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Abstract

The generation and optimization of bioprocesses and strains for industrial application as well as
the investigation of fundamental biological research hypotheses require adequate phenotyping ex-
periments. Generally, there is a trade-off between informativeness and experimental throughput
which became ever more relevant as both the creation of genetic diversity and the cultivation of
mutant strain variants were increasingly accelerated. Isotopic labeling experiments are located at
the extreme of high informativeness and low throughput with the additional limitation of significant
associated costs per experiment. Commonly, they are conducted in lab-scale bioreactors, shaking
flasks, and as the result of recent advances in mini-bioreactors at a scale ranging from liters to
milliliters.

In the present dissertation, an automated, miniaturized, and parallelized experimental setup tak-
ing advantage of modern liquid handling robots and microbioreactors is established and validated.
The development of an automated quenching method for this workflow enables the analysis of la-
beling patterns from free amino acids and intermediates of the central carbon metabolism, even at
a microliter scale. It is then embedded into an overarching integrated pipeline for isotopic labeling
experiments and applied to biological case studies. In order to realize such a pipeline, multiple
Python programs are constructed and most notably the open source package PeakPerformance
using an innovative peak fitting approach by Bayesian inference is developed and utilized for the
evaluation of chromatographic peak data.

For the first application study, a novel bioprocess modelling approach for estimating intracellular
metabolite pool sizes based on '3C-labeling data is developed and demonstrated in Corynebac-
terium glutamicum. Thereby, the pool sizes of multiple amino acids the synthesis pathways of
which are branching from the glycolysis were identified with a relatively high certainty.

For the second study, the first ever automated isotopically non-stationary '*C-metabolic flux analy-
sis is conducted at an unprecedented microliter scale to elucidate the fluxome of the evolved strain
C. glutamicum WT_EtOH-Evo grown on ethanol as the sole carbon source. Since no fluxome of
C. glutamicum grown exclusively on ethanol had been published prior, new insight regarding the
pertaining pathway usage was generated, in particular an increased glyoxylate shunt activity com-
pared to other substrates entering the central carbon metabolism via acetyl-CoA.
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1 Introduction

1.1 The principle of isotopic labeling experiments

Isotopes as defined by International Union of Pure and Applied Chemistry (IUPAC) recommenda-
tions are "nuclides having the same atomic number but different mass numbers" [1], i.e. elements
with an identical number of protons but a varying number of neutrons in their core. A selection of
isotopes relevant to the field of isotopic labeling experiments (ILEs) may include but not be limited
to 13C, 14C, 180, 2D, and '°N. These heavy isotopes can be observed in nature as a minuscule
fraction of their respective elemental species — e.g. '>C makes up [98.84, 99.04] % and '3C [0.96,
1.16] % of the total carbon on Earth [2] — and analytically differentiated by their mass difference
of about 1 Da. Since there are sufficiently sensitive analytical methods available to detect this
difference, they can be thought of and utilized as molecular labels.

ILEs, then, revolve around the incorporation of substrate species enriched with heavy isotopes at
specific positions into a target organism and the subsequent analysis of arising metabolite labeling

states (figure[1.1).

extracellular

intracellular
amino acids

OO0 00O
NS
060000 €= OO0 €» 6600

central carbon metabolism (CCM)
intermediates

biomass

products

input substrate

(1,2-13C D-glucose) by-products

0 % 13C enrichment

Figure 1.1: Portrayal of the '3C-ILE principle. Cells are grown on a substrate enriched with the heavy
carbon isotope '3C at pre-defined positions and the labeling states of either free CCM intermediates, free
amino acids, or proteinogenic amino acids are analyzed.

In the portrayed example, the substrate D-glucose (Glc) is labeled at the first and second carbon
atom and therefore denominated as 1,2-'3C Glc. While there are applications for all listed heavy
isotopes, most ILEs rely on carbon isotopes since the central carbon metabolism (CCM) con-
tains many reactions facilitating positional changes of C atoms, thereby increasing the variety and
thus informativeness of the resulting metabolite labeling patterns. During the distribution of heavy
isotopes across the metabolic network, the positional enrichment of intracellular metabolites, prod-
ucts, by-products, proteins, and biomass is a result of the mixture of labeled substrate species, the
network structure, pathway usage, and intracellular reaction rates [3]. The observation of these
labeling states accordingly allows the inference of aspects of the organism’s phenotype. Com-
monly, an experiment is focused on one subset of metabolites referring to either proteinogenic
amino acids, free amino acids or free CCM intermediates such as sugar phosphates and organic
acids.
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After an ILE has been conducted, the labeling states of the selected metabolites can be detected
with several analytical methods, i.e. nuclear magnetic resonance (NMR), gas chromatography
coupled to mass spectrometry (GC-MS(/MS)), and liquid chromatography coupled to mass spec-
trometry (LC-MS(/MS)). These will be addressed in more detail in one of the following sub-chapters
(see[1.3) but suffice to say that all these methods are adequate for the purpose of ILEs and have
specific up- and downsides. In actuality, though, due to the large investment cost of such devices
the experimenter will have to work with what is present at their laboratory.

Carbon labeling experiments can be further subdivided depending on whether the stable '3C or
the radioactive '*C were employed. Historically, '4C tracer experiments were conducted e.g. to
elucidate metabolic pathways of microorganisms [4, [5] but were almost entirely superseded by
13C. While the detection of a labeled molecule is not problematic with '#C labels, the positional
resolution of a specific label within a molecule necessitates the extraction and complete chemical
degradation of that molecule whereas the aforementioned analytical devices are able to measure
the labeling states of a molecule within a mixture [6]. There remain some applications for 14C
isotopes in ILEs, though, e.g. in plant research a dual approach using both '3C and '“C has
been applied in recent publications [7, |8]. Regarding other isotope species, 80 has been used
in proteomics [9] and '°N in field [10] and marine [11] experiments as well as to increase the
positional information obtained in LC-MS/MS measurements [12], to name just a few examples.
The present thesis is focused entirely on '3C-ILEs which, too, have been employed for pathway
elucidation [13] and to determine intracellular reaction rates of parts [14] or since the publication
of a pioneering study the whole of the CCM [15].

Having addressed some of the possible applications, a state of the art ILE workflow is presented in
figure[1.2] The first step comprises pre-experimental considerations not all of which may apply for
every ILE. For example, while the conscious choice of a labeled substrate, also denominated as
a tracer, or a mixture thereof is a pre-requisite for any ILE, design of experiments (DoE) referring
to tracer selection based on simulation studies maximizing an information criterion [3] is not nec-
essarily mandatory. Qualitative ILEs where the usage of a certain pathway can be proven when
a specific labeling pattern arises in a target metabolite, require a knowledge of carbon transitions
and potentially available pathways but not a traditional DoE.

The ILE itself is oftentimes conducted in parallel lab-scale bioreactors where the measurement of
pH and dissolved oxygen (DO) as well as exhaust gas analysis are performed online and all other
samples are taken and processed manually. However, a sample for the analysis of metabolite
labeling states cannot simply be drawn regularly, but the metabolism of the cells within the sample
has to be quenched as fast as possible so that there is no residual enzyme activity during sample
processing. In the state of the art workflow, this is done by cold methanol quenching according to
a published protocol [16]. This particular quenching method relies on an extremely low, i.e. un-
physiological, temperature to stop enzymatically catalyzed reactions immediately after sampling.
While keeping the temperature low, cells are separated from supernatant via centrifugation and
subsequently cell lysis and metabolite extraction are performed in methanol-chloroform. The su-
pernatant can be used to gauge the effect of metabolite leakage known to occur during this type of
quenching [17} 18] and the final extract to measure intracellular concentrations or pool sizes. Ad-
ditionally, the extracellular metabolite concentrations can be determined with a separate cell-free
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sample [19]. For the sake of completeness, it should be noted that both divergent cold methanol
quenching protocols [20] and different quenching methods altogether [21] have been in regular
use.

The third segment deals with the analysis of metabolite labeling states. Labeling experiments
can give rise to many differently labeled species of a molecule which are referred to as isotope
isomers or isotopomers. Concentrating on carbon labeling, a metabolite with n carbon atoms can
form 2" different isotopomers the distribution of which amounts to the hitherto mentioned labeling
state. As alluded to previously, there are multiple viable options but in the state of the art workflow,
amino acids and CCM intermediates are analyzed via LC-MS/MS. Since the goal of this section is
the calculation of labeling distributions for each metabolite based on peak areas, the LC-MS/MS
peaks need to be integrated which is performed using vendor software, e.g. Sciex MultiQuant [22].
Finally, due to the aforementioned natural occurrence of heavy isotopes, the labeling distributions
need to be corrected so that they reflect only those labels which have been introduced via the
labeled substrate(s) during the ILE. There are multiple readily available open source software
solutions for this purpose, e.g. IsoCor [23] [24] and the isotope correction toolbox [25].
Subsequent to raw data processing, ILEs can be interpreted in different ways depending on their
design and the experimenter’s intent. Sometimes, purely contrasting the labeling distributions
arising under different conditions or amongst a group of strains may suffice to prove or falsify
an hypothesis. In contrast, the more complex interpretations require additional modelling and
computation work like the flux ratio analysis yielding ratios pertaining to the relative utilization
of metabolic pathways or '3C-metabolic flux analysis (MFA) absolutely quantifying intracellular
reaction rates (see[1.4.3). Generally, not least due to the underlying measurements these methods
investigate the inner workings of an assumed average cell, representative for the population. This
selection of potential applications is by no means exhaustive but should communicate the broad
range of use cases for ILEs in biological phenotyping experimentation.

The choice to structure this workflow as a sequence of ordered steps instead of a cycle, where the
results of one ILE inform the design of the next, is meant to illustrate the fact that while such an
iterative approach would be beneficial, ILEs are generally too expensive and time-consuming to
accommodate multiple consecutive experiments. Since a setup of four parallel bioreactors allows
for a maximum of two conditions — i.e. label mixtures, strains, media etc. — in biological duplicates
and one run including a pre-culture and time for preparing and cleaning the bioreactors can easily
take a week’s time, the throughput of ILEs is severely limited. Disregarding temporal issues, the
sheer cost of labeled substrate in a batch experiment with a lab-scale bioreactor of at least 1L
filling volume poses an additional constraint, when e.g. U'3C Gic is priced at about 539€ g and
1,2-13C Glc [26] at about 1290 € g' [27]. A less important issue but an issue, nonetheless, is the
lack of experimental standardization among practitioners of ILEs, especially with regards to the
quenching protocol.

The solution to all these drawbacks, then, is the miniaturization, parallelization, and automation
of ILEs to achieve a new and improved overarching ILE workflow. When the reaction volume
is decreased, the required mass of labeled substrate per replicate is reduced proportionally and
so are the costs. A significantly higher degree of parallelization diminishes the time investment
per replicate and increases the throughput. Naturally, miniaturization and parallelization behave
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synergistically as smaller reaction vessels enable a larger number of simultaneous cultivations.
Finally, automation requires the implementation of standardized workflows, thereby offering the
chance to reduce the variety of protocols for ILEs.

Previously, automation of ILEs had progressed to the point where a parallelized setup of minibiore-
actors with a filling volume between 7 mL and 15 mL had been employed for conducting automated
experiments investigating proteinogenic amino acids, albeit without quenching [28]. Regarding
miniaturization, there have been experimental protocols for a small scale [29, [30], e.g. in deep
well plates (DWPs), yet those were still performed manually. To realize an automated ILE work-
flow while improving on these previous approaches, then, is the supreme objective of the present
dissertation.

1.2 Corynebacterium glutamicum as a model organism

Biological research has long been conducted by studying phenomena and hypotheses of interest
based on those model organisms which most conveniently enable such investigations and of which
it can be assumed that the underlying principle can be transferred to other organisms [31} [32].
Accordingly, this dissertation makes extensive use of C. glutamicum as a model organism for
validation and proof of concept experiments for innovative automated experimental procedures to
conduct ILEs.

The facultatively anaerobic, Gram-positive soil bacterium C. glutamicum [33] was first isolated in
1957 by Kinoshita et al. [34] in order to identify a natural producer of L-glutamate (Glu). What they
discovered was the later to be renamed Micrococcus strain No. 534 or Micrococcus glutamicus
with a Glu yield of 0.25 molg,, molgc™. In the following years and decades, numerous production
processes were established with C. glutamicum as the platform organism for amino acids like Glu,
L-lysine (Lys), L-ornithine (Orn), and L-valine (Val) making extensive use of auxotrophic [35] and
analogue-resistant [33] mutants. This ascent to an industrial workhorse was certainly aided by its
generally recognized as safe (GRAS) status and its comparatively high growth rate among other
factors [36]. Fast-forwarding to more recent times, C. glutamicum is still utilized as an industrial Glu
producer with an annual production of 3 million tons in 2014 [37] which is continuously growing.
In 2022, the whole glutamate market size was valued at 12.63 billion US dollars with an expected
compound annual growth rate of 5.9 % from 2023 to 2032 [38].

Indeed, whereas the Glu production merely requires biotin-limiting conditions [33], many amino
acid pathways are subject to strict regulation, wherefore considerable effort has been dedicated
to the investigation and circumvention of such cellular regulation systems [39]. Yet, the product
palette was not restricted to amino acids as researchers applied C. glutamicum to the production
of putrescine [40], diaminopentane [41], 5-aminovaleric acid [42], isobutanol [43], hydrobenzoic
acids [44] etc., as well.

In the wake of these developments, C. glutamicum became the object of many a fundamental
research project leading to the identification of its complete genome [45| 46] and the application
of omics techniques and modelling to strains of C. glutamicum [47]. This extensive degree of
study certainly predestines it as a model organism but focusing on systems biology in particular,
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it has the advantage of availability of previous research data for comparison and contextualization
of results. Additionally, cellular characteristics like the biomass composition, the stoichiometric
biomass equation [48], and the specific cellular volume [49] have been published for the wild type
(WT). More importantly, though, when validating a method for metabolic quenching, cell lysis,
and metabolite extraction as intended in this dissertation, positive results with a Gram-positive
organism such as C. glutamicum can reasonably be assumed to be transferable to Gram-negative
organisms with their less sturdy cellular barrier.

Regarding the central carbon metabolism (CCM) of C. glutamicum, it consists of the Embden-
Meyerhof-Parnas (EMP) pathway, gluconeogenesis, the pentose phosphate pathway (PPP), the
tricarboxylic acid (TCA) cycle including a glyoxylate shunt and anaplerotic reactions, amino acid
biosynthesis pathways, and biomass formation [50]. Notably absent is the Entner-Doudoroff (ED)
pathway as an alternative avenue for glycolysis. These reactions combine to maintain a supply of
energy molecules such as adenosine triphosphate (ATP) and guanosine-5’-triphosphate (GTP),
reduction equivalents such as the reduced forms of nicotinamide adenine dinucleotide (NADH)
and nicotinamide adenine dinucleotide phosphate (NADPH), and biomass precursors to enable
cellular function and growth via the catabolism and oxidation of substrates. More precisely, one
could state that the role of the PPP is to regenerate NADPH, provide C4 and Cs molecules as
building blocks for amino acid and biomass formation, and re-supply the EMP pathway at the level
of fructose 6-phosphate (F6P) and glyceraldehyde 3-phosphate (GAP) [51]. The role of the TCA
cycle, then, is the complete oxidation of acetyl-Coenzyme A (acetyl-CoA or henceforth AcCoA)
originating from any carbon source in order to generate biomass and amino acid precursors [52]
while regenerating NADH and menaquinol (MQH>).

A key regulator of carbon flow to and from the TCA cycle is constituted by the anaplerotic reactions
linking it with the EMP pathway. In C. glutamicum, these traditionally comprise

Ppc (EC4.1.1.31) : PEP 4+ HCO5 = OAA + P;

Pck (EC4.1.1.32) : OAA + GTP = PEP + GDP + CO,

Pyc (EC6.4.1.1) : Pyr + ATP + HCO3; = OAA + ADP + P;

Odx (EC4.1.1.3) : OAA = Pyr + COq

MalE (EC1.1.1.40) : Mal + NADP™ = Pyr + NADPH + H" + CO,

catalyzed by the enzymes phosphoenolpyruvate carboxylase (Ppc), phosphoenolpyruvate car-
boxykinase (Pck), pyruvate carboxylase (Pyc), oxaloacetate decarboxylase (Odx), and malic en-
zyme (MalE). As stated in the dissertation of Kappelmann [53], though, any intracellular reaction
can be considered anaplerotic if its net activity contributes carbon atoms to the TCA cycle.

Defining these 5 reactions separately and reversibly grants the maximum degree of freedom but
there have been investigations restricting the directionality of some involved enzymes. These
studies inquiring into the activity of anaplerotic enzymes made extensive use of various deletion
mutants. Thereby, it was found that a Apck mutant could not grow on substrates entering on the
level of AcCoA and thus requiring gluconeogenesis showing that the reverse reaction of Ppc is
not active [54]. Single deletion mutants in glycolytic conditions, however, behaved normally with
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the exception of the Apck mutant which exhibited a slightly lowered growth rate despite the lack
of required gluconeogensis [55]. With respect to the carboxylases, this result implies that they
can replace each other without affecting the growth rate. There were conflicting reports about the
effects of a A(ppc pyc) double deletion for which either no growth [56] or a significantly reduced
growth rate after evolving the strain by prolonged cultivation were observed [55]. In the latter study
it was surmised that the missing carboxylation reactions were not replaced by their counterparts
Pck and Odx but instead via the glyoxylate shunt [55].

With regards to "3C-MFA, the anaplerotic reactions are unified into 3 reactions as there is no point
in differentiating between Ppc and Pck as well as PCx and Odx activities from the perspective of
net fluxes. Even so, it was demonstrated by identifiability analyses that the anaplerotic node in C.
glutamicum is structurally unidentifiable [57].

A notable characteristic of C. glutamicum is its natural ability to metabolize a large spectrum
of carbon sources. The uptake of various different sugars such as D-glucose, D-fructose, and
D-sucrose is conducted via distinct phosphoenolpyruvate (PEP)-dependent phosphotransferase
systems (PTS) [58],59]. Accordingly, D-glucose is converted to glucose 6-phosphate (G6P) during
uptake. As these PTS are expressed constitutively, C. glutamicum exhibits monophasic growth on
a mixture of these substrates and others like lactate, propionate, and pyruvate (Pyr) [60, [61].

The catabolism of ethanol and acetate, on the other hand, is subject to catabolite repression which
manifests in a biphasic growth behavior [62]. The degradation pathway of these substrates is par-
tially identical, merely ethanol’s entry point is two additional reaction farther away from the CCM. In
particular, ethanol is oxidized twice in sequential reactions via acetaldehyde to acetate, catalyzed
by the NAD-dependent enzymes alcohol dehydrogenase (Adh) and acetaldehyde dehydrogenase
(Aldh). Acetate is then converted to its closest CCM intermediate AcCoA via phosphorylation by
acetate kinase (AckA) and CoA-activation by phosphotransacetylase (Pta), thus entering the CCM
downstream of the EMP pathway [62]. Needless to state that the respective catabolic enzymes
towards AcCoA are essential for the growth on acetate and ethanol [62, 63].

Depending on the entry point of the given substrate(s) into the metabolic network, the fractional
usage and direction of certain reactions and whole pathways may change. Under glycolytic con-
ditions, both EMP and PPP are utilized but the larger share of G6P is directed towards the latter
[64]. The TCA cycle is active yet expression of isocitrate lyase (AceA) and malate synthetase
(AceB) — the enzymes of the glyoxylate shunt encoded by the genes aceA and aceB — is subject
to catabolite repression [65]. The net carbon flux into the TCA cycle via the anaplerotic reactions
stated above is positive. In detail, the net Ppc/Pck reaction removes carbon from the TCA cycle
acting in a cataplerotic manner and the net PCx/Odx reaction is anaplerotic while MalE appeared
to be inconsequential, yet non-identifiable [66].

In contradistinction, growth on substrates entering the CCM on the level of AcCoA like ethanol and
acetate induces aceA and aceB which has been substantiated by transcriptome and proteome
analyses [52, 62]. A deletion mutant without these two genes could grow neither on acetate nor
ethanol as the sole carbon source meaning glyoxylate shunt activity is indeed essential for such
substrates [67] and can be viewed as another anaplerotic reaction in this context [52} [62]. Beyond
the experimental proof, the necessity of the glyoxylate shunt usage is intuitively clear as a supply of
the TCA cycle with fresh oxaloacetate (OAA) is not possible when a C, molecule like AcCoA is the



1 Introduction

only influx into a cycle with two decarboxylation steps while still providing biomass precursors. This
biological role for the glyoxylate shunt has been hypothesized and re-iterated since the pathway’s
discovery in 1957 [68-70]. More precisely, one turn of the TCA cycle without glyoxylate shunt
activity requires 1 OAA and 1 AcCoA yielding 1 OAA, 2 CO,, 1 GTP, 3 NADH, 1 MQH,, and 1 CoA
while one turn with glyoxylate shunt activity consumes 1 OAA and 2 AcCoA generating 2 OAA,
2 AcCoA, 1 NADH, and 1 MQH,. The increased regeneration of the reduction equivalent NADH
at the loss of carbon is particularly noteworthy. When related back to the substrate, one could
simplify this balance to the fact that 2 molecules of acetate or ethanol are converted to one C4
molecule [68].

The hitherto conducted '3C-MFAs on acetate lumped the PEP and Pyr as well as the malate (Mal)
and OAA pools so that only the direction of the overall net carbon flux was determined. Said
net flux flowed towards PEP/Pyr so that carbon is actively removed from the TCA cycle via the
conventional five anaplerotic reactions [64, 71] in favor of the gluconeogenetic flux while carbon is
supplied to the TCA cycle via acetate degradation and glyoxylate shunt activity.

One topic of this dissertation, then, is to analyze the intracellular reaction rates of C. glutamicum
when grown on ethanol as the sole carbon source to gain a direct insight into the quantitative
pathway usage which the available transcriptome and proteome data merely elude to.

1.3 LC-MS

Since ILE aim to draw information from the labeling states of free metabolites, proteins or biomass,
the labeling distributions of the target compounds of choice need to be observed. Historically, GC-
MS and NMR techniques were favored, yet in recent years LC-MS(/MS) methods have gained
traction. In this thesis, an LC-MS/MS device was chosen due to its low limit of detection, the
existence of established, previously validated methods at the IBG-1 [72], and the independence
from sample derivatization required by GC-MS enabling high-throughput workflows. The following
section, therefore, describes the working principles of high pressure liquid chromatography (HPLC)
and electrospray ionization quadrupole-time-of-flight tandem MS (ESI-QqTOF-MS) applied in this
dissertation.

1.3.1 HPLC

The general objective of HPLC is to separate compounds dissolved in a mobile liquid phase along
a chromatography column by interaction with a solid phase. The strength of said interaction de-
termines the retention time of a given compound. Accordingly, there are many different types of
liquid chromatography depending on the column material, e.g. size exclusion chromatography, ion
exchange chromatography (IEX), and reverse-phase chromatography to name just a select few.
The HPLC principle as well as an exemplary column material for IEX in benzene sulfonic acid
coupled to silica particles are portrayed in figure 1.3

Both for a successful separation of target compounds and for peak data evaluation, it is important
to address the physical and chemical factors resulting in a dispersion, i.e. the dilution of the
injected sample during elution, and in turn influencing peak shape and width. Within the HPLC
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column, analytes travel through a packed bed of solid phase particles with a diameter in the low
micrometer range. Since the particle arrangement of the packed bed is not perfect, though, the
retention times of particles from the same molecular species may differ due to deviating paths
through the column (compare the green and black lines between points a and b in figure[1.3) - a
phenomenon denominated as eddy diffusion.

analyte 1 1
analyte 2
I analyte 3
....... path 1
— path 2
ﬁ
S—O
: |
O

intensity / -

time / -

Figure 1.3: Depiction of a HPLC column separating three analytes resulting in a qualitative chromatogram
on the bottom right. The paths between points a and b marked with the full and dashed lines are meant to
represent Eddy diffusion as their lengths deviate despite bridging the same fraction of z. Furthermore, an
exemplary coating material of silica particles for IEX in benzene sulfonic acid is portrayed.

Additionally, since the sample is injected in a concentrated manner at a low volume in the microliter
range into a column with a diameter in the millimeter range, there is a considerable effect of axial
diffusion along the length z of the column. This effect grows more pronounced the larger =z and
the lower the interstitial velocity are. Lastly, the mass transfer, i.e. the adsorption and desorption
kinetics, impact the retention time of a compound and cause peak broadening, especially at higher
interstitial velocities.

These effects were combined in the van Deemter equation

B.
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in which H; represents the height of an equivalent theoretical plate, A; the Eddy diffusion term, B;
the axial diffusion term, C; the mass transfer resistance, and « the interstitial velocity [73].
Elaborating on the adsorption behavior exhibited by analytes, it has been quantified experimentally
and numerous adsorption isotherms describing the relation of the dissolved analyte concentration
¢; and the adsorbed analyte concentration ¢; at equilibrium have been postulated. Many of these
are variations of the Langmuir isotherm which follows the semi-empirical kinetic

bCZ‘

—_— 1.2
1+bci ( )

i = (i max *

with ¢; max @s the maximum adsorbed analyte concentration (or maximum adsorption capacity)
and b as the Langmuir coefficient [74]. The Langmuir model is based on the assumption of a
homogeneous surface where molecules are bound in a monolayer and each adsorption site may
only bind one molecule. Further, all sites are considered energetically equal and interactions
between molecules or effects such as cooperativity are not taken into account [[75]

The interstitial velocity depends on the isotherm’s slope which in turn is dependent on the local
dissolved analyte concentration. Since in case of the convex Langmuir isotherm there is an inverse
relationship between the slope dg; 5«:;1 and u; (see , the fractions with a higher local dissolved
analyte concentration move faster and thus elute earlier, causing a peak distortion referred to as
tailing.

—— Langmuir type

qi/gg?!

ci/gL™?
Figure 1.4: Qualitative depiction of the Langmuir adsorption isotherm.

This is but one of many effects potentially influencing the peak shape and thereby complicating
peak recognition and integration.

Upon leaving the HPLC column, analytes would usually be detected with a refractive index or
an ultraviolet (UV) light detector but in LC-MS/MS the MS essentially serves as the detector,
instead. HPLC'’s role as a preceding step in the LC-MS/MS workflow, then, is to a) reduce the
complexity of a sample’s biological matrix to enhance the subsequent MS analysis by diminishing
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ion suppression effects and b) to separate isobaric compounds which could not be differentiated
using a stand-alone MS device.

1.3.2 ESI-QqTOF-MS

The subsequently discussed MS device is comprised of three main types of components, namely
an ion source, mass analyzer(s), and a detector [76]. After exiting the HPLC column, the analytes
of interest remain as dissolved molecules in a liquid mobile phase regularly consisting of solvents
such as acetonitril, methanol, and water or mixtures thereof. Before MS analysis, they must hence
be converted to an ion stream in the gas phase which is realized in the ion source. The actual
analysis of ions is subsequently performed by the mass analyzers which separate ions based on
their mass to charge (m/z) ratio. Finally, the detector records the number of arriving ions of a given
m/z ratio and the signal is converted with an analogue-digital converter.

Historically, there have been numerous ionization methods such as fast atom bombardment (FAB),
plasma desorption, and laser desorption where the ionization and the greatly endoergic transfer of
ions from liquid to gas phase were accomplished by high energy collision and heating [77]. These
methods led to in-source fragmentation of analytes and had additional limitations. FAB, which
was suited for biological samples, yielded mostly singly charged ions, thus effectively imposing an
upper limit on the mass of analyzable molecules [76]. A similar method, electron impact ionization
(El), was published in 1918 [78] and is still routinely used in GC-TOF applications today [79,
80]. Here, an electron stream originating from a glowing thread induces ionization by collision or
near-collision with the gaseous analytes leaving the GC column. Due to the electrical forces of a
passing electron, the analytes loose an electron themselves resulting in a positively charged ion
but also in in-source fragmentation [81].

For LC-MS/MS, the ubiquitously applied technique of choice is electrospray ionization (ESI), a
"soft" ionization technique imparting little additional energy onto the analytes thus avoiding in-
source fragmentation [77] and preserving even non-covalent bounds [76]. It has the further ad-
vantages of applicability to a broad spectrum of molecules and the ability to produce multiply
charged [M + zHJ** ions enabling the analysis of molecules in the MDa range even on MS devices
with limited m/z ranges [82, |83]. Thereby, the analysis of macromolecules such as nucleic acids
and proteins was enabled which single-handedly led to the foundation of the field of proteomics
[76.77,82]. Concomitantly, ESI facilitates the detection of low molecular weight compounds such
as metabolites [82]. Another reason for its dominant usage in LC-MS devices, in particular, is that
ESI accommodates utilizing the same polar solvents which are already ubiquitous in analytical
chemistry |77, [82, |83]. The technique has been first applied to MS by Yamashita and Fenn in
1984 [84, 85| for which Fenn received a Nobel Prize in 2007. As an interesting historical note,
electrospraying existed for much longer and had been used in the car industry for coating since
the 1950s [86].

The basic principle of ESI, then, lies in producing an electrospray of small highly charged droplets
within a strong electric field which are continuously reduced in diameter until the dissolved ions
are transferred to the gas phase by one of multiple effects [77]. Going into more detail, the liquid
phase from the HPLC enters the ion source through a probe with a metal capillary or electrode
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with an inner diameter of about 0.1 mm located 1 cm - 3 cm opposite of a counterelectrode which
corresponds to the entrance of the MS . Inside the ion source, a strong electric field of sev-
eral kilovolts and a temperature of several hundred degrees Celsius are applied at atmospheric
pressure [82]. In an electrochemical redox reaction with the electrode, an oxidation or reduction
of redox active analytes or solvent occurs at the interface of electrode and solution [87]. The fol-
lowing description is focused on the positive ionization mode, i.e. with a positive potential of the
capillary [77], as it was predominantly used in this dissertation (figure [1.5). Exemplary oxidation
reactions for the common solvents water and methanol are

2H>0 =09+ 4H" + 2¢~
CH;OH =HCHO +2H™" +2e~

The produced protons and all positively charged ions then gather at the liquid surface for they are
repelled by the identically charged electrode and conversely attracted by the MS entrance.
Despite this, the ions cannot leave the liquid so in a sufficiently strong electric field, the accumu-
lation of positive charges destabilizes the liquid surface deforming it in downfield direction into a

Taylor cone [77,88].

electrode

+—e"

gas source 1

gas source 2

curtain plate

CASZITNNN
\

d: ym range d: nm range

Figure 1.5: Portrayal of the ion source of a MS device performing ESI in positive ionization mode.

The stability of the Taylor cone is dependent on an equilibrium of electric field strength and surface
tension. Upon instability, a jet of charged droplets with diameters of few micrometers is released
from the cone’s tip where the charges behave according to Gauss’ law and once again reside
in an equidistant formation at the surface of the droplets. Aided by the high temperature and by
applying a nitrogen gas stream [76], the solvent evaporates until the Coulomb repulsion between
the positive charges becomes larger than the surface tension, a relationship which is described in
the Rayleigh equation 90]. Upon exceeding this so-called Rayleigh limit, a Coulomb fission
occurs where multiple smaller droplets are emitted from their larger progenitor. By repetition of
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this process, the droplet diameter is reduced to several nanometers but still the ions remain within
the liquid phase. Regarding their transfer to the gas phase, multiple models exist and the pre-
dominant mode is dependent on the molecular weight of the analyte in question. When droplets
with a diameter below 10 nm are formed, an emission of gas phase ions may occur instead of the
aforementioned Coulomb fission [77]. This ion evaporation model (IEM) applies mostly to such
ions with low molecular weight [91] like e.g. metabolites. For larger analytes like proteins, the
charged residue model (CRM) states that small droplets containing merely a single analyte may
be dried completely and impart their charge to the analyte, thereby creating a gas phase ion [82].
Further models are described elsewhere in literature [76, 82].

When gas phase ions have been formed, they are guided into the MS and then focused by ion op-
tics, i.e. lenses and multipoles, to which an axial direct current (DC) voltage differential is applied.
The resulting DC gradient is comprised of increasingly negative voltages only to rise immediately
preceding the mass analyzer(s) to decelerate the positively charged ions [92]. Since the optics are
run in radiofrequency (RF) mode, the ions are radially constricted and no separation is performed
yet. This also serves to separate the ion source and its atmospheric pressure environment from
the MS device’s high vacuum in the range of 103 torr to 107 torr [76].

The two mass analyzers that will be addressed here are the quadrupole (Q) and the time-of-flight
(TOF) analyzer. Starting with the quadrupole, it consists of two sets of two oppositely placed
metal rods in a diagonal arrangement. A DC voltage with the same sign is applied to each set
and based on a RF — i.e. an alternating current (AC) — the voltages are exchanged between
the two sets causing a radial oscillation of the ions. If the DC voltages of the two sets had the
same amplitude, this would amount to the so-called RF mode addressed above but due to the
application of a DC offset, only ions with a certain m/z ratio move on a stable trajectory and leave
the quadrupole [93]. The separation based on m/z values balances two principles: the attraction
towards one set of rods at any point in time (DC) versus the radial force caused by the RF. lons
with a higher molecular weight experience a higher degree of inertia so the DC parameter acts
as a filter for m/z ratios above a certain threshold. On the other hand, the RF parameter is used
to filter out lower molecular weight ions for they are accelerated faster with the same force than
heavier ions would be. If the axial motion induced by the RF grows too large, lighter ions collide
with the quadrupole rods. However, when changing the RF and DC amplitudes in a fixed ratio,
only ions with a certain m/z ratio are selected [94]. Another way to conceptualize the separation
by a quadrupole mass filter is via the a and ¢ parameters of the Mathieu equation as visualized in
stability diagrams [93].

To be more precise, a quadrupole is usually run in unit resolution meaning one m/z ratio window
is restricted to a width of 1 Da. As only one range can be focused on at a time, a quadrupole
is referred to as a scanning mass analyzer. Therefore, when several m/z ratios are supposed
to be selected, this is performed successively in iterative cycles thereby imposing the concept of
cycle time, i.e. the time it takes to complete one such measurement cycle. When connected to a
HPLC, the number of data points per peak is intended to be as high as possible so the cycle time
effectively limits the number of m/z ratios which can be measured per sample or time period within
the sample.

The second mass analyzer introduced here is the TOF, the first of which was built in 1948 [95].
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Quickly superseded by quadrupoles with superior mass resolution and sensitivity, early TOF de-
vices were held back by technical limitations such as e.g. the speed of recording mass spectra
[96,97]. Since then, numerous developments have alleviated these shortcomings so that currently
TOF devices are regularly used to both identify and quantify unknown compounds separated by
HPLC [97].

In contradistinction to the quadrupole, a TOF is not a scanning mass analyzer but instead all
ions within a discrete ion packet are analyzed simultaneously, thus removing the concept of cycle
time introduced above. Such ion packets are generated by modulation optics with a pulse, i.e.
by briefly switching from a negative to a positive potential, thereby controlling the transmission of
ions into the acceleration region of the TOF [96]. Subsequently, ions in said region are accelerated
orthogonally with a strong positive pulse by a repeller electrode and hit the detector after traversing
the drift region. In principle, when being subjected to a pulse of equal energy, ions with a higher
m/z ratio will be slower and thus arrive at the detector later than those with a lower m/z ratio.
However, in practice the resolution of a TOF is impacted negatively by the initial distribution of ions
with regards to their velocity and position in the acceleration region [97,98]. This large energy and
positional spread is counteracted by reflectrons [99], also referred to as ion mirrors. Such an ion
mirror is constituted by an electrostatic field after a first drift region which serves to decelerate and
eventually reverse the ions. As ions with a higher velocity will penetrate more deeply into this fields,
they will spend more time there which compensates for their higher speed and according lower
residence time in the drift regions [99]. This way, ions of equal m/z ratio and diverging energies
and positions are essentially focused before reaching the detector [97]. Thusly, this technique
comprises a space-efficient way to increase the length of the drift region [97] and for TOF devices
with reflectrons, such an increase does indeed positively influence the resolution proportionally
[98].

Modern MS devices use electron multiplier detectors like microchannel plates (MCPs) where in-
coming ions collide with metal plates which emit multiple secondary electrons striking further
plates, thereby amplifying the signal with a gain of roughly 108. Finally, the voltage signal in-
ferred from this current is converted to an intensity value in counts per second (cps) of a mass
spectrum with an analog-to-digital converter [76].

Combining the techniques and devices introduced in the preceding paragraphs, an ESI-QqTOF
device is comprised of an ion source performing ESI, a first quadrupole (Q1), a collision cell (Q2),
a TOF mass analyzer and a detector (figure[1.6). The Q1 constitutes the first MS stage, selecting
intact precursor ions which are subsequently fragmented in Q2 by collision with inert gas particles
in a process called collision-induced dissociation (CID). Q2 is run in radiofrequency-mode and
does not act as a mass analyzer. The result of CID depends on the kinetic energy of the ions,
i.e. on the difference in potential between the entrance of the MS and Q2 which is defined as
collision energy (CE). The fragments or product ions are then analyzed in the second stage of MS
comprised by the TOF device to resolve some structural information about the ion which could not
be obtained in single stage MS.

By combining quadrupole and TOF in this way instead of using a triple quadrupole device (QqQ),
only the first MS stage is subject to cycle time allowing the observation of more mass transitions,
i.e. pairs of precursor and product ion exact m/z ratios [53].
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orifice 2 é{
— oo
10F

Figure 1.6: Exploded view of a QqTOF device featuring quadrupoles employed for focusing (Q0), mass
selection (Q1), as a collision cell (Q2), and finally a TOF mass analyzer with a microchannel plate detector.
The difference in potential between orifice and QO is denominated as declustering potential (DP) and the
one between Q0 and Q2 as CE.

When applying the QqTOF concept to ILEs in order to detect molecular labeling states, the concept
of mass traces has to be introduced. Given the case of labeling exclusively with '3C, single stage
MS would not allow the measurement of all 2" isotopomers [100] but only of the mass isotopomers,
i.e. groups of isotopomers with an equal number of labeled atoms without regard for their position.
Mass isotopomers are commonly expressed as the mass of the molecule m plus the number of
incorporated labels, e.g. m+1 for one label, m+2 for two labels and so forth. Tandem MS, then,
generates additional information about the position of labels by fragmentation. If for example the
first carbon atom of a precursor ion is dissociated during fragmentation and the compound was
labeled at that position, the number of labels of the product ion will be reduced by one. In case
this was the only label, this is denominated as the mass trace M1_mO0, where the M1 pertains
to the mass of the precursor ion plus its single label and the mO0 to the mass of the product ion
without any labels. While this still does not fully determine the positions of all labels and thus
uncover all isotopomers, it nonetheless yields additional information, especially when observing
multiple product ions with different carbon backbones per precursor ion. Obtaining peak data for all
theoretically possible mass traces of a mass transition, then, enables the calculation of a tandem
mass isotopomer distribution (TMID) by normalization. Such a distribution is often depicted as a
TMID vector where each element pertains to the relative abundance of a mass trace.

In summary, using ESI-QqTOF analytics tandem mass isotopomers are detected and the obtained
peak data processed to TMIDs which in turn serve as raw data for further evaluations via model-
based approaches or are directly interpreted to experimentally test a hypothesis.

1.4 Applications for experimental data

1.4.1 Bioprocess modelling

In general, models serve as abstractions and simplifications of reality and are designed to describe
specific phenomena while being subject to certain assumptions. They can be used to unite and
explain data and even predict a system’s behaviour under altered conditions. In accordance with
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Occam’s razor, an often propagated principle of modelling states that they should be as simple as
possible, yet as complex as necessary.

In biotechnology, a common use case for modelling, perhaps the most prominent one, is consti-
tuted by bioprocess modelling. This term refers to the mathematical depiction of fermentations in
general but with respect to the contents of the present thesis, it will be related to microbial cul-
tivations specifically. Over the course of such cultivations in a bioreactor, online measurements
(e.g. pH, DO) are complemented with sampling to monitor the extracellular concentrations of
substrates, products, and possibly by-products as well as the cell dry weight (CDW). During the
bioprocess, this data can be used to e.g. trigger events such as the administration of additional
substrate or an increase of the stirrer speed upon low DO values. Subsequently, performance
indicators such as yield and space-time yield can be calculated and the concentration data can be
utilized to determine extracellular rates such as the substrate uptake rate, product formation rate,
and growth rate. Traditionally, specific rates, i.e. the formation or consumption of component i with
respect to time ¢ and biomass X, were often computed in a linearized manner according to

Citiv1 — Cit;

(Xitirr — Xig) (tigr — )

v = (1.3)
Since growth — baring a limitation or inhibition — generally follows an exponential behavior, this
approximation is not very faithful to begin with but grows especially erroneous close to the transi-
tion between different growth phases. Sometimes this has been applied to calculate an average
rate over the whole course of the exponential growth phase, meaning that only measurements
from two time points would be considered, granting an undue weight to these data points. Biopro-
cess models, on the other hand, routinely unite all measurements from multiple quantities, thereby
enabling a much more faithful representation of the experimental reality.

An additional advantage of model-based data evaluation is the estimation of quantities that could
not be measured. This is particularly relevant when reducing the scale from a bioreactor to a
microbioreactor. The latter has the advantages of miniaturization and parallelization of cultiva-
tions but it lacks access to exhaust gas analysis and biomass is usually indirectly measured via
backscatter, i.e. a density measurement. Even when mimicking the sampling to directly measure
cell dry weight, the available biomass is much lower and a cultivation well needs to be sacrificed
which may not be compatible with a given experimental setup. Thus, the use of bioprocess models
can fill the gap caused by the reduction of informative data in some areas.

At their core, bioprocess models are deduced from mass balances around system components
such as metabolite pools. The formulation of ordinary differential equations (ODEs) expressing
these balances depends on the chosen system boundaries. These are usually placed either
around a cultivation vessel with defined conditions or around an assumed average cell repre-
senting the cell population inside the vessel. The former will henceforth be referred to as the
macroscopic view and the latter as the microscopic view of a cultivation. Furthermore, the mode
of operation requires consideration since an in- and/or efflux of material may need to be taken into
account.
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Starting with the macroscopic view, the general mass balance holds that [101]

My in + Miout £7iVR  CONtinUOUS
Miin 1 VR fed-batch (1.4)
+r;Vp batch

dmi
dt

where m; refers to the mass of component i, r; to its production or consumption rate, and the
reactor volume Vx, is defined as

Vin — Vout  continuous

dV;

d—f =<, fed-batch (1.5)
0 batch

In case of a continuous cultivation, the system influx 7, ;, and efflux 7i2; o, Of component i across
the system boundaries are included whereas a fed-batch cultivation merely necessitates the influx
term and a batch cultivation features no transport into or from the vessel.

For a simple process featuring only one limiting substrate S and biomass formation, equation (1.4
is adapted yielding

CS,inVin - CSVZ)ut - Uupt,ScX‘/ceHVR — MX continuous
= CS,inVin - Uupt,SCXVceHVR - MX fed-batch (1 6)
—Uupt,sCx Vel VR — M X batch

dms _ (csVr)
dt dt

and

—cxViut + pex Ve - continuous

de (CX V R)
pr— = - 1-
7 7 pex Ve fed-batch (1.7)

uwex Ve batch

To present the most general form of the balance around S, the metabolic maintenance term M X
was included although it is omitted in many applications. The cell-specific volume Vg in Legi gx’
is introduced to connect the macroscopic and microscopic views of the cultivation as the substrate
uptake rate vy, s is defined in mMOolsypstrate Leen™ h™ [101].

Microbial growth in the absence of limitations or inhibitions is most commonly expressed by the
Monod kinetics [102]

Cs
M= Hmax o+ Ks (1.8a)
cs
Vupt,S = Vupt,Smax s+ Ks (1.8b)

These equations cover the simple case of one limiting substrate but they may express effects like
multiple substrates or inhibitions by expanding the formulae with suitable terms.
The microscopic view, then, enables the introduction of mass balances around intracellular metabo-
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lite pools. For intracellular metabolite A it holds that [101]

d - = Ya/x
—CA=EA= ) Vii— Y Vet — — Hea (1.9)
dt pt = Veell

Here, A is assumed to be a biomass precursor, hence the introduction of the term u%‘/;‘ rep-

resenting biomass drain in dependence of the growth rate y, the biomass-specific yield Y, x in
mmola gx™!, and the cell-specific volume V. in Leei gx™'. Due to the shift from macroscopic to
microscopic view, growth by mitosis has to be conceived of as an effective dilution of intracellular
pools in biomass which is mathematically expressed as pc4.

The realization of bioprocess models can be conducted freely in a programming language like
Python or Matlab or alternatively by using a specialized software suit such as pyFOOMB [103].
Event handling, particularly with regards to modelling ILE, is facilitated by complementing the
system of ODEs with a differential-algebraic system of equations (DAE). For example, starting
a feed with one labeled substrate species requires splitting the substrate concentration into two
distinct quantities, i.e. the initial unlabeled substrate and the labeled substrate which can be
summed up to obtain the total substrate concentration. A disadvantage of established software,
then, can be a restrictiveness in their design as for example pyFOOMB deals exclusively with
ODEs and does not allow the formulation of DAEs.

Moreover, to facilitate communication and cooperation within the scientific community, standard-
ization is highly advantageous so the use of a widely adopted modelling language such as Model-
ica [104} [105] is encouraged. Here, models can be defined in a straightforward way including both
DOEs and DAEs. This factor has also been considered in the development of the software estim8
[106] which is in essence a followup project to pyFOOMB allowing the definition of models in Mod-
elica and performing forward simulations, parameter estimations, and uncertainty quantification.
Ultimately, many avenues are available on the software side and should be selected based on the
given model structure and the personal abilities and experiences of the experimenter.

1.4.2 Statistical considerations

In general, data generating processes such as biological experiments can and have to be viewed
as stochastic since they are subject to numerous sources of errors wherefore the resulting data
carries uncertainty [107]. For example, measurements are afflicted with noise, samples are taken
and media prepared with a certain precision and so forth. Hence, the uncertainty of quantities
computed from experimental data needs to be taken into account. When performing statisti-
cal analyses, the experimenter is, however, confronted with the decision between two divergent
schools of thought in the field of statistics: Frequentist and Bayesian inference.

In Frequentist thought, the existence of true parameters 6;,,. with exact values is assumed and
measured data is characterized as exact values y; with a measurement error €. Here, the goal
is to obtain point estimators such as the maximum likelihood estimator (MLE) for the parameters
based on measurements the uncertainty of which is expressed in terms of the deviation to their
true counterparts. Measurement data is accordingly conceptualized as a random set of draws
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which eventually with an increasing number of samples would converge towards the ground truth,
hence the value of obtaining a point estimate. The pertaining uncertainty of a parameter y;, then,
manifests as a confidence interval (Col) stated as a range with lower and upper bounds 1b; and
ub;, respectively, for which it holds that

p(Ib; < Otrue,i < ub;) =1 -« (1.10)

Thus, at a confidence level of «, a Col is an interval containing the true parameter value 100(1 —
a) % of the time if the experiment were repeated with different data sets [108]. Fundamentally,
probability in the Frequentist sense is intricately linked to frequency, hence the name. In practice,
confidence intervals can be approximated with several methods one of which is referred to as pro-
file likelihoods [109]. Here, the uncertainty of measurements is mapped onto the parameter values
in a nonlinear fashion. The bounds 1b; and ub; are then obtained by minimizing and maximizing
y; iteratively as long as a given value passes a likelihood ratio test [110]. This is oftentimes the
method of choice in systems biology applications like '3C-MFA. However, the interpretation of the
resulting uncertainty quantification is complicated by the fact that different methods may gener-
ate different Cols, especially when a parameter mapping is either highly nonlinear or close to an
inequality constraint [110]. Additionally, errors arise both due to the approximative nature of Col
determination and for numerical reasons due to the optimization procedure [110].

In contrast, Bayesian thinking conceptualizes parameters as random variables with probability
distributions and does away with the notion of true parameter values. The general concept of
probability as a quantitative measure for the uncertainty of any observed or unobserved statement
[108] allows hypothesizing even about non-repeatable or counterfactual events. Experimental data
is then used to update parameters in a "reallocation of probabilities" [111] according to Bayes’ the-
orem. The latter can be derived by first formulating the conditional probabilities of the parameters
6 given the data y

p(#Ny)
Oly) = 1.11
p(Oly) o) (1.11)
and of the data given the parameters
p(yNo)
9) — 1.12
p(ylo) o) (1.12)

Since p(6 Ny) = p(y N #), equations and are combined to form Bayes’ theorem [112,
113]

p(yl0)p(6)

p(y)

Discussing equation [1.13|in more detail, the term p(#) is referred to as the prior probability dis-
tribution (prior) of the parameters reflecting previous knowledge about them independent of the
present experiment’s data. By choosing a suitable distribution for a given parameter based on e.g.
expert knowledge or previous experiments, the informativeness or strength of a prior can vary ac-
cording to the degree of uncertainty assigned to it by the experimenter. For example, a horizontal
line across a range of parameter values would constitute an uninformative, flat, so-called "uniform"”

p(Oly) = (1.13)
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prior as it assigns the same probability density to all values within the range. Even at this concep-
tual stage, i.e. when formulating the priors and not having observed the actual experimental data,
it is possible to check the model by performing a prior predictive check [114]. Here, the range of
data, which can be accommodated by the model, is assessed by drawing replicated data 3™P from
the priors according to [115]

mwww3émywwmwme (1.14)

The likelihood p(y|0) = L(y|6), then, represents a model which assigns probability to the data
given the parameters thus linking the two.

By updating previous knowledge (priors) with new data via the likelihood, a posterior probability
distribution (posterior) is obtained — a multivariate distribution describing the current knowledge
about the parameters. Once new data is generated, this posterior may serve as a prior and be
continuously updated and refined. Since the resulting distributions for single parameters are of
relevance for an experimenter, a so-called marginal posterior distribution can be determined for
each parameter 6;. In case of a model with two parameters 6; and 6, and the posterior p(6;, 62|y),
the marginal posterior distribution of 4, is calculated by integrating out 6, according to [116]

m&wwiﬁwh@mm@ (1.15)

Finally, the denominator of Bayes’ theorem p(y) is called marginal likelihood or evidence and is
defined as the probability of observing the data across all parameter ranges. Above all, p(y) acts
as a normalization term assuring that the resulting posterior is a valid probability distribution, i.e.
that the sum in case of a discrete distribution or the integral in case of a continuous distribution
amount to 1 [117]. Mathematically, this is expressed with the integral

p@r=ﬂp@wmwme (1.16)

the calculation of which is practically unfeasible for continuous parameters due to its high dimen-
sionality [118]. Hence, the posterior cannot be calculated exactly in a direct manner but instead
has to be obtained indirectly by approximation, i.e. by drawing samples from it. More specifically,
only the numerator term of equation [1.13|is sampled which corresponds to the simplification of
Bayes’ theorem to

p(0ly) ~ p(y|0)p(0) (1.17)

Since the denominator term is not dependent on the parameters, the numerator suffices to deter-
mine the shape of the posterior distribution represented by the relative number of draws at one
point compared to others [118]. Accordingly, absolute values of the probability density are not
necessary to estimate the posterior and its summary statistics. Importantly, for the same reasons
of the computational intractability of the denominator and the inefficiency of the pertaining algo-
rithms, independent sampling cannot be performed. Instead, dependent samples are drawn using
Markov Chain Monte Carlo (MCMC) methods.

Monte Carlo sampling is an umbrella term for algorithms simulating random numbers from a target
distribution, thereby being able to approximate integrals [[112]. Such a method is utilized to receive
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an estimated distribution of the posterior from which sets of parameters are drawn sequentially in
multiple independent Markov chains. Each chain is initiated at a starting point #° whereupon the
following values 6',62,63,...,6™ are drawn from a transition distribution T;(6%,6'~!,) [119]. First-
order Markov chains are sequences of such parameter draws where the next value §'*! depends
only on the current value #*. More significant than this so-called Markov property, however, is
the possibility to create various Markov chains for any posterior - including unnormalized ones
- which by iteratively drawing from a distribution converge towards said posterior. This property
was proven by showing that the Markov chain has a unique stationary distribution, i.e. a unique
solution, and that this solution is equal to the posterior [119, [120].
In order to perform MCMC, a simulation algorithm is needed like e.g. the commonly used ones
belonging to the Metropolis-Hastings family of algorithms. Generally, a Metropolis algorithm [121]
works by first drawing the starting value 6, with a probability given the data greater than 0 from a
starting distribution py(#). Then, in an iterative process proposals 6* are sampled from a proposal
distribution .J;(0*|6*~1) dependent on the previous point ¢ — 1 and are accepted or rejected based
on the ratio of probability densities

_ p0y)

p(0"ty)

In case of increasing probability density, the proposal is always accepted, and upon decreasing it
is only accepted with a probability equal to » [119]. Since the chains’ starting points are probably
not close to the posterior and it may require numerous samples to reach stationarity, the early
sampling phase is sometimes denominated as warm-up and the pertaining samples as tuning
samples. Especially for models with an increasingly large number of parameters, the performance
of the Metropolis algorithm with regards to convergence suffers due to inefficient random walk
behavior [120]. Hamiltonian Monte Carlo algorithms improved on this by introducing Hamiltonian
dynamics [122} [123] and subsequently No U-Turn Samplers (NUTS) were developed removing
the need for manually tuning the step size parameter [124]. This combination of innovations thus
tackled issues of efficiency and usability.
As convergence to the stationary distribution and thus the posterior is critical, a metric to monitor
this is the potential scale reduction factor & determined in dependence of the ratio of an estimated
marginal posterior variance var™ (f|y) and the within-sequence variation W according to

(1.18)

- vart(0y)
R= — W (1.19)
Due to the difference in starting points and since var™ (6|y) contains the between-sequence vari-
ance, it will generally overestimate the marginal posterior variance at the start of the process while
the within-sequence variation tends to underestimate it. When having reached stationarity and ap-
proaching convergence, both parameters close in on the same value so that R converges towards
1 for unlimited samples. While R is above a certain threshold, the between- and within-sequence
variations imply an improved inference result upon further sampling [119]. When originally pro-
posed, an R of 1.1 or lower was recommended to indicate proper convergence [125] but after
improvements on the statistics and continual insights during usage this was lowered to 1.01 [126].

Returning to the Markov property or dependence of each draw on its direct predecessor, draws
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within a Markov chain are subject to autocorrelation and the number of samples cannot simply
be interpreted as the sample size of independent draws. To obtain a measure for this important
metric, nonetheless, the effective sample size (ess) was defined as

mn

i (1.20)
—1+23 5o pr

€SS =

with m Markov chains, n samples, and 5, as the estimated autocorrelations [126]. The ess should
only be calculated after the warm-up once the Markov chains have reached their stationary distri-
bution.

Having obtained a posterior distribution and since the assumption of the existence of true param-
eters is omitted, the summary statistics communicating the results of an inference differ from the
MLE and Col of Frequentist affiliation. The Bayesian equivalents to the former are the maximum
a posteriori, which is the global maximum of the posterior's probability density, and the expected
value which corresponds to the mean of the posterior’s density [110]. To represent the uncertainty
of such metrics, credible intervals (Crls) are defined as [127]

and differ from Cols in that they contain 100(1—«) % of the probability density of a given parameter.
In other words, the Crl contains its parameter with a probability of 1 — «.

Another evaluation enabled by the knowledge of the posterior, is posterior predictive checking
(ppc). Here, the posterior predictive distribution

p(dly) = /p@|e>p<e|y>d9 (1.22)

is approximated iteratively by sampling parameter values 6 from the posterior and subsequently
using these to obtain predicted data points ¢ from the likelihood [107]. There are several use cases
for ¢, most crucially the comparison with the original measurement data set to gauge whether it
can be explained by the model as well as the prediction of future data sets [107,(119].

Bayesian methods have been on the rise recently, not least due to the ease of accessibility to
a level of computational power even with just a desktop computer not attainable in the past en-
abling the execution of demanding sampling algorithms. Simultaneously, Python packages such
as PyMC [128] and hopsy [129] among others and samplers have become ever more efficient
thus lowering the cost of entry. Due to the variability of results for Cols depending on the utilized
method and the ability to infer Crls to an in theory arbitrary precision [110], Bayesian methods
have a palpable advantage but since many software frameworks currently rely on the Frequentist
paradigm, further developments on the part of Bayesian tools are necessary.

Accordingly, in this thesis both approaches will be used depending on the scenario and contribu-
tions to enable Bayesian inference for evaluating biological experiments will be made.
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1.4.3 3C-MFA

The aforementioned method of 3C-MFA integrates experimentally determined extracellular
rates with '3C-labeling data to quantify an organism’s intracellular reaction rates. As the rates of
enzymatically catalyzed reactions or transportation steps are denominated as "fluxes", the totality
of a system’s fluxes yields a "fluxome" and accordingly another term for '3C-MFA is "quantitative
fluxomics" [3]. Within the larger spectrum of omics techniques, it stands apart in that a) the intra-
cellular fluxes are not directly measurable but instead inferred with a computational procedure and
b) the obtained fluxome represents the effective phenotype resulting after all layers of regulation
in contradistinction to the cellular potential uncovered by other omics approaches. For example,
it has been shown that in C. glutamicum ATCC13032 the CCM enzyme concentrations measured
by proteomics were not indicative of their associated flux values [101]. Due to this unique property,
13C-MFA can be used in phenotyping experiments to e.g. identify bottlenecks, thereby facilitating
rational strain development for bioprocesses.

Regarding the requirements for conducting '3C-MFA, as initially stated the extracellular concen-
trations of all carbon sources, products, and by-products have to be measured and used for the
estimation of extracellular rates via a bioprocess model. A further prerequisite is constituted by a
valid metabolic network model of the organism’s CCM including all reactions potentially influencing
the metabolite labeling patterns. Since the combination of a network model and extracellular rates
forms an underdetermined system, the innovation of 3C-MFA is the addition of metabolite labeling
data to reduce the remaining degrees of freedom (rDOF) to 0 and resolve fluxes inaccessible with
a purely stoichiometrical MFA.

When conducting an ILE, two distinct types of steady-states have to be considered. The first is
the metabolic steady-state (MSS) which is presumed to occur in a chemostat, i.e. a continuous
cultivation, and during the exponential growth phase of a batch experiment [3]. It is characterized
by funneling imported carbon towards maximum growth and thus all pool sizes and fluxes are
assumed to be constant. Realistically, the first time derivative of a given metabolite’s pool size and
connected fluxes might not amount to exactly 0 but at least approach it or be significantly lower
than the flux values themselves, thus amounting to a quasi-MSS.

The second is the isotopic steady-state (ISS) referring to the equilibrium of a given metabolite’s
labeling pattern which is established some time after the onset of label incorporation. During the
preceding isotopically transient or instationary state, some isotopomers may be observed which
are washed out before reaching the ISS and thus cannot be observed in isotopically stationary
ILEs. The duration until ISS is highly dependent on the metabolite in question, its proximity within
the metabolic network to the labeled substrate(s) and the fluxome.

Having defined basic terminology, the following general assumptions must hold in order to conduct
13C-MFA:

1. Molecules are homogeneously distributed both intra- and extracellularly.
2. During the ILE, the MSS assumption must hold true.

3. All relevant reactions and their carbon transitions are known.
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4. There are no kinetic mass effects, i.e. all isotopomers of an enzymatic educt are indiscrimi-
nately catalyzed at the same reaction velocity.

5. The experimental measurements do not alter the measured quantities.

6. The experimental measurements do not alter the conditions of the cultivation.

Points 1 and 4 ensure the equal treatment of differently labeled molecular species by enzymes
which clearly needs to be the case when intending to link labeling states with fluxes. The analyti-
cal demands stated in points 5 and 6 refer to all measurements associated with the ILE including
biomass, exhaust gas analysis, supernatant sampling, and sampling to determine labeling states.
Non-invasive online measurements such as exhaust gas analysis in a bioreactor and backscatter
in a microbioreactor are generally uncritical. In terms of sampling from a cultivation, the sam-
ple volume should generally either be low enough relative to the total cultivation volume to be
insignificant or the cultivation vessel may be sacrificed, i.e. discontinued after taking the sample.
When increasing the degree of miniaturization and parallelization, sacrifice sampling presents a
valid option. With respect to quenching, the decomposition of targeted metabolites could prevent
their detection, alter their pool size or in the worst case be mass-dependent thus influencing the
labeling state.

These original requirements and assumptions have been partly amended due to more recent
developments. Firstly, the rise of isotopically non-stationary (INST) '3C-MFA introduced the time-
resolved measurement of INST labeling patterns following the administration of a labeled substrate
mixture [130]. As the resulting time-course of label incorporation is caused both by the associated
fluxes as well as the metabolite pool size, the latter quantity has to be measured. Secondly, there
have been forays into a fully dynamic '3C-MFA where neither the metabolic nor the isotopic steady-
state are enforced [131]. Nonetheless and to re-iterate, the established techniques of isotopically
stationary and INST '3C-MFA still require the MSS.

The advantages of INST justifying a decision against the fully stationary approach comprise a
shorter experimental duration as there is no need to wait for the ISS and a significantly reduced
amount of expended labeled substrate per experiment which also diminishes the associated costs.
Additionally while the measurement of at least some metabolite pool sizes is required, even more
are estimated thus increasing the informational content of the final result.

The fundamental structure of a '3C-model will be illustrated with a toy example (figure in-
spired by [3, [132]. As portrayed in the example, some reactions are assumed as unidirectional
or irreversible and some as bidirectional or reversible. When the Gibbs free energy difference
of a reaction is low, i.e. the reaction operates close to a thermodynamic equilibrium, it can be
considered reversible and when said difference is large, the model can be simplified by assum-
ing irreversibility in vivo [133]. As the reversibility of reactions influences the resulting metabolite
labeling patterns, the inclusion of labeling data allows inference of both directions [133] whereas
imposing unidirectionality can introduce structural errors.

Instead of defining forward (v—) and backward (v<") reactions, the notion of net fluxes [134]

VPt = v — i (1.23)
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intracellular

Figure 1.7: Small toy example of a metabolic network with a substrate S, a by-product BP, and a product P
as well as the intracellular metabolites A, B, C, D, and E. Net directions of reversible reactions are indicated
with blue arrows.

and exchange fluxes

v¥N = min(v;?, vi") (1.24)
for a given reaction i has emerged [133]. In case of the toy example, the net directions of reversible
reactions v3 and v, have been highlighted with superimposed blue arrows.
A 3C-model features two kinds of mass balances with distinct system boundaries. The first type

is @ mass balance around each total metabolite pool yielding a system of ODEs

d

A= V102 (1.25a)
& ep =2 —v5— vy (1.25b)
%CC — oy — s (1.25¢)
%CD = U4 + Vg — V8 (1.25d)
%CE =5 — Vg — U7 (1.25¢€)

Due to the MSS assumption, the ODE system is effectively simplified to a system of linear equa-
tions as the pool sizes and fluxes are constant over time, i.e. %cl- = %vi = 0. In contradistinction,
the extracellular pools do not exhibit a constant pool size and are instead defined as

d

oS = U (1.26a)
d

Zep = 1.26b
il ( )
%CBP = vy (1 .260)

These systems can be jointly expressed in matrix form using the stoichiometric matrix N contain-
ing only stoichiometric coefficients and the measurement matrix M, Here, each row of N
pertains to a metabolite pool and each column to a particular flux. By multiplication with the flux
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vector, the metabolite mass balances stated in equations[1.25a] - [1.25¢€| are recovered.

1 -1 - . . . : . V1
1 -1 -1 - - . . s
1 A : . v3

1T 1 1 N 0
- ¥ = (1.27)
. 1 -1 -1 - U5 M. r
-1 . . . . . : . V6

1 v7

1 . (3

The degree of freedom (DOF) corresponding to the number of free fluxes of this system can be
computed by
DOF = dim(v) — rank(N) (1.28)

in dependence of the rank, i.e. the number of independent linear equations, of N.

For the second type of mass balance the system boundaries are constricted to the fraction of the
pool size pertaining to a given isotopomer and thus incorporate labeling data. As these constitute
the labeling mass balances, their formulation is dependent on which assumptions regarding the
ISS and MSS are enforced. Consequently, they exist in three layers of complexity according to the
previously established fully dynamic, INST, and fully stationary variants.

Generally, the pool size of just one labeled species of metabolite E is defined as the product of its
fractional enrichment e; and the pertaining total pool size cg [132]

d

L lext) en(t)] = cn®)Leit) + el(t)%cE(t) (1.29)

dt

The right-hand side of the equation, then, contains products of all incoming and outgoing flux rates
each with the pool size of its educt labeling species. Considering only the uniformly labeled mass
trace of metabolite F, the three variants are expressed by

d d
CE(t)£61(t) + 61(t)$CE(t) = Vs (t)cl (t) - vg(t)el(t) - U7(t)61(t) (1 308.)
d d
Cgp %el(t) = U5C1 (t) — Vg1 (t) — vrep (t) %CE =0 (1 30b)
d d
0 = v5c1 — vge1 — vyeq %CE = @61 =0 (1 30C)

in descending order of complexity. Here, the lower case letters denominate fractional labeling
enrichment and their subscript 1 a fully labeled isotopomer. As only the fully dynamic variant
(equation does not assume a metabolic steady-state, the metabolite pool sizes and fluxes
are time-dependent. In the INST case (equation [1.30b), only the labeling states remain time-
dependent and in the fully stationary case (equation|[1.30c), pool sizes, fluxes, and labeling states
are constant.

Alternative formulations of labeling balances like cumomers meaning cumulative isotopomers
[100] and elementary metabolite units (EMUs) [135] have been developed to increase computa-
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tional efficiency. When using cumomers, isotopomers are united in fractions based on the labeling
of certain positions. For example, the 1-cumomer fraction of the amino acid Leu with 6 carbon
atoms would be denominated as Leu; x x x xx and contain all isotopomers labeled at the first po-
sition without regards to whether the residual positions each portrayed by an X contain labels or
not [100].

Aside from the mass balances, a mechanism mapping the carbon transitions of reactions needs to
be in place to propagate their distribution throughout the metabolic network. This can be realized
with a carbon transition model which may be formulated in FluxML [136].

When a model comprising these three components (metabolite mass balances, labeling balances,
and carbon transitions) has been built and given the fully stationary case (equation [1.30c), flux
solutions for v in equation [1.31] can be calculated by determining the kernel matrix K and solving

[137]
— . 1
\?z(idp>:[(<ﬁ ) (1.31)
Viree Viree

NK =0 (1.32)

such that

In this process, the flux vector v is subdivided into free and dependent fluxes Ve and Vqep,
respectively, and the kernel matrix encodes linear combinations of the dependent fluxes [137].
Having obtained a flux solution, a simple forward simulation can be performed to determine its re-
sulting metabolite labeling states. However, the inference of fluxes constitutes the inverse problem
so an optimization procedure is conducted where the simulated labeling states and their exper-
imentally measured counterparts are compared with a metric like the weighted sum of squared
residuals (SSR) and their differences are minimized through iterative parameter fitting. This least
squares regression [138] comprises the initially mentioned computational method of '3C-MFA and
is defined as (i — T o

minimize SSR = T +) T (1.33)

in dependence of the flux rate r; and the fractional labeling enrichment z;. In the INST case this
equation is expanded to contain the SSR of pool sizes, as well. It is important to note that utilizing
the SSR metric implicitly carries another assumption, namely that of a normally distributed error
as the SSR calculation requires a mean and a standard deviation.
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Summarizing the "¥C-MFA approach, in the most general way one could portray the INST case as
[130,[139]

diag(Ca)k = f(¥,x"P"" x) (1.34a)
yi = g(ti, %, V, Cpr, x"P) (1.34b)
Y =h(Cy) (1.34c)
w = k(¥) (1.34d)

The forward simulation is performed by solving equation and the following comprise the
additional data to be considered during parameter fitting, i.e. INST labeling data y; (equation
[1.34Db), pool sizes Y (equation[1.34c), and extracellular rates w (equation [130]. Here, Cys
is @ matrix containing pool size measurements and its product with the transient labeling state
vector & is equivalent to the left part of equation For the metabolically and isotopically
stationary case this is simplified to

0= f(¥,xPut x) (1.35a)
yi = g(x, v, x"P") (1.35b)
w = k(¥) (1.35¢)

in accordance with equation When performing the parameter fitting, it is common practice
to use a multi-start method with varying initial parameters since the starting location may influence
the regression and the final result. There is always the possibility of identifying a local instead of
the global optimum as the best solution and this risk is decreased by using many starting points.
After obtaining an optimized fit, Frequentist statistics are the most commonly implemented choice
for uncertainty quantification via linearized statistics, profile likelihoods or Monte Carlo sampling
[110] in currently available software suites. One reason for this circumstance is that these meth-
ods interconnect well to the input data for 13C-MFA. Extracellular fluxes — despite being usually
obtained through parameter fitting with a separate bioprocess model where they are defined as
parameters — are treated as measurements in the '3C-model. Accordingly, they already come with
a mean value, i.e. MLE, and a standard deviation used for mapping uncertainty to the fluxes and
pools (see[1.4.2). Labeling data is provided as points and the standard deviation originates from
replicate measurements or is chosen in a way that reflects the measurement errors expected from
the utilized experimental and analytical workflows. Since metrics like the SSR require normally
distributed data, software for '3C-MFA is not equipped to readily accept data with different distri-
butions which may occur in Bayesian statistics. On the other hand, this constitutes — as stated
previously — another assumption which could be removed or at least validated by switching to the
Bayesian paradigm. A truly Bayesian approach would, however, necessarily have to start with the
raw data, i.e. at the level of bioprocess modelling and peak data evaluation, thus requiring another
data pipeline entirely. Therefore, in the status quo it is most practical to work with Frequentist
methodology.
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1.5 Motivation and outline of the thesis

Isotopic labeling experiments have granted deep insight into the metabolism of many organisms.
They come in different shapes and forms ranging from qualitative measurements with specific
tracer molecules to quantitative methods such as fluxomics. Yet, despite the value of the procured
data in e.g. aiding rational strain design, their use as a regularly applied screening technique in
biotechnology is inhibited by virtue of their low throughput, high associated cost, and complexity.
To enable conducting automated ILE at a microliter scale, a suitable quenching method consti-
tutes a prerequisite when analyzing free metabolites and is certainly advantageous even when
targeting proteinogenic amino acids. Consequently, the development of such a method is the first
aim of the present dissertation and represents the basis for the subsequent automation of the ILE
experimental workflow to build an integrated pipeline boasting a much increased throughput. Be-
yond productivity, automation grants standardization almost as a positive side effect by the need
of establishing scripts and protocols and can be utilized to reduce complexity, thereby lowering
the barrier of entry — qualities which would benefit the field of ILE like few others. Due to the
differences in measurement capabilities between lab-scale bioreactors and microbioreactors the
latter of which are used throughout this thesis, it is demonstrated that valid isotopically stationary
and instationary labeling data of free metabolites can be obtained, interpreted, and even used to
conduct '3C-MFAs. To this end, C. glutamicum is utilized as a model organism as per its success
as an industrial workhorse as well as its prominence in biotechnological research in general and
in systems biology in particular.

Since the experimental section is not the only bottleneck in ILE, the raw data evaluation after anal-
ysis of labeling states is addressed by developing successive, interlocked Python programs per-
forming the necessary modelling, computation, and visualization tasks. Innovative modelling solu-
tions for chromatographic peak data characterization by Bayesian inference and a data pipeline for
estimating intracellular metabolite pool sizes are created and established on a Airflow computation
cluster for increased performance and parallelization.

Finally, the assembled ILE pipeline culminating from the described efforts will be presented and
critically discussed alongside future perspectives in the field of ILEs.
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2 Material and Methods

2.1 Microbial strains

All experiments in the present dissertation except for the INST ILEs on ethanol were conducted
with C. glutamicum ATCC13032 (WT). For the ethanol labeling experiments, cryo stocks of the
strain C. glutamicum WT_EtOH-Evo were kindly provided by Lars Halle. The strain itself was
obtained by adaptive laboratory evolution from the WT to enable more efficient growth on ethanol
as the sole carbon source [140].

2.2 Strain maintenance

Cryo stocks for the WT were produced by performing a cultivation in a 500 mL shaking flask with
50 mL filling volume at 300 rpm and 30 °C. During the exponential growth phase, cells were har-
vested, centrifuged at 13000 rpm for 5 min, washed with 0.9 % NaCl solution, centrifuged again,
and finally resuspended in a pre-cooled NaCl-glycerol mixture containing 20 % (v/v) glycerol. Sub-
sequently, the cells were frozen at - 20 °C until being thawed immediately preceding experimental
usage.

2.3 Growth media

When not explicitly stated otherwise, all presented experiments were conducted with CGXIl medium
[141] composed of 20g L™ b-glucose, 42 gL' 3-(N-morpholino)propanesulfonic acid (MOPS) buffer,
5gL" urea, 20gL' ammonium sulfate, 1gL" KH,PO,4, 1gL"' KoHPO,4, 13.25mgL™! CaCly
« 2H,0, 0.25gL" MgSO, * 7H,0, 10mgL™' FeSO, * 7H,0, 10mg L' MnSO, * H,0, 0.02mg L
NiCl, « 6H,0, 0.313mg L' CuSO, * 5H,0, 1 mgL™" ZnSO, » 7H,0, 0.2 mg L™ biotin, and 30 mg L™
protocatechuaic acid.

For the ILE pertaining to case study | (3.5), i.e. the estimation of pool sizes, a minimized variant
of this CGXII medium was utilized in order to decrease the complexity of the biological matrix of
samples and thus obtain improved results from LC-MS/MS analysis. This variant deviated from
the aforementioned CGXII medium only by omitting MOPS buffer completely and reducing the
concentration of ammonium sulfate by 90% to 2gL™.

Cultivations for the ILEs on ethanol serving as case study I were conducted with CGXII
medium with 1 %(v/v) ethanol instead of D-glucose.

2.4 Components of the robotic platforms or Mini Pilot Plants

The robotic platforms or Mini Pilot Plants used in this work all consisted of a Tecan Freedom Evo
200 liquid handler (Tecan Deutschland GmbH, Crailsheim, Germany) equipped with a liquid han-
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dling (LiHa) arm with 8 fixed steel tips with a Teflon coating and a robotic manipulator (RoMa)
arm and interfaced with numerous third party devices forming a general framework granting the
freedom to perform various kinds of biological experiments. For cultivations, a microbioreactor
— either a BioLector I, Il or Pro (Beckman Coulter GmbH, Baesweiler, Germany) — was included
so that samples could be taken mid-cultivation with the LiHa in an autonomous manner. Further
devices were an automated centrifuge, i.e. a Sigma 4-5KRL centrifuge (Sigma Laborzentrifu-
gen GmbH, Osterode am Harz, Germany) or a Hettich Rotanta 460 Robotic centrifuge (Andreas
Hettich GmbH & Co. KG, Tuttlingen, Germany), for sample processing, a BioShake 3000T-elm
(QlInstruments GmbH, Jena, Germany) for shaking and heating microtiter plates (MTPs), a spec-
trophotometer Tecan Infinite M Nano* or Tecan Infinite 200 PRO (Tecan Deutschland GmbH,
Crailsheim, Germany), and a cryostate Lauda MC 600 (Lauda Dr. R. Wobser GmbH & Co. KG,
Lauda-Kénigshofen, Germany) for on-deck cooling of MTPs.

2.5 Automated ILEs

For all automated ILEs, pre-cultures were conducted in 4-baffled 500 mL shaking flasks with filling
volumes of 50 mL at a temperature of 30 °C and shaking frequencies of either 250 rpm or 300 rpm.
Usually, they were inoculated in the early evening and run over-night before being used in the
following morning for inoculation of the main culture performed in a BioLector. After measuring
the optical density at a wavelength of 600 nm (ODggg) and calculating the necessary inoculation
volume via

. ODGOO, pre—cultureVpre—culture 24
‘/inoculation - ( . )
ODg00, main culture

the main culture was inoculated and transferred to a FlowerPlate manually. Before inoculation,
samples from the pre-culture were centrifuged at > 4000 g for 5 min at 4 °C, washed with phosphate
buffer saline (PBS), centrifuged again, and finally the cell pellet was resuspended in main culture
medium.

The BioLector protocol for the cultivations of all C. glutamicum strains used a temperature of 30 °C
and a shaking frequency of 1400 rpm. A backscatter gain of 20 was applied for the BioLector | and
3 for the BioLector Il and Pro.

2.5.1 Hot isopropanol quenching: Validation

The original experiment used 12 biological replicates published in [142] but later-on a repeat ex-
periment was conducted with 6 biological replicates. The results presented in this dissertation
originate from the repeat experiment so this section accordingly details the setup of this experi-
ment.

The main culture was inoculated targeting a starting ODgpg of 1. Each well had a filling volume
of 800 uL. During the mid-exponential growth phase, samples were taken concomitantly from all
replicates and quenched using automated hot isopropanol quenching as detailed in section [3.1]
and published in literature [142]. To investigate whether residual enzyme activity was present
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during quenching or the subsequent sample processing via centrifugation, U'3C D-glucose was
added to the isopropanol solution to a final concentration of 0.2 g L™!. The principle behind this
approach to validating a quenching method has been previously described [21, (143, [144]. The
samples were stored at - 20 °C until LC-MS/MS analysis of the metabolite labeling states.

2.5.2 Hot isopropanol quenching: INST proof of concept

This experiment was conducted separately for amino acids and CCM intermediates. Both exper-
iments were mostly identical in conditions and execution, though. The only exceptions were that
the amino acid experiment was conducted on the robotic platform Frank with an intended start-
ing ODggo of 1.5 while the experiment for the CCM intermediates was performed on the robotic
platform Pahpshmir with an intended starting ODggq of 1.

All wells pertaining to the INST-ILE had an initial filling volume of 750 uL and during the mid-
exponential growth phase, a pulse of 50 uL of a 80 g L' 100% U'3C b-glucose solution was
administered to the wells as described in detail in section[3.1.3] The delays between pulsing and
quenching were 25s, 30s, 40s, 50s, 60s, 70s, 90s, 120s and 300 s for the amino acid experi-
ment and 25s, 28s, 30s, 35s, 40s, 45s, 555, 85s, 115s and 205s for the CCM intermediates
experiment. All given time points were sampled in biological triplicates. After pulsing and quench-
ing groups of wells successively in a column-wise manner, the samples were stored at - 20 °C until
LC-MS/MS analysis of the metabolite labeling states.

2.5.3 ILE for pool size estimation

This experiment used the robotic platform Frank. Main cultures had an initial volume of 750 uL
per well until the mid-exponential growth phase, when a pulse of 50 uL of a 80gL™" 100% U'3C
D-glucose solution was administered. The delays between pulsing and quenching amounted to
20s, 255, 40s, 50s, 60s, 75s, 90s, 105s, 140s, 215s, 315s, 440s, and 690s. After pulsing
and quenching groups of wells successively in a column-wise manner, the samples were stored
at - 20 °C until LC-MS/MS analysis of the metabolite labeling states.

2.5.4 Ethanol ILEs

Except for the substrate input labeling mixture, both separately conducted INST ILEs with C. glu-
tamicum WT_EtOH-Evo were identical with regards to experimental conditions. The first experi-
ment used the WT and WT_EtOH-Evo strains with 100 % 1-'3C-ethanol (Cambridge Isotope Lab-
oratories, Andover, MA 01810 USA; 99 % purity) as the tracer molecule. The second experiment
used only WT_EtOH-Evo but the wells were subdivided into two groups receiving either 100 %
2-13C-ethanol or 100 % U'3C-ethanol (Santa Cruz Biotechnology, Inc., Heidelberg, Germany; 99
% purity). However, the evaluation of the second ethanol ILE is beyond the scope of the present
thesis but since its design was a product of the established workflow, its experimental details have
been included here for the sake of completeness. The unlabeled ethanol supplied initially was
ROTIPURAN Ethanol > 99.8% p.a. (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and the
cultivations were inoculated with an intended starting ODgg of 0.5. The delays between pulsing
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and quenching amounted to 24 s, 35s, 60s, 120s, 180s, 1200s, and 1800 s for first ILE. Based
on the results of the first ILE, the time points were optimized for the second ILE and set to 20.6 s,
47.9s, 59.4s, 111.3s, 540.6s, 875.6s, 1995.8s, and 2703.2s. The sequence of pulsing, sam-
pling, and quenching was scheduled in such a manner as to minimize the temporal spread of
pulsing events, thus keeping the remaining unlabeled ethanol concentration as even as possible.
After pulsing and quenching groups of wells, the samples were stored at - 20 °C until LC-MS/MS
analysis of the metabolite labeling states.

2.6 LC-MS/MS analyses

All LC-MS/MS analyses were conducted with an Agilent 1260 Infinity Il HPLC system (Agilent
Technologies, Waldbronn, Germany) connected to a Sciex TripleTOF6600 QqTOF device (AB
Sciex Germany GmbH, Darmstadt, Germany) equipped with a Turbo V ion source.

2.6.1 LC-MS/MS analysis of free amino acids

For the analysis of labeling states of free amino acids, extracts obtained from hot isopropanol
quenching were diluted 1:4 in double-distilled water (DDW) before injection at a volume of 5 L.
The chromatographic separation was performed with a 150 mm x 2 mm Phenomenex Luna SCX
column (Phenomenex Ltd., Aschaffenburg, Germany) with a pore size of 100 A and a particle size
of 5um preceded by a 4 x 2 mm SCX Security Guard cartridge (Phenomenex Ltd., Aschaffenburg,
Germany). For the gradient elution, a 5% (v/v) acetic acid solution (A) and a 15mM ammonium
sulfate solution adjusted to pH 6 with 100 % acetic acid (B) were pumped at a flow rate of 0.4 mL
min"' and a temperature of 60 °C according to the following gradient: 15% B at 0 min, 15% B at 10
min, 100 % B at 16 min, 100 % B at 28 min, 15% B at 30 min, 15 % B at 35 min. This method has
been described and validated previously [72]. Newly optimized ion source parameters are listed
in table2.1] and the amino acid-specific parameters collision energy and declustering potential in
table2.2l

Table 2.1: lon source parameters for the LC-MS/MS analysis of free amino acids.

parameter value
gas source 1 45 psi
gas source 2 65 psi
curtain gas 25 psi
temperature 630 °C
lonSpray Float Voltage | 4600 V
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Table 2.2: Analyte-specific collision energy and declustering potential values for the LC-MS/MS analysis of
free amino acids. The most intense product ion is displayed in bold print.

analyte precursor ion m/z ratio / Da | declustering potential (DP) / V | collision energy (CE) / V | product ion m/z ratio(s) / Da
aspartate 134 36 21 74, 43, 46, 70, 88, 116
glutamate 148 46 21 84, 130, 56
threonine/homoserine 120 41 17 74, 56
serine 106 31 15 60, 70, 88
glutamine 147 46 23 84, 130, 56
tyrosine 182 46 19 136, 165, 123
glycine 76 36 11 30, 48, 59
proline 116 46 23 70
methionine 150 46 15 104, 133, 56
alanine 90 36 21 44
valine 118 4 15 72,55
phenylalanine 166 41 19 120
isoleucine/leucine 132 36 17 86, 69 (only lle)
tryptophane 205 41 15 146, 188
lysine 147 41 15 84, 130
histidine 156 46 21 110
arginine 175 51 35 70, 60
ornithine 133 46 31 70
citrulline 176 31 41 70, 113
G6P 259 -20 -15 97, 259, 199, 169, 139, 79
FBP 339 -40 -20 339
X5P/R5P 229 -20 -18 97,79, 139, 161, 229
S7P 289 -80 -15 289, 199, 97
GAP 169 -20 -6 169, 97

2.6.2 LC-MS/MS analysis of free CCM intermediates

For the analysis of labeling states of free CCM intermediates, extracts obtained from hot iso-
propanol quenching were diluted 1:4 in a 60 % (v/v) acetonitril-DDW solution before injection at
a volume of 5 uL. Chromatographic separation was performed with a hydrophilic interaction liquid
chromatography (HILIC) technique using a 150 mm x 2.1 mm SeQuant ZIC-pHILIC peek coated
HPLC column (Merck KGaA, Darmstadt, Germany) with a particle size of 5 um preceded by a 20 x
2.1 mm SeQuant ZIC-pHILIC guard column (Merck KGaA, Darmstadt, Germany). For the gradient
elution, acetonitril (A) and a 10 mM ammonium sulfate solution adjusted to pH 9.2 with 25 % (v/v)
ammonium hydroxide (B) were pumped at a flow rate of 0.2 mL min"' and a temperature of 40°C
according to the following gradient: 10 % B at 0 min, 10 % B at 1 min, 70 % B at 31 min, 90 % B at
35 min, 90 % B at 45 min, 10 % B at 55 min, 10 % B at 80 min. This method has been described
and validated previously [145]. Here, the isocratic hold at 90 % B and the final equilibration step at
10 % B have been elongated to ensure identical conditions for each sample. Newly optimized ion
source parameters are listed in table[2.3] and the metabolite-specific parameters collision energy
and declustering potential in table[2.2]

Table 2.3: lon source parameters for the LC-MS/MS analysis of free amino acids.

parameter value
gas source 1 50 psi
gas source 2 65 psi
curtain gas 25 psi
temperature 500 °C
lonSpray Float Voltage | - 3600 V
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2.6.3 Chromatographic peak recognition and integration

Peak data generated with the TripleTOF6600 QqTOF device was loaded into the vendor software
Sciex MultiQuant (version 3.0.3) [22] with a quantitation method specifying mass traces and their
pertaining m/z ranges. Peak recognition and integration was performed with the MQ4 algorithm
with default settings. Subsequently, results were reviewed visually and if necessary the baseline
was manually adjusted, false negative or mislabeled peaks were corrected manually, and false
positive were de-selected. Upon finishing these checks, the data was copied into Microsoft Excel
[146] and saved as a comma-separated value (csv) file. The calculation of TMIDs was conducted
with a self-authored Python script the structure and workings of which are more closely related in
section 3.4l

2.6.4 Validation of PeakPerformance

Several stages of validation were employed to prove the suitability of PeakPerformance for chro-
matographic peak data analysis. The goals were to showcase the efficacy of PeakPerformance
utilizing noisy synthetic data, investigate cases where a peak could reasonably be fit with either
of the single peak models, and finally use experimental data to compare results obtained with
PeakPerformance to those from the commercial vendor software Sciex MultiQuant [22].

For the first test, 500 random data sets were generated with the NumPy random module by drawing
from the normal-shaped models detailed in Table except for the mean parameter which was
held constant at a value of 6. Subsequently, normally distributed random noise (N(0,0.6) or
N(0,1.2) for data sets with the tag "higher noise") was added to each data point. The amount of
data points per time was chosen based on an LC-MS/MS method routinely utilized by the authors
and accordingly set to one data point per 1.8 s.

Table 2.4: Normal-shaped models from which parameters were drawn randomly to create synthetic data
sets for the validation of PeakPerformance.

model
parameter 1st test 2nd test
area N(8,0.5) -
standard deviation | A/(0.5,0.1) | N(0.5,0.1)
skewness N(0,2) -
baseline intercept | N(25,1) N(25,1)
baseline slope N(0,1) N(0,1)

In marginal cases when the shape of a single peak had a slight skew, the automated model se-
lection would at times settle on a normal or a skew normal model. Therefore, it was relevant to
investigate whether this choice would lead to a significant discrepancy in estimated peak parame-
ters. Accordingly, for the second test synthetic data sets were generated with the NumPy random
module according to Table [2.4|and noise was added as described before. The residual parameters
were held constant, i.e. the mean was fixed to 6, the area to 8, and the skewness parameter o to
1.
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For the third and final test, experimental peak data was analyzed with both PeakPerformance (ver-
sion 0.7.0) and Sciex MultiQuant (version 3.0.3) [22] with human supervision, i.e. the results were
visually inspected and corrected if necessary. The data set consisted of 192 signals comprised of
123 single peaks, 50 peaks as part of double peaks, and 19 noise signals.

2.7 Modelling

2.7.1 Apache Airflow computation cluster

The design and performance of remote workflows in this dissertation has been conducted with
the open source platform Apache Airflow [147] which allows the implementation, scheduling, and
monitoring of directed acyclical graphs (DAGs). A DAG is a batch run consisting of different parallel
or sequential tasks which may exchange data between one another and the execution of which
depends on the success of previous tasks. The DAG’s code is written entirely in Python and is
subject to version control via GitLab. An Airflow webserver is used to start batch runs manually or
dependent on a schedule. Furthermore, it facilitates process monitoring and error analysis via a
logging framework. In the present case, the celery executor [148] is used to scale the number of
workers which are distributed on a computation cluster consisting of multiple PCs.

2.7.2 Parameter estimation with estim8

Parameter estimations were performed with the in-house developed Python tool estim8 [106].
Metabolic sub-network models v0 and v1 were implemented with the modeling language
Modelica in OpenModelica (v1.19.2) [104, |105]. Harnessing the advantages of the Functional
Mockup Interface (FMI) standard, they were exported as Functional Mockup Units (FMUs) in
ModelExchange mode. The parameter estimations in estim8 were performed with its FmuModel
class and parallelized via the Python Parallel Global Multiobjective Optimizer package [149], par-
ticularly with its implemented optimizers self-adaptive differential evolutionary algorithm (DE1220),
particle swarm optimization, and the sequential evolutionary algorithm. As a likelihood function,
the negative log-likelihood (neglLL) was utilized and to enable its calculation, absolute errors of
0.02, i.e. a relative abundance of 2%, were assumed for the labeling fractions of all experimen-
tally determined mass traces. Upon reaching stagnant parameter estimations with regards to the
first decimal of the objective function for 100 steps, the process was stopped. The boundaries or
inequality constraints for the parameter estimation are listed in table[2.5]

37



2 Material and Methods

Table 2.5: Applied boundaries for parameter estimation with estim8.

parameter lower boundary | upper boundary
c_XO0_1st 0.0014 0.81
¢_X0_2nd 0.0014 0.81
¢_X0_3rd 0.0014 0.81
mu_max 0.16 0.74
v_upt_ S _max 1500 2500
k_scale_Gly_exp | 0.0001 0.01
¢_EMPUP_1st 0.001 10
¢_EMPUP_2nd 0.001 10
¢_EMPUP_3rd 0.001 10
c_Ser 1st 0.1 9.7

c _Ser 2nd 0.1 9.7
c_Ser 3rd 0.1 9.7
c_Cys_1st 0.1 19.7
¢ _Cys_2nd 0.1 19.7
c_Cys_3rd 0.1 19.7
c_Gly_ intra_1st | 2.1 254
c_Gly_ intra_2nd | 2.1 254
c_Gly_ intra_3rd | 2.1 254

2.7.3 Bioprocess modelling: Sampling with the MCMC pipeline

The statistical inference with the Python package hopsy [129] was performed with a Gaussian hit
and run MCMC sampling technique preceded by step size tuning and using polytope rounding.

The models and settings of the different approaches are explained in table[3.5] Approaches 2
and 3 utilized the same parameter boundaries as the estim8 parameter estimation (table2.5).
Approach 4 expanded these boundaries with additional ones for the parameters exclusive to model

v1 (table[2.6).
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Table 2.6: Additional boundaries for inference of approach 4.

parameter | lower boundary | upper boundary
c_PEP_1st 0.1 50
c_PEP_2nd 0.1 50
c_PEP_3rd 0.1 50
c_Pyr 1st 0.1 50
c_Pyr _2nd 0.1 50
c_Pyr_3rd 0.1 50
c_KIV_1st 0.01 20
c_KIV_2nd 0.01 20
c¢_KIV_3rd 0.01 20
c_Ala_1st 0.1 30
c_Ala_2nd 0.1 30
c_Ala_3rd 0.1 30
c Val 1st 0.01 20
¢_Val _2nd 0.01 20
c¢_Val _3rd 0.01 20
c_Leu 1st 0.01 11.5
c_Leu 2nd 0.01 11.5
c lLeu 3rd 0.01 11.5

Approach 1 which omitted the batch phase of the bioprocess and started instead at the time of the
pulse required some additional or altered parameters replacing their previous definitions, as well

(table[2.7).
Table 2.7: Additional or replaced boundaries for inference of approach 1.
parameter lower boundary | upper boundary
c_XO0_1st 7.549 8.493
c_X0_2nd 7.597 8.543
¢_X0_3rd 7.415 8.351
c_Ser_1st 0.1 9.6
c_Ser_2nd 0.1 9.6
¢_Ser_3rd 0.1 9.6
c_Gly0_extra_0_1st 0.0001 1
c_Gly0_extra_0_2nd 0.0001 1
c_Gly0_extra_0_3rd 0.0001 1
c_S0_0_f1st 20 60
c_S0_0_2nd 20 60
c_S0_0_3rd 20 60

2.7.4 INST 3C-MFA

For the first INST '3C-MFA, the ethanol uptake rate and maximum growth rates were estimated
with a black box model based on cell dry weight and ethanol concentration data from a published
bioreactor experiment [140]. Regarding the model-based determination of extracellular rates with
backscatter data from the ILE with 1-'3C ethanol (2.5.4), the estim8 tool [106] was selected. Here,
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online backscatter data from the BioLector | system from 21 parallel batch cultivations until the time
of the pulse with labeled substrate and 3 parallel batch cultivations grown into stationarity were
utilized. A simple bioprocess model (equations[2.2aland[2.2b) was implemented in OpenModelica
[104]|105] following Monod kinetics to estimate growth rate and ethanol uptake rate.

dX . CEtOH
= uX with = lbmaz and X (¢ =X 2.2a
a p=p KEgton + ceton (to) 0 (22a)
dc .
BOH _ jgon X with  gmion = ————— and cgion(to) = cromo (2.2b)
dt Yx/Eton

A pooled approach for parameter fitting was chosen where parameters were divided into global
or strain-specific and local or replicate-specific parameters. The former comprised the affinity
constant Kgon and the yield coefficient Yy gion While the latter included the maximum specific
growth rate umax and the initial biomass concentration X,. The backscatter raw data was mapped
to cell dry weight via a linear model originating from an earlier calibration experiment performed
by Lars Halle where the following linear dynamic range

BS = 13.4254 CDW + 15.3524 (2.3)

had been observed.

The metabolic network model for the INST '3C-MFA was adapted from [57] and contains the CCM
of C. glutamicum. Supplement 1 of this publication contains a detailed description of all model
reactions and carbon transitions. Since the model was originally intended for growth on Gic, nec-
essary changes included the omission of Glc uptake and the addition of EtOH uptake and the
glyoxylate shunt. Furthermore, gluconeogenesis was enabled by granting bidirectionality to the
pertaining reactions in the EMP pathway. The amino acid metabolism and the ethanol uptake
pathway are simplified in the model by lumping some linear reaction pathways and the biomass
equation is based on [150]. In total, the metabolic model comprises 70 balanced intracellular
metabolites and 78 intracellular reactions 76 of which are bidirectional and 2 unidirectional. Ac-
cordingly, the model has 29 free flux parameters made up of 7 net and 22 exchange fluxes and
69 metabolite pool size parameters, implying that in total 98 parameters are to be estimated from
1078 TMIDs plus the growth and ethanol uptake rates. Model expansion, validation, and visual-
ization were conducted in Omix (ver. 2.1.2) [151]. The model was formulated in FluxML [136].
Estimation of the model parameters was performed using the 13CFLUX2 software [152]. A given
set of measurements was incorporated in the '3C-model and TMIDs y(8) were predicted based on
the parameters 6, consisting of fluxes (v) and pool sizes (X). Parameter estimates were computed
by minimizing the weighted sum of squared residuals via [153]

SSR(6) — Z <y(9)0—yym>2 n ; <%_U”5n>2 (2.4)

Local minima were computed by the interior-point optimizer IPOPT (v3.14.14) [154]. A multi-start
with 1,000 random starting points determined by the sampling library hopsy [129] was applied to
maximize the chance of finding the global optimum. Frequentist statistical analysis to determine
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Cols was performed using the profile likelihood approach [155] where the Col for the i-th parameter
is defined as

Col;(a) := {9}- 2 (mgx LL(6) — max LL(9)> < qx%la} (2.5)

0,0,=0;

Here, LL(6) = —3SSR(6) corresponds to the log-likelihood function and 42, 1-o to the (1 — a)-
quantile of the chi-squared distribution with one degree of freedom. To estimate 95 % Col bounds,
a binary search was employed between the best fit parameter value and its absolute lower and
upper bound, respectively, with o = 0.05.
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3 Results and Discussion

3.1 Developing an automated quenching method

This chapter is based partially on the publication "Hot isopropanol quenching procedure for auto-
mated microtiter plate scale '3C-labeling experiments” [142] first-authored by JN. The figures
and were originally created by JN and have been adapted from said publication.

As detailed in the introduction (1.1), many orthogonal quenching methods to choose from have
been published, yet none of them had been transferred to an automated liquid handling system.
Accordingly, the first step on the way to an automated ILE workflow would have to be the adapta-
tion of a quenching method onto the automated platform. Generally and above all, a quenching
method has to stop enzymatic activity sufficiently fast, i.e. on a sub-second scale, but beyond that
most basic of requirements it needs to connect to the subsequent analytical steps as seamlessly
as possible when targeting a higher throughput of ILEs. This means it should not necessitate
complex processing steps before the LC-MS/MS analysis.

The latter criteria already ruled out methods relying on a pH shift due to the need to remove excess
salts in order to avoid ion suppression effects during ESI. For a manual process, the decision would
have been an easy one in favor of the most commonly applied method of cold methanol quenching.
However, upon creating an automated ILE workflow, the choice is complicated by the fact that the
infrastructure in place dictates what method can sensibly and successfully be adapted and thus
adds a criteria of device availability to the decision making process.

The Mini Pilot Plant on which the ILE workflow was to be established — for a more thorough descrip-
tion see section [2.4] - featured several devices with cooling capabilities but the lowest attainable
temperature amounted to - 20 °C with the Hettich centrifuge. This theoretically lowest point, how-
ever, would a) not be reached in practice and b) transform the centrifuge into a glorified freezer
since at temperatures approaching 0 or below, it cannot be operated regularly within specifications
any more without risking damage to the device. As the sample processing would involve removing
cells and cell debris via centrifugation to obtain only the supernatant for LC-MS/MS analysis, this
was not a tenable design choice.

The next lowest temperature could be achieved by the cryostate which is able to cool up to a
temperature of - 10 °C. Consequently, this precluded cold methanol quenching as all considered
protocols required lower temperatures, for example the - 50 °C from the protocol referenced in the
state of the art workflow [16].

Even disregarding this practical limitation and assuming unlimited investment regarding devices,
cold methanol quenching presents several challenges in an automated setting. Firstly, methanol
as a toxic solvent exacts abiding by safety regularities and having a working environment with
sufficient ventilation provided by a fume hood which may pose a sterical challenge if not a financial
one. The same holds true for chloroform which is commonly used in the later extraction stage of
the cold methanol quenching procedure. Secondly, cold methanol quenching involves several
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pipetting steps with a solvent-water mixture. While there are specified liquid classes for such a
purpose with optimized parameters like aspiration and dispense speed as well as the volumes of
the liquid handler’s air gaps, it can be difficult to avoid dripping tips when dealing with variously
concentrated solvents. Thirdly, a device placed on or in the vicinity of a robotic deck cooling down
to - 40 °C would cause a difficult to contain volume of condensed water. This has already emerged
as a hassle with a cooling rack at a temperature of 4°C and would surely evolve into a serious
problem at increasingly low temperatures. Fourthly and finally, cold methanol quenching protocols
have always suffered from metabolite leakage during quenching particularly influencing the results
of quantitative metabolomics experiments.

When pH shifts and the temperature shift to the low extreme are conceptually not feasible, the
most obvious remaining option is constituted by a temperature shift to the high extreme. While
cold methanol quenching aims to stop metabolic activity by lowering the temperature so far that
the reaction speed decreases to virtually zero, the working principle of hot quenching methods is
the denaturation of catalysts. The latter has the advantage that extreme temperature conditions
need not be sustained once quenching has occurred whereas cold quenching methods demand a
prolonging of low temperature conditions throughout the whole residual sample processing work-
flow. There is, however, yet another fundamental difference with respect to the extraction of target
molecules whose labeling states are to be determined. As portrayed in figure cold methanol
quenching features separate stages for quenching and extraction which enables the quantification
of intracellular metabolite pool sizes. These constitute valuable data points in isolation as well
as being traditionally required for "3C-INST-MFA. Contradistinctly, hot quenching utilizes agents
"that would destroy permeability barriers of the cell" [156] like ethanol. Accordingly, this results
in a single-step process encompassing quenching and extraction in a concomitant manner de-
nominated as whole broth sampling. Combined with the irreproducibility of solvent evaporation
at high temperatures causing an unknown reference volume, this entails that a) endo- and ex-
ometabolome cannot be differentiated but are instead observed in unity and b) a quantification of
metabolite pool sizes with an acceptable measure of certainty is not contingent. It does, however,
alleviate the aforementioned problems of numerous pipetting steps with different solvents and the
toxicity drawback of methanol and chloroform predestining it for an automated process.

A further upside is that the Mini Pilot Plant houses a BioShake device able to heat its surface up to
99 °C which would be more than sufficiently high for hot quenching. Since miniaturized, automated
bioprocesses rely on single-use plastic labware like MTPs and DWPs featuring notoriously low
heat transmission, the resulting temperatures inside the liquid phase of a given well amounted
to roughly 60°C - 65°C. This was deemed a lower temperature than likely necessary to reliably
perform hot quenching wherefore a custom aluminum labware with a better heat transfer was
designed and built by Daniel Klein and co-designed by Moritz-Fabian Muller.

This so-called "6x8 septum vial holder" labware is shown in figure and is intended to hold
1.5 mL vitreous vials or HPLC vials as they are often referred to due to their ubiquitous use in that
field. Overall, utilizing these vials improves both heat transfer and retention and is enabled by the
ability of the liquid handler’s fixed steel tips which can pierce their septa. The lid was added to
the design after it was found that the vials would stick to and be hoisted along with the fixed tips
and therefore needed to be retained by a barrier. In fact, the association between tips and septa
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Figure 3.1: The aluminum plate equipped with closed 1.5mL vitreous vials on top of a BioShake 3000-T
elm with the capacity to heat up to 99 °C.

was strong enough to lift the whole aluminum plate when it was not securely tied down which was
addressed on the software side by allowing the digital placement of the aluminum plate labware
only on the deck position of the BioShake which has a lock functionality. On any other site, the
software would accordingly produce an error message and would not be able to start the script to
avoid damages to the system.

After these practical issues had been addressed, an open question remained regarding the precise
choice of the liquid for the combined quenching and extraction procedure. Hence, the technique
was hitherto referred to in a general manner as "hot solvent quenching” or simply "hot quenching”
since up to this point in development, the final solvent had not been settled on and there was
certainly no lack of candidates. While substances like trichloroacetic acid had previously
been precluded for similar reasons as the methodology of quenching via pH shift, many solvents
would theoretically suit the task. However, it was suspected that especially for Gram-positive
organisms with durable cell walls, the boiling of the solvent may enhance the permeabilization of
the cell.

Based on this assumption, the prime candidates in consideration were ethanol and isopropanol.
Since isopropanol had the benefit of non-interference with the substrate metabolic pool and label-
ing state in cases when ethanol served as a carbon source, it was the preferred solvent although
ultimately both options would have worked.

With the solvent issue attended to, the design of an automated ILE workflow featuring hot iso-
propanol quenching as well as its validation and proof of concept were performed as described in
the next sections.
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3.1.1 Designing a workflow for automated ILEs with hot isopropanol quenching

Automated ILEs were realized as a continuous workflow featuring a main loop tied to the cultivation
via online measurements, thus accounting for biological variability. On a basic level, the automated
workflow (figure[3.2) could be divided into two distinct sections: cultivation and sample processing
including hot isopropanol quenching.

Upon manually placing a FlowerPlate with a main culture in the BioLector microbioreactor system
and having supplied the robotic deck with the necessary plates for a given experiment, the work-
flow is started by the user via a web server. This web server is part of the in-house developed
DigInBio process control system (DCS) which also enables cross-communication between differ-
ent third-party devices assembled within the robotic platform and features an extensive logging
framework [157].

The first steps include the execution of possible pre-loop methods with preparatory steps for the
experiment, i.e. washing the system, preparing a balance plate for subsequent centrifugation
steps and so forth. Thereafter, the aforementioned main loop is entered and synchronized with
the measurement cycles of the BioLector. The duration of these cycles depends on the number
of filters selected in a BioLector protocol where one filter pertains to a specific type of online
measurement, e.g. measurement of backscatter with a certain gain, pH within a certain range,
DO etc. Each measurement is estimated to take 3 min with an additional 1 min allotted (in total)
for data transfer and downtime, hence the usual minimum cycle time for such an experiment would
amount to 10 min since backscatter, pH and DO data are of interest. Accordingly, every 10 min
the current online data is downloaded from the BiolLector, plotted, and send to the experimenter
via Slack in the form of a line diagram and a heat map portraying the backscatter data across
the FlowerPlate. Based on this online data and threshold values defined in separate configuration
files, several decisions are evaluated before waiting for the completion of the next BioLector cycle.
The first decision is whether to prepare the quenching by heating up the BioShake. As the main
cultivation for an ILE has to last until at least the mid-exponential growth phase, it did not seem
sensible to include this step in the pre-loop methods. Instead, it is coupled to a time threshold
which should ideally be triggered at least 30 min before hot isopropanol quenching, thus requiring
previous knowledge about the cultivation. Alternatively, it can be tied to a backscatter threshold
which is reached at least an hour before any quenching events are expected to be scheduled.
The second decision concerns which if any of the main sampling operations should be under-
taken. First and foremost, this refers to the quenching procedure or rather its two variations for
isotopically stationary and instationary labeling experiments but after the establishment of the
quenching workflow, an option for supernatant sampling was added to enable measurements al-
lowing the calculation of extracellular rates for "3C-MFA. All of these operations are commonly tied
to backscatter thresholds but naturally the choice of threshold is up to the user and could just as
well fall on pH, DO or time. At least for the ILEs, though, a backscatter threshold is sensible to
ensure having reached the mid-exponential growth phase.

The final decision simply checks whether any active wells remain which have not been sampled
yet and if this is not the case, the experiment is ended after device-specific shutdown methods
have been executed.
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Figure 3.2: Business Process Model and Notation (BPMN) 2.0-inspired flow scheme portraying the auto-
mated ILE workflow.

Discussing the quenching workflow (figure itself in more detail, it has to be emphasized that
quenching is performed strictly column-wise - at least with the present robotic setup with a liquid
handling arm with 8 pipettes. Accordingly, up to 6 wells, i.e. one full FlowerPlate column, can be
harvested and quenched simultaneously. Since the aluminum plate’s and a FlowerPlate’s layout
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are identical with 6 rows and 8 columns, no additional mapping of wells is required.

Going step by step through the process, two preparatory operations are constituted by piercing
the vials’ septa to decrease the built-up pressure from heating, thus avoiding a so-called "plunger
overload" error of the robotic system, and by providing the 94 % (v/v) isopropanol solution for
quenching. Next, hot isopropanol quenching is initiated by taking samples from the BiolLector
which are concomitantly quenched, lysed, and extracted upon injection into the vials containing
hot isopropanol. After transferring the quenched samples to a DWP, the iterative quenching pro-
cedure re-starts with the next column until all wells relevant to the quenching operation have been
attended to as described. In the subsequent sample processing stage, the DWP is centrifuged to
separate cell debris from the supernatant, the latter of which is then transferred into a fresh DWP
placed upon a cooling rack at 4 °C for storage for the remaining duration of the automated ILE
workflow. At the very end of the ILE workflow, the samples are transferred into 1.5 mL Eppendorf
tubes which have to be manually placed in a box inside a - 20 °C freezer.
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task only due at the end of the automated process

Figure 3.3: BPMN 2.0-inspired flow scheme portraying the automated hot isopropanol quenching workflow.
The column-wise approach of the workflow is emphasized with the central loop. The single manual step is
due only at the end of the overarching automated experiment run.

By comparison, the supernatant sampling unit operation is much simpler. After transferring 500 pL
per sacrificed well from the FlowerPlate to a DWP and preparing an according balance plate with
water, the plates are centrifuged for 5min at at 4°C and 4500 rpm. The process is concluded
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by securing the supernatants in a fresh DWP and removing the water from the balance plate to
provide it for the next execution of this operation.

&R ’)-(
% i) €
transfer 500 pL/well prepare analogous centrifuge DWP
from FlowerPlate balance plate with water (5 min, 4 °C, 4500 rpm)
to DWP P 4 BRI
,)»Y v
= L ¥
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manual task
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hd
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task only due at the end of the automated process

0

Figure 3.4: BPMN 2.0-inspired flow scheme portraying the optional supernatant sampling sub-procedure
of the automated ILE workflow. The single manual step is due only at the end of the overarching automated
experiment run.

It would be amiss not to address the remaining manual steps despite their positions at the very
start and end of the otherwise automated process. The growth of the pre-culture and the inocula-
tion of the main culture could definitely be automated, e.g. by using a few wells of the FlowerPlate
strictly as pre-culture wells and placing media components on the robotic deck, in as sterile a fash-
ion as possible given the circumstances. The labware containing said media components would
be sterilized with UV light before being loaded under a clean bench and would be sealed before
transfer to the robotic deck. Also, the available robotic platforms are covered with high efficient
particulate air filters in order to approach sterility with a laminar flow, yet due to the open sides
of the systems this cannot be guaranteed. The lack of automating the pre-culture was therefore
a conscious decision specifically for the ILE workflow based on a risk-reward assessment. If an
experiment fails due to contamination, it would lead in the best case to a loss of time and some
material, most notably the FlowerPlate which is the most expensive piece of single-use equipment
involved. In the worst case, however, when a contamination is only detected at the end of the
experiment, the waste of labeled material and additional time would increase the overall loss sig-
nificantly. As for the upside, the gain is only the avoidance of a fairly minor amount of manual work
and time for an experimenter.

Regarding the storage of quenched samples at the end of the automated ILE workflow, there is the
possibility to e.g. immediately distribute the samples across several MTPs and use an automated
freezer as intermediary storage. The MTP format has the added benefit of compatibility with HPLC
autosamplers allowing for a rather seamless transition to the bioanalytical stage. The workflow can
be easily changed to accommodate this and the decision is left up to the user. However, since the
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samples are diluted in water or solvents before LC-MS/MS analysis and the dilution factor is not
always known at the time of conducting an ILE, it can be beneficial to store samples in an undiluted
and on top of that centralized manner. Furthermore, not every robotic system was equipped
with an automated freezer so access to one was not guaranteed and would therefore pose an
unwelcome limitation. This was identified as an area of improvement for future developments and
alterations to the workflow.

Software-wise, each run of the automated ILE workflow is governed by the DCS which executes
a Python-based experimental control script (ECS). The download and parsing of online data from
the BioLector is performed using the Python package bletl [157-159] and liquid handling is pro-
grammed either in the vendor software EVOware [160] or in worklists created with the Python
package robotools [157, [161]. Generally, the EVOware is still utilized to execute robotic scripts
triggered by the ECS but the actual content of those scripts and even their generation can now be
relegated entirely to the existing Python framework (see section [3.2).

3.1.2 Validation of automated hot isopropanol quenching

In order to validate automated hot isopropanol quenching, a regular cultivation was performed on
unlabeled glucose and the isopropanol solution for quenching was spiked with uniformly labeled D-
glucose. If no incorporation of labeled carbon atoms beyond natural labeling could be detected by
LC-MS/MS analysis, then it would be surmised that no residual enzyme activity occurred during
quenching and thus that the quenching method is sufficiently fast for valid use in experiments.
This validation technique has been published previously, albeit in an opposite fashion, i.e. with
fully labeled cells and unlabeled substrate [162,[163]. As elaborated in the introduction, the model
organism used for this (and subsequent) experiments - C. glutamicum ATCC13032 - was chosen
in part due to its relatively sturdy cell wall as a Gram-positive organism which should render the
cell lysis more difficult than with Gram-negative organisms. If, then, the process works with this
model organism, it should be transferable to other microorganisms.

Results-wise, neither the closest glycolytic intermediate glucose-6-phosphate (G6P) nor the clos-
est amino acid L-serine (Ser) to the substrate glucose showed any fully labeled mass trace (figure
[3.5). Since glucose is imported via a PTS and phosphorylated in the process, G6P constitutes
literally the first metabolite originating from the substrate so that the observation of any other free
intermediate or amino acid would be unnecessary if the label from glucose did not reach it. Nev-
ertheless, the experiment was fully evaluated and no signs of label incorporation were found (see
figures [AT], and [A3). It was concluded that automated hot isopropanol quenching is indeed a
valid quenching method fit for use in ILE. The fully labeled mass traces observed for some amino
acids in the published variant of this experiment [142] were later found to have originated from the
cell-free fully '3C- and '®N-labeled amino acid standard mixture used in the publication. Since the
fully '3C-labeled state and the fully 3C- and '"N-labeled state of amino acids are often merely
separated by 1 Da, a bleed-over occurred due to the lacking purity of the standard mixture which
was then misinterpreted as being caused by residual enzyme activity.
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Figure 3.5: The most relevant results of the validation experiment for the automated hot isopropanol
quenching method are portrayed as bar plots exhibiting the uncorrected TMIDs of G6P and Ser. The
simplified depiction of the upper glycolysis and Ser synthesis of the model organism C. glutamicum WT
serves to contextualize the metabolite’s position in the metabolic network.

3.1.3 Proof of concept: Performing an automated INST labeling experiment

As a proof of concept showcasing the unique capabilities of the automated platform, an INST la-
beling experiment was conducted. For this purpose, the automated hot isopropanol quenching
workflow was expanded with a pulsing step which would be executed column-wise right before
sampling and quenching as portrayed in figure Here, a labeling mixture was introduced to
otherwise unlabeled cultures immediately prior to sampling and quenching. The time between
pulsing and quenching is henceforth denominated as "delay" and corresponds to the time por-
trayed in INST plots in this work, meaning the time of the pulse acts as the zero point. In order
to attain insightful kinetic labeling data, this delay had to be as short as possible for the first data
points to gain access to the isotopically instationary period. Usually, after a liquid handling action
like delivering the pulse, the tips of the liquid handling arm would be washed to regenerate system
air gaps and clean the tips since residuals may adhere to the tips’ inner walls. Depending on the
wash parameters, this might take around 20 s but can be sidestepped by delivering the pulse with
labeled material with the first three tips and and immediately sampling with the next three tips.
Even in this scenario, though, the time to perforate the FlowerPlate’s foil and the vials’ septa in
addition to the travel time, amounts to roughly 20 s which is hence the first time point accessible
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for the automated INST. By sampling biological triplicates successively with increasing delays, up
to 16 different time points can be observed on a single 6x8 FlowerPlate. The proof of concept
experiment was designed with 10 time points in mind ranging from 24.5 s to 600 s (figure[3.6). The
portrayed time courses of mass traces are the result of the metabolic network structure, the input
labeling mixture and crucially both flux rates and metabolic pool sizes. Since pool sizes could
not be quantified with automated hot isopropanol quenching, the latter parameters cannot be dis-
cerned limiting the use of a straightforward interpretation of the data but some useful conclusions
regarding the cellular phenotype can be drawn, nonetheless.

One might be tempted to hypothesize a connection between the stoichiometric biomass require-
ment of an amino acid and the observed labeling time course but this assumption does not hold.
Exemplary for this is the discrepancy between the faster time course of label incorporation into
L-serine compared to L-alanine (Ala) despite Ala’s almost fivefold higher biomass requirement of
1.15mmolg™. An interesting observation with regard to Ser is the observed lack of transfer of
labeled material to its direct neighbor L-glycine (Gly) within the first minute after the pulse. This
particular finding has been replicated across multiple experiments with several biological repli-
cates each so a faulty measurement can be excluded. An obvious cause would be constituted by
a large pool size of Gly but even then small fractions on the labeled mass traces should have been
detected. Due to the blending of endo- and exometabolome, a significant extracellular Gly pool as
described previously [19] could explain this phenomenon, as well. Another hypothesis is that the
reaction has a low exchange flux and the net reaction is oriented towards Ser, possibly due to its
connection to the one-carbon metabolism through its cofactor tetrahydrofolate (THF).

In a previous publication it was hypothesized that labeling of TCA intermediates was delayed on
account of large buffer pools of L-glutamate and L-glutamine (GIn) but unfortunately the data for
Glu was not included due to excessive measurement noise [164]. The present data set supports
this notion as the label incorporation into Glu commenced only slowly after a late onset at 24.55s,
implying a large pool size. Crucially, a much larger delay of more than 2min was observed for
GIn causing the amino acids like L-arginine and L-ornithine further downstream in the metabolic
network to remain unlabeled during the observed time frame.

Aside from these biological findings, it could first and foremost be demonstrated that informative
data from the isotopically instationary phase can be observed with the ILE workflow, even in a
fast growing organism such as C. glutamicum. Since this experiment was intended as a proof of
concept, this most important result was clearly achieved.

After the initial success when focusing on amino acids, the experiment was repeated to investi-
gate whether the isotopically instationary phases of some intermediates of glycolysis, PPP, and
TCA cycle could be observed, after all, despite the expected higher turnover of these molecules
[165] compared to free amino acids. As can be seen in figure the glycolytic intermediates
G6P, fructose-1,6-bisphosphate (FBP), and glyceraldehyde 3-phosphate (GAP) were already in
the stationary phase when the first data point was recorded which is in agreement with data from
literature [164]. For the collective pentose phosphate pool denominated as "XR5P" and sedo-
heptulose 7-phosphate (S7P), sections of the isotopically instationary phase could be observed
demonstrating that for such molecules which are more distant from the substrate’s entry into the
metabolic network, more informative data can be generated. As indicated by the scarcity of shown
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Figure 3.6: Results of the proof of concept experiment featuring an automated INST ILE focused on free
amino acids alongside a simplified network of the model organism C. glutamicum WT. The line diagrams
exhibit the TMIDs of the titled amino acid fragments denominated by the three letter code of the amino acid
and the m/z ratio of the fragment.
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Figure 3.7: Results of the automated INST ILE focused on free intermediates. The line diagrams exhibit
the TMIDs of the titled fragments denominated by the abbreviation of the intermediate and the m/z ratio of
the fragment.

intermediates, their detection turned out rather challenging, even with a HILIC column and opti-
mized MS parameters. This is most likely due to the dilution effect of hot isopropanol quenching
where - upon cell lysis - the metabolites are extracted from the relatively low cellular volume into
a solution of up to 750 pL inhibiting the detection of especially compounds with low intracellular
concentrations. Thus, when using the described workflow INST labeling data from intermediates
of glycolysis, PPP, and TCA cycle cannot be generated in a comprehensive manner and serves
more of an auxiliary function by using the stationary data points and thereby concomitantly intro-
ducing an upper limit for the onset of the ISS for a given compound. At least, this is the case for
the closest intermediates to the substrate. The instationary phase of more distant intermediates
from the carbon source may be observed, after all.

3.1.4 Comparative evaluation and limitations of the automated INST labeling
experiment

Since the column-wise nature of the workflow and the sacrifice sampling approach stay in place,
the fundamental difference to a lab-scale bioreactor experiment has to be emphasized. In a biore-
actor cultivation in batch or continuous mode, an INST experiment would involve a similar spike
with or switch to labeled material, respectively, but each reactor would be sampled multiple times
thereafter to record the time course of label incorporation. When performing sacrifice sampling,
this is obviously not possible so instead the time course is observed by choosing different delays
for each biological triplicate. It is presumed, then, that while the cultures in different wells grow
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comparably and remain in the exponential phase, the assumption of an average cell still holds true
and that the derived time points can be assembled into one unified labeling time course. In the
opposite extreme, one may view this setup as a massively parallel ILE where every single well is
regarded as a unique ILE.

Yet another assumption is that of one input labeling mixture shared by all wells. When pulsing - like
in the present experiment - with a constant volume of a solution with 100 % labeled substrate while
cultures were grown on unlabeled substrate, the input labeling mixture depends ultimately on the
residual concentration of unlabeled substrate cgq in a given well. Clearly, if the growth between
wells deviates significantly, cgo is not constant and thus, the input labeling is not. Even when
this requirement is fulfilled, however, since groups of wells with different delays and/or located
in different columns are handled successively and all the while the cultivation continues in yet
untreated wells, this, too, leads to a small, systematic offset in cgg and the input labeling mixture.
This could theoretically be addressed after the fact by a) recording the temporal offsets between
the pulsing events and allowing for local variations in input labeling mixture or b) using hierarchical
models to simultaneously treat all wells as separate ILEs while imposing a framework with global
parameters. As the latter, however, is a computationally burdening approach, it is recommended to
minimize this systematic effect by simply structuring the experiment more efficiently. Accordingly,
when later time points are to be observed, those can be pulsed first and their long delays between
pulsing and quenching can be used to handle earlier time points with shorter delays. Another time
save is constituted by front-loading the preparatory steps like piercing the vials and administering
isopropanol and completing them for all vials before the first pulse. This way, all pulses are in
closer temporal proximity, thereby minimizing the described effect of a difference in input labeling
mixture.

Another key difference pertains to the question of speed. In INST experiments it is paramount to
observe the kinetic of label incorporation before isotopic stationarity. During growth on Glc, this
is especially critical for intermediates from glycolysis and PPP which can already reach the ISS
after a short time frame of around 10 s [164]. For bioreactor cultivations, a rapid sampling device
[166] |[167] may be used to sample and quench at a sub-second scale in order to observe even
energy storage molecules such as GTP among others. As detailed above, the robotic system is
comparatively limited in terms of speed allowing observations only after about 20 s because the
LiHa is slowed down significantly by having to pierce the FlowerPlate’s foil and the vitreous vials’
septa.

A final important differentiation to make is with regards to the obtained experimental data. Online
backscatter is used as a substitute to direct CDW measurements and hence requires conversion,
either via a separately generated calibration model [157} {168 [169] or by subsequently estimating
the parameters for the conversion during bioprocess modeling. In theory, a direct CDW measure-
ment as is customary in bioreactor experiments can be conducted with BioLector samples, as well,
but that would require sacrificing wells for this purpose which could then not be used for hot iso-
propanol quenching. One compromise would be to use the cell pellets from supernatant sampling
to determine CDW at some points during the cultivation, at least. A straight-up downside of the
BioLector cultivation lies in the absent capability for off-gas analysis. Therefore, no carbon dioxide
evolution rate (CER) nor the respiratory quotient (RQ) can be determined leaving a gap in the
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carbon balance around the reaction vessel. Since the secretion of carbon dioxide is traditionally
an extracellular rate provided for '3C-MFA, its omission presents an additional degree of freedom.
With regards to the original intentions, the combination of miniaturization and the INST methodol-
ogy led to a synergistic effect lowering experimental costs significantly as both reduce the amount
of required labeled substrate. Moreover, the established automated ILE workflow’s capacity to
conduct both isotopically stationary and INST ILEs at a much increased throughput has been
demonstrated and additional functionality such as supernatant sampling was introduced to enable
at the very least the fully stationary '3C-MFA variant. In contrast to prior publications, the develop-
ment of the automated hot isopropanol quenching method enabled the generation of labeling data
of free metabolites at a microliter scale for the first time. While the primary target of the method
were free amino acids, it was shown that a limited investigation of free intermediates from glycoly-
sis, PPP, and TCA cycle was possible, as well. Finally, to impress upon the reader the magnitude
of time saved by the automated ILE workflow, the proof of concept experiment was conducted (ex-
cluding the pre-culture) within a single work day which was comprised mostly of walk-away time
for the experimenter.
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3.2 Automated generation of experimental scripts

As much as the throughput of biological experiments may be enhanced by automation, additional
tasks which do not apply to manual experiments to the same degree if at all do arise. As detailed in
the previous section (see[3.1), an ECS meaning a Python script governing the automated workflow
[157] has to be created, tested, and adapted when either the experimental setup or a utilized
Python package is altered or updated. Aside from slowing down the potential gain in walk-away
time and throughput, these scripts can be fairly expansive and complex, thus requiring knowledge
of Python and the DCS [157] when alterations are in order. Since a stated goal of the overarching
ILE workflow is to lower the barrier of entry in every facet, it was decided to also automate the
generation of such a script. While this does not eliminate the need for testing and should serve
rather as a basis which may be varied and expanded upon, it should yet grant less experienced
users access to automated ILEs.

3.2.1 Implementation

To enable swift experimentation with as low a barrier of entry as possible, an ECS generating
program should fulfill the following criteria:

1. User input should be sourced from as few files as possible and only rudimentary program-
ming skills should be necessary to supply said input.

2. The generated ECS needs to have the option to sample supernatants and perform both
isotopically stationary and instationary labeling experiments.

3. The generated ECS should be independent of any one robotic platform so that it can be
readily executed on all Mini Pilot Plants.

The first two design principles could be upheld by writing a template containing the most general
form of the ECS encompassing all variants of an ILE. Using the Jinja2 Python package [170], such
a template can be parameterized and an experimental logic can be introduced via if-statements
and for-loops. Upon rendering the template from a Jupyter notebook, these parameters must be
delivered and the ECS is created in dependence of them. E.g. when a Boolean variable decides
whether or not an INST experiment is to be included and it reads "False", then the generated
ECS will not contain any section exclusively relevant to the INST workflow. The entry of this
information is kept simple by only defining a few variables within a provided example notebook and
outsourcing all other settings and parameters to an Excel file with three sheets and one *. json
file. For example, if any of the three main sampling unit operations depicted in the ILE workflow
(figure are not part of the planned experiment, the user can just leave the respective Excel
sheet empty and the pertaining Boolean will automatically be set to "False". Such simplifications
streamline the automated ECS generation for the user.

The third design principle of creating an ECS independent of any single robotic system proved
much more difficult. It should be noted that while the ECS governs an automated experiment,
the control of the liquid handling system is still enacted via its vendor software EVOware [160].
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A B C D A B C D A B C D
1 |wells times 1 |wells condition 1 |wells delay condition
2 |A07 2 2 D02 wWT 2 Co3 15 WT
3 |BO7 2 3 |E02 WT 3 A0l 0.02 WT
4 |Co7 2 4 [FO2 wWT 4 Co1 0.02 wT
5 (A08 3 5 |E03 mutant 5 A03 15 WT
6 B08 3 6 |DO3 mutant 6 BO3 15 WT
7 |Co8 3 7 |FO3 mutant 7 |B02 5WT
8 |D01 1 8 |E04 mutant 8 BO1 0.02 wT
9 |EO1 1 9 D04 mutant 9 |C02 5WT
1

10 |FO1 10 |FO4 mutant 10 |A02 5WT

1 11 D05 mutant 11 A4 0.02 mutant
12 12 |E0S mutant 12 |B04 0.02 mutant
13 13 |FO5 mutant 13 Co4 0.02 mutant
14 14 14 A0S 5 mutant
15 15 15 BOS 5 mutant
16 16 16 CO5 5 mutant
17 17 17 |A06 15 mutant
18 18 18 |B06 15 mutant
19 19 19 |C06 15 mutant

4 rates stationary instationary .. > rates stationary instationary .. 4 rates stationary instationary ..

Figure 3.8: Configuration Excel file "configuration.xlsx" with settings for the automated ECS generation. It
features three sheets for the different sampling workflows: supernatant sampling as well as whole broth
sampling for both isotopically stationary and INST labeling experiments.

Whereas pipetting schemes can be separately defined and read into the software as so-called
worklists, an EVOware script or *.esc file can and unfortunately does in the present case differ
between robotic platforms due to deviations in deck layouts etc. Hence, each *.esc file would
need to be prepared in multiple variations to cover all Mini Pilot Plants. A second problem was
constituted by the difference in liquid handling commands between EVOware scripts and worklists.
As mentioned in [3.1.3] it is critical to access the earliest time point possible wherefore lengthy
washing steps have to be avoided and different tips are used for pulsing and sampling, instead.
However, the standard pipetting commands within worklists - depending on how they are phrased
- either insert an unavoidable washing step or automatically group successive pipetting actions in
a (for the present purpose) nonsensical manner. Within the EVOware, pipetting commands are
stated more freely but this would require hard-coding them into these scripts and work against a
unified approach of programming entire automated workflows in Python. Additionally, any changes
would require blocking a robotic system in order to access a PC with an EVOware license and to
individually update each relevant pipetting command in each *.esc file. Thus, the shift to Python
has tangible advantages and its pursuit is worthwhile.

Upon testing it was noticed that the EVOware pipetting commands could be copied into a worklist
preceded by a break command and would function as intended. For a more detailed explanation of
their constituents, see figure[3.9] If one could reproduce these commands in silico, it would there-
fore provide users with a much higher degree of freedom and control when designing pipetting
schemes via the robotools package in Python [157, [161].

By far the most complex part of their syntax was the well selection string which used a bitmap
where 7 wells are codified by one byte or one character in the code string. Some examples of this
are shown in table The first 4 characters describe the labware dimensions in hexadecimal
(HEX), e.g. for a plate with 12 columns and 8 rows it reads "0C08" or for a FlowerPlate "0806".
Subsequent characters specify the selected bit-coded wells by summation of their decimal values
which are finally represented in the code string using American National Standards Institute (ANSI)
characters. To avoid unprintable characters, 48 is added on top of the sum of selected wells so
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: l [¢] (o]
B;Aspirate(7,"Water_DispZmax_AspZmax","10","10","10",0,0,0,0,0,0,0,0,0,32,1,1, "0C08000000000000>0",0,0);

Figure 3.9: Exemplary EVOware pipetting command as appearing in worklists. The annotated positions
represent a break command within worklists (1), the pipetting action (aspirate or dispense, 2), bit-coded tip
selection (3), liquid class (4), individual volumes for up to 12 tips (5), grid (6) and site (7) of the targeted
labware object, tip spacing (8), bit-coded well selection (9), number of loops (10) and liquid handling arm
selection (11). In case a loop is selected, additional loop parameters are included (not shown).

that the selection of only the first well in a group amounts to a "1" in the code string (ANSI 48
corresponds to 0 in decimal). As portrayed in the final line of the table, this sum may exceed the
127 ANSI characters thus requiring use of an extended character sheet based on the Windows-
1252 (CP-1252) standard. Up to this point, the information was available in the EVOware extended
help file. Furthermore, a code snippet to recreate the well selection string written in C was included
which was then translated to Python by Martin Beyf3. It required additional testing, though, to figure
out the correct encoding when saving worklists. With the default UTF-8 encoding, the extended
character set would not be printed correctly so the 1atin_1 encoding was selected, instead.

Table 3.1: Well selection of EVOware pipetting commands for a 8x12 plate.

well(s) well number(s) | binary decimal | decimal + 48 ANSI code string
A01 1 0000001 1 49 1 0C0810000000000000
BO1 2 0000010 2 50 2 0C0820000000000000
Co1 3 0000100 4 52 4 0C0840000000000000
DO1 4 0001000 8 56 8 0C0880000000000000
EO1 5 0010000 16 64 @ | 0C08@0000000000000
FO1 6 0100000 32 80 P 0C08P0000000000000
Go1 7 1000000 64 112 p 0C08p0000000000000
HO1 8 0000001 1 49 1 0C0810000000000000
A02 9 0000010 2 50 2 0C0820000000000000
AO01 - GO1 1-7 1111111 127 175 . 0C0870000000000000

Once the code strings could successfully be reproduced, a number of functions generating aspi-
rate, dispense, and wash commands in the EVOware style were added to robotools in a massive
update with roughly 1300 added lines of code [171]. Aside from the core functions producing the
code strings, additional ones for checking user input as well as extensive unit tests were supplied.
The current implementation of these new commands in robotools is shown in figure [A4]for aspirate
and dispense commands and in figure [A5] for wash commands. In each case, the user interacts
with one outward-facing function returning the created EVOware pipetting command after passing
through a number of internal functions which are not depicted in the aforementioned figures. As
can be seen, there are many, partly optional, parameters for the user to specify enabling tight con-
trol of pipetting actions down to minuscule details such as the volume of the system trailing airgap.
For a code example of how to apply these newly established EVOware commands, see listing
The example shows a pipetting scheme for an INST experiment with just three biological replicates
sampled at the earliest time point after the pulse. Henceforth, it was possible to code the entirety
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of all necessary liquid handling steps in worklists within the ECS, i.e. in Python, and have these
worklists be created automatically during the execution of the automated experiment. In addition
to the in silico unit tests written for robotools, the EVOware pipetting commands were naturally
tested on the Freedom Evo robotic systems, as well, and have been utilized successfully in e.g.
the ethanol labeling experiments presented in later sections of this thesis.

robotools liquidhandling
robotools evotools

# define labware objects

flowerplate = liquidhandling.Labware( 'flowerplate', 6, 8, min_volume=0, max_volume=2000, initial_volumes=800)
inst_dwp = liquidhandling.Labware( 'labeled substrate', 8, 12, min_volume=0, max_volume=2000, initial_volumes=1000)
aluplate = liquidhandling.Labware("aluplate", 6, 8, min_volume=0, max_volume=2000, initial_volumes=0)

# create worklist
evotools. Worklist("test.gwl") wl:

wl.evo_aspirate (
wells=["DO1", "EO1", "FO1"],
labware=inst_dwp ,
labware_position=(44,2),
tips=[1, 2, 3],
volumes=50,
liquid_class="Water_DispZmax-1_AspZmax-1",

wl.evo_dispense (
wells=["D01", "EO1", "FO1"],
labware=flowerplate ,
labware_position=(62,1),
tips=[1, 2, 3],
volumes=50,
liquid_class="Water_DispZmax-1_AspZmax-1",
)
wl.evo_aspirate (
wells=["D01", "EO1", "FO1"],
labware=flowerplate ,
labware_position=(62,1),
tips=[4, 5, 6],
volumes=250,
liquid_class="Water_DispZmax-1_AspZmax-1",
)
wl.evo_dispense (
wells=["Do1", "EO1", "FO1"],
labware=aluplate ,
labware_position=(26,3),
tips=[4, 5, 6],
volumes=250,
liquid_class="Water_DispZmax-1_AspZmax-1",
)
wl.evo_wash(

tips=[1,2,3,4,5,6,7,8],
waste_location=(52,2),
cleaner_location=(52,1)

)

Listing 3.1: Code example for usage of EVOware pipetting commands in worklists to code INST pulsing,
sampling, and quenching.

The remaining grievance of needing multiple versions of the EVOware scripts for different automa-
tion platforms was tackled by an effort synergizing with the investigation of EVOware pipetting
commands. The next logical step was constituted by constructing a Python package featuring
Pythonic reading and writing of EVOware scripts. This necessitated an understanding of the com-
plete structure of EVOware scripts - a topic which was not covered in the documentation and
required reverse-engineering to solve. The resulting Python package was a joint effort of several
PhD students including the author with smaller contribution by other institute members and will not
be covered in detail here. Suffice it to say, the combination of the sizeable robotools update and
the establishment of the Python package for EVOware script writing enabled the realization of the
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automated ECS generation in its presented form fulfilling the third requirement of the initially stated
design principles. Additionally, these efforts furthered digitization of laboratory work since entire
automated workflows could now be composed and partly tested remotely. Especially when time
slots of robotic platforms are a limiting factor, enabling Pythonic *. esc file generation independent
of limited EVOware licenses becomes particularly valuable.

3.2.2 Limitations of the automatically created ECS files

It is imperative to note the limitations of the generated ECS and thus when user action for cus-
tomization is required.

The first such limitation pertains to how sampling actions are triggered. The function responsible
for selecting wells for sampling upon exceeding a threshold cycles through the conditions stated
in the input Excel file. As soon as the criteria is fulfilled for any one condition, all wells pertaining
to it are flagged for sampling and this list of wells is returned immediately without checking fur-
ther conditions. Accordingly, sampling and quenching events can only be triggered for one single
condition per cycle so in case of a concomitant passing of thresholds by two groups of wells at-
tached to different conditions they are dealt with successively. This was deemed acceptable since
ILEs merely require sampling within the exponential growth phase to maintain the assumption of a
metabolic steady-state but as long as this is guaranteed the precise timing of sampling is of lesser
importance.

As stated before, crossing a threshold leads to sampling of all wells affiliated with a specific condi-
tion and not only to those above the threshold assuming a rather uniform or at the very least com-
parable growth behavior between wells. For isotopically stationary ILEs, this could be changed to
a mode with individual wells but for INST ILEs, it is imperative that the pulsing is performed in a
timely fashion across all wells and simultaneously for biological replicates (see subsection (3.1.4).
In both cases, piercing the vials and preparing isopropanol is finished before the actual sampling
starts. With regards to INST, this measure saves time between administration of the successive
pulses, as discussed before.

Finally, to greatly simplify the ECS, the last liquid transfer of all samples from a DWP into 1.5mL
Eppendorf tubes is performed for all 48 wells on the DWP which could potentially be filled, regard-
less of whether they actually are. This is due to the difficulty in generalizing the mapping of wells
from a 8x12 well plate such as a DWP to the 16x1 carrier holding the 1.5mL Eppendorf tubes.
Since this is only executed at the very end of an automated workflow, the delay caused by this
simplified approach is inconsequential.

None of these limitations are particularly restrictive and all of them can be amended by the user
after the ECS has been generated but they nonetheless have to be acknowledged. As stated at
the onset of this chapter, the motivation was to create a generalized chassis to save time on the
preparation of future experiments and this was fulfilled.
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3.3 Realizing a novel approach for peak integration and uncertainty
quantification of LC-MS/MS raw data

This chapter is based partially on the publication "PeakPerformance - A tool for Bayesian inference-
based fitting of LC-MS/MS peaks" [172] first-authored by JN with text revision by Michael Osthege
and Stephan Noack. All figures were originally created by JN and all but figure[3.16 have appeared
in said publication. The pertaining section of Materials and Methods was taken from said
publication. The sections[3.3.3, [3.3.3, and[3.3.4 are heavily based on their counterparts in the
publication. As stated in the publication, PeakPerformance was conceptualized by JN and MO.
Software implementation was conducted by JN with code review by MO.

Since the previous chapter focused on all aspects of the automated experimental workflow, i.e.
the data generation, this marks the beginning of the data evaluation section. Having conducted an
automated ILE, the experimenter will have obtained cell-free extracts composed of free metabo-
lites dissolved in an isopropanol-water solution at a volume of a few hundred microliters per well.
Next, the isotope labeling patterns of target compounds have to be determined, in this case those
of free amino acids, by way of LC-MS/MS. The bioanalytical techniques themselves are not the
focus of the present thesis and accordingly are omitted here but the generated data which may be
presented in the form of extracted ion chromatograms (EIC) is highly relevant.

Essentially, these EIC portray time series of the intensities of mass traces over the course of the
entire LC-MS/MS run or measurement period, thereby combining the detected quantity of the MS
with the time course of the HPLC separation. In order to calculate TMIDs, the peak areas of
all mass traces corresponding to the mass isotopomers of one fragment need to be normalized.
Therefore, one must first obtain these peak areas by integrating the measured LC-MS/MS peaks
pertaining to said mass traces.

There are different approaches to peak recognition and integration, but the first workflow to be
presented here is based on commercially available vendor software and was deemed represen-
tative for many other laboratories besides the ones at the IBG-1. Here, feature recognition and
peak integration were performed using the Sciex MultiQuant software version 3.0.3 [22] specif-
ically with its MQ4 algorithm and default integration settings. While this process is — in theory
— automated, the mandatory visual inspection and occasional manual re-integration by the user
due to the high frequency of false positives, false negatives or incorrectly determined baselines,
ultimately downgrades it to a semi-automated process.

Beyond the requirement of human labor, its associated costs, and the tediousness of the task
when faced with a large number of peaks, it not only constitutes a bottleneck in a high-throughput
pipeline but necessarily introduces additional sources of errors. One major error is caused by
applying manual and algorithm-based integration within the same evaluation procedure. Another
originates from user-specific differences since especially over the course of a longer project the
manual corrections may not be restricted to one singular user but multiple ones. In a previous
dissertation by Max von Haugwitz [173], a small-scale study was conducted to investigate these
differences by integrating a data set with an algorithm and a group of 10 users. For most tested
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metabolites it was found that the relative standard deviations of all user results varied between
11 % and 27 % with threonine as an outlier at 57 %. Among the findings it was particularly striking
that a clear correlation between single challenging features of a chromatogram and high inter-user
deviations could not be determined underlining the complexity of the problem.

Since the MultiQuant approach was still in use for peak integration of all data from experiments
detailed in this dissertation, there is a wealth of data to support claims about the frequency of
manual intervention mentioned initially. Across 3 labeling experiments with a combined total of
28593 potential peaks, one third was revised manually. Focusing on a smaller example data set of
192 signals originating from one experiment and consisting to a large fraction of double peaks, the
manual share was increased to 52 % of all signals, of which 22 % were false positives and 78 %
were manually re-integrated. While manual interventions require the most time, the prevalence of
mistakes necessitates at least the visual inspection of all peaks. These examples should illustrate
the scale of human effort involved amounting to hours upon hours of monotonous screen work
(the exact duration is difficult to track) which can be re-contextualized as an additional operating
cost of a LC-MS/MS system.

Aside from the problems with semi-automated integration, a further downside of proprietary soft-
ware in general is the limited number and high price of licenses so that commonly very few PCs are
equipped with the software. This creates another bottleneck when multiple users need to analyze
LC-MS/MS data concurrently.

Hence, it was decided to attempt building an in-house solution for LC-MS/MS peak integration.

3.3.1 Introducing PeakPerformance: A Python package for peak fitting and
uncertainty quantification by Bayesian inference

The solution presented here takes the form of the open source Python package PeakPerformance
applying Bayesian inference to chromatographic peak fitting. This became viable only recently
due to the development of high performance, open source software packages enabling complex
Bayesian modeling on regular PCs. All relevant peak parameters — i.e. baseline, peak area and
height, mean, signal-to-noise ratio etc. — are encompassed in a singular model and are sub-
sequently estimated simultaneously via MCMC. The key difference to previous attempts at peak
fitting is that these peak parameters are defined as random variables and the result of the pa-
rameter estimations are distributions for each such parameter. Hence, instead of a point estimate
for e.g. the peak area, a probability distribution is obtained meaning the provision of uncertainty
quantification is built-in.

This development is synergistic to the rise of Bayesian methods such as Bayesian model averaging
[174] and others in the field of "3C-MFA which is directly connected to and based on the labeling
data analyzed here in the form of LC-MS/MS peaks. Also, it constitutes a more realistic and
honest representation of the experimental and analytical reality that a LC-MS/MS measurement
is noise-afflicted and the resulting peak areas carry an uncertainty which has not been taken into
account previously. Finally, the uncertainty can be used to exclude false positive peaks by defining
a relative cut-off of the standard deviation with respect to the mean of a parameter’s marginal
posterior of e.g. 30%. When combining this criterion with MCMC convergence checks such as
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the potential scale reduction factor [125], this makes for a more effective filtering system than what
has been available in e.g. MultiQuant. Since PeakPerformance was to be realized as a Python
package, it could be installed on as many PCs as necessary without any additional associated
license fees and would thus resolve the bottleneck of concomitant work of multiple users. Using the
aforementioned new quality metrics, the accuracy of peak detection and accordingly the degree
of automation are increased reducing the time investment into human supervision. Moreover, the
Bayesian models and the distributions of their constituents are clearly defined, reproducible, and
any changes to them can be documented comprehensively by version control in contrast to the
deviations arising from manual integration by different personnel.

In summation, the stated approach was selected to first and foremost address the initially dis-
cussed issues with vendor software and connect with state of the art modelling methodology
downstream in the overarching ILE workflow. A further mission statement was to enable less ex-
perienced users - both with regards to Python programming and to Bayesian statistics - to work
with the software.

Regarding software implementation, PeakPerformance was created as an open source Python
package freely available as a code repository on GitHub and intended for use on Windows and
Linux systems. It is subdivided into the three modules pipeline, models, and plotting. The
pipeline module is concerned with functions pertaining to raw data handling, sampling, filtering
out false positive signals, and reporting results. It also features a ready-to-use example data
pipeline showcasing the capacities of the program and serving as a convenience function for
less experienced users to enable the usage of PeakPerformance out of the box. The models
module contains all functions related to model definition and the plotting module encompasses
all implemented visualizations.

Due to its modular design, PeakPerformance can easily be expanded by adding new models for
deviating peak shapes or additional, e.g. diagnostic, plots. Aside from notes on the data format
of raw data, the GitHub repository contains detailed instructions for installation and expansion of
PeakPerformance. Bayesian inference is conducted utilizing the PyMC package [128, |175] with
the external sampler nutpie [176] for improved performance. Both model selection and analysis
of inference data objects were realized with the ArviZ package [177]. Since the inference data
is stored alongside graphs and report sheets, users may employ the ArviZ package or others for
further analysis of results if necessary.

3.3.2 Composition and assumptions of peak models in PeakPerformance

To realize a peak fitting approach of any kind, it is necessary to identify one model or a collection
thereof which are able to describe the LC-MS/MS data of interest and express the peak distortions
mentioned in the introduction (see section|1.3.1) while avoiding over- or underfitting. Although it is
necessary to continue adding models when expanding the software to data from other chromato-
graphic methods, a starting set of models was to be supplied which could adequately deal with
the hitherto obtained LC-MS/MS data in this thesis.

The most basic and ideal peak shape took the form of a Gaussian or normal distribution which
is assumed to be the combined result of mass transfer, longitudinal diffusion, and eddy diffusion
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inside the HPLC column. A skew normal distribution [178] - i.e. a family of distributions with
an additional skewness parameter « allowing for a one-sided distortion of the peak - is used to
describe frequent phenomena such as tailing (o« > 0) and fronting (o« < 0) which are dependent
on the adsorption isotherm of a given analyte. In case of a = 0, the distribution simply results in
identity to a normal distribution. Another regular phenomenon is the occurrence of double peaks
meaning partly overlapping peaks without baseline separation. In the context of peak fitting, peaks
with low resolution eluting in close succession need to be considered in a similar vein. For this
purpose, double normal and double skew normal peak models were included applying the same
models to the double peak case.

Discussing the model composition in detail, first some general assumptions and commonalities
among the models will be established before addressing diverging parameters. Peak models in
PeakPerformance require the definition of prior probability distributions for their parameters as well
as the choice of an intensity function and a likelihood function. Generally, priors are derived from
a given time series and assigned a weakly informative parametrization, such that the resulting
inferences of parameters like the peak height are primarily based on the data. While defining
priors in a data-dependent manner is generally to be avoided, it is clearly not tenable to define
legitimate priors for all kinds of different peaks with heights and areas varying by multiple orders
of magnitude and retention times, i.e. mean values, scattered across the whole run time of the
LC-MS/MS method. In order to flexibly build models for all these peaks in an automated manner
and embedded in a standardized data pipeline, some parameter priors had to be based on the raw
data. If specific distributions or their parameters had to be restricted to certain value ranges, error
handling was incorporated. For example, when only positive values were acceptable or when 0
was not a permissive value, a lower bound was defined using NumPy’s clip function [179].
Regarding shared model elements across all intensity functions, one such component of all mod-
els presented hereafter is the likelihood function

L ~ Normal(y, noise) (3.1)

with y as the predicted intensity and noise as the random variable expressing the standard devia-
tion of measurement noise. This definition contains the assumption that observed intensities are
the result of normally distributed noise around the true intensity values of a peak which is justi-
fied by the device-specific measurement noise of the QqTOF and the complexity of the biological
matrix. In turn, the noise parameter is defined as

noise ~ LogNormal(log;, max (10, noiseguess), 1) (3.2)

The log-normal distribution where the logarithm of the random variable follows a normal distribution
was chosen partly to exclude negative values from the solution space and also due to its shape
attributing a higher fraction of the probability mass to lower values provided the standard deviation
is defined sufficiently high. This prior is defined in a raw data-dependent manner as the noisegyess
amounts to the standard deviation of the difference of the first and final 15 % of intensity values
included in a given time frame and their respective mean values.
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The intensity function itself is defined as the sum of a linear baseline function and a peak intensity
function, the latter of which is composed of a given distribution’s probability density function (PDF)
scaled up to the peak size by the area or height parameter. The linear baseline

ybaseline(t) =at+b (33)

features the slope and intersect parameters a and b, respectively, both of which were assigned
a normally distributed prior. The data-dependent guesses for these priors are obtained by con-
structing a line through the mean of the first and last three data points of a given intensity data
set which oftentimes already resulted in a good fit. Hence, the determined values for slope (aguess)
and intercept (bguess) are used as the mean values for their pertaining priors and the standard
definitions are defined as fractions of them with minima set to 0.5 and 0.05, respectively. Here,
the exact definition of the standard deviations was less important than simply obtaining an unin-
formative prior which, while based on the rough fit for the baseline, possesses a sufficient degree
of independence from it, thus allowing deviations by the Bayesian parameter estimation.

‘a ’uessl |a ‘uess‘
e Normal(aguess, —=5) 5= > 0.5 (3.4)
Normal(agess, 0.5)  2zte=l < 0.5

. Normal(bgues, =l Bt > 0.05 5)
Normal (bgyess, 0.05)  Lezessl < 0,05

Software-wise, the deterministic variables noiseguess, @guess, aNd bgyess are calculated by the function
initial_guesses() from the models submodule.
Beyond this point, it is sensible to subdivide models into single and double peak models since
these subgroups share a common basis. Starting with the single peak models (figure [3.10), the
normal-shaped model requires only three additional parameters for defining its intensity function.
The mean value p has a normally distributed prior with the center of the selected time frame
min(t) + % as its mean and % as the standard deviation where At corresponds to the length of
the time frame. Accordingly, the resulting prior is rather compressed and weakly informative. The
prior for the standard deviation of the normal-shaped peak model was defined with a half-normal
distribution, once again to avoid values equaling or below 0. As a half normal distribution only
features a standard deviation, this was set to %. The final parameter is the peak height used for
scaling up the distribution to match the size of the peak. Here, a rather uninformative half-normal
distribution with a standard deviation amounting to 95 % of the highest intensity value in the time
frame was selected.
The second featured single peak model is based on the skew normal distribution which has an
additional skewness parameter « enabling a one-sided distortion of the peak or resulting in a
normal distribution when o = 0. Hence, the prior of « is constituted by a normal distribution
centered on 0 with a standard deviation of 3.5 to allow for a sufficiently large range of possible
values for o and thus a realistic skew. Instead of the peak height, the peak area was utilized to
scale the distribution, albeit with an identical prior.
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Figure 3.10: The intensity functions of normal (a) and skew normal peak models (b) as well as the prior
probability distributions of their parameters are shown in the style of a Kruschke diagram [180]. Connections
with ~ imply stochastic and with = deterministic relationships. In case of variables with multiple occurrences
in one formula, the prior was only connected to one such instance to preserve visual clarity. The variables
M; and O; describe mean values and T;, R, and S standard deviations.

The double peak models (figure featured many of the same variables as their single peak
counterparts so only the differences will be highlighted here. All variables pertaining to the actual
peak were turned into vectors with two entries and labeled with 0 and 1 by adding a named
dimension to that effect. Aside from that, their priors remained unaltered except for the peak
mean p.

An early attempt to define double peak mean priors used an ordered transformation to enforce that
1o < p1, thereby avoiding confusion between the two peaks. However, this solution relied on two
normally distributed priors for ng and p; whose location was anchored at one quarter and three
quarters of the time frame, respectively. This setup had trouble fitting double peaks which were
not centered quite exactly in the time frame but slightly shifted to the right or left. Since the HPLC
retention time of a metabolite may change slightly over the course of a batch run of samples, it
is not tenable to force a user to provide time frames exactly centered on the given double peak
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Figure 3.11: The intensity functions of double normal (a) and double skew normal peak models (b) as
well as the prior probability distributions of their parameters are shown in the style of a Kruschke diagram
[180]. Connections with ~ imply stochastic and with = deterministic relationships. In case of variables with
multiple occurrences in one formula, the prior was only connected to one such instance to preserve visual
clarity. The variables M; and O; describe mean values and T}, S;, P;, and V; standard deviations.
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for each and every sample. Instead, a more flexible solution was found and implemented which is
able to find double peak means across the whole time frame.

This was accomplished by adding several additional parameters to aid the creation of sub peak
mean priors. More precisely, the mean of both peaks or group mean was introduced as hyperprior
[3.6] with a broad normal prior which enabled it to vary across the time frame as needed.

(3.6)

At A
ft ~ Normal (min(t) + ot t>

276

By defining a separation parameter representing the distance between the sub-peaks of a double
peak

At At
ion ~ = = 7
separation Gamma( = 12) (3.7)
the offset of each peak’s mean parameter from the group mean is calculated as
__separation
0 = [ separaQtion ] (38)

The priors for the mean parameters of each subpeak were then defined in dependence of p,, and
0 as
=g+ 0 (3.9)

Furthermore, PeakPerformance has the capacity of providing mean priors for multi peaks beyond
double peaks using a similar approach in spirit but distinct in its implementation. Once again,
the group mean and the sub peak means were defined according to equations and re-
spectively. However, the major difference is that 6 was defined as the zero-sum-normal (ZSN)
distribution

0 ~ ZeroSumNormal(1) = Normal(0, 1) (3.10)

meaning that the sum of all values of the vector §, containing draws from the ZSN, must amount to
0. Accordingly, this framework can accommodate two peaks or more since the length of variables
K, 0, and p are never explicitly stated. In theory, this approach could also be used for double
peaks but in practice the ZSN attributes a high probability to a distance between the two sub peak
means of 0 or close to it which could potentially lead to confusion between or a merge of the two
peaks. However, when more than two sub peaks are present, the likelihood of such a mistake
decreases significantly.

To illustrate the mode of operation of the ZSN approach, a short example will be presented (equa-
tion 38.11). In case of a triple peak located within a time frame from 10 to 14 min, 3 values 1,
x9, and xzg are drawn from the ZSN distribution. Their mean value p, is then subtracted from
each resulting in a proposal for 4;, d2, and d3. Note that the sum of the proposed values add up
to 0. Assuming a proposal for the group mean g, of 12min, the subpeak means s, p2, and 3
are obtained by summation of 1, and the pertaining value of ¢; amounting in this toy example to
10.7 min, 11.8 min and 13.5 min.
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z1 = —0.3

9 = 0.8

T3 = 2.5

fo =1

0 =x1— e =—1.3
0o = X0 — iy = —0.2 (38.11)

03 =3 — iy = 1.5
01+d2+03=—-13-024+15=0
= i+ 0 =12 —1.3 =10.7

p2 = piy +02 =12 -0.2 =118

p3 = piy +03 =12+ 1.5 =135

While all aforementioned parameters are necessary for the models, not all are of equal relevance
for the user. A user’s primary interest for consecutive data analysis generally lies in obtaining
mean values, peak areas and perhaps - usually to a much lesser degree - peak heights. Since
only one of the latter two parameters is strictly required for scaling purposes, different models as
shown in figures [3.10]and [3.11] will feature only one or the other. Nonetheless, both peak area and
peak height should be supplied to the user, hence the missing one was included as a deterministic
model variable and thus equally accessible by the user. In case of normal-shaped peaks, the peak
height h was used for scaling and the area A was calculated by

h

1
oV2m

A=

(8.12)

For skew normal-shaped peaks, the scaling parameter was the peak area. Since the mode and
mean of a skewed distribution are — in contrast to normal distributions — distinct, the calculation
of the height was nontrivial and ultimately a numerical approximation was added to the skewed
models (listing [AT).

Beyond these key peak parameters, all PyMC models created by PeakPerformance contain addi-
tional constant data variables and deterministic model variables. For example, the time series, i.e.
the analyzed raw data, as well as the initial guesses for noise, baseline slope, and baseline inter-
cept are kept as constant data variables to facilitate debugging and reproducibility. Examples for
deterministic model variables in addition to peak area or height are the predicted intensity values
and the signal-to-noise ratio defined here as

(3.13)

SN = —
noise
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3.3.3 Structure and results of the PeakPerformance workflow

PeakPerformance accommodates the use of a pre-manufactured data pipeline for standard appli-
cations as well as the creation of custom data pipelines using only its core functions. The provided
data analysis pipeline was designed in a user-friendly way and requires minimal programming
knowledge (figure[3.12). As portrayed in an example notebook in the code repository, only a few
simple Python commands need to be executed. Instead of relying on these convenience func-
tions, experienced users can also directly access the core functions of PeakPerformance for a
more flexible application which is demonstrated in yet another example notebook.

Before using PeakPerformance, the user has to supply raw data files containing a NumPy array
with time in the first and intensity in the second dimension. For each peak, such a file has to be
provided according to the naming convention specified in PeakPerformance’s documentation and
listing All these files then have to be gathered in one raw data directory.

<acquisition name>_<precursor ion m/z experiment number>_<product ion m/z start>_<product ion m/z end>.npy

Listing 3.2: Generalized naming scheme for PeakPerformance raw data files.

Naturally, following the naming convention is only relevant when using PeakPerformance’s conve-
nience functions. It is entirely possible and encouraged for more experienced users to create their
own data pipeline based on PeakPerformance’s core functions. These core functions still require
access to the raw data divided into sequences of time and intensity but the manner in which those
are supplied is entirely up to the user.

If a complete time series of a 30 min - 90 min LC-MS/MS run were to be submitted to the program,
however, the target peak would make up an extremely small portion of this data. Additionally, other
peaks with the same m/z ratio and fragmentation pattern may have been observed at different
retention times. Therefore, it was decided from the outset that in order to enable proper peak
fitting, only a fraction of such a time series with a range of 3 - 5 times the peak width and roughly
centered on the target peak would be accepted as an input. This guarantees that there is a
sufficient number of data points at the beginning and end of the time frame for estimating the
baseline and noise level, as well.

The provided data pipeline starts by defining a path to this raw data directory and one to a local
clone of the PeakPerformance code repository. Using the prepare_model_selection() method,
an Excel template file ("Template.xlsx") for inputting user information is prepared and stored in the
raw data directory. It is the user’s task, then, to select the settings for the pipeline within the file
itself and they will be mentioned here only when becoming relevant to the workflow. Accordingly,
the file contains detailed explanations of all settings and the parsing functions of the software
feature clear error messages in case mandatory entries are missing or filled out incorrectly.

Since targeted LC-MS/MS analyses essentially cycle through a list of mass traces for every sam-
ple, a model type has to be assigned to each mass trace. Preferably, this is done by the user which
is of course only possible when the model choice is self-evident. If this is not the case, an optional
automated model selection step can be performed, where one exemplary peak per mass trace is
analyzed with all models to identify the most appropriate one. It is then assumed that within one
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Figure 3.12: BPMN 2.0-inspired flow scheme depicting an overview of the pre-manufactured data analysis
pipeline featured in PeakPerformance.

A

end

batch run, all instances of a mass trace across all acquisitions can be fitted with the same type
of model. For this purpose, the user must provide the name of an acquisition, i.e. sample, where
a representative peak for the given mass trace was observed. If e.g. a standard mixture contain-
ing all targets was measured, this would be considered a prime candidate. An additional feature
lets the user exclude specific model types to save computation time and improve the accuracy of
model selection by for example excluding double peak models when a single peak was observed.
Upon provision of the required information, the automated model selection can be started using
the model_selection() function from the pipeline module and will be performed successively
for each mass trace. Essentially, every type of model which has not been excluded by the user
needs to be instantiated, sampled, and the log-likelihood needs to be calculated. Subsequently,
the results for each model are ranked with the compare () function from the ArviZ package based
on an information criterion - either Pareto-smoothed importance sampling leave-one-out cross-
validation (LOO-PIT) or the widely applicable information criterion (WAIC) [181, |182]. By default,
the former is selected in PeakPerformance. This function returns a pandas DataFrame [183, |184]
showing the results of the models in order of their placement on the ranking which is decided by
the expected log pointwise predictive density (elpd). The best model for each mass trace is then
written to "Template.xIsx".
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Unfortunately, when testing both single and double peak models for a given mass trace, the double
peak models can gain an advantage due to their relatively increased complexity by overfitting,
meaning that even for obvious single peaks, double peak models would at times outperform single
peak models in the ranking. Therefore, an additional function was implemented comparing the
elpd scores of single and double peak models and offsetting the latter by an empirical constant.
While this ameliorated the problem, it could not be fixed entirely so it is always recommended
to exclude models which clearly should not be applied from the selection process which is in the
user’s interest anyway since it drastically decreases the computation time for the automated model
selection.

After a model was chosen either manually or automatically for each mass trace, the peak analysis
pipeline can be started with the function pipeline() from the pipeline module. The first step
consists of parsing the information from "Template.xIsx". Since the data pipeline, just like model
selection, acts successively, a time series is read from its raw data file next and the information
contained in the name of the file according to the naming convention is parsed. All this information
is combined in an instance of PeakPerformance’s UserInput class acting as a centralized source
of data for the program.

Depending on whether the "pre-filtering" setting was selected, an optional filtering step will be
executed to reject signals where clearly no peak is present before sampling, thus saving com-
putation time. This filtering step uses the find_peaks() function from the SciPy package [1835]
which simply checks for data points directly neighbored by points with lower intensity values. If
no data points within a certain range around the expected retention time of an analyte fulfill this
most basic requirement of a peak, the signal is rejected. Furthermore, if none of the candidate
data points exceed a signal-to-noise ratio threshold defined by the user in "Template.xlsx", the
signal will also be discarded. Depending on the origin of the samples, this crude filtering step may
reject a great many signals before sampling saving potentially hours of computation time across
a batch run of the PeakPerformance pipeline. For instance, in bioreactor cultivations, a product
might be quantified but if it is only produced during the stationary growth phase, it will not show up
in early samples. Another pertinent example of such a use case are isotopic labeling experiments
for which every theoretically achievable mass isotopomer needs to be investigated, yet depending
on the input labeling mixture, the majority of them might not be present in actuality. In such a case,
the number of time series with and without an actual peak might approach parity underlining the
need for such a filtering step.

Upon passing the first filter, a MCMC simulation is conducted using a No-U-Turn Sampler [124],
preferably - if installed in the Python environment - the nutpie sampler [176] due to its highly
increased performance compared to the default sampler of PyMC. Before sampling from the pos-
terior distribution, a prior predictive check is performed the results of which can be accessed and
evaluated after the fact.

When a posterior distribution has been obtained, the main filtering step is next in line. The first
criterion is constituted by checking the convergence of the Markov chains towards a common
solution for the posterior represented by the potential scale reduction factor [125], also referred
to as the R statistic or Gelman-Rubin diagnostic. If this factor is above 1.05 for any parameter,
convergence was not reached and the sampling will be repeated once with a much higher number
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of tuning samples. If the filter is not passed a second time, the pertaining signal is rejected.
Harnessing the advantages of uncertainty quantification, a second criterion calculates the ratio of
the resulting standard deviation of a peak parameter to its mean and discards signals exceeding
a threshold. Usually, false positives passing the first criterion are rather noisy signals where a fit
was achieved but the uncertainty on the peak parameters is extremely high. These signals will
then be rejected by the second criterion, ultimately reducing the number of false positive peaks
significantly if not eliminating them.

If a signal was accepted as a peak, the final simulation step is a posterior predictive check which
is added to the inference data object resulting from the model simulation.

After completing a cycle of the data pipeline or prematurely exiting it through one of the filters, the
results need to be communicated and made available to the user. This is done in multiple ways.
The most complete report is found in an Excel file called "peak_data_summary.xlsx". Here, each
analyzed time series has multiple rows (one per peak parameter) with the columns containing
estimation results in the form of mean and standard deviation (sd) of the marginal posterior distri-
bution, highest density interval (HDI), and the R statistic among other metrics. Additional columns
provide information on the acquisition and mass trace in question. Finally, there are columns stat-
ing whether the signal was recognized as a peak, if applicable the reason for the rejection of the
signal, the utilized model for the simulation, and in case of a double peak a column specifying the
peak number ("1st" or "2nd"). Accordingly, when a signal is rejected, it will nonetheless be added
to the Excel report file and the exact reason for its rejection is detailed.

The second Excel file created is denominated as "area_summary.xlsx" and is a more handy ver-
sion of "peak_data_summary.xlsx" with a reduced degree of detail. As implied by the name, from
the peak parameters only the peak area remains and the columns are trimmed down to the es-
sentials. Since subsequent data analyses will most likely rely on the peak area, this sheet should
facilitate the further usage of the data.

The most valuable result, however, are the inference data objects saved to disk for each signal
for which a peak function was successfully fitted. Conveniently, the inference data objects saved
as *.nc files contain all data and metadata related to the Bayesian parameter estimation, en-
abling the user to perform diagnostics or create custom visualizations not already provided by
PeakPerformance.

In case the user selects the "plotting" option, the results of the fit will additionally be visualized
using the matplotlib Python package [186, 187]. Data formats can be specified when calling
the plotting functions but the default arguments contain portable network graphics (*.png) and
scalable vector graphics (. svg).

For rejected signals, the time series is simply portrayed as a scatter plot so that - when in doubt - it
can be checked visually whether the assessment was correct or whether a peak was present, after
all. Regarding data visualization of accepted signals, PeakPerformance’s plots module offers the
generation of two diagram types for each successfully fitted peak. The posterior plot presents the
fit of the intensity function alongside the raw data points. The first row of figure [3.13| exhibits two
such examples where the single peak diagram shows the histidine (His) fragment with a m/z ratio
of 110 Da and the double peak diagram the leucine (Leu) and isoleucine (lle) fragments with a
m/z ratio of 86 Da. The posterior predictive plots in the second row of Figure 4 are provided for
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the purpose of visual posterior predictive checking by comparing the observed and predicted data
distributions. Since a ppc is based on sampling parameters from the posterior and subsequently
obtaining predicted data points from the likelihood function, the result represents the theoretical
range of values encompassed by the model. Accordingly, this plot enables users to judge whether
the selected model can accurately explain the data.

To complete the example, table 3.2 shows the results of the fit in the form of mean, standard devi-
ation, and HDI of each parameter's marginal posterior. In this case, the fits were successful and
convergence was reached for all parameters. Most notably and for the first time, the measurement
noise was taken into account when determining the peak area as represented by its standard de-
viation and as can be observed in the posterior predictive plots where the noisy data points fall
within the boundary of the 94 % HDI.
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Figure 3.13: Results plots for a single His peak and a double Leu and lle peak depicting the peak fit
(first row) and the posterior predictive checks (second row) alongside the raw data. The dashed lines in the
second row plots signify the borders of the 94 % HDI and the blue lines within this range represent individual
posterior predictive samples. Thus, a darker blue region corresponds to a higher probability density. The
numerical results are listed table

Another important feature of PeakPerformance is constituted by the easy access to diagnostic
metrics for extensive quality control. Using the data stored in an inference data object of a fit,
the user can utilize the ArviZ package to generate various diagnostic plots. A particularly useful
one is the cumulative posterior predictive plot portrayed in figure This plot enables users to
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Table 3.2: Depiction of PeakPerformance results for a single peak fit with the skew normal model and
a double peak fit with the double normal model. Mean, area, and height have been highlighted in bold
print as they constitute the most relevant parameters for further data evaluation purposes. The results
correspond to the fits exhibited in Figure[3.13]

single peak (skew normal model) double peak (double normal model)
mean sd hdi_3% hdi_97% mean sd hdi_3% hdi_97%
baseline_intercept -43.94 7.41 -57.88 -30.02 1115.40 38.69 1040.14 1185.07

Parameter

baseline._slope 666 051 5.7 763 2165 309 2750 1594
noise 10363 751 8950 11726 | 11863 801 10352 13329
1173 002 1170  11.76
mean 2595 001 2593 2597 AR A )
317.16 28.84 26323 37056
area 151232 37.31 144125 158137 | o170 2050 29920 S7A50
) 77699 6528 65350  897.88
height 187972 3771 1809.30 195064 | [TAS8 028 D209 - S
016 002 043 0.20
std 053 002 048 0.56 ol o o 02
656 072 522 7.88
sn 1824 137 1569 20.76 1493 114 1282 17.14
alpha 596 039 227 377 - - - -

judge the quality of a fit and identify instances of lack-of-fit. As can be seen in the left plot, some
predicted intensity values in the lowest quantile of the single peak example show a minimal lack-
of-fit. Importantly, such a deviation can be observed, judged and is quantifiable which intrinsically
represents a large improvement over the status quo.
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Figure 3.14: Cumulative posterior predictive plots created with the ArviZ package and pertaining to the
example data of the single His peak (left) and the double Leu and lle peak (right). The empirical cumulative
density function (black) is in good agreement with the median posterior predictive (orange) and lies within
the predicted variance (blue band), visually signifying that the model provides an adequate prediction irre-
spective of the intensity value.

The pipeline as laid out in detail in the preceding paragraphs is intended as a demonstration and
to enable new users but it is entirely possible and encouraged to use PeakPerformance by directly
calling upon its core functions and building a custom pipeline. Said functions encompass model
definitions, parts of the model selection, MCMC sampling, and returning results in the shape of
Excel sheets and plots. This way, experienced users are able to build pipelines closely aligned
with their individual purpose and type of data.
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3.3.4 Validation of PeakPerformance results

To validate the peak fitting approach as implemented in PeakPerformance, tests with multiple ap-
proaches were performed. The first testing stage employed synthetic, noise-afflicted data of each
implemented distribution to check whether the original parameters would be recovered by infer-
ence with PeakPerformance. In particular, 500 random data sets were drawn and afflicted with
normally distributed noise as described in section[2.6.4]

The arithmetic means portrayed in figure were calculated based on a measure of similarity

Eyg=

Y (3.14)

NaPY N~y

where y represents the estimated parameter value and g its pertaining ground truth. The plot
was focused on the most important peak parameters which were restricted to mean, standard
deviation, area, and height. As the mean of all 500 tests was then portrayed along with its standard
deviation, a value of 1 implies a near identity between estimation and ground truth with a higher
precision and certainty the lower the exhibited variance is. As can be observed here, the normal
and skew normal single peak models from PeakPerformance were able to uncover the ground truth
of their respective noisy distributions well regardless of the noise level.

Beyond reproducing appropriate data, it was tested how the models would perform when each was
paired with noisy data from the other intensity function. The result was still surprisingly accurate
with respect to the estimated mean, area, and height, especially for the skew normal model paired
with normally distributed, noisy data. The normal model paired with skew normal data merely
slightly underestimated the area which can be easily explained as underfitting the skewed tail
of the intensity function which cannot be reproduced with a normal shape. Both models failed
to reproduce the true standard deviation, though, but this parameter is not essential whilst the
remaining peak parameters were correctly estimated.

The next step concentrated on the aspect of the effects of fitting normally distributed data with
a skew normal distribution and vice versa. In contradistinction to the previous step, however,
marginal cases were observed where the skewness parameter o was fixed at a value of 1 indi-
cating a slight skew which especially after adding noise cannot be clearly discerned as normal-
shaped or skewed, any more. More importantly, though, the automated model selection imple-
mented in PeakPerformance might settle on either of the two candidate models depending on the
case. Therefore, it was important to verify whether the choice of one model above the other would
have a systematic effect on the estimation of peak area and height, especially.

In an analogue manner to the first test, 100 random data sets were generated, only this time in
addition to the aforementioned mean of 6 and skewness of 1, the area was defined as a constant
of 8. Since the comparison now focused not on the ground truth but on the similarity of the
estimations, the results of both models for area and height were evaluated as the ratio

Anormal
Fjgp=—"7"—7— 15
n/sn Askew normal (3 )

where Anorma and Agew normal are the estimated areas with normal and skew normal models,
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Figure 3.15: Validation of results from PeakPerformance. a) Noisy synthetic data was randomly gener-
ated from one of the implemented distributions and the program’s ability to infer the ground truth was
observed. Portrayed are the fractions of estimated parameter to ground truth. b) The influence of model
choice between normal and skew normal model in marginal cases with little to no skew was tested and
the ratios between results from both models are plotted. ¢) Lastly, experimental data was analyzed with
PeakPerformance (version 0.7.0) and compared to results achieved with the commercial software Sciex
MultiQuant (version 3.0.3).

respectively. Figure [3.15p, then, exhibits the mean values and standard deviations of the ratios
F, /sn from all 100 tests. As one of PeakPerformance’s unique selling points is the quantification of
uncertainty for each peak, it was also relevant to investigate whether the estimated uncertainties
would be comparable between the models. Therefore, both the ratios of the estimated means and
standard deviations are shown in figure [3.15p.

As demonstrated by all portrayed values approaching 1 with very narrow standard deviations, the
resulting estimates for area and height as well as their uncertainties were near identical between
the two models. Hence, the choice of the model in such marginal cases as tested here is incon-
sequential and the application of any of the eligible models is justified.

The final test comprised a thorough comparison of PeakPerformance (version 0.7.0) results with
those from the established vendor software Sciex MultiQuant (version 3.0.3) and was accordingly
the first test to utilize actual experimental data in place of the synthetic data sets of the previous
validations. Since the results generating mechanisms and the underlying assumptions are quite
distinct between the two programs, identical results were not expected but they should nonetheless
be located in a similar range. Emphasizing the most important parameter for users, the test was
focused on the peak area, in particular (figure [3.15¢). The plotted means and standard deviations
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of the fraction of the obtained areas was determined as

A
Fugyep = Al\lfg (3.16)

where Ayiq denominates the area yielded by MultiQuant and App the area from PeakPerformance.
Beyond the comparability of the resulting peak area ratio means, it is relevant to state that 103
signals from MultiQuant (54 % of total signals) were manually modified. Of these, 31% were
false positives and 69 % were manually re-integrated. These figures are the result of a relatively
high share of double peaks in the test sample which generally give a lot more cause for manual
interference than single peaks. In contrast, however, the PeakPerformance pipeline was only
started once and merely two single peaks and one double peak were fit once more with a different
model and/or increased sample size after the original pipeline batch run had finished. Among the
192 signals of the test data set, there were 7 noisy, low intensity signals without a clear peak which
were recognized as a peak only by either one or the other software and were hence omitted from
this comparison. By showing not only the mean area ratio of all peaks but also the ones for the
single and double peak subgroups, it is evident that the variance is significantly higher for double
peaks. In case of this data set, two low quality double peaks in particular inflated the variance
significantly which may not be representative for other data sets. It has to be stated, too, that the
prevalence of manual re-integration of double peaks in MQ might have introduced a user-specific
bias, thereby increasing the final variance. Nevertheless, it could be shown that PeakPerformance
yields comparable peak area results to a commercially available vendor software.

3.3.5 Considerations regarding the PeakPerformance Python package

When taking on the challenge of devising an alternative to available vendor software, an approach
that has surfaced recently is the machine learning-based peak data processing [188, [189]. This
is certainly a promising approach but nonetheless it was decided against. Some drawbacks of a
ML-based solution are the need for sufficient and representative training data as well as the opac-
ity of its mechanism which essentially constitutes a black box. In contrast, with PeakPerformance
the root cause of a bad fit can be investigated and the models and priors are clearly defined.
Moreover, the ML-based approach - just like the MultiQuant one - does not perform uncertainty
quantification yielding merely a point estimate and thus assuming a noise-free measurement
which does not faithfully represent the experimental reality. The most important reason for the
Bayesian route, however, is the increasing application of Bayesian statistics to the subsequent
modelling steps such as Bayesian model averaging and eventually "C-MFA, as well. When using
PeakPerformance in sequence with these techniques, a holistic Bayesian data evaluation pipeline
can be achieved.

Despite the success of PeakPerformance as a stand-alone Python package with the designated
goal of dealing with LC-MS/MS data, some drawbacks remain, namely the complete lack of par-
allelization leading to inflated computation times, the need to execute the software on the user’s
local machine, and the focus on QqTOF data in particular.

To truly realize PeakPerformance’s potential in an automated high-throughput workflow, all these
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points were addressed by creating a directed acyclical graph (DAG) based on the PeakPerformance
package on an Apache Airflow [147] computation cluster which is described in detail in the follow-
ing section. This was combined with a MS data cluster being concomitantly established at the
IBG-1 by a third party so that the Airflow PeakPerformance pipeline was largely independent of the
local file system. The mentioned MS data cluster itself is not part of the present thesis, the author
merely provided beta testing for it.

3.3.6 Parallelization and scale-up of PeakPerformance on an Airflow cluster

For the Airflow approach to work, some changes were necessary since PeakPerformance’s
pipeline functions were not designed from the ground up with this goal in mind. However, the
previously mentioned core functions like model definition and sampling could be used as is, merely
the framework embedding them had to be altered.

The start of the Airflow pipeline or DAG depicted in figure remained fairly similar to its stand-
alone counterpart, opening with the creation of a run directory or working directory based on the
current date and time. The pertaining task prepare_run_inputs() also imports the necessary
Python packages PyTensor [190], PyMC, and PeakPerformance SO that import errors are noticed
at the onset of the process. Thereafter, the user has to move an Excel file denominated as
"inputs.xlsx" containing the user information into the working directory, upon which it is read and
sanity checks are performed. Ideally, "inputs.xIsx" should be prepared beforehand since a timer to
await the arrival of the file for 15 min was incorporated into this first task.

Naturally, the option for an automated model selection was implemented in the DAG, as well.
Just like in the stand-alone version, the user merely has to provide an exemplary acquisition per
mass trace and retains the option to exclude specific model types from the selection. The first
major difference, then, is constituted by the parallelization of model selection across the number
of workers currently available with the correct worker image. Making use of Airflow’s dynamic
task mapping, it is possible to provide a task with a list of jobs and for each entry in the list, a
separate instance of the task is created. These instances are then completed by as many workers
as currently available in parallel and without having to state the number of jobs beforehand, hence
the dynamism. It is further possible to provide a task with two lists whereupon all combinations
of entries form a new job list. The Airflow PeakPerformance DAG uses both of these variations
to its advantage. For the model selection, the preceding task get_mass_traces() cycles through
all acquisitions of the given LC-MS/MS batch present on the MS data cluster and through the
rows of the "download" tab of "inputs.xlsx". Whenever an acquisition name equals one stated in
the "acquisition_for_choosing_model_type" column, the rest of the given information is used to
download the time series from the MS data cluster.

Here, the device used to generate the data led to two distinct versions of this step. When using a
QqTOF for a product ion scan, the acquisition method for the device only contains precursor m/z
ratios for the Q1 and a TOF m/z range. Therefore, the user has to provide more narrow product
m/z start and end values within this TOF range for each target fragment since this information is
not contained in the raw data files stored on the MS data cluster. For example, in the QqTOF
measurements of the present thesis, a TOF range of 0 to 350 was selected and extracted ion
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chromatograms were created with product m/z widths of 0.2 - 0.4 Da. On the other hand, when
performing a multiple reaction monitoring (MRM) experiment on a QqQ, both precursor m/z ratios
for Q1 and product m/z ratios for Q3 must be stated before the analysis and are thus present in
the raw data files. Hence, much less user input is necessary and all mass traces of a batch can
be downloaded automatically from the MS data cluster.

At this point, a limitation of Airflow comes into play, namely the restrictions placed upon the transfer
of data between tasks. It it not intended to move large volumes of data between tasks. More
importantly for the PeakPerformance DAG, though, the data types which can be transferred at
all are limited to only those that are JSON serializable. These are comprised by dictionaries,
sequences, integers, floats, Booleans, and None. Most notably absent from this list are custom
classes and common data types such as pandas DataFrames and NumPy arrays. Accordingly, it
was not possible to simply store all relevant metadata and raw data of a mass trace in a DataFrame
to be imported in the next task. To sidestep this problem, the NumPy array with the time series is
stored locally in the working directory as a *.npy file instead of being returned while the rest of the
mass trace’s data is collected in a dictionary and appended to a list. This list is then returned and
serves as the job list for the subsequent model_selection() task of which the aforementioned
parallelized instances are created via dynamic task mapping. Whenever the user had already
specified a model type for a mass trace in "inputs.xIsx", this particular instance of the task is
skipped. Upon a successful model selection, each dictionary containing the information regarding
a single mass trace is updated with the chosen model type. Simultaneous with the model selection,
the task get_acquisition_list () downloads a list of all acquisitions of the given batch from the
MS data cluster subtracted by an optional list of acquisitions to exclude which the user may provide
in "inputs.xlsx".

After all instances of the model selection task have been successfully completed, the list of acqui-
sitions and the list of mass trace dictionaries originating from the two parallel tracks are multiplied
to expand the peak_analysis() task which is then performed at the highest degree of paralleliza-
tion the cluster can offer. This represents the aforementioned dynamic task mapping based on
two input lists. Since the time series of most combinations of acquisitions and mass traces were
not downloaded before, this is performed here. Then, the actual peak fitting is executed in much
the same way as in the data pipeline provided in the stand-alone version.

One point of departure is the way the Excel results files are created. The stand-alone version
updates one DataFrame successively which is possible due to the lack of parallelization. When
numerous instances of the same task work concomitantly, some of them may require access to
the Excel file at the same time which causes errors. At first, it was attempted to solve this issue by
using the filelock Python package [191] to manage access to the file but upon encountering further
problems it was decided to instead create the results files in a separate and final task. Once again
the results could not just be transferred as inference data objects or DataFrames since these are
not JSON serializable. Hence, the inference data objects are stored locally and the DataFrames
with the results are converted to dictionaries before being delivered to the final task.

In collect_results_and_report (), these dictionaries are gathered, re-converted into DataFrames
whereupon Excel report sheets are created just like in the stand-alone version of PeakPerformance.
In summary, the PeakPerformance DAG on the Apache Airflow cluster is a highly parallelized,
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alternative version of the program which is thus much more efficient and explicitly suitable for
larger volumes of data and high-throughput processes. Due to the computation times and the
strictly successive, one-track peak analysis, this would be difficult to achieve with just the stand-
alone version of the program. The state of the art workflow based on MultiQuant would most
certainly be inept for high-throughput data as the degree of human supervision and work time
necessary are simply not feasible.
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Figure 3.16: BPMN 2.0-inspired flow scheme portraying the general workflow of the PeakPerformance
Airflow DAG.

3.3.7 Conclusion and outlook for PeakPerformance

Regarding PeakPerformance in general, i.e. independent of the specifics of its stand-alone and Air-
flow versions, the program will expand in versatility and applicability to different types of chromato-
graphic data by increasing the number and variety of peak models. To facilitate this development,
a guide was included in the code repository on GitHub detailing the necessary steps to introduce a
new model. However, an adequate model type alone does not guarantee a legitimate fit, the priors
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of random variables might require adaptation to the data in question, as well. As much as the
barrier of entry for PeakPerformance was kept low, some expertise and time investment remains
necessary to establish a model for data from a particular chromatographic method.

A loosely related feature that is still missing but would benefit the program massively is the re-
combination of different single peak models into a mixed multi peak model. Currently, both double
peak models are essentially sums of the linear baseline and two identical single peak models so
a combination of a normal-shaped peak and a skew normal-shaped peak is not implemented.
Problematic or outright failed double or multi peak fits could potentially be amended by using such
a mixed double peak model. An envisioned future implementation of this feature could work by
dividing the model definition for multi peak models across different sub-functions and searching
for the best combination of single peak models. A detriment to this idea, however, is the expo-
nentially increasing number of potential double peak model candidates when the combination of
every implemented single peak model with each other is tested during model selection. To limit
the negative impact on computation time, the model selection would ideally need to be further
parallelized, not just by job but on a job and model variant basis which is theoretically possible on
Airflow but in practice demands a larger number of worker nodes than can be feasibly spared with
the current infrastructure.

Regarding the elimination of false positive peaks, currently the peak parameter uncertainties and
the R statistic are used but other metrics like e.g. ess could be included in the decision making
process, as well. A more robust peak identification was, after all, one of the key targets from
the beginning of the PeakPerformance development and such a development would only serve to
increase said robustness.

One final feature of great value - were it implemented - is constituted by the use of hierarchical
models. When e.g. having measured multiple replicates for quantitation, a hierarchical model may
be employed to gain one joint resulting posterior from all relevant replicates using a single model.
With respect to the PeakPerformance version on the Airflow cluster, there are three main open
points. The first is the usage of PeakPerformance for LC-MS/MS data from a triple quadrupole
(QgQ). The code base was already subdivided into separate tracks for QqTOF and QqQ data but
the latter has not been applied to experimental data and can be best described as having reached
a prototype status.

The second open topic is the integration of the nutpie package into the Docker [192] image for
the Airflow PeakPerformance workflow. Due to conflicts with other included packages, it has to
date not been possible to add this much more efficient solver which is the default choice in the
PeakPerformance stand-alone program.

Finally, the third point is one pertaining to the infrastructure of the workflow. While the results are
as of yet still stored locally, it is planned to employ a database for the inference data objects. The
only files returned locally will be the Excel results sheets which barely demand any memory. Plots,
too, will not be saved but instead a graphical user interface (GUI) will be created to allow users to
visualize everything stored in the inference data objects, meaning in the first instance raw data,
prior predictive checks, posteriors, and posterior predictive checks.

Another option which is enabled by the parallelization in Airflow is to perform model selection for
every single signal. This would abolish the assumption that all mass traces across a batch of
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acquisitions can be fitted using an identical model type. This might lead to more accurate results
and avoid false negatives when peaks are rejected only due to non-convergence of the model
when a different model perhaps would have converged. Even with the parallelized Airflow DAG,
though, computation times would be increased again and at some point, energy demand and the
impact on the cluster workload need to be considered, as well.

If the development of PeakPerformance and its Airflow counterpart is continued and the features
mentioned above are implemented, this peak data evaluation workflow would increase in effi-
ciency over its present state and vastly so relative to the previous state of the art workflow based
on vendor software. Even so, PeakPerformance as a tool for automated LC-MS/MS peak data
analysis employing Bayesian inference, has improved the degree of automation of said analyses
and uniquely introduced uncertainty quantification to LC-MS/MS measurements and accordingly
represents a valuable addition to the overarching automated ILE workflow.
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3.4 Data evaluation and visualization

Somewhat paradoxically, judging by the efforts described in the previous section, the data pro-
cessing up to this point with either MultiQuant or PeakPerformance yielded peak areas which
are still characterized as raw data. To be able to derive qualitative or quantitative information
from them, first TMIDs need to be obtained by way of normalization. Since these represent the
labeling states of their metabolites, they can serve as the basis for biological interpretations, ei-
ther directly or indirectly via further processing through modelling. Additionally, by simply plotting
TMIDs, a visual inspection before any modelling has occurred can already reveal problems with
the LC-MS/MS measurement or peak integration so the ability to visualize is not only practical
but may save a significant amount of time, especially when experimenter and modeler are not the
same person. Originally starting from MultiQuant data and later-on including a separate track for
PeakPerformance data (see[3.4.2), the program presented in this chapter is intended not only for
TMID calculation and visualization but also to interface as seamlessly as possible with the next
step in the overarching ILE workflow, namely the natural isotope correction with uNAC.

3.4.1 Implementation for peak area data from Sciex MultiQuant

The Sciex MultiQuant track of the program is confined in one singular Python file
(evaluation_and_visualization_MQ.py) containing mostly the class MultiQuantDataProcessing.
The file and accompanying exemplary raw data alongside an example notebook are part of a
code repository in JuGit. To accommodate the different plotting and data report features, its class
attributes encompass the denominations of all mass traces of a given fragment and its elemental
formula among others. The general workflow of the script including the data flow is portrayed in
figure[3.17]

After supplying the results from MultiQuant, which have to be copied manually from the software,
and defining the user information necessary to instantiate the MultiQuantDataProcessing class,
the workflow starts with the data preparation section. Here, data is prepared for the following steps
and all calculations are front-loaded, i.e. TMIDs as well as the arithmetic means and standard
deviations of biological replicates are computed. Specifically, the method open_and_prepare ()
parses the raw data file, calculate_tmids() performs the normalization to receive TMIDs, and
calculate_mean_stdev() computes means and standard deviations of biological replicates. These
methods also feature basic error handling by e.g. omitting a sample where no mass trace of a given
fragment was detected during the calculation of means and standard deviations while informing
the user of this action via a displayed statement. The results of these computation steps are stored
in DataFrames serving as the input for the subsequent tasks of data visualization and reporting
which are thus independent of each other.

Options for visualization include bar diagrams for isotopically stationary labeling data with the
plot_bar_diagram_replicate() method and line diagrams for INST data with the
plot_tmid_transient () method. Bar diagrams may feature either a single TMID or the TMID
means and standard deviations across a biological replicate. Line diagrams portray the time
course of TMIDs so that each value on the time axis pertains to one TMID meaning a much
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higher density of information is at display. Additionally, for INST data, both the (ideally isotopi-
cally stationary) end point and the kinetics of all mass traces are important, hence the choice of
diagram.

To enable the creation of stylistically unified line diagrams for larger figures, an option is included to
choose a constant color scheme, whereby each mass trace has a hard-coded color independent of
which fragment it pertains to. Due to the sheer number of possible mass traces and combinations
thereof, it is nigh impossible to devise a general color scheme which is visually discernible in all
cases so users are advised to alter or exchange colors based on which mass traces are needed
for a given data set. Moreover, it is recommended to additionally use text labels of the mass
trace denominations right next to their respective lines to improve the readability of the resulting
diagrams.

Since one of the key advantages of the automated ILE pipeline is the increase in throughput at
decreased expenditure, it follows that the number of possible parallel or comparative ILEs should
increase, as well. When comparing results from these experiments, then, it is advantageous
to plot multiple time courses of TMIDs into the same diagram to enable a direct comparison
of the molecular labeling states. Therefore, another type of line diagram was added to enable
the joint presentation of data originating from multiple distinct experimental conditions using the
plot_tmid_transient_several_replicates() method. Conditions might refer to either a different
input labeling mixture or e.g. a deviating strain or medium, depending on the experiment. Since
colors are utilized to differentiate mass traces, these conditions are distinguished by line style (e.g.
dashed, dotted etc.). Whenever possible, the style of all diagrams produced by this program was
unified, one of the only exceptions being the line diagrams featuring several mass traces as their
expansive legends require more space and thus a larger figure size.

Regarding the data compatibility section, its main focus is the re-formatting of the resulting
DataFrames into a shape which can be directly used as the input for the next step in the overarch-
ing ILE workflow, namely the natural isotope correction with the in-house developed meta-tool and
Python program uNAC. Accordingly, there is one method for isotopically stationary
(prepare_isotopically_stationary_data_template()) and one  for INST  data
(prepare_inst_data_template()) both of which store the DataFrame as an Excel file. Struc-
turally, the resulting Excel files are similar containing the fragment name and replicate ID as well
as the elemental formulae, C atom number, and mass shifts of precursor and product ion. The
only difference lies in the representation of relative abundances of mass traces which are con-
tained in a single column for isotopically stationary data and in one column per time point for INST
data. Here, all relative abundances pertain to single replicates and no mean values or standard
deviations are included.

In summary, the output of the present program comprise uncorrected TMIDs, their graphical rep-
resentations and report files facilitating further data evaluation. The program’s code repository
in JuGit has been provided with exemplary results from MultiQuant and an example notebook
showcasing all discussed methods.
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Figure 3.17: BPMN 2.0-inspired flow scheme portraying the functions and data flow of the Python program
for data evaluation starting from peak area data. These functions include TMID calculation by normalization,
visualization via various bar and line diagrams, and creating data templates for natural isotope correction
via the in-house developed Python package uNAC.
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3.4.2 Retrofitted compatibility with PeakPerformance results

The inception of the program as described in the previous section occurred long before the devel-
opment of PeakPerformance and so it is wholly incompatible with data originating from it. Not only
is the peak data formatted in a different way from MultiQuant which would merely require a new
parsing method to be added, but one of the core advantages of PeakPerformance is constituted
by its use of Bayesian inference to provide uncertainty quantification for each single peak. In this
circumstance, the calculation of TMIDs via normalization of peak areas requires Gaussian error
propagation. Since this necessitates changes to several methods of the program, it was decided
to create a separate module for the version compliant with PeakPerformance data. The general
workflow remained untouched, though, thus remaining as it is presented in figure [3.17]

When writing this newer module, the opportunity was taken to apply some lessons from the prac-
tical experience of applying the MultiQuant side of the program, e.g. the class structure was
removed as its instantiation required arguments which were not always strictly necessary for us-
ing the desired methods. This complication was avoided by merely defining functions outside of
the class framework.

The data input for this program is the "area_summary.xlsx" file from PeakPerformance which only
contains the peak area instead of all modeled peak parameters. Since the parsing function is triv-
ial and many of the changes were merely intended to recreate the same operations as before for
data from a different source, the focus will be placed on the implementation of error propagation
and thus on the functions calculate_tmids_peak_performance(), calculate_mean_stdev(), and
plot_tmid_transient (). To obtain the respective TMID for a given fragment, the error propaga-
tion is conducted in two consecutive steps, just as the TMID calculation itself is. First, a sum of
all areas pertaining to a TMID is computed and then the individual areas are divided by that sum.
Accordingly, the error of the area sum of n peaks amounts to

Uareasum = (31 7)
and the total error of the resulting relative abundance pertaining to each peak i to
1 9 area; 9
Urelative abundance = (701) + (ﬁaareasum) (31 8)
area sum area sum

For visualization purposes, however, the mean and standard deviation of biological replicates were
exhibited, meaning the mention of uncertainties resulting from error propagation is restricted to the
optionally stored, intermediary Excel file "concatenated_df.xIsx".

The code repository of this program contains a results file from PeakPerformance with an example
notebook. Furthermore, an Excel file with manually calculated error propagation for some peak
areas from the exemplary data set is provided which can be compared to the values determined
by the software for testing purposes.
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3.5 Case study I: Model-based estimation of metabolic pool sizes

This chapter is based on the Master thesis project of Tobias Latour (TL) supervised by JN. All
figures were originally created by TL (if not stated otherwise) and adapted in style and partially
edited in content by JN. The text as well as table[3.3 and figure[3.18 were authored by JN for this
dissertation.

As discussed in detail earlier (see [3.1), the developed automated hot isopropanol quenching
method could not be utilized for accurate metabolic pool size measurements. Since this data is not
only relevant for rational strain engineering to identify bottlenecks in the form of rate-limiting steps
but also for conducting INST '3C-MFA, this was considered a serious drawback of the method.
Therefore, it was investigated whether labeling data of free amino acids generated with the auto-
mated, miniaturized and parallelized ILE setup could be used to estimate pool sizes when com-
plemented with an appropriate modelling approach.

Concretely, the idea was to build reduced metabolic network models of C. glutamicum WT by
constricting the system boundaries and extensively lumping pathways within the central carbon
metabolism. When coupling these model structures with an INST ILE where the cultivation is
started on unlabeled D-glucose before pulsing with 100 % U'3C b-glucose, only a minimal amount
of mass balances pertaining to the differently labeled metabolite species need to be taken into
account. In fact, when concentrating on the upper part of glycolysis, it can be assumed — and
earlier ILEs have confirmed as much (figure — that only the fully labeled and the unlabeled
species of a given metabolite will be observed. Accordingly, only one ODE per metabolite i is
sufficient as the sum of the relative abundances of the unlabeled fraction z; o and the fully labeled
fraction z; ; amount to 1 meaning one of the two fractions and the total pool size constitute the
only degrees of freedom.

With such a model design in place, there remains the problem that the experimentally measured
dynamic INST labeling data is essentially a hybrid created by the flux rate and the pool size of
a given metabolite, hence the requirement of measuring pool sizes to resolve fluxes (see [1.4.3).
However, assuming a metabolic steady-state alleviates the complexity of the problem by asserting
constant pool sizes and fluxes. When additionally focusing on free amino acids, which act in many
cases as biomass precursors, the fluxes are constricted by the biomass drain reactions and the
network stoichiometry in such a way as to enable the estimation of pool sizes based on labeling
and backscatter data.

The combination of these simplifications leads to a drastic reduction in the number of parameters
and a much smaller scope than even in the core metabolic models preferred in 13C-MFA.

3.5.1 Building small metabolic sub-network models for C. glutamicum WT

The simplifications discussed in the previous section already narrowed down the available model
scopes considerably since this approach is predicated on the assumption of observing only unla-
beled and fully labeled mass traces for the amino acids in question which does not hold in many
pathways.
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Hence, two model variants with different levels of complexity focused on the upper glycolysis were
defined (figure [3.18). As it is known that the carbon atoms are shuffled in the PPP due to the
enzymatic ping-pong mechanism [193], aromatic amino acids derived from precursors of the PPP
could not be included. Similarly, upon inclusion of the TCA cycle, the number and directionality
of reactions, especially considering the anaplerotic ones, would increase the model complexity
beyond a feasible scope for this approach and undo most of the simplifications.

The first model variant referred to as vO initially contained just Ser, Gly, and Cys as amino acid
pools. Labeling data was recorded only for the former two since Cys could routinely not be de-
tected in biological samples. However, the Gly labeling data showed a delay with respect to the
onset of label incorporation of around 1 min which is comparable to the results of the original proof
of concept experiment (3.1.3). In accordance with published data on the exometabolome of C.
glutamicum [19], it was hypothesized that the root cause for this did not lie in the intracellular
Gly pool but rather in an extracellular one of considerable size. In the referenced publication, the
highest measured extracellular Gly pool over the course of a fermentation amounted to roughly
699 UM compared to the 24 uM of Ser. Early parameter estimation attempts with and without the
extracellular Gly pool confirmed that its inclusion led to a significantly improved fit so the model
was expanded with this additional pool denominated as Glyexira-

Aside from the biosynthesis pathways of these amino acids, the biomass formation in dependence
of the growth rate was included and the linear upper glycolysis and the PPP were lumped in an
artificial pool referred to as EMPUP with reaction v, crossing the system boundary toward the
lower glycolysis and TCA cycle.

The second model variant v1, then, additionally included the glycolysis up until Pyr and its associ-
ated amino acids Ala, Val, and Leu for all of which INST labeling data was measured.

Moving on from the model structure to formulation, the cultivation was characterized as a fed-batch
process to describe the pulse with U'3C D-glucose appropriately. Accordingly, the macroscopic
bioprocess model was defined as

d Fg
icx =pucx — V—ch ex(t=0) = cx, (3.19a)
d
£VR =Fg Vr(t=0) =Vgo (3.19b)
0 t < Tfeedyiayy VT > 1
FS _ { Vs , feedbzr; -, feedena (31 90)
m feedstart — feedend

with the flow rate Fs in L h™', feed volume Vie.q in L, and pulse duration &, in h. All other
parameters and the derivation of the general equations have been established in the pertaining
introductory segment (see [1.4.9).

Since two substrate species were planned for the INST experiment, the concentrations of the
unlabeled glucose species cgg provided at the start of the experiment and of its uniformly labeled
counterpart cg; supplied with the pulse were specified by
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Figure 3.18: Two reduced metabolic network models for C. glutamicum WT of different complexity. In both
models the upper glycolysis and the PPP are lumped into the artificial pool EMPUP. Model v0 contains only
the Ser family of amino acids featuring INST labeling data for Ser and Gly. Model v1 places the system
boundary between Pyr and AcCoA, thus including the Pyr family of amino acids and INST labeling data for
Ala, Val, and Leu. Biomass drains were omitted here to preserve visual clarity.
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d F

650 = — Vupt,5Cx Veell 50 — €50 cso(t = 0) = cso, (3.20a)

dt Vr

d Fs Fys

pric Vupt,SCX Veell TS1 — VTgCSl + V—R051feed cs1(t=0)=0 (3.20b)
€s =cs0 + ¢s1 (3.20c)

The total substrate concentration cg was accordingly defined as the sum of the concentrations of
its two isotopomer species. The extracellular rates excluding the growth rate are notably molar
volumetric rates in mmol L' h™'.

For the relative labeling fractions zgg and zg1, it holds that

1 =291+ xs0, xso(t =0)=1 (3.21a)
zg0 = 20 (3.21b)
cs

Crucially, compared to conventional ILEs, the exact substrate mixture is unknown and thus de-
clared a model parameter included in the estimation since it is not feasible to take a sample
simultaneously to each of the pulses with the present experimental setup.

To be able to realize DAEs like defining the total substrate concentration cg as the sum of the
concentrations of its present isotopomers, the models were implemented in the estim8 software
relying on the Modelica modelling language.

As the growth rate and substrate uptake rate were modelled based on the Monod kinetics as estab-
lished in the introduction (1.8), the final remaining parts of the bioprocess model were constituted
by the glycine export reaction which was coupled to the substrate uptake rate via

VGly oy (t) = Uypt,S (t)kscaleGIyycxp (322)

and the extracellular Gly pool as described by

d

Fg
%CGlycxtra = UGlycxp CX‘/CGH o 7RCG1ycxtra (323)

The microscopic part of the models featured two kinds of mass balances. The first type constrain-
ing the flux rates stoichiometrically amounted to a simple mass balance around a total pool size
given by for example

d Yser,x + Y
—cger = 0 = 2v1 — (1)2 + Ug) — 1 SeﬂXV Trp, X
cell

— or 3.24
7 pes (3.24)

when based on Ser. Terms representing biomass drain and dilution by growth were included, yet
the cellular maintenance term was not. In this particular case, the biomass yield coefficients for
Ser and L-tryptophan (Trp) were summed since Ser acts as a co-substrate during Trp biosynthesis.
For other amino acids, only their own biomass yield coefficient might be present, instead. Due to
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the metabolic steady-state assumption, the pool size cg., is constant, i.e. %Cser =0.
In contrast, the second type refers to only the fully labeled pool fraction of Ser and is defined as

YSer,X+YTr , X
d 2v1zEMPUP,1 — (V2 + U3)TSer,1 — M S TSer,1 — [CSerTSer,1
—TSer,1 = - (3.25)
dt CSer

As these exemplary equations were merely meant to outline the principles behind the formulation,
the full model definitions are exhibited in the appendix (listings [AZ] and [A3). One slight exception,
however, is caused by the existence of the extracellular Gly pool and by the fact that the labeling
data pertains to the union of intra- and extracellular pools. To fit the measurements, a total Gly
pool had to be defined according to

CGly a1 — CGlyipera €X V::ell + CGlyextra (3263)
i _ $G1y1i11t1'a CG]Yintra CX ‘/vcell + ‘TGlylextra CGlyexna (3 26b)
dt CG]Yextra - CGl -

Glytotal

Upon comparison with a metabolic model encompassing the central carbon metabolism with 92
reactions and 51 pools [57], it is noteworthy that the presented sub-networks merely feature 11
reactions and 7 pools for model v0 and 22 reactions and 13 pools for model v1. Here, the count of
reactions includes biomass drain reactions which are products of the fixed yield constants and the
growth rate, meaning the number of reaction parameters and the associated degree of freedom is
lower than it may seem.

Before presenting the experimental data generated for pool size estimation, it is worth consider-
ing some additional and foundational assumptions inherent to this approach which were neither
among the chief design choices established in 3.5/ nor previously mentioned otherwise.

Firstly, fluxes are assumed to be unidirectional, i.e. irreversible, under glycolytic conditions. Sec-
ondly, protein turnover is disregarded. Thirdly, as the biomass drain terms depend on the biomass
yield coefficients adopted from [48] which are assumed to be constant and are expressly not in-
cluded in parameter estimations, there is a strong reliance on the accuracy of and a high sensitivity
towards these values. Fourthly, both the wells and the intracellular environments are considered
ideally mixed. Fifthly, V.., is assumed to be at a constant value of 1.93mLge gx™' [49]. Finally,
except for Gly, the exometabolome of amino acids is deemed negligible. In case of evidence to
the contrary for a given amino acid, this can naturally be amended.

3.5.2 INST ILE to generate data for modelling

Having already formulated the model variants, the present INST ILE was conducted as an im-
proved version of the proof of concept experiment including additional INST time points
and a minimal CGXII medium variant to ameliorate LC-MS/MS analyses. The INST ILE was con-
ducted across 39 wells in parallel translating to 15 time points sampled in biological triplicates after
administrating the pulse with U'3C b-glucose during the exponential growth phase. The backscat-
ter data was converted to biomass via calibr8 [157, (168, [169] and merged into three replicates
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based on the rows of the FlowerPlate (figure [3.19). Accordingly, each of the hereinafter referred
to three replicates encompass data from 13 wells.

Compared to previous experiments, the growth deviation within the 39 replicates was slightly more
pronounced, thus leading to larger differences in the input labeling mixture of each well. This offset
propagated into comparatively larger standard deviations of the labeling time courses (figure
relative to the proof of concept experiment (figure but even so they were certainly of an
acceptable magnitude.
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Figure 3.19: Backscatter (top row) and biomass (bottom row) data of the INST ILE conducted to generate
experimental data for model-based pool size estimation. Biomass conversion was performed via a nonlinear
calibration model.

It can be observed that the assumption of modelling only the unlabeled and fully labeled mass
traces is justified by the experimental data of Ser and Ala, in particular. With regards to Gly, merely
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Figure 3.20: Portrayal of the relevant INST ILE data of amino acids located within the system boundaries
of the small sub-network models v0 and/or v1.

a slight increase in the M1_m1 mass trace towards the later stages of the ILE was detected so the
assumption was insisted on here, as well. However, for Val and Leu this was clearly untenable.
Val’s data exhibited two additional mass traces M2_m2 and M3_m2 and regarding Leu, the mass
traces M2_m1, M2_m2, and M4_m3 were significantly increased. Accordingly, this had to be
represented in model v1 in order to faithfully describe the experimental data.

For Val, the case was straightforward since all 5 carbon atoms of its precursor a-ketoisovalerate
(KIV) originate from 2 Pyr which in turn can be assumed to be only fully or unlabeled based on
the Ala measurements. Since the observed fragment of Val with a m/z ratio of 72 possesses one
fewer carbon atom than its precursor ion [194], precisely the two mass traces M2_m2 and M3_m2
would theoretically arise by combination of the two Pyr species. As this is reflected in the Val
measurements, the assumption regarding Pyr holds true and the fully labeled Val fraction can be
expressed according to the exemplary formula [3.25]

Pyr#abc + Pyr#def %Klv#abefc + COQ#d
KIV#adee %Val#abcde
KIV#adee + ACCOA#fg %Leu#fgbcde + CO2#a

In contrast, the first two of Leu’s carbon atoms originate from AcCoA which is located outside
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the system boundary directly downstream from Pyr as it could not be detected in the LC-MS/MS
analysis. Here, the fragmentation of Leu during tandem-MS analysis led to the collision-induced
dissociation of its first carbon atom [194], hence the fully labeled mass trace is M6_m5. To
nevertheless insist on circumventing the introduction of an extensive atom transition model, the
cumomer Leuxxi111 was included in model v1 instead of M6_m5. As can been seen in the matrix
in table said cumomer produced by any AcCoA species and fully labeled KIV comprises the
mass traces M4_m4, M5_m4, M5_m5, and M6_m5. Of these, only M4_m4 and M6_m5 were
detected at any significant level. Interestingly, the matrix also disproves the occurrence of partially
labeled AcCoA as none of the detected mass traces for Leu (M2_m1, M2_m2, M4 _m3, M4_m4,
and M6_mb5) would arise from it.

Table 3.3: Matrix mapping isotopomers of KIV and AcCoA to the resulting mass traces of Leu’s product ion
with a m/z ratio of 86.

A A
% 00 | e@ | c® | @0
0000 M2 m2 | M4 m3 [ M3_m3 | M3_m2
o0ee M2 m2 | M4 m3 [ M3_m3 | M3_m2
0000 M4 m4 | M6_m5 | M5_m5 | M5_m4
O000 MO mO0 | M2 m1 | M1_m1 | M1_mO

3.5.3 Pool size estimation with the estim8 tool

After aligning the model formulation with the insights gained by interpretation of the experimental
labeling data, parameter estimations for both model versions were conducted with the estim8
software [106]. As described earlier, the biomass and labeling data were subdivided into three
replicates so for parameter estimation a pooled approach to replicate handling was chosen.

The unknown parameters (table maximum growth rate pumax, Mmaximum substrate uptake
rate vupt,S,.., and the relative Gly export factor Kscaley o, WEre assumed to be strain-specific,
global parameters and thus should not be subject to change in each well. In contrast, the start-
ing biomass and pool sizes were defined as local parameters allowing for pipetting errors and
imperfect mixture of inoculated medium with regards to the former and batch-specific growth het-
erogeneity with regards to the latter.

Upon determination of an optimized parameter set, a forward simulation was conducted with the
pertaining maximum likelihood estimators yielding the resulting trajectories compared to experi-
mental data points presented in figures and

Both model fits clearly reproduced the data well. The microbial growth up until the moment of
the pulse after ca. 5.9 h of cultivation — clearly demarcated by the sharp decline in the biomass
signal — was in agreement with the chosen bioprocess model. Fitting the much more sparsely dis-
tributed labeling data was more challenging but ultimately successful following the introduction of
the extracellular Gly pool which allowed simulating the delayed label incorporation. Even with the
extrapolation due to the increased time frame of the simulation compared to the measurements,
Gly did not reach its isotopic steady-state. Moreover, as in particular the final two data points were
deviating between replicates, the simulated end point of the first replicate lay at a lower value than
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Table 3.4: Unknown global and local parameter mappings of the models vO and v1. Resulting degrees of
freedom upon inclusion of three replicate data sets are listed at the bottom.

model vO model vi
parameter global local global local
CXx, v v

HMmax v v
Uupt 7S max / ‘/
k v v

scalegly exp

CEMPUP v
CPEP
CPyr
CKIV
CSer
CCys
CGlyipua
CAla
CLeu
CVal

[ DOFs | 18 | 36

SNENEN
SSENENENENENENENENEN

the others although they could still converge toward the same equilibrium.

The trajectory of Ser’s fully labeled mass trace was fit well and notably, all replicates reached
approximately the same steady-state at about 38 %. The labeling data pertaining to the final three
time points was more replicate-dependent with points scattered around the 40 % mark so such a
uniform outcome is not necessarily expected.

The results of model v1 with regards to the shared parameters was quite similar to those of model
v0. The sole difference was that the steady-state of Ser was estimated to be close to 40 % indicat-
ing the influence of the additional data. Aside from two outliers as the final points of replicates 2
and 3, Ala’s time course was similar to Ser’s and their steady-state virtually identical. When using
a binary input labeling mixture, amino acids such as Ser and Ala with an almost linear connection
to the substrate give an indication of the mixture’s ratio. For Val and Leu, the data was slightly
more noisy but especially the fit of the trajectory remained convincing.

Since both models gave rise to faithful optimizations, it stands to reason to compare the result-
ing parameter sets of maximum likelihood estimators (figure [3.23). The biomass parameters,
specifically the starting biomass cx,, the maximum growth rate pmax, and the Gly export factor
Kscaleayy oxpr WETE €stimated virtually identical across the two model variants with the notable ex-
ception of the maximum substrate uptake rate vyt s,.... Here, the models exhibit a discrepancy of
about 100 mmol Lgg " h™' amounting to values of 1884.7 mmol Lgei ™' h™' and 1996.3 mmol Lgey ™' h!
or 3.64mmolgx ' h™' and 3.85 mmol gy h! for models v0 and v1, respectively.

In literature, values of 4.42mmolgx'h?' + 0.54mmolgx'h' or 2290.2mmolLey ' h™
+ 279.8mmol Lg ' h™' have been reported [195] so the estimated values must be considered
lower than expected. However, the result of model v1 is located barely outside of the standard de-
viation of the literature value and it seems that the expansion of the model scope and the inclusion
of additional data have steered the model closer to the expected value.
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Figure 3.21: Forward simulation of model vO with the maximum likelihood estimators resulting from the
parameter estimation with estim8.

As these parameters were all global, they can — as point estimates, at least — not reflect the repli-
cate variance which turned out particularly large for pools without associated labeling data like
PEP, Pyr, and Cys but Ala, too, exhibited a large variance among replicates. The first replicate
especially seemed to deviate from the others, featuring much higher EMPUP and PEP pool sizes
at the cost of much smaller Pyr, Gly, and Ala pools. For Ser, however, the estimates for all repli-
cates and models were remarkably close and model v1 achieved a fairly low replicate variance
with regards to Val and Leu pool sizes.

Using the same models, it would be interesting to see whether successfully obtaining Cys labeling
data would influence the result, yet again, since the extension of the model to encompass PPP- or
TCA cycle-derived amino acids is not permissible due to the aforementioned model assumptions.
Subsequent to obtaining an optimized set of parameters, traditionally the uncertainty quantifica-
tion would be the next step as statements about the certainty of a parameter fit and parameter
identifiability are paramount while a point estimator alone is of limited value. Despite the many
simplifications, though, the number of parameters and complexity of the model led to inflated
simulation times in estim8. Due to its open-ended design and reliance on Modelica, it would ac-
commodate even such a presumably unintended combination of bioprocess and '¥C-model as
was constructed here. Yet, its implemented uncertainty quantification via profile likelihoods or
Monte Carlo simulations proved too computationally demanding and inefficient to yield confidence
intervals for the presented point estimates.
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Figure 3.22: Forward simulation of model v1 with the maximum likelihood estimators resulting from the
parameter estimation with estim8.
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Figure 3.23: Comparison of parameter estimation results of models v0 and v1 as computed with estim8.
Parameters which are exclusively contained in v1 are labeled in orange font.

3.5.4 Construction of a highly parallelized data pipeline for uncertainty
quantification in bioprocess modelling

The shortcomings of estim8 with respect to the uncertainty quantification of models with a larger
number of parameters aside, it is worth returning to one of the core running themes of this disser-
tation: the implementation of high-throughput workflows. Since the generation of high-throughput
labeling data had been realized and each experiment would feature a multiplicity of replicates,
a modelling approach with a higher degree of parallelization and independence of one’s own lo-
cal PC was required, anyway. When constructing such a modelling pipeline, some previously
utilized frameworks and design approaches were applied once again, namely the usage of the
Airflow computation cluster with an emphasis on user-friendliness by lowering the barrier of entry
as much as possible.

In a more concrete sense, the goal was to apply Bayesian methods, which have recently been
introduced in biology for e.g. nonlinear calibration models [196] and Bayesian model averaging
[174], to bioprocess modelling realized by MCMC simulations run in a parallelized manner on the
Airflow cluster. To promote a joint usage in conjunction with the estim8 tool and enable the defini-
tions of ODEs and DAEs, the model formulation based on the Modelica language was retained. As
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3.5 Case study I: Model-based estimation of metabolic pool sizes

Modelica adheres to the Functional Mockup Interface (FMI) standard [197], this effectively means
that the inclusions of models from hundreds of software tools is possible, even more so since the
Systems Biology Markup Language (SBML) [198] can be converted into Modelica [199]. As the
extensive interaction with the Airflow webserver may be off-putting to new users, it was intended
to build a GUI allowing the easy upload of input data guided by clear instructions. The webserver,
then, is merely used to start the MCMC simulations with one click. After convergence, the Airflow
DAG includes tasks for creating data reports, an inference data object, and plots ripe for further
interpretation by the user. In case the number of samples is yet insufficient, the pipeline can simply
be restarted to continue the simulation. With regards to replicate handling, the pooled approach
used in estim8 was to be established alongside another approach where all replicates are treated
as isolated problems without global parameters or a hierarchical structure.

The software components used to realize this pipeline (figure [3.24) are organized either within
Airflow or in GitLab repositories for version control. In both cases, they are mounted on the same
network drive, thus forming a central location for the necessary data and software. The software
written for the pipeline is subdivided into 5 modules supplying functions for the DAG and calling
upon third-party Python packages, most importantly the hopsy package for MCMC simulations
[129].

* OpenModelica

o] Virtual i t
@ cocker i G

* Hopsy

+ worker_nodes execute |i Executor ) -
* hopsy_bindings ﬁ pgthon

* initiation Task definition L.

* plotting * DAG_hopsy_fmu_federa Pipeline tasks

* model_compilation ted

& GitLab Repository

mounted mounted l

Inputs e Outputs

IBT733

Figure 3.24: Software components of the parallelized MCMC pipeline for bioprocess modelling.

In hopsy, the Python interface for the C++ library HOPS [200], there is a dedicated class for
wrapping third-party models which is used to import the Modelica models. The sampling for MCMC
simulations, then, is not performed across the entire parameter space but instead the polytope
representing the joint solution space of all parameters restricted by parameter bounds. This is
realized in hopsy by instantiating the Problem class. To deal with issues introduced by the varied
magnitude of the parameters (e.g. the growth rate is somewhere between 0 and 1 but the substrate
uptake rate may be in the thousands depending on the unit), this polytope is rounded [201] to
increase sampling efficiency. Additionally, the initial values for a Markov chain can be based on
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point estimators obtained from previous optimizations to save time otherwise spent for the warm-
up sampling to reach the higher probability density regions of the polytope.

Every pipeline run is executed in virtual machines for each worker created with Docker
and specifically within Python environments created dependent on a Docker image — essentially
a snap shot of an environment serving as the basis for its re-creation. This way, a clean and
identical environment can be guaranteed for every worker in every process ensuring the correct
functionality of the pipeline.

Due to the computational burden of MCMC simulations and the large number of replicate data
sets generated with high-throughput workflows, scalability by parallelization across many CPUs is
necessary to keep computation times manageable. In the present pipeline, such parallelization is
manifested on several levels although the exact structure depends on the type of replicate handling

(figure [3.25).
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Figure 3.25: Parallelization of the MCMC pipeline for bioprocess modelling by distributing work dependent
on the replicate handling approach. When separating replicates, they are each defined as independent
hopsy problems and when pooling replicates, they are parallelized on the simulation level.

First off, the aforementioned hopsy problems are initiated in separate Docker containers, i.e. envi-
ronments, on the higher level. On the lower level, Markov chains are parallelized for each problem.
Depending on the type of replicate handling, proposals are either distributed across multiple repli-
cates for the pooled approach or dealt with separately for independent replicates. To convey the
scale of the pipeline, a data set with 10 replicates and 4 Markov chains will trigger 40 simultane-
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ous evaluations per problem. This level of parallelization is based on using the pytensor-federated
[202] package managing the transmission of requests taking the form of a proposal to be evalu-
ated via an ArraysToArrays service. After forward simulation and likelihood calculation on part of
the ModelLoss class, a response is sent containing the results. The usage of different ports for
communication and a dynamically created folder structure allows for the creation of an arbitrary
number of ModelLoss instances.

Regarding the actual workflow, i.e. the Airflow DAG, the tasks are shown in sequence in figure
First, a Modelica model is compiled as a Functional Mockup Unit (FMU) and the Docker
image for the worker nodes is pulled from GitLab. Then, said worker nodes are launched, tested
and an optional step size tuning step may be executed. Finally, the actual MCMC workflow is
performed for a given number of samples. Upon successful completion of that workflow, the
pipeline is stopped and the results are gathered and stored as described.

model m’o/de; Ica compile_model pull_image — “
FMU .:::.’,
Measurement data v v

launch_workers

Observation mapping

A 4

test_workers
Point estimator/Starting 1
points — stepsize_tuning
Parameter bounds l stepsize
Pipeline Problem run_memc
Input samples
| \

k Airflow stop_workers ] clean_up *result visualization tasks

Figure 3.26: Workflow of the MCMC pipeline for bioprocess modelling as established as a DAG on the
Apache Airflow computation cluster.

One of the clearest strengths of this pipeline is its dynamic scalability and its connectivity to models
from many different sources. Furthermore, when benchmarked against estim8, the simulation time
was reduced significantly and especially the use of virtual memory was much more efficient (figure
[AB). In line with the stated design philosophy, the barrier of entry to accessing MCMC simulations
for uncertainty quantification of bioprocess models has been lowered significantly.

With the pipeline in place, the next step was to perform the pool size estimation contrasting the
results with estim8 and those found in literature. Aside from this main goal, some related studies
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were conducted based on the results of several model approaches listed in table By using
different settings with regards to replicate handling and the starting time of modelling, the effects of
replicate variance and the bioprocess data on the results were investigated and will be presented
in the next sections.

Table 3.5: Overview over the model approaches investigated with the data pipeline for uncertainty quantifi-
cation.

approach | start time ¢, | replicate handling | model version
1 tpulse pooling v0
2 Oh pooling vO
3 Oh separate v0
4 Oh separate v

3.5.5 Influence of bioprocess data on parameter identifiability

By comparing the results of the first two model approaches (3.5), the effect of including bioprocess
data and indeed the bioprocess model versus only using labeling data and setting the start time
of the simulation to the time of the pulse can be investigated.

The latter reduces the simulation time significantly but discards the majority of the data points
while introducing new unknown parameters since the biomass and unlabeled concentrations of
Glc and Gly at the time of the pulse would be obtained via the bioprocess model.

The biomass at ¢,,15c @and pmax Used priors based on the experimental data which were, however,
not updated significantly, i.e. there was no additional information about these parameters in the
data.

The extracellular Gly pool size and the remaining concentration of unlabeled Glc at the time of the
pulse, on the other hand, were identified, i.e. their posteriors showed clear and relatively sharp
peaks. However, the marginal posterior mean of Gly ., was below 0.2 mM which is 1 to 2 orders
of magnitude below the point estimator for the total Gly pool as determined with estim8 and the
remaining Glc concentration varied significantly between the second replicate and the remaining
two. The latter results may be explained by the lower fraction of fully labeled Ser in the isotopic
steady-state of the second replicate.

As proven by the posterior predictive check of approach 1 (figure 3.27), the labeling data was
fit well but the posterior distribution of the Gly pool size was quite broad ranging from less than
5mM to the upper boundary of 25 mM with all replicates showing the tendency to cross the upper
boundary if it were possible. The Ser pool size, though, was identifiable resulting in a marginal
posterior distribution with a 95% highest density interval from 5.2mM to 8.4 mM (figure [3.28).
Hence, it has to follow that the network stoichiometry, the restriction of flux rates by biomass
drains, and the labeling data in conjunction sufficed to determine this particular pool size. For Cys,
the posterior was approaching uniformity, thus implying unidentifiability which was expected due
to the lack of associated labeling data.
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Figure 3.27: Posterior predictive checks computed by performing forward simulations of 1000 random
MCMC samples acquired for approach 1.

The posterior predictive check of approach 2 (figure [3.29) was quite comparable to that of ap-
proach 1, merely the highest density interval of Ser’s isotopic steady-state was narrower and its
value was virtually identical among replicates.
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Figure 3.29: Posterior predictive checks computed by performing forward simulations of 1000 random
MCMC samples acquired for approach 2.
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Figure 3.28: Marginal posterior distributions of pool sizes and growth-related parameters from approaches
1 and 2 to investigate the influence of including bioprocess data.

108



3.5 Case study I: Model-based estimation of metabolic pool sizes

The latter observation can be directly linked to differences in substrate input labeling (figure [3.30)
which is estimated as much more congruent among replicates upon inclusion of the bioprocess
model. Quantitatively speaking, the means of the input labeling distributions had standard devia-
tions of 0.029 without and 0.0017 with the bioprocess data.

The narrower HDI of Ser, on the other hand, must follow from the bioprocess data as the esti-
mation of the bioprocess led to a much sharper determination of particularly pmax (and therefore
by extension the biomass drain reactions), vupt .., aNd Kscaleqy, o, (figure . As an aside,
the estimation of vy, s,... also corroborates the earlier estim8 results with values approaching
2000 mmol Leg ' h'. The effect on pool size estimation, then, is generally the determination of
sharper posteriors with narrower 95 % HDIs. For Ser, the regions of highest density were addi-
tionally shifted towards the upper or lower limits — depending on the replicate — of the marginal
posteriors from the first approach. While the artificial lumped pool of EMPUP became more pre-
cisely characterized, there was an interesting tendency in both approaches that the first replicate
would estimate a large pool size for EMPUP and a relatively small one for Gly and Ser while the
second and third replicates exhibited the opposite behaviour. When checking the underlying flux
values, vy, s IS basically identical among replicates but reactions v; and v, leading from EMPUP
through Ser to Gly are significantly lower in value for the first replicate.

In summation, the inclusion of the bioprocess model was proven to be crucial as prior knowledge
about related parameters was not updated without it and estimations of pool sizes were conse-
quently less certain.

1streplicate 2Mreplicate 3replicate
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—— approach 1 —— approach 2

Figure 3.30: Based on the optimized parameters from 1000 MCMC samples for approaches 1 and 2,
forward simulations were conducted to determine the relative abundance of uniformly labeled Glc after the
pulse and by extension the substrate input labeling mixture.
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3.5.6 Influence of replicate handling on variance

To gauge the effect of replicate handling on the results, comparisons are made between pooling
replicates (approach 2) versus treating them independently (approach 3). The posterior predictive
checks for approach 3 are exhibited in figure [3.31] and once again the data is reproduced well.
The only remarkable feature is that similar to approach 1 and in opposition with approach 2, the
second replicate of Ser shows the aforementioned lowered steady-state abundance compared to
the other replicates.
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Figure 3.31: Posterior predictive checks computed by performing forward simulations of 1000 random
MCMC samples acquired for approach 3.

With regards to the substrate input labeling which is directly connected to the steady-state abun-
dance of fully labeled Ser, it can be observed that the replicate handling is the relevant setting
and the influence of bioprocess data seems to be negligible (figure [3.32). It also becomes clear
that the variance which is inherent in the data set is not wholly depicted when pooling replicates.
Especially the first and second replicates have broad distributions located in large parts outside of
their pooled counterparts. Ideally, replicate handling would be conducted in such a way as to rec-
oncile the individuality of biological replicates while still asserting an overarching global structure
which is clearly not sufficiently performed when using the pooled approach.
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Figure 3.32: Based on the optimized parameters from 1000 MCMC samples for approaches 2 and 3,
forward simulations were conducted to determine the relative abundance of uniformly labeled Gic after the
pulse and by extension the substrate input labeling mixture.

These first observations have essentially been anticipated by the comparison between approaches
1 and 2, but since approach 3 retains the bioprocess model combined with the independent repli-
cate handling, statements about bioprocess parameters can be made. The maximum growth rate
and Gly export factor showed a measure of diversity across the replicates but are mostly con-
gruent with the pooled results, albeit for the slightly underestimated variance when pooling. The
maximum substrate uptake rate, however, is scattered much more severely for single replicates
than when these parameters were defined as global. In an extreme outlier, the second replicate
has a mean only slightly above 1600 mmol Lse ™ h'*. In the pertaining flux solution, this is mostly
reflected by a much lower value for reaction v4 leading across the system boundary towards the
lower glycolysis and TCA cycle. This constitutes the most severe difference among replicates and
approaches and it may be questioned whether this is a realistic phenotype.

With respect to the identifiability between approaches 2 and 3, it is basically unaltered. The
posterior remains uninformative with regards to Cys and similarly broad distributions are obtained
for EMPUP and Gly.

In consideration of the upcoming analysis of the larger model v1 and the at times poor expression
of replicate variability with the pooled approach, it was decided to use the independent approach
going forwards. This would also facilitate the process by lowering computation times.

3.5.7 Final evaluation of pool size estimation

Due to the upcoming comparison between the models v0 and v1 with their different scopes, the
posterior predictive checks of approach 4 featuring v1 are presented first (figure [3.33).
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Figure 3.33: Posterior predictive checks
MCMC samples acquired for approach 4.
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3.5 Case study I: Model-based estimation of metabolic pool sizes

Here, due to the inclusion of data from the Pyr-derived amino acids the previously discussed lower
steady-state abundance of fully-labeled Ser is supported by analogue observations for Ala, Val,
and Leu lending much more credibility to the observation as it is now more broadly supported by
measurement data. Additionally, the newly added amino acids also share outlier data points with
the original ones, in particular the second to last point of the first replicate and the last point of the
third replicate.

Regarding the input labeling, the model expansion had a unifying effect, primarily by raising the
predicted share of fully labeled Gilc for the second replicate which thus converged closer towards
the other replicates.

1streplicate 2Mreplicate 3replicate

0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5
Xytcagic/ — Xytscglc/ — Xyicglc/ —

—— approach 3 approach 4

Figure 3.34: Based on the optimized parameters from 1000 MCMC samples for approaches 3 and 4,
forward simulations were conducted to determine the relative abundance of uniformly labeled Gic after the
pulse and by extension the substrate input labeling mixture.

Focusing on the amino acids included in both models first (figure [3.35), the posteriors for Cys
which have been omitted previously are portrayed for this final and most relevant comparison to
illustrate the insensitivity of the model towards Cys’ pool size. For Gly, both vO and v1 obtained
near identical posteriors and thus pool sizes. The pool size of Ser was estimated higher by 1.5 mM
- 2mM in model v1, at least for the second and third replicate.
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Figure 3.35: Marginal posterior distributions of Ser, Cys, and Gly pool sizes from approaches 3 and 4 to
compare models v0 and v1.

Moving on to the Pyr-derived amino acids only present in v1, all three were unexpectedly well
determined. While the first replicate underestimated all pools compared to the residual replicates,
the totality of the probability mass of all replicates resided within about 20 mM for Ala and Val and
within 10 mM for Leu. As the main goal here was to obtain a rough estimate, perhaps just an order
of magnitude or a reasonably defined upper boundary for future modeling efforts, this result was

cgly / mmol L},

approach 3 posterior

much more certain than expected.
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Figure 3.36: Marginal posterior distributions of Ala, Leu, and Val pool sizes from approach 4 featuring
model v1.

The bioprocess was characterized in an equivalent manner by both models, in fact so much so
that the posteriors for umax and cx, overlap almost entirely (figure [3.37). As the priors are also
portrayed, it can clearly be seen that the measurement data is informative resulting in updated and
much narrower posteriors. The differences in kscale,, ., @re slightly more pronounced than for the
other bioprocess parameters but remain minuscule with almost identical means and merely slight
differences in uncertainty.
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Figure 3.37: Marginal posterior distributions of growth-related parameters from approaches 3 and 4 to

compare models v0 and v1.

To explain some of these findings, the underlying flux distribution has to be taken into account
(figure [3.38). For the first replicate, both estimations are remarkably similar in absolute flux values
across all shared reactions. For the second and third replicate, there is a significant offset regard-
iNng vypt,s and flux vy, i.e. of the flow from substrate to the lower glycolysis. The fluxes towards
Ser and Gly, however, exhibit roughly equal means and similar uncertainties so a lower level of
abundance in the steady-state of one replicate was compensated by adjusting the respective pool
size since the flux values are heavily restricted by design.
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Figure 3.38: Depiction of distributions of absolute fluxes in mmol L™ ey h™' and relative fluxes in % of the
glucose uptake rate determined with models v0O and v1 subdivided by modelling approach and replicates.

The residual fluxes exclusive to model v1 are shown in figure Here, too, divergences in
steady-state abundances of e.g. Leu are mostly caused by the pool size estimations and only

minor variations in fluxes across the replicates were observed. In accordance with the flux values

from the upper glycolysis, vs; towards Pyr and vy towards AcCoA on the outside of the system
boundaries are much lower in value than their replicate counterparts.

117



3 Results and Discussion

absolute fluxes relative fluxes
T . 1500
T3 60
vy —
(@]
£ 1000
£ 50
e 290 175
T3
vg = 280 15.0
e
g 270 12.5

< 320
T8 17.5
Vv —
T 5
£ 300 15.0
=
'c 360
T3
Vg :o'
2 340
=

20

15
‘T_C 90
= 5
T8
v — 85
3 ¢
£ 4
E g0
‘T_C 140
= 3000
T8
= 120
g 2000
1st 2nd 3rd 1st 2nd 3rd
replicate ID replicate ID

Figure 3.39: Depiction of distributions of absolute fluxes in mmol L' h™' and relative fluxes in % of the
glucose uptake rate determined with model v1 subdivided by replicates. Since only approach 4 used model
v1, only data from this approach is shown.
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3.5 Case study I: Model-based estimation of metabolic pool sizes

Since fluxomes of C. glutamicum WT have been published previously in literature, the estimated
relative flux values can be compared to these counterparts to further evaluate the model. Using
only approach 4 with model v1 as a reference, the relative reaction rate v, towards PEP of about
80 % has to be doubled since it is a uni-bi splitting reaction [3], i.e. PEP has a stoichiometric
coefficient of 2. The resulting value of 160 % is comparable if slightly higher than comparative
values from literature of 153.4 % [64] and 149.8 % [66]. The same is true for the flux v1o from Pyr
toward the TCA cycle of about 130 % for replicates 1 and 3 and 120 % for replicate 2 compared
to 122.3 % in the published fluxome [64]. In this case, replicate 2 is considerably closer to the
reference value. A deviation is observed with respect to the flux from glycolysis towards Ser de-
nominated here as v1. As it is once again defined as a uni-bi splitting reaction, the flux of 10 % -
12 % is significantly higher than the reference value of 6.1 % [64]. It is relevant to state, though,
that the reference fluxome does not include amino acid biosynthesis and merely features a re-
action originating from Ser’s precursor glyceraldehyde-3-phosphate across the system boundary.
Since the cultivation conditions between shake flasks and microbioreactors may differ, slight de-
viations of the fluxes can realistically occur. Overall, the comparison with published fluxes mostly
corroborates the realistic depiction of C. glutamicum’s flux distribution on Gic.

The next and final step, then, is the comparison of the resulting metabolite pool sizes to literature
values (figure [3.40). For differences among replicates and replicate handling approaches as well
as a reference to the estim8 results, refer to the previous sections.

It seems, the estimations most comparable to literature values have been obtained for Val, Ala, and
to a lesser degree Leu. In contradistinction, the pool sizes of Ser and Gly have been overestimated
relative to the publications and in a less pronounced way this extends to Leu and — depending on
the study — Ala. The finding of Ser's and Gly’s pool sizes can be connected to the previous
observation of the relative high flux towards Ser. As the labeling time course is a function of
the pool size and pertaining influx, a large flux might have been compensated by the model with a
larger pool size. For Ala, the reference values from [203,|204] amounting to 12.5 mM and 10.4 mM,
respectively, were located in the same range as the estimations with means of 9.5 mM, 14 mM, and
16.5mM but other studies arrive at much lower quantities below 4 mM. In a similar fashion, in [203]
a high intracellular concentration of 8 MM was reported for Val which is once again comparable
to the estimates when considering their uncertainties beside the maximum a posteriori values
of 3.9mM, 5.1 mM, and 6.2mM. The remaining studies determined Val concentrations around
1mM to 2mM. With regards to Leu, there were replicate-specific deviations resulting in a good
agreement of the first and third replicates with literature values while the second replicate exhibited
a much broader distribution with a comparatively high mean of 3.7 mM.

Additionally, pool sizes for glycolytic intermediates PEP and Pyr were on average estimated much
larger than described in literature. However, the uncertainty on these estimates is very high for
they were not detected via LC-MS/MS and thus no measurement data was available. In this case,
the best use for the results would be to apply an upper boundary at around 50 mM when using this
data for other modelling objectives instead of an infinite upper limit.

Combining these findings it may seem obvious at first glance to assume a systematic trend of the
models to overestimate pool sizes yet there are some considerations to be aware of.

In general, the difficulty of measuring accurate pool sizes should be noted [17-19] as proven by

119



3 Results and Discussion

CSer CLeu

o 1t ot

1
cell

N
2

/mmol L_
(¢,
o

1st 2nd 3rd Lit. 1st 2nd 3rd Lit.
Caly Cala
25 I approach 2
I approach 3
-3 20 approach 4
:o' 15 %  Grafetal., 2020
£ e ® Kromer et al., 2004
E 10 V¥V Kappelmann, 2018
5 x Y  Bolten et al., 2007 (quenching)
’ A Bolten et al., 2007 (filtration)
0 ® Tillack et al., 2012
1st 2nd 3rd Lit. 1st 2nd 3rd Lit. — Laietal., 2012
Cval Crep Cryr
_40
T8
-
2
£ 20
A -
0 » w v
1st 2nd 3rd Lit. 1st 2nd 3rd Lit. 1st 2nd 3rd Lit.

Figure 3.40: Estimated distributions for pool sizes with the MCMC pipeline using approaches 2 - 4. The
portrayed literature values (Lit.) were taken from [66] (grey star), [203] (grey circle), [53] (grey triangle), [204]
(grey downward and upward pointing three-lined stars for data generated with cold methanol quenching and
rapid filtration, respectively), [17] (grey pentagon), and [205] (grey horizontal line).

the fact that the pertaining standard deviations are commonly very large relative to the determined
mean. For example, for Gly one study [17] reported a pool size of 1292.55uM + 967.92 uM
and another [205] of 3.3 mM + 1.1 mM. After all and as previously remarked, the process re-
quires the error-prone determination of multiple concentrations to eliminate the influence of the
exometabolome and quenching-related systematic errors [17].

Furthermore, it poses quite the challenge to find literature data truly suitable for an apt comparison
as none of the cultivations in the selected studies have been conducted in a microbioreactor and
even obtaining a study with the same strain and measuring the relevant amino acids is non-trivial.
In this case, [203] used C. glutamicum ATCC13287, a Lys producer derived from the WT, [17] C.
glutamicum DM1800, [205] C. glutamicum SER-O0, this time a Ser producer evolved from the WT,
and only the remainder of the plotted studies actually contained data for the WT, i.e. C. glutamicum
ATCC13032.

Perhaps the most important point, however, regards the utilized quenching methods. The astute
reader may have noticed that values from two studies [203} 204] in particular generally featured
much higher concentrations than the residual publications irrespective of the amino acid. This is
the case as both used a rapid filtration method before incubation at high temperature for extraction.
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The later study [204] even performed comparative measurements between cold methanol quench-
ing and said filtration approach and found that filtration consistently resulted in much higher values.
To highlight this, both results were plotted separately in figure [3.40| As this approach is much more
closely related to the automated hot isopropanol quenching workflow [142] used in this thesis, it
is sensible that the obtained values are more comparable, then. All other quoted studies used
variations of the cold methanol quenching methods with different attempts and levels of effort di-
rected towards correcting for metabolite leakage. It is not clear whether the whole-broth sampling
approach with corrections for the exometabolome or the cold methanol quenching approach with
its associated corrections is the superior option. With respect to the presented modelling ap-
proach, avenues to exclude an overestimation of intracellular pool sizes should be explored, e.g.
by obtaining exometabolome data within the same experiment and perhaps via the inclusion of
further extracellular pools although that would increase the dimensionality of the problem. In case
of a substantial extracellular pool like for Gly, though, such a phenotype was noticed during model
validation so it is uncertain whether the inclusion of further extracellular pools would in practice
improve the accuracy of the obtained results.

Shifting the focus from the hard to gauge accuracy to precision, the results for all amino acids for
which labeling data could be measured were unexpectedly positive with regards to uncertainty.
Especially for Ser, the 95% HDIs were located within a range of about 4.5 mM for all replicates
and all four modelling approaches.

In light of the aforementioned systematic errors in place for pool size measurements [17-19], the
presented pool size estimation can be evaluated as a success, since its results can at the very
least be used to restrict pool sizes to a general order of magnitude if not identify them outright. With
regards to actual practical applicability, by optimizing the sampling time points and reducing the
number of replicates, one might sacrifice a selected number of wells for the purpose of generating
data for pool size estimation while using the majority on e.g. an INST ILE or another separate
experiment. Based on previous experiences with toy examples where even the knowledge of one
pool size can suffice to perform an INST-MFA, restricting the pool sizes of up to six amino acids
and up to three intermediates should fulfill the same purpose.
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3.6 Case study II: INST '3C-MFA on ethanol

This chapter is based partially on an upcoming publication co-first-authored by JN and Anton
Stratmann (AS). JN designed the ILE with 1-'3C ethanol, conducted the automated experiment,
LC-MS/MS analyses and TMID calculation. AS conducted the correction for natural isotope abun-
dance. Model validation and expansion as described in were performed by AS and JN.
The Materials and Methods section pertaining to this chapter was written by AS, Stephan
Noack (SN), and JN. Optimizations and profile likelihood calculations were performed by AS. The
estimation of extracellular rates for the INST "3C-MFA was conducted by AS based on bioreactor
data and by SN based on microbioreactor data. The biological evaluation of results as presented
in this text and their visualization were authored by JN. The script for the visualization was based
an earlier version by Martin Bey/3.

13C-MFA represents in a sense the culmination of ILEs and constitutes an important phenotyp-
ing technique in systems biology. Since the basic requirements of establishing a MSS, taking
measurements for determining extracellular rates and metabolite labeling states, and performing
metabolic quenching are fulfilled, the isotopically stationary variant can clearly be conducted with
the automated workflow without requiring further developments or a proof of concept.

However, the same does not hold true for INST '3C-MFA. Due to the inability to accurately measure
pool sizes when using automated hot isopropanol quenching, a vital source of data is missing from
the equation, hence reducing the number of measurements while increasing the system’s degree
of freedom. As the automated workflow is otherwise uniquely qualified for INST-ILEs due to its high
degree of parallelization, it needs to be established whether or not an INST '3C-MFA is possible
with this innovative setup. A successful application of this technique would, after all, constitute
both the first time to perform an INST '3C-MFA at a microliter-scale and based on an automated
experiment.

Regarding the object of this particular case study, an adaptive laboratory evolution experiment
recently produced a mutant of C. glutamicum WT denominated as WT_ETH-evo exhibiting im-
proved growth on ethanol as the sole carbon source [140]. Due to a mutation upstream of the
ald gene interfering with the binding of the transcriptional regulator GIxR, an over-expression of
the acetaldehyde dehydrogenase catalyzing the NAD-dependent oxidation of acetaldehyde to ac-
etate was caused, thereby increasing the overall rate of ethanol degradation. As there was no
published fluxome for C. glutamicum grown exclusively on ethanol, yet, this mutant was selected
as the target for an attempt at INST '3C-MFA using the automated ILE workflow.

This choice of application study has further advantages, though, aside from the novelty of a flux
distribution on ethanol. Firstly, C. glutamicum is retained as a model organism. Secondly, there are
previous results for C. glutamicum like an MFA on acetate, omics data on ethanol, and pool sizes
on glucose which provide ample opportunity to contextualize and contrast results. Thirdly, the new
mutant is investigated using fluxomics in addition to the already applied proteomics. Fourthly and
finally, since ethanol is a 2-carbon molecule, the re-distribution of labeled C atoms in the CCM is
limited and accordingly the informativeness of an isotopically stationary approach is, too. Hence,
the substrate itself favors an INST approach which is in turn enabled by the automated workflow.
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Regarding the design of the experiment, a traditional DoE simulation study as previously described
in literature [206-208] was foregone due to the aforementioned limited tracer combinations of-
fered by ethanol. Especially when planning an INST instead of an isotopically stationary labeling
experiment, conducting such a study would be even more complex since it not only requires a rea-
sonable approximation of a flux distribution (e.g. via flux balance analysis) and extracellular rates
but metabolite pool sizes, as well. Also, it would require testing not only numerous combinations
of 1-13C, 2-13C, and U'3C ethanol but an optimization of the time points for sampling. Instead,
the latter were decided based on data from previous experiments with C. glufamicum which was
readily available as a foundation for an informed judgement. In particular, the ethanol uptake rate
of WT_ETH-evo in a lab-scale bioreactor experiment of 8.45 mmol gx' h™' suggested a slower
uptake of carbon than on glucose with its expected uptake rate of roughly 4.5 mmol gx™' h™! [195].
When relating these rates to the uptake of carbon atoms they amount to 16.9 C-mmol gx™' h™! for
ethanol and 27 C-mmol gx™' h™' for glucose. Combining this observation with the INST labeling
data from the proof of concept experiment with U'3C Glc and the WT, it was accordingly expected
that the incorporation of labels would generally be slower, especially for metabolites pertaining
or adjacent to the EMP and PPP. Thereby, a reasonably confident guess about informative time
points could be made for the first ILE on ethanol. Compared to the time points sampled for the
proof of concept experiment of 25s, 30s, 40s, 50s, 60s, 70s, 90s, 120s and 300s after the
pulse, for the present ILE on ethanol the delays 24 s, 35s, 60s, 120s, 180s, 1200s, and 1800 s
were chosen. The final point with a delay of 1800 s was selected in order to hopefully obtain one
data point located in the isotopic steady-state of free amino acids.

All labeling time courses utilized for the INST '3C-MFA are presented in the appendix (figures
and [A8). Particularly for Gly, Ala, Val, Asp, L-homoserine (Hser), Thr, Met, Glu, Gin, and
L-citrulline (Citr) the INST phase was sampled thoroughly. For amino acids which were either
comparatively distant from ethanol’s entry into the metabolic network or located downstream of
large pools buffering the incorporation of labeled carbon atoms like e.g. Glu, only the beginning
of the labeling dynamic was recorded. For example, Ser as a glycolysis-derived amino acid has a
much slower dynamic on ethanol than on Glc. Accordingly, Gly which is one reaction downstream
of Ser and features a larger extracellular pool exhibited an even more delayed and slower time
course of label incorporation. The only included PPP-derived amino acid His showed barely any
label incorporation during the observed time frame which was not unexpected. In these cases
among others, the early sampled time points were rather uninformative. Even for the Pyr- and
Asp-derived amino acids, the ISS was not nearly reached after 180 s so that the gap to the next
data point of 1200s turned out too large. An additional data point in this time frame or a re-
allocation of the present data points would certainly have proven advantageous.

Accordingly, harnessing the increased throughput of the automated workflow, follow-up experi-
ments were designed with improved time points based on these results. To emphasize, while
such iterative design is generally applied in many biological experiments, this is usually not the
case for ILEs due to the previously discussed temporal and monetary burdens. Specifically, it was
decided to include an additional time point by relinquishing the isotopically stationary experiment
conducted in three biological replicates per condition, i.e. strain or tracer. Furthermore, the de-
lays after 120 s were altered significantly. The data point at 180 s was pushed back to 540s or
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9min and intended to be accompanied by samples after 14.5 min, 33 min, and a new final point at
45 min. Thereby, the previously unobserved time frame after 180 s was covered more evenly and
a significantly later end point was sampled during the new ILEs.

Naturally, more labeling time courses than those included in the experiments had been detected
and evaluated, hence the reasons for these exclusions ought to be discussed. Most prominently,
Orn and Arg showed little to no label incorporation during the measured time frame while their
direct neighbors Glu and Citr exhibited quite a fast dynamic with fully unlabeled mass traces
of about 22 % and 40 %, respectively, after 1200s. These paradoxical observations cannot be
reconciled so the data showing the expected labeling dynamic were trusted over the complete
absence of labeling implied by the Orn and Arg data. In case of the aromatic amino acids, their
LC-MS/MS signals were either absent or had a comparably low intensity leading oftentimes to
an increased effect of noise on the peak areas and accordingly fluctuations between biological
replicates. Therefore, while L-phenylalanine (Phe) was detected, it was ultimately discarded due
to its high variation. Finally, the double peak of Leu and lle impaired the evaluation of especially
the smaller Leu peaks. Due to the noisy signal, high variance time courses were recorded for Leu
which seemed to plateau after 120 s — in other words, much earlier than any other amino acids
and particularly of amino acids in the vicinity. Accordingly, only lle’s data was included for the flux
estimation.

With respect to the results of the INST '3C-MFA, the obtained flux map is shown in figure [3.41
and a full account of all fluxes was included in the appendix (table [AT). It must be impressed
upon the reader, however, that this is an intermediate result and may thus differ from the one
presented in the upcoming publication mentioned at the beginning of this chapter. Due to the lack
of previous fluxomes of C. glutamicum on ethanol, the inferred fluxes will be contrasted against
the closest point of comparison available in literature, i.e. an isotopically stationary '3>C-MFA with
the C. glutamicum WT on acetate [64]. Before doing so, it is important to note some further
key differences between the two '3C-MFAs. For the acetate MFA, the labeling states of CCM
intermediates were observed and a more reduced metabolic network model was utilized. Amino
acids were not included but their biosynthesis was implied by drain terms crossing the model
boundaries. As the present INST '3C-MFA used labeling data from free amino acids, the measured
parameters used for the simulations are quite distinct. In the acetate case, the TCA cycle and EMP
pathway were simplified but most crucially the Mal/OAA and PEP/Pyr pools were lumped in order
to unify multiple anaplerotic reactions, thus simplifying the notoriously complex anaplerotic node.
Since the absolute flux values are given in mU mgprotein'1 without specification of the protein mass,
only relative values will be contrasted.

Despite the similar entry of both substrates into the metabolic network, the first major deviation
is constituted by the TCA cycle usage. On acetate, there was a higher relative flux into the TCA
cycle of 76 % compared to 48 % via the citrate synthase reaction combining AcCoA and OAA to
citrate (Cit). At the bifurcation originating from the combined Cit and isocitrate (lcit) pools, a ratio
of glyoxylate shunt vs. continued TCA cycle usage of 24 % was observed on acetate compared to
75.5% on ethanol. This difference is caused by a doubled flux of 36 % into the glyoxylate shunt
on ethanol with a concomitant decrease of the TCA cycle flux toward AKG from 58 % to 11.8 %.
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Figure 3.41: Flux map obtained by INST '3C-MFA with C. glutamicum WT_ETH-evo grown on unlabeled
ethanol and pulsed with 100 % 1-'3C ethanol during the mid-exponential growth phase. All flux values are
given in mmol gx™' h™* and the boxes contain from top to bottom the upper boundary of the 95 % Col, net flux,
and lower boundary of the 95 % Col. Values above 1 were rounded to the first decimal, values below 0.1 to
the third decimal and values in between to the second. The width of the arrows scales with a reaction’s flux
value and the width of the background colors pertaining to pathways relates to their usage. The portrayed
pathways are glycolysis (gly), PPP (ppp), TCA cycle (tca), anaplerotic reactions (ana), glyoxylate shunt
(glx), biosynthesis of amino acids (bs), biomass formation (bm), nucleotide synthesis (ns), and ethanol
uptake (upt). In case multiple sequential reactions in linear pathways had the same flux value (usually
preceding a biomass drain reaction), the redundant fluxes were omitted to preserve visual clarity.

This finding can be explained by the chemical characteristics of the substrates. While acetate and
ethanol partially share a common degradation pathway, ethanol has a higher degree of reduction
of 6 compared to acetate’s 4 and accordingly is oxidized twice before the pathways converge. The
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regeneration of the reduction equivalent NADH in these two reactions is likely a reason why the
glyoxylate shunt activity is higher than the oxidative TCA cycle activity on ethanol since isocitrate
dehydrogenase and a-ketoglutarate dehydrogenase both catalyse NAD-dependent oxidations, as
well. As a side effect, the carbon dioxide evolution rate is much higher on acetate amounting
to 481 % compared to the 82 % on ethanol as said reactions are decarboxylations. Such a loss
of carbon atoms is also reflected in a much lower biomass yield of 0.29gc, gCS'1 on acetate
compared to 0.41gc, 903'1 on Gilc [64] or the presently determined biomass yield on ethanol of
0.516 gcpw gs ™' or 0.40gc, e, ' (based on the biomass carbon content of 0.408 gg, gcow ™' [15]).
Even so, the growth rate of 0.28 h™' on acetate is considerably higher than the 0.19 h' determined
on ethanol, although the high acetate concentration already impacted growth adversely at the
utilized concentration [64].

There are, however, contradicting sources of data which need to be taken into account. Firstly,
transcriptomics have uncovered a slightly lower expression of the isocitrate lyase gene aceA
(cg2560) during growth on ethanol compared to acetate [62]. In the same publication, a near
identical specific activity of the enzyme was observed in cell-free extracts. Accordingly, a large
shift in the activity of AceA caused by disruptions of the transcriptome or proteome seems un-
likely. The strain WT_ETH-evo investigated in this thesis, however, is not fully identical to the
WT and while proteomics data [140] has shown no fold changes between the two with respect to
AceA, the isocitrate dehydrogenase catalyzing the reaction from isocitrate to AKG exhibited a fold
change of 0.38 for the mutant. It is unlikely that this suffices to explain the drastic difference of
the TCA cycle usage observed on ethanol with WT_ETH-evo, especially since the protein concen-
tration by itself does not permit direct statements about the pertaining flux [101] but it is possible
that the WT would exhibit a ratio of glyoxylate shunt to TCA cycle usage closer to the acetate
condition. Since no labeling data for glyoxylate is available, the closest data point to base this
assumption on is the label incorporation into Glu which is derived directly from AKG. In an INST
ILE of the WT grown on ethanol, the time course of said incorporation was slightly faster for the
WT (figure as observable by the offset of the unlabeled mass trace. This supports the claim
of an exaggerated glyoxylate shunt activity of WT_ETH-evo relative to the WT while maintaining
the original hypothesis of an altered TCA cycle activity during growth on ethanol relative to acetate
based on the balance of reduction equivalents.

Due to the higher relative activity of the TCA cycle on acetate, the flow into gluconeogenesis and
PPP are accordingly de-emphasized. The fluxes from PEP to GAP, GAP to F6P, and F6P to G6P
amount to relative rates of 8%, 3%, and 5% on acetate vs. 17 %, 13 %, and 32 % on ethanol,
respectively. Nevertheless, the relative fluxes towards Ser are virtually identical with 2.59 % on
acetate and 2.54 % on ethanol. Corresponding to the supply of G6P, entry into the PPP catalyzed
by the 6-phosphogluconate dehydrogenase (Pgd) was determined to occur at a much higher rate
of 30.6 % on ethanol compared to a mere 4 % on acetate.

In summation, growth on the more reduced substrate ethanol compared to acetate significantly
alters the TCA cycle and glyoxylate shunt activity causing a more efficient growth characterized
by a higher biomass yield, lower CER, and increased relative usage of gluconeogenesis and PPP.
However, the adverse effect of ethanol on the growth rate compared to acetate is more pronounced
as expressed in an even lower growth rate, especially with regards to the WT but also extending
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to the improved mutant WT_ETH-evo.

Due to the lack of available pool size measurements, not all intracellular concentrations were iden-
tifiable by INST '3C-MFA. Such pool sizes with 95 % Cols approaching equivalence with the lower
and upper boundaries restricting the solution space of the optimization, were deemed unidenti-
fiable and accordingly only included in the table with all results in the appendix (table [A2). The
identifiable ones for which published pool sizes on Glc as the sole carbon source were found are
additionally portrayed in figure It is important to state that — similar to the results in section
[3.5]— for all amino acids for which INST labeling data was included in the optimization, pool sizes
were identified. Additionally, this is the case even for some intermediates, especially from the TCA
cycle, for which no experimental labeling data had been obtained. A reason for this may be that
most included labeling data belong to Glu-, Asp-, and Pyr-derived amino acids all of which are
located in the close vicinity of the TCA cycle.

An expected difference between the two conditions is observed for glyoxylate as the glyoxylate
shunt is known to be inactive on Glc and essential on ethanol. Accordingly, a pool size of 0 mM
[53] and 0.015mM + 0.014 mM [17] were observed on Glc vs. 26.47 mM on ethanol. Similarly, the
increased AcCoA pool is not unexpected as it constitutes the closest CCM intermediate to ethanol
which may lead to an accumulation. Furthermore, the pool sizes of Ser and Gly are generally
comparable but the MLEs are lower on ethanol which is in accordance with a higher relative flux
towards Ser on Glc of 6.08 % vs. 2.54 %. As Ser is far apart from ethanol in the metabolic network,
there is likely only a minimum flux required for providing precursors for growth. A major departure,
however, is constituted by the manifold larger PEP and lle pools on ethanol. With regards to PEP
in particular, this node may constitute a bottleneck leading to such an inflated pool.

Evaluating the results of the present application study, an INST '3C-MFA could be conducted
based on an automated ILE at a microliter scale. Thereby, the ethanol catabolism of C. glutam-
icum was investigated on the level of the fluxome and an increased activity of the glyoxylate shunt
in particular as well as the gluconeogenesis and the PPP was identified relative to other sub-
strates entering at the level of AcCoA. For this first proof of concept fluxome and due to temporal
restrictions, extracellular rates were estimated based on bioreactor data meaning the final version
of the flux distribution may change slightly. However, the values of 0.19h™" for the growth rate
and 6.4mmol gx™' h'! for the ethanol uptake rate portrayed in the flux map turned out to be close
to those later estimated using the microbioreactor online data amounting to 0.186h™' + 0.016 h™"
and 7.95mmolgyx ' h™' £+ 0.677mmolgx' h™'. Therefore, a significant shift of the pathway usage
by replacing these rates would be unexpected.

All in all, the successful application of INST "3C-MFA greatly expands the scope of possible ex-
periments accommodated by the automated ILE workflow.
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Figure 3.42: Metabolite pool sizes obtained by INST '3C-MFA with C. glutamicum WT_ETH-evo grown
on unlabeled ethanol and pulsed with 100 % 1-'3C ethanol during the mid-exponential growth phase. The
present results with the pertaining 95 % Col (R) are compared to literature values of C. glutamicum grown
on Glc. Depending on the availability of data for a given metabolite, the references include (1),

(2), (3), [204] (4, cold methanol quenching data), [204] (5, rapid filtration data), [205] (6), and (7).
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3.7 Assembly and critical discussion of the overarching automated
ILE workflow

The results of this dissertation detailed in the preceding sections all converge to form a new
pipeline for ILEs presented in figure From experimental work to data evaluation, numerous
unit operations of this workflow have been successfully automated, thereby greatly increasing the
potential throughput and contributing to standardization. The eponymous principles of automation,
miniaturization, and parallelization were jointly applied to the experiments in particular and indeed
led to the targeted reduction in cost and increase in throughput and walk-away time.

Walking through the automated ILE pipeline, the pre-experimental considerations remain mostly
unchanged from the state of the art workflow. As the operation of automated platforms requires a
Python script, this poses an additional task which was already automated as far as possible (see
section[3.2), although customizing and testing the generated script are nonetheless required.
The experimental section was wholly changed. Transitioning from up to four parallel manually
operated bioreactor cultivations at a liter-scale to up to 48 automated, parallelized, and miniatur-
ized microbioreactor cultivations at a microliter-scale necessitated the move from cold methanol
quenching to the newly established automated hot isopropanol quenching [142]. This procedure
was rigorously validated (3.1.2), proven for INST ILEs (3.1.3), and applied to biological case stud-
ies and [3.6). Since the sample processing in the form of centrifugation is included in the
automated experiment, samples for detecting metabolite labeling states are immediately ready to
use for LC-MS/MS analyses as e.g. no derivatization is required which would be the case for
GC/MS analyses. Presupposing the justifiable assumption of a lack of oxygen limitation, it is even
possible to increase the experimental throughput by sampling up to three times from the same well
— depending on the available total volume. This is merely restricted by the need of an intermediary
washing step of the LiHa pipettes taking roughly 30 s. Accordingly, the sampling time points need
to be sufficiently spaced out to allow for that. Realistically, by coupling early and late sampling time
points under consideration of this gap, it would be possible to decrease the number of necessary
wells per INST ILE by half. Before utilizing this approach, it should be experimentally validated
whether the removal of such a large fraction of the total volume does not impact cellular growth,
though [209].

While the detection of metabolite labeling states is still conducted in an identical manner to the
state of the art workflow (figure [1.2), the data processing up to the generation of TMIDs was
altered significantly. Instead of relying on vendor software, the open source Python program
PeakPerformance was developed in this thesis to perform peak fitting by Bayesian inference yield-
ing peak parameters including uncertainty quantification. This innovative use of Bayesian statis-
tics for chromatographic peak fitting proved not only advantageous with respect to automation,
i.e. specifically to the degree of independence from user intervention, but also more accurate with
regards to identifying signals as peaks. The most important enhancement, however, is the un-
precedented quantification of measurement noise as a dedicated model parameter and the deter-
mination of uncertainty quantification for all parameters. Independent of whether PeakPerformance
or the heretofore default of MultiQuant were employed, another Python program authored for this
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workflow is used to calculate TMIDs, visualize the data, and structure it in a manner compatible to
the correction for natural isotope abundance by the in-house developed meta-tool uNAC.
Regarding applications, it is self-evident that the simpler techniques such as quantitative labeling,
isotopic profiling, and flux ratio analysis can be performed using this pipeline. All requirements
for performing isotopically stationary '*C-MFA such as measurement of extracellular substrate
and product concentrations and obtaining labeling data during the ISS are fulfilled, as well. For
particularly INST '3C-MFA, this remained to be proven since hot isopropanol quenching does not
accommodate the accurate measurement of metabolite pool sizes which are traditionally assumed
to constitute essential data as the time course of label incorporation into a given metabolite pool is
dependent on both the pertaining flux(es) and the pool size. Such proof was delivered by means
of the biological use case of the first ever INST '3C-MFA with a C. glutamicum strain on ethanol
as the sole carbon source, as presented in section To partially alleviate this drawback of hot
isopropanol quenching and contribute an innovative way to gain insight into specific metabolite
pool sizes using INST '3C-labeling data, a new application was established for the estimation
and uncertainty quantification of pool sizes pertaining to the amino acids Ser, Gly, Leu, Ala, and
Val. This was realized by using a fully labeled substrate and evaluating all accrued data via
a combination of a bioprocess model with a simplified '3C-model (section . A parallelized
Apache Airflow data pipeline was developed for this new application to enable its demanding
simulations and make them accessible for less experienced users.

When critically discussing an attempt at an automated ILE pipeline and its merits, it is worthwhile
to state a list of criteria that should ideally be fulfilled. According to a recent publication on the
matter [210], such requirements would comprise the following items:

1. careful experimental design

This is of course a pre-requisite of experiments in general but ILEs in particular. Increasing the
degree of automation for DoE was beyond the scope of this thesis but in order to increase the
throughput even further, this point needs to be addressed.

2. parallelization of 3C-ILEs

3. miniaturization of 3C-ILEs

4. ability to maintain metabolic steady-state
5. permanent monitoring of growth

The aforementioned items were all fulfilled by relying on BioLector microbioreactor cultivations
which facilitate conducting up to 48 batch experiments in parallel at a microliter-scale while online
monitoring backscatter as a metric of growth. A (quasi-)metabolic steady-state can be assumed
during the exponential growth phase of a batch experiment so this fundamental assumption of
13C-MFA holds true.

6. rapid and automated sampling of labeled material

7. automated sample processing
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Figure 3.43: Automated ILE workflow as the culmination of the present thesis. This depiction invites a
comparison to the state of the art ILE workflow shown in the introduction (figure[T.2). Due to the increased
throughput and decreased costs enabling iterative experiments, the automated ILE workflow is presented
as a cycle in contrast to the sequential nature of the state of the art workflow. Automated steps have been
emphasized in green font color.
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Since the robotic platforms utilized in this thesis were comprised of a liquid handling robot, a
BiolLector, and an automated centrifuge among other devices, samples were taken in an online
data-dependent manner with subsequent quenching and removal of cells and cell debris by cen-
trifugation. The resulting extracts were ready for LC-MS/MS analysis and potential dilutions before
injection can be performed with a liquid handler.

8. fast and sensitive analytical technique due to low amount of biological material in samples

While the dilution inherent in automated isopropanol quenching is severe, the utilized LC-MS/MS
method to detect amino acid labeling patterns is sufficiently sensitive for this purpose. Due to
constraints with both available equipment and spacial limitations, an automated LC-MS/MS anal-
ysis directly following the sampling could not be realized in this thesis but this is not a technical
but merely an infrastructural issue. In a high-throughput setting, however, a faster column method
would be preferable and could diminish the allotted time for analysis by hours per FlowerPlate.

9. automated data extraction tool

Although there are avenues for further improvement given continuous development,
PeakPerformance represents a significant step toward this goal. Even disregarding the innovations
of taking measurement noise into account and performing uncertainty quantification by Bayesian
statistics, the novel metrics for peak recognition drastically reduce the necessity for human super-
vision and especially manual action. Since the visual inspection and correction of peak data is
cumbersome even at a low throughput, a major bottleneck was addressed with this new develop-
ment.

10. more user-independent data interpretation tools

Depending on the application, this requires dedicated tools for a variety of purposes. Regarding
the ones presented in this dissertation, PeakPerformance requires comparatively little human in-
tervention once models and priors suited for a specific method have been established which tends
to generally be the case for Bayesian methods. Furthermore, the pool size estimation workflow
features a data pipeline which merely requires user input of the correct data assisted by a web
interface guiding the user through this process. Naturally, when applying this technique to other or-
ganisms changes to the underlying model structure may be unavoidable. Additionally, issues with
model convergence might occur and demand a user’s attention. All things considered, however,
this data pipeline is generally ready to use and offers access to computationally heavy MCMC
simulation which the average user likely would not have otherwise.

If it is the goal to conduct high-throughput 3C-MFA, a more user-independent solution remains to
be created in future efforts.

11. integration of all steps into a pipeline

As the list shows, most but not all steps towards a comprehensive and integrated automated
ILE pipeline were taken. The automated sections are without exception implemented in such
a way that they connect to each other seamlessly. While this is obvious for the experimental
work — the generated Python script leads to an experiment using quenching and yielding extracts
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for LC-MS/MS analysis —, the later steps required active design decisions toward this end. For
example, the peak integration with PeakPerformance returns an Excel file which can be interpreted
by the software for data visualization and TMID calculation which in turn produces an Excel file
containing correctly formatted results for natural isotope correction with uNAC. Merely such a level
of connectivity between steps can increase the theoretically achievable throughput of the overall
workflow significantly.

One factor setting apart ILEs from many other experiments is the traditionally high expenditure
per experiment due to the cost of labeled substrate(s) which imposes a serious limitation on the
possible specifications of a given experiment. Since this cost massively depends on the selected
input labeling mixture, this burden center is uniquely susceptible to the choice of the experimenter.
When performing DoE to rank different mixtures, the best result might include selectively labeled
species which are commonly several times more expensive than their uniformly labeled counter-
parts. To demonstrate which dimensions this can take, the following hypothetical experimental
costs for the automated and state of the art workflows are calculated. For the former, a filling
volume of 800 L per well, a pulse with labeled substrate of 1% (v/v), and INST sampling at 8
time points in biological triplicates are assumed. For the latter, 1 L bioreactors are employed in
biological duplicates and a 10 mL pulse with labeled substrate is allotted per replicate. Since this
constitutes merely a rough estimate, the resulting numbers are intended only to give an impression
of the orders of magnitude of the expected costs and between the two scenarios and should not be
misinterpreted as certain. Due to the fluctuating prices of labeled substrates and the foreseeable
increase in the costs of work and single use items, the absolute results are subject to continuous
change.

€
Cautomated = tworkTh + Csubstrate T CFlowerPlate =10 h 100 E +2784€+117T€ =1395.4 €
(3.27a)

€
Cmanual = twork”h T Csubstrate =20 h 100 n + 29000 € = 31000 € (3.27b)

Clearly, having arrived at such a DoE result, the experimenter would have to reconsider and settle
on the next best, economically viable alternative when using the state of the art workflow. The ef-
fects of the miniaturization inherent to the automated workflow, then, do not halt at merely causing
a massive reduction in cost but functionally expand the economically feasible solution space of a
DoE, thereby enabling usage of the best identified labeling mixtures and improving results.
Accordingly, as a consequence of the combined advantages of the automated workflow, namely
the increased throughput at decreased costs, figure [3.43|presents the automated ILE workflow as
a cycle in contradistinction to the sequence selected for the state of the art workflow (figure [1.2).
This is meant to emphasize that an iterative design of ILEs is now realistically feasible and has
indeed already been accomplished (see [3.6).

The preceding paragraphs were intended to clarify once again which of the limitations and draw-
backs of the manual workflow have been addressed already and which new bottlenecks have
thereby formed. The most pressing ones are now constituted by the modelling tasks, i.e. DoE and

133



3 Results and Discussion

data evaluation. While the analytical measurement of metabolite labeling states remains time-
intensive and a faster method would need to be established to attain a high-throughput pipeline
which can truly keep up with miniaturized cultivations, performing optimizations and statistical in-
ferences for "3C-MFA — especially INST — requires vastly more (simulation) time.
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4 Outlook

When re-contextualizing the novel developments presented in this thesis and summarized in sec-
tion[3.7]as the new status quo, one finds oneself at a bifurcation with regards to the future objective
of the ILE workflow.

The development of PeakPerformance enables the possibility of realizing a data pipeline fully
based on Bayesian statistics starting from peak analysis up to '*C-MFA which has not been estab-
lished previously. This would dramatically decrease the need for human intervention, at least after
the necessary models have been built and validated. However, this approach effectively precludes
a further increase in throughput due to the heavy computational load of the MCMC simulations
employed for peak fitting and subsequent processes. It further increases the demand with re-
gards to computing infrastructure as well as the energetic and thus monetary burden connected
to such installations. Whereas the current ILE workflow is designed with connectivity between its
sections in mind, these would have to be newly developed for a Bayesian variant and the com-
plexity may increase if e.g. the distribution of the peak areas obtained by PeakPerformance are
not normal-shaped since metrics such as the SSR require a mean value and standard deviation,
i.e. a normally distributed error.

The alternative avenue is to further optimize the ILE workflow for increased throughput and au-
tomation, i.e. independence from the user, and aim to apply '*C-MFA to a larger number of
phenotyping experiments. With such a pipeline in place, high-throughput '*C-MFA could even be
performed as contract work for third parties — at least for some of the most important organisms
—, hot unlike the idea of a biofoundry.

Of course, a decision for or against one of these approaches is not necessarily unavoidable as
these two visions can be pursued in separate follow-up projects. The immediate problems to tackle
and actions required for the two, however, differ significantly.

Concluding this thesis, there obviously remains a large potential in ILEs in general and '3C-MFA in
particular. While considerable progress has been made in automation, experimentation, analytics,
and simulation in the past 30 years, new applications of ILEs such as the estimation of metabolite
pool sizes and novel variants of previously established techniques such as the automated, minia-
turized INST "3C-MFA can still be developed and improved upon. With the advent of autonomous
experimentation and increasing independence from the user, the objectives of embedding ILEs in
high-throughput workflows and expanding to routine application in industry are now more tenable
than ever.
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A1 Hot isopropanol quenching validation

Appendix

A1 Hot isopropanol quenching validation

The following figures and [A3] exhibit the full results of the two validation experiments
concerning the hot isopropanol quenching method as discussed in section [3.1]
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Figure A1: Results of the automated hot isopropanol validation experiment for Glu and Glu-derived amino
acids.
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Figure A2: Results of the automated hot isopropanol validation experiment for free intermediates of EMP
pathway and PPP.
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Figure A3: Results of the automated hot isopropanol validation experiment for all remaining measured free
amino acids except the Glu-derived ones.
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A2 New EvoWare pipetting commands implemented in robotools

aspirate command for worklist |«

( » labware: liquidhandling.Labware
o wells: Union[str, List[str]]

¢ labware_position: Tuple[int, int]
o tips: Union[List[int], List[evotools.Tip]]

_— > worklist.evo_aspirate
-A%p 0 ¢ volumes: Union[float, List[float]]

A ¢ liquid_class: str

e arm:int=0

\_ ¢ label: Optional[str] = None

-
commands.evo_aspirate() ]

e call upon test method
»| ¢ call upon methods to create code string
\. assemble and append pipetting comand to worklist

A
e wells: Union[str, Sequence[str], numpy.ndarray] o wells: List[str]
e labware_position: Tuple[int, int] e labware_position: Tuple[int, int]
o tips: Union[Sequence[int], List[evotools.Tip]] e tips: List[evotools.Tip]
¢ volumes: Union[float, Sequence[float]] ¢ volume: List[float]
e liquid_class: str e liquid_class: str
e arm: int
e max_volume: Optional[Union[int, float] = None
Y
( _prepare_evo_aspirate_dispense_parameters() w

e testing values for correct type, range etc.
e converting values to types needed for creating the
pipetting command

Figure A4: Implementation of the EVOware pipetting commands in the robotools Python package. While
this figure is focused on aspirate commands, there are analogous methods for dispense commands.
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Figure A5: Implementation of the EVOware wash command in the robotools Python package.
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wash command for worklist [«

& _—> worklist.evo_wash()

y

\

( commands.evo_wash()

e call upon test method

¢ assemble and append wash comand to worklist

tips: Union[List[int], List[evotools.Tip]]
waste_location: Tuple[int, int]
cleaner_location: Tuple[int, int]
arm: int=0

waste_vol: float = 3.0
waste_delay: int = 500
cleaner_vol: float =4.0
cleaner_delay: int = 500
airgap: int=10

airgap_speed: int = 70
retract_speed: int =30
fastwash: int =1

low_volume: int =0

y

\

tips: List[evotools.Tip]

waste_location: Tuple[int, int]

cleaner_location: Tuple[int, int]

arm: int
waste_vol: float
waste_delay: int
cleaner_vol: float
cleaner_delay: int
airgap: int
airgap_speed: int
retract_speed: int
fastwash: int

low_volume: int

( _prepare_evo_aspirate_dispense_parameters() W

* testing values for correct type, range etc.
e converting values to types needed for creating the wash

command




A3 Height calculation of skew normal-shaped distributions in PeakPerformance

A3 Height calculation of skew normal-shaped distributions in
PeakPerformance

import numpy as np

import pytensor.tensor as pt

def delta_calculation(alpha):

mwmn

Calculate the delta term included in several subsequent formulae.

Parameters
alpha
Skewness parameter of the skew mormal distribution.

mmn

return alpha / (np.sqrt(l + alpha**2))

def mue_z_calculation(delta):
nnn
Calculate the mue_z variable which is needed to compute a numerical approzimation
of the mode of a skew mormal distribution.

mwun

return np.sqrt(2 / np.pi) * delta

def sigma_z_calculation(mue_z):
nnn
Calculate the sigma_z vartable which is needed to compute a numerical approximation
of the mode of a skew mormal distribution.

mwmun

return np.sqrt(l - mue_z**2)

def skewness_calculation(delta):
"""Calculate the skewness of a skew mormal distribution.”""
return (
(4 - np.pi)
/ 2
* ((delta * np.sqrt(2 / np.pi)) ** 3)
/ ((1 - 2 % deltax*2 / np.pi) #** 1.5)

def mode_offset_calculation(mue_z, skewness, sigma_z, alpha):
"""Calculate the offset between arithmetic mean and mode of a skew normal distribution.”""
# this formula originally contained the sign() function which led to an error due to usage
# of pytensor vartables -> use alpha/abs(alpha) instead for the same effect

return (

mue_z
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- (skewness * sigma_z) / 2
- (alpha / abs(alpha)) / 2 * pt.exp(-(2 * np.pi) / abs(alpha))

def mode_skew_calculation(loc, scale, mode_offset):
"""Calculate a numerical approzimation of the mode of a skew normal distribution.”""

return loc + scale * mode_offset

def height_calculation(area, loc, scale, alpha, mode_skew):
mnmnn
Calculate the height of a skew nmormal distribution.

The formula is the result of inserting time = mode_skew into the posterior.

Parameters
area
Area of the peak described by the skew normal distribution.

(area between baseline and skew normal distribution)

loc

Location parameter of the skew normal distridbution.
scale

Scale parameter of the skew mormal distribution.
alpha

Skewness parameter of the skew normal distribution.
mode_skew

Mode of the skew normal distribution.

Returns
mean
Arithmetic mean of a skew normal distribution.
return area * (
2
* (1 / (scale * np.sqrt(2 * np.pi)) * pt.exp(-0.5 * ((mode_skew - loc) / scale) ** 2))
* (0.5 * (1 + pt.erf(((alpha * (mode_skew - loc) / scale)) / np.sqrt(2))))

Listing A1: Height calculation of skew normal-shaped models in PeakPerformance
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A4 Modelica model implementations

A4.1 Modelica formulation of reduced sub-network model v0O

within ;
model MPP_INST_vO

//makroskopic parameters

Real V(start = V_0, fixed=true); // [L]

Real c_X(start = c_X0, fixed=true); // [g_X/L]
Real c_SO(start = ¢_S0_0, fixed=true); // [mmol / L]
Real c_Si(start = 0, fixed=true); // [mmol / L]
Real c_S; // [mmol / L]
parameter Real c_S0_0 = 110.02; // [mmol / L]
// glucose labeling fractions

Real x_SO; // [-]

Real x_S1; /7 [-]

// exztracellular glycine
Real c_GlyO_extra(start=c_GlyO_extra_0, fixed=true); // [mmol / L]
Real c_Glyl_extra(start=c_Glyl_extra_0, fixed=true); // [mmol / L]

Real c_Gly_extra; // [mmol / L]
// total glycine balance
Real c_GLY_total; // [mmol / L]
Real x_GLY1_total; // [mmol / L]
// extracellular glycine labeling
Real x_GLY1_extra; // [-]
// feed parameters
Real F;
parameter Real tF = 5.896401709; // [h]
parameter Real dt = 3e-3; // [h]
parameter Real VF = 0.05/1000; // [mL] --> [L]
// biomass specific cell wolume
parameter Real V_cell = 1.93/1000; // [L_cell/g_X]
// kinetic paramameters
Real mu;
parameter Real mu_max = 0.635; // [1/h]
parameter Real K_mu_S = 0.00041; // [mmol/L_cell]
parameter Real v_upt_S_max = 2266.59; // [mmol/L_cell/h]
parameter Real K_S = 0.00085; // [mmol/L_reactor]
// mass transport over cell boundaries
Real v_upt_S; // [mmol/L_cell/h]
Real v_Gly_exp; // [mmol/L_cell/h]

parameter Real k_scale_gly_exp=0.00625; // scaling glycine export rate to substrate import
— rate [-]

// intracellular states

parameter Real c_EMPUP = 0.774; // [mmol/L_cell]

parameter Real c_SER = 4.807; // [mmol/L_cell]

parameter Real c_GLY_intra = 10.07; // [mmol/L_cell]

parameter Real c_CYS = 1.03; // [mmol/L_cell]
// intracellular labeling fractions

Real x_EMPUP1(start = 0, fixed=true); // [-1
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Real x_SER1(start = 0, fixed=true); // [-]
Real x_GLY1_intra(start = 0, fixed=true); // [-]
Real x_CYSi(start = 0, fixed=true); // [-1
// intracellular fluzes
Real v_1; // [mmol/L_cell/h]
Real v_2; // [mmol/L_cell/h]
Real v_3; // [mmol/L_cell/h]
Real v_4; // [mmol/L_cell/h]

// biomass incorporation yield
// lumped yields for EMPUP additinal accounting His, UMP, IMP

Real Y_EMPup_X;

parameter Real Y_G6P_X = 0.50877; // [mmol/g_X]

parameter Real Y_F6P_X = 0.1949; // [mmol/g_X]

parameter Real Y_GAP_X = 0.0676/2; // [mmol/g_X]

parameter Real Y_R5P_X = 0; // [mmol/g_X]

parameter Real Y_E4P_X = 0; // [mmol/g_X]

parameter Real Y_HIS_X = 0.066361905; // [mmol/g_X]

parameter Real Y_UMP_X = 0.086159479; // [mmol/g_X]

parameter Real Y_IMP_X = 0.10114561; // [mmol/g_X]

parameter Real Y_TRP_X = 0.027238; // [mmol/g_X]

parameter Real Y_TYR_X = 0.07671; // [mmol/g_X]

parameter Real Y_PHE_X = 0.126780952; // [mmol/g_X]

parameter Real Y_MET_X = 0.074780952; // [mmol/g_X]

// 3-PGA amino actids

parameter Real Y_CYS_X = 0.0436; // [mmol/g_X]

parameter Real Y_SER_X = 0.2427; // [mmol/g_X]

parameter Real Y_GLY_X = 0.3491; // [mmol/g_X]

// initial values
parameter Real V_0= 800 / 1e6; // [L]
parameter Real c_X0 = 0.261; // [g_X/L]
parameter Real c_GlyO_extra_0 =le-10; // [mmol/L]
parameter Real c_Glyl_extra_0 =1e-10; // [mmol/L]
parameter Real c_SO_F = 0; // [mmol/L]
parameter Real c_S1_F = 86.4/180.15%1000; // [mmol/L]
equation
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//Eztracellular mass balances
// FedBactch feed

//Substrate

if (time >=

F = VF/dt;

else

pulse

tF) and (time < tF + dt) then

0;

end if;

//prevent negative substrate concentration

if (c_SO <= 0) then
c_S0=0;

end if;

if (c_S1 <=0) then
c_S1=0;
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end if;
der (V) = F;

// biomass
mu = mu_max * c_S / (K_mu_S + c_S);
der(c_X) =mu * c_X - F/V * c_X;

// substrate

v_upt_S = v_upt_S_max * c_S / (K_S + ¢_S8); //[mmol/L_cell/h]

der(c_S0) = F/V * c_SO_F - v_upt_S * V_cell * c_X * x_S0 - F/V * c_S0;
der(c_S1) = F/V * ¢c_S1_F - v_upt_S * V_cell * c_X * x_S1 - F/V * c_S1;
c_S = c_SO + c_S1;

x_S0 = ¢_S0 / c_S;

x_S1 =1 - x_S0;

// extracellular glycine

v_Gly_exp=v_upt_S*k_scale_gly_exp ;

der(c_GlyO_extra)= v_Gly_exp*c_X*V_cell*(1-x_GLY1_intra)-F/V*c_GlyO_extra;
der(c_Glyl_extra)= v_Gly_exp*c_X*V_cell*x_GLY1_intra-F/V+c_Glyl_extra;
c_Gly_extra = c_GlyO_extra + c_Glyl_extra;

x_GLY1_extra = c_Glyl_extra / c_Gly_extra;

//total glycine and labeling fractions
c_GLY_total = c_GLY_intraxc_X#V_cell+c_Gly_extra;
x_GLY1_total = (x_GLYl_intra*c_GLY_intra*c_X*V_cell+x_GLY1_extra*c_Gly_extra)/c_GLY_total;

//intracellular balancing
// biomass composition EMPUP
Y_EMPup_X = Y_G6P_X + Y_F6P_X + Y_GAP_X + Y_RH6P_X + Y_E4P_X+Y_HIS_X+Y_IMP_X+Y_UMP_X
— +Y_PHE_X+Y_TRP_X+Y_TYR_X;

// fluz balance

0 =v_upt_S - (v_1 + v_4) - mu * Y_EMPup_X / V_cell - mu * c_EMPUP;
0=2x*v_1- (v_2 +v_.3) - mu * (Y_SER_X+Y_TRP_X )/ V_cell - mu * c_SER;
0 =v_2 - mu * (Y_.GLY_X+Y_IMP_X ) / V_cell - mu * c_GLY_intra-v_Gly_exp;
0 =v_3 -mu * (Y_CYS_X+Y_MET_X) / V_cell - mu * c_CYS;

//labeling dynamics

c_EMPUP * der(x_EMPUP1) = v_upt_S * x_S1 - (v_1 + v_4) * x_EMPUP1 - mu * Y_EMPup_X / V_cell
< * x_EMPUP1 - mu * c_EMPUP * x_EMPUP1;

c_SER * der(x_SER1) = 2 * v_1 * x_EMPUP1 - (v_2 + v_3) * x_SER1 - mu * (Y_SER_X+Y_TRP_X ) /
«— V_cell * x_SER1 - mu * c_SER * x_SER1;

c_GLY_intra * der(x_GLY1_intra) = v_2 * x_SER1 - mu * (Y_GLY_X+Y_IMP_X ) / V_cell *

« x_GLY1_intra - mu * c_GLY_intra * x_GLY1_intra-v_Gly_exp*x_GLY1_intra;

c_CYS * der(x_CYS1) = v_3 * x_SER1 - mu * (Y_CYS_X+Y_MET_X ) / V_cell * x_CYS1 - mu *
— ¢_CYS * x_CYS1;

annotation (experiment(StopTime =7));
end MPP_INST_vO;

Listing A2: Modelica code, i.e. model formulation, of reduced metabolic sub-network model vO0.
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A4.2 Modelica formulation of reduced sub-network model v1

within ;
model MPP_INST_vi_1

//makroskopic parameters

Real V(start = V_0, fixed=true); // [L]

Real c_X(start = c_X0, fixed=true); // [g_X/L]
Real c_SO(start = ¢_S0_0, fixed=true); // [mmol / L]
Real c_Si(start = 0, fixed=true); // [mmol / L]
Real c_S; // [mmol / L]
parameter Real c_S0_0 = 110.02; // [mmol / L]
// glucose labeling fractions

Real x_SO0; // [-]

Real x_S1; /7 [-]

// extracellular glycine
Real c_GlyO_extra(start=c_GlyO_extra_0, fixed=true); // [mmol / L]
Real c_Glyl_extra(start=c_Glyl_extra_0, fixed=true); // [mmol / L]

Real c_Gly_extra; // [mmol / L]

// total glycine balance

Real c_GLY_total; // [mmol / L]

Real x_GLY1_total; // [mmol / L]

// extracellular glycine labeling

Real x_GLY1_extra; // (-]

// feed parameters

Real F;

parameter Real tF = 5.896401709; // [h]

parameter Real dt = 3e-3; // [Rh]

parameter Real VF = 0.05/1000; // [mL] --> [L]

// biomass specific cell wolume

parameter Real V_cell = 1.93/1000; // [L_cell/g_X]
/// kinetic paramameters

Real mu;

parameter Real mu_max = 0.635; // [1/h]

parameter Real K_mu_S = 0.00041; // [mmol/L_cell]

parameter Real v_upt_S_max = 2266.59; // [mmol/L_cell/h]

parameter Real K_S = 0.00085; // [mmol/L_reactor]
// mass transport over cell boundaries

Real v_upt_S; // [mmol/L_cell/h]

Real v_Gly_exp; // [mmol/L_cell/h]

parameter Real k_scale_gly_exp=0.00625; // scaling glycine export rate to substrate import
— rate [-]

/// intracellular states

parameter Real c_EMPUP 0.774;
parameter Real c_PEP = 2.33;
parameter Real c_PYR = 9.43;
parameter Real c_SER = 4.807;
parameter Real c_GLY_intra = 10.07;
parameter Real c_CYS = 1.03;
parameter Real c_ALA=20.69;

parameter Real c_KIV = 0.136;
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parameter Real c_VAL =6.826;
parameter Real c_LEU =3.57;

// intracellular labeling fractions
Real x_EMPUP1(start = 0, fixed=true);
Real x_PEP1(start = 0, fixed=true);
Real x_PYRi1(start = 0, fixed=true);
Real x_SER1(start = 0, fixed=true);
Real x_GLY1_intra(start = 0, fixed=true);
Real x_CYSi(start = 0, fixed=true);
Real x_ALA1(start = 0, fixed=true);
Real x_KIVi(start 0, fixed=true);
//Real z_KIV11010(start = 0, fized=true);
//Real ©_KIV00101(start 0, fized=true);
Real x_VAL1(start = 0, fixed=true);
//Real z_VAL11010(start = 0, fized=true);
//Real z_VAL00101(start = 0, fized=true);
Real x_LEUXX111i(start = 0, fixed=true);

// intracellular fluzes
Real v_1;
Real v_2;
Real v_3;
Real v_4;
Real v_5;
Real v_6;
Real v_7;
Real v_8;
Real v_9;
Real v_10;

// biomass incorporation yield

// lumped yields for EMPUP
Real Y_EMPup_X;

parameter Real Y_G6P_X = 0.50877; // [mmol/g_X]
parameter Real Y_F6P_X = 0.1949; // [mmol/g_X]
parameter Real Y_GAP_X = 0.0676/2; // [mmol/g_X]
parameter Real Y_R5P_X = 0; // [mmol/g_X]
parameter Real Y_E4P_X = 0; // [mmol/g_X]
parameter Real Y_HIS_X = 0.066361905; // [mmol/g_X]
parameter Real Y_UMP_X = 0.086159479; // [mmol/g_X]
parameter Real Y_IMP_X = 0.10114561; // [mmol/g_X]
parameter Real Y_TRP_X = 0.027238; // [mmol/g_X]
parameter Real Y_TYR_X = 0.07671; // [mmol/g_X]
parameter Real Y_PHE_X = 0.126780952; // [mmol/g_X]
parameter Real Y_MET_X = 0.074780952; // [mmol/g_X]

// key metabolites
parameter Real Y_PEP_X = 0.0975; // [mmol/g_X]
parameter Real Y_PYR_X = 0; // [mmol/q_X]
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parameter Real Y_CYS_X = 0.0436; // [mmol/g_X]
parameter Real Y_SER_X = 0.2427; // [mmol/g_X]
parameter Real Y_GLY_X = 0.3491; // [mmol/g_X]

parameter Real
parameter Real

parameter Real

Y_ALA_X
Y_VAL_X
Y_LEU_X

1.146434349;
0.2704;
0.347657143;

// [mmol/g_X]
// [mmol/g_X]
// [mmol/g_X]

// initial values
//macroscopic
parameter Real V_0O= 800 / 1e6;
parameter Real c_X0 = 0.261;
parameter Real c_GlyO_extra_0 =1e-10;
parameter Real c_Glyl_extra_0 =le-10;
// [mmol/L_reactor]
// [mmol/L_pulse]

parameter Real c_SO_F = 0;
parameter Real c_S1_F = 86.4/180.15%1000;

equation
//Eztracellular mass balances
// FedBactch feed
//Substrate pulse
if (time >= tF) and (time < tF + dt) then

F = VF/dt;
else

F =0;
end if;

//prevent negative substrate concentration
if (c_SO0 <= 0) then
c_S0=0;
end if;
if (c_S1 <=0) then
c_S1=0;
end if;
der (V) = F;

// biomass
mu = mu_max * c_S / (K_mu_S + c_S);
der(c_X) = mu * c_X - F/V * c_X;

// substrate

v_upt_S = v_upt_S_max * c_S / (K_S + ¢_S8); //[mmol/L_cell/h]

der(c_S0) = F/V * c_SO_F - v_upt_S * V_cell * c_X * x_S0 - F/V x c_S0;
der(c_S1) = F/V * ¢c_S1_F - v_upt_S * V_cell * c_X * x_S1 - F/V * c_S1;
c_S = c_S0 + c_S1;

x_S0 = ¢_S0 / c_S;

x_S1 1 - x_S0;

// eztracellular glycine
v_Gly_exp=v_upt_S*k_scale_gly_exp ;
der(c_GlyO_extra)= v_Gly_exp*c_X*V_cell*(1-x_GLY1_intra)-F/V*c_GlyO_extra;
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der(c_Glyl_extra)= v_Gly_exp*c_X*V_cell*x_GLY1_intra-F/V+c_Glyl_extra;
c_Gly_extra = c_GlyO_extra + c_Glyl_extra;
x_GLY1_extra = c_Glyl_extra / c_Gly_extra;

//total glycine and labeling fractions
c_GLY_total = c_GLY_intraxc_X#V_cell+c_Gly_extra;
x_GLY1_total = (x_GLYl_intra*c_GLY_intra*c_X*V_cell+x_GLY1_extra*c_Gly_extra)/c_GLY_total;

//Intracellular balancing
// biomass composition EMPUP
Y_EMPup_X = Y_G6P_X + Y_F6P_X + Y_GAP_X + Y_R6P_X + Y_E4P_X+Y_HIS_X+Y_IMP_X+Y_UMP_X
— +Y_PHE_X+Y_TRP_X+Y_TYR_X;

// fluz Balance

=v_1l - 0.5 % (v_2+v_3+(Y_SER_X + Y_TRP_X ) /V_cell * mu + mu* c_SER);
=v_2 - (v_Gly_exp + (Y_GLY_X+Y_IMP_X)/V_cell * mu + mu * c_GLY_intra );
=v_3 - ((Y_CYS_X+Y_MET_X )/V_cell * mu + mu * c_CYS);

=v_4 - (v_upt_S - v_1 - Y_EMPup_X/V_cell * mu - mu * c_EMPUP);

=v_5 - (v_4 *2 - v_upt_S - mu * c_PEP - Y_PEP_X/V_cell * mu);

=v_6 - (Y_ALA_X/V_cell * mu + mu * c_ALA );

=v_7 -2 *(-v_6 + v_8 + v_9 + mu * c_KIV);

=v_8 - (v_6 + Y_VAL_X/V_cell * mu + mu * c_VAL);

=v_9 - (Y_LEU_X/V_cell * mu + mu * c_LEU);

v_10 - (v_upt_S + v_.5 - v_7 - v_6 - mu * c_PYR);

O O O O O O © O o o

//labeling dynamics

c_EMPUP * der(x_EMPUP1) = v_upt_S * x_S1 - (v_1 + v_4) * x_EMPUP1 - mu * Y_EMPup_X / V_cell *
— x_EMPUP1 - mu * c_EMPUP * x_EMPUP1;

c_SER * der(x_SER1) = 2 * v_1 * x_EMPUP1 - (v_2 + v_3) * x_SER1 - mu * (Y_SER_X+ Y_TRP_X ) /
<« V_cell * x_SER1 - mu * c_SER * x_SER1;

c_GLY_intra * der(x_GLY1_intra) = v_2 * x_SER1 - mu * (Y_GLY_X+Y_IMP_X) / V_cell =

— x_GLY1_intra - mu * c_GLY_intra * x_GLY1_intra-v_Gly_exp*x_GLY1_intra;

c_CYS * der(x_CYS1) = v_3 * x_SER1 - mu * (Y_CYS_X+Y_MET_X ) / V_cell * x_CYS1 - mu *
— ¢_CYS * x_CYS1;
c_PEP * der(x_PEP1) = 2 % v_4 * x_EMPUP1 - (v_upt_S + v_5)* x_PEP1 - Y_PEP_X/V_cell * mu

<« % x_PEP1 - mu * c_PEP * x_PEP1;

c_PYR * der(x_PYR1) (v_upt_S + v_5) * x_PEP1 - (v_7 + v_6 + v_10)* x_PYR1 - mu * c_PYR
«— * x_PYR1;

c_ALA * der(x_ALA1)

v_6 * x_PYR1 - Y_ALA_X/V_cell * mu * x_ALAl - mu * c_ALA * x_ALA1;

c_KIV * der(x_KIV1) = v_7/2 * x_PYR1"2 + v_6 * x_VAL1 - (v_8 + v_9) * x_KIV1l - mu *
— c_KIV * x_KIV1;
c_VAL * der(x_VAL1) =v_8 * x_KIV1l - v_6 * x_VAL1 - Y_VAL_X/V_cell * mu * x_VAL1 - mu *

<« c_VAL * x_VAL1;
c_LEU * der(x_LEUXX1111)
— x_LEUXX1111;

v_9 * x_KIV1i- Y_LEU_X/V_cell * mu * x_LEUXX1111 - mu * c_LEU *

annotation (experiment(StopTime =7));
end MPP_INST_vi1_1;

Listing A3: Modelica code, i.e. model formulation, of reduced metabolic sub-network model v1.
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A5 Benchmarking the MCMC pipeline versus estim8
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Figure A6: Benchmarking the MCMC pipeline for bioprocess modelling against estim8 in terms of required
virtual memory size (VMS) and simulation time.

A6 Full results of the ethanol '3C-INST MFA with C. glutamicum
WT_EtOH-Evo

The following figures [A7| and [A8| depict the simulated vs. measured mass traces. The full results
of the flux and pool size estimations including 95 % Col are exhibited in the separate tables
and[A2] respectively.

The optimization procedure to solve the inverse problem and obtain the presented flux distribution
included the mass traces for Met as raw data but since the model simulation predicted a much
more significant labeling enrichment for the M1_m1 mass trace, a workaround was applied. The
M1_m1 and M2_m1 mass traces were lumped which has been emphasized in [A8| by plotting this
joint curve in a separate diagram where it is labeled as "M+1" referring to the increased mass of
the product ion. All remaining mass traces have been plotted in the diagram to its left and are
labeled according to their mass trace.
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Figure A7: Simulated vs. measured mass traces obtained during the optimization procedure for the INST
13C-MFA with C. glutamicum WT_EtOH-Evo using a 1-'3C ethanol tracer. The points pertain to the exper-
imental measurements in biological triplicates and the dashed lines to the simulations. Portrayed are from
left to right and top to bottom L-serine, L-glycine, L-alanine, L-valine, L-histidine, L-aspartate, L-homoserine,
and L-threonine.
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Figure A8: Simulated vs. measured mass traces obtained during the optimization procedure for the INST
13C-MFA with C. glutamicum WT_EtOH-Evo using a 1-'3C ethanol tracer. The points pertain to the exper-
imental measurements in biological triplicates and the dashed lines to the simulations. Portrayed are from
left to right and top to bottom L-methionine, L-lysine, L-isoleucine, L-glutamine, L-glutamate, L-proline, and
L-citrulline.
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Figure [A9 compares the label incorporation of C. glutamicum WT_ETH-evo and the WT in order
to make a qualitative statement about the likely pathways usage with regards to the TCA cycle.
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Figure A9: Label incorporation into Glu of C. glutamicum WT_ETH-evo (line) and the WT (dashed line)
grown on unlabeled ethanol and spiked with 1-'3C ethanol during the mid-exponential growth phase. The
dynamic is comparable but the WT exhibits a slight offset indicating a faster incorporation of labeled carbon
atoms.
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Table A1: List of maximum likelihood estimators of absolute and relative flux values as well as lower and
upper bounds of the 95% Cols from the ethanol "*C-INST MFA with C. glutamicum WT_EtOH-Evo. Ab-
solute values are given in mmol gy h' and relative values in % of the total ethanol uptake rate. The ".n"
suffix denominates net fluxes and ".x" exchange fluxes. "EtOH_U" refers to unlabeled ethanol and "EtOH"
to 1-13C ethanol.

reaction MLE (abs) 95% Collb  95% Colub || MLE (rel) 95% Collb  95% Col ub
CS.n 3.076 3.055 3.111 48.38 48.05 48.93
ENO.n -1.239 -1.261 -1.217 -19.49 -19.82 -19.14
ENO.x 5.230 4.083 6.803 82.24 64.21 106.98
FBA.n -0.835 -0.858 -0.811 -13.13 -13.50 -12.76
FBA.X 37.078 5.205 99.939 583.04 81.85 1571.53
Fum.n 2.898 2.872 2.935 45.56 45.16 46.16
Fum.x 36.340 21.470 99.938 571.44 337.62 1571.52
GAPDH.n -1.077 -1.099 -1.055 -16.94 -17.28 -16.59
GAPDH.x 38.645 26.304 66.087 607.69 413.63 1039.21
ICD.n 0.752 0.730 0.775 11.83 11.49 12.18
ICL.n 2.324 2.303 2.346 36.54 36.21 36.89
ICL.x 0.000 0.000 0.061 0.00 0.00 0.95
MALS.n 2.324 2.303 2.346 36.54 36.21 36.89
MALS.x 0.003 0.001 0.177 0.04 0.01 2.79
ME.n -1.856 -3.624 0.130 -29.18 -56.98 2.04
ME.x 0.001 0.001 0.099 0.01 0.01 1.56
MQO_MDH.n 3.366 1.585 5.351 52.93 24.93 84.14
MQO_MDH.x 49.737 33.903 99.902 782.12 533.12 1570.95
ODHC.n 0.497 0.476 0.519 7.82 7.48 8.17
PCx_ODX.n -1.720 -1.822 -1.630 -27.05 -28.66 -25.63
PCx_ODX.x 0.001 0.001 0.094 0.01 0.01 1.47
PDHC.n -0.057 -0.080 -0.036 -0.90 -1.25 -0.56
PDHC.x 0.000 0.000 0.021 0.00 0.00 0.33
PEPCK_PEPCx.n -1.755 -1.856 -1.664 -27.59 -29.19 -26.17
PEPCk_PEPCx.x 0.010 0.001 0.104 0.15 0.01 1.64
PFK.n -0.835 -0.857 -0.813 -13.13 -13.47 -12.78
PFK.x 21.058 0.993 99.923 331.13 15.61 1571.28
PGD.n 1.945 1.877 2.010 30.58 29.52 31.61
PGl.n 2.043 1.975 2.108 32.12 31.06 33.15
PGl.x 12.903 0.001 99.915 202.90 0.01 1571.16
PK_PPS.n -3.102 -3.204 -3.011 -48.78 -50.38 -47.35
PK_PPS.x 0.610 0.422 0.904 9.59 6.64 14.22
PTA.n 6.418 6.418 6.474 100.93 100.93 101.81
RPE.n 1.245 1.200 1.289 19.58 18.88 20.27
RPE.x 10.205 0.001 99.912 160.48 0.01 1571.11
RPLn 0.699 0.677 0.721 10.99 10.65 11.34
RPI.x 7.787 0.001 99.910 122.44 0.01 1571.08
SCS__1.n 0.214 0.203 0.225 3.37 3.20 3.54
SCS__1.x 0.152 0.136 0.170 2.39 2.14 2.68
SCS_2.n 0.214 0.203 0.225 3.37 3.20 3.54
SCS__2.x 0.152 0.136 0.170 2.39 2.14 2.68
SQO.n 2.821 2.795 2.859 44.36 43.96 44.95
SQO.x 38.998 22.336 99.940 613.24 351.24 1571.56
TAL.n 0.645 0.622 0.668 10.14 9.77 10.51
TAL.x 33.167 0.001 99.935 521.54 0.01 1571.47
TKT1.n 0.645 0.623 0.667 10.14 9.79 10.48
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reaction MLE (abs) 95%Collb 95% Colub [[ MLE (rel) 95%Collb 95% Col ub

TKT1.x 23.761 0.001 99.926 373.65 0.01 1571.32
TKT2.n 0.600 0.578 0.622 9.44 9.09 9.79

TKT2.x 40.785 0.001 99.942 641.34 0.01 1571.58
TPL.n -0.835 -0.857 -0.813 -13.13 -13.47 -12.78

TPLx 41.337 5.712 99.943 650.03 89.82 1571.59
bmACCOA.n 0.835 0.835 0.844 13.13 13.13 13.27
bmALA.n 0.221 0.221 0.223 3.48 3.48 3.51
bmAMP.n 0.008 0.008 0.008 0.13 0.13 0.13
bmARG.n 0.036 0.036 0.036 0.57 0.57 0.57
bmASN.n 0.037 0.037 0.037 0.58 0.58 0.58
bmASP.n 0.037 0.037 0.037 0.58 0.58 0.58
bmCMP.n 0.008 0.008 0.008 0.13 0.13 0.13
bmCYS.n 0.008 0.008 0.008 0.13 0.13 0.13
bmDAP.n 0.019 0.019 0.019 0.30 0.30 0.30
bmF6P.n 0.038 0.038 0.038 0.59 0.59 0.59
bmG6P.n 0.098 0.098 0.099 1.54 1.54 1.55
bmGAP.n 0.013 0.013 0.013 0.21 0.21 0.21
bmGLN.n 0.065 0.065 0.065 1.03 1.03 1.03
bmGLU.n 0.124 0.124 0.124 1.94 1.94 1.96
bmGLY.n 0.067 0.067 0.067 1.06 1.06 1.06
bmGMP.n 0.011 0.011 0.011 0.18 0.18 0.18
bmHIS.n 0.013 0.013 0.013 0.20 0.20 0.20
bmlLE.n 0.036 0.036 0.036 0.57 0.57 0.57
bmLEU.n 0.067 0.067 0.067 1.06 1.06 1.06
bmLYS.n 0.036 0.036 0.036 0.56 0.56 0.56
bmMET.n 0.014 0.014 0.014 0.23 0.23 0.23
bmPEP.n 0.019 0.019 0.019 0.30 0.30 0.30
bmPHE.n 0.024 0.024 0.024 0.38 0.38 0.38
bmPRO.n 0.030 0.030 0.030 0.48 0.48 0.48
bmSER.n 0.047 0.047 0.047 0.74 0.74 0.74
bmTHR.n 0.052 0.052 0.052 0.82 0.82 0.82
bmTRP.n 0.005 0.005 0.005 0.08 0.08 0.08
bmTYR.n 0.015 0.015 0.015 0.23 0.23 0.23
bmUMP.n 0.008 0.008 0.008 0.13 0.13 0.13
bmVAL.n 0.052 0.052 0.052 0.82 0.82 0.82
bsAICAR__1.n 0.010 0.010 0.010 0.15 0.15 0.15
bsAICAR__2.n 0.010 0.010 0.010 0.15 0.15 0.15
bsALA.n 0.221 0.221 0.223 3.48 3.48 3.51
bsAMP___1.n 0.010 0.010 0.010 0.16 0.16 0.16
bsAMP__ 2.n 0.010 0.010 0.010 0.16 0.16 0.16
bsARG___1.n 0.018 0.018 0.018 0.28 0.28 0.28
bsARG__ 2.n 0.018 0.018 0.018 0.28 0.28 0.28
bsASN.n 0.037 0.037 0.037 0.58 0.58 0.58
bsASP.n 0.324 0.324 0.329 5.10 5.10 5.17
bsCHOR.n 0.045 0.045 0.045 0.70 0.70 0.70
bsCITR.n 0.036 0.036 0.036 0.57 0.57 0.57
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reaction MLE (abs) 95%Collb 95% Colub || MLE (rel) 95%Collb 95% Col ub
bsCMP.n 0.008 0.008 0.008 0.13 0.13 0.13
bsCYS.n 0.023 0.023 0.023 0.36 0.36 0.36
bsDAP__1.n 0.014 0.014 0.014 0.21 0.21 0.21
bsDAP__ 2.n 0.014 0.014 0.014 0.21 0.21 0.21
bsDAP___3.n 0.014 0.014 0.014 0.21 0.21 0.21
bsDAP__4.n 0.014 0.014 0.014 0.21 0.21 0.21
bsFAICAR.n 0.032 0.032 0.032 0.51 0.51 0.51
bsFGAM.n 0.020 0.020 0.020 0.31 0.31 0.31
bsGAR.n 0.020 0.020 0.020 0.31 0.31 0.31
bsGLN.n 0.245 0.245 0.247 3.85 3.85 3.89
bsGLU.n 1.248 1.248 1.266 19.63 19.63 19.91
bsGLY.n 0.087 0.087 0.087 1.37 1.37 1.38
bsGMP.n 0.011 0.011 0.011 0.18 0.18 0.18
bsHIS.n 0.013 0.013 0.013 0.20 0.20 0.20
bsHOM.n 0.103 0.103 0.103 1.61 161 1.62
bsl1.n 0.005 0.005 0.005 0.08 0.08 0.08
bsl2.n 0.005 0.005 0.005 0.08 0.08 0.08
bslAP.n 0.013 0.013 0.013 0.20 0.20 0.20
bsILE.n 0.036 0.036 0.036 0.57 0.57 0.57
bsIMP.n 0.032 0.032 0.032 0.51 0.51 0.51
bsIND.n 0.005 0.005 0.005 0.08 0.08 0.08
bsKIV.n 0.119 0.119 0.121 1.88 1.88 1.90
bsLEU.n 0.067 0.067 0.067 1.06 1.06 1.06
bsLYS.n 0.036 0.036 0.036 0.56 0.56 0.56
bsMET.n 0.014 0.014 0.014 0.23 0.23 0.23
bsNCLA.n 0.017 0.017 0.017 0.26 0.26 0.26
bsORN.n 0.036 0.036 0.036 0.57 0.57 0.57
bsORO.n 0.017 0.017 0.017 0.26 0.26 0.26
bsPHEo.n 0.024 0.024 0.024 0.38 0.38 0.38
bsPRA.n 0.013 0.013 0.013 0.20 0.20 0.20
bsPRE.n 0.039 0.039 0.039 0.62 0.62 0.62
bsPRO.n 0.030 0.030 0.030 0.48 0.48 0.48
bsSER.n 0.162 0.162 0.163 2.55 2.55 2.57
bsSHKM.n 0.045 0.045 0.045 0.70 0.70 0.71
bsTHR.n 0.088 0.088 0.089 1.39 1.39 1.39
bsTRP.n 0.005 0.005 0.005 0.08 0.08 0.08
bsTYR.n 0.015 0.015 0.015 0.23 0.23 0.23
bsUMP.n 0.017 0.017 0.017 0.26 0.26 0.26
bsVAL.n 0.274 0.274 0.276 4.30 4.30 4.34
dummy.n 0.193 0.193 0.195 3.04 3.04 3.06
effTHF.n 0.021 0.021 0.021 0.32 0.32 0.32
excC02.n 5.205 5.138 5.305 81.85 80.80 83.43
feedEtOH.n 4.353 4.311 4.393 68.45 67.78 69.08
feedEtOH_U.n 2.006 1.950 2.063 31.55 30.67 32.44
mu.n 0.193 0.193 0.195 3.04 3.04 3.06




A6 Full results of the ethanol "*C-INST MFA with C. glutamicum WT_EtOH-Evo

Table A2: List of maximum likelihood estimators of pool sizes with lower and upper bounds of the 95 % Cols
from the ethanol '*C-INST MFA with C. glutamicum WT_EtOH-Evo. All values were originally determined
in mmol gy and converted to mM via the cellular volume of 0.00193 Leg gx ™' [49, [164].

name MLE/mmol/g X 95%Collb 95%Colub | MLE/mM 95% Collb  95% Col ub
ACCOA 0.001 0.001 0.002 0.52 0.52 0.90
ACE 0.001 0.001 0.002 0.58 0.58 0.96
AICAR 0.014 0.002 0.749 7.23 0.94 388.23
AKG 0.001 0.001 0.001 0.52 0.52 0.52
ALA 0.023 0.021 0.026 12.03 10.95 13.50
AMP 0.096 0.002 0.749 49.91 0.90 388.27
ARG 0.032 0.002 0.749 16.36 1.01 388.24
ASN 0.013 0.002 0.749 6.76 0.91 388.23
ASP 0.004 0.004 0.004 1.88 1.88 1.88
CHOR 0.014 0.002 0.749 7.26 0.94 388.23
CITR 0.006 0.006 0.006 3.04 3.04 3.04
CIT_ICIT 0.001 0.001 0.002 0.52 0.52 0.90
CMP 0.065 0.002 0.749 33.48 1.03 388.25
Cc0o2 0.750 0.706 0.750 388.50 365.77 388.50
CYS 0.046 0.002 0.749 24.03 0.89 388.25
DAP 0.054 0.047 0.064 27.96 24.10 33.24
DHAP 0.315 0.002 0.749 163.14 0.84 388.16
E4P 0.711 0.002 0.749 368.37 0.88 388.28
F6P 0.729 0.002 0.749 377.78 0.89 388.26
FAICAR 0.016 0.002 0.749 8.51 1.02 388.23
FBP 0.732 0.002 0.749 379.21 0.89 388.31
FGAM 0.031 0.002 0.749 15.87 1.00 388.24
FUM 0.001 0.001 0.002 0.52 0.52 1.28
G6P 0.735 0.002 0.749 380.68 0.89 388.11
GA3P 0.666 0.002 0.749 345.08 0.85 388.26
GAR 0.070 0.002 0.749 36.39 0.80 388.26
GLN 0.037 0.034 0.039 18.98 17.83 20.43
GLU 0.069 0.067 0.073 35.97 34.58 37.69
GLX 0.051 0.041 0.064 26.47 21.20 33.19
GLY 0.001 0.001 0.005 0.52 0.52 2.42
GMP 0.092 0.002 0.749 47.69 0.89 388.27
HIS 0.001 0.001 0.003 0.52 0.52 1.66
HSER 0.002 0.002 0.002 1.28 1.28 1.28
11 0.048 0.002 0.749 25.07 0.90 388.25
12 0.010 0.002 0.749 5.02 0.80 388.23
IAP 0.001 0.001 0.003 0.52 0.52 1.66
ILE 0.017 0.016 0.019 8.68 8.17 9.79
IMP 0.033 0.002 0.749 16.97 1.03 388.24
IND 0.007 0.002 0.749 3.75 0.92 388.23
KIvV 0.001 0.001 0.005 0.52 0.52 2.42
LEU 0.064 0.002 0.749 33.08 1.03 388.25
LYS 0.001 0.001 0.002 0.52 0.52 0.90
MAL 0.001 0.001 0.002 0.52 0.52 1.28
MET 0.001 0.001 0.001 0.52 0.52 0.52
NCLA 0.057 0.002 0.749 29.55 0.97 388.25
OAA 0.001 0.001 0.002 0.52 0.52 1.28
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name MLE/mmol/g X 95%Collb 95%Colub || MLE/mM 95% Collb  95% Col ub
ORN 0.001 0.001 0.001 0.52 0.52 0.52
ORO 0.028 0.002 0.749 14.26 0.95 388.24
PEP 0.590 0.402 0.749 305.95 208.12 388.28
PGP 0.009 0.002 0.586 4.92 0.79 303.55
PHE 0.051 0.002 0.749 26.49 0.92 388.25
PRA 0.001 0.001 0.003 0.52 0.52 1.66
PRE 0.074 0.002 0.749 38.21 0.81 388.26
PRO 0.038 0.035 0.042 19.71 18.21 21.51
PYR 0.001 0.001 0.005 0.53 0.53 2.42
R5P 0.090 0.002 0.749 46.83 0.88 388.27
RU5P 0.726 0.002 0.749 376.18 0.88 388.21
S7P 0.009 0.002 0.749 4.90 0.79 388.23
SER 0.001 0.001 0.008 0.53 0.53 3.94
SHKM 0.107 0.002 0.749 55.41 0.95 388.28
Suc 0.001 0.001 0.002 0.52 0.52 1.28
SUCCOA 0.001 0.001 0.001 0.52 0.52 0.52
THF 0.020 0.002 0.749 10.30 0.82 388.23
THR 0.002 0.002 0.002 0.91 0.91 0.91
TRP 0.030 0.002 0.749 15.65 0.99 388.24
TYR 0.020 0.002 0.749 10.57 0.83 388.23
UMP 0.017 0.002 0.749 8.91 0.78 388.23
VAL 0.004 0.004 0.005 1.97 1.97 2.35
XU5P 0.722 0.002 0.749 374.25 0.88 388.15
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