% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Holthusen:1005558, author = {Holthusen, Hagen and Brepols, Tim and Linka, Kevin and Kuhl, Ellen}, title = {{A}utomated model discovery for tensional homeostasis: {C}onstitutive machine learning in growth and remodeling}, journal = {Computers in biology and medicine}, volume = {186}, issn = {1879-0534}, address = {Amsterdam [u.a.]}, publisher = {Elsevier Science}, reportid = {RWTH-2025-01843}, pages = {109691}, year = {2025}, cin = {311510}, ddc = {570}, cid = {$I:(DE-82)311510_20140620$}, pnm = {OAPKF - Open-Access-Publikation mit Unterstützung der RWTH Aachen University (021000-OAPKF) / DFG project G:(GEPRIS)417002380 - TRR 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen – Grundlagen für eine neue Art zu bauen (417002380) / DFG project G:(GEPRIS)453596084 - TRR 339: Digitaler Zwilling Straße – Physikalisch-informatorische Abbildung des Systems „Straße der Zukunft“ (453596084) / DFG project G:(GEPRIS)533187597 - Computational Intelligence für die Mechanik weicher Materialien (533187597) / DFG project G:(GEPRIS)465213526 - In-Stent-Restenose in koronaren Arterien - In silico-Untersuchungen basierend auf patientenspezifischen Daten und Metamodellierung (465213526) / DISCOVER - Automated Model Discovery for Soft Matter Systems (101141626)}, pid = {G:(DE-82)021000-OAPKF / G:(GEPRIS)417002380 / G:(GEPRIS)453596084 / G:(GEPRIS)533187597 / G:(GEPRIS)465213526 / G:(EU-Grant)101141626}, typ = {PUB:(DE-HGF)16}, doi = {10.1016/j.compbiomed.2025.109691}, url = {https://publications.rwth-aachen.de/record/1005558}, }