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A B S T R A C T

The combination of extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy 
(CRRT) pose complex hemodynamic challenges in intensive care. In this study, a comprehensive lumped 
parameter model (LPM) is developed to simulate the cardiovascular system, incorporating ECMO and CRRT 
circuit dynamics. A parameter identification framework based on global sensitivity analysis (GSA) and multi- 
start gradient-based optimization was developed and tested on 30 clinical data points from eight veno-arterial 
ECMO patients. To demonstrate feasibility, the model is used to analyze nine CRRT-ECMO connection 
schemes under varying flow conditions for a single patient.

Our results indicate that CRRT has a notable impact on the cardiovascular system, with changes in pulmonary 
artery pressure of up to 203 %, highly dependent on ECMO flow. The GSA enabled the systematic and agnostic 
identification of a subset of model parameters used in the calibration process. The established parameter esti
mation framework is fast and robust, as no manual tuning of algorithm parameters is required, and achieves high 
correlations between simulation and experimental data with R2 

> 0.98. It uses modeling methods that could pave 
the way for real-time applications in intensive care.

This open-source framework provides a valuable tool for the systematic evaluation of combined ECMO and 
CRRT, which can be used to develop standardized treatment protocols and improve patient outcomes in critical 
care. This model provides a good basis for addressing research questions related to mechanical circulatory and 
respiratory support and presents tools to help move towards a digital twin in healthcare.

1. Introduction

Extracorporeal membrane oxygenation (ECMO) is frequently used in 
intensive care medicine to treat cardiac and/or respiratory failure. It is 
used to partially or fully support heart/lung function in the sense of a 
“bridge to transplantation” or “bridge to recovery” [1]. An ECMO circuit 
consists of a pump, an oxygenator, and cannulae to drain and return 
oxygenated and decarboxylated blood. However, up to 70 % of patients 
develop an acute kidney injury during ECMO which can be attributed to 
the so-called lung-kidney crosstalk and the often reported fluid overload 

[2–5]. Additional continuous renal replacement therapy (CRRT) is 
therefore essential, but is also associated with higher morbidity and 
mortality [6–9].

The combined support of the lungs and kidneys can be realized in an 
integrated or separate manner. The separate approach requires a sepa
rate vascular access for each device [7,10–12]. This leads to a higher 
level of circuit complexity with an increased technical workload [13] 
and a significantly larger artificial surface area, as well as circulatory 
complications such as bleeding [14], thrombus formation, and infection 
[15], resulting in significantly higher healthcare costs [16,17]. In the 
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integrated approach, CRRT is connected directly to the ECMO circuit. 
This presents challenges in controlling circuit pressure, which can lead 
to treatment interruptions, air entrapment, flow interruptions, and he
molysis [18,19]. This combined therapy still lacks a gold standard and 
its connection configuration varies depending on the operator’s practice 
and proficiency. In total, there are nine different possibilities for con
necting the CRRT circuit to the ECMO circuit (depicted in Fig. 2), which, 
together with the different cannula sizes, result in a wide variety of 
combinations.

In the context of the integrated approach, Wang et al. investigated 
the effect of different CRRT connection schemes on the pressures in the 
access and return lines of the CRRT circuit [20]. In-vitro experiments 
comparing six commonly used schemes showed significant pressure 
differences. In addition, a retrospective analysis of ten patients (seven 
veno-arterial ECMO (V-A ECMO), three veno-venous ECMO (V-V 
ECMO)) showed that changing the connection scheme can significantly 
reduce both access and return pressures. Wu et al. conducted a 
retrospective study with 100 patients who received a combined ECMO 
and CRRT therapy [21]. The patients were divided into groups 
receiving separate and integrated support. The results showed that the 
separate group had a significantly longer CRRT initiation time and a 
shorter filter lifetime. In addition, local bleeding was observed in 
approximately 90 % of patients in the separate group. While both 
studies highlight the advantages of the integrated approach for con
necting CRRT to ECMO, the literature still lacks a systematic com
parison of commonly used connection schemes under realistic patient 
conditions.

Lumped parameter models (LPM) offer a simplified approach to 
modeling the human cardiovascular system and the analysis of ECMO 
hemodynamics. These models, analogous to electrical circuits, use or
dinary differential equations (ODE) based on the conservation of mass 
and momentum [22]. Various LPMs exist, with the most prominent ones 
being those developed by Arts et al. and Shi et al., which address 
different aspects of cardiovascular dynamics [23,24]. While models by 
Broomé et al. and Joyce et al. have investigated ECMO therapy, they 
have neglected to consider the dynamics of the ECMO circuit. Instead, 
they have focused on factors such as recirculation and gas exchange 
[25–31]. More sophisticated models, such as those developed by Fre
siello et al. and Lazzari et al., integrate pump and cannula dynamics and 
serve as training tools, with a particular focus on usability through a 
graphical user interface rather than on the performance of the code [32,
33]. The majority of the models presented are not open-source or lack 
automated and robust parameter identification, which limits their us
ability for other research questions and their application in clinical de
cision support. The latter requires models that are based on 
patient-specific data and support real-time recalibration without the 
need for extensive user interaction or in-depth user knowledge, in line 
with the concept of digital twins defined by Viceconti et al. [34]. To 
date, there is no such model that includes both ECMO and CRRT 
therapy.

In contrast, numerous studies have addressed the topic of parameter 
identification for more general cardiovascular models. Local optimiza
tion algorithms, such as trust-region-reflective methods [35,36] or 
Levenberg-Marquardt algorithms [37], are commonly used, but are 
highly dependent on the selected initial parameter values. In this 
context, the use of multi-start algorithms can provide guidance in 
finding a global optimum. The computation of gradients, which is 
typically performed by numerical differentiation, can result in inaccu
rate parameter estimation and numerical instability. Furthermore, this 
approach is known to be computationally expensive [38]. Automatic 
differentiation (AD) offers a faster and more stable alternative [38–42]. 
Global optimization techniques, such as the genetic algorithm, can also 
be utilized to identify a global optimum [43]. More sophisticated tech
niques, such as the unscented Kalman filter, can continuously update 
parameters in response to new measurements and are robust for dy
namic, nonlinear systems [41,44–47].

As cardiovascular models often consist of a high number of param
eters, estimating their parameters often suffers from parameter identi
fiability and high computational cost. In this regard, the selection of 
parameter subsets by ranking the influence of parameters by using 
global sensitivity analysis (GSA) and quantifying their independence of 
the effect on model outputs, also called parameter orthogonality, has 
been demonstrated to enhance the robustness and accuracy of parameter 
estimation [36–39,41,42,48,49].

Taken together, the combination of CRRT and ECMO therapy pre
sents unanswered questions regarding optimal connection schemes and 
their impact on hemodynamics. LPMs appear to be a powerful tool for 
analyzing this problem, as they can provide measurements that are 
otherwise not available or very difficult to obtain in clinical practice. 
However, challenges remain in achieving robust and systematic 
parameter identification. Overcoming these challenges is essential to 
improve the accuracy and applicability of these models in clinical de
cision support.

The aim of this study is to develop a cardiovascular model that in
cludes both the detailed ECMO and CRRT system and allows an arbitrary 
connection of both systems. A framework for fast parameter identifica
tion based on multi-start gradient-based optimization will be linked to 
this model, which will be benchmarked on a number of V-A ECMO pa
tients. Parameter selection will be based on Sobol indices from a GSA. To 
demonstrate the feasibility of this modeling framework, a comprehen
sive analysis of combined ECMO and CRRT therapy will be performed 
for a single patient by investigating the impact of different CRRT 
connection schemes on patient and circuit dynamics at different ECMO 
flows.

2. Materials and methods

2.1. Patient data

The clinical data set includes eight patients (five male, aged 36–61 
years; three female, aged 32–76 years) treated with V-A ECMO, each 
with up to four measurements, resulting in a total of 30 data points. It 
includes 13 data points from male and 17 from female patients. These 
patients suffered from cardiogenic shock, cardiomyopathy, or received a 
heart or lung transplant. The measured hemodynamic parameters, along 
with their respective median, minimum and maximum values, are pre
sented in Table 1. The data set covers a wide range of clinically relevant 
operating points of ECMO therapy, including pump flows between 1 and 
4 L/min. It comprises patients with both hypotension (MAP <65 mmHg) 
and hypertension (MAP >92 mmHg), as well as patients with a normal 
MAP.

2.2. Cardiovascular model

The model is inspired by the work of Shi et al. [24] and consists of the 
heart, systemic and pulmonary circulation, as shown in Fig. 1. The heart 
is modeled as four chambers with variable elasticity. The 

Table 1 
Measured hemodynamic parameters for 30 data points from eight V-A ECMO 
patients.

Parameter Median (Min, Max)

Systolic pressure (SP) 111.0 (70.0 , 183.0) 
mmHg

Diastolic pressure (DP) 69.5 (42.0 , 88.0) mmHg
Mean arterial pressure (MAP) 79.0 (55.0 , 113.0) 

mmHg
Mean pulmonary artery pressure (MPAP) 19.5 (6.0 , 30.0) mmHg
Pulmonary capillary wedge pressure 

(PCWP)
11.0 (7.0 , 15.0) mmHg

Cardiac output (CO) 3.4 (1.5 , 7.5) L/min
Pump flow (PF) 2.5 (1.2 , 3.8) mmHg
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Fig. 1. Overview of the lumped parameter model. Cardiovascular system inspired by Shi et al. [24].

Fig. 2. Variations of CRRT connections to the ECMO circuit in CRRT-flow direction: a) post pump – pre oxygenator (pre oxy), b) pre oxy – pre pump, c) post oxy – pre 
pump, d) post oxy – pre return cannula (pre RC), e) pre oxy – pre RC, f) pre oxy – post oxy, g) post oxy – pre oxy, h) pre pump – post drainage cannula (post DC), i) 
post pump – pre pump. Of note: position of tubing e.g. between pump and oxygenator (compare (b) and (i)) is also taken into account by making a distinction 
between post pump and pre oxy.

J.-N. Thiel et al.                                                                                                                                                                                                                                 
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piecewise-defined cosine activation function and elastance function for 
the atria are based on the model developed by Shi et al. [24]. These 
formulations contain the systolic and diastolic elastance of the left 
(Emaxla, Edla) and right atrium (Emaxra, Edra). For the ventricles, the 
elastance function was extended by an additional nonlinear term to 
account for a nonlinear diastolic elastance, which captures the effects of 
diastolic stretching of the ventricular wall [50], see equation (1): 

pj =Vj*ev*Emaxj +(1 − ev)*
(
αj*eκj*Vj + βj

)
,with j= LV or RV (1) 

The relationship between the ventricular pressure pj and volume Vj is 
described by the activation function ev from Shi et al. [24], the systolic 
elastance Emaxj of the respective ventricle, as well as the parameters αj 

and βj, representing the intercept and asymptotic pressure, and the 
stiffness coefficient κj. The heart valves, namely the tricuspid (TV), 
pulmonary (PV), mitral (MV), and aortic (AV) valves, have a diodic 
pressure drop quadratically dependent on the flow to control the di
rection of blood flow. Both the systemic and pulmonary circulation are 
divided into aortic sinus, artery, arteriole, capillary, and venous seg
ments. Large vessels such as the aortic sinus and artery are highly elastic, 
and their flow is inherently pulsatile. Therefore, they are modeled with 
resistance, compliance, and inertance (RCL) elements, where resistance 
R accounts for frictional losses, compliance C for elasticity, and iner
tance L for blood inertia. Smaller arterioles and capillaries are mainly 
dominated by resistance effects, while veins have the function of col
lecting and storing blood and therefore also have compliance effects. 
The compartments of the cardiovascular system are abbreviated as fol
lows: pas: pulmonary aortic sinus, part: pulmonary artery, pmc: pul
monary microcirculation, pvn: pulmonary vein, ao: aorta, sart: systemic 
artery, smc: systemic microcirculation, svn: systemic vein.

In our model, circuits for mechanical circulatory support such as 
ECMO and left ventricular assist devices (LVAD) can be connected to any 
compartment of the patient’s cardiovascular system, allowing different 
V-A and V-V ECMO configurations and different modes of LVAD support 
to be studied. Additionally, the model allows CRRT to be connected to 
the ECMO circuit in many different configurations. ECMO cannulas are 
modeled using a resistance based on data sheets of established Getinge 
products while taking compliance effects into account. The tubes are 
modeled with RCL elements similar to Lazzari et al. [33] and Fresiello 
et al. [32] and their resistance is approximated by the Hagen-Poiseuille 
law assuming a laminar flow regime.

The ECMO pump is implemented using the analytical equations for 
rotary blood pumps (RBP) by Boes et al. [51], see equation (2): 

H= an2 − R1nQ − R2Q2 − L
dQ
dt

+

{ 0, Q > qinf
R

rec(Q− qinf)
2
,

Q ≤ qinf
(2) 

This equation describes the relationship between pump head H and 
flow Q at a given pump speed n. In this model, the constants a, R1, and R2 

represent terms that account for the pressure head, which includes both 
friction and incidence losses in the pump. The parameter L is the fluid 
inertia, which captures dynamic changes in pressure head. The term Rrec 

models part-load recirculation within the blade channels, with the in
flection flow rate qinf being a specific threshold for each pump, at which 
the slope of the H-Q curve changes. Given this implementation, theo
retically any RBP can be integrated into the LPM without having to 
change anything in the code. For this study, the parameters of this 
equation were adapted to the two blood pumps Rotaflow RF-32 
(Getinge/Maquet Cardiopulmonary GmbH, Germany) and DP3 (Frese
nius Medical Care AG, Germany). The roller pumps are modeled by 
specifying a constant flow rate. The oxygenator and dialysis filter were 
modeled as RC elements, and their parameters were derived from the 
data sheets for Quadrox-i Adult and Small Adult (Getinge/Maquet Car
diopulmonary GmbH, Germany), Nautilus MC3 (MC3 Cardiopulmonary, 
USA) and Prismaflex M180 (Baxter International Inc., USA). This was 
done under the assumption of a linear relationship between pressure 
drop and flow.

The model compartments were initialized with physiological pres
sures representative of a healthy patient and a flow of zero. The model 
was implemented in Python using JAX with the possibility of just-in-time 
compilation and automatic differentiation. Therefore, all implemented 
functions are smooth, either inherently or by using techniques such as a 
smoothed Heaviside function. This ensures that the model is fully 
differentiable. The ODE system was solved using an 8th-order Runge- 
Kutta method, known as the Dormand Prince algorithm, which is 
implemented in the Diffrax package. An adaptive time step sizing 
approach was employed, with an initial time step size of 0.0005 s. The 
simulation time was set to 50 s to achieve cycle convergence. Only the 
last two cycles were evaluated.

We provide the full Python code with all described modules and 
parameter values at the GitHub link https://github.com/nikithiel/ 
ECLIPSE. All parameter values and abbreviations used can also be 
found in Tables S-1, S-2, S-3, S-4 and S-5 in the Appendix.

2.3. Global sensitivity analysis

The influence of the model parameters on the model outputs and 
their interactions between each other were quantified using the Sobol 
method [52], which is implemented in the SALib package. Such 
variance-based Global sensitivity analysis aims to quantify the effect of 
variances in the input parameters on the output parameters. By sys
tematically perturbing inputs within defined ranges, the resulting effects 
on outputs allow the identification of key parameters among the model 
parameters shown in Figs. 1 and 3. The first-order Sobol index Si 
quantifies the main effect of each input parameter xi on the output y, 
independent of other input parameters, and is calculated in equation (3)
as 

Si =
Vi

Var(y)
=

Varxi

(
Ex∼i (y|xi)

)

Var(y)
(3) 

where Var(y) is the total variance of y, and Varxi (Ex∼i (y|xi)) is the vari
ance of the expected output given xi. Ex∼i (y|xi) represents the expecta
tion of y over all inputs except xi. The total-order index ST,i reflects the 
overall effect of each input, including both direct effects and interactions 
in equation (4): 

ST,i =1 −
Varx∼i

(
Ex∼i (y|x∼i)

)

Var(y)
=

Ex∼i

(
Varx∼i (y|x∼i)

)

Var(y)
(4) 

Here, ST,i represents the cumulative effect of each parameter, 
including all higher-order interactions with other variables [53]. In this 
case, the conditional probability Ex∼i (y|x∼i) is calculated over the entire 
input space, excluding the i-th input parameter. Higher values of S 
indicate a greater influence of the corresponding input on the output. A 
perturbation of 25 % was applied to the initial values of the parameters 
and sampling was performed by Saltelli’s extension of the Sobol’ 
sequence. Since the results of a GSA are strongly dependent on the 
sample size, as clearly shown by Saxton et al. [54], a convergence 
analysis was performed, which can be found in the Appendix in 
Figure S-1. A sample size of N = 211 was chosen with converging means 
and statistical deviations of less than 5 % from the mean. The influence 
of all D = 24 cardiovascular system parameters was analyzed, resulting 
in N(2D+2) = 102400 model evaluations. The results are systolic 
pressure SP, diastolic pressure DP, mean arterial pressure MAP, mean 
pulmonary arterial pressure MPAP, pulmonary capillary wedge pressure 
PCWP, ECMO pump flow PF and cardiac output CO. Multiple GSA runs 
were performed using initial parameter values representative of patients 
in normo-, hypo- and hypertensive states with the ECMO pump speed set 
to 3440 rpm. These parameter values are listed in Table S-6. Additional 
analyses were performed for the normotensive condition at ECMO pump 
speeds of 2000, 2500, 4000 and 5000 rpm to ensure that the derived 
sensitivity indices were valid across the entire output space of the model 
in its present context of use. The average values of the predicted total 
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order sensitivities for all described cases were used to identify the model 
parameters that account for 90 % of the sensitivity of each model output. 
The union of these parameters was selected as the final parameter 
subset.

2.4. Parameter identification

The selected parameters x were used to minimize the sum of the 
quadratic mean of the differences between the model predictions yi and 
the patient data ŷi described earlier, equation (5): 

Minimize f(x)=
∑n

i=1

(
yi(x) − ŷi

ŷi

)2

(5) 

For this objective function, the parameter space was explored to 
verify that the function is smooth and differentiable within the relevant 
bounds. The results of this parameter space exploration can be found in 
Figure S-2 in the Appendix. A gradient-based optimization algorithm 
with bound constraints was used, and the gradients were calculated 
using AD. We used SciPy’s least squares optimizer with trust region 
reflective algorithm as it is particularly efficient to exploit the least 
squares structure of the objective function. The bounds for each model 
parameter are shown in Table S-7 in the Appendix. Additionally, we 
used a multi-start approach based on the Tiktak algorithm developed in 
Arnoud et al. [55] with 70 runs of local optimizations. This was all 
implemented using the Optimagic package. This optimization approach 
combines exploration and exploitation to increase the likelihood of 
finding the global optimum. It repeatedly performs local optimizations 
starting from different initial parameter values until enough runs 
converge to the same solution. In the exploration phase, the algorithm 
evaluates the objective function at multiple initial parameter values that 
are randomly generated using Sobol sampling. In the exploitation phase, 
these parameter sets are sorted based on their objective function values. 
The first local optimization is performed from the best parameter set, 
while subsequent optimizations are initialized from a convex combina
tion of the current best-known set and the next best sample point. To 
evaluate the performance of this optimization pipeline over a wide range 
of flows and pressures, we calibrated 30 distinct parameter sets from the 
30 data points listed in Table 1. Thus, data points from each patient are 
treated independently.

2.5. Combined ECMO and CRRT study

For the analysis of the combined lung and kidney support therapy, 
the clinically relevant CRRT connection schemes shown in Fig. 2 were 
applied to a V-A ECMO circuit. From the previously fitted parameters, a 
69-year-old female patient with cardiogenic shock and acute right heart 
failure was selected, who also received renal support during her therapy. 

A list of hemodynamic markers is given in Table S-8. A constant flow 
through the CRRT circuit of 0.2 L/min was set.

In a first step, the influence of the different connection types on the 
entire cardiac cycle was investigated for a constant pump speed of 3425 
rpm. Next, the influence of the different connection types was examined 
at speeds between 1000 and 5000 rpm, which corresponds to the typical 
operating points of the Rotaflow RF-32 pump. In this second analysis, we 
compared only the mean of the clinical markers over the entire cardiac 
cycle. In addition, a GSA was again used to systematically investigate the 
influence of these two device-specific factors on the patient’s hemody
namics. For this purpose, the model parameters were grouped into re
sistances R = {Rao, Rsart, Rmc, Rsvn, Rpas, Rpart, Rpmc, Rpvn}, 
compliances C = {Cao, Csart, Csvn, Cpas, Cpart, Cpvn}, inertances L =
{Lao, Lsart, Lpas, Lpart}, and elastances E = {Edla, Edra, Emaxla, 
Emaxlv, Emaxra, Emaxrv}. These grouped factors were used together 
with the locations of drainage and return cannula as discrete values and 
the pump speed of the ECMO circuit as inputs to the GSA. This means 
that the individual effects of the parameters within each group cannot be 
separated but are considered as a combined single factor. This allows to 
quantify the total effect ST of the entire group on the outputs [56,57]. 
The parameter bounds used to generate the samples are as described 
above. We added 25 % perturbation to the continuous input parameters 
and used sampling as previously described. In this way, the effects of 
small changes in the cardiovascular system parameters corresponding to 
clinical treatments of hypertension and hypotension (e.g. through ino
tropes or vasopressors) can be compared to changes in the extracorpo
real system, such as ECMO pump speed and location of CRRT 
connection.

3. Results

3.1. Selection of most important model parameters for calibration

Fig. 3 shows the average total order sensitivity indices ST for 
parameter values representative of a patient under different blood 
pressure conditions and ECMO pump speeds. This figure illustrates the 
effect of ST of cardiovascular model parameters on all clinical mea
surements. The difference between total order and first or sensitivity 
indices can be seen in Figure S-5 in the Appendix. This can be used as a 
criterion for the linear dependence of the model parameters. Since all 
values are of the order of 10− 3 or less, all parameters influence the model 
results in an independent manner. From Fig. 3 it can be seen that the 
systolic elastance of the left ventricle Emaxlv and the resistance of the 
systemic microcirculation Rmc have a significant influence on all out
puts, as they account for 90 % of their total order sensitivity. The 
compliance of the systemic artery Csart mainly affects SP and DP. In 
contrast, the diastolic elastance of the left atrium Edla only affects 

Fig. 3. Average total order sensitivity indices for a patient under normo-, hypo-, and hypertensive conditions. The ECMO pump speed was set to 3440 rpm for all 
three conditions, and additional sensitivity analyses were performed for normotension at 2000, 2500, 4000 and 5000 rpm.
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PCWP. Both the systolic elastance of the right ventricle Emaxrv and the 
resistance of the systemic vein Rsvn mainly affect MPAP and PCWP. In 
contrast, the resistance of the pulmonary microcirculation Rpmc shows 
a high value of ST for MPAP. The distribution of model outputs resulting 
from the samples of the seven different GSA runs is shown in Figure S-3
in the Appendix. This illustrates that a wide range of clinically relevant 
scenarios of the model are covered.

Fig. 4 shows the sum of the total effect of each model parameter on 
all outputs across different patient blood pressure conditions and ECMO 
pump speeds. As before, Rmc and Emaxlv appear to have a significant 
global influence with values of 25.9 and 11.9. Parameters such as Rpmc, 
Emaxrv, Csart, Edla and Rsvn show a moderate cumulative effect with 
values of 4.0, 2.2, 1.8, 1.3 and 0.8. All parameters below the dashed 
vertical line are considered non-influential parameters and are not 
included in the model calibration process. The following seven param
eters, displayed in orange, are selected for the parameter identification 
step: Rmc, Emaxlv, Rpmc, Emaxrv, Csart, Edla and Rsvn.

3.2. Model calibration

Fig. 5 shows Bland-Altman plots comparing the difference between 
simulated and measured data against their means for hemodynamic 
markers of flow and pressure. They include 30 data points from 8 V-A 
ECMO patients. The pressures (top) have a mean deviation of 0.28 
mmHg and limits of agreement ranging from − 7.5 to +8 mmHg. The 
flows (bottom) show a mean difference of − 0.09 L/min and limits of 
agreement from − 0.52 to +0.34 L/min. The data points are scattered 
around the mean difference line, with most falling within the limits of 
agreement, except for single data points of MAP and PF. A linear 
regression between the measured and the simulated data yields R2 of 
0.99 for the pressures and of 0.98 for the flows. Additional bar plots 
showing the error between the measured and predicted data are shown 
in Figure S-4.

3.3. Influence of CRRT connection scheme

This section examines the influence of different CRRT connection 
schemes on a single patient from the V-A ECMO cohort presented in 
Table 1. For this patient, the ECMO was operated at a constant pump 
speed of 3425 rpm, resulting in a flow of 3.7 L/min through the ECMO 
circuit. Fig. 6 a) shows the arterial, pulmonary arterial and venous 
pressures over two cardiac cycles. These are representative measures of 
the patient’s systemic, pulmonary and venous circulatory systems and 
are used to derive most of the clinical markers listed in Table 1. The 
CRRT circuit affects the hemodynamics of the patient, with the greatest 
impact on the venous system, where a median pressure of 3.7 mmHg and 

a range (here always defined as max - min value) of 1.0 mmHg was 
observed across the different configurations simulated. In contrast, the 
smallest effect was seen on the arterial system, with a median pressure of 
70.3 mmHg and a range of 5.4 mmHg. The patient’s blood pressure is 
lowest when the access line is downstream of the ECMO pump (post 
pump) and the return line is upstream of the oxygenator (pre oxy, for 
configuration see Fig. 2 a)). To allow cross-referencing between all plots 
in Fig. 6, all results for this configuration are colored in blue. In contrast, 
blood pressures are highest for the access line placed pre pump and the 
return line placed post drainage cannula (post DC) (configuration Fig. 2
h)). The results for this configuration are colored orange.

Since V-A ECMO draws blood from the right atrium, it directly affects 
the amount of blood returning to the right ventricle (RV). To assess the 
impact of additional CRRT on the preload of the RV, Fig. 6 b) shows the 
RV pressure-volume (PV) loops for all connection schemes. When the 
access line is post pump and the return line is pre oxygenator (config
uration Fig. 2 a)), this leads to a shift of the RV PV loops to lower 
pressures and volumes, as well as a reduction in stroke volume. For the 
combination pre pump – post DC, which results in the highest blood 
pressures in Fig. 6 a), a reverse effect can be observed (configuration 
Fig. 2 h)), giving a median end-systolic volume of 102.3 mL with a range 
of 24.5 mL and a median end-diastolic volume of 112.6 mL with a range 
of 27.7 mL. The median and range of the ventricular stroke volume and 
stroke work are 10.3 mL (with a range of 3.1 mL) and 10.1 mJ (with a 
range of 5.7 mJ), respectively.

The pressures in the access and return lines of the CRRT circuit are 
illustrated in Fig. 6 c) and 6 d). They are continuously monitored by the 
dialysis machine as they are important for safe and effective dialysis. 
Pressure alarms are triggered when certain limits are exceeded, indi
cating issues such as line occlusion or air in the system. Both pressure 
locations show high variability with a median of 161.4 and 258.2 
mmHg, with a range of 296.6 and 295.9 mmHg for the access and return 
line, respectively. All pressures are below the maximum and above the 
minimum pressure alarms that are typically set as standard for CRRT 
devices. Furthermore, all pressures are positive, except for the connec
tion where the access and return lines are upstream of the ECMO pump 
(configuration Fig. 2 h)).

Arterial, pulmonary arterial and venous pressures, as well as the 
pressure at the tip of the ECMO drainage cannula, are shown in Fig. 7 a) 
and b) for different CRRT connection types and ECMO flows. The latter 
is important in clinical practice to identify drainage insufficiency and 
minimize the risk of suction events. Varying the ECMO pump speed 
between 1000 and 5000 rpm results in ECMO flows of up to 6 L/min. 
With increasing ECMO flow, arterial pressures increase for all combi
nations, whereas pulmonary arterial and venous pressures decrease. The 
influence of CRRT connection types increases with increasing speed. At 

Fig. 4. Cumulative total order sensitivity indices of each model parameter derived from analyses across different patient blood pressure conditions and ECMO pump 
speeds. Parameters selected for model calibration are highlighted in orange. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.)
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an ECMO flow of 1.2 L/min, arterial and ECMO drainage pressures have 
a median of 49.4 and 1.7 mmHg, respectively, and are within a range of 
1.4 and 1.3 mmHg. However, at a much higher flow of 6 L/min, these 
values change to 85.2 and − 129.6 mmHg with a range of 10.5 and 3.9 
mmHg, respectively. At the maximum ECMO flow rates, the pulmonary 
artery pressure range for the various CRRT connection schemes simu
lated was found to be 5.3 mmHg. Except for the arterial blood pressure, 
the type of connection that yields the highest and lowest blood pressures 
is independent of the ECMO flow rate.

The pressures in the access and return lines of the CRRT circuit are 
shown in Fig. 7 c) and d). The same trend is seen as before. The mean 
pressures in the access and return lines of all combinations change 
significantly, from 2.6 to 136.5 mmHg with ranges of 81.3 and 81.6 
mmHg at 1.2 L/min to 397.4 and 459.5 mmHg with ranges of 624.5 and 
622.9 mmHg observed for the different connection schemes simulated at 
6 L/min, respectively. When the access line is connected downstream of 
the ECMO pump and the return upstream of the oxygenator (configu
ration Fig. 2 a)), pressures increase with increasing ECMO flow. This 
behavior is observed for most combinations. The connection pre pump – 
post DC (Fig. 2 h)) shows the opposite behavior. This decrease in pres
sure with increasing ECMO flow is similar for all combinations with 
return lines upstream of the ECMO pump (Fig. 2 b), c), h), and i)). The 
maximum pressure alarms are reached at approximately 5 and 4 L/min 
for the access and return line, respectively. A minimum pressure alarm is 
only triggered for the return line at around 6 L/min.

The total order sensitivity indices ST for the grouped cardiovascular 
parameters R, C, E and L, for the position of the CRRT circuit access and 
return lines, and for the ECMO pump speed for all model outputs are 
shown in Fig. 8. The ECMO speed (rpm) is the most sensitive parameter, 
and R has a particularly large influence on the patient’s hemodynamics. 
The positions of the access and return lines are as sensitive to MPAP and 
CO as C, E, and L. Their combined contribution is highest for MPAP and 
CO, accounting for approximately 16 % of the total sensitivity. For 
systemic pressures and the pump flow, their influence is less than 10 %. 
This is further supported by the cumulative sensitivity indices shown in 
Figure S-6 in the Appendix. In summary, both locations of the access and 

return lines contribute to 90 % of the sensitivity of MPAP and CO. As can 
be seen in Figure S-7 in the Appendix, the GSA input samples resulted in 
a MAP between 50 and 100 mmHg and pump flows between 2 and 5 L/ 
min, again representing normal, hypotensive and hypertensive states 
and the full range of ECMO operating conditions.

4. Discussion

The combination of ECMO and CRRT support represents a complex 
therapy, involving two extracorporeal circuits that interact with both 
each other and the patient’s cardiovascular system. Currently, there are 
no guidelines for optimal connection schemes, and systematic analyses 
of how different CRRT connection schemes influence patient hemody
namics are lacking. In this study, we used a 0D computational model to 
investigate the mutual influence between the connection of CRRT, the 
degree of ECMO support, and the patient’s circulation in the context of a 
single patient case study. Additionally, we conducted global sensitivity 
analyses and developed a parameter estimation pipeline tested on 30 
data points from eight V-A ECMO patients. Our main findings are. 

1. Model results suggest that CRRT can have a notable effect on the 
patient’s cardiovascular system. This effect is highly dependent on 
the ECMO flow and leads to predicted changes in pulmonary artery 
pressure of up to 203 %.

2. GSA enables a systematic and agnostic approach to identifying key 
parameters that supports the parameter estimation process.

3. The established parameter estimation framework is robust in that it 
does not require any adjustment of the algorithm’s parameters across 
different patient data.

An ECMO flow of 3.7 L/min in our in-silico study at a constant pump 
speed of 3425 rpm is comparable to the retrospective study by Wu et al. 
[21], which reported flows of 3.1 and 4.4 L/min. Also, the pressures at 
the access and return lines of the CRRT circuit are consistent with this 
study and the study by Wang et al. [20] and vary greatly depending on 
the connection location in the ECMO circuit, as also reported by Kashani 

Fig. 5. Bland-Altman plot showing the mean of the simulated and the measured data versus their difference for hemodynamic markers of flow and pressure. A total 
of n = 30 data points from 8 V-A ECMO patients are included.
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et al. [58]. Interestingly, while Wang et al. [20] observed negative 
pressures in the return line when connected upstream of the ECMO 
pump, both our results and those of Wu et al. [21] show positive return 
pressures for all configurations. This discrepancy could be due to the 
characteristics of the in-vitro setup used by Wang et al.

In method A from Wu et al., where the access line is connected 
downstream of the oxygenator and the return line upstream (our 
configuration Fig. 2 g)), the clinical data show a mean access line 
pressure of 175 mmHg (SD = 23 mmHg) and a mean return line pressure 
of 360 mmHg (SD = 8 mmHg). Our model predicts pressures of 119 and 
313 mmHg, respectively. In method B, where the return line is changed 
to be upstream of the pump (our configuration Fig. 2 c)), the clinical 
data show a significantly lower mean return line pressure of 41 mmHg 
(SD = 13 mmHg) and an access line pressure of 171 mmHg (SD = 22 
mmHg). Our model predicts 17 mmHg for the return line and 120 mmHg 
for the access line. These results suggest that our model can predict 
clinically realistic pressures in the CRRT circuit and is in line with the 
observed trends when the return line position is changed.

The in-vitro data from Wang et al. [20] show that both the pressures 
in the access and return lines and the influence of the CRRT connection 

increase with an increasing ECMO flow, with the pressure in the access 
line triggering the maximum alarm at around 5.5 L/min. This observa
tion is also reflected in the predictions of our model. Sansom et al. [59] 
have found that high access line pressures correlate with early CRRT 
circuit failure and suggest that these pressures should be kept below 190 
mmHg. Our model suggests that this can be maintained for ECMO flows 
up to 4.7 L/min when the access line is connected downstream the 
oxygenator and the return line is placed upstream the oxygenator (Fig. 2
g)), the ECMO return cannula (Fig. 2 d)), or the ECMO pump (Fig. 2 c)). 
In contrast, connecting the access line after the ECMO pump and the 
return line before the oxygenator (Fig. 2 a)) results in a pressure higher 
than 190 mmHg at an ECMO flow of 4 L/min already. This insight could 
help to extend circuit life without increasing the cost and complexity of 
the extracorporeal circuit by adding pressure sensors, as suggested in Na 
et al. [60].

Pressures in the entire ECMO circuit are consistent with the values 
reported by Sidebotham et al. [61]. Wu et al. [21] recommend con
necting the CRRT circuit downstream to upstream of the oxygenator as 
depicted in Fig. 2 g). Looking at our in-silico results, this seems to be a 
good choice. Using our model, we can additionally confirm the advice to 

Fig. 6. Influence of different CRRT connections schemes on a) cardiovascular system, b) right ventricular (RV) PV loop and pressure of both access and return line of 
the CRRT circuit in c) and d), respectively. Combinations resulting in the highest and lowest arterial pressures are colored. The gray lines represent all other 
configurations. Coloring is applied to all subplots for cross-referencing purposes. See Fig. 2 for more details on the configurations. DC: drainage cannula, RC: return 
cannula. Common pressure alarms of CRRT circuit displayed in black dashed lines.
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connect the return line upstream of the ECMO pump for high ECMO 
flows, as this reduces the pressure in the return line and the risk of 
triggering internal alarms of the CRRT device. Although many authors 
report a high risk of air leakage in this configuration due to negative 
pressures in the ECMO circuit upstream of the pump [7,11,12,19], Wu 
et al. did not observe this issue in their study. If the system setup does not 
allow the connection of the return line upstream of the ECMO pump, or 
if a pressure reduction is not critical, the connection upstream of the 
ECMO return cannula as depicted in Fig. 2 d) may provide a stable and 
safe alternative, as supported by the in-vivo data of Wang et al. [20]. 
This approach helps to manage high pressures and reduces the burden 
on nursing staff, as described by Kashani et al. [11] and de Tymowski 
et al. [19], potentially leading to fewer CRRT interruptions and main
taining normal operation even at high ECMO flows. This is particularly 
important in patients with high fluid overload.

The results of the total order sensitivity index ST indicate that the 
position of both the access and return lines have an influence on the 
hemodynamics of the patient, which is particularly significant for MPAP 
and CO. For most model parameters, the first order sensitivity index S1 
for the different model parameters is negligibly small, indicating that 

their main effect is small. A closer look at the second order sensitivity 
indices S2, which describe pairwise interactions, reveals strong in
teractions between access and return line locations and other parame
ters. The strongest interaction is between the resistances of the 
cardiovascular system R and the ECMO speed and between the locations 
of the access and return lines of the CRRT circuit. The value of S2 also 
indicates that higher order interactions contribute to ST. There could be 
several reasons for this. Firstly, higher ECMO flows increase the effect of 
different locations for the access and return lines of the CRRT circuit, as 
we have already seen in the results. In addition, the vascular resistance R 
may alter the flow dynamics so that blood is drawn and returned 
differently from the ECMO circuit. This would also suggest that the in
fluence of the CRRT circuit and its possible combinations is different for 
each patient. In general, the significant interactions between CRRT ac
cess and return line locations with resistances of the cardiovascular 
system and ECMO speed demonstrate the complex interplay between the 
combined lung and kidney support therapy and the patient’s cardio
vascular system.

In summary, our computational model enabled a more systematic 
comparison of all possible CRRT connection schemes. It provided insight 

Fig. 7. Influence of different CRRT connections schemes with increasing ECMO pump flow on a) cardiovascular system, b) pressure in ECMO drainage cannula (DC) 
and both access and return line of the CRRT circuit in c) and d), respectively. Combinations resulting in the highest and lowest arterial pressures in the reference 
scenario presented in Fig. 6 are colored. The gray lines represent all other configurations. Coloring is applied to all subplots for cross-referencing purposes. See Fig. 2
for more details on the configurations. DC: drainage cannula, RC: return cannula. Common pressure alarms of CRRT circuit displayed in black dashed lines.
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into the effect of these schemes on measurements that are difficult or 
impossible to obtain in clinical practice and revealed greater variations 
in hemodynamic parameters, such as RV stroke volume and work, with 
increasing ECMO flow. The model predictions are consistent with 
measurements reported in the literature and highlight the complexity of 
ECMO and CRRT therapy. The model can provide hemodynamics on a 
patient-specific basis and can be adapted to routine clinical measure
ments through automated parameter fitting. The implementation of the 
GSA-based parameter estimation has been shown to be fast and effec
tive, as demonstrated by testing it on multiple data points representing a 
broad range of ECMO therapy conditions.

This demonstrated that the model could be easily recalibrated 
without any further user input, such as adjusting algorithm parameters. 
This framework is open-source and promotes universal access to 
methods such as model sensitivity and parameter estimation, paving the 
way for digital twins that could be applied to various research questions, 
as promoted by Viceconti et al. [34]. However, further validation on 
clinical data is needed to quantify the predictive performance of the 
presented modeling pipeline.

The ODE system describing our model consists of 35 state equations 
with 90 parameters. Solving this model for 50 s on a single core of the 
Linux HPC CLAIX-2023 at RWTH Aachen University with an Intel Xeon 
8468 Sapphire (2.1 GHz, 48 cores) took about 6.5 s. However, using just- 
in-time compilation with JAX, the runtime was reduced by a factor of 4.3 
to about 1.5 s. For the parameter estimation procedure, using 35 cores 
on the same architecture, the average computation time for a single 
patient data point was 22 min. This performance is comparable to 
gradient-based calibration approaches such as those described by Sal
vador et al. [62], but significantly faster than other global strategies 
such as the Bayesian inference approach developed by Argus et al. [63].

The implemented parameter identification pipeline yields a param
eter set that reproduces the clinical measurements. However, this solu
tion is not unique and cannot be guaranteed to truly reflect the specific 
patient condition. The use of the Markov Chain Monte Carlo method, as 

proposed by Colunga et al. [48] and Argus et al. [63] is an approach for 
Bayesian parameter inference and could help to quantify the uncertainty 
of model predictions. Although our implementation allows for 
just-in-time compilation using JAX, which significantly reduces 
computation time, it may be necessary for such an approach to create a 
surrogate of the LPM to include uncertainty quantification in an efficient 
manner.

The GSA enables to determine the most influential model parameters 
and to consider the interactions between them. We demonstrated how to 
ensure the validity of the identified parameter subset by performing 
sensitivity analyses with different initial model parameters representa
tive of different clinically relevant patient conditions. However, this 
does not determine whether the effects of the input parameters on a 
specific model output are very similar or the same. This is referred to as 
parameter orthogonality and is discussed in detail in Colunga et al. [37] 
and Saxton et al. [42]. In a next step, an orthogonality analysis will be 
added to the GSA to ensure complete identifiability of the input pa
rameters used for personalization.

This computational model has the potential to support personalizing 
a combined lung and kidney support therapy to individual patient 
conditions. By applying the model to data from a larger ECMO cohort, 
more general conclusions could be drawn that may ultimately lead to 
standardized guidelines. In addition to optimizing the CRRT connection 
schemes, novel concepts such as the RenOx device, which integrates an 
oxygenator and a dialyzer in one system, would be of interest [64,65]. 
Such an approach would drastically reduce the complexity highlighted 
in this study.

5. Conclusion

In this study, we demonstrated that a GSA-informed parameter 
estimation process is computationally efficient and produces a high- 
quality fit to V-A ECMO patient data. The developed cardiovascular 
model can be used to model many different conditions of patients 
receiving V-A ECMO. The model suggests that the CRRT connection 
scheme can influence the hemodynamics of the patient and that the 
optimal choice may depend on the operating point and setup of the 
ECMO system. By integrating a discrete distribution for the locations of 
both the access and return lines of the CRRT circuit into the sample of a 
GSA, we were able to systematically quantify their influence and 
compare their significance to both the patient’s cardiovascular proper
ties and the ECMO pump flow.

In summary, the results of this study indicate that the direct effect of 
CRRT access and return line locations within the ECMO circuit alone is 
minimal, but their combined effect, when interacting with other pa
rameters such as vascular resistance or ECMO pump speed, can be 
significant.
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[27] M. Broomé, Elira Maksuti, Anna Bjllmark, Bjrn Frenckner, Birgitta Janerot-Sjberg, 
Closed-loop Real-Time Simulation Model of Hemodynamics and Oxygen Transport 
in the Cardiovascular System, 2013.

[28] D.W. Donker, D. Brodie, J.P.S. Henriques, M. Broomé, Left ventricular unloading 
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