001008728 001__ 1008728 001008728 005__ 20250329065343.0 001008728 0247_ $$2ISSN$$a0360-1323 001008728 0247_ $$2ISSN$$a1873-684X 001008728 0247_ $$2SCOPUS$$aSCOPUS:2-s2.0-85219294681 001008728 0247_ $$2WOS$$aWOS:001440616100001 001008728 0247_ $$2doi$$a10.1016/j.buildenv.2025.112782 001008728 0247_ $$2datacite_doi$$a10.18154/RWTH-2025-03124 001008728 037__ $$aRWTH-2025-03124 001008728 041__ $$aEnglish 001008728 082__ $$a690 001008728 1001_ $$0P:(DE-82)992663$$aDabrock, Kristina$$b0$$eCorresponding author$$urwth 001008728 245__ $$aGenerating a nationwide residential building types dataset using machine learning$$honline, print 001008728 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025 001008728 300__ $$a[1]-17 001008728 3367_ $$00$$2EndNote$$aJournal Article 001008728 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal 001008728 3367_ $$2BibTeX$$aARTICLE 001008728 3367_ $$2DRIVER$$aarticle 001008728 3367_ $$2DataCite$$aOutput Types/Journal article 001008728 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001008728 588__ $$aDataset connected to , , , CrossRef, Journals: publications.rwth-aachen.de 001008728 591__ $$aGermany 001008728 7001_ $$aUlken, Jens$$b1 001008728 7001_ $$aPflugradt, Noah$$b2 001008728 7001_ $$00000-0003-2948-876X$$aWeinand, Jann Michael$$b3 001008728 7001_ $$0P:(DE-82)IDM01238$$aStolten, Detlef$$b4$$urwth 001008728 773__ $$0PERI:(DE-600)1481962-4$$a10.1016/j.buildenv.2025.112782$$p112782$$tBuilding and environment$$v274$$x1873-684X$$y2025 001008728 8564_ $$uhttps://publications.rwth-aachen.de/record/1008728/files/1008728.pdf$$yOpenAccess 001008728 909CO $$ooai:publications.rwth-aachen.de:1008728$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001008728 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)992663$$aRWTH Aachen$$b0$$kRWTH 001008728 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)IDM01238$$aRWTH Aachen$$b4$$kRWTH 001008728 9141_ $$y2025 001008728 9151_ $$0StatID:(DE-HGF)0031$$2StatID$$aPeer reviewed article$$x0 001008728 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28 001008728 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001008728 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUILD ENVIRON : 2022$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001008728 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBUILD ENVIRON : 2022$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28 001008728 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger 001008728 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28 001008728 9201_ $$0I:(DE-82)413010_20140620$$k413010$$lLehrstuhl für Brennstoffzellen (FZ Jülich)$$x0 001008728 961__ $$c2025-03-24T09:31:23.895619$$x2025-03-24T09:31:23.895619$$z2025-03-24T09:31:23.895619 001008728 980__ $$aI:(DE-82)413010_20140620 001008728 980__ $$aUNRESTRICTED 001008728 980__ $$aVDB 001008728 980__ $$ajournal 001008728 9801_ $$aFullTexts