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ABSTRACT

Developing sensorless techniques for estimating battery expansion is essential for effective mechanical
state monitoring, improving the accuracy of digital twin simulation and abnormality detection.
Therefore, this paper presents a data-driven approach to expansion estimation using electromechanical
coupled models with machine learning. The proposed method integrates reduced-order impedance mod-
els with data-driven mechanical models, coupling the electrochemical and mechanical states through the
state of charge (SOC) and mechanical pressure within a state estimation framework. The coupling rela-
tionship was established through experimental insights into pressure-related impedance parameters
and the nonlinear mechanical behavior with SOC and pressure. The data-driven model was interpreted
by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear
mechanical behavior across various mechanical constraints. Sensitivity analysis of the impedance model
shows that updating model parameters with pressure can reduce the mean absolute error of simulated
voltage by 20 mV and SOC estimation error by 2%. The results demonstrate the model’s estimation capa-
bilities, achieving a root mean square error of less than 1 kPa when the maximum expansion force is from
30 kPa to 120 kPa, outperforming calibrated stiffness models and other machine learning techniques. The
model’s robustness and generalizability are further supported by its effective handling of SOC estimation
and pressure measurement errors. This work highlights the importance of the proposed framework in
enhancing state estimation and fault diagnosis for lithium-ion batteries.
© 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by
Elsevier B.V. and Science Press. This is an open access article under the CC BY-NC-ND license (http://crea-
tivecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

but also accelerates battery degradation by particle cracking [9]. In
addition, mechanical expansion characteristics are promising for

Lithium-ion batteries (LIBs) are widely used in various portable
electronic devices, electric vehicles, and energy storage stations as
an efficient energy storage device due to their outstanding perfor-
mance [1-3]. However, LIBs were subjected to external pressure
and internal expansion stress due to specific mechanical con-
straints, such as rigid [4], free [5], and flexible [6,7] bracing. These
constraints affect both the short-term performance [5] and the
long-term lifetime of LIBs [8]. For instance, high pressure not only
undermines the energy/power capabilities of LIBs by reducing sep-
arator ionic conductivity and electrode active material surface area
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early failure detection, such as lithium plating [10], internal
short-circuits [11], and thermal runaway [12,13], allowing more
time for operational adjustments and safety measures.

To mitigate adverse pressure effects and leverage the benefits of
mechanical-based fault detection, it is essential to obtain accurate
expansion states, such as strain or stress. This information is cru-
cial for optimizing the pressure range within battery packs and
monitoring abnormal expansion growth. However, mechanical
sensors like thin-film pressure sensors [14] and strain gauges
[13] have yet to be widely adopted in mainstream battery systems
due to their high costs, integration complexities, and concerns
regarding operational reliability. These challenges will hinder the
incorporation of mechanical sensors in battery modules or packs
in the foreseeable future. The lack of mechanical expansion data
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can delay failure warnings by over 500 s [12], significantly increas-
ing the risk of personal injury and property damage from thermal
runaways. Therefore, developing sensorless methods for estimat-
ing expansion is crucial for effectively monitoring the state of
expansion (SOEx) in batteries and enhancing fault diagnosis
through improved access to mechanical information.

The existing literature mainly focuses on battery expansion
estimation methods based on mechanical models, including equiv-
alent models [15-18] and data-driven models [19-22]. Equivalent
models are categorized into linear elastic models (LEMs) and non-
linear elastic-plastic models (NLMs), depending on whether
dynamic mechanical states under varying SOC, current rate, tem-
perature, and other factors are taken into account. In LEMs, the
spring stiffness of each component is calibrated through stress—
strain compression experiments or estimated using swelling dis-
placement and force measurements [23]. In contrast, NLMs involve
more parameters and require higher sampling rates due to the
introduction of damping elements and challenges in identifying
relaxation effects.

However, the development of equivalent models faces three
significant challenges: modeling theory, experimental methods,
and parameter identifiability. The choice of model influences both
the characterization experiments conducted and the identifiability
of model parameters derived from these experiments. In LEM,
compression tests on individual components often struggle with
data matching between local and global objectives, leading to inac-
curate parameter calibration. For NLMs, mechanical pulse charac-
terization experiments at a given SOC - such as those designed
by Jiang et al. [18] - can adversely affect the battery’s mechanical
performance at subsequent SOCs due to irreversible mechanical
effects reported by Tobias et al. [24]. Furthermore, the identifiabil-
ity of damping parameters relies heavily on high-precision thick-
ness sensors with an accuracy of 0.1 pm and controlled pressure
devices. These stringent equipment requirements present practical
challenges for implementing NLMs. Additionally, as more influenc-
ing factors are considered, the necessary calibration experiments
must also be scaled up significantly.

To address the challenges of large-scale parameter calibration,
high-precision equipment, and multifactorial influences, data-
driven mechanical models have shown considerable success in
mechanical-based SOC estimation [19,20,25]. Xu et al. [19] devel-
oped a data-driven pressure model that accounts for the effects
of current and SOC, where pressure serves as feedback information
to adjust the Kalman gain for SOC estimation. This approach facil-
itates information fusion from two sensors to achieve closed-loop
state estimation by utilizing data from other sensors as feedback.
Similarly, Zhang et al. [26] demonstrated sensorless temperature
estimation by leveraging voltage feedback simulated voltage from
temperature-dependent electrical circuit models. These examples
of closed-loop state estimations have inspired this research on bat-
tery expansion estimation through the feedback of additional sig-
nals. However, achieving initial pressure convergence using
voltage feedback from an electromechanical coupled model within
the extended Kalman filter (EKF) framework is challenging due to
the significantly weaker electromechanical coupling compared to
electrothermal coupled issues [27]. Consequently, battery expan-
sion estimation remains primarily an open-loop problem. While
converging initial pressure via EKF is deemed improbable, it is fea-
sible to determine initial pressure through calibrated datasets by
utilizing pressure-related model parameters such as ohmic resis-
tance, interfacial resistance, and double-layer capacitance.

To date, battery expansion estimation still faces three chal-
lenges: multiple influencing factors, mechanical modeling theory,
and estimation robustness. Regarding the factors influencing
expansion states, existing studies still lack comprehensive insights
into the factors influencing expansion characteristics due to limita-
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tions in mechanical characterization devices. Key aspects such as
preload force - ranging from 30 to 200 kPa [4] - and realistic
mechanical boundaries (e.g., free, rigid, and flexible brace condi-
tions) are critical in determining battery expansion states, includ-
ing expansion force and displacement. The generalization
capability of data-driven models is frequently questioned in the
context of multiple influencing factors and various machine learn-
ing algorithms [28,29]. Furthermore, a generalized mechanical
modeling theory that addresses different mechanical boundaries
to improve the model’s physical explainability and guide adaptive
mechanical simulations has yet to be developed. Additionally, dis-
cussions surrounding the estimation methods of data-driven
mechanical models often overlook potential sources of error stem-
ming from estimated SOC inaccuracies, model uncertainty, and
measurement errors. Therefore, there is a pressing need for an
adaptive data-driven mechanical model capable of operating under
various mechanical boundaries to facilitate sensorless expansion
estimation by accurately mapping nonlinear battery expansion
characteristics.

To address the existing research gap, we propose a sensorless
battery expansion estimation framework that integrates a data-
driven approach with electromechanical coupled models, sup-
ported by a cloud-based battery management system (BMS). This
framework involves constraint-based electrochemical-mechanical
performance characterization and static compression tests to ana-
lyze the electromechanical behavior of the battery and determine
the stiffness of each component within mechanical systems. We
define a generalized swelling coefficient g by deriving mechanical
constitutive equations under various mechanical boundary condi-
tions, facilitating the transition from free or rigid to flexible brac-
ing. Given the nonlinear swelling coefficient and non-monotonic
electrochemical-induced mechanical behavior, we developed a
data-driven mechanical model using least squares support vector
regression (LSSVR) to simulate expansion swelling force under
flexible bracing with varying stiffness. In terms of electrochem-
istry, frequency-domain impedance models were employed to
quantify the effects of pressure on electrochemical kinetics, clarify-
ing the electromechanically coupled relationship for terminal volt-
age through time-domain equivalent circuit modeling. Our
framework incorporates multi-scale estimation processes,
enabling short-term SOC estimation and long-term expansion esti-
mation within an EFK framework. This includes a reduced-order
impedance model and expansion curves sourced from cloud BMS
for real-time field operations. The results demonstrate that our
data-driven mechanical model significantly enhances the accuracy
of simulated expansion force in both best-case and worst-case sce-
narios compared to traditional calibrated models. It also outper-
forms other machine learning methods, such as elastic net
regression (ENR), random forest (RF), support vector regression
(SVR), and Gaussian process regression (GPR). Specifically, param-
eters related to open-circuit voltage (OCV) and impedance enhance
simulated voltage accuracy with a mean absolute error of 20 mV,
and SOC estimation accuracy improved by 2%. The battery expan-
sion estimation across different levels of estimation and measure-
ment errors further demonstrates the robustness of the proposed
data-driven mechanical model. These results underscore the
potential effectiveness of our framework in achieving sensorless
battery expansion estimation.

2. Experimental and battery expansion characteristics

Electrical and mechanical experiments were conducted on com-
mercial LIB pouch cells under various bracing conditions. These
cells operate within a voltage range of 2.50 to 4.20 V, with a max-
imum charge/discharge rate of 1.5 C and a nominal capacity of 50
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Ah. The battery cell consists of a LiNiggCop1Mng 10, (NCM811)
cathode and a composite graphite-silicon oxide (Gr-SiO,) anode.
The dimensions of the cells are 291 mm x 100 mm
(length x width), which were used for calculating compression
stress. The experimental setup includes charge/discharge equip-
ment (Arbin, LBT 5 V-100A), an in-situ swelling device
(SWE2110, IEST), mechanical fixtures, and an electrochemical
impedance spectroscopy device (Biologic, VMP-300). These devices
are connected to a host computer for pressure control and data col-
lection. The battery cell is linked through electrical and mechanical
connections to control the applied current and compression force.
The swelling behavior of the cell was monitored using high-
precision pressure and displacement sensors integrated with an
adaptive pressure regulation control system that operates in mul-
tiple modes: such as constant pressure mode (CPM), constant dis-
placement mode (CDM), and variable displacement and pressure
mode, i.e., flexible bracing mode (FBM), as illustrated in Fig. 1. A
detailed description of the working principles of mechanical fix-
tures as well as the accuracy and resolution specifications of the
sensors can be found in our previous study [27]. In CPM, changes
in cell thickness are calculated by eliminating sensor deformation
from the measured expansion data. The stress—strain relationship
of load cells was calibrated using the following transient compres-
sion tests in Experiment IV.

Given the irreversible electrochemical effects and incomplete
rebound mechanical effects of mechanical stress on LIBs, three cells
were used for the following tests, assuming the consistency in
swelling properties. Table 1 presents the details of the mechanical
constraints and pressure values applied in each experiment, along
with calibrated parameters from those experiments.

In Experiment I, we employed CPM to evaluate the pressure-
induced swelling displacement (AJ) of the LIBs. The battery under-
went charge and discharge cycles at rates of 0.1 C, 0.5 C, 1 C, and
1.5 C within a voltage range of 2.5 V to 4.2 V. Following a stabiliza-
tion period of 5 h to minimize stress relaxation (initial stresses are
listed in Table 1), the battery was charged using a constant current
(CC) until it reaches 4.2 V, followed by a constant voltage (CV)
phase until the current dropped to 0.1 C. The discharge process
commenced at CC until reaching 2.5 V in the first phase, followed
by a 1 h rest period before discharging at a rate of 0.05 C until fully
depleting to 2.5 V again. This charge/discharge regimen is referred
to as two-stage rate tests; for brevity, this procedure will not be
repeated in subsequent experiments.

Experiment Il involved pressurized cells operating under CDM.
This experiment aimed to analyze how initial pressure impacts
swelling force (Ac) and subsequently estimate the stiffness of
the battery cell. To eliminate variations due to current rates on
swelling behavior, we used identical charge/discharge currents as
in Experiment I: charging at 0.5C and discharging at 0.1C while

Multilayer pouch cell

Load cell

Constant pressure/displacement mode
(CPM/CDM)

[ Thermocouples

Removable board
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implementing the FUDS driving cycle to compare static and
dynamic expansion forces effectively.

Experiment IIl was conducted under CDM with the addition of a
buffer layer made from pre-oxygenated silk fiber (YS) aerogel cush-
ion to explore how this buffer layer affects the reduction of
mechanical pressure transmitted from rigid endplates. This config-
uration is referred to as CDM + YS. In this experiment, the fully-
discharged cell was pressurized to a target initial pressure value
(0init) described in Table 2. Following this, the same current proto-
cols used in Experiments I and Il were applied to compare the
swelling force induced by lithium intercalation under various
mechanical boundaries. During the experiment, the cell was dis-
charged at a rate of 0.1 C until it reached every 10% increment of
its maximum capacity. After each discharge step, there was a 1-h
rest period before repeating the process until reaching 2.5 V. This
test procedure was adopted to characterize both electrical and
mechanical performance caused by compression forces.

In Experiment IV, static compression tests were performed on
the pressure sensor and buffer layer to calculate their respective
stiffness values. The pressurization phase lasted for 30 s, followed
by a regulating pressure process lasting 5 s.

To reveal the pressure dependency of cell mechanical behavior,
we plotted the evolution of mechanical properties with SOC and
initial pressures. Fig. 2 show swelling displacement and force
under different pressures. It was observed that the change in
pressure-related swelling force was significantly more pronounced
than that in swelling displacement. This phenomenon can be
attributed to the increased stiffness associated with higher pres-
sures, alongside only minor changes in porosity. Fig. 2(c,d) depict
the relationship between swelling displacement and force across
different pressure levels. The curves are divided into three distinct
regions during both expansion and contraction, based on volume
changes driven by dominant phase transitions. Through incremen-
tal capacity analysis following cell balancing, as well as an exami-
nation of the swelling curve at the electrode level, our previous
work has addressed these dominant phase transitions related to
mechanical behavior [27]. In Region I, a slight slope is observed
due to effects dominated by SiO,, while a steeper slope is noted
in Region II, resulting from graphite-dominated influences. Nota-
bly, the slope gradient increases with initial pressures, indicating
an enhancement in stiffness as pressure rises. The contraction phe-
nomenon observed in Region III is attributed to phase transitions
within Nickel-rich cathodes transitioning from H, to Hs [30,31].
Such highly nonlinear mechanical behavior poses significant chal-
lenges when calculating equivalent stiffness values, as previously
reported by Kwak et al. [23]. These results provide compelling evi-
dence for the effectiveness of the proposed data-driven model in
addressing nonlinearity and non-monotonicity associated with
both swelling coefficients and equivalent stiffness.

_ Aerogel
Muttilayer pouch cell cushion

Flexible bracing mode (FBM)

[ Fixed clamping block

[ Displacement sensors

Fig. 1. Schematic diagram of the experimental platform.
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Table 1
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Calibration of relevant parameters from experiments under various mechanical constraints.

Mechanical constraint Expansion coefficient Cell No. Pressure range (MPa) Swelling thickness (mm) Swelling force (kPa) Stiffness (MPa)
CPM g=1 1 0.01 ~1.2 AS - ke
CDM g~=0 2 0.01 ~0.6 - Ac
CDM +YS 0<g<1 3 0.01 ~ 0.4 - Ac ke + ks + kp
Table 2 force signals in experimental setups; however, the conceptual
Training and testing datasets used for the data-driven mechanical model. framework for displacement-type mechanical models remains
Dataset Initial pressure (MPa) C-rate (C) SOC (%) applicable. The traditional swelling coefficient model was derived
#1 0.01, 002, 0035, 0.05, 0.1, 015,02, chg@0.5, 0 ~ 100% from the st{ffness Qf each component and servec! as a benchmar.k
0.25,0.3, 0.35, 0.4 chg@1, dis@0.1 method using calibrated stiffness values obtained from static
#2 0.015, 0.025, 0.03, chg@0.5, 0 ~ 100% stress-strain tests. In contrast, we employed a data-driven swel-

0.04,0.12,0.18,0.22,0.28,0.32,0.38 chg@1, dis@0.1

3. Methodology

The LIBs within modules or packs experience electromechanical
coupling due to applied preload forces and mechanical boundaries,
such as rigid or flexible bracing conditions. The intrinsic nonlinear
characteristics of the materials add complexity to these electrome-
chanical coupling problems. In Fig. 3, we propose a two-way elec-
tromechanical coupling model (EMCM) that recouples
independent one-way modeling approaches to address the chal-
lenges of sensorless battery expansion estimation with the support
of cloud BMS. The schematic diagram of the EMCM is shown in
Fig. 4. Utilizing mechanical constitutive equations applicable under
various bracing modes, we developed both force- and
displacement-type mechanical models using calibrated data
obtained from rigid or free expansion modes, along with swelling
coefficients to simulate swelling force or displacement during
charging and discharging processes. We opted for force-type
mechanical models due to their compatibility with measurable

(a) 0.3 0.61
— 0.49
S 0.2 —
ED 037 &
s =3
%ioo' 01 0.25 E
50
0.13
0 0.01
0 20 40 60 80 100
SOC (%)
c) 0.2 . . 0.61
() I [ oo
S 0.15 0.49
o ! ! =
= ! 0.37 %
2% o E ! 025 %
c o E E . .
< 0.05 p | 013
i Non-monotonic
0 : 0.01
0 0.1 0.2 0.3
chg
Adg 1c (Mm)

ling coefficient model aimed at enhancing the understanding of
the nonlinear and non-monotonic transformation relationship of
swelling forces between rigid and flexible bracing modes. In
Fig. 4, we established the EMCM by recoupling LSSVR-based
mechanical models with pressure-dependent impedance models,
where pressure and SOC connect two distinct physical domains.
The LSSVR-based mechanical model utilizes load current and SOC
information from the electrochemical impedance model alongside
theoretical expansion forces derived from calibration datasets as
inputs. The output of this model is the expansion force under
FBM, which subsequently serves as input for updating parameters
within the electrochemical impedance model in real-time - such as
U, and impedance parameters - thereby simulating time-domain
voltage responses under FUDS driving cycles. Given the complexi-
ties associated with real-world applications, we further explore
model adaptation in field operations by considering factors such
as sample errors, driving conditions, and loading states. The simu-
lated results underscore the potential of our proposed model for
co-simulating battery voltage and mechanical behavior across
varying preload conditions and buffer assemblies, ultimately facil-
itating more accurate estimations of battery expansion states.

(b) 0.15 0.61
— 0.49
©
o 0.1 =
S 0.37 oo
o =3
D — =
5.50.05 025 &
< 0.13
0 0.01
0 20 40 60 80 100
SOC (%)
(d) 02 0.61
T 0.15 049
°- o
= 037 o
o 0.1 =3
25 025 %
S b
< 0.05 . 013
i Non-monotonic
0 : 0.01
0 0.1 0.2 0.3
dis
Adg 1c (Mm)

Fig. 2. Battery mechanical behavior analysis under mechanical constraints. (a) swelling displacement and (b) swelling force of 0.1 C charge with SOC and initial pressure. The
relationship of (a) swelling stress and (b) thickness at 0.1C (c) charging and (d) discharging process.
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Fig. 3. Framework of battery expansion estimation through cloud-assisted EMCM.
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Fig. 4. Online state estimation based on electromechanical coupled model (EMCM).

3.1. Mechanical constitutive relationship under various bracing
conditions

The cells typically undergo an initial preload and expansion
force, considering the effects of the stacked battery pack and vary-
ing mechanical boundaries. As a flexible boundary, the buffer layer
plays a crucial role by absorbing expansion thickness, thereby
reducing the lithiation-induced reaction force. Thus, it is essential
to develop an equivalent model that accurately captures variations
in mechanical behavior under different stack pressures and flexible
mechanical constraints. To this end, we measured the variation in
battery mechanical behavior under preload conditions across dif-
ferent mechanical constraints, as illustrated in Fig. 1. It is impor-
tant to note that the characteristics of viscous fluids were
neglected due to their complex mechanisms and minimal
responses during short-term relaxation periods. Thus, only the
mechanical properties of elastic solids are considered in the subse-
quent derivations. Based on linear elastic theory, spring elements

146

can effectively represent the mechanical properties of each compo-
nent depicted in Fig. 5. The stress on these spring elements can be
expressed as
o= 1
2 (1)
where P is the external force applied to the battery due to stack
pressure within the battery pack, and A is the pressurized surface
area. According to Hook’s Law for force equilibrium, the constitutive
relationship between stress and compressed thickness of the spring
element is given by:

Here, oy denotes initial stress, Ac represents expansion stress
during the charge and discharge process, k and A8 represent the
stiffness and thickness variation of each element. The subscripts
s, b, and c correspond to the pressure sensor, buffer layer, and cell.
As shown in Fig. 1(c), both ks and k; can be calibrated using tran-
sient compression tests conducted in Experiment IV.

Considering the structure of porous electrode material, we can
categorize the cell’s mechanical properties into active material
stiffness and pore volume stiffness. Thus, corresponding stiffness
values and thickness changes for spring elements representing
the cell are defined as follows:

k' =k k! k! (3)

O, =0y =05s=09+ A0

2
As; =k 'o;i=s,b,c @)

Ade = djig — 0p (4)
where k, and k, represent the stiffness of active materials and pore
volume, respectively. In Eq. (3), under certain assumptions - such as
constant pore volume during unstrained swelling and negligible
compression of active materials - the stiffness of battery cells (k)
can be simplified primarily to pore volume stiffness (k). This sim-
plification arises from recognizing that the stiffness of porous struc-
tures (< 10 MPa) is significantly lower than that of active materials

(approx. 10 GPa) [32].

3.1.1. Mechanical constitutive equations under CPM
In elasticity theory, the force analysis of a series spring system
involves establishing stress and strain equilibrium equations.
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6,=0p+ Ao (C) o,=0ptg- Ac
L=0 Oo L=0
e IS S
S A S
Lithiation (2) Preload (1)  Lithiation (2)

CPM
Quasi-/dynamic-state

e Pore volume ===  Active materials

CDM
Quasi-/dynamic-state

== Buffer layer

FBM: CDM + BL
Quasi-/dynamic-state

Pressure sensor %  Mechanical constraints

Fig. 5. Analysis of mechanical force and swelling for three cases. (a) intercalation-induced free swelling of the battery cell under constant mechanical constraints; (b)
intercalation-induced free swelling under constant mechanical constraints; (c) intercalation-induced free swelling of the battery cell under constant mechanical constraints.

Specifically, stress equilibrium and geometric compatibility
describe the constitutive relationship between stress and strain
of each element within this series system. In Fig. 5(a), the stress
equilibrium and geometric compatibility equation under CPM
can be expressed as:

{ Oc =05 = Ads - K

A5C = 51,:,] =0m + Aés
where o is the current stress, equaling the measured os; Jj;q is the
thickness variation induced by the lithiation process within the
active materials; 6, denotes the thickness change of the pore vol-
ume; and §,, indicates the adjusted thickness of the servo-
feedback motor required to maintain a constant pressure ¢. During
this control process, variations in thickness from the pressure sen-
sor are compensated using a calibrated stress-strain curve from
IEST 2110. Thus, the measured thickness reflects lithiation-
induced changes at constant pressure as a function of stress and
SOC, represented as §j;4 = f (Ginit, SOC, C), as shown in Fig. 2(a).

According to the constitutive equations outlined under CPM in
Eq. (4) and (5), we summarize the compressed thickness (Ad.)
for two scenarios: (1) preloading conditions and (2) lithiation
conditions.

{

Here, Ad o refers to compressed thickness during initial preload
states when pore volume is also subjected to compression, as
shown in the zoomed-in figure of Fig. 3(a). It should be noted that
consistent values of , at identical o, across various buffer condi-
tions will not be further elaborated upon in the following sections.
Importantly, no compression occurs in pore volume during lithia-
tion due to maintained constant pressure; thus, é, = 0 throughout
charge or discharge processes. The measured CPM data, adjusted
for sensor deformation effects, ultimately reflects theoretical
expansion thickness (d;;4) under different pressures.

(5)

Adeo = k.o

o (6)
Abc = bli.a - ()p

3.1.2. Mechanical constitutive equations under CDM

Given the series spring system that encompasses the battery
cell and pressure sensor, as depicted in Fig. 5(b), each spring ele-
ment experiences the same compression force. Hence, the stress
equilibrium and geometric compatibility equation for each ele-
ment under CDM can be expressed as:
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Abe - ke = Ad - ks = 0

7
51i=u75p+A55:A55 +Ad =0 ( )

{

From Eq. (7), we can derive the stiffness of the cell as follows:

kc—l _ & _ 511’.(1(0—5) — k;]O's (8)
Os Os
Here, mechanical stress g; modifies the theoretical expansion
thickness under CDM. Thus, we can express Ad. during lithiation
conditions based on Eq. (8). The stiffness and stress of the cell
are calculated using Adp,.

Ade = bjia — 5, = 65 = k' 0 (9)

In this context, when comparing Eq. (6) with Eq. (9), it is evident
that more pore volume is compressed under CDM than under CPM.
The compressed thickness of pore volume (6,) closely approxi-
mates the embedded lithium thickness of active materials (Jj;4).
This observation arises because a pressure sensor with high stiff-
ness experiences compression of less than 0.3 mm. To elucidate
how rigid and flexible bracing conditions influence the mitigation
of cell expansion under mechanical constraints, we define the
equivalent stiffness of the CDM system (kcpm) as follows:

keow = k' + k! (10)

3.1.3. Mechanical constitutive equations under FBM

In Fig. 5(c), the series spring system consists of the battery cell,
buffer layer, and pressure sensor, all subjected to the same com-
pression force. The constitutive relationship between stress and
strain for each element in this system can be expressed as:

{A(SC ke = Adp - kp = Ad - ks = 0

51,30 - 5p + Adp +Ad; =0

Using Eq. (11), we can derive the battery swelling displacement
(Ad¢) during the lithiation process as follows:
Aéc = 5li,a - (5p < (5li,a

(11)

(12)

when compared to Eq. (10), the stiffness of the FBM with buffer
layer (BL) system can be represented as
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ky =k k' k' >k k! (13)

This expression illustrates that the stiffness of the equivalent
system is reduced when spring elements are connected in series,
particularly when comparing k.q under CDM with and without a
buffer layer. Furthermore, when examining Eqgs. (5) and (7) along-
side Eq. (11), it becomes apparent that Ady, lies between 0 and Jj;,
due to the cushioning capacity of the buffer layer in absorbing cell
expansion.

3.2. Data-driven mechanical model by introducing swelling coefficient

3.2.1. Generalized swelling coefficient definition

To illustrate the evolution of mechanical behavior under various
bracing conditions, we define a universal swelling coefficient (g) in
Eq. (14), inspired by the work of Weidner and colleagues [33]. The
swelling coefficient g quantifies the extent to which the battery cell
can expand under specific mechanical conditions. For example,
when g = 1, it indicates that the uncompressed pore volume is pre-
sent in FSM and CPM. Conversely, when g approaches 0, it implies
that the pore volume described in Eq. (15) is almost entirely com-
pressed. The incompressibility of active materials determines that
the pore volume remains consistently compressed during charging
and discharging processes, except in FSM or CPM scenarios:

Ad¢
Bom =5 =1 (14)
li,a
-1
8com = A(;c'_CDM =1- ks ;—_S’CDM ~0 (15)
lia li,a

-1
S = A5c,BL _ kc.eq Os.BL
BL — o =
ali‘a bli,a

0<gg <1 (16)

where the subscripts for CPM, CDM, and BL denote pressurized
modes without and with a buffer layer, respectively. To estimate
Adcp; by calibrated stiffness of each component, we substitute Eq.
(16) into Eq. (11), then the equation set of gz, and Ao, was given
as:

By eliminating o5 ., We can combine these equations into Eq.
(17), allowing us to derive expressions for both o g, and s, gL
under buffer layers with varying stiffnesses:

Oliq - 8p. = (k;] + kl;])as.BL
ke - Opa- (1 —8p) = Ospr

(17)

k!

_ _ (0,
Agsp = (1 —8p) - AGscom = PR 1(7(03+k5.1(as) - AGs cpm
ky” ](”S)Jrks’l(o's)
Adsp. = gpy - Adscpm = kcq(af‘szbf1(05)%4(03) - Ads cpm
(18)

where the subscripts of CDM and BL denote pressurized mode with-
out and with a buffer layer, respectively. Next, to enhance the accu-
racy of estimating Aogp, we establish a data-driven model
equivalent to the coefficient of g. We propose either a force- or
displacement-type mechanical model as expressed in Eq. (18). This
model incorporates calibrated data from CDM or CPM to simulate
expansion force or displacement within preload and buffer assem-
blies. Thus, both force-type and displacement-type mechanical
models are derived based on calibrated swelling forces under
CDM and swelling displacements under CPM, as shown in Fig. S1
(a). In this work, we adopted a force-type mechanical model due
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to its compatibility with measurable forces in CDM and FBM
mechanical fixtures. Therefore, establishing an adaptive mechanical
model through data-driven methods becomes essential to account
for nonlinear and non-monotonic stress relationships.

3.2.2. Force-type data-driven mechanical model via LSSVR

The LSSVR method proposed by Vandewalle [34] is applied in
this work to a data-driven swelling model to address the non-
monotonicity of the battery swelling coefficient and equivalent
stiffness. LSSVR simplifies constraints by converting the convex
quadratic optimization problem inherent in SVR into equality con-
straints, thus offering a more efficient solution for optimization
challenges. It introduces the square error cost function to enhance
the model’s smoothness and robustness against noise. The LSSVR
can be expressed as follows:

N
Yi=)_ aK(x.x) +b (19)
i=1

The Radial basis function (RBF) is chosen as the kernel function
due to its effectiveness in mitigating interference from noise and
outliers. The RBF is defined as:

[ Xi =% H)
lpZ

where / is the kernel parameter. A more detailed calculation proce-
dure can be found in [18].

Initially, we enhanced this dataset by interpolating calibrated
results under the same initial pressure (gj,i¢) to eliminate discrep-
ancies arising from variations in initial pressure across different C-
rates and bracing modes. These calibrated results (Aogcpm and
Aosp) were derived from CDM and FBM experiments based on
SOC and oj,i. The enhanced datasets, i.e., #1 and #2, are summa-
rized in Table 3. To further streamline our analysis while maintain-
ing accuracy, we reduced the dataset size to 40 points by adjusting
the SOC interval (e.g., 2.5%). Subsequently, we trained and vali-
dated the LSSVR model to simulate swelling force under specific
initial pressures. As shown in Fig. S1(b), the input current, SOC,
and theoretical expansion force Acscpy under oinie is the most
direct factor affecting Aoy by swelling coefficient. Therefore,
these three variables were selected as the input vector, with
expansion force under a specific buffer layer stiffness ky(c)
arranged as the output vector for the LSSVR model. The training
dataset comprised 70% of dataset #1, while testing utilized 30%
of dataset #1 and 100% of dataset #2. Leave-one-out cross-
validation was implemented for performance evaluation to miti-
gate randomness associated with training on small sample data-
sets. In the training process of LSSVR, a simplex algorithm was
used to adjust and optimize hyperparameters automatically. The
resulting optimized values were 1078.53 for the regularization
parameter and 0.1398 for the kernel parameter. Evaluation metrics
for mechanical signals were based on several criteria: root mean
square error (RMSE), maximum absolute error (MAE), and mean
absolute percentage error (MAPE), defined as follows:

K(x;,%;) = exp (— (20)

(22)

(23)
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Table 3
Coefficient matrix of different fractional-order impedance models.
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Models m n Coefficient matrix
(RL)R(RQ)(RC)W 12 6 o ={og, 00+ 1,000 +2,00 + 02,00 + 02+ 1,00 + 02 + 2}
p— {az.oterl,az + 2,00 + 0,0 +oz2+1,.“}
o +0p+2,0,1,2,0,00 + 1,04 +2
[ a={1,Te + 70, TeT, 7", (Te + T1)T]", TeTL T }
Ri + Re, L+ RiT, + RiTe + ReTy,LTe + RiTeTL,
b= { Ret!" LT} 4+ Rety 7], LTeT!", Ry, Rs(Te + T1), }
RsTeTr, ReT]"  ReT] (Te + T0), RsT) TeTy
R(RQ)(RC)W 7 4 o= {on, 0y + 0,00 + 1,00 + 02 + 1}
B={oa,00+1,0,1,00,000 + 1,001 + 002}
{ a={1,7", 7., 1" }
b = {Ri + Re,RiTe, Ry, RsTe , R T]" R T T)" R T }
R(RQ)(RC) 3 4 o ={0,1,01,00 + 1}
B=10,1,04}
{ a={1,7,1]", 1"}
b ={Ri +Re,RiTe,ReT]" }
R(RQ) 1 2 a=1{0,0}
{ a= {1{1?“ }
b= {R;}
R(RC) 1 2 a=1{0,1
{ B ={0}
a={1,7.}
b= {Re}
3.3. Impedance-based el i Ry Ri R R
.3. Impedance-based electromechanical coupled model Zsm(s) = Ry + + + + (26)
1+7s 1+ (TiS)“] 1+7Tes s%

3.3.1. Electromechanical coupled modeling

Building on the findings related to pressure-induced electro-
chemical reactions from [23], this work employs a reduced-order
electrochemical impedance model as the basic framework to
explore how pressure-related model parameters influence battery
terminal voltage and expansion force. We establish a two-way
electromechanical coupled model by incorporating external stress.
The battery SOC can be obtained by the ampere-hour integral
method, expressed mathematically as:

n f, I(dt

SOC[ = SOC() + W

(24)

The outputs of the model, specifically terminal voltage and
pressure, can be calculated using polarization voltage derived from
a time-domain pressure-dependent impedance model character-
ized by N fractional order networks. The relationship is given by:

N
U=0CV+3 Uy,i+1-Ro

i=1

(25)

G

where U, and I are the terminal voltage and the input current, and
U, is the polarization voltage from the simplified fractional order
model. SOCy and SOC are the initial and current SOC. « is the frac-
tional order. Cy, is the normal capacity under different pressures.
7 is the Coulomb efficiency. k is the current time. U, is the open-
circuit voltage, which is a polynomial function of SOC. All model
parameters of RC networks are a function of SOC and a.

3.3.2. Fractional-order impedance models

This work establishes the fractional-order impedance model in
the frequency domain [35] to investigate pressure-induced electro-
chemical reactions, encompassing elements such as ohmic resis-
tance, cable inductance, electrochemical interfacial response,
electrolyte diffusion, and solid diffusion processes. The model can
be expressed as follows:
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where R; and L represent the cables’ resistance and inductance. R,
represents the ohmic resistance. R; and t; are the resistance and
capacitance at the solid-liquid phases interface. R. and 7. denote
the liquid-phase diffusion resistance and capacitance. Ry is solid-
diffusion resistance and the inverse of the Warburg coefficient.
These model parameters have been identified using a multi-step,
multi-objective genetic algorithm [27]. Importantly, all model
parameters are influenced by pressure conditions. The simulated
impedance considering these identified pressure-related parame-
ters can be expressed as:

Zsim(s) = t(S) _ Liabs
o i(s) S0 a5

where a, b, «, g represent the coefficients of the denominator and
molecule parts. The detailed expressions of a, b, o,  were given in
the supplementary file.

To achieve fast time-domain simulations, we describe the
fractional-order transfer function in Eq. (27) using the Griinwald-
Letnikov (G-L) definition [36,37]. To enhance computational effi-
ciency without sacrificing precision, we select a truncation length
denoted as Ngom, Set to 150.

By substituting GL definition into Eq. (27), we derive a discrete
form for total polarization voltage:

Up(t) = [B-i(t — kh) + C-i(t — kh) - Ry + D - u,(t — kh)] /A

(27)

a Nrpoy 12 b g Nroy 6 G Nroy 6 G
A=Y £.B= X mek,C: Wi D= 3 wiup(t — kh)
j=1 k=0 j—1 k=0 j=1 k=1 j=1

(28)

To minimize computational effort within our electromechanical
model under FUDS, we simplify our time-domain fractional order
model based on the EIS, focusing on specific frequency ranges:
high-low frequencies characterized by an equivalent circuit of R
(RQ)(RC)W; middle frequencies represented by R(RQ)(RC), R(RQ),
and R(RC) in Table 3. The Akaike Information Criterion (AIC),
grounded in information entropy principles, is employed to evalu-
ate both goodness-of-fit and complexity for our models.
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N

Z (Ymea. - YsimA)2>

i=1

AIC =2n —2log (1 (29)
where n is 1.5 when fractional order models are applied, while nis 1
when RC models are applied. Thus, this work selected an R(RC)
model as the basic model. With the identified parameters, the total
ohmic internal resistance of the battery Ry can be extracted by add-
ing ohmic and interfacial resistance.

3.3.3. Sensorless battery expansion estimation

To develop a sensorless battery expansion estimator, we utilize
a discrete-time impedance model of the nonlinear system to
describe the electromechanical coupled behavior of the battery:

{Xk = (X1, Weq) + Oy
Vi = &Xpo1, Ug—1) + Vi

where uy = Iy, Xk = [SOCy, Up k. 0k], and yy = Uy are the system input,
states, and output, respectively. Here, wy and vy denote the noise
associated with system states and measurements, characterized
by covariance matrices R, and R,. The state space equations for
nonlinear discrete systems in Eq. (30) can be expressed as follows:

(30)

SOCy, + IyAt/3600C,
Fiou) = | Upee # 4+ LR(1 - e ) (31)
Oy + AO'S.’BL(SOCk)
(X, ur) = OCV(SOCy, ay) + Upy + IkRo(SOCy, o) (32)

To develop the real-time battery expansion observer, we lin-
earize these nonlinear discrete systems using the Taylor series
equation. This process transforms functions f (x,, u,) and g(x, uy)
into Jacobian matrices F and G, representing partial derivatives of
fand g:

af (Xk7 Uy )
aXk

0g (X, Uy)

X, k

Fy = Gy

X=Xy U

(33)

X=X, Uy

The coefficient matrices within the Jacobian matrix F, derived
from partial derivatives of f (x, uy), are expressed as:

T 0 0
A, = 0 exp (—m) 0],
| day/dSOC 0 1
At/3600C, (34)
Bi= | R(01) - [1-exp ()]
0

Similarly, leveraging the partial derivatives of g(x, uy), coeffi-
cient matrices C and D in the Jacobian matrix G are expressed as

Ci = [ %2 1 0],D=Ry(0v) (35)

Considering the electromechanical coupling effects are present
in model parameters as functions of SOC and o, we incorporate
pressure-dependent parameter spaces into the reduced-order
impedance model. The electromechanical coupling model facili-
tates battery expansion estimation using the EKF. Table 4 outlines
this process in three main steps following initialization: (1) propa-
gation of a time step, (2) observation and update processes, and (3)
propagation across multiple time steps. During the propagation
phase for each time step, we compute state estimates, error covari-
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Table 4
The EKF algorithm steps for sensorless battery expansion estimation.

Algorithm 2 Extended Kalman filter algorithm with EMCM calculation.
States are initialized at the beginning of every discharge cycle. Expansion
estimation is propagated over time intervals under the FUDS driving cycle.

Initialization at { = {o
G0 = Oinit, AGo =0
For # € segments, do
Initialization at the start of the segment
%o = Elxo), Po = E|(Xo — %0)(xo — %0)"
For 1, V, c € %4, do
Propagation of time step
State estimation matrix: X, = Ax_1X,_; + Bi 1Up_ 1 + 0k 1
Error covariance matrix: P, = Ay 1P, A 1 + Qi
Measurement matrix:y, = CiX, + Dyt + Vi
Observation and update
Kalman gain matrix: K; = P, C} (CkP,;CZ +Rk) !
State estimation matrix:X, = X, ; + K (Vk — ¥y)
Error covariance matrix: Py = (E — K, Cy)P;

Propagation of multiple time steps
For X — Xy_ar > 2.5%, do

State estimation matrix: 6 = Gy_ar + dﬁs‘gg’ - (R — Re_at)

Lk AT
end for
end for
end for

ances, and model-based simulated voltage, enabling us to predict
prior knowledge. The observation and update processes include
calculating the Kalman gain matrix along with measurement
updates for both state estimation and error covariance updates.
Estimation of battery expansion is performed over extended time
scales due to a longer stress relaxation process compared to elec-
trochemical processes. A SOC interval of 2.5% is selected for calcu-
lations. The SOC along with expansion estimates for the
electrothermal system can be iteratively determined. The initial
preload oy, can be determined by configuring the pressure sensor
or the relationship between Ry and pressure.

4. Results and discussion
4.1. Simulation and verification of data-driven mechanical model

4.1.1. Comparison of data-driven model with calibration model

To evaluate the proposed data-driven mechanical model against
a calibrated benchmark, we focus on the 1C charging process,
which allows for a clear assessment of battery stiffness due to
the monotonicity of expansion behavior at this rate. As shown in
Fig. 6(a), we employed a polynomial function to fit the relationship
of battery stiffness and SOC under different initial pressures. As
shown in Fig. 6(a), the results indicate a strong nonlinearity in bat-
tery stiffness to SOC and initial pressure between 0 and 0.1 MPa.
Fig. 6(b) and 6(c) depict polynomial functions fitted to the stiffness
values derived from both the pressure sensor and buffer layer,
demonstrating high fitting accuracy characterized by low RMSE
values and R? values approaching 1, indicating their strong depen-
dence on pressure. In our analysis, both calibrated and data-driven
models were utilized to fit the expansion force Ao, during the 1C
charging phase using testing dataset #2. The comparison results
presented in Fig. 6(d) demonstrate that both models exhibit similar
trends across all SOC regions; however, there are notable differ-
ences in their rates of increase. The calibrated model shows signif-
icant challenges in accurately calibrating the stiffness of each
component, leading to discrepancies. The data-driven model effec-
tively simulates Ao under all initial stress conditions, particularly
outperforming the calibrated model during contraction phases at
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Fig. 6. Verification of the calibrated and data-driven model: (a) Stiffness map plot of the battery cell, Compressed stress, and thickness curve, as well as its stiffness curve of
(b) buffer layer and (c) pressure sensor. (d) The comparison results of calibrated and LSSVR models under different initial stress. (e) The comparison of the best case in

0.18 MPa and the worst case in 0.04 MPa is in (d).

higher SOCs. In best cases, such as at an initial pressure of
0.18 MPa, the calibrated Ac, shows the highest accuracy across
all pressures, further validating the effectiveness based on static
stress-strain experiments. Conversely, the worst case is that the
one at 0.04 MPa has a remarkable difference from the actual value
due to inaccuracy calibration stiffness. The reason is the stress
relaxation or creep caused by reciprocating pressurization and
depressurization cycles over long-term operation. However, it is
difficult and time-consuming to calibrate the stiffness of the buffer
layer over aging. Thus, it is essential to establish a data-driven
model with only measurable data during the charge and discharge
process.

4.1.2. Comparison of data-driven model for different machine learning
methods

To further validate the effectiveness of the proposed mechanical
model, we compared the LSSVR-based mechanical model with
other machine-learning methods, such as Elastic Net Regression
(ENR), Random Forest (RF), Support Vector Regression (SVR), Gaus-
sian Process Regression (GPR). As shown in Fig. 7(a), LSSVR exhibits
high-fidelity fitting for nonlinear and non-monotonic expansion
behavior, particularly during the contraction phase from H, to Hs
in high SOC regions, outperforming ENR and SVR in modeling com-
plex mechanical properties. Fig. 7(a,b) show that LSSVR performs
better than other methods in testing datasets #1 and #2, as indi-
cated by scatter plots close to the actual value line. The MAPEs of
all six models are listed in Table 5, showing that LSSVR achieves
lower MAPE across all datasets compared to the others. Notably,
GPR’s MAPE is close to LSSVR’s, while SVR performs significantly
worse. The superior performance of LSSVR can be attributed to
its efficient kernel function utilization and improved loss function
with unconstrained optimization via Lagrange multipliers. Both
LSSVM and GPR utilize kernel functions to achieve high-
dimensional mapping and capture nonlinear relationships in data.
While GPR explicitly performs probabilistic modeling, LSSVM exhi-
bits implicit probabilistic characteristics through optimization and
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dual problem formulation. These similarities in kernel function use
and probabilistic aspects result in comparable performance.

4.2. Voltage simulation and validation under FUDS driving cycle

4.2.1. Pressure dependence of electrical model parameters

To analyze the evolution of model parameters with pressure, we
compare OCV-SOC curves under different pressures and present a
3D map plot of impedance parameters against SOC and pressure
in Fig. 8(a). A significant difference in the OCV-SOC curve is
observed between 0 MPa and 0.1 MPa, while there is almost no dis-
tinction at 0.03 MPa and 0.1 MPa. The OCV discrepancies at 0 MPa
and 0.1 MPa occur primarily between 10% and 40% SOC, which can
be attributed to pressure-induced changes in thermodynamic
parameters, especially within phase transition regions dominated
by silicon anode during lithiation - a phenomenon previously
reported in [27]. As shown in Fig. 8(b), R, increases with rising
pressure across all SOCs, driven by the influence of electronic and
ionic impedances under pressure conditions. The decrease in ionic
impedance with increasing pressure enhances R,, resulting from
improved contact between electrodes and current collectors. In
Fig. 8(c,d), both Rinter and R, decrease due to an increase in electro-
chemical active surface area and reduced porosity. In Fig. 8(e) R
remains relatively unchanged with pressure since the active mate-
rial is not compressed. Additionally, the variation of T with pres-
sure does not align with the resistance changes due to differing
trends in capacitance values. Notably, the variation of interfacial
reaction parameter o, with pressure is more remarkable than that
of solid-phase diffusion. The accuracy of model parameters repro-
duces the evolution of pressure-dependence electric model param-
eters, leading to high-fidelity voltage simulations under external
pressures.

4.2.2. Simulation and verification of EMCM in preload conditions
To further validate the accuracy of the proposed model, we
compared measured and simulated terminal voltages, along with
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Fig. 7. Simulation and verification of data-driven mechanical model at (a) 0.1C discharge in testing dataset #2. (a) Testing dataset (b) #1, (c) #2.

Table 5

Validation results of different data-driven mechanical models.
MAPE (%) ENR RF SVR GPR LSSVR
Training dataset 0.4511 0.0903 0.0941 0.0257 0.0181
Testing dataset #1 1.8093 0.3621 0.3775 0.0600 0.0423
Testing dataset #2 0.3906 0.0850 0.0830 0.0260 0.0218

their error distributions at 0.03 MPa and 0.05 MPa, as shown in
Fig. 9. The simulated voltage under the FUDS aligns closely with
the measured values presented in Fig. 9(a,c). In the zoomed-in por-
tions of these figures, it is evident that the proposed model can
effectively capture polarization changes under dynamic load cur-
rents in high SOC regions. As shown in Fig. 9(a,c), the absolute
errors remain within —50 mV and 50 mV when SOC is above
10%. The error distribution graph further indicates that almost all
absolute errors are concentrated within this range. However, for
SOC values below 10%, absolute errors range between —120 mV
and 100 mV in Fig. 9(b,d), which is significantly higher than those
observed at SOC levels between 10% and 100%. This phenomenon
can be attributed to incomplete fitting of the frequency-domain
model at low SOCs. While enhancing the orders of equivalent cir-
cuit models could address this issue — as discussed in previous
studies - this section, this work only explores pressure-related
model parameters and which reactions cause more voltage errors
in preload conditions. Thus, we don’t discuss how to improve the
simulation accuracy of the frequency-domain model in low SOCs.

4.2.3. Sensitivity analysis of pressure-induced model parameters

To further illustrate the necessity of updating model parameters
with pressure, we compared the simulated voltage profiles using
parameters from 0 MPa and 0.1 MPa against the measured voltage
profile at 0.1 MPa in Fig. 10(a). The comparison of their MAPE and
MAE is shown in Fig. 10(b). A notable discrepancy in voltage pro-
files was observed in Fig. 10(a), especially in the low SOC region.
The absolute errors increase progressively with SOC, exceeding
200 mV at the discharging end, which can be attributed to differ-
ences in OCV between 0 MPa and 0.1 MPa. Updating parameters
with pressure reduces MAPE by over 0.63% and MAE by more than

20 mV. To further analyze how these parameter updates contribute
to total simulation error, we calculated MAE for different changes
in model parameters, using the results from updating all parame-
ters as a benchmark. The highest MAE was associated with OCV,
confirming our previous speculation that OCV is a primary factor
influencing voltage errors, as shown in Fig. 10(c,d). However, the
effect of other parameters on output voltage is significantly less
pronounced, with their influence ranked as follows: R., R,, and
Te. When these parameters are increased threefold in Fig. 10(e-g),
we observe variations in errors across different SOC regions: R.
and 1. predominantly affect the simulated voltage at high and
low SOCs, respectively, while R, influences simulated voltage
across all SOC levels. The simulated results demonstrate the neces-
sity of updating pressure-related model parameters - especially
initial pressure rather than expansion force - since calibrated
OCV and impedance parameters have substantial impact on output
voltage during initial preload conditions, as shown in Fig. 10(a).
This is particularly relevant given that expansion forces under flex-
ible bracing modes are relatively low: less than 0.07 MPa at an ini-
tial pressure of 0.1 MPa and around 0.13 MPa at an initial pressure
of 0.4 MPa. Thus, achieving high-precision calibration of OCV and
impedance parameters at initial pressure is critical for improving
real-time voltage simulations.

4.2.4. Robustness analysis of expansion estimation under multi-source
errors

In the battery expansion estimation framework utilizing data-
driven electromechanical models, the estimated SOC and cali-
brated values at initial pressure are important input information.
However, these inputs are subject to algorithm estimation errors
and pressure sensor measurement errors. To further analyze the
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Fig. 10. Voltage simulation results under preload conditions. (a) Comparison results of measured voltage at 25 C @ 0.1 MPa, simulated voltage with model parameters at
0.1 MPa (po.1 mpa) and 0 MPa (po mpa), and the corresponding error. (b) MAPE and MAE with updated and un-updated parameters. The variation of MAE with updated (c)
impedance parameters and (d) OCV at 25 'C @ 0.1 MPa. The error evolution with the changed (e) R., (f) Ro, and (g) te with three times.

robustness of the proposed framework, we analyze how these
influencing factors affect battery expansion estimation by artifi-
cially generating a dataset that incorporates SOC estimation errors
and sensor measurement errors at different levels. Following the
AIC evaluation of reduced-order models discussed in Table 6, we
conducted a robustness analysis of battery expansion estimation
using the generated dataset and reduced-order R(RC) model-
based EKF algorithm described in Section 3.3.3.

4.2.5. Expansion estimation under estimated SOC errors

Four different noise levels with standard deviations were added
to the normal data in the generation dataset for the model-based
EKF estimators. This allowed us to analyze the model robustness
under different scales of SOC estimation errors. We compared out-
comes using normal data against those influenced by SOC estima-
tion errors, which ranged from + 1% to + 5%, aligning with the
standard error range reported by Xiong et al. [30]. These SOC esti-
mation errors originate from updated model parameters with pres-
sure and measurement errors in current and voltage signals.
Fig. 11(a, b) indicate that SOC estimation maintains high accuracy
(<2%) and rapid convergence capability (<100 s). Notably, SOC esti-
mation errors associated with OCV-SOC curves at 0 MPa are higher
than those at 0.1 MPa when external pressure is applied, highlight-

154

ing the importance of updating OCV based on pressure for improv-
ing SOC estimation accuracy. These SOC estimation errors further
lead to inaccuracies in battery expansion estimation. In Fig. 11(c,
d), we observe that expansion estimation results, despite varying
levels of SOC estimation errors, still track the general trends of
expansion as SOC decreases. However, maximum absolute errors
for both best and worst cases occur within the 80% to 100% SOC
range, while another peak in absolute error arises between 20%
and 30% SOC for worst-case scenarios. The RMSEs, MAPEs, and
MAEs for the battery expansion estimation in the FUDS driving
cycle are summarized in Table 7. The RMSEs, MAPEs, and MAEs
for battery expansion estimates during the FUDS driving cycle
are summarized in Table 7; all testing datasets exhibit MAPEs
below 0.1% and MAEs under 3%, meeting industrial requirements
for maximum state estimation errors such as those related to SOC.

The initial values of SOC and preload force are crucial for accu-
rate expansion estimations under FBM. Any initial SOC error can be
mitigated through an expansion estimation framework operating
over longer time scales (e.g., using 2.5% SOC intervals), which far
exceeds the convergence time of EKF when faced with inaccurate
initial values. Moreover, initial pressure during charging can be
monitored via pressure sensors during multi-cell stacking pro-
cesses within battery modules. In contrast, long-term operational
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Table 6
The simulated error of different impedance models in the time domain.
Models RMSE (mV) MAE (mV) MAPE (%) AIC
(RL)R(RQ)(RC)W 15.24 10.80 0.31 2528
R(RQ)(RCO)W 15.24 10.80 0.31 23.27
R(RQ)(RC) 16.46 11.54 0.33 21.06
R(RQ) 16.87 11.75 0.33 18.90
R(RC) 17.36 11.89 0.34 18.21
(a) 100 (C) 0.12 (e) 0.12
—SO0C real Best case Best case
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Fig. 11. (a) SOC estimation results and (b) their estimation error with OCV at 0 MPa and 0.1 MPa. The effect of SOC estimation error on (c) expansion results and (d) their
absolute errors in best and worst cases. The influence of pressure sensor measurement error on (e) expansion results and (f) their absolute errors in best and worst cases.

Table 7

Validation of expansion estimation from SOC estimation errors.
Evaluation metrics Normal +1% +2% +4% +6%
RMSE (kPa) 0.82 1.01 1.67 3.09 3.99
MAE (kPa) 0.58 0.75 1.09 1.80 2.35
MAPE (%) 0.022 0.025 0.035 0.046 0.060

data-driven models derive initial pressures under FUDS driving
cycles, enhancing stability and accuracy. An interesting observa-
tion is presented in Fig. S2: battery expansion trends during a
0.1C discharge closely align with those observed during FUDS driv-
ing cycles due to similar long-term stress relaxation effects—typi-
cally exceeding five hours. Consequently, we opted to use data
from a 0.1C discharge instead of FUDS driving cycles to minimize
uncertainty introduced by random driving conditions.

4.2.6. Expansion estimation under different sensor noisy levels

To further analyze the model robustness under different scales
of measurement errors, four different noise levels with standard
deviations were added to the normal data in the calibrated dataset
of different pressure sensors. These sensors, such as optical fiber,
load cells, and thin-film pressure sensors, are typically used in
practical scenarios for fault diagnosis. The sensor noise was simu-
lated by adding a zero-mean white Gaussian noise, configured with
the standard deviation (o) from 1% to 5% of their initial point val-
ues to both calibrated pressure input sequences. With a 5% Gaus-

sian noise level, the maximum deviation of 99.5% of the data is
about 5% (3c) of the actual pressure values, which matches the
industrial requirement of the maximum measurement error for
pressure sensors. The estimation performance of the LSSVR model
for expansion behavior from noisy input sequences is shown in
Fig. 11 (e,f). Adding noise to the input does not affect the overall
trends for best and worst cases, but the error curves are not
smooth. In best and worst cases, the noise does not almost influ-
ence estimation performance in the range of 0% ~ 35% SOC, guaran-
teeing the stability of the LSSVR model due to the highest gradient
range. However, the measurement noise in both cases leads to sev-
ere estimation shaking around actual values in the SOC range from
35% to 100%. The absolute errors are less than 10 kPa and 20 kPa for
13 kPa and 180 kPa of initial preload, respectively. The maximum
absolute errors are mainly concentrated in the 35-55% and 90%
— 100% SOC range. The primary metrics of the model are summa-
rized in Table 8. The RMSEs and MAEs for all cases are less than
6.5 kPa and 3 kPa, respectively, and MAPEs are less than 0.1%,
which matches the requirement of state estimation in BMSs. These
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Table 8

Expansion estimation results with different sensor noise levels.
Evaluation metrics Normal 1% 2% 4% 5%
RMSE (kPa) 0.82 1.29 2.37 2.37 6.13
MAE (kPa) 0.58 0.80 1.43 1.43 3.49
MAPE (%) 0.022 0.025 0.035 0.035 0.068

phenomena indicate that the data-driven model can accurately
estimate battery expansion. Various filters should be implemented
to enhance the model performance and reduce the estimation
errors to smooth the input data. Compared with SOC estimation
errors, pressure measurement errors have a more significant influ-
ence on battery expansion estimation due to the high sensitivity of
the model for calibrated pressure data under CDM.

4.2.7. Limitation and outlook

This work focuses on developing a data-driven mechanical
model that takes into account C-rate, SOC, and preload force under
flexible bracing conditions, such as buffer layers and deformation
elements. The data-driven mechanical model will be extended to
other chemistry with nonlinear expansion characteristics in the
future. However, the effects of temperature and aging on battery
expansion have not been thoroughly investigated due to the limi-
tations posed by expensive mechanical and temperature character-
ization methods and the challenges associated with conducting
long-term lifetime tests. While similar expansion characteristics
have been observed during small current and dynamic condition
discharges, it remains uncertain whether this similarity holds
throughout the entire lifespan of the battery.

Another challenge identified is the low robustness of the pro-
posed framework when subjected to pressure sensor measurement
errors of 5%, especially considering that thin-film sensors com-
monly exhibit measurement errors of around 10% in mainstream
production. Moving forward, we aim to enhance the data-driven
mechanical model by incorporating additional dimensions and
implementing advanced deep-learning algorithms with encoders.
This will allow us to introduce more influencing factors related
to battery expansion while improving the model’s robustness
against state estimation inaccuracies and sensor measurement
errors. Ultimately, configuring pressure sensors alongside estimat-
ing the mechanical state offers advanced and effective solutions for
battery fault diagnosis and safety warnings, contributing to
improved reliability in battery management systems.

5. Conclusion

In this work, we designed a sensorless battery expansion esti-
mation framework that utilizes cloud-assisted data-driven elec-
tromechanical coupled models within the EKF for onboard fault
diagnosis and early warning, complemented by the configuration
of pressure sensors. We conducted electrochemical and mechani-
cal characterization experiments under various mechanical bound-
aries to reveal the electrochemistry of expansion and
electromechanical coupling behavior through impedance models.
The pressure-dependent OCV and impedance parameters signifi-
cantly enhance simulated voltage accuracy, achieving an MAE of
less than 20 mV and SOC estimation accuracy of about 2%. Sensitiv-
ity analysis of the full-order impedance model at 0 MPa and
0.1 MPa revealed the importance of OCV, electrolyte diffusion
impedance R., and ohmic resistance R, in improving voltage simu-
lation, guiding the selection of a reduced-order model by sensitiv-
ity results and AIC metrics in real-time estimation. The mechanical
constitutive equations under various mechanical boundaries were
derived for the first time to explore the transformation relationship
of expansion behavior influenced by the stiffness of each compo-
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nent within mechanical systems. A novel swelling coefficient was
proposed to characterize the relationship between rigid or free
and flexible bracing with a buffer layer. The force- and
displacement-type expansion model was developed using swelling
coefficient and calibrated data under CDM or CPM.

The data-driven mechanical model established in this work uti-
lized SOC, current, and calibrated expansion force under CDM as
inputs to estimate battery expansion across different preload
levels. The model demonstrated an average mean absolute error
of less than 1 kPa at all initial pressures ranging from 10 kPa to
400 kPa for battery expansion estimation, aligning well with indus-
try standards. When compared to calibrated stiffness models and
other machine learning approaches, the proposed LSSVR-based
data-driven model exhibited superior performance in estimating
expansion under varying pressures. We also validated the model
against various levels of noisy input data, including SOC estimation
errors and calibrated pressure measurement inaccuracies. The
results confirmed the robustness of our model in handling SOC
estimation and sensor measurement errors during battery expan-
sion estimations.

In summary, the estimation framework presented in this work
provides an effective solution for accurate sensorless expansion
estimation using machine learning. This approach holds promise
for future applications across more electrochemical systems, par-
ticularly those exhibiting nonlinear mechanical behaviors. Addi-
tionally, this work underscores the importance of precise battery
estimation algorithms for state monitoring and fault diagnosis.
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