve as ground truth for network training. 
 Image augmentation methods such as BIM or GAN-based data synthesis 
 Selection of dataset properties and model hyperparameters such as: dataset split, 

image size, network size, learning rate, momentum, activation functions and drop-
out rate 

 Start of training process, i.e., model parameter optimization 
 Evaluation of model performance with metrics that describe model accuracy and 

robustness regarding test dataset  

The tool wear segmentation approach using the U-Net architecture for semantic 
segmentation presented achieved a mean Dice coefficient of mDicetest = 0.82 on test 
data. Training data consisted of 3000 augmented images originating from 400 raw 
images. The heterogeneous raw image dataset consisted of eight different cutting tool 
datasets with 50 images each and various levels of magnification. On an inference 
dataset, which contains unknown images recorded with disturbances like increased or 
decreased brightness, the network yielded a mean Dice coefficient of mDiceinf = 0.54. 

Research Question 2: “What are the dataset and model properties with the highest 
impact on model performance for tool wear segmentation?” 

Based on a two-stage factorial DOE the model hyperparameters activation function, 
learning rate, dropout rate, network size and momentum as well as the dataset 
properties dataset size, image size, dataset split, and dataset similarity were 
investigated. According to the effect strength of the individual factors on the model 
evaluation metrics, especially test data accuracy, a ranking was produced which yields 
the following most influential parameters: 

Dataset properties: 

 Dataset size   
 Image similarity  

Model hyperparameters: 

 Dropout rate 
 Network size 

Research Question 3: “How can a systematic choice of hyperparameters with regards 
to dataset properties be employed to improve model performance for tool wear 
segmentation?” 
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After the identification of the most influential factors, a full factorial DOE was conducted 
with these four remaining factors. Using an outlier analysis, a final database for model 
creation was filtered. The database was used for a regression of the model accuracy 
based on the four most influential factors from above. The regression model was 
further used for target value optimization to allow a selection of favorable 
hyperparameters based on the dataset properties of a given dataset for cutting tool 
flank wear segmentation. A general optimization of the hyperparameters was possible, 
but due too weak interaction terms, between dataset properties and model 
hyperparameters, did not allow for a dataset property specific hyperparameter 
optimization. The model validation showed that for two different datasets in terms of 
dataset size and similarity the decision model yielded the same optimized model 
hyperparameters. 

During the regression modelling approach of the model accuracy, it was found that the 
dataset similarity and the dataset size explained more than 80 % of the variance in 
accuracy. That means datasets can be analyzed prior to modelling and an expected 
accuracy can be generated without training the model.  

Research Question 4: “How can the optimized segmentation model be applied for an 
inline approach to cutting tool wear measurement within machine tools?”  

With a low-cost microscope and a custom-made housing to make it withstand the harsh 
environment in the machine tool, an inline measurement of cutting tool edges is real-
ized. Using the machine tool axes the cutting tool edges were recorded in an auto-
mated manner. At the same time the tool status was manually measured with a meas-
uring microscope to generate a benchmark measurement. For the direct comparison 
of not only accuracy but also time requirements of the two approaches, a stopwatch 
was applied. The data collected in this trial was labeled and used to create an opti-
mized model with the target value optimization from Research Question 3. An mDicetest 
accuracy of 0.85 was achieved using the settings proposed by the decision model us-
ing only 46 example images. The automated measurement algorithm yields a mean 
error of twelve micrometers across the 23 measurements conducted for the acquired 
tool wear curve compared to the manual measurement with the measuring micro-
scope. Furthermore, an industrial grade inline camera for the working area of the ma-
chine tool was applied for cutting tool measurements during a blade milling operation. 
The relative error between a manual measurement and the automated measurement 
with this method ranged from two to 30 % for a ball end milling cutter in finish milling 
and up to 45 % for a ball end milling cutter in semi-finishing. 

Recapitulating the conclusion from Chapter 2 Fundamentals and State of the Art, the 
following problems in the domain of automated image analysis for cutting tool flank 
wear segmentation with deep learning algorithms have been addressed for the first 
time in this thesis, contributing to the novelty degree of this research: 

1. Knowledge about effects of model hyperparameters on performance of a DNN
for tool wear segmentation was obtained for the use case of cutting tool images.
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2. Metrics to characterize and compare datasets, like dataset similarity, were 
tested and compared for the use case of cutting tool images. In this thesis the se-
lected dataset similarity metric was used for a dataset property dependent selection 
of model hyperparameters. The use of metrics to characterize datasets may enable 
targeted model selection and / or combination, using e.g., federated learning, in the 
future.  

3. An approach to measuring overfitting was proposed which can be constructed 
from different combinations of the training, test, validation datasets. 

4. Underspecification of models was addressed using a systematical approach to 
hyperparameter optimization and testing of models with inline data. 

Outlook 
Ausblick

Still some open questions and topics to be researched remain which are assigned to 
the following system describing the building blocks of image acquisition and processing 
for surface inspections, see Figure 7-1. 

With reference to the figure this thesis covered the levels Evaluation and Utilization
in some detail. Whereas there are numerous possibilities to research further in these 
two levels: For example, a Neural Architecture Search (NAS) could be performed to 
identify network architectures that are superior to the U-Net in tasks with sparse data. 
Furthermore, image augmentation through Basic Image Manipulation (BIM) or Gener-
ative Adversarial Networks (GANs) and their effect on neural network performance in 
cutting tool segmentation could be investigated in the future. Other than that, some 
methods presented in Subsection 2.3.4, Tool Wear Identification with Deep Learning, 
such as layer-wise loss, have not been tested with a standardized dataset to evaluate 
the possible improvements in prediction quality.  

Figure 7-1:  Pyramid of image acquisition and processing for surface inspection on 
the basis of LÄNGLE [LÄNG16] 
Pyramide der Bildgewinnung und -verarbeitung zur Oberflächeninspektion in 
Anlehnung an LÄNGLE [LÄNG16]
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Also, the measurement method that was introduced covers only the VB metric so far 
and could be extended for other wear form except for flank wear. Other than that, the 
levels Conversion and Improvement, for example preprocessing steps such as 
sharpening with wavelet filter and pretraining the model weights, have not been 
covered in this thesis. The level Acquisition has only been addressed superficially, 
while significant advances in data quality and data improvement could be possible with 
better measurement devices and supporting illumination. 

Especially, the pyramid level Decision allows for creative solutions in cyber physical 
production systems. Apart from obvious applications like demand-driven tool changes, 
the tool status information in conjunction with other sensor data may be used to 
continously capture knowledge from multiple machine tool integrated sensors and use 
them to approximate the tool status. In conjunction with analytical models, analogous 
to the procedure presented in Subsection 6.1.1, Calculation of Width of Flank Wear 
Land VB, further wear metrics, such as chipping (CH) or catastrophic failure (CF), can 
be determined using image processing for the evaluation of the tool condition and used 
for decision-making. 

Apart from the above-mentioned possibilities of further research, a standardized set of 
labeled image datasets is necessary to compare approaches and possible 
improvements for different sizes and types of datasets in the domain of automated 
analysis of microscopic image data for cutting tool status identification. Furthermore, a 
method for classifying and rating datasets using KPIs could be helpful, including 
metrics like image quality, image similarity and dataset size.  
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Zusammenfassung und Ausblick 
Summary and Outlook 

Zusammenfassung 
Summary 

Ausgangspunkt dieser Arbeit war die Erkenntnis, dass die derzeitige Art und Weise 
des Umgangs mit dem Verschleiß von Zerspanungswerkzeugen in der 
metallverarbeitenden Industrie verbessert werden könnte. Im Folgenden werden die 
drei derzeit in der Serienproduktion, in der Forschung und Entwicklung und in der 
Kleinserienfertigung angewandten Methoden vorgestellt: 

1. Festgelegte Werkzeugstandzeit aus einer vorherigen Prüfung mit einer Sicher-
heitsspanne, um Ausreißer zu berücksichtigen 

2. Erstellung von Standzeitmodellen, die eine Vorhersage der Werkzeugstandzeit 
über einen Bereich von Schnittgeschwindigkeiten und/oder anderen Schnittpara-
metern ermöglichen 

3. Optische Beobachtung und Bewertung des Werkzeugstatus durch den Bediener 
der Werkzeugmaschine 

Die derzeit weit verbreitete erste Methode, bei der feste Standzeiterwartungen mit 
großen Spielräumen verwendet werden, um der hohen Varianz der Werkzeugstandzeit 
Rechnung zu tragen, führt zu vermeidbaren wirtschaftlichen Kosten. Darüber hinaus 
verhindert die mangelnde Quantifizierung des Werkzeugstatus ein intelligentes 
Werkzeugmanagement und hemmt die intelligente Automatisierung von 
Fertigungsprozessen im Hinblick auf einen bedarfsgerechten Werkzeugwechsel und 
das Einlernen eines möglichen indirekten Modells zur Abschätzung des 
Werkzeugverschleißes, das auf anderen in die Werkzeugmaschine integrierten 
Sensoren beruht.  

Die zweite der oben genannten Methoden, die im Rahmen dieser Arbeit demonstriert 
wurde (siehe Abschnitt 4.4), zeigte einige Schwächen auf: Die Grenzen des 
Parameterbereichs, in diesem Fall die Schnittgeschwindigkeit, für die Modellerstellung 
sind vor dem Test nicht genau bekannt, was zusätzlichen Aufwand verursacht. 
Außerdem tritt bei sich wiederholenden Versuchen eine hohe Streuung des 
Standwegs auf, was die statistischen Voraussetzungen für eine einwandfreie 
Modellerstellung verhindern kann. Darüber hinaus ist die erforderliche Auflösung des 
Parameterbereichs nicht bekannt, was zu zusätzlichem Aufwand führen kann, ohne 
dass dies der Nützlichkeit des Modells zugutekommt. Schließlich wird das Modell bei 
einer Änderung der Prozessparameter oder der Prozessbedingungen unbrauchbar, 
wenn nicht zusätzliche Experimente durchgeführt werden, um das Modell 
entsprechend zu erweitern. 

Der dritte Ansatz erfordert manuellen Aufwand und stützt sich auf die Erfahrung und 
das Urteilsvermögen der einzelnen Bediener. Daher ist dieser Ansatz nicht skalierbar 

7 
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und der Wissenstransfer an neue Bediener ist kritisch. Eine Standardisierung ist mit 
diesem Ansatz möglicherweise gar nicht möglich. 

In dieser Arbeit wurde versucht, eine Lösung für alle drei oben genannten Fälle zu 
finden, indem eine Methode zur automatischen Segmentierung des 
Freiflächenverschleißes mit anschließender automatischer Messung mittels einer 
Bildverarbeitungskette eingeführt wurde. Angewandt auf ein in die Werkzeugmaschine 
integriertes Messgerät, bietet der vorgeschlagene Ansatz eine praktikable Lösung für 
die oben beschriebenen Probleme. Im Einzelnen wurden die Schritte zur Erreichung 
der oben genannten Lösung in vier Forschungsfragen unterteilt: 

Forschungsfrage 1: "Wie kann die Bildverarbeitung zur automatischen Erkennung von 
Werkzeugverschleiß auf mikroskopischen Bildern von Schneidkanten von 
Zerspanungswerkzeugen eingesetzt werden?" 

Die Segmentierung von Freiflächenverschleiß auf mikroskopischen Bildern von 
Zerspanungswerkzeugen wurde mit einem überwachten DL-Ansatz, insbesondere der 
U-Net-Architektur, erreicht. Diese NN-Architektur wird verwendet, um eine
semantische Bildsegmentierung durchzuführen. Im Einzelnen sind die folgenden
Schritte erforderlich:

 Aggregation und Auswahl von mikroskopischen Bildern mit verschlissenen Zer-
spanungswerkzeugen 

 Manuelles Beschriftungsverfahren zur Erstellung von Masken der interessierenden 
Bereiche (Werkzeugverschleiß) auf jedem der Bilder. Die Beschriftungsmasken 
dienen als Grundlage für das Netzwerktraining. 

 Methoden zur Bildanreicherung wie BIM oder GAN-basierte Datensynthese 
 Auswahl von Datensatzeigenschaften und Modellhyperparametern wie: Datensatz-

aufteilung, Bildgröße, Netzwerkgröße, Lernrate, Momentum, Aktivierungsfunktio-
nen und Dropout-Rate 

 Beginn des Trainingsprozesses, d.h. Optimierung der Modellparameter 
 Bewertung der Modellleistung mit Metriken, die die Genauigkeit und Robustheit des 

Modells in Bezug auf den Testdatensatz und, falls verfügbar, den Inferenzdaten-
satz beschreiben 

Der vorgestellte Ansatz zur Segmentierung von Zerspanungswerkzeugverschleiß, der 
die U-Net-Architektur zur semantischen Segmentierung nutzt, erreichte bei Testdaten 
einen mittleren Dice-Koeffizienten von mDicetest = 0.82. Die Trainingsdaten bestanden 
aus 3000 augmentierten Bildern, die aus 400 Rohbildern gewonnen wurden. Der 
heterogene Rohbilddatensatz bestand aus acht verschiedenen 
Zerspanungswerkzeugdatensätzen mit jeweils 50 Bildern und verschiedenen 
Vergrößerungsstufen. Bei einem Inferenzdatensatz, der unbekannte Bilder enthält, die 
mit Störungen wie erhöhter oder verringerter Helligkeit aufgenommen wurden, ergab 
das Netz einen mittleren Dice-Koeffizienten von mDiceinf = 0,54. 
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Forschungsfrage 2: "Welches sind die Datensatz- und Modelleigenschaften mit dem 
größten Einfluss auf die Modellleistung bei der Segmentierung von 
Werkzeugverschleiß?" 

Basierend auf einer zweistufigen faktoriellen DOE wurden die Modell-Hyperparameter 
Aktivierungsfunktion, Lernrate, Dropout-Rate, Netzwerkgröße und Momentum sowie 
die Datensatzeigenschaften Datensatzgröße, Bildgröße, Datensatzaufteilung und 
Datensatzähnlichkeit untersucht. Entsprechend der Effektstärke der einzelnen 
Faktoren auf die Modellbewertungsmetriken, insbesondere die Testdatengenauigkeit, 
wurde eine Rangfolge erstellt, die die folgenden einflussreichsten Parameter ergibt: 

Datensatzeigenschaften: 

 Größe des Datensatzes  
 Bildähnlichkeit  

Modell-Hyperparameter: 

 Dropout-Rate 
 Netzwerkgröße 

Forschungsfrage 3: "Wie kann eine systematische Auswahl von Hyperparametern in 
Bezug auf die Eigenschaften des Datensatzes getroffen werden, um die Modellleistung 
zu verbessern?" 

Nach der Identifizierung der einflussreichsten Faktoren wurde eine vollständige 
faktorielle DOE mit diesen vier verbleibenden Faktoren durchgeführt. Mit Hilfe einer 
Ausreißer-Analyse wurde eine endgültige Datenbank für die Modellerstellung gefiltert. 
Die Datenbank wurde für eine Regressionsmodellierung der Modellgenauigkeit auf der 
Grundlage der vier einflussreichsten Faktoren von oben verwendet. Das 
Regressionsmodell wurde ferner zur Zielwertoptimierung verwendet, um eine Auswahl 
günstiger Hyperparameter auf der Grundlage der Datensatzeigenschaften eines 
bestimmten Datensatzes für die Segmentierung des Freiflächenverschleißes von 
Zerspanungswerkzeugen zu ermöglichen. Eine allgemeine Optimierung der 
Hyperparameter war möglich, aber aufgrund zu schwacher Interaktionsterme 
zwischen Datensatzeigenschaften und Hyperparametern war eine 
datensatzeigenschaftsspezifische Hyperparameteroptimierung nicht möglich. Die 
Modellvalidierung zeigte, dass das Entscheidungsmodell für zwei unterschiedliche 
Datensätze in Bezug auf die Datensatzgröße und -ähnlichkeit die gleichen optimierten 
Modellhyperparameter ergaben. 

Bei der Regressionsmodellierung der Genauigkeit wurde festgestellt, dass die 
Ähnlichkeit der Datensätze und die Größe der Datensätze mehr als 80 % der Varianz 
in der Genauigkeit erklären. Das bedeutet, dass die Datensätze vor der Modellierung 
analysiert werden können und eine erwartete Genauigkeit ohne Training des Modells 
generiert werden kann. 
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Forschungsfrage 4: "Wie kann das optimierte Segmentierungsmodell für einen Inline-
Ansatz zur Messung des Zerspanungswerkzeugverschleißes in Werkzeugmaschinen 
angewendet werden?"  

Mit einem kostengünstigen Mikroskop und einem speziell angefertigten Gehäuse, das 
den rauen Umgebungsbedingungen in der Werkzeugmaschine standhält, wurde eine 
Inline-Messung von Zerspanungswerkzeugschneiden realisiert. Über die Achsen der 
Werkzeugmaschine wurden die Schneidkanten automatisiert erfasst. Gleichzeitig 
wurde der Werkzeugzustand manuell mit einem Standmessmikroskop gemessen, um 
eine Benchmark-Messung zu erstellen. Für den direkten Vergleich nicht nur der 
Genauigkeit, sondern auch des Zeitbedarfs der beiden Ansätze, wurde eine Stoppuhr 
eingesetzt.  

Die in diesem Versuch gesammelten Daten wurden gelabelt und zur Erstellung eines 
optimierten Modells mit der Zielwertoptimierung aus Forschungsfrage 3 verwendet. Mit 
den vom Entscheidungsmodell vorgeschlagenen Einstellungen und 46 Beispielbildern 
wurde eine mDicetest-Genauigkeit von 0,85 erreicht. Der automatische 
Messalgorithmus ergibt einen mittleren Fehler von zwölf Mikrometern bei den 23 
durchgeführten Messungen für die erfasste Werkzeugverschleißkurve im Vergleich zur 
manuellen Messung mit dem Standmessmikroskop. Darüber hinaus wurde eine 
Industriekamera für den Arbeitsbereich der Werkzeugmaschine zur Messung des 
Zerspanungswerkzeugs während eines Fräsvorgangs für eine Turbinenschaufel 
eingesetzt. Der relative Fehler zwischen einer manuellen Messung und der 
automatischen Messung mit dieser Methode lag zwischen zwei und 30 % für einen 
Kugelkopffräser beim Schlichtfräsen und bis zu 45 % für einen Kugelkopffräser im 
Vorschlichten. 

Rekapituliert man die Schlussfolgerung aus Kapitel 2 Grundlagen und Stand der 
Technik, so wurden die folgenden Probleme im Bereich der automatisierten 
Bildanalyse für die Segmentierung von Freiflächenverschleiß mit DL-Algorithmen in 
dieser Arbeit zum ersten Mal behandelt, was zum Neuheitsgrad dieser Forschung 
beiträgt: 

 Wissen über die Auswirkungen von Modellhyperparametern auf die Leistung 
eines DNN zur Segmentierung von Werkzeugverschleiß wurden für den Anwen-
dungsfall von Bilddaten von Zerspanungswerkzeugen gewonnen. 

 Metriken zur Charakterisierung und zum Vergleich von Datensätzen, wie die 
Datensatzähnlichkeit, wurden für den Anwendungsfall von Zerspanungswerkzeug-
bildern getestet und verglichen. In dieser Arbeit wurde die gewählte Metrik der Da-
tensatzähnlichkeit für eine datensatzeigenschaftsabhängige Auswahl von Modell-
hyperparametern verwendet. Die Verwendung von Metriken zur Charakterisierung 
von Datensätzen kann in Zukunft eine gezielte Modellauswahl und / oder -kombi-
nation, z.B. durch föderiertes Lernen, ermöglichen. 

 Es wurde ein Ansatz zur Messung der Überanpassung vorgeschlagen, der 
aus verschiedenen Kombinationen von Trainings-, Test- und Validierungsdatensät-
zen erstellt werden kann. 
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Die Unterspezifikation von Modellen wurde durch einen systematischen Ansatz 
zur Optimierung von Hyperparametern und Testen der Modelle mit Inline-Daten 
addressiert. 

Ausblick 
Outlook

Es verbleiben noch einige offene Fragen und zu erforschende Themen, die dem 
folgenden System zugeordnet sind, das die Bausteine der Bilderfassung und -
verarbeitung für Oberflächeninspektionen beschreibt, siehe Abbildung 7-2. 

Unter Bezugnahme auf die Abbildung wurden in dieser Arbeit die Ebenen Evaluation
und Utilization ausführlich behandelt. Es gibt jedoch zahlreiche Möglichkeiten, auf 
diesen beiden Ebenen weiter zu forschen: Zum Beispiel könnte eine neuronale 
Architektursuche (NAS) durchgeführt werden, um Netzarchitekturen zu identifizieren, 
die dem U-Net bei Aufgaben mit spärlichen Daten überlegen sind. 

Figure 7-2:  Pyramide der Bildgewinnung und -verarbeitung zur Oberflächeninspek-
tion in Anlehnung an Fraunhofer-Allianz Vision [LÄNG16]
Pyramid of image acquisition and processing for surface inspection on the ba-
sis of Fraunhofer-Allianz Vision [LÄNG16]

Darüber hinaus könnten in Zukunft Bildaugmentationstechniken wie Basic Image 
Manipulation (BIM) oder Generative Adversarial Networks (GANs) und ihre 
Auswirkungen auf die Leistung neuronaler Netze bei der Segmentierung von 
Zespanungswerkzeugen untersucht werden. Darüber hinaus wurden einige der in 
Unterabschnitt 2.3.4, Tool Wear Identification with Deep Learning, vorgestellten 
Methoden, wie z. B. der schichtweise Loss, nicht mit einem standardisierten Datensatz 
getestet, um die möglichen Verbesserungen der Vorhersagequalität zu bewerten. 
Auch deckt die vorgestellte Messmethode bisher nur die VB-Metrik ab und könnte für 
andere Verschleißformen außer Freiflächenverschleiß erweitert werden. Darüber 
hinaus wurden die Ebenen Conversion und Improvement, z. B. 
Vorverarbeitungsschritte wie das Schärfen mit Wavelet-Filter und das Vortrainieren der 
Gewichtungsfaktoren, wurden in dieser Arbeit nicht behandelt. Die Ebene Acquisition
wurde nur oberflächlich behandelt, obwohl mit besseren Messgeräten und 
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unterstützender Beleuchtung erhebliche Fortschritte bei der Datenqualität und 
Datenverbesserung möglich wären. 

Insbesondere die Pyramidenebene Decision ermöglicht kreative Lösungen in 
cyberphysikalischen Produktionssystemen. Neben offensichtlichen Anwendungen wie 
dem bedarfsgerechten Werkzeugwechsel kann die Werkzeugstatusinformation in 
Verbindung mit anderen Sensordaten genutzt werden, um das Wissen mehrerer in die 
Werkzeugmaschine integrierter Sensoren zu erfassen und zur Approximation des 
Werkzeugstatus zu nutzen. In Verbindung mit analytischen Modellen, analog zu der in 
Unterabschnitt 6.1.1, Calculation of Width of Flank Wear Land VB, vorgestellten 
Vorgehensweise, können weitere Verschleißmetriken, wie z.B. Ausbrüche (CH) oder 
katastrophale Ausfälle (CF), mithilfe der Bildverarbeitung für die Bewertung des 
Werkzeugzustands berechnet und für die Entscheidungsfindung genutzt werden. 

Neben den oben genannten Möglichkeiten der weiteren Forschung ist ein 
standardisierter Satz von beschrifteten Bilddatensätzen notwendig, um Ansätze und 
Verbesserungsmöglichkeiten für unterschiedliche Größen und Arten von Datensätzen 
im Bereich der automatisierten Analyse von mikroskopischen Bilddaten zur 
Zustandserkennung von Zerspanungswerkzeugen zu vergleichen. Darüber hinaus 
könnte eine Methode zur Klassifizierung und Bewertung von Datensätzen anhand von 
KPIs hilfreich sein, einschließlich Metriken wie Bildqualität, Bildähnlichkeit und 
Datensatzgröße. 
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A Appendix 
Anhang 

A.1 Mechanisms of wear [KLOC18, p. 75] 
Verschleißmechanismen [KLOC18, S. 75] 

 

A.2 Various machining costs versus cutting speed [STEP16, p. 769] 
   Diverse Fertigungskosten gegen Schnittgeschwindigkeit [STEP16. S. 769]

 

  



A Appendix 

150 

A.3 Mean VBmax at vc,max = 70 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 70 m/min mit Standardabweichung 
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A.4 Mean VBmax at vc,max = 80 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 80 m/min mit Standardabweichung 

 

 
  



A Appendix 

152 

A.5 Mean VBmax at vc,max = 90 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 90 m/min mit Standardabweichung 
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A.6 Mean VBmax at vc,max = 100 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 100 m/min mit Standardabweichung 

 

 
  

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ax

im
um

 w
id

th
 o

f f
la

nk
 w

ea
r l

an
d 

VB
m

ax
[μ

m
]

Feed travel Lf [m]

threshold value



A Appendix 

154 

A.7 Mean VBmax at vc,max = 110 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 110 m/min mit Standardabweichung 
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A.8 Mean VBmax at vc,max = 120 m/min with standard deviation 
Mittlerer VBmax bei vc,max = 120 m/min mit Standardabweichung 
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A.9 U-Net Layers and their corresponding output feature map and 
kernel size 
U-Net-Schichten und jeweilige output-feature-map- und kernelgröße 

 
  

Number Name Output Kernel Parameters
1 Input (nbatch x 3 x 512 x 512) - 0
2 Normalization (nbatch x 3 x 512 x 512) - 0
3 Convolution (16) (nbatch x 16 x 512 x 512) (3,3) 448
4 Dropout (nbatch x 16 x 512 x 512) - 0
5 Convolution (16) (nbatch x 16 x 512 x 512) (3,3) 2320
6 Maxpooling (nbatch x 16 x 256 x 256) (2,2) 0
7 Convolution (32) (nbatch x 32 x 256 x 256) (3,3) 4640
8 Dropout (nbatch x 32 x 256 x 256) - 0
9 Convolution (32) (nbatch x 32 x 256 x 256) (3,3) 9248

10 Maxpooling (nbatch x 32 x 128 x 128) (2,2) 0
11 Convolution (64) (nbatch x 64 x 128 x 128) (3,3) 18496
12 Dropout (nbatch x 64 x 128 x 128) - 0
13 Convolution (64) (nbatch x 64 x 128 x 128) (3,3) 36928
14 Maxpooling (nbatch x 64 x 64 x 64) (2,2) 0
15 Convolution (128) (nbatch x 128 x 64 x 64) (3,3) 73856
16 Dropout (nbatch x 128 x 64 x 64) - 0
17 Convolution (128) (nbatch x 128 x 64 x 64) (3,3) 147584
18 Maxpooling (nbatch x 128 x 32 x 32) (2,2) 0
19 Convolution (256) (nbatch x 256 x 32 x 32) (3,3) 295168
20 Dropout (nbatch x 256 x 32 x 32) - 0
21 Convolution (256) (nbatch x 256 x 32 x 32) (3,3) 590080
22 Transposed Convolution (nbatch x 256 x 64 x 64) (2,2) 0
23 Concatenate (nbatch x 384 x 64 x 64) - 0
24 Convolution (128) (nbatch x 128 x 64 x 64) (3,3) 442496
25 Dropout (nbatch x 128 x 64 x 64) - 0
26 Convolution (128) (nbatch x 128 x 64 x 64) (3,3) 147584
27 Transposed Convolution (nbatch x 128 x 128 x 128) (2,2) 0
28 Concatenate (nbatch x 192 x 128 x 128) - 0
29 Convolution (64) (nbatch x 64 x 128 x 128) (3,3) 110656
30 Dropout (nbatch x 64 x 128 x 128) - 0
31 Convolution (64) (nbatch x 64 x 128 x 128) (3,3) 36928
32 Transposed Convolution (nbatch x 64 x 256 x 256) (2,2) 0
33 Concatenate (nbatch x 96 x 256 x 256) - 0
34 Convolution (32) (nbatch x 32 x 256 x 256) (3,3) 27680
35 Dropout (nbatch x 32 x 256 x 256) - 0
36 Convolution (32) (nbatch x 32 x 256 x 256) (3,3) 9248
37 Transposed Convolution (nbatch x 32 x 512 x 512) - 0
38 Concatenate (nbatch x 64 x 512 x 512) - 0
39 Convolution (16) (nbatch x 16 x 512 x 512) (3,3) 6928
40 Dropout (nbatch x 16 x 512 x 512) - 0
41 Convolution (16) (nbatch x 16 x 512 x 512) (3,3) 2320
42 Convolution (nclass) (nbatch x nclass x 512 x 512) (1,1) 17
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A.10 Inner similarity calculations 
 Berechnungswerte zur inneren Ähnlichkeit 

 

dataset 1 dataset 2 rmse psnr ssim sre sam
dataset_inference_ dataset_inference_ count 465 465 465 465 465
ballend_inline_30 ballend_inline_30 mean 0.88972935 0.47771325 0.95399359 0.42467007 0.98617562

std 0.05377662 0.15944848 0.03099421 0.18164391 0.00337348
med 0.889328 0.43929792 0.96057582 0.39647165 0.98666074
min 0.77645005 0.30192866 0.8692217 0.17174795 0.97690337
max 1.00769244 1 1 1 0.9927525
q25 0.84470635 0.37368031 0.93269104 0.31250348 0.98379074
q50 0.889328 0.43929792 0.96057582 0.39647165 0.98666074
q75 0.92113483 0.50349233 0.97729644 0.46679846 0.98847276

dataset_inference_ dataset_inference_ count 465 465 465 465 465
drill_edge_30 drill_edge_30 mean 0.87522871 0.44389428 0.93489268 0.21635292 0.925912

std 0.04209193 0.15010977 0.02687879 0.21225305 0.02910328
med 0.86997493 0.40823509 0.93393314 0.17214524 0.92792643
min 0.77719706 0.30259231 0.86805663 -0.0436888 0.86044554
max 1.00769244 1 1 1 0.97816814
q25 0.85320017 0.38465857 0.91690778 0.13853895 0.90184228
q50 0.86997493 0.40823509 0.93393314 0.17214524 0.92792643
q75 0.88685667 0.43505921 0.9494546 0.20162181 0.95121279

dataset_inference_ dataset_inference_ count 465 465 465 465 465
endmill_30 endmill_30 mean 0.71914186 0.30724626 0.83061811 0.28216904 0.93823656

std 0.12918548 0.2015265 0.08538391 0.22836524 0.04061002
med 0.66047146 0.21854783 0.80147492 0.25216013 0.94918781
min 0.50761129 0.14371794 0.68090896 0.03339864 0.7959486
max 1.00769244 1 1 1 0.99285346
q25 0.63749448 0.20540442 0.77435744 0.12353219 0.92104326
q50 0.66047146 0.21854783 0.80147492 0.25216013 0.94918781
q75 0.83566079 0.362601 0.90464162 0.31800154 0.96632932

dataset_inference_ dataset_inference_ count 465 465 465 465 465
inserts_30 inserts_30 mean 0.6369327 0.25819671 0.62718806 -0.1784416 0.7558003

std 0.16996371 0.21115734 0.18754204 0.41289206 0.14741795
med 0.63115351 0.20192075 0.59261603 -0.2475044 0.76316373
min 0.36152167 0.09114657 0.15657886 -1.0402116 0.11464226
max 1.00769244 1 1 1 0.99611757
q25 0.48251108 0.13367236 0.47818474 -0.3916236 0.65940613
q50 0.63115351 0.20192075 0.59261603 -0.2475044 0.76316373
q75 0.75852776 0.28661678 0.77340371 -0.0944868 0.84557277

dataset_train_ dataset_train_ count 465 465 465 465 465
ballend_all_30 ballend_all_30 mean 0.61597521 0.24596286 0.77249871 0.24478577 0.96232917

std 0.16219124 0.21430953 0.13102752 0.27807547 0.05203626
med 0.57123097 0.17162878 0.74902417 0.27728016 0.98800801
min 0.24368427 0.05678581 0.35781465 -0.3325887 0.61330966
max 1.00769244 1 1 1 0.99614942
q25 0.51587588 0.14713613 0.70978417 0.05448441 0.96833048
q50 0.57123097 0.17162878 0.74902417 0.27728016 0.98800801
q75 0.69260069 0.23846467 0.87052577 0.34584929 0.9916897

dataset_train_ dataset_train_ count 465 465 465 465 465
ballend_one_30 ballend_one_30 mean 0.8368735 0.39952784 0.9449169 0.44966828 0.97787681

std 0.06568934 0.1672657 0.02589257 0.15833516 0.00411777
med 0.8350611 0.36188724 0.94544891 0.41863475 0.97811204
min 0.68880803 0.23601051 0.8732552 0.2306568 0.95761707
max 1.00769244 1 1 1 0.98647753
q25 0.79374622 0.31787509 0.92969422 0.37108616 0.97571231
q50 0.8350611 0.36188724 0.94544891 0.41863475 0.97811204
q75 0.87009097 0.408408 0.96029326 0.46969121 0.98089049
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A.11 Outer similarity calculations 
 Berechnungswerte zur äußeren Ähnlichkeit 

 
  

dataset 1 dataset 2 rmse psnr ssim sre sam human
dataset_inference_
ballend_inline_30

dataset_inference_d
rill_edge_30 0.54429796 0.16010599 0.64943729 0.09917383 0.98103188 0.1

dataset_inference_
ballend_inline_30

dataset_inference_e
ndmill_30 0.68746478 0.23774084 0.8137725 0.1791078 0.97639996 0.3

dataset_inference_
ballend_inline_30

dataset_inference_in
serts_30 0.54505959 0.16204716 0.61797453 0.10164974 0.91207687 0.1

dataset_inference_
ballend_inline_30

dataset_train_ballen
d_all_30 0.58349122 0.18059629 0.75881589 0.12211057 0.98651265 0.5

dataset_inference_
ballend_inline_30

dataset_train_ballen
d_one_30 0.53233962 0.15461337 0.71565997 0.09516597 0.98884637 0.85

dataset_inference_
drill_edge_30

dataset_inference_e
ndmill_30 0.46250768 0.12850224 0.57828532

-
0.11460932 0.96400104 0.2

dataset_inference_
drill_edge_30

dataset_inference_in
serts_30 0.61275035 0.19431452 0.63587894

-
0.04898652 0.88390709 0.3

dataset_inference_
drill_edge_30

dataset_train_ballen
d_all_30 0.5101467 0.14972267 0.64370197 -0.092516 0.97112036 0.1

dataset_inference_
drill_edge_30

dataset_train_ballen
d_one_30 0.51046466 0.14599658 0.64973342

-
0.09613183 0.97145061 0.1

dataset_inference_
endmill_30

dataset_inference_in
serts_30 0.50396402 0.14431282 0.58205575 0.11914553 0.89915681 0.2

dataset_inference_
endmill_30

dataset_train_ballen
d_all_30 0.54908026 0.16353541 0.70852753 0.13904188 0.96681516 0.3

dataset_inference_
endmill_30

dataset_train_ballen
d_one_30 0.50811352 0.14443176 0.68957443 0.1194987 0.96885644 0.3

dataset_inference_i
nserts_30

dataset_train_ballen
d_all_30 0.42565226 0.121347 0.47026663

-
0.33760427 0.82962615 0.1

dataset_inference_i
nserts_30

dataset_train_ballen
d_one_30 0.37797864 0.09991466 0.45181745

-
0.35952952 0.83965475 0.1

dataset_train_balle
nd_all_30

dataset_train_ballen
d_one_30 0.55774398 0.17267876 0.73734092 0.1726931 0.96403425 0.5
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A.12 Outer similarity values at different dataset size levels 
 Werte der äußeren Ähnlichkeit für die Stufen der Datensatzgröße 

 
  

SSIM SSIM
Training Datasets Size mean std meanmean meanstd
dataset_train_ballend_all_50 dataset_train_ballend_all_50 50 0.7575 0.1322

0.77 0.131dataset_train_ballend_all_100 dataset_train_ballend_all_100 100 0.7623 0.1445
dataset_train_ballend_all_150 dataset_train_ballend_all_150 150 0.7824 0.1222
dataset_train_ballend_all_400 dataset_train_ballend_all_400 400 0.7815 0.1246
dataset_train_ballend_one_50 dataset_train_ballend_one_50 50 0.9339 0.0304

0.92 0.032
dataset_train_ballend_one_100 dataset_train_ballend_one_100 100 0.9182 0.0326
dataset_train_ballend_one_150 dataset_train_ballend_one_150 150 0.9136 0.0326
dataset_train_ballend_one_400 dataset_train_ballend_one_400 400 0.9121 0.0328
dataset_train_mix_50 dataset_train_mix_50 50 0.6774 0.1529

0.67 0.170dataset_train_mix_100 dataset_train_mix_100 100 0.658 0.1697
dataset_train_mix_150 dataset_train_mix_150 150 0.667 0.171
dataset_train_mix_400 dataset_train_mix_400 400 0.6727 0.1846
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A.13 Identification of the statistically significant effects in factorial 
experiment based on Lenth's Analysis 
Identifizierung der statistisch signifikanten Effekte in einem faktoriellen Experi-
ment auf der Grundlage der Lenth'schen Analyse 

1. Calculation of the t-value for each factor: 
 Fit a regression model to the data and estimate the effect of each factor. 
 Calculate the t-value for each factor by dividing the estimated effect by its 

standard error. 
2. Calculation of the median: 

 Take the absolute values of the t-values obtained in step 1. 
 Arrange them in ascending order and identify the middle value as the median. 

3. Approximation of the standard error: 
 Multiply the median obtained in step 2 by 1.5 to approximate the standard er-

ror. 
 This approximation is often referred to as the "estimated standard error" or 

"median-based standard error." 
4. Calculation of the threshold value: 

 Multiply the estimated standard error from step 3 by 2.5 to obtain a threshold 
value. 

 Exclude all factors with t-values above this threshold value to obtain a refined 
list of potentially significant effects. 

5. Approximation of the Pseudo Standard Error (PSE): 
 Calculation of the median of the refined list obtained in step 4. 
 Multiply the median by 1.5 to approximate the PSE. 
 The PSE is used as a value for evaluating the statistical significance of indi-

vidual effect estimates. 
6. Calculate Degrees of Freedom (DF) and Lenth's Degrees of Freedom (DFL): 

 Calculate the total number of factors, denoted as n. 
 For each individual factor, calculate the number of levels (r) and compute n! / 

(r! * (n - r)!). 
 Sum all these values to obtain the Degrees of Freedom (DF). 
 Divide DF by 3 to obtain Lenth's Degrees of Freedom (DFL). 

7. Find the critical t-value: 
 Determine the critical t-value corresponding to the desired confidence level 

and Lenth's Degrees of Freedom (DFL). 
 For example, to calculate the critical t-value for a 0.05 confidence interval with 

DFL = 5, you would use the t-distribution table or statistical software. 
8. Convert PSE to critical value: 

 Multiply the PSE obtained in step 5 by the critical t-value from step 7. 
 This yields a critical value for determining statistically significant effects. 
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9. Compare t-values to the critical value: 
 Compare the t-values calculated in step 1 for each factor to the critical value 

obtained in step 8. 
 If the t-value for a factor is greater than the critical value, deem it statistically 

significant. 
 Factors with t-values below the critical value are considered not statistically 

significant. 

  



A Appendix 

162 

A.14 ANOVA regards to accuracy 
 Varianzanalyse in Hinblick auf Genauigkeit 
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A.15 ANOVA with regards to overfitting 
 Varianzanalyse in Hinblick auf Überanpassung 
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A.16 Comparison of cutting tool wear segmentation models 
          Vergleich von Modellen zur Segmentation von Zerspanungswerkzeug- 
          verschleiß 
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A.17 Comparison of segmentation models trained on different  
 datasets in the application-oriented trial 
Vergleich von Modellen zur Segmentation trainiert auf verschiedenen  
Datensätzen in der Anwendungsorientierten Erprobung 
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