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A B S T R A C T

We present a built-in physics neural network architecture, known as inelastic Constitutive Artificial Neural
Network (iCANN), to discover the inelastic phenomenon of tensional homeostasis.

In this course, identifying the optimal model and material parameters to accurately capture the macroscopic
behavior of inelastic materials can only be accomplished with significant expertise, is often time-consuming,
and prone to error, regardless of the specific inelastic phenomenon. To address this challenge, built-in physics
machine learning algorithms offer significant potential.

We introduce the incorporation of kinematic growth and homeostatic surfaces into the iCANN to discover
the Helmholtz free energy and the pseudo potential. The latter describes the state of homeostasis in a smeared
sense. To this end, we additionally propose a novel design of the corresponding feed-forward network in terms
of principal stresses. We evaluate the ability of the proposed network to learn from experimentally obtained
tissue equivalent data at the material point level, assess its predictive accuracy beyond the training regime,
and discuss its current limitations when applied at the structural level.

Our source code, data, examples, and an implementation of the corresponding material subroutine are
made accessible to the public at https://doi.org/10.5281/zenodo.13946282.
1. Introduction

Patient healthcare increasingly focuses on personalizing treatments
to meet the unique needs of each individual. However, the complex
mechanisms and mechanical behaviors of biological systems make this
task particularly challenging. Despite major advancements in model-
ing biomechanical behavior over recent decades, identifying patient-
specific parameters remains a significant hurdle. Data-driven models of-
fer a promising solution by leveraging patient data to pinpoint these in-
dividualized characteristics. Moreover, unbiased generic models avoid
assuming specific behaviors a priori, enhancing our understanding of
tissue behaviors by unveiling underlying mechanisms. This integration
of data-driven tools is accelerating the development of more precise,
patient-specific therapies across diverse medical fields.

In the medical context, artificial neural networks are used across
various fields to increase our understanding of medical interactions. For
instance, Azhar et al. [1] model axisymmetric heat performance in fluid
transport using unsupervised learning. In [2,3], Wolbachia-infected and
uninfected mosquitoes are studied by combining neural networks with
Bayesian-stochastic methods. Additionally, neural networks simulate

∗ Correspondence to: Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany.
E-mail address: hagen.holthusen@ifam.rwth-aachen.de (H. Holthusen).

epidemiology outbreak dynamics [4], tau propagation in Alzheimer’s
disease [5], and social media addiction [6]. A notable area of interest
is biomechanics and mechanobiology, where continuum mechanics in-
tersects with biological systems to deepen our understanding of health
and disease.

In this context, testing the mechanical behavior of both living and
non-living materials is notoriously labor-intensive, leading to limited
data availability. This poses a significant challenge for standard neu-
ral networks, which struggle to learn from small datasets and often
produce unphysical predictions outside their training range. However,
the inherent adherence of living tissues to fundamental physical laws
presents an exciting opportunity. By embedding physics directly into
neural networks, we can drastically reduce data requirements while
enabling the networks to autonomously discover complex, biologi-
cally accurate models. These biologically accurate models go beyond
traditional simulations by incorporating key characteristics, such as
tensional homeostasis, which are critical for capturing the true behavior
of biological systems.

These diverse physics-embedded approaches promise to revolution-
ize how we model biological systems, combining the strengths of
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physics and machine learning to achieve unprecedented accuracy and
fficiency.

1.1. State-of-the-art

Data-driven constitutive modeling. The integration of expert
nowledge, particularly in continuum mechanics, with the computa-

tional power of data-driven models enables the development of highly
fficient numerical frameworks. These architectures can discover, and
ost importantly, predict physically plausible material behaviors be-

ond the training range. Broadly, we can distinguish between model-free
pproaches [7,8], and those that enforce physical laws either strongly or
weakly. The model-free approach operates without constitutive assump-
tions, while the latter typically incorporates physics during training, for
instance, by modifying the loss function as in physics-informed neural
networks [9].

Numerous robust methods for strongly enforcing physical laws have
emerged recently. In this contribution, we present a neural network
architecture that falls within this category, focusing specifically on
data-driven constitutive modeling — teaching constitutive knowledge
to the data-driven framework of interest. We kindly refer to the con-
tribution by Linden et al. [10] for a more theoretical and in-depth
discussion on this topic.

In recent years, most strategies for integrating thermodynamics into
eural networks initially focused on small strains and elasticity, gradu-

ally extending to inelastic effects. For example, Thermodynamics-based
Artificial Neural Networks were introduced by [11,12], and Mechanics-
Informed Artificial Neural Networks [13] were later expanded to ac-
count for visco-elasticity [14]. A key principle in these frameworks is
the omnipresence of convexity in constitutive equations, which is lever-
ged in models like input convex neural networks when incorporating
hysical laws. One notable example is the physics-augmented Neural

Network [15].
To address visco-elastic and more complex inelastic phenomena,

generalized standard materials approaches can be adopted, incorporat-
ing a dissipation potential tied to inelasticity rates [16]. Similarly, un-
supervised material discovery frameworks, such as EUCLID [17], have
been expanded to automatically identify inelastic behaviors in small
strains [18,19]. Further, physics-informed constitutive models trained
through probabilistic machine learning for isotropic and anisotropic hy-
perelasticity were proposed [20] and applied to discover the response
of strain-rate-sensitive materials [21].

In contrast to physics-augmented neural networks, we follow the
Constitutive Artificial Neural Networks (CANNs) approach [22,23],
where the entire architecture is explicitly custom-designed to adhere
to thermodynamic principles. Like EUCLID, CANNs produce general-
izable and mechanically interpretable neural networks, which offer
insights into the material properties embedded in experimental data.
In a biomedical context, CANNs were used to identify and study the
mechanical behavior of skin [24] and the human brain [25]. CANNs
ave been further extended to model visco-elastic behavior through a
rony-series approach [26,27], and general inelasticity at finite strains

and strain rates with the inelastic Constitutive Artificial Neural Network
(iCANN) [28,29].

This literature review represents only a small fraction of the current
trends in the mechanics community’s focus on data-driven models.
t is by no means exhaustive, particularly given the high level of

activity in this area, with numerous leading experts and prominent
research groups contributing to its rapid development. For a more
comprehensive overview of the diverse approaches being explored, we
refer readers to the survey by Watson et al. [30].

Standard artificial neural networks tend to be densely connected,
making it difficult to interpret the relationships between inputs and
outputs. However, in constitutive modeling, sparsity is crucial. Sim-
pler models that effectively explain the data are preferred over non-
interpretable ones and, within reasonable limits, can be considered
2

unique. This focus on sparsity enhances the model’s interpretability
nd aligns with the goal of deriving meaningful insights from the un-
erlying physical processes. This becomes even more critical when the
ata is subject to uncertainties [31], where achieving a deterministic

relationship between stresses and strains is often unrealistic. During
network training, various regularization techniques can be applied to
help identify a meaningful subset of potential models from the array of
approaches available [32]. A related strategy involves starting with a
simplified subset of the original neural network, ideally beginning with
a ‘one-term model’. The complexity of the network is then progressively
increased by iteratively incorporating additional terms [33]. This ap-
proach facilitates control over the model’s complexity, promoting both
interpretability and robust generalization.

Once a model has been discovered to capture the relationship be-
ween stresses and strains at the material point level, the next step is to
xplore its predictive power on a structural scale. Since all of the afore-
entioned approaches are rooted in thermodynamic principles, they

an be seamlessly integrated into numerical boundary value solvers like
inite Element Analysis. In the biomedical field, this has been achieved
ith notable success, enabling the simulation of hyperelastic behavior

in complex biological structures, such as the human brain [34], the
ortic arch [35], and cardiac tissues [36]. These advancements not only

push the boundaries of material modeling but also pave the way for
more accurate, patient-specific simulations in medical applications.

Tensional homeostasis. Biological tissues are characterized by
their ability to actively respond to external mechanical stimuli [37],
a response driven by complex interactions at the cellular level. These
nteractions give rise to macroscopic observations such as growth and
emodeling, which, rather than being directly traced to micromechan-
cal mechanisms, are treated in a phenomenological, large-scale sense.
or detailed microscale descriptions, see [38,39]. From a mechanical
tandpoint, roughly five modeling approaches in continuum mechanics
ddress these active deformations. Readers are referred to the insightful
rticle by Goriely [40] for further details. In the context of growth and
emodeling, the proposed iCANN framework follows the active strain
pproach.

Hard and soft tissues can be broadly distinguished, both being
extensively studied through numerical and experimental approaches.
Hard tissues, such as bones [41,42] and dental tissues [43], and soft
tissues, including brain [44–46], arteries [47,48] including considera-
ions of the multifield problem [49], the cardiovascular system [50–

52], and the human heart [53,54] with its complex multiphysical
interactions [55] and its maturation process in biohybrid heart valve
implants [56], remain active areas of research. This wide scope re-
flects the need to better understand both underlying mechanisms and
macroscopic behavior. While hard tissues primarily experience finite
otations, soft tissues are subject to both finite strains and rotations.

Living tissues actively adapt to their environment, with one key
eature being homeostasis — the ability to achieve, maintain, and
estore a stable mechanical state under changing physiological condi-
ions [57–59]. Brown et al. [60] introduced the hypothesis of tensional
homeostasis, suggesting that soft tissues prefer a tensile stress state.
However, achieving this state without external loading is constrained
by the availability of hormones and nutrients. One of the few contin-
uum models incorporating these multiphysical interactions is presented
in [61].

Recent experimental studies have provided insights into tensional
homeostasis. For example, [62,63] performed uniaxial tests on tis-
ue equivalents, observing active contractions and restoration of the

homeostatic state. Since real tissues typically experience multiaxial
loading, [64–66] extended these studies to multiaxial scenarios, includ-
ing non-proportional load perturbations of the state of homeostasis.
They observed that tissue equivalents maintain and restore the state
of homeostasis even for such more sophisticated loadings. More re-
cently, Paukner et al. [67] used this setup to investigate vascular
smooth muscle cell-seeded tissue equivalents under dynamic biaxial
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loading. For a comprehensive review, see Eichinger et al. [68].
The two most common approaches for modeling growth and remod-

eling are constrained mixture models, introduced by Humphrey and
ajagopal [69], and kinematic growth models [70]. This contribution

follows the kinematic approach, which multiplicatively decomposes the
deformation gradient. According to [58,71], the inelastic part might be
further decomposed into growth and remodeling components to better
distinguish these processes of (volumetric) growth and remodeling.

Growth and remodeling models can be classified as isotropic [72–74]
r anisotropic [75–77]. Anisotropic models describe induced anisotropic

behavior resulting from growth and remodeling processes, meaning
hat a material, which might be initially isotropic, develops directional
ehavior due to these processes. Braeu et al. [71] observed a general

mismatch between isotropic growth models and experimental observa-
ions, emphasizing the need for anisotropic models to capture realistic
issue behavior.

1.2. Hypothesis

Various physics-based networks have been proposed to model ma-
erial behavior, with some extensions for inelastic materials, though
ew apply to the finite strain regime. While early applications of
uch networks to tissues, such as modeling the visco-elastic behavior
f brains [78], exist, networks for growth and remodeling remain
argely unexplored. To the authors’ knowledge, no approach has yet
een proposed to design physics-embedded networks for discovering
ensional homeostasis.

This contribution hypothesizes that by enhancing the inelastic Con-
stitutive Artificial Neural Network (iCANN) framework [28,79] for
growth and remodeling, using the concept of homeostatic surfaces [80–
82], it is possible to uncover the mechanisms of tensional homeostasis.

At this stage of development, we neglect any directional dependence
nd assume the tissue to behave initially isotropic. We improve the
riginal iCANN by focusing on network architecture design, ensuring
atisfaction of equality constraints, and formulating a general approach
o capture rate-dependent behavior. The feed-forward network of the
seudo potential is expressed in terms of principal stresses, with refined
ctivation functions that advance the networks’s ability to capture
omplex material responses.

1.3. Outline

In Section 2, we review the thermodynamically consistent constitu-
tive framework for inelastic materials at finite strains, highlighting the
physical restrictions of the Helmholtz free energy and the concept of
homeostatic surfaces/pseudo potentials in Section 2.3. We then incor-
porate these considerations into the iCANN architecture in Section 3,
employing a time-discretized approach, iteratively solve the nonlinear
omeostasis equation and present our enhanced designs for the energy

and potential. In Section 4, we train our network using uniaxial and
iaxial experimental data of tissue equivalents and evaluate its perfor-
ance. We critically discuss the limitations encountered during these

bservations in Section 5. Finally, we conclude our findings and provide
an outlook in Section 6.

2. Constitutive framework

In the following, we briefly recapitulate the constitutive frame-
work of inelastic Constitutive Artificial Neural Networks presented
by Holthusen et al. [28] and its polyconvex extension [79] in order
to specialize it to account for growth and remodeling. A more detailed
iscussion of the underlying concepts can be found in there.
3

2.1. Governing equations

Kinematics. We describe the deformation as well as the material’s
response of a body by the deformation gradient 𝑭 . Consequently, a
igid motion of both the reference configuration, 𝑭 # = 𝑭 𝑸#𝑇 , and the
urrent configuration, 𝑭 + = 𝑸+𝑭 , with 𝑸# ∈  ⊂ SO(3) and 𝑸+ ∈ SO(3)
ust not change the material’s response. The special orthogonal group

s denoted by SO(3), while  is the material’s symmetry group. Fur-
hermore, in order to account for growth and remodeling, we assume
 multiplicative decomposition, 𝑭 = 𝑭 𝑒𝑭 𝑔 , into an elastic part, 𝑭 𝑒,
nd a growth-related part, 𝑭 𝑔 [70]. Unfortunately, we note an inherent
otational non-uniqueness of this decomposition, i.e., 𝑭 = 𝑭 ∗

𝑒𝑭
∗
𝑔 where

𝑭 ∗
𝑒 = 𝑭 𝑒𝑸∗𝑇 and 𝑭 ∗

𝑔 = 𝑸∗𝑭 𝑔 with 𝑸∗ ∈ SO(3) is equivalently possible
see [83]).

Stretch tensors. Since the elastic and growth-related parts of 𝑭
posses their polar decompositions, 𝑭 𝑒 = 𝑹𝑒𝑼 𝑒 and 𝑭 𝑔 = 𝑽 𝑔𝑹𝑔 with
𝑹𝑒,𝑹𝑔 ∈ SO(3), we found the stretch parts of both, 𝑼 𝑒 and 𝑽 𝑔 , to
be independent of 𝑸# as well as 𝑸+. Hence, they are well suited to
serve as arguments for the Helmholtz free energy 𝜓 . Unfortunately, as
𝑼∗
𝑒 = 𝑸∗𝑼 𝑒𝑸∗𝑇 and 𝑽 ∗

𝑔 = 𝑸∗𝑽 𝑔𝑸∗𝑇 the Helmholtz free energy suffers
from the rotational non-uniqueness, i.e., 𝜓

(

𝑼 𝑒,𝑽 𝑔
)

≠ 𝜓
(

𝑼∗
𝑒 ,𝑽

∗
𝑔

)

. To
overcome this issue, we restrict the energy to be a scalar-valued isotropic
function.

Co-rotated intermediate configuration. As the elastic right
auchy–Green tensor, 𝑪𝑒 ∶= 𝑼 2

𝑒 , and the growth-related left Cauchy–
reen tensor, 𝑩𝑔 ∶= 𝑽 2

𝑔 , solely depend on the stretch tensors, we
an alternatively express the energy 𝜓 = 𝜓

(

𝑪𝑒,𝑩𝑔
)

. Although the
energy itself is unique and independent of any of the above mentioned
rotations, its rate is not, i.e., 𝜕 𝜓∕𝜕𝑪𝑒 ≠ 𝜕 𝜓∕𝜕𝑪∗

𝑒 and 𝜕 𝜓∕𝜕𝑩𝑔 ≠ 𝜕 𝜓∕𝜕𝑩∗
𝑔 .

Therefore, we employ the concept of a co-rotated intermediate config-
uration [81] and introduce the co-rotated elastic right Cauchy–Green
ensor

𝑪̄𝑒 ∶= 𝑼−1
𝑔 𝑪 𝑼−1

𝑔 (1)

and its growth-related counterpart, 𝑪𝑔 ∶= 𝑭 𝑇
𝑔 𝑭 𝑔 , where 𝑪 ∶= 𝑭 𝑇𝑭

is the right Cauchy–Green tensor. Since both 𝑪̄𝑒 and 𝑪𝑒 as well as
𝑪𝑔 and 𝑩𝑔 are similar, we can exchange the arguments of the energy

= 𝜓
(

𝑪𝑒,𝑩𝑔
)

= 𝜓
(

𝑪̄𝑒,𝑪𝑔
)

. Noteworthy, the rate of the energy with
respect to the co-rotated quantities is unique, which is considered an
advantage.

Thermodynamic considerations. Our models must be chosen in
accordance with thermodynamics, i.e., the Clausius–Planck inequality
for open systems −𝜓̇+ 1∕2𝑺 ∶ 𝑪̇+0 ≥ 0 (see [84]) must be satisfied. In
he latter, 𝑺 denotes the second Piola–Kirchhoff stress tensor, while 0
ccounts for entropy sources and sinks resulting from interactions with
he exterior of the system, e.g., the inflow of nutrients and hormones.
or growth and remodeling, we assume the Helmholtz free energy, 𝜓 ,
o solely depend on the elastic stretches, i.e., 𝜓 = 𝜓

(

𝑪̄𝑒
)

. Hence, we
btain the following (cf. [81])

(

𝑺 − 2𝑼−1
𝑔
𝜕 𝜓
𝜕𝑪̄𝑒

𝑼−1
𝑔

)

∶ 1
2
𝑪̇ + 2 𝑪̄𝑒

𝜕 𝜓
𝜕𝑪̄𝑒

⏟⏞⏞⏟⏞⏞⏟
=∶𝜮̄

∶ 𝑼̇ 𝑔 𝑼−1
𝑔

⏟⏟⏟
=∶𝑳̄𝑔

+0 ≥ 0 (2)

from which we obtain the state law 𝑺 = 2𝑼−1
𝑔 (𝜕 𝜓∕𝜕𝑪̄𝑒)𝑼−1

𝑔 due to
the arguments of [85–87]. As mentioned above, 𝜓 is a scalar-valued
isotropic function of 𝑪̄𝑒, and thus, the driving force, 𝜮̄, is symmetric
(cf. [88]). Therefore, we can reduce the dissipation inequality

𝜮̄ ∶ 𝑫̄𝑔 + 0 ≥ 0 (3)

with 𝑫̄𝑔 being the symmetric part of 𝑳̄𝑔 .
We must satisfy the reduced dissipation inequality at any time,

nd therefore, choose an appropriate evolution equation. To this end,
e follow the approach of Lamm et al. [80] and take inspiration

from the well-established concept of pseudo potentials to model other
inelastic phenomena such as elasto-plasticity, visco-elasticity, or phase
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transformations. In accordance with Kestin and Rice [89], we postulate
the existence of a convex, zero-valued, and non-negative pseudo potential,
𝑔, which solely depends on 𝜮̄. Hence, our evolution equation reads

𝑫̄𝑔 = 𝛾
𝜕 𝑔
𝜕𝜮̄

(4)

where 𝛾 denotes the growth multiplier. Since 𝑔 is convex, the following
identity is satisfied

𝑔 (𝑨) ≥ 𝑔 (𝑩) +
𝜕 𝑔
𝜕𝑩

∶ (𝑨 − 𝑩) ∀𝑨,𝑩 ∈ R3×3. (5)

For the following, we set 𝑨 = 𝟎 and 𝑩 = 𝜮̄. Furthermore, since 𝑔 (𝟎) = 0
s well as 𝑔 is non-negative, we obtain the following
𝜕 𝑔
𝜕𝜮̄

∶ 𝜮̄ ≥ 𝑔
(

𝜮̄
)

≥ 0. (6)

Thus, we recognize that the sign of the dissipation caused by 𝜮̄ ∶ 𝑫̄𝑔
is the same as the sign of the growth multiplier itself.1

2.2. Helmholtz free energy

As discussed in the previous section, stresses are caused by strains
ue to the existence of a Helmholtz free energy. In the following, we

investigate physically plausible restrictions of the energy and choose
 general functional form, which will later on serve to design our
rchitecture-based neural network to discover the material’s behavior.

Restrictions. Our energy must be chosen in such a way that self-
penetration of the material is prevented. In addition, increasing the
deformation should result in an increase of the energy as well. Hence,
our energy must meet the conditions

lim
det(𝑪̄𝑒)→∞

𝜓 → +∞ ∧ lim
det(𝑪̄𝑒)↘0

𝜓 → +∞. (7)

which is referred to as the volumetric growth condition. Furthermore,
he normalization of the (elastic) Helmholtz free energy as well as

the stress must be satisfied, i.e. for 𝑪̄𝑒 = 𝑰 , both 𝜓 and 𝑺 must be
ero. In addition, to guarantee the existence of at least one minimizing
eformation, we design our energy to satisfy polyconvexity (see [90]).

For a more comprehensive overview, we refer the interested reader
to Kissas et al. [91] and the literature cited therein.

Design of energy. For the design of the energy, we employ the mul-
iplicative decomposition of 𝑪̄𝑒 into its isochoric part, det

(

𝑪̄𝑒
)−1∕3 𝑪̄𝑒,

nd its volumetric part, det
(

𝑪̄𝑒
)1∕3 𝑰 , (cf. [92]) and split the energy

additively into isochoric and volumetric contributions, i.e.,

𝜓 = 𝜓𝑖𝑠𝑜
(

det
(

𝑪̄𝑒
)−1∕3 𝑪̄𝑒

)

+ 𝜓𝑣𝑜𝑙
(

det
(

𝑪̄𝑒
))

. (8)

According to Hartmann and Neff [93], the sum of polyconvex functions
s polyconvex. For the volumetric part, 𝜓𝑣𝑜𝑙, polyconvexity is guar-

anteed if the function is convex with respect to the determinant. We
hoose a generic function suggested by [94] for this part

𝜓𝑣𝑜𝑙 = det (𝑪̄𝑒
)−𝛽 − 1 + 𝛽 ln

(

det
(

𝑪̄𝑒
))

. (9)

Since the second derivative of 𝜓𝑣𝑜𝑙 is greater or equal to zero if 𝛽 ≤ 0,
he volumetric part of the energy is convex. It remains to choose a func-
ional form for the isochoric part, 𝜓𝑖𝑠𝑜, of the energy. For living tissues,
he Ogden model [95] is well-established and polyconvex (see [93])

𝜓𝑖𝑠𝑜 =
𝑝
∑

𝑖=1

3
∑

𝑗=1

(

𝜇𝛼𝑖𝑗 − 1
)

(10)

where 𝜇𝑗 = det (𝑪̄𝑒
)−1∕3 𝜆𝑗 are the eigenvalues of the isochoric part of

𝑪̄𝑒 =
∑3
𝑖=1 𝜆𝑖 𝒎𝑖 ⊗ 𝒎𝑖 with 𝒎𝑖 denoting the corresponding eigenvectors

(see [96]). Both the number of 𝑝-Ogden terms and Ogden-exponents,
𝑖, can be adjusted according to the data.

1 Noteworthy, for elasto-plasticity and visco-elasticity the sign of the multi-
lier is always greater or equal to zero. Since living tissues are open systems,
he multiplier might be negative in case of growth and remodeling.
4

2.3. Concept of pseudo potential and homeostatic surface

In this contribution, we employ the concept of a homeostatic sur-
ace, 𝛷, introduced by Lamm et al. [80]. Similar to elasto-plasticity,

homeostatic surfaces are defined in the principal stress space of the
thermodynamically consistent driving force. They describe the home-
ostasis of living tissues, and thus, the tissue grows and remodels in
order to achieve a stress state that lies on this very surface. This be-
havior is fundamentally different to elasto-plasticity, since the interior
of the surface cannot be interpreted as an elastic regime.

Rate-independent case. In order to make the idea of homeostatic
surfaces clear, we begin with the (theoretical) case of rate-independent
growth and remodeling. In this case, the tissue must satisfy at any time
that

𝛷
(

𝜮̄
)

∶= 𝜙
(

𝜮̄
)

− 𝜎ℎ𝑜𝑚 = 0 (11)

where 𝜎ℎ𝑜𝑚 denotes the value of the homeostatic stress, while 𝜙 is a
convex, zero-valued, and non-negative potential. In analogy to elasto-
plasticity, we call the case of 𝜙 ≡ 𝑔 associative growth. In this
contribution, we restrict ourselves to this case. Additionally, we restrict
both 𝜙 and 𝑔 to be scalar-valued isotropic functions. In order to satisfy
Eq. (11) at any time, the growth multiplier, 𝛾, must be determined
ccordingly.

Rate-dependent case. Growth and remodeling is not an instan-
taneous process. To account for this time dependency, we employ a
Perzyna-type approach (cf. [97,98]). Thus, we introduce the following

𝛾 = 1
𝜂

𝛷
𝜎ℎ𝑜𝑚

(12)

with the ‘relaxation’ or ‘growth and remodeling’ time 𝜂. Rewriting the
atter equation yields

𝛷 − 𝛾 𝜂 𝜎ℎ𝑜𝑚 = 0 (13)

which must be satisfied at any time for the rate-dependent case. Con-
ceptually, we allow an under- and overstress of the homeostatic sur-
face by subtracting 𝛾 𝜂 𝜎ℎ𝑜𝑚. Over time, both 𝛷 and 𝛾 tend to zero.
Noteworthy, Eq. (13) reduces to Eq. (11) if 𝜂 = 0.

Design of potential. It remains to choose a functional form of the
homeostatic surface and the pseudo potential, respectively. In line with
e.g. Soleimani et al. [61], it seems reasonable to express it in terms of
principal stresses. Here, we additively decompose the potential into a
contribution of the principal stresses themselves as well as a potential
depending on the shear stresses

𝜙
(

𝜮̄
)

= 𝜙𝜎 (𝜎1, 𝜎2, 𝜎3) + 𝜙𝜏 (𝜏1, 𝜏2, 𝜏3) (14)

where 𝜎1 ≥ 𝜎2 ≥ 𝜎3 denote the principal stresses of 𝜮̄ =
∑3
𝑖=1 𝜎𝑖 𝒏𝑖 ⊗ 𝒏𝑖

with the corresponding eigenvectors 𝒏𝑖. In addition, the principal shear
stresses are defined as

𝜏1 =
𝜎1 − 𝜎3

2
; 𝜏2 =

𝜎1 − 𝜎2
2

; 𝜏3 =
𝜎2 − 𝜎3

2
. (15)

Since the principal stresses are ordered in a descending manner, we
realize that the first principal shear stress, 𝜏1, is the largest, and further,
all shear stresses are greater or equal to zero.

From a mechanical point of view, shear stresses are unlike to change
the volume. More precisely, we expect that a change in the determinant
of 𝑼 𝑔 solely depends on the hydrostatic part of 𝜮̄, while isochoric defor-
mations solely depend on its deviatoric part. Therefore, we investigate
the rates of the isochoric invariants [96], 𝐼𝑼𝑔

1 ∶= t r (𝑼 𝑔
)

∕det
(

𝑼 𝑔
)1∕3

and 𝐼𝑼𝑔
2 ∶= 1∕2

(

t r (𝑼 𝑔
)2 − t r

(

𝑼 2
𝑔

))

∕det
(

𝑼 𝑔
)2∕3, and the determinant

d𝐼
𝑼𝑔
1
d𝑡

= det (𝑼 𝑔
)−1∕3 dev

(

𝑼 𝑔
)

∶ dev (𝑫̄𝑔
)

(16)

d𝐼
𝑼𝑔
2
d𝑡

= det (𝑼 𝑔
)−2∕3 dev

(

t r (𝑼 𝑔
)

𝑼 𝑔 − 𝑼 2
𝑔

)

∶ dev (𝑫̄𝑔
)

(17)

d det (𝑼 𝑔
)

( ) ( ̄ )
d𝑡
= det 𝑼 𝑔 t r 𝑫𝑔 . (18)



Computers in Biology and Medicine 186 (2025) 109691H. Holthusen et al.

2

E

a
f

s

b
i
i
n
m
r
r
n

o

𝑡

𝑼
𝑪

b
m
c

Further, we insert our choice (14) into Eq. (4) and end up with the
following

𝑫̄𝑔 = 𝛾
(

𝜕 𝜙𝜎
𝜕𝜮̄

+
𝜕 𝜙𝜏
𝜕𝜮̄

)

. (19)

Lastly, by evaluating the derivatives of the sub-potentials
𝜕 𝜙𝜎
𝜕𝜮̄

=
3
∑

𝑖=1

𝜕 𝜙𝜎
𝜕 𝜎𝑖

𝒏𝑖 ⊗ 𝒏𝑖 (20)

𝜕 𝜙𝜏
𝜕𝜮̄

=
𝜕 𝜙𝜏
𝜕 𝜏1

(

𝒏1 ⊗ 𝒏1 − 𝒏3 ⊗ 𝒏3
)

+
𝜕 𝜙𝜏
𝜕 𝜏2

(

𝒏1 ⊗ 𝒏1 − 𝒏2 ⊗ 𝒏2
)

+
𝜕 𝜙𝜏
𝜕 𝜏3

(

𝒏2 ⊗ 𝒏2 − 𝒏3 ⊗ 𝒏3
)

(21)

we observe that the sub-potential 𝜙𝜏 does not affect the rate of the
determinant, since the trace of Eq. (21) is equal to zero, and thus,
q. (21) is equivalent to its deviatoric part.

3. Neural network

Architecture. The entire network consists of two feed-forward net-
works, one for the Helmholtz free energy and one for the pseudo
potential, embedded into a recurrent network architecture to take time
dependencies into account. These feed-forward networks have a similar
structure, i.e. the first layer calculates the eigenvalues of the tensorial
input, while the subsequent layer applies custom-designed activation
functions to ensure e.g. polyconvexity of the energy and convexity
of the pseudo potential. Generally, the weights of the networks can
be classified into two types. The first type influences the shape of
the corresponding curve while the second scale the contribution of
each neuron. These last weights have a clear physical interpretation,
for example, the shear and bulk modulus. A distinguish feature of
the iCANN for growth and remodeling in contrast to visco-elasticity
is the necessity to satisfy the homeostatic surface equation. To this
end, we use a local Netwon-Raphson iteration. Fig. 1 schematically
illustrates the architecture of the feed-forward networks embedded into
 recurrent network architecture.2 We discuss the design of the feed-
orward networks in the subsequent Section 3.1. We implemented the

neural network into the open-source library TensorFlow using the open-
source interface Keras. The loss during training is chosen as the mean
squared error between the experimentally obtained data and the stress
predicted by our neural network.

Regularization. As mentioned in Section 1, neural networks may
uffer from overfitting the training data. Therefore, we constrain the

optimization by the well-known method of regularizing the network’s
weights [32]. For numerical reasons, it is convenient to reformulate this
constrained problem to a penalized regression, i.e., add a regularization
term to the loss function. Here, we investigate two different cases. First,
we employ Lasso regularization (𝐿1) promoting sparsity

𝐿(𝐰,𝑺) = 1
𝑛exp

𝑛exp
∑

𝑎=1

1
𝑛data

𝑛data
∑

𝑖=1

(

𝑺 𝑖(𝑪 𝑖,𝐰) − 𝑺̂ 𝑖
)2 + 𝐿1

𝑛̃weight
∑

𝑗=1
|𝑤̃𝑖| (22)

where the first summation refers to the mean squared error (‘loss’)
etween the experimentally obtained and the predicted stress by the
CANN. Here, 𝑛exp refers to the number of experiments used for train-
ng, while 𝑛data denotes the number of data points per experiment. The
etwork’s weights are summarized in 𝐰. Further, the experimentally
easured stress is given by 𝑺̂ 𝑖. The second summation includes Lasso

egularization, where 𝑛̃weight refers to the number of weights which are
egularized. Noteworthy, this number is smaller or equal to the total
umber of weights, 𝑛weight, cf. Section 4. The penalty factor is given by

2 Notably, Fig. 1 incorporates equivalent reformulations of the constitutive
equations discussed earlier to reduce the number of weights. For further details
n these reformulations, please refer to Section 3.1.2.
5

𝐿1. Second, we utilize ridge regression (𝐿2)

𝐿(𝐰,𝑺) = 1
𝑛exp

𝑛exp
∑

𝑎=1

1
𝑛data

𝑛data
∑

𝑖=1

(

𝑺 𝑖(𝑪 𝑖,𝐰) − 𝑺̂ 𝑖
)2 + 𝐿2

𝑛̃weight
∑

𝑗=1
𝑤̃2
𝑖 (23)

which is well-established in machine learning and is beneficial in the
course of multicollinearity.

Time discretization. To solve Eq. (4), we need to employ a suitable
time discretization scheme. Therefore, we define the time interval

∈
[

𝑡𝑛, 𝑡𝑛+1
]

. An explicit exponential integrator scheme is used to
keep the numerical effort during training the network low, but also
to ensure that only the sub-potential 𝜙𝜎 influences the determinant of
𝑔 . For a more detailed explanation, we kindly refer to [28]. With
̇ 𝑔 = 2𝑼 𝑔𝑫̄𝑔𝑼−1

𝑔 𝑪𝑔 at hand, our update scheme reads as follows

𝑪𝑔𝑛+1 = 𝑼 𝑔𝑛 exp

(

2𝛥𝑡 𝛾 𝜕 𝜙
(

𝜮̄𝑛
)

𝜕𝜮̄𝑛

)

𝑼 𝑔𝑛 , 𝑼 𝑔𝑛+1 = +
√

𝑪𝑔𝑛+1 (24)

with 𝛥𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛. Noteworthy, the latter cannot be directly solved,
since the growth multiplier must be determined using a local Newton–
Raphson iteration.

Newton–Raphson iteration. In each time step, we have to meet
the rate-dependent homeostatic surface Eq. (13). To this end, we em-
ploy a local Newton–Raphson iteration within the architecture of our
network. Having in mind Eqs. (1), (2), (11), and (24), we can deduce
that Eq. (13) is solely a function of the unknown 𝛾 since 𝛷𝑛+1 =
𝛷
(

𝜮̄𝑛+1

(

𝑪̄𝑒𝑛+1

(

𝑪𝑛+1,𝑼 𝑔𝑛+1 (𝛾)
)))

. To perform the Newton–Raphson
iteration, we compute the Jacobian using algorithmic differentiation.
For a better understanding of the iteration procedure, Algorithm 1
provides a pseudo code implemented within the network’s architecture.
For reasons which will be discussed in Section 3.1.2, we replace some
quantities in the code by their scaled version, ̂(∙).

Algorithm 1 Newton-Raphson iteration to determine 𝛾̂

1: Input: tolerance 𝜖, weights 𝐰, 𝛥𝑡, 𝑪𝑛+1,
𝜕𝜙̂(𝜮̄𝑛)
𝜕𝜮̄𝑛

, 𝑼 𝑔𝑛
2: Output: 𝛾̂
3: Set 𝛾̂ ← 0
4: for 𝑘 = 1 to 30 do
5: 𝑪𝑔𝑛+1 ← 𝑼 𝑔𝑛 exp

(

2𝛥𝑡 ̂𝛾 𝜕𝜙̂(𝜮̄𝑛)
𝜕𝜮̄𝑛

)

𝑼 𝑔𝑛 ⊳ cf. Eq. (28)

6: 𝑼 𝑔𝑛+1 ← +
√

𝑪𝑔𝑛+1

7: 𝑪̄𝑒𝑛+1 ← 𝑼−1
𝑔𝑛+1

𝑪𝑛+1𝑼−1
𝑔𝑛+1

8: Compute 𝜓
(

𝑪̄𝑒𝑛+1

)

and 𝜮̄𝑛+1

9: Compute 𝜙̂
(

𝜮̄𝑛+1
)

10: 𝑟̂← 𝜙̂
(

𝜮̄𝑛+1
)

− 1 − 𝛾̂ 𝑤̂𝜂 ⊳ see Eq. (27)
11: if |𝑟̂| < 𝜖 then
12: break
13: end if
14: 𝑟̂′ ← 𝜕 ̂𝑟

𝜕 ̂𝛾
15: 𝛾̂ ← 𝛾̂ − 𝑟̂

𝑟̂′
16: end for
17: return 𝛾

3.1. Design of feed-forward networks

The presented constitutive framework and network architecture are
roadly applicable. To capture the specific behavior of living tissues, we
ust design governing scalar quantities like energy and potential. This

ontribution focuses on how to achieve such designs while incorpo-
rating constitutive knowledge upfront. The physics-based architecture
significantly reduces the number of weights in (inelastic) CANNs com-
pared to standard neural networks. This reduction improves training
robustness but may limit network generality — both perspectives have

merit. Our goal is to outline the fundamental design strategy, reducing
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Fig. 1. Schematic of the iCANN architecture, featuring two feed-forward neural networks depicted in blue and orange, corresponding to the Helmholtz free energy and the pseudo
otential, respectively. These feed-forward networks are interconnected to update the inelastic stretch tensor 𝑼 𝑔 . They are integrated into a recurrent network framework to handle
he propagation of state variables from the previous time step (denoted by subscript 𝑛) through time. At each time step (denoted by subscript 𝑛 + 1), current inputs are supplied
o the network, and the corresponding outputs are computed. Each time step is constrained to satisfy the homeostatic surface equation.
t
p

each network to a minimal size, though complexity can be easily scaled,
as demonstrated in [28,79,99].

3.1.1. Feed-forward network: Helmholtz free energy
As mentioned in Section 2.2, we decompose the energy according

to the isochoric-volumetric decomposition of 𝑪̄𝑒 into an isochoric and a
volumetric contribution, i.e. 𝜓 = 𝜓𝑖𝑠𝑜

(

𝜇1, 𝜇2, 𝜇3
)

+𝜓𝑣𝑜𝑙
(

det
(

𝑪̄𝑒
))

. Thus,
it is straightforward to ensure polyconvexity, the volumetric growth
condition, and the normalization of the energy. The feed-forward net-
work’s architecture of the energy is illustrated in Fig. 2 and can be

ritten as follows

𝜓 = 𝑤𝜓0,2
(

det
(

𝑪̄𝑒
)𝑤𝜓0,1 − 1 −𝑤𝜓0,1 ln

(

det
(

𝑪̄𝑒
))

)

+ 𝑤𝜓1,2

(

𝜇
𝑤𝜓1,1
1 + 𝜇

𝑤𝜓1,1
2 + 𝜇

𝑤𝜓1,1
3 − 3

)

.
(25)

In this sense, 𝑤𝜓0,2 can be mechanically interpreted as the material’s
elastic bulk modulus, while the elastic shear modulus is denoted by
𝑤𝜓1,2. Further, 𝑤𝜓0,1 must be greater than or equal to zero to guarantee
convexity of the volumetric contribution. Of course, we can increase the
complexity of both energy contributions arbitrarily. For instance, the
number of 𝑝-Ogden terms in Eq. (10) can be increased which increases
the number of neurons in our network, respectively. Similar, we might
add polynomial terms to the volumetric energy (see [28]). However,
for the purpose of this contribution, our choices are sufficient.

3.1.2. Feed-forward network: Pseudo potential
Since we consider associative growth in this contribution, our net-

ork discovers only the potential 𝜙. Further, we need to calculate the
rowth multiplier, 𝛾, in each iteration step to satisfy Eq. (13). Within

the neural network, the parameters 𝜎ℎ𝑜𝑚 as well as 𝜂 are considered as
weights to be determined during training. However, we note that one
of these parameters is redundant. Therefore, we introduce the modified
homeostatic surface, 𝛷̂ ∶= 𝛷∕𝜎ℎ𝑜𝑚 = 𝜙̂

(

𝜮̄
)

− 1 with 𝜙̂ = 𝜙∕𝜎ℎ𝑜𝑚. Thus,
we solve the following equation within each step

𝑟(𝛾) ∶= 𝜙̂ − 1 − 𝛾 𝑤𝜂 = 0 (26)

where 𝑤𝜂 is a weight to be determined during training. Due to the
assumption of associative growth, we can exchange 𝑔 by 𝜙 in Eq. (4).
However, this means we have to discover both 𝜙 and 𝜙̂. Therefore, we
adjust Eq. (26), i.e.,
6

̂(𝛾̂) ∶= 𝜙̂ − 1 − 𝛾̂ 𝑤̂𝜂 = 0 (27)
where 𝛾̂ ∶= 𝛾 𝜎ℎ𝑜𝑚 and 𝑤̂𝜂 ∶= 𝑤𝜂
𝜎ℎ𝑜𝑚

. Consequently, the evolution
equation for 𝑫̄𝑔 can be expressed as follows

𝑫̄𝑔 = 𝛾̂
𝜕𝜙̂
𝜕𝜮̄

(28)

which we use in combination with Eq. (27) within the network’s
architecture. Noteworthy, this is only due to reduce the number of
redundant weights. From a mechanical point of view, the theoretical
framework remains unchanged.

Next, we need to design a generic formalism of our network for
the pseudo potential, which must be able to discover homeostasis.
Homeostasis is characterized by a profound asymmetry in tension and
compression. In particular, tensional homeostasis refers to a homeo-
static state which is achieved due to the rise of tensional stresses. To
enable our network to differentiate between tension and compression,
we propose a particular set of custom-designed activation functions:
max (−(∙), 0), ln (cosh(∙)), max ((∙), 0). The first activation function ac-
counts only for compressive stresses, the second is symmetric with
respect to tension and compression, and the last takes tensional stresses
into account. With these custom-designed functions at hand as well as
the conceptual design discussed in Section 2.3, we design our network
as shown in Fig. 3. Equivalently, we can express the network in its
equation form as

𝜙̂ = 𝑤𝜙
𝜎 ,1

(

max
(

−𝜎1, 0
)

+ max
(

−𝜎2, 0
)

+ max
(

−𝜎3, 0
))

+ 𝑤𝜙
𝜎 ,2

(

ln
(

cosh
(

𝑤𝜙
𝜎 ,3 𝜎1

))

+ ln
(

cosh
(

𝑤𝜙
𝜎 ,3 𝜎2

))

+ ln
(

cosh
(

𝑤𝜙
𝜎 ,3 𝜎3

)))

+ 𝑤𝜙
𝜎 ,4

(

max
(

𝜎1, 0
)

+ max
(

𝜎2, 0
)

+ max
(

𝜎3, 0
))

+ 𝑤𝜙
𝜏 ,1

(

max
(

−𝜏1, 0
)

+ max
(

−𝜏2, 0
)

+ max
(

−𝜏3, 0
))

+ 𝑤𝜙
𝜏 ,2

(

ln
(

cosh
(

𝑤𝜙
𝜏 ,3 𝜏1

))

+ ln
(

cosh
(

𝑤𝜙
𝜏 ,3 𝜏2

))

+ ln
(

cosh
(

𝑤𝜙
𝜏 ,3 𝜏3

)))

+ 𝑤𝜙
𝜏 ,4

(

max
(

𝜏1, 0
)

+ max
(

𝜏2, 0
)

+ max
(

𝜏3, 0
))

.

(29)

Here, the weights 𝑤𝜙⋆,3 have a similar meaning as the weights 𝑤𝜓⋆,1 in
case of the energy (cf. Section 3.1.1). The remaining weights tell us
he value of the homeostatic stress, 𝜎ℎ𝑜𝑚, as well as the ratio between
rincipal stresses and principal shear stresses. Thus, we might also learn

whether growth and remodeling takes place in an isochoric manner (cf.
Eqs. (16)–(21)).

Remark 1. To discover tensional homeostasis, we could exclude the
activation function max −(∙), 0 a priori. However, first to be able
( )
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Fig. 2. Schematic illustration of our feed-forward network for the Helmholtz free energy, 𝜓 , embedded into the recurrent network architecture. The first layer computes the
eigenvalues of 𝑪̄𝑒, subsequently the deformation is decomposed into isochoric and volumetric deformations. The last layer applies custom-designed activation functions including
 first set of weights, 𝑤𝜓

⋆,1. These functions are multiplied by a second set of weights, 𝑤𝜓
⋆,2. Noteworthy, det

(

𝑪̄𝑒
)

= 𝜆1𝜆2𝜆3 holds.
Fig. 3. Schematic illustration of our feed-forward network for the pseudo potential, 𝜙̂, embedded into the recurrent network architecture. The first layer computes the eigenvalues
of 𝜮̄, subsequently the principal shear stresses are computed. The last layer applies custom-designed activation functions including a first set of weights, 𝑤𝜙

⋆,3. These functions are
multiplied by a second set of weights, 𝑤𝜙

⋆.
to discover possible compressional homeostasis, second to be more
general, and third – most importantly – to keep user-biased discovery at
 minimum, we include this particular function as well. Further, due to
he definition of the principal shear stresses (15), we could reduce the
7

number of neurons in the network, since the shear stresses are greater
or equal to zero. Thus, max

(

−𝜏1, 0
)

= max
(

−𝜏2, 0
)

= max
(

−𝜏3, 0
)

≡ 0
as well as max

(

𝜏1, 0
)

= 𝜏1, max
(

𝜏2, 0
)

= 𝜏2, and max
(

𝜏3, 0
)

= 𝜏3.
Nevertheless, to illustrate the network in its most generic form, we
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do not further adjust the network. Noteworthy, during training the
corresponding weights should ideally turn out to be zero.

Remark 2. Within the network architecture shown in Fig. 3, we
considered only one specific linear combination of principal stresses,
namely the principal shear stresses. Suppose we have a convex, zero-
valued, and non-negative function, 𝑓 (𝑔), with 𝑔 = 𝑎 𝜎1 + 𝑏 𝜎2 + 𝑐 𝜎3,
where 𝑎, 𝑏, 𝑐 ∈ R. We can study the convexity of 𝑓 by evaluating the
eigenvalues of its hessian. In our case, the only non-zero eigenvalue
of the hessian is 𝜕2𝑓

𝜕 𝑔2 (𝑎2 + 𝑏2 + 𝑐2). Since 𝑓 (𝑔) is convex, its second
derivative is greater than or equal to zero, and thus the hessian is
positive semidefinite. Thus, 𝑓 is also convex with respect to the prin-
cipal stresses. This result allows us to linearly combine the principal
stresses, and thus, to extend the architecture of the pseudo potential.
For example, it would be possible to consider the mean of the principal
tresses, i.e., the hydrostatic pressure. The works of e.g. Lubarda and
oger [72] and Himpel et al. [73] describe growth and remodeling

using the hydrostatic pressure. More generally, we could consider 𝑎, 𝑏, 𝑐
as additional weights to be discovered during training. For the time
being, we consider the chosen architecture to be sufficient enough.

4. Results

In this section, we aim to explore the capabilities of iCANNs, en-
anced by homeostatic surfaces, to automatically discover a material
odel for tissue equivalents, assess its predictive accuracy at the ma-

erial point level, and evaluate its ability to qualitatively represent
tructural deformations. To this end, we investigate two experimental
etups from the literature [64]. Each setup follows two steps: (i) the

specimen remains undeformed until tensile homeostasis is achieved
fter a period of time, and (ii) the homeostatic force is perturbed
y either stretching or compressing the specimen to examine whether
omeostasis can be restored. The first setup involves a stripe specimen
lamped at both edges (Section 4.1), while the second setup examines
 cross specimen, where all four arms are clamped (Section 4.2). For a
etailed description of the experimental setups, the preparation of the
pecimens and the testing device, we kindly refer to [64].

Stress–strain data are required to train the neural network. From
he force-time curves provided in the aforementioned work, we pre-

computed the engineering stress in the principal loading directions,
known as the first Piola–Kirchhoff stress 𝑭 𝑺, by dividing the force by
the cross-sectional area of 40

[

mm2] of the stripe specimen and the
arms of the cross specimen, respectively. From this we calculated the
second Piola–Kirchhoff stress.

In addition, training the network necessitates the entire stress and
tretch tensors. Therefore, we assume that the stress state in the first
xperimental setup is nearly uniaxial. For the cross specimen, we
imilarly assume an approximately biaxial stress state. However, since

the network’s input is the right Cauchy Green tensor 𝑪 , we also need
easurements of the full strain field, which are not provided in the

experimental data. Thus, we further assume that the stretch in the off-
principal directions is negligible and that the corresponding stress is
zero.3 This approach is comparable to assuming an incompressible ma-
erial behavior.4 We enforce these constraints by Lagrange multipliers,
ee Appendix A.1 for the theoretical derivation.

We acknowledge that the assumptions of homogeneous stress/strain
tates, negligible stretch, and zero associated stress affect our findings.

3 In the first setup, this applies to two directions, while in the biaxial case,
it applies only to the direction perpendicular to the biaxial loading.

4 Since no external load is applied in the first loading step, yet a rise
n stress (homeostasis) is observed, assuming incompressibility leads to un-
hysical results. The entire stress tensor 𝑺 would be equal to the zero
ensor.
8

Table 1
Discovered weights for the stripe specimen (uniaxial stress state) with 𝐿1 and 𝐿2
regularization. The weights correspond to the feed-forward networks of the Helmholtz
ree energy (25) and the homeostatic surface (29). The second column, ‘Regularized’,

indicates whether the regularization factor associated with the weight is zero (‘No’) or
if regularization, 𝐿1 or 𝐿2, is applied (‘Yes’).

Weights Regularized 𝐿1 = 0.01 𝐿2 = 0.001
𝑤𝜓

0,1 No 1.6990947 1.2036339
𝑤𝜓

0,2 Yes 0.10240719 0.07181329
𝑤𝜓

1,1 No −3.5541244 1.2016658
𝑤𝜓

1,2 Yes 0 0.3978735
𝑤𝜙
𝜎 ,1 Yes 0 0

𝑤𝜙
𝜎 ,2 Yes 0 0

𝑤𝜙
𝜎 ,3 No 6.075556e−08 3.980602e−08

𝑤𝜙
𝜎 ,4 Yes 0.02765466 0.03391496

𝑤𝜙
𝜏 ,1 Yes 0 0

𝑤𝜙
𝜏 ,2 Yes 0 0

𝑤𝜙
𝜏 ,3 No 3.5020828e−09 7.274134e−08

𝑤𝜙
𝜏 ,4 Yes 0 0.03408322

𝑤̂𝜂 Yesa 0.43815053 0.26240048

a Regularized with 𝐿2 = 0.001.

However, at this stage of development, we consider these assumptions
acceptable.

In all simulations, we used the MeanSquaredError class provided by
eras, which calculates the loss between the experimentally observed
nd predicted stress. Further, for optimization we choose the ADAM
ptimizer with a learning rate of 0.001.

4.1. Discovering a model for the stripe specimen

We begin with evaluating the iCANN for the stripe specimen. The
experimental curves, expressed in terms of the second Piola–Kirchhoff
stress, are shown in Fig. 5 for both stretching and compressing the
specimen. Homeostasis is reached after seventeen hours, during which
no deformation is applied, i.e., 𝑪 = 𝑰 . Subsequently, the force in the
longitudinal direction is perturbed by ±10% of the homeostatic force
measured at 𝑡 = 17 [h]. Noteworthy, this perturbation is conducted
in a displacement-driven manner. Consequently, the corresponding
components of the right Cauchy Green tensor are 𝐶11 = 0.99505347
[–] (compressing) and 𝐶11 = 1.0037114 [–] (stretching). As explained
bove, the remaining diagonal terms of 𝑪 remain equal to one.

Discovery. Our discovered weights are listed in Table 1. We in-
estigated two types of regularization strategies: 𝐿1 regularization,

also known as Lasso regularization, and 𝐿2 regularization, commonly
eferred to as ridge regression. The regularization parameters were
elected based on prior experience with CANNs (see Section 1). For

training our network, we exclusively used the experimental data for
compressing the specimen (see Fig. 5). For the uniaxial stripe specimen,
we set the maximum number of epochs equal to 4000 epochs (see
Fig. 4). The experimental data for stretching remained unseen by the
etwork and were utilized to assess its predictive capabilities. For
oth regularization strategies, we observed good agreement between
he experimental data and the model’s response for both training and

testing phases.
We note that the experimental data exhibit a noticeable jump in

the stress-time curve when the load is perturbed. In contrast, the
jump in the network’s prediction is several magnitudes smaller than
that observed in the experiments. We attribute this discrepancy to
two potential reasons: (i) The perturbation in the experimental setup
occurs in a quasi-instantaneous manner relative to the duration of
the experiment and the growth and remodeling time. In the network
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architecture, we assume that the acceleration of displacement is negli-
ibly small — a standard assumption. However, this may lead us to

overlook inertia effects that could influence the stress response. (ii)
We lack detailed information about the testing device, which may not
be designed to accurately measure such instantaneous perturbations,
potentially resulting in overmodulation.

We assume an initially isotropic behavior, and thus, introduced an
sochoric and a volumetric response. As our network is interpretable,
e can attribute the (elastic) shear modulus, 𝜇, and the (elastic) bulk
odulus, 𝜅, to the discovered weights at the (theoretical) initial state
̄ 𝑒 = 𝑪𝑔 = 𝑪 = 𝑰 . For the architecture chosen, we find 𝜇 =

𝑤𝜓1,2
(

𝑤𝜓1,1
)2

and 𝜅 = 4𝑤𝜓0,2
(

𝑤𝜓0,1
)2

(see Appendix A.2). It is inter-
esting to note that the shear modulus turns out to be zero in case of
Lasso regularization. From a mechanical perspective, a non-negative
shear modulus is acceptable; however, in reality, any material exhibits
at least a small amount of shear resistance. Specifically, to perform
quasi-static numerical simulations in an implicit manner, we encoun-
tered difficulties in inverting the stiffness matrix, as the corresponding
material tangent is positive semi-definite.

This prompts us to consider the underlying reason for this behavior.
Essentially, we are attempting to determine two independent material
parameters using a one-dimensional stress-time curve. The solution to
this problem is inherently non-unique. Since Lasso regularization penal-
izes all non-zero weights, the optimal loss can be achieved using only
one material parameter, which may lead to the observed challenges.
We discuss this issue in further detail in Section 5.

Structural performance. Lastly, we are interested in the perfor-
mance of our discovered material model in a structural simulation.

herefore, we implemented a material subroutine into the Finite Ele-
ent software FEAP [100] and made the material subroutine accessible

to the public. For visualization, we utilized the open-source package
ParaView [101]. We discretized the problem using 4580 Q1 standard
finite elements (see Fig. 6), as we do not expect severe locking. A simi-
lar boundary value problem for growth and remodeling was performed
in [81]. Thus, we kindly refer the reader to a detailed description of
the boundary problem described therein.

As previously mentioned, the parameters obtained from Lasso reg-
ularization are not suitable for use in implicit structural simulations.
Therefore, we use the parameters obtained using the 𝐿2 regularization.
Fig. 7 shows the stress contour plots of the second Piola–Kirchhoff
stress, 𝑺, at different time steps. Initially, as expected, the specimen
contracts even though no external deformation is applied. From a
ualitative perspective, our discovered model performs well during this
hase.

However, over time, we observe a strain localization occurring
within the edge elements. Ultimately, these two rows of elements
9

Table 2
Main diagonal components of the right Cauchy Green tensor, 𝑪 at 𝑡 > 27 [h].
The loading scenarios correspond to the biaxial and semi-biaxial setups of the cross
pecimen. For both setups, the third loading direction remains always unchanged,

i.e., 𝐶33 = 1.0 [−], while we further assume zero stress in this very direction (see
Appendix A.1).

Loading Biaxial Semi-biaxial

𝐶11 [−] 𝐶22 [−] 𝐶11 [−] 𝐶22 [−]

Stretching 1.0044529e+00 1.0041029e+00 1.0046307e+00 1.0
Compressing 9.9416188e−01 9.9379366e−01 9.9408145e−01 1.0

become extensively stretched while the remaining elements in the
enter of the specimen contract, causing no convergence after 10.4
h]. This behavior is unexpected and does not align with experimental
bservations, indicating that certain limitations exist. These limitations
ill be discussed in further detail in Section 5.

4.2. Discovering a model for the cross specimen

We proceed to evaluate the iCANN using the cross specimen, which
is distinguished by two principal loading directions corresponding to
the arms of the cross. These arms are clamped to facilitate
displacement-driven loading. The experimental stress-time curves, rep-
resented in terms of the second Piola–Kirchhoff stress, are illustrated in
Figs. 9 through 12 for both stretching and compressing the specimen.
Homeostasis is achieved after twenty-seven hours, during which no
eformation is applied, signifying that 𝑪 = 𝑰 . Two experimental setups
re explored: (i) a biaxial loading scenario in which the forces in both
rincipal loading directions are perturbed by ±20% at 𝑡 = 27 [h], and
ii) a semi-biaxial loading scenario where the forces in one principal

loading direction are perturbed by 𝑡 = 27 [h], while the perpendicular
loading direction remains undeformed. The resulting instantaneous
deformations, expressed in terms of the right Cauchy–Green tensor, are
summarized in Table 2.

Discovery. The weights we identified are detailed in Table 3. In
this investigation, we explored two regularization strategies: 𝐿1 and 𝐿2
regularization. For training our network, we utilized only the experi-
mental data from the biaxial stretching of the specimen (see Fig. 9).

he maximum number of training epochs was set to 8000 (see Fig. 8).
The experimental data for the biaxial compression of the speci-

men, along with the data for both stretching and compressing in a
semi-biaxial manner, were not presented to the network during train-
ing; instead, they were reserved for evaluating the model’s predictive
capabilities. For both regularization approaches, we observe a good
agreement between the experimental results and the model’s responses
during both the training and testing phases.
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Fig. 5. Discovered model for the stripe specimen (uniaxial stress state). The experimental data is taken form [64]. In both plots, the black curve represents the experimental mean
from three specimens, while the shaded areas show the mean ± the standard error of the mean. The stress is plotted in terms of 𝑺 in loading direction. Left: Training results for
𝐿1 and 𝐿2 regularization. In the experiment, the homeostatic force is reduced by −10% at 𝑡 = 17 [h]. Right: Testing results for 𝐿1 and 𝐿2 regularization, where the homeostatic
force is increased by +10% at 𝑡 = 17 [h].
Fig. 6. Finite element discretization with 4580 elements for the stripe specimen. The
thickness of the specimen is equal to 4 [mm], while the cross section area is equal to
40

[

mm2] in the center of the specimen. For discretization in thickness direction, 5
elements were used across the thickness.

Despite this, the model’s predictions for the test data under semi-
biaxial compression, as illustrated in Fig. 12, exhibit notable discrep-
ancies. Several factors may contribute to this deviation. Firstly, the
continuum mechanical formulation inherently predicts the same home-
ostatic stress in this homogeneous loading scenario across both loading
directions. This is a fundamental assumption in the isotropic formula-
tion of the homeostatic surface. Incorporating structural tensors could
allow for direction-specific homeostatic stresses, potentially improving
the model’s accuracy. Whether this is really necessary is out of the
scope of this contribution. Secondly, the standard error of the mean
between the two loading directions in this particular setup is relatively
high. The extent of homeostatic stresses in each direction may also be
influenced by the inherent uncertainty in the experimental data — a
factor that is not accounted for in the deterministic approach employed
here. Lastly, as already discussed in [64], the applied deformation may
trigger proliferation, resulting in a shift in the homeostatic stress that
is not considered in the current model.

Notably, a significant jump is evident in the experimental data,
which is not mirrored in the model response. We attribute this dis-
crepancy to the same factors discussed previously concerning the stripe
specimen.

We remain focused on identifying the (elastic) material parameters.
However, in this case, both regularization methods resulted in a shear
10
modulus of zero, rendering implicit structural simulation impractical.
This outcome is somewhat counterintuitive; one might expect that
more complex loading scenarios (such as biaxial loading compared
to uniaxial) would provide additional information, leading to a more
accurate model discovery.

One possible explanation is that when an isotropic material is
stretched or compressed biaxially with similar magnitudes in the per-
pendicular loading directions (as shown in Table 2), the stress response
remains consistent. Consequently, this setup does not impart additional
information regarding the material’s underlying behavior.

Thus, one might consider using either the stretching or compressing
semi-biaxial data for training. However, a closer examination of the
experimental data in Figs. 11 through 12 reveals no clear distinction
between the two stress components, 𝑆11 and 𝑆22, even after the per-
turbation is applied. This lack of differentiation could be attributed to
the perturbation being insufficient to elicit a clear response given the
non-proportional loading conditions.

We hypothesize that extended non-proportional loading may better
reveal the nonlinear material behavior and potentially discover both
material parameters in question. This issue concerning data sparsity
will be discussed in more detail in Section 5.

5. Discussion and current limitations

The results from the previous section demonstrate that the iCANN,
enhanced by homeostatic surfaces, successfully uncovers tensional
homeostasis. However, as with any early stage approach, we encoun-
tered certain limitations during the discovery process and structural
simulations, which we will discuss in the following section.

Discussion of activation functions. First, we would like to discuss
the choice of activation functions. As noted in Section 3.1.2, we in-
cluded the negative maximum function, though it may be unnecessary
for tensional homeostasis. Alternatively, we could replace it with the
absolute value function, which satisfies the pseudo potential constraints
as well. The discovered weights are listed in Tables 4 (stripe) and 5
(cross).

With 𝐿1 regularization, the weights are zero, except for 𝑤𝜙𝜏 ,𝐴𝐵 𝑆 in
Table 5. Additionally, 𝑤𝜙𝜏 ,𝐴𝐵 𝑆 = 𝑤𝜙𝜏 ,4 across specimens and regulariza-
tion, as the absolute value function equals the positive maximum due
to the non-negative principal shear stresses.

The key result is 𝑤𝜙𝜎 ,𝐴𝐵 𝑆 in Table 4. For our one-dimensional
stress-time data, principal stresses are non-negative. However, negative
principal stress may occur in more complex deformation states, and
thus, compressive stresses could contribute to the homeostatic surface,
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Fig. 7. Stress contour plots at different time steps for the discovered model of the stripe (see Fig. 5). The stress 𝑆11 is plotted in longitudinal direction. On both edges, the specimen
is fully clamped. The black lines present the undeformed shape of the specimen. No convergence was achieved after 𝑡 = 10.4 [h].
Fig. 8. Loss during training of the iCANN for the cross specimen (biaxial stress state). Left: Training with 𝐿1 regularization, cf. Table 3. Right: Training with 𝐿2 regularization,
cf. Table 3. The loss is plotted on a logarithmic scale. In both cases, 8000 epochs were used.
i.e., abs(𝜎𝑖) ≥ 0 for 𝜎𝑖 ≤ 0. This contradicts the concept of tensional
homeostasis.

Thus, while incorporating more activation functions may enhance
a generic iCANN, caution is required. Sparse data can lead to non-
unique or inaccurate weights, misrepresenting material behavior. To
overcome this particular issue, we could have subjected the specimen
11
to external compression. This loading scenario should teach the neural
network that including the absolute value function is not allowed to
contribute to the pseudo potential. However, this is not apparent from
the available data.

Limitations of structural simulation. Next, we address the un-
stable behavior observed in the structural simulation of the stripe
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Fig. 9. Training. Discovered model for the cross specimen (biaxial stress state) for 𝐿1 and 𝐿2 regularization. The homeostatic force is increased by +10% at 𝑡 = 27 [h]. The
experimental data is taken form [64]. In both plots, the black curve represents the experimental mean from three specimens, while the shaded areas show the mean ± the standard
rror of the mean. The stress is plotted in terms of 𝑺 in both loading directions. Left: Stress in the first loading direction. Right: Stress in the perpendicular loading direction.
Fig. 10. Testing. Discovered model prediction for the cross specimen (biaxial stress state) for 𝐿1 and 𝐿2 regularization. The homeostatic force is decreased by −10% at 𝑡 = 27
[h]. The experimental data is taken form [64]. In both plots, the black curve represents the experimental mean from three specimens, while the shaded areas show the mean ±
he standard error of the mean. The stress is plotted in terms of 𝑺 in both loading directions. Left: Stress in the first loading direction. Right: Stress in the perpendicular loading
irection.
Fig. 11. Testing. Discovered model prediction for the cross specimen (semi-biaxial stress state) for 𝐿1 and 𝐿2 regularization. The experimental data is taken form [64]. In both
lots, the black curve represents the experimental mean from three specimens, while the shaded areas show the mean ± the standard error of the mean. The stress is plotted
n terms of 𝑺 in both loading directions. Left: Stress in the principal loading direction, where the homeostatic force is increased by +10% at 𝑡 = 27 [h]. Right: Stress in the
erpendicular loading direction, which is not actively perturbed by the experimental device, though stress may still be affected indirectly.
i

specimen (Fig. 7). In Section 4, we derived formulas for the initial
hear and bulk moduli. From these, we compute the Young’s modulus,
= 9 𝜅 𝜇

3 𝜅+𝜇 = 1.79504 [μN∕mm2], governing stress–strain relations for
uniaxial loading, and Poisson’s ratio, 𝜈 = 3 𝜅−2𝜇

6 𝜅+2𝜇 = −0.2189 [−], which
controls lateral contraction under uniaxial deformation. It is interesting
12
to see that Poisson’s ratio is even negative for the linear approximation
n terms of the linearized theory (cf. Appendix A.2). After 𝑡 = 8 [h],

we observed a strain concentration localized in the edge elements,
suggesting instability. This behavior may have several causes, but we
offer one primary explanation.



Computers in Biology and Medicine 186 (2025) 109691H. Holthusen et al.

p
i
p

i

1
g
s
l
p
o
w

a
i
d
h

Fig. 12. Testing. Discovered model prediction for the cross specimen (semi-biaxial stress state) for 𝐿1 and 𝐿2 regularization. The experimental data is taken form [64]. In both
lots, the black curve represents the experimental mean from three specimens, while the shaded areas show the mean ± the standard error of the mean. The stress is plotted
n terms of 𝑺 in both loading directions. Left: Stress in the principal loading direction, where the homeostatic force is decreased by −10% at 𝑡 = 27 [h]. Right: Stress in the
erpendicular loading direction, which is not actively perturbed by the experimental device, though stress may still be affected indirectly.
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Table 3
Discovered weights for the cross specimen (biaxial stress state) with 𝐿1 and 𝐿2
regularization. The weights correspond to the feed-forward networks of the Helmholtz
free energy (25) and the homeostatic surface (29). The second column, ‘Regularized’,
indicates whether the regularization factor associated with the weight is zero (‘No’) or
f regularization, 𝐿1 or 𝐿2, is applied (‘Yes’).
Weights Regularized 𝐿1 = 0.01 𝐿2 = 0.001
𝑤𝜓

0,1 No 2.168842 3.1134224
𝑤𝜓

0,2 Yes 0.27726683 0.36447218
𝑤𝜓

1,1 No 1.3061364 −0.2970376
𝑤𝜓

1,2 Yes 0 0
𝑤𝜙
𝜎 ,1 Yes 0 0

𝑤𝜙
𝜎 ,2 Yes 0 0

𝑤𝜙
𝜎 ,3 No 6.806422e−08 0

𝑤𝜙
𝜎 ,4 Yes 0.01459178 0.01457657

𝑤𝜙
𝜏 ,1 Yes 0 0

𝑤𝜙
𝜏 ,2 Yes 0 0

𝑤𝜙
𝜏 ,3 No 2.7375126e−08 9.1654684e−08

𝑤𝜙
𝜏 ,4 Yes 0.0012281 0.01357422

𝑤̂𝜂 Yesa 0.27317414 0.49805772

a Regularized with 𝐿2 = 0.001.

Achieving the homeostatic stress (Fig. 5), which exceeds 𝜎ℎ𝑜𝑚 ≥
0 [μN∕mm2], requires a very high longitudinal strain — under the
iven assumptions 𝜀 = 𝜎ℎ𝑜𝑚

𝐸 . While this explanation assumes a linear
tress–strain relationship – which does not strictly apply – it high-
ights the core issue: The homeostatic stress is a unique material
arameter, whereas the remaining parameters are non-unique in the
ne-dimensional case. This results in overly soft material behavior
hen considering structural response.

To support our explanation, we reran the structural simulation,
increasing the weight 𝑤𝜓1,2 by a factor of 102. The deformed struc-
ture, shown in Fig. 13, now exhibits a more realistic deformation and
chieves a fully converged solution. Additionally, the growth multiplier
s plotted, showing that once the force is perturbed in a displacement-
riven manner at 𝑡 = 17 [h], growth and remodeling occur until
omeostasis is restored, where the multiplier reaches zero.

While this does not definitively prove that our explanation is the
sole cause of the instability, it demonstrates that the iCANN framework,
enhanced by homeostatic surfaces, provides good qualitative and quan-
titative results at the material point level and reasonable results at the
13

i

Table 4
Discovered weights for the stripe specimen (uniaxial stress state) with 𝐿1 and 𝐿2
regularization. We replaced the max (−(∙), 0) activation function by the abs (∙) function

ith the corresponding weights 𝑤𝜙
𝜎 ,𝐴𝐵 𝑆 and 𝑤𝜙

𝜏 ,𝐴𝐵 𝑆 . The second column, ‘Regularized’,
indicates whether the regularization factor associated with the weight is zero (‘No’) or
if regularization, 𝐿1 or 𝐿2, is applied (‘Yes’).

Weights Regularized 𝐿1 = 0.01 𝐿2 = 0.001
𝑤𝜓

0,1 No 1.7982913 1.5855898
𝑤𝜓

0,2 Yes 0.08166084 0.02207945
𝑤𝜓

1,1 No −0.2862283 2.0337853
𝑤𝜓

1,2 Yes 0 0.08938348
𝑤𝜙
𝜎 ,𝐴𝐵 𝑆 Yes 0 0.00010657

𝑤𝜙
𝜎 ,2 Yes 0 0

𝑤𝜙
𝜎 ,3 No 7.898215e−07 3.9903475e−07

𝑤𝜙
𝜎 ,4 Yes 0.02767334 0.00130172

𝑤𝜙
𝜏 ,𝐴𝐵 𝑆 Yes 0 0.02694412

𝑤𝜙
𝜏 ,2 Yes 0 0

𝑤𝜙
𝜏 ,3 No 1.1955261e−08 1.10272524e−07

𝑤𝜙
𝜏 ,4 Yes 0 0.02694412

𝑤̂𝜂 Yesa 0.44342846 0.31261802

a Regularized with 𝐿2 = 0.001.

structural level. As with the activation function issue, we attribute this
nstability to inappropriate discovered weights, likely due to the sparse
ata.

Limiting factors due to the assumptions made. The eigenvalues
of the elastic Mandel-like stress, 𝜮̄, used in the homeostatic surface
equation, match those of the Kirchhoff stress tensor, 𝑭 𝑺 𝑭 𝑇 (see [102]).

owever, the eigenvalues of the relative stress (Appendix A.1) do not
enerally coincide with those of the Kirchhoff stress.

This leads to a key consequence: While we derived 𝑺, and therefore
the Kirchhoff stress, under the assumption of ‘directional’ incompress-
ibility – where strain and stress are zero in off-principal loading direc-
tions – this assumption does not apply to 𝜮̄. As a result, we cannot fully
guarantee that 𝜮̄ represents a uniaxial stress state, which may affect
the model discovery and structural simulation outcomes. However, it
is important to note that 𝜮̄ would represent a uniaxial stress state in
reality without the Lagrange multiplier.

It is worth noting that the assumption in Appendix A.1 is not
intrinsic to the framework but was necessary due to sparse data for off-
rincipal deformations. Nonetheless, we must keep this in mind when
nterpreting the results.
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Table 5
Discovered weights for the cross specimen (biaxial stress state) with 𝐿1 and 𝐿2
regularization. We replaced the max (−(∙), 0) activation function by the abs (∙) function
with the corresponding weights 𝑤𝜙

𝜎 ,𝐴𝐵 𝑆 and 𝑤𝜙
𝜏 ,𝐴𝐵 𝑆 . The second column, ‘Regularized’,

indicates whether the regularization factor associated with the weight is zero (‘No’) or
if regularization, 𝐿1 or 𝐿2, is applied (‘Yes’).

Weights Regularized 𝐿1 = 0.01 𝐿2 = 0.001
𝑤𝜓

0,1 No 2.1491084 2.26735
𝑤𝜓

0,2 Yes 0.39225546 0.3615928
𝑤𝜓

1,1 No −1.6436962 −0.35730883
𝑤𝜓

1,2 Yes 0 0.00483087
𝑤𝜙
𝜎 ,𝐴𝐵 𝑆 Yes 0 0

𝑤𝜙
𝜎 ,2 Yes 0 0

𝑤𝜙
𝜎 ,3 No 4.9472845e−07 8.272873e−07

𝑤𝜙
𝜎 ,4 Yes 0.01457978 0.0146279

𝑤𝜙
𝜏 ,𝐴𝐵 𝑆 Yes 0.00533062 0.00149194

𝑤𝜙
𝜏 ,2 Yes 0 0

𝑤𝜙
𝜏 ,3 No 7.6053965e−07 1.7517864e−07

𝑤𝜙
𝜏 ,4 Yes 0.00533062 0.00149194

𝑤̂𝜂 Yesa 0.2940081 0.28590617

a Regularized with 𝐿2 = 0.001.

Sparsity of data sets. In experimental mechanics, data sparsity of-
ten presents significant challenges, particularly when training standard
neural networks. These networks typically require large data sets to
generalize well and extract meaningful patterns. However, embedding
physical principles within neural networks offers a way to mitigate this
limitation. By incorporating domain-specific physics into the network’s
architecture or training process, the models become better suited for
interpreting sparse data sets, as they are constrained to learn physically
plausible relations. This generally reduces the amount of data required
for accurate predictions.

Despite this advantage, there remains a critical lower bound on
parsity. If the data becomes too sparse, the model may fail to capture

essential interactions, leading to erroneous conclusions. For example,
without sufficient data to inform the network about lateral contraction
in materials, the model might infer incorrect relationships between
weights, misrepresenting material behavior.

To address this, biaxial and semi-biaxial loadings were employed,
including non-proportional loadings. However, the applied loadings
appeared insufficient to uniquely identify both shear and bulk modulus.
The semi-biaxial loading in particular, while intended to introduce non-
linearity, showed results almost indistinguishable from the biaxial case,
indicating its unsuitability for capturing the full range of mechanical
responses.

This observation points to the need for richer data sets that en-
ompass more complex, inhomogeneous deformation states. Such data,
articularly if it includes information from all three directions of load-

ing, would provide a more robust foundation for training physics-
mbedded neural networks and ensuring the accurate discovery of
aterial properties.

Model discovery at the structural level. To address the limitations
mposed by often sparse data sets in experimental mechanics, we con-

clude shifting towards training neural networks on structural boundary
value problems. This approach has been successfully implemented in
n unsupervised fashion, as demonstrated in [17]. Specifically, we aim
o represent highly complex inhomogeneous deformation states, for
xample, by introducing singularities such as holes in the specimen or
ubjecting the material to non-proportional triaxial loading scenarios.
hrough digital image correlation (DIC), we can capture the displace-
ent field, while applying specific loading allows us to measure the

orresponding forces.
14
However, this methodology entails solving boundary value prob-
lems, which often requires the use of the Finite Element Method
FEM) at each training step. Incorporating FEM into the training pro-
ess would substantially increase computational costs, potentially mak-
ng the approach impractical for large-scale simulations or iterative
raining cycles.

As an alternative, we can consider a strategy similar to the one pro-
osed in [103]. In this framework, the stress–strain fields for arbitrary
pecimens are precomputed in a preprocessing step. By deliberately

choosing inhomogeneous deformation states, a greater variety of in-
ependent data sets can be obtained. These precomputed data sets
ould then be used to train neural networks directly on the stress–

train relationships, thus circumventing the need to solve the boundary
alue problem during training. This would significantly reduce the
omputational burden.

Nevertheless, one key question remains: How applicable this ap-
proach is when dealing with finite inelasticity? The nonlinear and
path-dependent nature of finite inelastic deformation could challenge
the precomputation of stress–strain fields. This remains an open area
of investigation and could determine the viability of this alternative
approach for complex, real-world materials.

6. Conclusion and outlook

In conclusion, this work represented a step forward in uncover-
ng the mechanisms of tensional homeostasis at the material point
evel by enhancing the iCANN framework for growth and remodeling.
hrough the integration of homeostatic surfaces into neural network
rchitectures, we not only taught networks to grasp this complex

theory but also demonstrated the capability to predict the state of
homeostasis under finite strain. Importantly, our framework is rooted
in thermodynamic consistency, ensuring that the neural networks gen-
erate physically sound predictions beyond the training regime, which
marks a notable achievement in constitutive modeling of biological
tissues.

Moreover, we successfully implemented equality constraints essen-
tial for maintaining the integrity of homeostatic surfaces within neural
networks, establishing a solid theoretical foundation for modeling ten-
sional homeostasis. This novel architecture has the potential to redefine
ow we approach highly nonlinear material behaviors.

Despite these advancements, we encountered instabilities when ex-
ending the framework to the structural level. Challenges such as the
hoice of activation functions and the discovery of weights at the mate-

rial point level emerged, particularly due to the sparse datasets used to
capture highly nonlinear material behaviors. While our approach was
able to qualitatively match expected structural behavior to some extent,
the sparsity of the data limited its full potential.

Looking ahead, future work should not only emphasize computa-
tional improvements but also prioritize appropriate specimen design.
We believe that successful discovery will require a combined effort
from both computational and experimental perspectives. The simplicity
f the current architecture, designed for comprehensiveness, presents
pportunities for further development to integrate higher-order non-
inearities within the homeostatic surface model. Additionally, it is
rucial to extend the network to account for more complex interac-
ions between input variables, such as hydrostatic pressure. Equally
mportant is the incorporation of uncertainty into the model discovery
rocess. By systematically addressing uncertainties in the data and
odel predictions, we can enhance the robustness and reliability of

the framework. By combining these computational advances with more
ophisticated experimental designs, we can improve the precision of

our insights and the accuracy of models depicting complex material
ehavior. This can pave the way for more precise insights and accurate

models of complex material behavior, giving us a deeper understanding
of the underlying mechanisms.
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Fig. 13. Growth multiplier, 𝛾̂, contour plots at different time steps for the adjusted model of the stripe with 𝑤𝜓
1,2 = 39.78735 (the remaining weights are the same as listed in

Table 1). On both edges, the specimen is fully clamped. The simulation shown corresponds to compressing the specimen. A displacement jump from zero to 𝑢 = ±0.101898518
[mm] at the clamped edges is applied between 𝑡 = 17 [h] and 𝑡 = 17.1 [h]. The black lines present the undeformed shape of the specimen.
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Appendix

A.1. Lagrange multiplier

To enforce zero strain and stress in the off-principal axes direction,
e add a Lagrange term to the energy, 𝜓𝜆 = −𝑝 (t r (𝑪 𝑴) − 1), where

denotes a structural tensor. This tensor is aligned with the Cartesian
xes, i.e. 𝑴 = 𝒆2 ⊗ 𝒆2 or 𝑴 = 𝒆3 ⊗ 𝒆3. First, we exploit that

𝜓𝜆 = −𝑝 (t r (𝑪 𝑴) − 1) = −𝑝 (t r (𝑼 𝑔𝑪̄𝑒𝑼 𝑔𝑴
)

− 1) . (A.1)

Since both uniaxial and biaxial loadings are coaxial loading scenarios,
he principal axes of 𝑪 do not rotate, and thus, both 𝑪̄𝑒 and 𝑼 𝑔 are
ligned with these principal axes and are coaxial (cf [106]). Thus, we

obtain

𝜓𝜆
(

𝑪̄𝑒,𝑪𝑔 ,𝑴
)

= −𝑝 (t r (𝑪̄𝑒𝑪𝑔𝑴
)

− 1) . (A.2)

Noteworthy, this is only true for the cases we investigate in this
contribution. With this at hand, the rate of the energy reads

̇ 𝜆 =
𝜕 𝜓𝜆 ∶ ̇̄𝑪𝑒 +

𝜕 𝜓𝜆 ∶ 𝑪̇𝑔 (A.3)
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𝜕𝑪̄𝑒 𝜕𝑪𝑔
since the rate of 𝑴 is equal to zero. We rearrange the latter equation,
which yields

2𝑼−1
𝑔
𝜕 𝜓𝜆
𝜕𝑪̄𝑒

𝑼−1
𝑔

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑺𝜆

∶ 1
2
𝑪̇ −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 𝑪̄𝑒
𝜕 𝜓𝜆
𝜕𝑪̄𝑒

⏟⏞⏞⏟⏞⏞⏟
=∶𝜮̄𝜆

− 2 𝜕 𝜓𝜆
𝜕𝑪𝑔

𝑪𝑔

⏟⏞⏞⏟⏞⏞⏟
=∶𝑿̄𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∶ 𝑳̄𝑔 (A.4)

Next, we investigate the relative stress, 𝜮̄𝜆 − 𝑿̄𝜆, for the particular
choice of 𝜓𝜆
𝜮̄𝜆 = 2 𝑪̄𝑒

(−𝑝
2

(

𝑪𝑔𝑴 +𝑴 𝑪𝑔
)

)

(A.5)

𝑿̄𝜆 = 2
(−𝑝

2
(

𝑪̄𝑒𝑴 +𝑴𝑪̄𝑒
)

)

𝑪𝑔 . (A.6)

Consequently, the relative stress reads

𝜮̄𝜆 − 𝑿̄𝜆 = −𝑝 (𝑪̄𝑒𝑪𝑔𝑴 −𝑴𝑪̄𝑒𝑪𝑔
)

(A.7)

which is generally not symmetric. However, as exploited above, all
ensors are coaxial in our cases. Hence, the relative stress resulting from
he Lagrange energy is zero. Therefore, we do not have to consider
ts contribution in the growth potential 𝜙̂. In total, we only need to
onsider the contribution to the second Piola–Kirchhoff Stress

𝑺𝜆 = −𝑝𝑼−1
𝑔

(

𝑪𝑔𝑴 +𝑴 𝑪𝑔
)

𝑼−1
𝑔 = −2 𝑝𝑴 (A.8)

where the last equation was again obtained under the consideration of
coaxility. Finally, the Lagrange multiplier, 𝑝, is calculated such that the
stress in the direction of 𝑴 is zero.

A.2. Consistency condition with linearized theory

In order to interpret our discovered weights in terms of the (initial)
hear, 𝜇, and bulk, 𝜅, moduli, we can employ that our models must
e consistent with the linearized theory of elasticity (see [107]). This

states the following
𝜕2𝜓
𝜕 𝜉𝑖𝜕 𝜉𝑗

|

|

|

|

|𝜉1=𝜉2=𝜉3=1
= 𝜅 − 2

3
𝜇 + 2𝜇 𝛿𝑖𝑗 𝑖, 𝑗 ∈ [1, 2, 3] (A.9)

where 𝛿𝑖𝑗 denotes the Kronecker delta and 𝜉2𝑖 = 𝜆𝑖 with 𝜆𝑖 being the
igenvalues of the (elastic) right Cauchy Green tensor (cf. Section 2.2).
ith this equation at hand, we end up with we following two linear

independent equations for our designed energy in Eq. (25)

𝜅 + 4
3
𝜇 = 4𝑤𝜓0,2

(

𝑤𝜓0,1
)2

+ 8
3
𝑤𝜓1,2

(

𝑤𝜓1,1
)2

(A.10)

𝜅 − 2
3
𝜇 = 4𝑤𝜓0,2

(

𝑤𝜓0,1
)2

− 4
3
𝑤𝜓1,2

(

𝑤𝜓1,1
)2
. (A.11)

From this set of equations, we can deduce relations between our
weights and the material parameters known from classical theory, i.e.,

𝜅 = 4𝑤𝜓0,2
(

𝑤𝜓0,1
)2
, 𝜇 = 2𝑤𝜓1,2

(

𝑤𝜓1,1
)2
. (A.12)

Data availability

Our data used for training is accessible to the public at https://doi.
org/10.5281/zenodo.13946282.
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