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Abstract: It is the purpose of this review to compare differences in postnatal epigenetic programming
at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial
formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic
programming at the level of DNA methylation and enhances the expression of the RNA demethylase
fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methy-
lome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases
concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression
and FTO activity, FTO’s impact on postnatal adipogenic programming was investigated. Accumu-
lated translational evidence underscores that total protein intake as well as tryptophan, kynurenine,
branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators
modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-56K1 signaling may epi-
genetically suppress the WNT/B-catenin pathway, enhancing adipocyte precursor cell proliferation
and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A)
RNA methylome may represent novel unfavorable molecular events in the postnatal development of
adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic
DNA and RNA regulation, a compelling reason to rely on BE.

Keywords: adipogenesis; breastfeeding; DNA methylation; epigenetic stem cell regulation; fat mass-
and obesity-associated gene (FTO); formula feeding; m6A RNA methylation; milk exosomal miRNAs;
wingless signaling; obesity

1. Introduction

According to the “Developmental Origins of Health and Disease (DOHaD)” hypoth-
esis, the postnatal period plays a key role in developmental programming, conditioning
obesity, diabetes, and metabolic syndrome later in life [1]. The metabolic environments
during the prenatal, postnatal, and early childhood periods are modified by maternal
nutrition, postnatal feeding, and early childhood adiposity, all having an impact on health
outcomes in adult life [1]. In contrast to formula feeding (FF), breastfeeding (BF) involves
the physiological nutrition and mammary gland-mediated epigenetic programming of the
infant [2-7]. It offers protective metabolic programming against chronic non-communicable
diseases such as childhood and adult obesity [8-21] as well as type 2 and type 1 diabetes
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mellitus [9,22-25]. Nutrition is one of the most influential factors directly impacting DNA
methylation pathways [26]. A large percentage of tissue-specific methylation patterns are
generated postnatally [27]. The postnatal period, during which human infants are physio-
logically exposed to maternal breastmilk, appears to be a critical window for determining
long-term metabolic health [28]. Nutrition in early life modifies the epigenome [29], leading
to different phenotypes and altering disease susceptibilities [30]. Breastmilk is evolution’s
optimized adaptation for this critical developmental period of human life, correctly ad-
justing the epigenetic axes through milk’s bioactive compounds, including milk exosomal
microRNAs (miRNAs) [1-7].

2. Materials and Methods

To investigate the potential impact of fat mass- and obesity-associated gene (FTO)
overexpression through formula feeding and to identify metabolic and dietary factors
that modify FTO expression and their impact on RNA methylation patterns involved in
lipogenesis and adipogenesis, Web of Science, Google Scholar, and PubMed data bases
were selected to choose research articles all published in the English language. The scien-
tific quality and validity of the papers were controlled by all contributing authors. The
following key words were used for the search: “fat mass- and obesity-associated protein”,
“FTO”, “infant formula”, “formula feeding”, “human milk”, “breastmilk”, “breastfeed-
ing”, “microRNA”, “miRNA”, “miR”, “epigenetic regulation”, “DNA methylation”, “RNA
methylation”, “N6-adenosine methylation”, “m6A”, “m6A RNA demethylation”, “lipid
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synthesis”, “lipid storage”, “lipogenesis”, “adipocyte”, “adipogenesis”, “obesity”, “obesity

v

risk”, “body mass index”, “BMI”, “fat”, “fat mass”, “lean mass”, “white adipose tissue”,
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“WAT”, “brown adipose tissue”, “BAT”, “beige adipose tissue”, “thermogenesis”, “energy
expenditure”, “food intake”, “hypothalamic control”, “satiety”, “hyperphagia”, “circa-
dian clock”, “circadian rhythm”. Papers presenting redundant information from the same

research facility were excluded from this review. A total of 343 papers were assessed.

3. Results
3.1. Breastfeeding in Comparison to Infant Formula Feeding Modifies DNA Methylation

The programmed postnatal changes in methylation that occur in various tissues of
the body are crucial for proper postnatal development and tissue maturation [27]. It is
important to note that whether methylation inhibits or activates transcription depends
on the gene segment being analyzed. Hypermethylation in gene bodies is linked to gene
expression [31], while hypermethylation at transcription start sites or enhancers always
results in gene silencing [32].

Accumulating evidence supports the concept that BF and the duration of BF result
in substantial variations in DNA CpG island methylation of gene promoters, enhancers,
and gene bodies compared to artificial FF. CpG islands are DNA methylation regions in
promoters that silence corresponding gene expression.

The duration of BF was negatively associated with methylation of the leptin gene (LEP)
in the whole blood of children at 17 months of age [33]. Sherwood et al. [34] confirmed
that BF duration correlates with LEP methylation at the age of 10 years and with body
mass index (BMI) trajectory. According to a recent systematic review [35], BF negatively
correlates with promoter methylation of LEP, CDKN2A, and SLC2A4 genes and is positively
associated with NYP promoter methylation. BF may also modify global methylation
patterns and epigenetic effects of some genetic variants. In line with this, BF duration was
associated with epigenetic variations in RXRA and LEP at the age of 12 months, as well as
infant growth trajectories [36].

An epigenome-wide association study revealed that the duration of BF is associated
with epigenetic differences in children [37]. DNA methylation data derived from the
ALSPAC child cohort [38] reported that exclusive BF exhibits a higher number of DNA
methylation variations during infancy than at other growth periods of childhood. At the
genome-wide level, 13 CpG sites in girls (MIR21, SNAPC3, ATP6V0A1, DHX15/PPARGCIA,
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LINC00398/ALOX5AP, FAM238C, NATP/NAT2, CUX1, TRAPPC9, OSBPL1A, ZNF185,
FAMS84A, PDPK1) and 2 CpG sites in boys (IL16 and NREP) mediate the association between
exclusive BF and longitudinal BMI. Taken together, exclusive and prolonged BF in contrast
to FF could play a major role in preventing the risks of overweight/obesity in children
and adults through DNA methylation mechanisms occurring in postnatal life. These
observations clearly confirm milk’s impact on epigenetic regulation [39].

Recently, Trinchese et al. [40] reported significant variations in epigenetic modulations
in the brains of rats following the administration of milk from different animal species
(cow, human, and donkey). The milk intake of different mammals induced relative differ-
ences in promoter methylation levels (cow 40%, human 43%, and donkey 44%) as well as
methylation levels of gene bodies (cow 47%, human 60%, and donkey 56%), leading to
variations in gene expression. These data point to differences in the capacity and magnitude
of promoter and whole gene body methylations between cow milk and human milk intake.
Unfortunately, the investigators did not include cow milk-derived artificial formula in
their study.

3.2. Variations in DNA CpG Methylation Modify FTO and CUX1 Gene Expression

DNA methylation at CpG sites of the fat mass and obesity gene (FTO) is important for
regulating the level of FTO expression and the effects of individual single nucleotide poly-
morphisms (SNPs) of FTO [41-44]. Bell et al. [45] reported haplotype-specific methylation
in the FTO type 2 diabetes and obesity susceptibility locus, with measurable methylation
differences within the SNP association locus in a genome-wide association study. Czogata
etal. [46] found that obese children showed significantly higher expression and methylation
levels of the FTO gene compared to healthy controls. Furthermore, FTO gene expression
and FTO methylation correlated with changes in circulating levels of adipokines and gas-
trointestinal peptides in children [44]. The expression level of FTO showed a negative
correlation with the expression of apelin and leptin receptors, but a positive association
with leptin expression. Additionally, both FTO methylation and expression negatively
correlated with resistin and visfatin. Whereas cholecystokinin negatively correlated with
FTO methylation and expression, fibroblast growth factor 21 showed a positive correla-
tion. Moreover, FTO expression exhibited a negative association with cholecystokinin and
glucagon-like peptide-1 levels.

SNPs in the first intron of FTO are robustly associated with BMI and obesity [45-50].
The 3.4 kb region upstream of the human FTO contains a transcriptional initiation site
for the retinitis pigmentosa GTPase regulator interacting protein 1-like (RPGRIP1L) gene.
The first intron of FTO harbors most obesigenic SNPs and contains a binding site for
the transcription factor cut-like homeobox 1 (CUX1). CUX1 promotes the expression
of RPGRIPIL [49,50]. Specific subsets of hypothalamic neurons attenuate lipolysis by
regulating FTO expression [51]. CUX1 interacts with the binding site of FTO intron 1,
upregulating the adjacent RPGRIPIL and inhibiting leptin receptor transport and leptin
signaling [52-54].

RPGRIP1L is located more than 100 base pairs away in the opposite transcriptional
orientation of FTO. It is involved in anchoring the complex to promote leptin receptor aggre-
gation, regulating cellular leptin sensitivity and food intake [53]. Increased hypothalamic
FTO activity promotes leptin resistance, enhancing caloric intake and reducing lipolysis [55].
CUX1-mediated upregulation of RPGRIP1L by binding to FTO intron 1 may reduce leptin
sensitivity and lipolysis, promoting the development of obesity. Notably, CUX1 has been
identified as one of the genes exhibiting substantial CpG DNA methylation variations dur-
ing infancy compared to other growth periods during childhood in girls, linking exclusive
BF to longitudinal BMI [38].

3.3. The Epigenetic Impact of RNA N6-Methyladenosine Modifications on Adipogenesis

The m6A modifications are the most abundant methylation changes in mRNAs and
non-coding RNAs (ncRNA), affecting many aspects of mRNA metabolism, including
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splicing, translation, stability, and miRNA maturation. They play critical roles in gene
regulation, influencing various cellular processes [56-59]. m6A modifications are inserted
by RNA methyltransferases METTL3, METTL14, and WTAP (called writers), are removed by
the demethylases FTO and ALKBHS (erasers), and are recognized by m6A binding proteins,
including YT521-B homology YTH domain-containing proteins (readers) [56-59]. Moreover,
m6A modifications have attracted recent attention due to their pivotal importance in the
regulation of adipogenic gene expression [60-62].

Recent studies have shown that m6 A marks are decreased in the adipose tissue of obese
subjects. They are involved in the regulation of obesity-associated processes, including
adipogenesis, regulation of lipid metabolism, and insulin resistance [50,63,64].

3.4. Formula Feeding Compared to Breastfeeding Increases FTO Expression

Accumulated evidence demonstrates that FF compared to BF modifies epigenetic
changes at the level of CpG DNA methylation. Furthermore, excessively overexpressed FTO
in peripheral blood mononuclear cells of FF infants compared to exclusively BF infants at
the age of 5 to 6 months has recently been reported [65]. The group of exclusively BF infants
exhibited the lowest level of FTO gene expression (3.39 =+ 1.1) compared to the FF group of
infants (89.2 £ 19.3) (p < 0.001). A significant increase in FTO gene expression compared to
exclusive BF was also observed in the group of infants receiving mixed feeding (BF and
FF) (59.3 + 9.3) [65]. In contrast to exclusive BF, the expression of peroxisome proliferator-
activated receptor-o (PPARA) (85.41 £ 17.8) was significantly reduced in infants receiving
mixed feeding (23.6 + 10.98) and FF (19.4 £ 5.6), respectively. Recent evidence indicates that
FTO overexpression as well as reduced m6A-RNA methylation suppresses PPARA [66,67],
a critical transcription factor orchestrating anti-obesigenic and anti-inflammatory metabolic
effects [68].

Currently, research on FTO's role in obesity is divided into two groups. One group
hypothesizes that FTO introns serve as cis-regulatory sites for nearby genes involved in
obesity risk, while the other group suggests that FTO introns regulate FTO gene expression
itself [62]. It is worth mentioning that FTO SNPs in intron 1 (rs9939609, rs17817449,
rs3751812, rs1421085, rs9930506, and rs7202116) are strongly associated with overweight or
obesity [69,70].

Recent evidence supports the fact that the m6A demethylase FTO [71,72] directly
modulates obesity through m6A RNA modifications [62]. Remarkably, the most prevalent
SNP rs9939609 risk allele is associated with increased FTO mRINA levels [73]. Increased
expression of FTO contributes to the obesity phenotype, as demonstrated in mice with two
additional copies of FTO (FTO-4 mice) showing increased adiposity and hyperphagia [74].
Berulava et al. [75] provided evidence that obesity-associated SNPs in intron 1 of the FTO
gene enhance primary transcript levels of FTO. Specifically, FTO transcripts containing the
A (risk) allele of rs9939609 were more abundant than those with the T allele (mean 1.38;
95% confidence interval (CI) 1.31-1.44) [75].

A longer duration of exclusive BF (at least 5 months) has a significant influence on
BMI growth trajectories among children carrying the adverse FTO variant by modulating
the age at adiposity peak, age at adiposity rebound, and BMI velocities. Notably, exclusive
BF acts antagonistically to the FTO rs9939609 risk allele, and by the age of 15 years, the
predicted reduction in BMI after 5 months of exclusive BF is 1.14 kg/m? (95% CI: 0.67-1.62;
p < 0.0001) and 0.56 kg/m? (95% CI: 0.11-1.01; p = 0.003) in girls and boys, respectively [76].
Evidence from longitudinal cohort studies shows that exclusive BF versus FF/mixed
feeding or longer BF duration is associated with lower BMI trajectories [77]. Such early
interventions became more apparent with age and were sustained into early adult life [77].
These findings imply that artificial FF may not meet the appropriate physiological FTO
axis naturally controlled by BE. FTO plays a key role in regulating the mRNA and miRNA
methylome involved in posttranscriptional gene expression, including alternative splicing.
Excellent recent publications provide extensive information on FTO and its impact on m6A-
dependent RNA expression [78-84]. Table 1 summarizes recent evidence for FTO-mediated
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m6A RNA demethylation involved in the regulation of lipid metabolism, adipogenesis of
white (WAT) and brown adipose tissue (BAT), and satiety control.

Table 1. The effects of FTO-dependent m6A demethylation in adipocytes, hepatocytes, skeletal
muscle cells, blood mononuclear cells, and embryonic stem cells.

Cell Type Finding Reference
Inverse correlation during adipogenesis between m6A RNA levels and FTO gene
expression. The adipogenic role of FTO is due to the splicing of RUNX1T1 to the short [61]
splice variant RUNX1T1-S
The adipogenic effect of FTO is transmitted by mitotic clonal expansion (MCE), an early [85]
stage in adipogenesis
The demethylase activity of FTO is required for preadipocyte differentiation [86]
FTO enhances catenin f1 (CTNNB) expression, promoting lipogenesis in a m6A 87
demethylation-dependent manner [87]

Y P

FTO promotes adipogenesis and maintenance of lipid content in mature adipocytes by [88]
enabling CEBPB-driven transcription and expression of CEBPD
FTO promotes adipocyte differentiation via f1-adrenergic receptor (ADRB1) gene 89]
regulation through m6A modification in Hycole rabbits
FTO SNP rs1421085 increases the number of white adipocytes and lipid storage but [90]

reduces mitochondrial thermogenesis
FTO regulates autophagy and adipogenesis [91]
Zinc finger protein 217 (ZFP217) stimulates adipogenesis via activation of FTO

transcription and by posttranscriptional interaction with YTHDF2 [92]

Adipocytes I(;IADP b1nd§ to the FTQ protein, increasing its activity and thereby promoting m6A [93]

emethylation and adipogenesis

FTO promotes the expression of the adipocyte plasma membrane-associated protein [94]
(APMAP) gene by YTHDE?2 recognition, stimulating adipocyte differentiation
Via m6A modification, FTO upregulates MYC, a critical transcription factor promoting [95,96]
multipotent adipocyte stem cells to the adipogenic lineage ’
FTO knockdown shows that increased mRNA m6A methylation downregulates porcine [97]
adipogenesis
Epigallocatechin gallate-mediated FTO inhibition suppresses adipogenesis by inhibiting [98,99]
MCE in an m6A-YTHDF2-dependent manner !
FTO deficiency promotes thermogenesis and the transition of white-to-beige adipocytes
via YTHDC2-mediated translation and increased expression of hypoxia-inducible [100]
factor-1a (HIF1A)
FTO deficiency in mice modifies gene and miRNA expression involved in brown [101]
adipogenesis and browning of WAT
FTO deficiency upregulates uncoupling protein 1 (UCP1) and subsequently enhances
mitochondrial uncoupling and energy expenditure, resulting in the induction of the [102]
brown adipocyte phenotype
Metformin inhibits FTO and counteracts high-fat diet (HFD)-induced obesity in mice in [103]
an m6A-YTHDF2-dependent manner
FTO enhances lipid accumulation in hepatocytes by upregulation of the nuclear
translocation and maturation of SREBP1c, thereby enhancing the transcriptional activity [104]
of the lipid droplet-associated protein CIDEC
FTO-mediated RNA demethylation reduces mitochondria numbers and stimulates [105]
hepatic fat accumulation
Elevation of FTO stimulates liver steatosis by m6A demethylation and increases the
stability of sterol regulatory element-binding transcription factor 1 (SREBF1) and [106]
carbohydrate response element-binding protein (CHREBP; MLXIPL) mRNAs

Hepatocytes FTO promotes hepatic gluconeogenesis and lipid accumulation by increasing the
expression of activating transcription factor 4 (ATF4), which works in conjunction with [107]
forkhead box O1 (FoxO1)
Glucocorticoid-mediated FTO transactivation enhances lipid accumulation in [108]
hepatocytes by m6A demethylation of lipogenic mRNAs
FTO induces hepatic lipogenesis through an m6A demethylation-dependent increase of [109]
fatty acid synthase (FASN) mRNA
Entacapone, a chemical FTO inhibitor, mediates metabolic regulation through FOXO1 in [110]

HepG2 cells. FTO via m6A demethylation upregulates FOXO1 expression
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Table 1. Cont.
Cell Type Finding Reference
Skeletal muscle ~ AMP-activated protein kinase (AMPK) stimulates lipid accumulation in skeletal muscle [11]
cells cells through FTO-dependent m6A demethylation
Atorvastatin reduces FTO protein expression via a geranylgeranyl
pyrophosphate-dependent and proteasome-dependent mechanism. After FTO
Human silencing, KriiKriitippel-like factor 2 (KLF2) transcripts with higher levels of m6A [112-114]
endothelial cells  modification in their 3’ untranslated regions are captured by YTHDF3 stabilizing KLF2
mRNA, increasing KLF2 expression. KLF2 is a neg-ative regulator of PPAR-y and
adipogenesis, a potential explanation for atorvastatin-induced weight loss
Blood FTO reduces ghrelin m6A levels and subsequently enhances ghrelin (GHRL) mRNA (73]

mononuclear cells

abundance in FTO SNP rs9939609 (risk allele A) carriers

Embryonic stem
cells

FTO demethylates the m6A level of long-interspersed element-1 (LINET) RNA in mouse
embryonic stem cells, enhancing LINE1 RNA abundance and modifying the local [115]
chromatin state, which changes the transcription of LINEI-containing genes

Bone marrow
mesenchymal
stem cells

FTO overexpression decreases the m6A RNA and total level of runt-related

transcription factor 2 (RUNX2) mRNA, suppressing osteogenic differentiation.

Decreased expression of RUNX2 promotes adipogenic differentiation. In contrast, [116-121]
intake of cow’s milk including bovine milk miRNAs increases RUNX2 expression in

peripheral blood mononuclear cells of healthy adult human volunteers

The accumulated evidence presented in Table 1 leads to the conclusion that over-
activated FTO demethylase activity promotes pre-adipocyte and adipocyte differentia-tion
of WAT [88,95,96], increases lipid synthesis of WAT [61,85-97], and promotes ghrelin-
induced hyperphagia [73]. Conversely, suppression of FTO activity is related to the devel-
opment of BAT, involved in thermogenesis and energy expenditure [98-102].

The following chapters analyze pathways that potentially enhance FTO overacti-vation
by infant FF and their aberrant effects on gene expression. Table 2 represents a selection of
adipogenesis-related genes modified by FTO-mediated m6A RNA demeth-ylation.

Table 2. Selected genes regulated by FTO-mediated m6A mRNA demethylation.

Genes upregulated by FTO-mediated m6A mRNA demethylation:

Runt-related transcription factor 1, translocated to 1 short form (RUNX1T1-S) [61]
Cyclin D1 (CCND1) [103,122]

Cyclin-dependent kinase 2 (CDK2) [103]

Fatty acid synthase (FASN) [105,109]

Stearoyl-CoA desaturase (SCD) [105]

Monoacylglycerol O-acyltransferase 1 (MOGATT) [105]

Fatty acid-binding protein 4 (FABP4) [103]

Lipoprotein lipase (LPL) [103]

Sterol regulatory element-binding transcription factor 1 (SREBF1) [106]
Peroxisome proliferator-activated receptor-y (PPARG) [103]
MLX-interacting protein-like (MLXIP) [106]
CCAAT/enhancer-binding protein alpha (CEBPA) [103]
CCAAT/enhancer-binding protein beta (CEBPB) [88]
CCAAT/enhancer-binding protein delta (CEBPD) [88]

MYC protooncogene (MYC) [95,96]

Forkhead box O1A (FOXO1A) [110]

Activating transcription factor 4 (ATF4) [107]

Beta-1 adrenergic receptor (ADRB1) [89]

Catenin beta 1 (CTNNBI) [87]

Autophagy-related 5 (ATG5) [91]

Autophagy-related 7 (ATG7) [91]

Ghrelin (GHRL) [73]

Adipocyte plasma membrane-associated protein (APMAP) [94]
Phospholipase C beta-3 (PLCB3) [123]

Genes upregulated by suppression of FTO-mediated m6 A mRNA demethylation:
e  Hypoxia-inducible factor 1, alpha subunit (HIF1A) [99]
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3.5. High Protein Formula Intake and the Risk of FTO and mTORC1/S6K1 Owveractivation

The European Childhood Obesity Trial Study Group enrolled healthy term infants
from five European countries in a double-blind randomized trial with a follow-up period
of 11 years [124]. Compared to conventional high-protein formula, feeding infants a lower
protein formula lowered BMI trajectories up to 11 years and achieved similar BMI values at
adiposity rebound as observed in BF infants. BMI trajectories were increased in the higher
protein group compared to the lower protein group, with a significantly different BMI at
adiposity rebound (0.24 kg/m?, 0.01-0.47, p = 0.040) and an increased risk for overweight
at 11 years (adjusted Odds Ratio (OR) 1.70; 1.06-2.73; p = 0.027) [124]. This study confirms
earlier observations linking high-protein formula intake to later weight gain and obesity
risk [125-129].

Accumulated evidence links protein and amino acid (AA) availability to the activation
of FTO. Doaei et al. [130] explored the interactions between protein intake and FTO gene
expression in obese and overweight male adolescents after 18 weeks of intervention. They
found that a higher protein intake significantly upregulated the FTO gene [130]. FTO
functions as an AA sensor, connecting AA levels to the activity of mammalian target of
rapamycin complex 1 (mTORC1) signaling, thereby playing a crucial role in regulating
growth and translation [131-133]. FTO resides in the nucleus and cytoplasm, with a mobile
fraction shuttling between both cell compartments, possibly mediated by exportin 2 [134].
In vivo experiments have shown that FTO is involved in linking AA availability to the
mTORCI signaling pathway. Cells lacking FTO exhibit reduced activation of the mTORC1
pathway, slower mRNA translation, and increased autophagy [131,132]. The proposed
model of Gulati et al. [132,133] predicts that FTO operates upstream of amino-acyl tRNA
synthetases (AARS) and leucyl-tRNA synthase (LARS) to connect AA levels with mTORC1
signaling [135,136]. LARS plays a crucial role in AA-induced mTORC1 activation by
sensing intracellular leucine levels and initiating events that lead to mTORC1 activation.
LARS directly interacts with Rag GTPase, the mediator of AA signaling to mTORC1, in an
AA-dependent manner, acting as a GTPase-activating protein (GAP) for Rag GTPase to
activate mTORC]1 [133,134]. There is current uncertainty concerning the potential impact
of FTO on LARST RNA m6A demethylation, which could potentially enhance LARS1
expression under conditions of activated FTO. Intriguingly, FTO enhances the expression of
activating transcription factor 4 (ATF4) [107], a key transcriptional regulator of AA uptake
and metabolism and downstream activator of LARS expression [137]. Therefore, FTO
activation enhances ATF4-LARS-mTORCT signaling, establishing a significant biological
pathway linking FTO and mTORC1 signaling (Figure 1).

A recent study on weaning piglets identified a regulatory influence of dietary BCAAs
on lipid metabolism, partially through changes of m6A RNA methylation [138]. Intrigu-
ingly, activated FTO decreases gene expression of TSC complex subunit 1 (TSC1), while
knockdown of FTO increases the mRNA level of TSC1 [139]. The TSC1/TSC2 complex is a
critical molecular checkpoint, inhibiting mTORC1 activation [140]. Activation of mTORC1
increases mRINA and protein expression of peroxisome proliferator-activated receptor-y
(PPARY) and sterol-regulatory element binding transcription factors (SREBFs) [141], master
transcriptional regulators of adipocyte differentiation and lipogenesis [142,143] (Table 2).
FTO overexpression with recombinant adenovirus encoding the human FTO genome in
human myotubes resulted in significant overexpression of PPARy [144].

As shown in hepatocytes, FTO-mediated m6A demethylation increases the expression
of ATF4 [105], which cooperates with CCCTC-binding factor (CTCF) to control adipogenesis
and adipose development by orchestrating the transcription of adipogenic genes such as
CEBPD and PPARG, co-regulating their transactivation [145]. Notably, CTCF binds to an
enhancer of the FTO gene, increasing FTO expression [146]. ATF4-deficient mice exhibit
increased energy expenditure, enhanced lipolysis, upregulation of uncoupling protein
2 (UCP-2) and B-oxidation genes, and decreased expression of lipogenic genes in WAT,
suggesting enhanced utilization but attenuated synthesis of fatty acids. Expression of UCP-
1,2, and 3 was also enhanced in BAT, indicating increased thermogenesis. The effect of ATF4
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deletion on UCP expression in BAT leads to the conclusion that increased thermogenesis
may underlie raised energy expenditure [147]. In accordance, adult-onset agouti-related
peptide neuron-specific Atf4 knockout (AgRP-ATF4 KO) mice are lean, exhibiting improved
insulin and leptin sensitivity and reduced hepatic lipid accumulation. Furthermore, AgRP-
ATF4 KO mice exhibit reduced food intake and increased energy expenditure, resulting
from increased thermogenesis in BAT. Moreover, AgRP-ATF4 KO mice are resistant to
high-fat diet (HFD)-induced obesity, insulin resistance, and liver steatosis and under cold
stress maintain a higher body temperature. In hypothalamic GT1-7 cells, the expression
of FOXOL1 is directly regulated by ATF4 via binding to the cAMP-responsive element site
on its promoter [148]. Drosophila melanogaster mutant flies with insertions at the ATF4
locus exhibit reduced fat content, increased sensitivity to starvation, and lower circulating
carbohydrate levels [149].

I FTO gene expression during formula feeding

Metabolic upregulation of FTO demethylase activity by formula feeding
BCAA
1
TRP* — KYN+t— QA — NAD —NAEP —-N;\DPH

QmGA demethylation

RNA
Upregulation of: ATF4r TSC1v
RUNT1T1-S, FASN, SREBF1, CEBPB, 1
CEBPD, MOGAT1, PLCB3, APMAP, LARS* —» LEU —mTORC14

ADRB1, ATG5, ATG7, MLXIPL, GHRL

S6K1+

’ Adipogenesis and increase in adipocyte precursor cells ‘

Figure 1. Metabolic activation of the FTO protein through FF. FF leads to excessive intake of tryp-
tophan (TRP) and kynurenine (KYN), which are then converted to quinolinic acid (QA) and nicoti-
namide adenine dinucleotide (NAD). NAD is further metabolized into nicotinamide adenine din-
ucleotide phosphate (NADP) and NADPH. Both NADP and NADPH bind to the FTO protein,
increasing its enzymatic activity. However, the conversion of NADP to NADPH can be inhibited by
high levels of branched-chain amino acids (BCAA) through the inhibition of glucose-6 phosphate
dehydrogenase (G6PD). The activated FTO upregulates the expression of multiple lipogenic genes
and ATF4 through m6A RNA demethylation. ATF4, in turn, upregulates the leucyl-tRNA synthetase
(LARS), thereby linking leucine (LEU) levels to mTORC1 activation. FTO-mediated suppression of
tuberous sclerosis complex 1 (TSC1) destabilizes the TSC1/TSC2 complex, enhancing insulin/IGF-
1/PI3K/AKT signaling towards mTORC1 and its downstream target S6 kinase 1 (56K1), which finally
enhances the number of adipocyte precursor cells.

Notably, Atf4 null mice exhibit reduced expression of genes regulating intracellular
AA concentrations and lower intracellular AA levels, which under normal conditions
function as crucial stimuli in activating mTORC1 [150-152]. Of note, Aff4 null mice exhibit
reduced S6K activity in both liver and adipose tissues [149]. Remarkably, mTORC1 controls
ATF translation and mRNA stability [153]. Of importance, mTORC1 upregulates the
transcription of AA transporters, metabolic enzymes, and aminoacyl-tRNA synthetases,
a regulatory program mediated through posttranscriptional control of ATF4 [153]. Thus,
FTO-mediated upregulation of ATF4 may have a direct impact on adipogenesis and cellular
AA uptake, a critical input signal for mTORC1/56K1 activation [150-152].

mTORC1 activation is enhanced not only by the AA pathway but also by insulin/IGF-
1/PI3K-AKT signaling [154]. Experimental evidence supports the idea that reduced ex-
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pression of the TSC1/TSC2 complex enhances insulin/ AKT/mTORC1/PPARy-stimulated
adipocyte differentiation [155]. Another crucial transcription factor for adipocyte differenti-
ation is CCAAT/enhancer-binding protein 3 (C/EBP{) [156]. The translational adjustment
of C/EBP-isoform expression is a crucial process, directing adaptive responses to changing
mTORC1 activity [157]. It is worth noting that the translation of C/EBP mRNA into the
C/EBPB-LIP isoform is attenuated in response to mTORC1 inhibition [157]. Interestingly;
the FTO protein is a transcriptional coactivator that enhances the transactivation potential
of C/EBPs from unmethylated as well as methylation-inhibited gene promoters [158]. The
coactivator role of FTO in modulating the transcriptional regulation of adipogenesis by
C/EBPs corresponds to the progressive loss of adipose tissue in FTO-deficient mice [159].
FTO deficiency is associated with a significant reduction in body weight and fat mass,
particularly of WAT but not BAT. Additionally, FTO deficiency promotes white adipocyte
transformation into brown/beige adipocytes [159].

Taken together, FTO is critically involved in mTORC1-PPARy-C/EBPf signaling, which
plays a critical role in early adipocyte precursor commitment, preadipocyte differentiation,
adipocyte maturation, triacylglycerol synthesis, and adipocyte mobilization [160-162]. Of
importance, the phosphorylated kinase S6K1, the downstream target of activated mTORC1,
promotes early adipocyte differentiation and is involved in the commitment of embry-
onic stem cells to early adipocyte progenitors [163]. Remarkably, a lack of S6K1 in HFD-
challenged mice impairs the generation of de novo adipocytes, consistent with a reduction
in early adipocyte progenitors [163]. In fact, early adipogenic programming by high-protein
formula intake in contrast to low-protein formula intake has been linked to increased AA-
mediated mTORC1/S6K1 signaling [164,165]. HEK293 cells transiently transfected with
vectors expressing GFP-WT FTO resulted in a dose-dependent increase in S6K1 phosphory-
lation, whereas AA deprivation reduces FTO levels and S6K1 phosphorylation in empty
vector-transfected HEK293 cells [133].

Recently, Yi et al. [166,167] demonstrated that activated S6K1 moves into the nucleus
and phosphorylates histone protein H2BS36, subsequently allowing the recruitment of the
histone-lysine N-methyltransferase enhancer of zeste homolog 2 (EZH2), resulting in H3K27
trimethylation (H3K27me3). This epigenetic switch suppresses the expression of WNT®6,
WNT10A, and WNT10B genes, leading to adipogenic commitment through the final expres-
sion of adipogenic transcription factors PPARy and C/EBPx. WAT from S6K1-deficient
mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and
H3K27me3, leading to enhanced expression of WNT genes. In addition, expression levels of
H2BS36p and H3K27me3 are highly elevated in WAT from mice fed an HFD or from obese
humans [166,167]. WNT signaling mainly plays a key role in suppressing adipogenesis
during several stages of differentiation. Mesenchymal stem cell (MSC)-derived adipogen-
esis involves two steps: firstly, MSC differentiation into proliferative preadipocytes and
secondly, their terminal differentiation into mature adipocytes. The initiation of both steps
requires the suppression of WNT/B-catenin signaling. WNT/ S-catenin signaling plays
a well-known role in stem cell regulation. Attenuated WNT signaling increases the cell
mass of MSCs and preadipocytes [168]. In fact, it has been demonstrated that blocking the
WNT signaling downstream of WNT6, WNT10A, and WNT10B promotes differentiation
into mature adipocytes, whereas increased expression of WNT6, WNT10A, and WNT10B
prevents adipogenesis [169-171].

In addition, S6K1 controls adiponectin expression by inducing a transcriptional switch
from BMAL1 to EZH2 [171]. Active S6K1 via induction of the suppressive histone code
cascade, H2BS36p-EZH2-H3K27me3, also suppresses adiponectin expression. Active S6K1
phosphorylates BMALLI, an important transcription factor regulating the circadian clock
system, and dissociates BMAL1 from the ADIPOQ promoter region, resulting in EZH?2 re-
cruitment and subsequent H3K27me3 modification of the ADIPOQ promoter [172]. Recent
evidence points to an important role of adiponectin in stimulating Scal*CD34 ™~ -adipocyte
precursor cells associated with hyperplastic expansion and browning of white adipose
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tissue [173]. Conversely, inhibition of S6K1 hampers fat mass expansion and mitigates
HFD-induced hepatosteatosis [174].

Postnatal overactivation of FTO-mTORC1-56K1 signaling by FF and deficiency of milk
miRNA-148a-3p and miRNA-22-3p via deficient DNMT1 and DNMT3A suppression may
converge in decreased WNT gene expression. On the other hand, both miRNAs directly
target WNT10B mRNA in a counter-regulatory mode [175,176]

A potential net decrease in WNT signaling due to FF with excessive protein intake
and the absence of FTO- and ZFP217-targeting milk miRNAs may finally enhance the
total number of adipocyte precursor cells, a critical disturbance during postnatal adipocyte
development, priming early steps of aberrant adipogenesis, which may increase the risk of
obesity later in life (Figure 2).

Postnatal overactivation of FTO/mTORC1/S6K1 signaling

by formula feeding
DeflCIency of miRNAs targeting Excessive FTO SNPs with FTO
FTO ZFP217 and DNMTs  : protein intake gain of function
T \ 3
| miR22 | ;------ A

CEBPD *

\ ' miR-22 :

—t—

, H3K27me3 HZBS36p H3K27me3

WAT precursor cell proliferation at the expense of BAT mass expansion

Figure 2. Involvement of overactivated FTO signaling promotes wingless (WNT) gene suppression-
mediated adipocyte precursor cell proliferation. FTO expression is upregulated by excessive milk
protein intake, deficiency of milk exosomal miRNAs targeting FTO, as well as FTO gain of func-
tion SNPs. FTO-mediated upregulation of activating transcription factor 4 (ATF4) enhances the
expression of leucyl-tRNA synthase (LARS). LARS interacts with Ras-related GTP-binding protein D
(RagD), enhancing leucine (Leu) signaling for activation of mechanistic target of rapamycin complex 1
(mTORC1). Furthermore, FTO mediates suppression of TSC complex subunit 1 (TSC1), a component
of the inhibitory TSC1/TSC2 complex, enhancing mTORC1 activation via growth factor/PI3K/AKT
signaling. The downstream target of mTORCI, the phosphorylated S6 kinase 1 (S6K1-p), enters
the nucleus and phosphorylates the histone protein H2B (H2BS36p), which allows the attraction
of enhancer of zeste homolog 2 (EZH2), promoting the trimethylation of histone 3 (H3K27me3)
and suppressing nearby WNT genes involved in adipocyte stem cell homeostasis. In a similar fash-
ion, S6K1-mediated activation of EZH?2 results in H3K27me3-mediated suppression of adiponectin
(ADIPOQ) expression. Suppression of ADIPOQ reduces the development of beige /brown adipocytes.
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In addition, the absence of milk exosomal miRNAs (miRNA-148a-3p, miRNA-22-3p), that target
DNA methyltransferase 1 and 3A (DNMTs), increases WNT promoter methylation, further sup-
pressing WNT gene expression. On the other hand, miRNA-148a-3p and miRNA-22-3p directly
target WNT10B mRNA. Enhanced FTO-mTORC1-56K1 signaling may represent the major driving
mechanism enhancing white adipocyte precursor cell proliferation via WNT suppression, supported
by FTO-mediated activation of MYC and CEBPD expression at the expense of adiponectin-dependent
beiging /browning of white adipocytes. Enhanced FTO-mTORC1-S6K1 signaling thus disturbs the
relation between white adipose tissue (WAT) and brown adipose tissue (BAT) development.

A complex networking of epigenetic mechanisms controls WNT and MYC signaling,
promoting adipocyte precursor cell proliferation and mass expansion, a fundamental step
for postnatal adipogenesis and obesogenic programming of the newborn infant.

In contrast to BE, overactivation of FTO and mTORC1 signaling due to high-protein FF
during the postnatal period may lead to a lifelong increase in adipocyte numbers [163-165].
This can result in excessive fat accumulation during puberty, especially when combined
with exposure to an HFD, explaining the obesity rebound typically seen at age 11 in re-
sponse to excessive protein consumption during early infancy [124]. An analysis from
14 studies including 16,094 boys and girls aged 1-18 years revealed that the gain-of-function
FTO rs9939609 variant is linked to a higher BMI and increase of total energy intake. How-
ever, lower dietary protein intake mitigated the connection between the FTO genotype and
adiposity during childhood and adolescence [177].

3.6. The Potential Adipogenic Impact of Exosomal Milk miRNA Deficiency in Infant Formula

Exclusive BF, in comparison to FF, not only limits protein intake and milk protein-
dependent FTO expression but also provides a significant amount of milk exosomes con-
taining gene-regulatory miRNAs [178-185]. Human milk is the most enriched source of
miRNAs among all human body fluids [186], transferring an estimated amount of 176
trillion exosomes daily to the infant though the consumption of 800 mL of breastmilk [187].
Unlike human milk, formulas contain neither exosomes nor milk miRNAs, or they are only
present in very low concentrations [188,189]. Abbas et al. [190] recently presented transla-
tional evidence supporting the regulation of adipogenesis by exosomal milk miRNAs.

Higher FTO expression compared to healthy controls has been linked to significantly
increased methylation values for the FTO gene [46]. Research has shown that DNA methyl-
transferase 1 (DNMT1) is a direct target of milk exosomal miRNA-148a-3p [191,192], which
is a crucial component of milk exosomes [193,194]. In comparison to mature human milk,
levels of miRNA-148a-3p in infant formula were less than 1/500th [195]. Remarkably, DNA
methylation appears to exert a biphasic regulatory role in adipogenesis, promoting differen-
tiation at the early stage while inhibiting lipogenesis at the late stage of 3T3-L1 preadipocyte
differentiation [196]. DNMT1 or DNMT3A overexpression at the beginning of the differen-
tiation promotes 3T3-L1 adipogenesis and enhanced the expression of adipogenic markers
such as PPARv2, C/EBP«, and adipocyte protein 2 (aP2). Conversely, inhibiting DNA
methylation by 5-aza-dC at the early differentiation period inhibited adipogenesis, evident
by decreased expression of adipogenic markers and adipocyte phenotypic genes and by
overexpression of WNT10A [196]. Milk exosomal miRNA-148a-3p targets DNMT1 mRNA,
whereas milk exosomal miRNA-22-3p/miRNA-30b-5p /miRNA-200bc-3p/miRNA-29b-3p
collectively target DNMT3A mRNA [197], thus limiting adipocyte lineage commitment and
reducing the numbers of adipocyte precursors at a critical early window of adipogenesis.

miRNA-21-5p, a dominant miRNA found in human milk [180], indirectly down-
regulates the expression of DNMT1 [198]. The absence of milk exosomal miRNA-148a-
3p/miRNA-21-5p in formula, which inhibit DNMT1, may lead to increased methylation of
the FTO gene and higher FTO expression. Many experimental studies on the regulatory
impact of FTO expression on adipogenesis have utilized short hairpin RNAs (shRNAs) or
silencing RN As (siRNAs) to inhibit or deplete FTO [61,85,86,91-98,102,110,111].
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miRNA-22-3p is enriched in human milk exosomes [199,200] and is excessively over-
expressed together with miRNA-148a-3p in milk exosomes of mothers delivering preterm
infants [201]. Importantly, miRNA-22-3p targets FTO mRNA and suppresses FTO expres-
sion [202]. Bone marrow stem cell-derived extracellular vesicles delivering miRNA-22-3p
have been shown to inhibit the MYC/PI3K/AKT pathway, thereby promoting osteogenic
differentiation via FTO repression [202]. FTO deficiency promotes thermogenesis and white-
to-beige adipocyte transition via enhanced protein expression of HIF-1a [100-102]. Further-
more, miRNA-22-3p via targeting hypoxia-inducible factor 1-« inhibitor (HIFIAN) enhances
HIF-1a-stimulated glycolysis required for thermogenesis in BAT [200]. On the other hand,
miRNA-22-3p directly targets CCAAT/enhancer-binding protein § (CEBPD) [203], a key
transcription factor involved in MCE and gene expression in early stages of white adipocyte
differentiation [204] (Figure 2). It was found that circMAPK9 competes for binding miRNA-
1322 in the cytoplasm, weakening the inhibitory effect of miRNA-1322 on FTO thereby
promoting adipogenesis [205], a further observation supporting the regulatory impact of
the miRNA-adjusted FTO expression in adipogenesis.

Recent evidence suggests that the composition of miRNAs in maternal milk is altered
in women with overweight/obesity [206]. Specifically, the level of miRNA-30b in colostrum
was negatively correlated with maternal pre-pregnancy BMI (p < 0.01) [207]. In accordance,
the abundance of miRNA-30b levels was reduced in milk exosomes of mothers with
obesity [208] and gestational diabetes [209]. The Targetscan Human 8.0 database [210]
indicates that several abundant miRNAs found in human milk exosomes, such as miRNA-
30-5p, miRNA-21-5p, and miRNA-155-5p, all target FTO. Notably, MIR21 is one of the
genes that displays significant changes in DNA methylation due to exclusive BF [38].

Interestingly, it has been shown in zebrafish that miRNA-30b is involved in the reg-
ulation of lipid metabolism by directly targeting FTO expression with subsequent FTO-
mediated m6A RNA demethylation of lipogenic genes [211] (Figure 3).

|FrOgeneexpression during formula feeding | FTO gene exp! ion during br feeding |
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Figure 3. FTO gene expression through formula feeding (A) compared to breastfeeding (B). Artificial
formula lacks milk exosomal miRNAs (miRs). The most abundant miRNAs in milk exosomes (miR-
148a-3p, miR-22-3p, miR-30b-5p, miR-21-5p) target the mRNAs of zinc finger protein 217 (ZNF217),
DNA methyltransferase 1 (DNMT1), and fat mass- and obesity-associated gene (FTO), which appear
to reduce their mRNA transcription levels. Both reduced expression of DNMT1 (resulting in less FTO
CpG methylation) and reduced expression of ZFP217 (a transcriptional enhancer of FTO), combined
with miRNAs directly targeting FTO mRNA, ultimately decrease total FTO protein expression. The
suppression of DNMT1 by miRNA-148a-3p may inhibit early adipogenic lineage commitment.

Overexpression of FTO results in fat accumulation, increase of triacylglycerol and total
cholesterol levels, and upregulation of PPAR-y and C/EBP«, associated with decreased
global m6A levels. Conversely, knock-down of FTO causes an anti-lipogenic effect, de-
creases triacylglycerol and total cholesterol levels, and decreases C/EBPx and PPAR-y
expression [211].

In mothers with obesity, milk exosomal miRNA-30b negatively correlated with weight,
percent body fat, fat mass, and fat free mass in 6-month outcomes, especially in the
exclusively BF group of infants [203]. Interestingly, the offspring of obese female Sprague
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Dawley rats at weaning exhibited increased hypothalamic FTO expression associated
with increases of visceral and epididymal fat mass [212]. Unfortunately, Shah et al. [208]
did not provide data on the relative distribution of WAT and BAT. There is substantial
evidence in mouse models that overexpression of miRNA-30b/c induces mitochondrial and
thermogenic genes, including uncoupling protein 1 (UCP1) and cell death-inducing DFFA-
like effector A (CIDEA), as well as mitochondrial respiration in BAT and brite adipose tissue.
This is achieved by targeting receptor-interacting protein 140 (RIP140; NRIP1) [213]. In
contrast to physiological WAT and in vitro-differentiated wild-type adipocytes, RIP140-null
cells exhibit elevated energy expenditure and express high UCP-1 levels [214]. Mice lacking
the nuclear corepressor protein RIP140 are lean, demonstrate resistance to HFD-induced
obesity and hepatic steatosis, and show increased oxygen consumption [215]. Notably,
the correlation between miRNA-30b and brown thermogenesis was also observed in fish
oil-fed C57BL/6 mice [216]. In accordance, FTO deficiency has been demonstrated to
promote thermogenesis and the transition of white adipocytes to beige adipocytes through
YTHDC2-mediated translation and increased HIF-1« protein expression [100]. This affects
gene and miRNA expression, regulating brown adipogenesis and the browning of WAT in
mice [101]. FTO deficiency has also been reported to increase UCP1 expression, leading to
increased mitochondrial uncoupling and energy expenditure, ultimately promoting the
development of a brown adipocyte phenotype [102]. Additionally, FTO deficiency results
in decreased expression of FOXO1 [110], which in turn reduces the suppression of the
UCP1 promoter by FoxO1, ultimately leading to the upregulation of UCP1 [217-219].

Milk exosomal miRNA-30b, miRNA-22, and miRNNA-21 and other milk miRNAs
directly target FTO [210]. This posttranscriptional adjustment may regulate the final ex-
pression level of FTO for tuning white and brown adipogenesis. This epigenetic regulatory
system is absent in artificial formula (Figure 4).

Brown adipose tissue Breastfeeding White adipose tissue

/ — RUNX1T1-S¥ \
. RUNX2%
NRIP1 Milk exosomes =

----- > FOXO1¢
RIP140 1 ( CEBPBY
4990000000 CEBPDY

. PPARGY
UCP1 | FOXO1v _ FTOV _ FTOY = m6A™ | skesrie
UCP-11 . 7] Foxo1e
HIF1A | HIFTANY 2 N ~| CEBPDY TSC1+ mTORC1/S6K1+

[F3. \ MYCy
HIF1a t \Izm:-'217¢ b

v APMAPY
. FTOV CCND1v
Glycolysis * L cpkae

Mitotic clonal expansionv
Early adipocyte differentiation v

N e

Energy expenditure Energy storage ¥

Figure 4. Potential impact of milk exosome-derived miRNA gene regulation of key transcription
factors involved in gene expression of brown and white adipocytes. The most abundant exosomal
miRNAs of human milk suppress FTO, enhancing the expression of uncoupling protein 1 (UCP-1)
and hypoxia-inducible factor 1a(HIF-1«) and stimulating glycolysis and thermogenesis of brown
adipocytes. Milk exosomal miRNA-mediated suppression of FTO in white adipocytes reduces the
expression of genes involved in mitotic clonal expansion, early adipocyte differentiation, and lipid
accumulation of white adipocytes. Excessive expression of milk exosomal miRNA-22-3p and miRNA-
148a-3p under preterm birth conditions supports thermogenesis, essential for cold-sensitive preterm
infants, via suppression of receptor interacting protein 140 (NRIP1), a negative regulator of the UCP1
promoter, and suppression of hypoxia-inducible factor 1« inhibitor (HIFIAN), a negative regulator of
HIF-1a and HIF-1a-induced glycolysis. Apparently, milk exosomal miRNAs balance the postnatal
development and epigenetic functioning of brown and white adipose tissue, a physiological gene
regulatory mechanism provided by exclusive breastfeeding but missing in artificial formula.
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3.7. Hypothalamic FTO Expression Enhances Energy Intake

FTO is highly expressed in the hypothalamus, where it controls energy intake in
response to various nutritional conditions [220-222]. Importantly, total energy intake at
3, 6,9, and 12 months averaged 0.36, 0.34, 0.35, and 0.38 MJ/kg/day (85.9, 80.1, 83.6, and
89.8 kcal/kg/day) among BF infants vs. 0.41, 0.40, 0.39, and 0.41 MJ/kg/day (98.7,94.7,
93.6, and 98.0 kcal/kg/day) among FF infants, respectively. Protein intake was 66-70%
higher in the FF than in the BF group during the first 6 months. Differences in energy and
protein intakes were significant at 3, 6, and 9 months [223].

Johansson [224] observed that oral leucine uptake enhances FTO expression in the
hypothalamic tissue of mice and regulates energy balance as well as feeding reward.
Cheung et al. [131] reported that FTO mRNA and FTO protein levels are substantially
suppressed by total AA deprivation in mouse hypothalamic N46 cells. As shown in
mice, enhanced FTO expression increases fat mass and obesity via hyperphagia [225].
It is generally accepted that genetic variations of FTO robustly correlate with obesity,
increased calorie and food intake, preferential consumption of energy-dense food, and loss
of control over eating [226-231]. Recent evidence indicates that epigenetic upregulation
of hypothalamic FTO expression potentially correlates with valproate-induced weight
gain [232]. HFD has also been reported to upregulate hypothalamic FTO content [233].
Furthermore, hypothalamic FTO promotes HFD-induced leptin resistance in mice through
increasing chemokine (C-X3-C motif) ligand 1 (CX3CL1) expression [231]. Notably, CX3CL1
RNA is m6A-demethylated in an FTO-dependent manner. Additionally, upregulation of
FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impairs
leptin- and signal transducer and activator of transcription 3 (STAT3) signaling, resulting
in leptin resistance and obesity [234]. Compared to wild-type (WT) mice, FTO deficiency in
leptin receptor-expressing hypothalamic neurons significantly suppressed the upregulation
of CX3CL1 and SOCS3, ameliorating leptin resistance under HFD [234].

Overexpression of FTO in the hypothalamic arcuate nucleus (ARC) of female rats
decreased m6A RNA methylation of phospholipase C 33 (PLCB3), an important enzyme in
the Ca?* signaling pathway [123]. In the hypothalamus, FTO-mediated m6A demethylation
upregulates the expression of gonadotropin-releasing hormone (GnRH) [123]. Of note,
the GnRH receptor is expressed on human preadipocytes, and a GnRH agonist stimulates
preadipocyte proliferation and lipid accumulation [235]. Conversely, deficient GnRH-
GnRHR signaling decreased subcutaneous inguinal fat pad weight and increased glucose
concentrations, potentially leading to insulin resistance in female mice [236].

Karra et al. [73] reported a connection between FTO, ghrelin expression, and disturbed
brain—food cue responsivity. In adiposity-matched, normal-weight humans, they demon-
strated that carriers of the FTO “obesity-risk” rs9939609 A allele exhibit dysregulated
plasma levels of the orexigenic hormone acyl-ghrelin and reduced postprandial appetite
suppression. Of note, FTO overexpression decreased ghrelin m6A mRNA methylation,
enhancing ghrelin (GHRL) mRNA and peptide levels, as shown in cell models. Further-
more, peripheral blood cells from FTO AA individuals exhibited elevated FTO mRNA,
reduced ghrelin mRNA m6A methylation, and increased ghrelin mRNA levels compared
to TT individuals [73]. Benedict et al. [237] confirmed the correlation between FTO and
ghrelin expression and lower serum concentrations of the satiety hormone leptin in older
adults. Within the first 4 months of life, FF infants, as opposed to BF infants, exhibited
higher ghrelin concentrations (2654.86 vs. 2132.96 pg/mL; p < 0.032) and elevated IGF-1
concentrations (3.73 vs. 3.15 ng/mL; p = 0.00) but lower serum leptin concentrations (0.68
vs. 1.16 ng/mL; p < 0.04) [238]. Ghrelin is implicated in the pathogenesis of diabetes and
obesity, two key features of the metabolic syndrome [239-242]. Acylation of ghrelin by
ghrelin-O-acyl-transferase (GOAT) is necessary for binding to and activating its receptor,
the growth hormone secretagogue receptor 1a, in the hypothalamus as well as ghrelin’s
orexigenic function [243-245]. Through an mTORC1-dependent mechanism, ETS variant
transcription factor 5 (ETV5) stimulates the GOAT promoter and enhances GOAT expres-
sion [244]. Rats treated with GOAT antisense gained less weight and reduced their caloric
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efficiency when consuming a HFD compared to control animals, indicating that central
GOAT plays a role in regulating metabolism in rats [246].

Notably, ETV5 mRNA is a direct target of miRNA-148a-3p [247] and miRNA-200c-
3p [248], two abundant miRNAs found in human milk and milk exosomes [249,250]. It
is conceivable that milk exosomal miRNAs, such as miRNA-30b-5p and miRNA-22-3p,
targeting hypothalamic FTO, as well miRNA-148a-3p and miRNA-200c-3p, targeting ETV5,
may regulate central ghrelin action and satiety circuits. These potential satiety regulatory
circuits may be controlled by breastmilk miRNAs, which however are absent in formula.

The mediobasal hypothalamus is an important region of the brain that controls both
caloric intake and lipolysis [251]. In postnatal life, Iroquois homeobox protein 3 (IRX3) is
highly expressed in the hypothalamus, predominantly in POMC neurons [252]. IRX3 plays
a crucial role in regulating whole-body energy homeostasis [252,253]. Partial inhibition
of hypothalamic IRX3 leads to increased diet-induced body mass gain and adiposity, as
a result of increased caloric intake and decreased energy expenditure [252]. Notably, the
long-range enhancer of FTO reduces hypothalamic IRX3 levels and suppresses lipolysis
in peripheral adipocytes [253]. Risk alleles of the FTO gene are associated with reduced
IRX3 expression. Inhibiting hypothalamic IRX3 reduces thermogenesis and increases body
weight and WAT mass in both mice and humans [253]. Specific subsets of hypothalamic
neurons also suppress lipolysis by modulating FTO expression [51].

CUX1 interacts with the binding site of FTO intron 1, upregulating the adjacent
RPGRIPI1L to inhibit leptin receptor transport and leptin signaling [52-54]. RPGRIP1L is
located more than 100 base pairs away in the opposite transcriptional orientation to FTO. It
facilitates leptin receptor aggregation, which regulates food intake and leptin sensitivity
at the cellular level [53]. Increased FTO activity in the hypothalamus promotes leptin
resistance, increasing caloric intake and reducing lipolysis [55]. CUX1 upregulates the
expression of RPGRIP1L by binding to intron 1 of FTO. This interaction promotes a decrease
in leptin sensitivity, ultimately promoting obesity by reducing lipolysis. Notably, CUX1
is one of the genes that shows significant CpG DNA methylation changes during infancy
compared to other stages of childhood growth in girls, linking exclusive BF to longitudinal
BMI changes [38].

3.8. FTO Expression, Circadian Rhythm, and Obesity

Feeding patterns between BF infants and FF infants differ. FF infants exhibit signifi-
cantly higher feeding volumes starting from the 6th week of life onwards [254]. The human
fetus during pregnancy receives timed signals from the mother’s circadian rhythms of
temperature, metabolites, and hormones. After birth, the infant’s circadian rhythms are
still immature [255]. Apart from external environmental cues, infants also receive maternal
time signals through breastmilk, maintaining a connection to the maternal suprachiasmatic
nucleus [256]. In contrast to daytime milk, night milk contains higher levels of tryptophan
(TRP). These levels vary based on the newborn’s feeding schedule, which typically occurs
every 3 h, regardless of the time of day [257]. A temporal relationship was observed be-
tween the circadian rhythm of 6-sulfatoxy-melatonin of the exclusive BF babies and that of
TRP in the mother’s milk. Apparently TRP acts as a zeitgeber entrainment of the biological
rhythms in the BF infant [258]. Lodemore et al. [259] observed that circadian rhythmicity
in body temperature appeared earlier in BF compared to FF infants. Thus, the newborn
receives the mother’s timed cues for the establishment of circadian clock development
through breastmilk, an important argument to rely on BF [260].

Evidence accumulated over the last decade indicates that the pace of the circadian clock
is controlled by m6A-dependent RNA processing [261]. m6A methylation-regulated RNA
processing influences the duration and stability of the mammalian circadian clockwork [261,262].
For instance, circadian clock regulation of hepatic lipid metabolism is modulated by m6A mRNA
methylation [263]. Suppression of m6A methylation and its impact on RNA processing are
sufficient to slow down the circadian clock [261,264].
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The m6A RNA demethylase FTO is involved in the modulation of circadian rhythms.
Overexpression of FTO inhibits key regulators of the circadian clock network: circadian
locomotor output cycles kaput (CLOCK)- and brain and muscle ARNT-like protein 1
(BMAL1)-induced transcription [265]. Knockout of BMALI in the mouse liver disrupts
lipid metabolism, exhibiting a disturbed crosstalk between the circadian gene network,
mRNA m6A modifications, and metabolic state [263,266]. Cryptochrome 1 and 2 (CRY1 and
CRY?2) overexpression suppresses FTO and increases m6A levels in murine hippocampal
neuronal cells [267]. Notably, Chong et al. [268] reported differences in the circadian
feeding pattern of 12-month-old infants in relation to BF vs. FE. Compared to pre-midnight
feeders, post-midnight feeders, who consumed primarily formula milk during the post-
midnight period, exhibited higher daily energy, carbohydrate, fat, and protein intakes
than pre-midnight feeders. Importantly, exclusive BF during the first 6 months of life was
negatively associated with post-midnight feeding at 12 months [268]. Thus, BF in contrast
to FF modifies the circadian pattern and lowers the amount of energy intake, potentially
involving FTO-mediated changes in the circadian clock network. Feeding time and dietary
nutrients are key environmental zeitgebers affecting the circadian rhythm-lipid metabolism
interplay and critical factors influencing mechanisms in obesity development [269]. Feeding
time is considered a potential external synchronization cue that fine-tunes the timing of
the circadian rhythms in metabolic peripheral clocks [270]. Disruption of physiological
circadian rhythms is a potential negative effect of FF [268], which may have long-term negative
consequences for metabolic health. Notably, a disturbed interplay between the circadian clock
and lipid metabolism plays a critical role in the development of obesity [269-273].

Infants who consumed TRP-enriched formula at night showed improved sleep pa-
rameters compared to those who consumed it during the day [274]. However, TRP serves
not only as a precursor of melatonin but also of nicotinamide adenine dinucleotide (NAD),
phosphorylated NAD (NADP), and NADPH [275-277]. Recent evidence indicates that
NADP and NADPH reduce RNA m6A methylation, increasing adipogenesis by direct
binding to the FTO protein and enhancing its enzymatic activity [93]. The TRP concentra-
tions in high-protein formula (2.7 g/100 kcal) [127] exceed those in low-protein formula
(1.65 g/100 kcal) [125] and mature breastmilk [278], potentially explaining the accelerated
postnatal weight gain in infants and increased risk of obesity [128]. FTO likely plays a role
in the conversion of TRP to kynurenine (KYN) [279]. The KYN pathway is activated in
human obesity and shifts towards KYN monooxygenase activation [280]. KYN levels have
been positively associated with BMI and a higher HOMAZ2-IR insulin resistance index [280].
Marszalek-Grabska et al. [281] recently reported that KYN is also a component of human
milk and is present in commercial baby formulas in amounts that noticeably exceed its
physiological range.

Of note, KYN is a precursor of NADP [282], which activates FTO [93]. Huang
etal. [283] provided evidence that BCAAs decrease the concentration of NADPH in adipose
tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression.
The reduced NADPH attenuates the expression of FTO, leading to an increase in m6A
levels of CCNA2 and CDK2 mRNA, which prevents MCE of preadipocytes by reducing
the expression of cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2). High m6A
levels of CCNA2 and CDK2 mRNA are recognized by YTH N6-methyladenosine RNA
binding protein 2 (YTHDEFE2), resulting in mRNA decay and a reduction in their protein
expressions [283].

Intracellular nicotinamide phosphoribosyltransferase (NAMPT), also known as vis-
fatin, catalyzes the rate-limiting step in the NAD+ biosynthesis pathway from nicoti-
namide [284-287]. Remarkably, homozygous newborns for the at-risk allele (AA) of
rs9939609 SNP in FTO had 37% higher cord blood visfatin concentration and 17%, 20%,
and 17% higher total, truncal, and abdominal fat mass at age 2 weeks, respectively, than
newborns carrying the T allele [288]. These findings point to an early interactive involve-
ment of FTO and visfatin in fat accretion and abdominal fat mass development in human
neonates [288].
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Remarkably, CLOCK:BMALI controls the circadian expression of NAMPT, which
contributes to the circadian rhythm of several cell functions [289,290]. Studies in mice using
genetically modified models have shown that NAMPT plays a critical role in lipogenesis
and lipolysis, specifically in adipocytes [291]. Deletion of NAMPT in adipocytes resulted
in a disrupted circadian transcriptome in WAT and BAT, with BAT showing a disrupted
rhythm of metabolites in energy metabolism [292].

Increased FTO-mTORC1-56K1 signaling may also impair the early expansion of beige
adipose tissue and BAT via nuclear S6K1 phosphorylation of BMAL1, allowing the recruit-
ment of EZH2 and suppressing ADIPOQ expression [172]. Notably, adiponectin plays an
important role for Scal + CD34--adipocyte precursor cells, associated with hyperplastic
expansion and beiging of white adipocytes [173]. Thus, FTO-mTORC1-5S6K1 controls the
nuclear traffic of BMALL, critically involved in the regulation of the circadian clock as well
as adipocyte fate decisions.

Recommendations for optimized practices for FF to reduce excess or rapid weight gain
include providing formula with lower protein content, avoiding adding cereals to bottles,
not putting a baby to bed with a bottle, and not overfeeding formula [293]. While formula
bottles given at nighttime with increased protein (TRP) and KYN content may improve the
infant’s sleeping time, they may simultaneously increase the risk of TRP-KYN-NAMPT-
NADP-induced FTO overexpression, promoting weight gain and adipogenesis.

3.9. Potential Impact of Exosomal Milk miRNAs in FTO-Circadian Clock Regulation

Recent evidence indicates that extracellular vesicles participate in circadian rhythm
synchronization [294]. There is a growing attention given to the crucial involvement of
miRNAs in regulating various settings of circadian clock function [295-297]. For instance,
miRNA-17-5p and miRNA-29b-3p directly regulate circadian gene expression in the matur-
ing islet cells of 10-day-old postnatal rats [298]. In contrast to exosome- and miRNA-deficient
infant formula [186,187,193], human milk and milk exosomes deliver highly conserved miRNAs
such as miRNA-148a-3p and miRNA-30b-5p to the infant [180,200,298-302]. miRNA-148a-3p
and miRNA-30-5p target peroxisome proliferator-activated receptor gamma co-activator-
1 alpha (PPARGC1A) [303-305], a co-transcription factor promoting the expression of
BMALT1 [306].

Breastmilk contains miRNA-17-5p [307], which is highly upregulated in preterm
colostrum [294] and represses CLOCK gene expression [308]. miRNA-17-5p equilibrates
the period length of the circadian rhythm, potentially via the modulation of the CRY1 level
through CLOCK in the suprachiasmic nuclei. Both an increase and decrease in miRNA-17-
5p levels in the suprachiasmatic nucleus of mice result in higher CRY1 levels and a shorter
free-running period [305].

FTO binds to CRY1 and CRY2 in a circadian manner [263]. Additionally, FTO itself is a
target gene of miRNA-22-3p, miRNA-30b-5p, miRNA-21-5p, and miRNA-155-5p [196,207,
210,309]. These miRNAs are abundant in human colostrum and mature milk [310]. Unlike
milk miRNA-deficient formula, breastmilk-derived exosomal miRNAs can target crucial
genes of the circadian clock, including FTO. This may play a critical role in adjusting the
neonatal circadian rhythm and food/energy intake to prevent the development of obesity.
A significant role for mTORC1 in circadian timekeeping and in linking metabolic states to
circadian clock functions has recently been reported [311].

3.10. Zinc Finger Protein 217 Promotes FTO Expression and Adipogenesis

Zinc finger protein 217 (ZFP217) is a member of the kruppel-type zinc finger protein
family and exerts various functions in mammalian cell differentiation and development.
Recent evidence identifies its physiological roles in adipogenesis [312] and the control of
m6A deposition in embryonic stem cells [313]. ZFP217 regulates adipogenesis by con-
trolling MCE in a METTL3-m6A-dependent manner, and ZNF217 knockdown inhibits
adipogenesis [314]. Recent evidence also shows that ZFP217 modifies m6A mRNA methy-
lation by activating the transcription of FTO [92]. Depletion of ZFP217 compromises the
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adipogenic differentiation of 3T3L1 cells and results in a global increase of m6A modifica-
tion. Furthermore, ZFP217 interacts with YTHDEF2, which is critical for allowing FTO to
maintain its interaction with m6A sites on various mRNAs. The loss of ZFP217 deceases
FTO and enhances m6A levels [92]. Zfp217*/~ mice challenged with a HFD exhibit less
weight gain than Zfp217*/* mice. Histological analyses show that Zfp217*/~ mice fed
an HFD had much smaller white adipocytes in inguinal WAT. These mice had improved
metabolic profiles, including improved glucose tolerance and insulin sensitivity as well
as enhanced energy expenditure compared to Zfp217+/+ mice under an HFD [314]. In
contrast, HFD-fed Zfp217*/* mice exhibited increased adipogenesis-related genes and de-
creased metabolic thermogenesis-related genes in inguinal WAT as compared to Zfp217+/~
mice [314]. Moreover, adipogenesis was markedly reduced in mouse embryonic fibroblasts
from Zfp217-deleted mice [315]. These findings indicate that ZFP217 is a key regulator of
FTO expression, critically involved in adipogenesis and energy metabolism.

Three miRNAs (miRNA-503-5p, miRNA-135a-5p, and miRNA-19a-3p) that target
ZNF217 were found to suppress the process of adipogenesis [312]. This finding clearly
demonstrates that miRNAs are able to control ZNF217-regulated adipogenesis. Notably,
ZNF217 is also a direct target of miRNA-148a-3p, miRNA-200bc-3p, and miRNA-17-
5p [316], which are abundantly expressed miRNAs in human milk and milk exosomes.
Thus, milk exosomal miRNAs may also be involved in calibrating ZFP217-stimulated FTO
expression, a potential posttranscriptional regulatory network of BF that is missing in FF.
In addition, ZFP217/FTO-induced m6A RNA demethylation may regulate the expression
and function of circadian clock genes.

3.11. FTO Deficiency and Long Non-Coding RNA H19 Promote Brown Adipose Tissue

Over the last decade, accumulated evidence underlines that activating BAT and
browning of WAT can protect against obesity and obesity-related diseases [317]. BAT plays
a key role in energy metabolism and thermoregulation during the perinatal period in all
mammals [318]. The thermogenic activity of BAT is significant for maintaining a sufficiently
high core body temperature in human infants [319]. Exclusive BF can help maintain the
newborn’s body temperature in a physiological range [319]. Whereas 100% of exclusive
BF infants exhibited a normal body temperature 0-72 h after birth, mixed feeding showed
hypothermia in 22% of infants [320].

Recent evidence indicates that the expression of IncRNA H19 is increased after
METTL3 and METTL14 binding to it, resulting in m6A-mediated methylation. Knocking
down these proteins inhibits H19 expression [321]. In humans, an inverse association
between H19 expression and BMI was observed. Overexpression of H19 enhanced, while
H19 silencing impaired adipogenesis, oxidative metabolism, and mitochondrial respiration
in BAT but not in WAT adipocytes [322]. LncRNA H19 protects against dietary obesity by
constraining the expression of monoallelic genes in BAT. Loss of H19 in brown fat reduces
energy expenditure and sensitizes towards obesity [322].

Increased expression of the FTO may decrease H19 expression, impairing BAT metabolism
and thermogenesis. Conversely, FTO deficiency has been related to BAT differentiation
and thermogenesis [100-102]. Specifically, FTO deficiency promotes thermogenesis and the
transition of white-to-beige adipocytes through YTHDC2-mediated translation, enhancing
protein expression of HIF-1« [100]. It also affects the gene and miRNA expression involved
in brown adipogenesis and browning of WAT in mice [101] and upregulates uncoupling
protein 1 (UCP-1), thereby enhancing mitochondrial uncoupling and energy expenditure,
inducing a brown adipocyte phenotype [102] and potentially upregulating H19 expression.

Elevated expression of the IncRNA H19, which sponges let-7 miRNA [323], may
activate the expression of HIF-1« [324]. HIF-1«, in turn, activates the transcription of
thermogenic genes that promote UCP-1 expression and the browning process [100]. A
preliminary pilot study suggests that human milk exosomes contain IncRNA H19 (R.W.
and B.C.M, unpublished), which could potentially provide exosomal support for BAT
development, which is lacking in exosome-deficient infant formula.
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4. Discussion

After decades of experimentation to improve FF, growth patterns and body compo-
sition development still differ between FF infants and BF infants, obviously contributing
to an increased risk of obesity among FF infants [325]. Excessive protein and mismatched
AA intake by artificial FF in comparison to nature’s gold standard, i.e., exosome-delivering
human milk, is a matter of great concern [126,127,325]. It may never be possible to avoid
protein excess with FF, as parents will not always comply with recommended formula
dosing, especially when providing a protein-enriched night bottle to increase the infant’s
sleep period. The protein content and dynamics of protein intake are not the only critical
determinants to adjust appropriate FTO signaling during the postnatal period of metabolic
programming of the infant. The levels of KYN, a downstream metabolite of TRP and
an upstream precursor of NADP [326], are significantly higher in formula and may thus
further increase NADP-stimulated FTO activation. Remarkably, TRP and KYN are pos-
itively associated with the FTO rs9939609 A allele [279]. Obese adults exhibit marked
elevations of KYN serum levels and a significantly elevated KYN/TRP ratio [327-329]. In
mice, adipocyte-derived KYN promotes obesity and insulin resistance by activating the
arylhydrocarbon receptor (AhR)/STAT3/IL-6 signaling pathway [330]. Recent evidence
indicates that melatonin, another downstream metabolite of TRP [273-278], stimulates the
expression of miRNA-148a-3p [331], a potential link between TRP metabolism and miRNA
signaling. Currently, there is no information regarding exosomal miRNA expression in
human milk at night time. Oxytocin, a key driver of lactation [332], has been shown to
enhance the expression of miRNA-148a-3p, miRNA-30b-5p, and miRNA-21-5p in colostral
milk exosomes [333], pointing to the close hormonal interaction between milk production
and exosomal miRNA content missing in artificial formula.

Apparently, FF at multiple regulatory steps fails to adjust the appropriate magnitude
of FTO signaling. Recent evidence underlines that BF delivers a highly sophisticated
vesicular system that transmits a complex spectrum of RNAs critically involved in the
epigenetic programming of the infant [178-184]. It is conceivable that not only deviated
protein signaling but also the deficiency of milk exosomal miRNAs in formula enhances
the risk of FTO overexpression, leading to obesigenic deviations in the RNA methylome.

Unfortunately, a century ago, FF was developed under the simplified view that milk is
“just food” [334]. Today, we have compelling evidence that FF leads to significant deviations
in DNA and most likely RNA methylation patterns. Accumulated evidence provided in this
review demonstrates that FTO modifies the RNA methylome and induces the expression of
multiple cell cycle and lipogenic genes (Table 2) involved in the development of WAT but
suppresses genes important for the generation of BAT and thermogenesis (Table 1). The
appropriate calibration of FTO activity and the extent of m6A RNA demethylation play
pivotal roles in the process of adipogenesis of WAT, BAT development, and the regulation of
circadian rhythm and energy intake. Obviously, BF and FF significantly differ with regard
to their impact on epigenetic regulation. Adverse effects of FF on the m6A RNA methylome
are thus a new matter of concern, as m6A RNA demethylations are critically involved in
gene expression, tissue development, and adipogenesis [50,62]. There is common consent
that nutrition during the first 1000 days is of critical importance for infant development and
the prevention of obesity [335,336]. DNA methylation mediates not only the association
between BF and early-life growth trajectories [33-40] but apparently also the appropriate
regulation of the RNA methylome. Already, a decade ago, early postnatal life was identified
as a critical time window for the determination of long-term metabolic health [28]. High-
protein formula-induces epigenetic modifications of FTO, which apparently increases the
number of adipocytes during a critical developmental window. During lifetime challenges
with HFD, those infants adversely primed with developmental deviations of their adipose
tissue may have a higher disposition towards obesity compared to BF infants carrying
a normally developed adipose tissue during the postnatal period. Notably, the gain-of-
function FTO 159939609 variant is linked to a higher BMI and increase of total energy intake,
whereas lower dietary protein intake can weaken the connection between the FTO genotype
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and adiposity in children and adolescents [177]. Exclusive BF acts antagonistically to the
FTO rs9939609 risk allele by the age of 15 years in boys and girls [76]. These findings clearly
emphasize the importance of adequate FTO signaling during the postnatal developmental
window of adipogenesis.

Figure 5 summarizes all potential epigenetic m6A-dependent metabolic deviations
mediated by high-protein FF-induced FTO overactivation, including deficiencies in critical
miRNAs that would be able to silence and thus balance FTO expression.

FORMULA FEEDING
Excessive protein intake by formula feeding

Absence of exosomal miRNAs in formula

Tryptophan BCAAs
Kynurenine ™ 1
NADP* NADPH
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Figure 5. FTO overactivation by formula feeding and resulting metabolic deviations through in-
creased m6A RNA demethylation.

Although we now know that FF does not guarantee proper physiological postnatal
epigenetic programming during a critical and vulnerable period in our infants’ lives, sales of
infant formula are rising dramatically worldwide, a fact heavily criticized by the authors of
the Lancet Breastfeeding Group [337,338]. In particular, infants carrying the FTO rs9939609
risk allele exhibit an enhanced risk for FTO-mediated adipogenic signaling by FF, whereas
prolonged exclusive BF reduces the risk of BMI increase in childhood [76]. In this regard,
it is also noteworthy to mention that exposure of pregnant mice to bisphenol A leads to
obesity in the F2 progeny due to increased food intake, with an epiphenotype that can
be transmitted up to the F6 generation. Analysis of chromatin accessibility in the sperm
of the F1-F6 generations exhibits alterations at sites containing binding motifs for CTCF
at two cis-regulatory elements of the FTO gene that correlate with the transmission of
obesity [146]. These findings suggest that not only genetic variants but also epigenetic
externally introduced changes in FTO expression during the perinatal period can result
in the same phenotypes and can be transmitted over generations [147]. Placental FTO
expression also correlates with fetal growth [339]. After birth, the secretory products of the
mammary gland take over FTO-mediated growth control. Human milk, the masterpiece of
mammalian lactation that has evolved over millions of years [340,341], ensures optimized
epigenetic signaling at the DNA and RNA levels for the appropriate postnatal metabolic
programming of the infant. Of course, the feeding pattern after the lactation period as well
as the time point and type of introduction of processed foods will modify epigenetics and
later disease development. Nevertheless, the lactation period is a vulnerable time window
of postnatal tissue development that requires optimal protection.

Changes of the intestinal microbiome might also modify FTO signaling. The milk
of mothers giving birth via cesarean section contains lower amounts of miRNA-148a-3p
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compared to mothers giving birth by vaginal delivery [195]. FTO-deficient mice exhibit
a specific bacterial signature, characterized by a higher abundance of Lactobacillus and
suppression of inflammation [342]. Preliminary evidence indicates that the gut microbiota
might modulate responses of lipid metabolism to nutritional intervention in individuals
with different FTO genotypes [343]. It has been shown in C57BL/6 mice that dietary bovine
milk exosomes elicit beneficial changes in bacterial communities [344]. Intestinal dysbiosis
in preterm infants often precedes necrotizing enterocolitis [345], whereas milk exosomes
and milk exosomal miRNAs including miRNA-148a-3p [191], IncRNAs, and mRNAs might
protect against necrotizing enterocolitis [193,346,347] and ulcerative colitis, as shown in a
genetic mouse model [348]. Thus, milk exosome—gut microbiome-FTO interactions appear
as promising areas for future research.

Limitations of this review are the fact that statements on the impact of FTO signaling
are based on correlative, epidemiological, and translational studies in humans and animal
models and not on molecular data obtained from adipose tissues of FF versus BF infants,
which is not suitable for ethical reasons. On the other hand, infant formula was introduced
without providing any epigenetic tissue analyses of FF versus BF infants prior to marketing.

5. Conclusions

Experimental and translational evidence points to enhanced FTO signaling by FF,
which may disturb m6A-dependent RNA regulation in early adipogenesis and lipogenesis.
When comparing the differences of BMI trajectories of BF vs. FF, variations in total protein
content and AA composition are not the only critical variables: Total protein intake as well
as the relative amounts of TRP, KYN, BCAAs, and exosomal miRNAs may synergistically
control the final magnitude of FTO expression and activation and, consequently, down-
stream FTO-mediated m6A-dependent RNA translation. Accumulating evidence supports
the view that FF leads to aberrant early fate decisions in adipose stem cell homeostasis, pro-
moting excessive preadipocyte linage commitment and preadipocyte cell mass expansion
via increased FTO/mTORC1/5S6K1 signaling, as well as absent milk miRNAs, disturbing
the suppressive effects WNT signaling on postnatal adipogenesis. It may be relevant to
include primate and human adipose tissue-specific expression of FTO for experimental
evaluation of the effects of human milk versus formula, which of course is a challenge due
to ethical limitations.

Infant formula is still and may always be in an “experimental stage”, which is not
equivalent to the epigenetic and metabolic effects of exclusive BF on physiological stem
cell differentiation. The historical misconception regarding “milk is just food” may be a
critically overlooked error promoting our ongoing obesity epidemic. From a public health
perspective, it is high time to switch back from bottle to breast to prevent postnatal obesi-
genic programming of our infants of all mothers who are able to feed and program their
newborns by BE. It is questionable whether future formula improvements may ever reach
the quality, quantity, and dynamics of epigenetic regulations guaranteed by natural BE.
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Abbreviations

AA amino acid

AARS amino-acyl tRNA synthetases

ADIPOQ adiponectin

ATF4 activating transcription factor 4

BAT brown adipose tissue

BF breastfeeding

BCAA branched-chain amino acids

BMAL1 brain and muscle ARNT-like protein 1

BMI body mass index

CCNA2 cyclin A2

CDK2 cyclin-dependent kinase 2

CEBPA CCAAT/enhancer-binding protein «
CEBPB CCAAT/enhancer-binding protein 3
CEBPD CCAAT/enhancer-binding protein &
CLOCK circadian locomotor output cycles kaput
CRY1 cryptochrome 1

CRY2 cryptochrome 2

CTCF CCCTC-binding factor

CUX1 cut-like homeobox 1

DOHaD developmental origins of health and disease
DNMT1 DNA methyltransferase 1

EZH2 enhancer of zeste homolog 2

FF formula feeding

FOXO1A forkhead box O1A

FTO fat mass and obesity-associated gene

GHRL ghrelin

G6PD glucose-6-phosphate dehydrogenase

H19 long non-coding RNA H19

HFD high-fat diet

HIF1a hypoxia-inducible factor 1o

HIF1AN hypoxia-inducible factor 1-« inhibitor

KLF2 Kriippel-like factor 2

KYN kynurenine

LARS leucyl-tRNA synthase

LEU leucine

m6A N6-methyladenosine

METTL3 methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit 3
METTL14 methyltransferase 14, N6-adenosine-methyltransferase complex catalytic subunit 14
MCE mitotic clonal expansion

miRNA micro ribonucleic acid

MSC mesenchymal stem cell

mTORC1 mechanistic target of rapamycin complex 1
MYC MYC protooncogene

NAD nicotinamide adenosine dinucleotide
NADP nicotinamide adenosine dinucleotide phosphate
NAMPT nicotinamide phosphoribosyltransferase
NRIP1 nuclear receptor-interacting protein 1
PPAR-o peroxisome proliferator-activated receptor-o
PPAR-y peroxisome proliferator-activated receptor-y
PPARGC1A  peroxisome proliferator-activated receptor-y co-activator-1o
RAGD Ras-related GTP-binding protein D

RPGRIP1L  retinitis pigmentosa GTPase regulator interacting protein 1-like
RUNX1T1 runt-related transcription factor 1, translocated, 1
S6K1 56 kinase 1
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SNP single nucleotide polymorphism

SREBF1 sterol regulatory element-binding transcription factor 1
TSC1 tuberous sclerosis complex 1

TRP tryptophan

UCP1 uncoupling protein 1

UTR untranslated region

WAT white adipose tissue

WNT10a wingless-type MMTYV integration site family, member 10A
YTHDEF2 YTH N6-methyladenosine RNA binding protein 2
ZNF217 zinc finger protein gene 217

ZFP217 zinc finger protein 217
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