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Abstract. We consider a Henry-like intrusion problem, where fluid flow
is driven by variations in fluid density. The Multi-Level Monte Carlo
(MLMC) method is employed to estimate the mean value of a quantity
of interest (Qol). The Qol is defined as the earliest time at which the
mass fraction of salt exceeds a given threshold.

In our setting, porosity, permeability, recharge, and fracture thickness
are treated as uncertain parameters and modeled as random variables.
For each realization of these parameters, the evolution of the salt mass
fraction is governed by a system of nonlinear, time-dependent partial
differential equations (PDEs). We demonstrate that the MLMC method
can be effectively applied to this problem, significantly reducing compu-
tational costs compared to classical Monte Carlo methods.

The findings of this study have the potential to enhance and accelerate
the monitoring of drinking water resources and pollution dynamics.

Keywords: density driven flow - uncertainty quantification - Multi Level
Monte Carlo - geometric multigrid method

1 Introduction

Uncertainty in geological parameters, such as porosity, permeability, and frac-
ture characteristics, poses significant challenges to accurate prediction of aquifer
behavior, especially in the context of seawater intrusion and freshwater manage-
ment. This is especially important for fractures, which introduce strong anisotropy
into flow and transport phenomena, further complicating the modeling process.
Real aquifers inherently exhibit uncertain fracture characteristics, making their
accurate representation highly complex.

As demonstrated in [9], combining the Multi-Level Monte Carlo (MLMC)
method with the geometric multigrid method (GMG) is a highly effective strat-
egy for addressing complex flow problems. Related studies, such as [6] and [7],
explored the use of Polynomial Chaos Expansion (PCE) in the Elder problem,
another density-driven flow challenge. In our previous work [10], we success-
fully applied the coupled GMG and MLMC methods to a problem involving
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fractures. This paper builds upon those results, considers another quantity of
interest (Qol) and extends the methodology and findings. For a comprehensive
review of the relevant literature and detailed descriptions of the problem set-
tings and methods, we refer to [10]. Here, we adopt the benchmark model from
[4], a generalization of the classic Henry problem [5], a standard test case for
density-driven groundwater flow solvers [13, 2].

Novelty. We analyze the performance of the MLMC method for a challenging
density-driven flow problem governed by coupled, nonlinear system of PDEs with
discontinuous behavior. By combining MLMC with GMG solvers, we estimate
the mean of the time at which the salt mass fraction exceeds a specified threshold.
Our results show that MLMC can achieve speedups of up to 1000x compared to
standard Monte Carlo methods. The uncertainties considered include spatially
variable porosity, time-dependent recharge, and fracture aperture.

2 DModeling

We consider density-driven flow in a fractured, immobile, fully saturated porous
medium. The liquid phase consists of a salt solution with a variable salt mass
fraction. Our model follows the approach of [11], to which we refer for further
details. The fracture, with a physical aperture of ¢, is represented as a lower-
dimensional manifold. We assume that the fractures remain fixed and denote
the entire aquifer domain by D C R?, with the fracture surface ./ C D and
the surrounding matrix .# C D, such that .# U.” = D. The porosity and
permeability of the matrix are denoted by ¢,,, and K,,, respectively, while those
of the fracture are ¢y and Ky. Then the flow and transport in each of these
subdomains are described by the mass conservation laws
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where ¢, ¢, pm = p(em), pr = p(cy) are salt mass fractions and densities of the
fluid phase in .# and ., and D,,,, Dy are the diffusion-dispersion coeflicients
in these media. For the flow velocities gy, s, we assume the Darcy’s laws:

qm:_%(me_pmg)v re M, (3)
ar ==LV pr —pre),  wEeS (4)

where p,, s are pressure fields, p viscosity of the fluid phase, g the gravity.

To model the mass exchange between .# and the fracture, we distinguish
between two sides of ., namely .#(1) and ., coinciding with .# in position,
but being interfaces between the fracture and .# with outer normals n(!) and

n® = —nM, On .#®) we assume mass fractions c) and pressures p'¥, so
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that these fields are discontinous on .#. The mass fluxes of the liquid phase and
the salt through .#(®) are denoted by Q n and P;Z):
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where K (k) is the normal permeability and D(k) the normal effective diffusion-
(k)
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of ql(fn) . Using (5), additionally to the exchange terms in (2), we impose
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for k = 1,2 that couple systems (1) and (2). The primary variables in this model
are ¢y, ¢y, pm and py. System (1-7) must be closed by boundary conditions for
these variables on 0D and initial conditions for ¢,, and ¢y at t = 0.

3 Model problem settings

For our numerical tests, we choose and extension of the Henry problem [5, 13] —
a two-dimensional model problem with one fracture, proposed in [4]: We consider
= [0,2]x [~1,0] [m?] with . touching its right “sea side” where the heavy salty
water intrudes into the aquifer. The ends of . are at (1,—0.7) and (2, —0.5),
see Fig. 1 (left). On the left, the recharge of fresh water is imposed: ¢, |z=0 = 0,
PQm - €zle=0 = Gin, where e, = (1,0)7, and g, is a prescribed function of
time, see below. On the right, we model the seawater intrusion: ¢, fls—2 = 1,
P, fle=2 = —p19y. On the top and the bottom of D, no-flux boundary conditions
are used. The flow and salt transport patterns for this problem are shown in
Fig. 1 (right). The colour represents the mass fraction ¢,,, with dark red for
¢m = 1 and dark blue for ¢, =0 (¢, € [0,1]). The lines are the streamlines of
dm- In the left part of D, the flow is induced by the pure water recharge. The
salty water intruding through the lower part of the right boundary turns up and
is flushed out through the upper part of the same side. In particular, the much
more permeable fracture acts as a pathway for the strong washout. Due to this,
the part of the domain below the fracture is almost separated from the upper
part of the domain. This phenomenon depends on the aperture, porosity and
permeability of the fracture.
In this paper, we set p,, (c) = 10® + 25¢ [kg/m?], u = 1073 [kg/m/s],
= (0,-9.8)T [m/s?]. In the fracture, ¢; = 0.7 and K; = 1.019368 - 10~6 [m?]
are deterministic. Besides that, we assume isotropic K,,, = K,,,I with K,,,(¢s,) =
1.5455 - 10783¢2, /(1 — ¢2,) [m?]. We neglect the mechanical dispersion: D,, =
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Fig.1: (left) Scheme of the test problem; (right) flow streamlines (thin black
lines) and the salt mass fraction field in D. The dark red colour corresponds to
¢m = 1.0, the dark blue to ¢, = 0.

émDol, Dy = ¢¢Dg, where Dy = 18.8571 - 1075 [m?/s]. Furthermore, we set
Kfn = Km and Dfn = ¢mDO~

We consider uncertain porosity field ¢,,, the fracture aperture €, as well
as the freshwater recharge intensity ¢, (constant along the left boundary). Let
&1(w), & (w), &s(w) € U[—1,1] be three uniform RVs. The uncertain aperture of
the fracture, the recharge, and the porosity are modeled as follows:

(&) =0.01-((1=0.01)-& + (1+40.01))/2, (8)
Gin(t,€3) = 3.3-107% - (1 4 0.1&)(1 + 0.1 sin(nt/40)), (9)
G (T,y,E2) = 0.35- (1 +0.02 - (& cos(mx/2) + & sin(2my)), (z,y) € D. (10)

The Qol is the following time moment:

Q(w) = Q(£17£27£3) = mint{cm(ta X,CU) Z C*}7 (11)

where ¢, = ¢, (¢, %X, w) is the salt mass fraction at a fixed point x € D, and ¢*
a specified critical value.

4 Numerical Methods

The initial system is numerically solved over the domain D X [0, T], where D is
discretized using an unstructured grid D; composed of triangles and quadrilat-
erals. The characteristic mesh size on level ¢ is denoted by hy. To resolve the
jump in the solution at ., we apply a specialized technique, as detailed in [11].
The discretization in space is performed using a vertex-centered finite-volume
scheme. We let n, represent the number of degrees of freedom on the grid. A
regular refinement strategy is employed to construct the grid hierarchy, ensuring
that hy = O(ne_l/d). In time, we use the implicit Euler method with a time step
7¢. The total number of time steps is given by ry = T'/7.

We observed that after approximately T = 6016 seconds, the solution sta-
bilizes and shows little change. Therefore, the experiment is conducted for ¢ €
[0,7]. On the coarsest level we use = 188 time steps, yielding a time step
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™ o= Z = 8916 — 32 seconds. For higher levels, £ = {2,3,4,5}, the num-
ber of time steps rp is {376,752, 1504, 3008}, with the corresponding time step
T = {16, 8,4, 2} seconds.

Due to the full upwind technique for the convective terms, the discretization
error is of the first order w.r.t. h. Furthermore, the Euler method provides the
same order w.r.t. 7. Thus, as d = 2, ||c;n —Cmnrl2 = O(h+7) = O(n~ Y2 4r71),
which is consistent with our numerical tests.

The implicit time-stepping scheme is unconditionally stable but requires so-
lution of the large nonlinear algebraic system with n unknowns per time step by
the Newton’s method. The linear systems in the Newton iterations are solved us-
ing BiCGStab preconditioned with the GMG method (V-cycle) that involves the
ILUg-smoothers and Gaussian elimination as the coarse grid solver. The MLMC
algorithm and the theory are described in [10]. We use GMG implemented in
the ug4 toolbox [12,14].

MLMC method. The MLMC method is an advanced variance reduction
technique that leverages a hierarchy of discretization levels (¢ = 0,...,L) to
approximate the expected value of a Qol. The Qol at level £ is denoted by gy.
Rather than relying solely on high-resolution simulations, MLMC combines mul-
tiple levels: coarser levels, which are computationally cheaper and provide rough
estimates, and finer levels, which refine these estimates. The method achieves
efficiency gains through a telescoping sum formulation, which systematically re-
duces variance across levels.

The MLMC method relies on three key components: 1) a sequence of in-
creasingly fine discretizations in both space and time, 2) a hierarchical estimator
that optimally balances accuracy and computational cost by distributing sam-
ples across levels, and 3) estimates of the weak and strong convergence rates,
denoted by « and 3, respectively.

The convergence rates a and [ are determined by analyzing the decay of
Elge — ge—1] and Var[ge — ge—1] as a function of £. In the present study, for
the quantity of interest (Qol) defined in (11) and evaluated at x = (1.1, —0.8),
the estimated convergence rates are a =~ 1 and 8 = 1.7. At another location,

= (1.2,-0.8), the rates are similar & &~ 1 and 8 = 1.65. For further details
how to use these rate, we refer to [9,10] and the references therein.

Comparison of MC and MLMC methods. In Figure 2 (left), we show
50 random realizations of the mass fraction ¢(t, x), computed at x = (1.1, —0.8),
over time ¢ € [0,487]. Notably, there is substantial variability at the final time
point, t = 487.

Figure 2 (center) displays the probability density functions (pdfs) of the Qol
computed at the point x = (1.1, —0.8) across different mesh levels labeled L1
(coarsest) through L5 (finest). The coarsest mesh (L1) contains 608 mesh points,
and the next meshes {2368, 9344, 37120, 147968} mesh points respectively. It is
evident that curves L2 through L5 are nearly identical, whereas curve L1, cor-
responding to the coarsest mesh, diverges slightly, indicating reduced accuracy
with coarser meshes. For instance, these plots say that in average after time
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Fig. 2: (left) 50 random realizations of the mass fraction c(t, x) over time ¢, where
t € [0,487] at x = (1.1, —0.8); (center) pdfs of Qol, computed on different spatial
and temporal scales (L1-L5); (right) Computational cost comparison of MC and
MLMC methods against accuracy (scaled e, horizontal axis) in log-log scale.

t = 327, 7 is a discrete time step, the mass fraction exceeds the threshold
¢t =0.17.

In Figure 2 (right), we compare the estimated computational costs for the MC
method, shown by the blue solid line, and the Multi-Level Monte Carlo (MLMC)
method, represented by the red dash-dot line. Both methods are used to compute
Elg] =E[Q] (x) := E[Q(w,x)], with @ defined in (11). The horizontal axis indi-
cates scaled accuracy ¢. It is recommended to read the plot from right to left. The
theoretical cost of the MC method is presented, as calculating it numerically is
computationally prohibitive. The MLMC method’s computational cost is given
by (’)(5_(2“‘3'1I = ) = O(e733), which corresponds to the third case in the clas-
sical MLMC theorem [3, 1, 8]. We observe that the MLMC method outperforms
MC for nearly all values of ¢, particularly for small e. The theoretical cost for MC

is (’)(5_2_%), with dimension d = 3, v = 1 (linear cost of the GMG method),
and o = 1.08. Hence, the theoretical cost for MC is O(e=*4®). We calculated
that achieving the smallest accuracy requires L = 5 levels, with the number of
samples at each level being (mi, ma, mg, myg, ms) = (10463, 106, 20,4, 1). This
contrasts with the standard MC approach, where samples are only computed on
the finest level.

Figure 3 shows similar pictures for the same Qol just computed at another
point, namely, x = (1.2, —0.8). We see similar behavior and patterns in all
three plots. The only difference is in the middle figure: The pdfs computed on
different meshes are less similar to each other than on Figure 2. But the curves
corresponding to the most finest meshes are very similar.

5 Discussion and Conclusion

In this study, we assessed the performance of the MLMC method by applying it
to a Henry-like problem [5, 13], which models seawater intrusion into a 2D coastal
aquifer with a fracture. This problem illustrates how freshwater recharge from
the “land side” (see Fig. 1 (left)) counteracts the salinization caused by saline
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Fig. 3: (left) 50 random realizations of the mass fraction c¢(¢, x) over time ¢, where
t € [0,487] at x = (1.2, —0.8); (center) pdfs of Qol, computed on different spatial
and temporal scales (L1-L5); (right) Computational cost comparison of MC and
MLMC methods against accuracy (scaled e, horizontal axis) in log-log scale.

water intrusion from the “sea side”, leading to an equilibrium in salt concentration
over time.

To incorporate uncertainties in the system, several parameters were treated
as random variables: the fracture width, porosity and permeability of the bulk
medium, and the freshwater recharge rate from the land side. Porosity and per-
meability were modeled as correlated random fields, while the recharge rate was
treated as a random periodic function, and the fracture width as a random vari-
able. In total, three independent random variables were considered in the model.

The efficiency of the MLMC method was evaluated by computing the mean
values of the earliest time at which the mass fraction exceeds a critical threshold.

The preliminary findings of this study highlight the significant potential of
the MLMC method in reducing computational costs, with reductions of up to a
factor of 1000 (see Fig. 2 and Fig. 3).

Preliminary experiments also underscore the critical importance of the choice
of Qol. For smooth Qols, such as integrals of the solution, the advantages of
MLMC may be less pronounced. This is because integrals act as averaging op-
erators, smoothing high-frequency fluctuations and reducing sensitivity to fine-
scale features. As a result, such Qols can often be accurately approximated us-
ing coarser meshes, which reduces the need for MLMC’s multi-level refinement.
Furthermore, the efficiency of MLMC is closely tied to both weak and strong
convergence rates. Poor convergence can arise from various factors, including
non-linearity in the problem, suboptimal discretization schemes, modeling er-
rors, or numerical diffusion. These challenges emphasize the need for careful
consideration of the problem’s specific characteristics and the selection of appro-
priate numerical methods to ensure robustness and accuracy in the results.
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