001006472 001__ 1006472 001006472 005__ 20250815115713.0 001006472 0247_ $$2ISSN$$a0743-1546 001006472 0247_ $$2ISSN$$a2576-2370 001006472 0247_ $$2SCOPUS$$aSCOPUS:2-s2.0-86000633480 001006472 0247_ $$2doi$$a10.1109/CDC56724.2024.10886680 001006472 0247_ $$2ISBN$$a979-8-3503-1632-2 001006472 0247_ $$2ISBN$$a979-8-3503-1633-9 001006472 0247_ $$2ISBN$$a979-8-3503-1634-6 001006472 0247_ $$2ISBN$$a9798350316322 001006472 0247_ $$2ISBN$$a9798350316339 001006472 0247_ $$2ISBN$$a9798350316346 001006472 037__ $$aRWTH-2025-02474 001006472 041__ $$aEnglish 001006472 1001_ $$0P:(DE-82)IDM06707$$aMenn, Johanna$$b0$$eCorresponding author$$urwth 001006472 1112_ $$a63. Conference on Decision and Control$$cMilan$$d2024-12-16 - 2024-12-19$$gCDC 2024$$wItaly 001006472 245__ $$aLipschitz Safe Bayesian Optimization for Automotive Control$$honline, print, data medium 001006472 260__ $$aPiscataway, NJ$$bIEEE$$c2024 001006472 260__ $$c2025 001006472 29510 $$aCDC 2024 Milano / IEEE Control Systems Society 001006472 300__ $$a3782-3788 001006472 3367_ $$033$$2EndNote$$aConference Paper 001006472 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book 001006472 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib 001006472 3367_ $$2BibTeX$$aINPROCEEDINGS 001006472 3367_ $$2DRIVER$$aconferenceObject 001006472 3367_ $$2DataCite$$aOutput Types/Conference Paper 001006472 3367_ $$2ORCID$$aCONFERENCE_PAPER 001006472 500__ $$aDate Added to IEEE Xplore: 26 February 2025. - Datenträger: USB-Stick 001006472 536__ $$0G:(DE-82)X080067-WS-A.III$$aWS-A.III - Functional Perspective (X080067-WS-A.III)$$cX080067-WS-A.III$$x0 001006472 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1 001006472 536__ $$0G:(GEPRIS)390621612$$aDFG project G:(GEPRIS)390621612 - EXC 2023: Internet of Production (IoP) (390621612)$$c390621612$$x2 001006472 536__ $$0G:(DE-HGF)PHD-PROGRAM-20170404$$aDoktorandenprogramm (PHD-PROGRAM-20170404)$$cPHD-PROGRAM-20170404$$x3 001006472 536__ $$0G:(BMWK)19A21038D$$aBMWK 19A21038D - Verbundprojekt: EEmotion - Embedded Excellence - Fahrdynamik mit KI; Teilvorhaben: KI-Methoden, KI-basierte Regelung, Sicherheitsgarantien, Erklärbarkeit (19A21038D)$$c19A21038D$$x4 001006472 588__ $$aDataset connected to CrossRef Conference 001006472 591__ $$aGermany 001006472 7001_ $$aPelizzari, Pietro$$b1$$eCorresponding author 001006472 7001_ $$aFleps-Dezasse, Michael$$b2$$eCorresponding author 001006472 7001_ $$0P:(DE-82)IDM03985$$aTrimpe, Johann Sebastian$$b3$$eCorresponding author$$urwth 001006472 7870_ $$0RWTH-2025-02295$$iIsParent 001006472 909CO $$ooai:publications.rwth-aachen.de:1006472$$pVDB 001006472 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)IDM06707$$aRWTH Aachen$$b0$$kRWTH 001006472 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)IDM03985$$aRWTH Aachen$$b3$$kRWTH 001006472 9141_ $$y2024 001006472 9151_ $$0StatID:(DE-HGF)0031$$2StatID$$aPeer reviewed article$$x0 001006472 9201_ $$0I:(DE-82)422610_20200514$$k422610$$lLehrstuhl für Data Science im Maschinenbau$$x0 001006472 9201_ $$0I:(DE-82)120000_20140620$$k120000$$lFachgruppe Informatik$$x1 001006472 9201_ $$0I:(DE-82)080067_20181221$$k080067$$lInternet of Production$$x2 001006472 961__ $$c2025-03-12T09:20:22.457868$$x2025-03-12T09:19:21.983060$$z2025-03-12 001006472 980__ $$aI:(DE-82)080067_20181221 001006472 980__ $$aI:(DE-82)120000_20140620 001006472 980__ $$aI:(DE-82)422610_20200514 001006472 980__ $$aUNRESTRICTED 001006472 980__ $$aVDB 001006472 980__ $$acontb 001006472 980__ $$acontrib