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Due to the advance in energy engineering and necessary adaptations due to climate change, building energy
systems are becoming increasingly complex, necessitating the development of advanced control strategies.
However, there is often a gap between control algorithms developed in research and their practical adoption.
To bridge this gap, we present AgentLib — a modular Python framework to aid the development, testing and
Building energy management deployment of advanced control systems for energy applications. AgentLib allows researchers and engineers
Control to gradually scale up controller complexity, supporting the full development lifecycle from simulation and
IoT testing to distributed real-time implementation. The framework and its plugins provide a set of extensible
modules for common agent functions like optimization, simulation and communication. Control engineers can
leverage familiar tools for mathematical optimization and machine learning in Python. AgentLib is agnostic
to specific communication protocols, allowing flexible interfacing with diverse energy systems and external
services. To demonstrate the framework’s capabilities, we present a case study on developing a distributed
model predictive controller from concept to real-world experiment. We showcase how AgentLib enables a
true parallel implementation of cooperative agents and supports gradual transition from development to
deployment. By analyzing the system’s performance, we highlight the real-world impacts of communication
overhead on distributed control. The framework’s capability to bridge the gap between theoretical research
and practical applications marks a significant step forward in deploying sophisticated control strategies within
the building energy management sector, and possibly other domains.
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1. Introduction with the supply ventilator to coordinate its speed and power consump-

tion, and room automation systems can implement checks to coordinate

Reducing the primary energy demand and CO, emissions are two
major goals of today’s energy policies to limit global warming. The cou-
pling of the electrical and the thermal energy sector and the integration
of renewable energy sources leads to increasingly decentralized, com-

their setpoints. One major field of research is model predictive control
(MPC) [5], with authors reporting energy savings of about 20% up to
35% while reducing the operating costs up to 73%, when compared to

plex energy systems. For example, in modern non-residential buildings,
heating and cooling power may be provided by two our more inde-
pendent systems, e.g. fan coils for each room and thermally activated
building systems [1]. Classical control alternatives such as rule based
control and PID controllers reach limitations in these systems [2-4].
Improving on these classic control schemes is possible, but requires
coordination between different components of the building automation
system. For example, variable air volume (VAV) systems can be linked
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classical control strategies [2-4,6].

Still, usage of advanced control strategies (ACS) in buildings in the
industry is quite rare and labor-intensive. To drive practical adoption
and accelerate development times, virtual testing of models, control
methods, and communication infrastructure is crucial. A workflow for
a staged development concept, integrating and testing different aspects
of ACS step by step, has been presented by Storek et al. [7].
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In this work, we present AgentLib, a framework with the goal of
accelerating the integration of ACS, adopting this staged development
concept. Our framework allows developers to devise, test and commis-
sion ACS, considering all crucial components that would be required for
a commercial product. For researchers, it helps them consider practical
hurdles in their work. For the industry, it provides a way to quickly
develop prototypes before committing to development of production
software on real hardware.

The remainder of this paper is structured as follows: In Section 1.1,
we review existing work in the field of ACS for buildings with a focus
on MPC, and derive the need for a new framework. We summarize the
requirements on such a framework and explicitly state our contribution
in Section 1.2. In Section 2, we introduce the framework, including the
guiding principles, the architecture, and an overview of ready-to-use
components. In Section 3, we present a demonstration of the frame-
work, where we apply an alternating direction method of multipliers
(ADMM)-based distributed MPC to a test bed for ventilation control.
Then, Section 4 shows how to reuse the developed code for a differ-
ent application (temperature control). Section 5 discusses how the
framework helps solve real world problems and states its limitations.
Section 6 provides concluding remarks.

1.1. Related work

The following section covers recent publications in the field of ACS
for buildings, tools used for implementation of these methods and
difficulties in practical adoption.

1.1.1. Advanced control for buildings

Looking at current research, we want to highlight the diversity in
terms of controlled system, and the applied methods and tools used for
implementation and communication.

Zanetti et al. [8] compared MPC with different classes of the op-
timal control problem (quadratic, nonlinear, mixed-integer nonlinear)
and different numerical solvers. They test their MPC in a simulation
against a Modelica-based residential building from the virtual test bed
BOPTEST [9], which is interfaced through a REST-API. They deter-
mined a suitable optimization model in MATLAB and implemented the
optimal control problem (OCP) in Python using pyomo.

In an experimental study, Kim et al. [10] implemented an MPC for a
multi chiller system supplying a university campus. They implement the
MPC as a mixed-integer linear program. The MPC received numerous
inputs from different sources, like weather forecasts from a public web-
API and load predictions from artificial neural network (ANN) based
models developed in tensorflow. The MPC was deployed on a server,
communicating with the buildings energy management system over the
Simple Object Access Protocol (SOAP), utilizing a Python client.

Huber et al. [11] conducted experimental MPC on a residential
building, comparing MPC with linear regression and random forest
models against MPC with resistance-capacitance models. They accessed
forecasts and the buildings sensor readings through an SQL database
with a REST API, and connected with the buildings’ actuators through
an OPC UA client.

Lefebure et al. [12] examined distributed MPC based on dual de-
composition for the same building. They implemented their MPC agents
in MATLAB using gurobi, using Python to facilitate serial execution of
the agents.

Stoffel et al. [13] compared different machine learning models in
an experimental study on data-driven MPC. They implemented linear
regression and gaussian process regression models with scikit-learn,
and ANNs with keras. They access the buildings’ sensors and actuators
through an API with a commercial cloud platform.

Lin and Adetola [14] used distributed optimization based on ADMM
to derive flexibility of the power demand for a simulated multi-zone
building with up to 320 zones. Their algorithm is implemented in
MATLAB.
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In another study on distributed optimal control with ADMM, Li
et al. [15,16] consider a multi zone system actuated with VAV units.
They implemented their controller in MATLAB, with system simulation
performed using TRNSYS.

As shown, the research on building MPC ranges from simulative
to experimental, from centralized to distributed, or from physics-based
modeling to machine learning. However, all these studies have in com-
mon that they need to interface with the simulation or real building in
some way, and require access to input data, like weather forecasts. Data
driven approaches might require separate steps for data handling, and
user driven approaches will require a user interface. While interfacing
other components might be trivial for a centralized MPC simulation,
the overhead of these tasks increases for decentralized controllers, or
experiments, where sensor data and forecasts for weather and energy
prices might come from different sources. In addition, we could not find
a study on distributed optimization applied to building control, where
a parallelizable algorithm was actually implemented in a distributed
way. We provide such an example in Section 3 of this work.

1.1.2. Difficulties in practical adoption of advanced controllers for buildings

Despite the recognized importance and research efforts in the field
of MPC or other ACS in academia, their practical implementation is
quite rare [17]. Ceccolini and Sangi [17] note the lack of awareness of
ACS’ benefits, the uncertainty in their adaption and the lack of demon-
stration projects. Schmidt and Ahlund [18] note that existing research
on predictive building control usually does not address the challenge
of building automation and control system (BACS) integration, and
usually relies on simulations for validation. This is understandable, as
the task of fully integrating an ACS is complex and time-consuming,
as shown in the study by Blum et al. [19]. They implemented an
MPC for a real office building, keeping track of the implementation
effort and giving an overview of required tasks. In the preparation
phase, system analysis, data collection and possibly sensor installation
have to be performed. The modeling process includes the thermal
envelope and HVAC systems, as well as routines for load and weather
forecast. They use MPCPy [20] for controller software development.
Finally, deployment consists of setting up the connection to the building
management system, functional testing, commissioning, maintenance
and performance evaluation. They report an estimated workload of
239 person days for the setup of the MPC, not including development
of MPCPy. Blum et al. also gave some concrete examples of practical
hurdles they encountered. Challenges included sensor inaccuracies,
unexpected communication losses, and the need to incorporate input
data from heterogeneous sources, requiring separate handling for all
of them. They therefore deduct, that two additional crucial steps
towards the real-world application of ACSs are the development of
sophisticated system integration patterns, and comprehensive testing
of the automation functions during the implementation.

Additionally, Ceccolini and Sangi [17] and Lucia et al. [21] also see
the absence of standardized and systematic testing methods that do not
require excessive reimplementation or reconfiguration as an additional
significant hurdle towards practical adoption of ACS. Finally, inclusion
of the underlying communication infrastructure is often neglected when
ACS are compared in research [7].

1.1.3. Existing tools for development of advanced control methods in build-
ings

So far, we established that while practical applications of ACS in
building energy systems (BESs) are not widely adopted and labor-
intensive, research on the topic is plentiful. To implement ACS, there
exist a number of commonly used tools that encompass the fields of
detailed simulation and modeling, as well as control oriented modeling,
and libraries for optimization and machine learning. Table 1 shows
a list of commonly used tools in the space of building simulation,
optimization and machine learning.
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Table 1
Selection of commonly used tools in research for advanced building control.

Detailed simulation Optimization modeling

CasADi [23]

Machine Learning

keras [24]

Buildings (Modelica) [22]

AixLib (Modelica) [25] pyomo [26] PyTorch [27]
Energyplus [28] MATLAB scikit-learn [29]
Spawn of Energyplus [30] jump [31] MATLAB

TRNSYS

The first column contains tools for detailed modeling and simula-
tion. These include open-source Modelica libraries like Buildings [22]
and AixLib [25], which excel for modeling of physics and classical
controllers. EnergyPlus [28] is an open-source tool especially suitable
for detailed simulation of the building envelope. There are also com-
mercial solutions that are commonly used for modeling, like MATLAB
SIMULINK, and TRNSYS. One development improving the modular-
ity of different simulation software is the introduction of the func-
tional mockup interface (FMI), which allows standalone export and
co-simulation of models. For example, Spawn of EnergyPlus [30] in-
cludes an FMU of an EnergyPlus model to allow co-simulation with
Modelica.

The second column lists tools for modeling of optimal control prob-
lems, and interfacing with numerical solvers. In most of the studies that
describe the implementation of their controllers, high level program-
ming languages like MATLAB or Python are used to build optimization
models or machine learning models. Open-source optimization tools
that interface with these programming languages include pyomo [26]
for mathematical modeling of potentially nonlinear systems and in-
terfacing many different numerical solvers in Python, or JUMP [31],
which is available for Julia. CasADi [23] is an open-source framework
that allows formulation of nonlinear mathematical expressions and
interfacing different solvers, providing low level control over OCPs.
CasADi requires the user to formulate their own optimization problems.
As a result, different libraries have emerged that build on top of CasADi
to provide such functionality, including integrated MPC tools like do-
mpc [32], mpcpy [20] or DDMPC [13]. Finally, MATLAB provides
many tools for optimal control and modeling, including plugins like
the model predictive control toolbox.

For machine learning applications, Python seems to be the leading
programming language, offering a variety of machine learning libraries
like scikit-learn [29], keras [24] or PyTorch [27], and a rich ecosystem
of supporting data management libraries. While Python is dominant
in machine learning, MATLAB also provides access to plugins like the
Deep Learning Toolbox or the Statistics and Machine Learning Toolbox,
and the Julia ecosystem offers tools like SciML.

As it can be seen, there are tools readily available for performing
detailed building simulations, and developing and testing model based
controllers or machine learning based applications on them. The Python
programming language in particular offers a rich set of tools spanning
all topics relevant to development of ACS. However, the effort to
move the developed application to a real building requires significant
overhead and repeated reimplementation of interfaces.

1.1.4. Connecting to the building

The reimplementation effort required to move to a real system
is greatly augmented by the number of different data sources and
protocols for building automation. This is also mentioned in the study
by Blum et al. [19] where one source of the large implementation
effort was that data from different systems (electrical, HVAC, weather
forecast, weather live data etc.) came from different sources, requiring
dedicated setup for each including authentication and account manage-
ment. Reviews on building automation systems are given in [33,34],
where different protocols and industry standards are covered. These
include technologies on the field level like KNX, BACnet, LONworks,
ZigBee or Modbus, and technologies on the management level like
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OPC UA or again, BACnet. These communication protocols can be
implemented using different physical specifications for field buses or
local networks, like Ethernet or WIFL. Additionally, there might be a
BACS or an IoT middleware through which the physical systems can be
interfaced. To be viable for use in a variety of real systems, a control
application should be able to interface with a multitude of protocols
and communication standards without reimplementing the application
itself.

1.1.5. Agent frameworks for modular development

The integration of ACS encompasses a multitude of tasks and re-
quires the coordination of many singular components, programmed
with different tools and interfacing with different communication pro-
tocols or cloud systems. A framework aiming to encapsulate all these
requirements needs to be modular and be executable in a distributed
manner (multiple devices or cloud). Multi-agent system (MAS) is a
computing paradigm that has been around since the 1990s [35] that is
already used in many different domains, including modeling complex
systems, smart grids, and computer networks [36]. Developing ACS as
a modular multi-agent system (MAS) could reduce reimplementation
of components, and improve scalability and fault tolerance. Dorri et al.
[36] provide a comprehensive overview of MAS, outlining their char-
acteristics, the methods used for communication between agents, and
the challenges in implementing MAS. In the following, we discuss three
frameworks for multi-agent systems, JADE, SPADE and cloneMAP.

JADE (Java Agent DEvelopment framework), is the most well-
known platform for MAS [37]. It was originally released in 1998,
with its first publication stemming from the year 2000 [38]. JADE,
and derived from it WADE, account for a large part of the projects
surveyed in [36,39,40]. JADE is a feature-rich framework with a long
development history, supporting the implementation of agents in JAVA
in a distributed environment, supporting programmers with graphical
user interfaces. While JADE is still actively used and developed, there
are still hurdles that limit the use of JADE in the control of energy
systems [37]. Perhaps most importantly, the usage of JADE is restricted
to the JAVA programming language.

SPADE (Smart Python Agent Development Environment) aims to
provide an agent development environment that is accessible for
Python developers [41]. SPADE implements peer-to-peer communica-
tion between agents based on the XMPP protocol and handles concur-
rent execution of agent behaviors through Python’s asyncio module.
However, there are still hurdles for its use in developing control
applications. While XMPP offers several features that generally favor
MAS, locking into this architecture forces developers into a complex
communication protocol. XMPP requires hosting an own server, hinder-
ing easy prototyping and debugging at an early stage of development.
Additionally, asyncio is a more advanced Python ecosystem, increasing
the barrier of entry.

cloneMAP (cloud-native Multi-Agent Platform) [35] is a multi-
agent-platform that focuses on cloud deployment and containerization
to make MAS scalable and fault-tolerant. While it is written in Go, it
also supports implementation of agents in Python.

While the frameworks above are already available to run an agent
system, they do not support control engineers during the development
and research process, requiring the introduction of the full complexity
of the controller and the distributed deployment at once.

1.2. Contribution

Considering the existing research on ACS for BES, we recognize a
wide variety of control methods in research, and a rich ecosystem of
tools in the fields of simulation, optimization and machine learning.
Current research dealing with the integration of ACS in real systems
faces significant implementation overhead interfacing with real sys-
tems and other services. A modular approach allows developers to
reuse core components while interfacing with increasingly diverse BES,
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external services or data processing utilities. Existing frameworks for
MAS and Internet of Things (IoT)-middleware burden researchers and
developers with high barriers of entry, and do not encourage a gradual
development process. Based on the established challenges, a framework
facilitating the extensible development of ACS for BES should fulfill the
following requirements:

1. Support a high level programming language that supports the
use of modern modeling and optimization tools. We identify
Python to be suitable.

2. Support both simulation and real application.

3. Have a low barrier of entry. In particular, the user should be
able to start out with a simple Python script, which is simi-
lar in complexity to something they would write without the
framework.

4. Allow to increase complexity and scope of the application gradu-
ally, while retaining as much code as possible from the prototype
stage.

5. Allow functionality to be reusable and configurable across dif-
ferent use cases.

6. Not restrict the user to any specific communication protocols and
be freely extensible.

The contribution of this paper is as follows:

1. We present AgentLib,' a Python framework for implementation,
development and testing of software agents for advanced con-
trol of energy systemsadvanced control systems]. Along with
AgentLib itself, we also release two plugins, providing advanced
and ready-to-use modules for MPC? and IoT-connection with
FIWARE.?

2. We demonstrate an application of AgentLib in a cloud-based
experiment implementing a distributed MPC with true parallel
execution of the agents. We show how to gradually increase
complexity of the system with AgentLib, exposing how different
real world effects influence the controller behavior. In a second
use-case, we demonstrate how to reuse modules for different
applications.

3. We discuss how AgentLib can be used to deal with common
issues in control of energy systems, including integration of
heterogeneous data sources, reliability and scalability.

2. AgentLib

In this section, we present the core functions of AgentLib. First,
we will consider the different requirements that are placed on our
framework, depending on which stage we are in the development
lifecycle. Then we will go over the core structure of the agents, and
list the functional modules that define the agent’s behaviors.

2.1. Identifying complexity dimensions for integration of advanced con-
trollers

As per our requirements (see Section 1.2), the framework should
support development of ACS as modular agent based systems from
concept phase to implementation on real hardware. To achieve this, it
has to both support quick run and debug cycles in the early phases,
while also running on real distributed systems. Fig. 1 shows four
complexity domains that arise when developing and commissioning an
agent-based control system.

1 https://github.com/RWTH-EBC/AgentLib.
2 https://github.com/RWTH-EBC/AgentLib-MPC.
3 https://github.com/RWTH-EBC/AgentLib-FIWARE.
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Time domain. When developing an advanced control application, the
engineer usually performs simulations to debug and assess the control
algorithm. In these simulations, the execution of control steps occurs
instantly with simulation steps directly in sequence. This allows the
engineer to ignore other factors such as communication delay and saves
development time. However, when moving towards a real system, this
omitted complexity has to be reintroduced. We therefore distinguish
between the time domains instant and real-time. We also allow for scaled
real-time, speeding up debug and test cycles for real-time applications.

Execution environment. The basic premise of an MAS is, that agents run
autonomously. This implies agents should run in their own process, or
even on a different hardware entirely. However, concurrent program-
ming is notoriously difficult and cumbersome to debug, especially if
the application engineer does not have a strong background in pro-
gramming. When initially implementing a control algorithm, running
the program sequentially in a single thread guarantees deterministic
execution and allows for easy debugging. Thus, we consider execution
in a single process and in a distributed environment. Note that distributed
execution here is defined by running on different processes, and does
not require immediate introduction of different machines or cloud
architecture, although that is possible.

Communication scope. When communicating over a network, messages
that are exchanged between agents have to be serialized into a format
that is supported by the chosen networking protocol, for example
into a JSON string. Additionally, there is a time-delay between sender
and receiver. When developing on a single computing process, this
overhead is not needed, as agents have access to the same address space
in memory. As such, we distinguish between a local communication
scope and communication through a network.

Controlled system. Before deploying a new control method, develop-
ment and testing is often performed on simulations and test beds with
varying degree of realism. We broadly consider the cases simulation
and real system, but note that simulations can come with varying
degrees of detail.

With our proposed software framework AgentLib, we aim to accom-
pany developers from initial testing to real application, while requiring
minimal code and configuration changes when transitioning between
complexity layers. To accomplish this, we provide modular function
blocks that can be embedded in different environments that control the
order and speed of task execution. For execution in the cloud, instead
of developing a novel middleware to execute the MAS, we developed
an integration into cloneMAP, enabling a containerized execution.

2.2. Core structure

A common issue with creating agents is, that many side tasks regard-
ing data management and communication have to be coded together
within the agents’ core task. To deal with this, the AgentLib is modular
not only by nature of being a multi-agent framework, but also within
the agents themselves, as functionality is coded into an agents’ modules.
Core functionality of an agent can be reused independently of other
tasks or the chosen communication protocol. For example, a simple con-
troller agent could consist of a PID-module and a module implementing
MOQTT communication with the actor. Swapping the communicator or
adding functionality to an agent can be done by altering the agent’s
configured modules. In this way, the AgentLib not only allows users
to extend the available selection of communication protocols, but also
delivers on the promise of easily increasing complexity from concept to
real implementation.

To build modular agents, we chose the structure shown in Fig. 2.
It consists of the DataBroker, the Environment, and an array of func-
tional modules. These modules communicate with each other through
AgentVariables.
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Illustration of the complexity domains arising during controller development and integration.
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Fig. 2. Structure of a modular agent.

Modules. An agent may have an arbitrary number of modules that
define the function of the agent. Users may define behavior and func-
tions of custom modules by inheriting from the provided BaseModule
class. To communicate with other modules in an agent, a module keeps
track of so-called AgentVariables. It can set the value of an AgentVari-
able to share it with other modules of the same agent, and register
callbacks to be notified about the change in other modules’ variables
(see DataBroker). It can also register processes with the Environment,
defining recurring tasks. The configuration of an agent’s modules is
given by a JSON file or a Python dictionary, specifying their parameters
and mapping the variables that are shared across agents. Typically,
an agent has at least one communicator module that handles message
exchange with other agents or real devices. The AgentLib provides a
selection of different communicators and other functional modules, as
covered in Section 2.3. Additionally, modules can be provided through
plugins (see Section 2.4).

AgentVariables. The AgentVariable is the central communication object
throughout the AgentLib. It consists of the following main fields, along
with some metadata that is omitted here.

name: The local name of the variable.

alias: The public name of the variable.

value: The value of the variable. Can be of any JSON-serializable
type.

timestamp: The timestamp indicating when the value was last
updated.

source: Which agent the variable was sent from.

+ shared: Flag indicating whether the variable is shared with other
agents.

An important concept is the distinction between name and alias. The
alias is the public name of the variable. AgentVariables can be rec-
ognized by other modules as relevant communication objects, if the
alias matches. For module-internal use, the name can be independent of
the alias, which is often relevant for the implementation of a module.
With the source field, modules can specify from which agents they
want to receive a variable. The shared flag indicates whether a variable
should be sent to other agents, or if it is private for agent-internal
communication between modules.

Environment. The Environment handles the execution and synchroniza-
tion of recurring tasks within an agent. It is built on SimPy,* and allows
for execution of multiple concurrent tasks within a single computing
thread. Modules register so-called processes within the Environment
that perform a regular task and pass a timeout-event to the Environment,
informing it when to call the process next. The Environment enables
setting the execution speed of an agent to real-time, instant, or scaled
real-time. In single-process execution mode, all agents share the same
environment, whereas in distributed execution mode, each agent has
its own environment.

DataBroker. In contrast to the Environment, the DataBroker handles
event-based tasks within an agent, including communication between

4 https://simpy.readthedocs.io/en/latest/.
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Fig. 3. Visualization of message transport through the different layers of two agents, with MQTT communicators as example.

different modules of the same agent. The functional modules of the
agent register Callbacks with the DataBroker that are triggered when-
ever a module - either through a process or a different callback - sets
a new value on one of its variables.

2.3. Available modules

In the following, we introduce the existing modules for the AgentLib
and how to extend them. At the moment of writing, the following
modules exist in the AgentLib:

2.3.1. Communicators

All communicators that are included with the core library follow
the publish-subscribe pattern. Fig. 3 illustrates how communication is
handled between two agents. The communicator module of agent 1
sends a JSON message to the broker registered with the communica-
tor, e.g., an MQTT-broker. The subscribed communicator in agent 2
receives that message, and forwards it to the agent-internal DataBroker
as an AgentVariable. The functional modules of agent 2 that may be
interested in that particular variable have their callbacks triggered, and
can process the message. If there is an answer, the message is passed
through the other way around. If the communication protocol should
be changed, the communicator modules in agent 1 and agent 2 need to
be swapped, but no changes to the functional modules are necessary.
The following communicators are available with the AgentLib:

local: Directly sends the message to other agents that are run in
the same computing process. No protocol is needed, as agents
share the same address space in RAM.

multiprocessing: Uses Python’s builtin multiprocessing module to
send messages to agents across computing processes.

mgtt: Sends messages through an MQTT broker to all other agents
that are subscribed to the agent.

cloneMAP: Sends messages through MQTT to other agents hosted
via cloneMAP.

For the initial release, MQTT was chosen as the supported network
protocol, as it is an established communication protocol in IoT systems,
requires a low learning curve and offers a flexible payload structure.
Furthermore, it relies on TCP/IP transport protocol, enabling encryp-
tion via TLS. If other communication protocols are required, they can
be implemented by users of the framework by extending existing base
modules. Although standards for inter-agent communication like Agent
Communicate Language (ACL) defined by the Foundation of Intelli-
gent Physical Agents (FIPA) exist, AgentLib defines its own payload
protocol based on JSON. In comparison to other formats, JSON is a
human-readable, commonly used data format and efficient to parse and
validate in Python.

2.3.2. Simulator

During implementation and testing of an energy service, a substitute
for the real system is required. As this is such a common application,
AgentLib provides a module that is dedicated to running simulations.
It continuously executes simulation steps of a model while updating
exogenous inputs, sending the results in regular intervals. The simulator
accepts FMUs [42] as a model, as well as linear state space models.
By enabling the simulation of FMUs, it is possible to simulate models
created with Modelica, MATLAB Simulink or EnergyPlus, to name
a few. In the AgentLib MPC plugin, an additional model type based
on CasADi [23] is introduced, with which users can define arbitrary
differential-algebraic systems to simulate.

2.3.3. Controllers

AgentLib enables complex control patterns but also includes basic
conventional controllers. These include an on—off hysteresis controller
and a PID-controller.

2.4. Module customization and extension of the library
The currently available modules of the AgentLib are tailored towards

smart energy services and control algorithms for energy systems and
buildings. However, users can easily add custom modules to perform
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any task that can be written in Python within the AgentLib frame-
work. By providing a path to the source code in the agent’s JSON
configuration, the custom code can be executed. The custom module is
configured through the central configuration of the agent. Additionally,
users may write plugin packages that define modules that can be used
in the same way as the core modules, as long as the plugin is installed in
the Python environment. Together with AgentLib itself, we publish two
plugins, one for MPC and one for FIWARE integration, that we will use
for our demonstration.

2.4.1. AgentLib_FIWARE: IoT modules for integration with FIWARE

FIWARE is an open source framework for accelerating the devel-
opment of smart [oT solutions [43]. Previous work has shown how
FIWARE can be used for the implementation of smart control ser-
vices [44]. Communicators that connect with FIWARE are included
in the plugin AgentLib FIWARE. They make use of the FiLiP® package
that predefines clients for various FIWARE components. At the time of
writing, different types of communicators are available:

» IOTA-Agent: Typically, field devices connect FIWARE over IoT-
Agents (IOTA). In AgentLib, simply pair the module
iotamgtt.device with a module that provides measurements
and relays actuations (e.g. a simulator or a module connecting to
the physical system) to send measurements and receive actuator
commands. The control agents can communicate with the device
using the module iotamqtt.context_broker.
ContextBroker: The Orion context broker of FIWARE is the central
component of the FIWARE stack that provides update, query, reg-
istration and subscription functionality. The data itself is stored
in an underlying MongoDB database. Several modules exists
(context_broker.*) to communicate in a scheduled or
callback-based manner with single attributes or entities.
Time-series databases: To access time-series data for, e.g., model
training, communicators to QuantumLeap
time_series.quantum_leap and InfluxDB
time_series.influx exist.

2.4.2. AgentLib_MPC: Modules for nonlinear and distributed MPC

The MPC plugin provides JSON configurable MPC agents that rely
on gray-box or black-box models inheriting from the AgentLib MPCs
CasadiModel class. CasADi [23] is also the backend that is used to
define and solve the optimization problems of the MPC. The nonlinear
optimal control problems can be discretized by direct collocation or
multiple shooting and support C-Code generation thanks to CasADi,
allowing for fast computations. The plugin also provides modules for
distributed model predictive control (DMPC) based on the ADMM-
algorithm [45]. Adding a DMPC agent to a network can be done by
changing a small number of configuration fields from the decentralized
MPC, allowing the developer the confirm the model and MPC in a
standalone setting first.

2.5. Comparison to existing multi agent frameworks

Popular multi agent frameworks like JADE and SPADE require de-
velopers to define new agent classes for each agent type, with behaviors
directly coded into these classes. In these frameworks, communication
between behaviors requires direct access to the agents’ attributes or
dedicated message protocols, and changing communication methods
requires modifying the agent’s code. While AgentLib’s modules also
use inheritance patterns, the key distinction lies in how agents are
composed: Rather than coding new agent classes, AgentLib agents are
assembled from independent modules through configuration files. As

5 https://github.com/RWTH-EBC/FiLiP.
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shown in Fig. 3, this separation allows core functionality like communi-
cation to be handled by swappable modules, independent of the agent’s
main tasks. The DataBroker’s structured variable system enables the
seamless communication between modules. The configuration-driven
architecture enables rapid prototyping and simplified deployment. For
example, transitioning from simulation to hardware deployment often
requires only updating the communication configuration while keeping
control configuration intact. This separation of concerns allows domain
experts to focus on their control strategies. The accessibility of AgentLib
is complemented by ready-to-use modules for common tasks such as
simulation of FMU-models, standard controllers and MPC.

3. Example application: From concept to cloud-connected test bed
in four stages

To demonstrate the capabilities of our framework, we provide an
example how we implemented an advanced control scheme for room
ventilation, gradually increasing the complexity from the simulation
stage to a test bed. Let us consider the scenario, where we want to
implement a novel control algorithm on an IoT platform and run it
against a real test bed. Presumably, we might not be familiar with
the algorithm. Considering the algorithm development together with
the challenges a real system brings would seem like a daunting task.
AgentLib can help to break down this task into smaller steps. In this
section, we demonstrate an exemplary development process in four
stages.

. Local simulation

. Distributed simulation

. Connection with IoT infrastructure and cloud execution
. Experiment on test bed

A wWN =

The remainder of this chapter is organized as follows. First, the control
problem and solution algorithm are explained. Then, we will discuss
the implementation and results of each stage in detail.

3.1. Example application

We consider a resource sharing problem in room ventilation, where
the CO, concentration of four rooms has to be controlled. The rooms
need to keep their CO, concentrations below 800 ppm. The total fresh
air volume flow that can be provided to the rooms is limited. A DMPC
for the system must find the optimal distribution of the limited air
flow, so that the comfort violations remains minimal and are evenly
distributed. With a DMPC, a potentially large number of rooms can
coordinate the air flow distribution, avoiding a large central control
problem. The same problem has already been examined in simulations
by Li and Wang [16]. Our goal is to run the distributed controller
against a real system and accommodate for the full complexity that
comes with an experiment.

3.1.1. Test bench

The physical system is the test bed shown in Figs. 4 and 5. It
consists of a central ventilator and four isolated cabinets that each
encompass an air volume of about 2m?>. Each cabinet can have an
individual supply air volume flow controlled by a VAV. Additionally,
the cabinets can receive CO, injections individually to emulate the
presence of humans. The CO, valve is controlled through pulse width
modulation and fitted to emulate the occupancy of a 72m? reference
room. The local control of the test bed is handled by a Beckhoff™ PLC
(Programmable Logic Controller). We interface with the PLC through a
custom communicator module (see Section 2.4), which uses the pyads®
package.

6 https://github.com/stlehmann/pyads.
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Fig. 5. Schematic of the test bed.

3.1.2. Distributed model predictive controller
We consider an MAS consisting of an agent for each room, and a
supply air agent checking the air volume flow limit. The agents solve
the consensus problem
min  fe+ Y f;
i (€Y
st VE-V,=0 Vie{l,2,3,4},

where f. is the objective of the central ventilator, f; are the objectives
of the rooms, and the superscript C corresponds to the central venti-
lator. The consensus constraint on the individual air volume flows V;
ensures that the supply air agent knows the airflow of all rooms. The
central ventilator enforces the constraint

0=V = 2, Vi @
i

which defines the total volume flow V,,, as the sum of expected volume
flows per room. The total volume flow V,, is limited, while also

affecting the local objective of the supply air agent

fe=av Vi 3
where g, is a weight penalizing higher volume flow rates. The room
agents i have the objective of keeping the CO, concentration below a
maximum comfort bound. This objective is implemented through a soft
constraint

Kb, =5 < X2, @
with the slack variable s;, which is penalized in the local objective of
the room agent

fi= qs,is? %)

with the weighting parameter ¢,;. The evolution of the CO,-

concentration in a room i is modeled by the differential equation
. My .
dXco,; 'm'c'oz “ws = pair - Vi - (Xco,4 — Xco,.in)
P COy ( 6)

dt Vt * Pair
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where X, is the CO, concentration, n; is the number of occupants in
room i, mg02 is the mass flow of CO, emissions per person, M,; and
My, are the molar masses of the air and CO, respectively, and Xc, i,
is the CO, concentration in the supply air. V; is the volume of room i
and p,;, is the density of air. The actuation variable of the rooms is the
ventilation air volume flow V;.

The distributed optimization problem (1) is solved with the ADMM
algorithm. ADMM is a well-researched technique for distributed op-
timization, which we will cover briefly. For a thorough explanation
of ADMM, refer to [45]. For the ADMM algorithm, the Augmented

Lagrangian of problem (1) is required and reads:
LAYV = e+ XSt XAV=VO+ ZaIVi=VE s @)

with multipliers 4 and the penalty parameter p. From this Augmented
Lagrangian, an iterative procedure can be derived to find a local
optimum of the original consensus problem (1). In the following, we
will state the optimization problems that are solved by the local agents,
and state the iterative procedure to solve the consensus problem, as it
is used within this work.

The subproblem solved for room i at each iteration of the ADMM
algorithm is described by the following equations (the index i has been
omitted for readability):

Jroom (V()’ Xcoz(~),s(~)> =

. N ky2 kyk o Pk yravgky2 (82)
Ny xe, 000 D (w(s P4 2R Bk yesh )
k=0

1 dX o,

. k+1 _ yk 2>
skt XCO2 = XCoz +/t P dt (8b)

k

0 < Vk < pmax (82)
X¢o, =5 S X (8d)
Vke[0,...,N —1]. (8e)

The notation V(-) denotes all entries of this variable over the prediction
horizon N, where the exact dimension depends on the transcription of
the problem. The average volume flow V%* is the average between
the ventilator’s and the rooms’ value for the air volume flow, which
is determined in the ADMM coordination step (see Eq. (12)). The
subproblem which is solved by the central supply air agent reads

Jventilator (I/l()’ Vtor()) =
M

N-1
, 4 S p m (9a)
min Y <qm VE+ Y A+ 2w, —V,.‘”g)z)
i=1

ViOVia© 2
st.: 0= 2 vk-vEk (9b)
1
Vkel0,...,N —1]. (9¢)

The ADMM update steps are [45]

Vi(')UH « Jroom,i (ﬂ;;’(léavg)u) a0
Vic(’)'H1 = Jyentilator (ﬂic‘,u’(f/iavg)v) an
) V(.)L'-l-l +VC(_)L7+1

Viavg(,)uﬂ — ’+ 12)
A;:Jrl — ﬂ:} +p (Vi(')”l _ V[al:g(.)wl) 13)
AiC,v+1 — liC,v +p (ViC(.)zwl _ Viav&'(.)wl) (14)

Here, v is the iteration number. The algorithm is initialized with O for
all multipliers A. The initial guess for the volume flows V is initialized
as the average of each individual agents’ initial guess, which is obtained
to be in the center of the upper and lower boundaries for the volume
flow. We terminate the algorithm after a fixed number of iterations.
For subsequent control steps, the algorithm is warm-started with the
previous solution. Note that we describe the ADMM algorithm with
little generics, preserving the physical meaning of the variables in
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our problem. Our framework does however provide a fully generic
implementation of the ADMM algorithm for consensus and exchange
problems, allowing the solution of arbitrary distributed MPC problems.

3.2. Implementation in four stages

The following section guides the reader through the implementa-
tion of the distributed controller on the test bed. We implement four
versions of the control task, each introducing new complexities that
arise when controlling real systems. We consolidate our development
process into four stages for the sake of brevity, but note that many
combinations of the drivers of complexity introduced in Section 2.1 can
be varied independently, resulting in different development stages. The
development process is therefore flexible with regard to the needs of
the developer.

3.3. Stage 1: Local simulation

The first stage is the local simulation stage. This stage introduces
the modeling of our system and the numerical solution methods for
the controller. As process model for our MPC, we create a CasadiModel
with the Agentlib MPC plugin, where we implement the differential
equation (6). Additionally, we define the constraint (4) and the ob-
jective function (5) of the room. We also define a model for the
agent supervising the ventilator, consisting of the constraint (2) and
the objective (3). The admm_coordinated-module allows agents to
participate in a coordinated DMPC-network, where the coordinator
agent is fitted with an admm_coordinator-module. We configure
four agents with an ADMM module using the room model, one agent
with an ADMM module using the ventilator model, and a coordinator
for ADMM. To close the control loop, we also need a system to run the
distributed controller against. For that, we configure an agent with four
simulator modules from the AgentLib‘s core, and assign them the same
CasadiModel that the DMPC uses. Therefore, there is no model-plant
mismatch in stage 1. Fig. 6 shows how the agents are configured in
each stage. In stage 1 all agents are fitted with a local communicator
to allow for instant execution of the simulation. The MAS is executed
in a single-process environment with instant execution, i.e. no artificial
time delay.

Simulation results of stage 1

We simulate a scenario of 15min where the goal is to reach a
steady-state, tuning the parameters for MPC and ADMM in the process.
We end up with a prediction horizon of 7min with a step size of
60 s, discretized with direct collocation over Legendre polynomials of
second order. We set the penalty parameter p = 10~° and configure a
fixed number of ADMM iterations of 30. Each of the four rooms have
a different occupancy, with room 1 having the lowest, and room 4
having the highest occupancy, resulting in varying CO,-emissions per
room. Fig. 7 shows the evolution of the CO, concentrations and the
associated air volume flows in stage 1. We start the simulation with a
CO, concentration of 400 ppm in each room. As the distributed MPC
agents are aware of the occupancy in their room, they immediately
request adequate air supply from the ventilator agent, to avoid violating
the comfort bound of 800 ppm. There are still comfort violations even
though the total volume flow matches the maximum volume flow,
confirming that there is in fact a ventilation shortage and therefore a
need to coordinate distribution of total volume flow. We can confirm
that the agent with the strongest disturbance (room 4) is granted the
largest share of the total ventilation power. However, we can also
note that the steady-state CO, concentrations are not precisely equal,
indicating that the ADMM algorithm did not converge to optimality. As
were are using ADMM on a nonlinear problem, convergence to lower
accuracy is expected, and we accept this result.
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Fig. 6. Agent configurations over each stage of the development process. Changed configurations are shown in bold.

Execution time

In the following section, we give an overview over the computation
times and simulation overhead. The simulations were performed on
a laptop with an Intel i7-1355U CPU running Python 3.11. We used
CasADi’s C-Code generation to reduce time spent during the optimiza-
tion, exposing overheads of the framework as much as possible. We
analyzed the time spent on different tasks with the Python profiler py-
spy.” Running the first stage takes about 17 s, which includes 15 MPC
steps, each with 30 ADMM iterations across 5 agents, resulting in the
solution of 2250 nonlinear optimization problems (NLPs). Table 2 gives

7 https://github.com/benfred/py-spy.

10

the share of different operations of the total execution time. The largest
share with 81% is attributed to the solution of the NLPs occurring in
each agent. Other notable tasks include results saving, which includes
saving the complete prediction of optimization variables, inputs and
parameters of each of the 2250 NLPs to a CSV file. About 6.5% of the
runtime can be categorized as other, including tasks of the coordinator
agent, and overhead with regard to communication between agents and
modules.

3.4. Stage 2: Distributed simulation
In the distributed simulation stage, the agents are not run in a

single process, but in a separate Python process per agent. This ne-
cessitates the use of a network communicator, which exchanges JSON
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Fig. 7. Simulated CO, concentration and volume flow per room in stage 1.
Table 2 setpoint of room 4 is not exactly met, which can be explained by model-

Distribution of execution times per task in stage 1 determined with py-spy. The total
execution time was 17 s.

Task Percentage
NLP solving 81.0%
Saving MPC results 6.9%
MPC input preprocessing 3.3%
Optimization setup & C-code compilation 1.3%
Simulation 1.0%
Other 6.5%

serialized messages between the agents. In this case, we choose the
MQTT communicator, although we could have used the Multiprocess-
ing Communicator, eliminating the need for an MQTT broker. The
execution time of the simulation is switched from instant to real time
to accommodate for the network connection. With this execution setup,
we now consider effects like latency due to network connection and
latency in agent initialization, requiring synchronization. In this step,
we also exchange the simulation model, which before was the same
as the controller model, for a more sophisticated model that is written
in Modelica using the AixLib [25] and exported as an FMU [42]. We
include this step here for the sake of brevity, but generally advise to
keep the move to a distributed architecture separate from a model
change. The configuration of the MAS that is executed in stage 2 is
shown in the second row of Fig. 6, with changes highlighted in bold.
Note that the user does not have to rewrite any major code. Instead,
the shown changes are simple option changes in the configuration. If
this simulation were written without help of a framework, such large
changes would be impossible without diving into the execution code.

Results of stage 2

Fig. 8 shows the evolution of the CO,-concentration and the air vol-
ume flow for stage 2. Compared with stage 1, it is noticeable that there
are large comfort violations at the beginning of the simulation. This is
explained with startup times and the registration process caused by the
distributed execution with Python’s multiprocessing. While the agents
register with the coordinator, they miss the first control cycle and the
air volume flow for each room remains at its default value. However,
when the registration is completed, the agents correctly allocate the
limited supply air, quickly returning the rooms’ CO, concentrations
to an even distribution. We can also see that the local volume flow
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plant-mismatch between the CasadiModel and the Modelica model. In
the Modelica model, the actual volume flows are determined by a
ventilator and VAVs which are unable to provide the expected total
volume flow.

Execution and communication times

In this stage, we ran the simulation on the same laptop as before
(Intel i7-1355U CPU), but as the setup is distributed, each agent runs
on a separate computing process. As the agents run in parallel and
the ADMM implementation is synchronous, the optimization times are
determined by the slowest agent and network latency. The MQTT
broker is hosted on a virtual machine located in the same network. We
examined the execution times for a control step based on timers within
the admm-coordinator module and the solution stats of the local NLPs.
A single control step with 30 ADMM iterations includes 32 round-trip
messages sent between the coordinator and each local agent, and the
solution of 30 NLPs per agent. Execution of a control step took 2.4 s
on average measured by the coordinator. The slowest agent spent on
average 0.7 s for the solution of all 30 NLPs. Based on the profiling
results from py-spy, MPC data-handling and CPU-bound overhead of
the MQTT client account for no more than 0.2 s each per local agent.
This leaves 1.5 s that are unaccounted for by actions of the agent
that are lost on network latency and the MQTT broker. Considering
the number of messages per control step, the one-way communication
delay here is on average 23 ms. We can see that, even though the MQTT
broker was located within the same network, communication makes up
for about two thirds of the algorithm execution time in this case.

3.5. Stage 3: Connection with IoT infrastructure

For the third stage, our goal is to execute the agents on cloud
infrastructure, and integrate an IoT middleware for data manage-
ment. We use cloneMAP to deploy our agents in containers, and
FIWARE as an IoT middleware. The purpose of this stage is to demon-
strate how scalable infrastructure can be incorporated in the testing
phase. For cloneMAP, the mqtt-communication module of each Agent
is changed to a cloneMAP module, which allows for communication
with the cloneMAP middleware and other Agents in cloneMAP through
MQTT. The JSON-Configs of the Agents are posted to the REST-API of
cloneMAP.
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Fig. 8. Results stage 2 and 3. The continuous lines show actual measurements from the Modelica model, while the dash-dotted lines show the set points received from the MPC.

In the previous stages, we did not discriminate between messages
that are sent between control agents, and messages that are exchanged
with the Simulator, i.e. sensor readings and actuator set points. Now,
we consider the case, where the sensor and actuators of our con-
trolled system are managed through FIWARE, but we still simulate the
system. We introduce two additional communicator modules to com-
municate sensor and actuator values with FIWARE, while the ADMM
communication messages are handled over the cloneMAP MQTT com-
municator. The simulator is configured with an IOTA-communicator
module, which communicates with the FIWARE IOTA devices related to
its inputs and outputs. The control agents are configured with a context
broker communicator, which synchronizes the changes of values in
the agent with the values in the ORION context broker. Through
utility functions of the AgentLib FIWARE-plugin, we can automatically
generate the required entities and devices in FIWARE based on their
agent configuration, allowing for easy setup of the FIWARE emulation.
Hence, this stage emulates the commissioning of an IoT-based system
using FIWARE. The configuration for stage 3 is also shown in Fig. 6.

The results of stage 3 are almost identical to the results from stage 2
(Fig. 8), indicating that the communication overhead of FIWARE does
not significantly impact the effectiveness of the control strategy.

3.6. Stage 4: Implementation on test bed

In the final stage, we switch the simulation model for the test bed.
We change the simulator module with an ads_module, which is a
custom module that handles communication with Beckhoff PLCs. The
PLC has an internal control that can be overwritten by our control
algorithm, reads the sensor signals and sends the actuator signals. The
agent with the ADS module is run on the machine that is connected to
the PLC. The other agents are run on a different machine. As stage 3
already showed the capability of containerized execution, we opted
for multiple processes in this stage for easier debugging. The final
configuration of the MAS is shown in Fig. 6.

Results of stage 4

For the final stage, we adjusted some parameters to accommodate
for the real system. The maximum air volume flow is set to 100 '%z
and the occupancy values are changed, but their relative magnitude is
kept as before. Fig. 9 shows results for a 15 min experiment in the final
stage. Room 4, which has the highest load, violates the comfort bound,
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but not by an unreasonable amount, just as in the previous stages.
Rooms 2 and 3 also have small comfort violations. We would like to
restate that these violations are due to the design of the experiment, as
only an insufficient available airflow results in meaningful coordination
between the agents. As the test bed allows for larger volume flows, the
limit of the total volume flow is purely virtual. Therefore, we have some
violations of the total volume flow at the beginning of the experiment.
However, those are due to the inability of the room 2 VAV to precisely
hit the set point. Looking at the execution and communication times,
we see little difference between execution and communication time
compared to stage 2, however the system has a larger control delay, in
the sense that the local VAVs take some time to provide the requested
volume flow.

4. Reusing the code for new applications: Multi-room supply tem-
perature consensus

Having demonstrated the framework’s effectiveness in the venti-
lation scenario, we now showecase its reusability and scalability by
applying it to a different building control application: temperature
regulation. The task is to control the temperature of n rooms while
negotiating a supply temperature, as shown in Fig. 10. This problem
can be solved as a nonlinear DMPC, where room agents set their
radiator valve position uy,; as local controls, the heating agent sets
the reference supply temperature TS’u"f ., and the supply temperature
Tupply is the consensus variable. We reuse the existing ADMM-modules,
adjusting only the configured variables and model class.

4.1. Modeling

To model the thermal dynamics of the heating system, we employ
a two-capacity RC model for each room (Fig. 11). This model captures
the heat transfer between the air, walls, and radiator. The radiator’s
heat transfer rate, Q,,4, is modeled using a modified NTU (Number of
Transfer Units) method, which, while typically used for heat exchang-
ers, effectively captures the diminishing returns relationship between
valve opening and heating power in our radiator model:

Qrad =€ 11 Copater (Tsupply = Tir) (15)
where the effectiveness ¢ is
e=1-—eNTU (16)
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Fig. 9. Experimental results of the distributed controller on the test bed. Dash-dotted lines display the setpoints determined by the distributed controller and continuous lines

show the measurements.

Room 1 | Uvalve,1
r;fg{ply Heat Pump Room 2 | Uvalve,2
Uyalve,n Room n Room 3 Upalve,3

Fig. 10. Schematic of the multi-room heating control problem.

with
o
NTU = —*d

>
m - Cyater

a7

where a,,4 represents the overall heat transfer coefficient of the radi-
ator, cyqeer is the specific heat capacity of water, Ty is the supply
water temperature and Ty;, is the room air temperature. The mass flow
rate of water through the radiator, s, is controlled by the radiator valve
position, uy,, (ranging from 0 to 1), and is given by

(18)

m= (”valve +e)- Hmay

13

where i, is the maximum mass flow rate of water through the
radiator and ¢ > 0 is a small positive constant for numerical stability,
preventing division by zero when the valve is fully closed.

Heat transfer between other nodes i and j (e.g., air and walls) is
modeled using a standard thermal resistance approach

Qij =a; - (T =T, 19)

where Q'ij is the heat flow rate between nodes i and j, «;; is the
heat transfer coefficient between nodes i and j, and T, and 7; are the
temperatures of nodes i and ;. The thermal capacities and heat transfer
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Fig. 11. RC-model of the room heating system showing thermal capacities and heat flows.

coefficients of the rooms were randomly generated based on assumed
floor areas sizes between 15 m? and 30 m2. The heating supply agent
employs a stationary model where the reference supply temperature
Tsrlfl{ply is effective immediately.

We give the heating supply agent a linear cost term proportional
to the supply temperature Ty, €ncouraging operation at low Tgypp1y,
which is efficient for e.g. heat pumps without adding numerical com-
plexity. The room agents have a linear objective term with regard
to the valve opening u,,,., and a quadratic penalty for violation of
comfort bounds, ensuring the occupants comfort while encouraging
energy efficient behavior. To improve ADMM convergence, the supply
temperature, Ty, is scaled as follows:
Tsupply

40
This scaling factor of 40 was chosen to normalize the coupling variable
to be on the order of 1. Because the coupling variable appears in the
agents’ objectives both as a linear term and within a quadratic penalty
term, this normalization helps balance the contributions of these terms
and improves the convergence speed of the ADMM algorithm. It also
simplifies the tuning of other weights in the local objective functions
relative to the ADMM penalty parameter. The implementation of this
model is shown in the Appendix in Fig. 17

T,

supply = (20

4.2. Implementation and results

We simulated the MAS of 50 rooms for a week. The MAS configura-
tion can be found in Fig. 12, consisting of 103 agents. We use the same
model for the simulation and the MPC. As the internal wall temperature
Tan is not directly measurable in a real-world scenario, we employ a
Moving Horizon Estimator (MHE) approach to estimate its value. The
AgentLib MPC plugin provides an MHE module, which we configure to
estimate T, based on past inputs and measurements over a receding
horizon. The MHE module utilizes the same process model as the MPC.
A custom comfort module generates time-varying comfort boundaries
based on the time of day and day of the week. A weather agent has been
added that informs all rooms about the weather forecast, replaying
historical data from a file. The subscriptions in the room agents need
to be updated with the ID of the weather agent to automatically listen
to weather updates, however no code changes are necessary for the
integration. As can be seen, data from various sources or preprocessing
steps can be added seamlessly to existing code by adding or swapping
modules and agents.

Fig. 13 shows the evolution of the room temperatures, comfort
violations, valve positions and the agreed supply temperature. Since
the global goal is to minimize the supply temperature Ty, the
intuitive solution for this problem is that the room with the highest heat
losses should open its valve fully, requesting just the required supply
temperature. In the valve plot of Fig. 13 the envelope shows there is
always a room with valve opening 1, indicating the DMPC successfully
finds this solution, while dynamically changing T, at 8am and

supply
6 pm, quickly adhering to the setpoint changes. The average comfort
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violation over a week was 0.8 Kh, with the worst room exhibiting
22.3 Kh of discomfort, caused by a constant offset of around 0.13 K.
In the 50-room heating scenario, each agent required an average of
23 ms per DMPC iteration, with 20 iterations performed per time step,
resulting in a computation time of about 33 s per control step including
all overhead and all agents, even without parallelization.

4.3. Implementation effort

Implementing the multi-room heating control use case leveraged the
existing modules and required no adaptation of the core codebase. The
primary development effort focused on the following tasks:

» Thermal Model Development: The model itself represents a
relatively standard approach. Implementing it merely requires
inheriting from a Python class and writing down the equations
using CasADi (see Fig. 17). In a real-world implementation, this
would also include tuning the model with real data.

Comfort and Weather Modules: Two new modules were im-
plemented for this use case: a comfort module and a weather
module. This is a quick task and required inheriting from the
BaseModule and implementing the core logic. As the source of
these data will usually be unique, it makes sense to have a custom
implementation. The implementation of the weather module is
given in Fig. 16.

Configuration Scripting: To facilitate the creation and man-
agement of configurations for a large number of rooms (50 in
this study), a dedicated configuration script was developed. This
script automates the process of generating agent configurations,
assigning unique agent IDs, managing communicator subscrip-
tions, and populating parameter values based on the random
room generation process. The generated configurations also serve
as documentation of the generated parameterization.

Tuning: We selected suitable weights for the local objectives and
the ADMM penalty. This was accomplished by doing a few short
simulations with a lower number of agents.

Moving forward, one can proceed similarly to the stages described
in the ventilation use case, swapping the simple models for sophis-
ticated ones, moving to parallel real-time execution, swapping the
historic weather forecast for a live one and finally, controlling a real
building. Building up to this, one might add modules emulating sensor
failures on the one hand, and watchdogs or data validation on the
other hand, testing and improving the system’s resilience. As the MPC
becomes more sophisticated, models can be swapped and modules can
be added to handle the required data, for example connecting to an
API for live electricity prices, listening to user setpoints or updating
model parameters through online-learning. As the flow of variables
is handled through the configuration files, it can be rerouted without
touching existing control implementations. For example, input data to
the MPC module can be validated by a pre-processing module, and post-
processors can catch invalid controls. Alternatively, one might want to
test a different controller, reusing the weather and simulation agents
for a fair comparison.
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Fig. 12. Agent setup for the multi-room heating control problem.
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Fig. 13. Simulation results for multi-room study. Black lines show the average of all rooms. The discomfort area is shaded in gray in the top plot. In the plot for the valve position
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the black solid line is the average of all rooms, while the dotted lines show the minimum and maximum at each point in time.

Listing 1: Stage 4. Local Execution

1 import logging 1 import logging

2 from agentlib.utils.multi_agent_system 2 from agentlib.utils.multi_agent_system
import LocalMASAgency import MultiProcessingMAS

3 from create_configs_stage_1 import 3 from create_configs_stage_4 import
make_configs make_configs

4 4

5 def main(until=180, log_level=logging.INFO): 5 def main(until=180, log_level=logging.INFO):

6 logging.basicConfig(level=1log_level) 6 env_config = {"rt": True}

7 env_config = {"rt": Falsel} 7 mas = MultiProcessingMAS (

8 mas = LocalMASAgency ( 8 # returns list of json configs

9 # returns list of json configs 9 agent_configs=make_configs (),

10 agent_configs=make_configs (), 10 env=env_config,

11 env=env_config, 11 log_level=log_level,

12 ) 12 )

i3] mas.run(until=until) 13 mas.run(until=until)

14 14

15 if __name__ == "__main__": 15 if __name__ == "__main__":

16 main(until=3600, log_level=logging.INFO0) 16 main(until=3600, log_level=logging.INFO0)

Listing 2: Stage 4. Distributed Execution

Fig. 14. Comparison of the main python file for different testing stages.
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1
2

3
4
5
6
7
8
9
10
11
12

32
33
34
35
36
37
38
39
40
41
42
43
44

45

Listing 3: JSON config for the simulator

"id": "Simulator-Agent",

"modules":
{
"type": "simulator",
"model": |
"type": "fmu"
: B

"path": "models/hil_binary.fmu"

1
I

"t_sample": 5,
"outputs": [

{
1

"name": "roomBus[1].C02Con_out",
"description": "Room 1 CO2 concentration",
"alias": "urn:fiware:Room1/C02"

1

1,
"name": "roomBus[2].C02Con_out",
"description": "Room 2 C02 concentration",
"alias": "urn:fiware:Room2/C02"

I
1,
"inputs": [
f

1

"name": "conCenFan_oveAct_u",
"description": "Actuator signal central famn",
"alias": "urn:fiware:CentralAHU/VDot"

1

fs

{
"name": "disRoolOcc_oveAct_u",
"description": "Number of occupants in zone",
"alias": "urn:fiware:Rooml/Persons"

fs

"type": "mqtt",
"url": "mqtt://xxx.xx.Xxxx.Xx:1883",
"subscriptions": [

"room_1",

1
I

]

agent from stage 2

SN NEVEVEN)
AW =
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1 "id": "PLC-AGENT",
2 "modules": [
3
4 "type": |
5 "file": "../ads_module.py",
6 "class_name": "ADS"
T
8 "plc_ip": "XXX.XX.XXX.XX.X.X"
9 "plc_port": "851",
10 "t_sample": 3,
11 "read_values": [
12 {
13 "name": "Zones.Zone[1].C02_concentration",
14 "description": "Room 1 CO2 concentration",
15 "alias": "urn:fiware:Room1/C02"
16 b
17 {
18 "name": "Zones.Zone[2].C02_concentration",
19 "description": "Room 2 CO2 concentration",
20 "alias": "urn:fiware:Room2/C02"
21 b,
22 a0
23 s
24 "write_values":
25 {
26 "name": "SupplyAir.target_volume_flow",
27 "description": "Actuator signal central fan",
28 "alias": "urn:fiware:CentralAHU/VDot"
29 }s
30 {
31 "name": "Zones.Zone[1].number_of_occupants",
32 "description": "Number of occupants in zone",
33 "alias": "urn:fiware:Rooml/Persons"
34 f
35
36 ]
37 },
38 |
39 "type": "fiware_iota_client",
40 "devices": [
41 [
42 "entity_name": "urn:fiware:CentralAHU",
43 "attributes": [
44 {
45 "name": "VDot",
46 "type": "Number",
47 600
48 |
49 |

Listing 4: JSON config for the PLC Agent
from stage 4

Fig. 15. Comparison of agent configurations for different testing stages.

import agentlib
import pandas as pd

class WeatherForecastConfig(agentlib.BaseModuleConfig):

data_file: str

ambient_temperature: agentlib.AgentVariable

name="t_amb", type="pd.Series"

)
t_sample: float = 600 # seconds

forecast_length: float = 7200 # seconds

= agentlib.AgentVariable (

shared_variable_fields: list[str] = ["ambient_temperature"]

class WeatherForecast(agentlib.BaseModule):

config: WeatherForecastConfig

def __init__(self, config: dict, agent:

agentlib.Agent):

super () . __init__(config=config, agent=agent)
self.data = pd.read_csv(self.config.data_file)

def process(self):
while True:

t_amb = self.get_forecast()

self.set("t_amb", t_amb)

# abstract method to

implement regular tasks

# sends variable to DataBroker

yield self.env.timeout(self.config.t_sample) # returns control back to environment

def get_forecast(self):
current_time = self.env.time

# helper method

end_time = current_time + self.config.forecast_length
mask = (self.data.index >= current_time) & (self.data.index <= end_time)

return self.datal[mask]

def register_callbacks(self):

pass # this module does not react,

# abstract method to implement asynchronous callbacks
it only sends proactively

Fig. 16. Implementation of the weather forecast module.

16



S. Eser et al.

import casadi as ca

def compute_q_rad(valve_setpoint, UA_rad,
5 m = (valve_setpoint + le-4) * (m_max)
6 C =

return Q_rad

N

class RoomModelConfig(CasadiModelConfig):

.y # rest of states

]
parameters:
CasadiParameter (name="C_air",
op # rest of parameters

List [CasadiParameter] = [

[

]

outputs: List[CasadiOutput] =

o U W

class RoomModel (CasadiModel):
config: RoomModelConfig

SN T L N e e e e ===

¥
®

30 def setup_system(self):

: Q_as = self.UA_as * (self.T_solid -
32 Q_aa = self.UA_aa * (self.T_ambient
33 Q_sa = self.UA_sa * (self.T_ambient
34 Q_rad = compute_qg_rad(

35 self .valve_setpoint,

36 self.UA_rad,

7 self.c_water,

8 self .m_max,

9 self.T_supply * self.T_scale,

0 self.T_air,

1 )

]

3 self.T_air.ode =
4 self.T_solid.ode =
5 self.T_supply_scaled.alg =

17 # Soft
18 self.constraints =

constraints
[(self.T_lower,

# Cost function
objective =
return objective

1
2 from agentlib_mpc.models.casadi_model import *

c_water,
# add small leakage mass flow for stability

m * c_water
7 NTU = UA_rad / C
8 effectiveness = 1 - ca.exp(-NTU)
9 Q_rad = effectiveness * C * (T_supply - T_air)

value=5000,

(Q_as + Q_aa + Q_rad) /
(-Q_as + Q_sa) / self
self.T_supply

self .T_air + self.T_slack_lower,
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m_max, T_supply, T_air):

3] inputs: List[Casadilnput] = [

1 Casadilnput(name="valve_setpoint", value=0.5),
5 ., # rest of inputs

6 ]

7 states: List[CasadiState] = [

8 CasadiState (name="T_air", value=20, unit="K"),

description="Heat capacity of air"),

[CasadiOutput (name="T_supply_scaled")]

self.T_air)
- self.T_air)
- self.T_solid)

self.C_air
.C_solid
/ self.T_scale

float ("inf"))]

self.valve_setpoint * self.r_valve + self.w_slack * self.T_slack_lower**2

Fig. 17. Implementation of the heating model.

5. Discussion and limitations

The AgentLib framework aims to streamline the development and de-
ployment of ACS for energy systems, offering a modular and extensible
architecture. While the framework offers significant benefits in terms
of flexibility and code reusability, certain limitations exist. This section
discusses these aspects, comparing AgentLib with existing approaches
and highlighting its contributions to the field of energy systems control.

5.1. Advantages of the framework

AgentLib addresses several key challenges in developing and de-
ploying advanced control systems for energy applications, offering
practical solutions to issues highlighted in the literature. As discussed
by Blum et al. [19], running ACS such as MPC in the real world
requires handling multiple sources of data, testing and tuning, and
implementing watchdogs to trigger fallback controls. The framework’s
modularity, combined with its staged development process (Fig. 6),
enables a flexible and efficient workflow to deal with these tasks. This
is clearly demonstrated by the two distinct use cases presented: the
ventilation control and the multi-room heating scenario. In both cases,
the core control algorithms and agent structures were readily adapted
and reused, significantly reducing development time and effort. Test
runs and tuning can be performed locally, before introducing network
communication, cloud-connection and real world control. This adapt-
ability is further exemplified by the seamless integration of diverse
functionalities within individual agents. For instance, the heating sce-
nario incorporates MHE modules for preprocessing sensor data and a

17

module to create constraint trajectories based on occupancy schedules
while listening to a dedicated weather agent. Furthermore, AgentLib
facilitates the integration of diverse data sources and communication
protocols. This is evident in the transition from simulated environments
to real-world hardware, where the same agent logic can be used with
different communicator modules, swapping a simulated PLC connection
for a real one without altering the core control code (see comparison
in Fig. 15).

5.2. Scalability

Beyond ease of development and modularity, AgentLib provides a
foundation for building robust and scalable control systems capable
of handling the complexities of real-world energy applications. A key
aspect of this is the framework’s ability to manage a large number of
interacting agents efficiently. The 50-room heating example demon-
strates this scalability, showcasing the deployment of a distributed
control system with numerous agents, each operating with its own
parameters and constraints. Crucially, this was achieved using a consis-
tent agent template and configuration-driven approach, minimizing the
development overhead associated with managing a large-scale system.
The performance analysis (see Table 2) further reinforces this point,
demonstrating the low overhead introduced by the framework for
essential tasks like inter-agent communication and data logging, even
in local testing environments. This scalability is particularly relevant
in the context of energy systems comprising a vast array of intercon-
nected components. Building control systems, smart grids, and district
heating networks are prime examples where the ability to manage and
efficiently coordinate numerous interacting agents is essential.
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5.3. Addressing the unique challenges of energy systems

Energy systems are often highly customized, decentralized, and het-
erogeneous, integrating diverse components like renewable generation,
storage, and flexible loads. This complexity is further compounded by
the need to incorporate data from various sources, such as weather
forecasts, market prices, and sensor networks. As shown in this study,
AgentLib is especially suited for applications within BES. That said, it
might also be suitable for other applications in energy management.

Consider a number of distributed energy resources (DER) within
a virtual power plant, aggregating their capacity and providing grid
services. Each DER acts as an independent agent, optimizing its own
operation while communicating with a central market agent that ag-
gregates the available power. The local constraints and data sources of
each DER can be individual, while potential bidding or optimization
strategies — iterative or non-iterative — can be implemented through a
common module. While controlled studies on this topic exist [46,47],
moving on to live experiments is intimidating, given the real impact on
consumers and markets and the need to convince the owners of such
facilities to participate.

In another case, consider the coordination of optimal electric vehicle
charging, including factors like grid capacity, electricity prices, and
individual vehicle needs. Agents representing each vehicle would have
access to local constraints, such as current maximum charging speed
based on temperature and state of charge or user preference like a
required state of charge by a certain time limit. The central charg-
ing agent would access current grid conditions and electricity prices,
optimally scheduling the available charging power among connected
vehicles. Existing studies on this topic perform simulations [48,49],
but moving to an experiment will require rigorous pre-testing and
confidence in the models and algorithms.

AgentLib would be ideal for such studies, allowing flexible commu-
nication with both other agents and the local system through different
protocols, while encouraging the extensive pretesting required before a
real experiment on such facilities. While AgentLib offers advantages for
distributed systems common in energy, it might not be the best choice
for all applications. For instance, in robotics, real-time control loops
often require millisecond-level response times, which might be difficult
to achieve with the overhead of a Python-based framework. Similarly,
large-scale chemical processes often involve control systems tailored
to the specific plant design with high demands on performance and
reliability. In these cases, the development cost of a bespoke solution
can be justified by the scale of the operation and the criticality of
performance.

5.4. Limitations

While AgentLib significantly simplifies the development of
distributed control systems, some limitations remain. Users still need
to familiarize themselves with the framework’s core concepts, such
as aliases and the callback-based communication of the DataBroker.
Especially the generation of configuration files contains the main com-
plexity when using AgentLib. Debugging in a distributed environment
also presents inherent challenges, although AgentLib provides tools like
single-process execution and granular logging to aid in this process.

Furthermore, while the framework promotes modularity and often
allows new functionalities to be added by simply integrating new
modules, there are cases where modifications to existing modules might
be necessary. For instance, integrating a new module that requires data
not currently provided by other modules necessitates updating the rele-
vant sending modules. Similarly, while rerouting or bypassing existing
data flows can often be achieved through new modules (e.g., using a
watchdog to override MPC outputs), directly influencing the internal
behavior of a module (e.g., enabling/disabling the MPC algorithm
itself) might require modifications to the module’s code. However, the
clearly defined interfaces and modular structure of AgentLib generally
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minimize the scope of such modifications, making them relatively
straightforward to implement.

Finally, the framework primarily focuses on the software aspects
of the control system. Addressing hardware-specific issues, such as
actuator availability or communication network reliability, requires ex-
ternal mechanisms. Similarly, model building and parameter estimation
are not directly addressed by the framework, although it provides a
structured environment for integrating these tasks.

To overcome these limitations, developments in two areas are crit-
ical. First, a growing library of maintained modules including tem-
plates for specific data sources or protocols, or data-driven modeling
will help to build more complex applications in less time. Second,
to manage complex MAS, the development of utilities and interfaces
for generating, visualizing and validating a number of interconnected
configurations is needed.

6. Conclusion and future perspectives

With AgentLib we present a modular Python library that accelerates
the development and research of controllers and distributed systems
for energy applications. By providing an open-source software complete
with examples relevant to energy-engineers, we aim to encourage adop-
tion of more ambitious control systems. In particular, AgentLib supports
researchers to elevate their controllers from an early design stage to-
wards prototypical integration. It provides a standardized definition of
modules, creating agents that are modular within themselves, allowing
for easy extension and modification of an agent’s functionality.

AgentLib includes functionalities for common tasks out of the box,
including simulation of FMUs and standard controllers like PID. Mod-
ules supporting performant nonlinear MPC based on CasADi are pub-
licly available from the plugin AgentLib MPC. The plugin also contains
an implementation of the ADMM algorithm, allowing MPC agents to
be executed either standalone or as part of a distributed MPC net-
work. Communicators for connection to the open source IoT-platform
FIWARE are released with the plugin AgentLib FIWARE.

Future work will include the release of additional plugins, and the
further development of existing ones, with a focus on energy applica-
tions. There are also ongoing efforts to develop utility features for the
library, such as utilities to configure agents and a graph visualization
for MAS. Another field of interest should be the automatic generation
of configurations for real systems, possibly based on existing semantic
data, or the application of agents as digital twins.
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Appendix. Code examples

The following section provides some example code and configura-
tion. The listings in Fig. 14 show one way to easily start a MAS, with
differences between local simulation and distributed real time execu-
tion highlighted in the line numbers. Note that it is possible to start
distributed agents on separate machines and have them communicate,
the MultiprocessingMAS starting agents from a single script is
merely a utility. The main notable differences between the two are the
environment config, the used MAS-utility and the location where the
log level is specified.

Of course the configuration of the agents also needs to be adjusted
between stages, accounting for different communicators or simulators.
Fig. 15 shows the comparison between the simulator config from
stage 2, implementing a FMU simulation, with the PLC-connector that
replaces it in stage 4. In this configuration, the type keyword specifies
the location of the module implementation, which can be a string for
standard modules (like simulator). The configuration can contain
fields specific to that module, like an IP-address or the path to the
FMU. The modules contain the same variables through which they
communicate with the other agents. From the variable definition it
can be seen that the names differ, as they need to match the local
names within the PLC or the FMU respectively, while the alias (i.e. the
public name) is consistent to match what other agents expect. The
communicator config at the bottom changes as well, going from the
mgtt module to the FIWARE communicator.

As an example of how to implement a module, Fig. 16 shows the
implementation of the weather module from Section 4. The module
consists of a config class and the module implementation. The con-
fig defines the AgentVariable that is used to communicate and static
parameters like the sample time or the file location. In the module
implementation, the parameters from the config can be accessed di-
rectly, while AgentVariables can be accessed through get and set
methods, where the latter will automatically inform other modules
(i.e. communicators) of the change. A module always contains the
process and register_callback methods, and can contain any
number of helper methods, for example get_forecast in this case.
For a live weather module, the get _forecast might make calls to a
weather API, using authentication info from the config, while the rest
of the module structure remains unchanged.

Fig. 17 shows the implementation of the temperature controlled
room based on Egs. (15)—(20).

Data availability

The general framework and algorithms of this work are available
as open-source code under https://github.com/RWTH-EBC/AgentLib
Specific case studies or models are made available upon request.
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