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ARTICLE INFO ABSTRACT

The lack of high-resolution building data is an obstacle to the development of detailed, spatially explicit rec-
ommendations for decarbonization measures. In an effort to fill this gap, this study outlines the creation of a
building level dataset based on standardized building archetypes for all German residential buildings. A machine
learning approach using XGBoost is used to train models to predict the size class and construction year of in-
dividual buildings. Refurbishment states are assigned based on federal state level statistics. Based on these
characteristics, TABULA building archetypes are assigned. The training data generation is primarily based on the
grid dataset of the German census. The data is enriched with morphological features of buildings and neigh-
borhoods, as well as socio-economic characteristics. The machine learning models perform with accuracies of
97.4 % and 73.9 %, respectively, on a test set at the individual building level. The distribution of size classes and
construction years in the resulting dataset shows a high degree of agreement with official statistics at the federal
state level, but also a tendency to overrepresent majority classes. This study proves that the chosen methodology
is suitable for generating a complete nationwide dataset. By providing spatially resolved, individual building
data that can serve as a proxy for the energetic properties of buildings, the resulting dataset can facilitate
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building-related energy transition analyses.

1. Introduction

Buildings contribute significantly to energy consumption and
greenhouse gas emissions in both the EU [1] and Germany [2]. In order
to devise targeted measures with the goal of reaching greenhouse
gas-neutrality, detailed knowledge of the building stock is required.
Statistical data about the building stock and its energy-related statistics
is available for European countries on a national level, e.g., through the
Building Stock Observatory [3] or JRC-IDEES [4], and on a regional
level, for example for Germany [5]. An increasing amount of open data
initiatives are publishing data on the building level, but detailed,
structured, complete, and accessible building level information, even for
geometric data [6], let alone going beyond, is still scarce. This data,
however, is necessary to carry out spatially explicit analyses that allow
assessments of, e.g., heat demand at the local level.

A common approach for handling the scarcity of building level data
in bottom-up analyses is enriching existing building data with data from
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building typology archetypes, as in Schwanebeck et al. [7] and Yang
et al. [8]. These typologies, ranging from the national (e.g., TABULA
[9]) to regional (e.g., building typology for the German federal state
Schleswig-Holstein [10]) levels, classify buildings into categories based
on a set of characteristics. The TABULA typology [9] defines building
categories through a code composed of letters and numbers indicating
location, size class, construction year, and refurbishment state of a
building (see Fig. 1). Apart from Single Family Houses (SFHs), the ty-
pology differentiates between Multi-Family Houses (MFHs), Terraced
Houses (THs) and Apartment Blocks (ABs). While the typology dates to
2012, it remains to date the most comprehensive typology for catego-
rizing the German residential building stock known to the authors and is
therefore an important basis for the large-scale analysis of heat demand
and decarbonization strategies. A challenge lies in missing categories for
modern buildings, constructed after the publication of the typology.
However, it has even been updated after its initial publication and in-
cludes a construction year class beginning in 2016 [11]. Furthermore,

Received 18 October 2024; Received in revised form 18 February 2025; Accepted 24 February 2025

Available online 25 February 2025

0360-1323/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0001-7009-0943
https://orcid.org/0000-0003-2948-876X
https://doi.org/10.5281/zenodo.13771740
https://doi.org/10.5281/zenodo.13771740
https://orcid.org/0000-0001-7009-0943
https://orcid.org/0000-0003-2948-876X
mailto:k.dabrock@fz-juelich.de
www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2025.112782
https://doi.org/10.1016/j.buildenv.2025.112782
https://doi.org/10.1016/j.buildenv.2025.112782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2025.112782&domain=pdf
http://creativecommons.org/licenses/by/4.0/

K. Dabrock et al.

Region: Construction year
National period:
(no regional specification) 1860-1918

DE.I_I*\I_\.SFH.

o

02.Gen.ReEx.002

Country: Type: Refurbishment state:
Germany Single Family Usual
House

Fig. 1. TABULA typology code explanation and example.

buildings built after 2012 make up only 5 % of the residential building
stock [12], and it can be argued that these are the least relevant build-
ings in terms of energy refurbishment measures due to the already
higher energy efficiency standards. And while discrepancies between
U-values in TABULA and energy performance certificates raise concerns
regarding the reliability of the TABULA typology [13], classifying
buildings according to their archetypes is still useful, since it currently is
the best data available for Germany and can furthermore easily be
updated, once better data becomes available. Additional data such as,
for example, heat transmission values, areas of components, and specific
heat demand, is available for each of the archetypes that represent a
typical building of that category. Although the data provided by the
TABULA typology naturally does not exactly match each building falling
into a certain category, it provides a valuable approximation of
energy-related characteristics. These characteristics are essential for
performing large-scale building level energy simulations, which in turn
are required for the assessment of decarbonization potentials and sce-
narios. A prerequisite for harnessing the data provided in the TABULA
typology in spatially explicit analyses is the assignment of TABULA types
(see Fig. 1) to individual buildings. This requires data on construction
year, size class, and the refurbishment state of a building. Leveraging the
assigned TABULA type, simulation models for individual buildings such
as ETHOS.HiSim [14] can be configured by accessing U-values and
component areas provided by the TABULA typology. These models can
then be employed for analyzing, for example, the large-scale heat de-
mand of residential buildings in Germany [15].

This study presents a methodology for assigning building archetypes
from the TABULA typology [9] to residential buildings. For the first
time, such a methodology is developed to analyze the building stock of
the entire country of Germany. A machine learning-based approach was
employed for determining the archetype-defining characteristics. As a
result, the dataset includes not only the TABULA type but also the
construction year, size class, and refurbishment state of each building,
giving users the flexibility to use these attributes in a variety of possible
analyses. Finally, the generated dataset was validated against official
statistics and a detailed assessment of its quality was carried out. The
complete and validated TABULA dataset for Germany provides a valu-
able basis for spatially explicit research on building energy demand.

2. Related work

Several previous studies have developed methods for assigning size
classes to buildings. Yang et al. [8], for instance, use building level data
on the number of shared walls, the number of registered addresses,
building footprint areas, gross floor areas, and the number of stories to
define a rule-based mapping of size classes (SFH, mid-TH, end-TH,
apartment building or MFH) to Dutch buildings. A similar rule-based
mapping, based on the ground floor area and number of floors, was
also implemented by Schwanebeck et al. [7] and Blanco et al. [16], with
250 m? being a common threshold for differentiating between SFHs and
MFHs. Wurm et al. [17] and Droin et al. [18] both use Random Forest
classifiers trained on data from homogeneous census grid cells for pre-
dicting one of three or four size class types, respectively. The former
article presents a case study for the city of Miinster, Germany, and
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reaches an overall accuracy of 96 %. The latter study applies the model
to all of the federal states in Germany, with an overall accuracy of more
than 95 %.

In addition to the size classes, the year of construction also carries
valuable information about a building. The construction year is not only
necessary to derive the TABULA type but can serve as a proxy for heat
demand-related characteristics such as insulation [19], level heights,
fabric, and glazing and is also relevant beyond energy research, e.g., for
natural hazard risk assessments [20]. As the individual buildings’ con-
struction year is not available for many countries, this data must be
gathered, e.g., from local building cadasters, commercial datasets,
remote sensing data, or occupant surveys [7]. Approaches for detecting
a building’s construction year are still under development [21].

Addressing the issue of manual data collection, Alexander et al. [22]
present automated approaches for deriving construction year informa-
tion from map data using cluster analysis based on building shape and
context information. For Germany, statistical data is available down to
the municipality and hectare levels from the census of 2011 [23]. The
use of this data has been shown to lead to acceptable results for heat
demand modeling at the city level by Zirak et al. [24], who applied and
evaluated their methodology for two small German towns. Thus, a
simple approach for assigning construction year periods to individual
buildings consists of assigning the predominant construction year period
within a census grid cell to all buildings within that grid cell, as
demonstrated in Wurm et al. [17]. Although this is accurate for ho-
mogenous grid cells, it leads to errors in non-homogenous ones.

Machine learning can be applied to take individual building and
context characteristics into account. Algorithms such as Convolutional
Neural Networks (Zeppelzauer et al. [25] and Li et al. [26]) and Random
forest (Biljecki and Sindram [27], Rosser et al. [20], Garbasevschi et al.
[19], and Blanco et al. [16]) are common choices, but the input data and
features vary. Zeppelzauer et al. [25] reach accuracies of 55.1 % by
using a Convolutional Neural Network trained on building photographs
for predicting the decade of construction. Meanwhile, Li et al. [26]
report a mean absolute error of 11 years when predicting construction
years combining a Convolutional Neural Network and Support Vector
Regression and training on image data from Google Street View. Biljecki
and Sindram [27] train a Random Forest model with nine features
derived from a 1-D building dataset of the city of Rotterdam,
Netherlands. The study reaches a mean absolute error of between 4.9
and 19.4 years, depending on the available attributes. Rosser et al. [20]
train a Random Forest model for predicting five construction year pe-
riods based on 15 building morphology and neighborhood characteris-
tics for Notthingham, United Kingdom, and reach accuracies of 77 %.
Similarly, Garbasevschi et al. [19] predict ten construction year periods
using a Random Forest model based on more than 50 building, street and
block metrics as features from open spatial data for eight cities in the
German federal state North Rhine-Westphalia with accuracies of up to
80 % [19]. The authors find that the spatial distribution of training and
test data influences the accuracy, and that training and test buildings
should ideally be in close spatial proximity, increasing the accuracy up
to 96 % if training data from the same city is used [19].

The third aspect required to determine the TABULA types is data on
the refurbishment status of a building. A lack of refurbishment state data
at the building level has been highlighted by Zirak et al. [24] and Yang
et al. [8]. Even when data is gathered at the building level, an assign-
ment to individual buildings is problematic due to privacy issues [24].
Both Zirak et al. [24] and Yang et al. [8] resort to randomly distributing
refurbishment states to individual buildings based on higher-level sta-
tistics. Wurm et al. [17] circumvent the issue of missing refurbishment
data by defining scenarios for the potential refurbishment states of all
buildings.

A straightforward mapping of building attributes to TABULA types
based on building footprint polygons, construction years, and building
heights is presented by Yang et al. [8]. In this study, the authors outline a
framework for modeling residential space heating energy demand using
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GIS data in combination with TABULA archetypes for the city of Leiden,
Netherlands. However, due to limited data availability in many other
regions, this approach is not easily transferable. Wurm et al. [17] also
model heat demand for a city in Germany by assigning TABULA types;
however, their assignment of construction years and size classes is
simplified and refurbishment states are not assigned. Schwanebeck et al.
[7]1 calculate the heat demand of the northern German region of
Schleswig-Holstein by combining geographic 3-D building data with
census datasets. However, although they use 3-D building data as an
input, their output is heat demand on the hectare level, thus not
providing TABULA types for individual buildings.

In summary, existing studies on the assignment of size classes, con-
struction years, refurbishment states, and TABULA types have either a
limited spatial scope, lack a methodology that is suitable for generating
nationwide datasets, or have not been validated against official statis-
tics. In this study, this gap is filled by providing TABULA types for all
residential buildings in Germany using an individual building-based
methodology. Contrary to past studies, all characteristics required for
deriving the TABULA type are assigned and the methodology is applied
to the entire country of Germany.

3. Methodology and data

The methodological structure of this paper is illustrated in Fig. 2.
Section 3.1 describes the input data. The underlying building data used
is geographic and was extracted from OpenStreetMap and from official
governmental 3-D building datasets for Germany (see Section 3.1.3).
Combined with census (see Section 3.1.1) and socio-economic data (see
Section 3.1.4), this constitutes the training data used for training
XGBoost machine learning models (see Section 3.2). These models were
then applied to predict the construction year and size class of all resi-
dential buildings in Germany. Furthermore, the refurbishment state of
buildings was assigned probabilistically based on the statistics provided
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by the German Environment Agency [28]. Based on these three char-
acteristics, TABULA types were assigned to each individual building (see
Section 3.3), providing access to a wide range of additional information
available for each type through the TABULA typology, such as insulation
levels, window areas, and heat demand.

3.1. Input data

The main input data sources used in this study are census data,
refurbishment state data, individual building data and socio-economic
data. The census data is relevant for creating the training dataset by
extracting buildings that can be labeled with a construction year and size
class. Census data, individual building data, and socio-economic data-
sets serve as additional sources for deriving features that the machine
learning model can then be trained on. The probabilistic refurbishment
state assignment is based upon federal state level statistics about
refurbishment states.

3.1.1. Census data

The census data is used for training label generation in order to
classify the construction year and size classes, as well as feature gener-
ation. The German census [29] constitutes a statistical examination
intended for the aggregation of population and housing data. It contains
data such as construction year classes, size classes, inhabitants, and the
number of households. Each data entry represents the composition of a
surveyed attribute of a geographically-referenced grid cell, sized 100 m
x 100 m [30]. This approach is applied to maintain anonymity and
circumvent potential deductions regarding individual identities.
Furthermore, in order to inhibit potential deanonymization, data re-
ported within a cell can be deliberately distorted in cases where the
inputs for a particular grid cell are insufficient.

| Data preprocessing

Census data

Building data

Additional datasets

Il Size class
Assign size class based on

data

[ comen |

[ erwger |
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- =

¥

Create training dataset
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machine learning

IIl Construction year

Assign construction year
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Create training dataset
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using machine learning

IV Refurbishment state
Assign refurbishment state
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Train refurbishment state
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Fig. 2. Flow chart illustrating the data processing and assignment workflow.
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3.1.2. Refurbishment state data

As the census data does not contain information on the refurbish-
ment state of buildings, another source is required. No reliable sources
with building level data for the assignments of refurbishment states
could be identified. Therefore, the probabilistic assignment of refur-
bishment states is based on statistical data available from the German
Environment Agency [28]. They report the share of buildings in the
three categories “not refurbished”, “partially refurbished”, and “fully
refurbished”, as well as the share of new buildings, at the federal state
level.

3.1.3. Building data

To achieve the goal of assigning TABULA types to individual build-
ings, features for the machine learning model must be derived from
individual building data.

The basic building data, including building footprints and height,
was extracted from official government 3-D building datasets at Level of
Detail 2 (LoD2), i.e., including standardized roof shapes, for the German
federal states where it was available at the time of carrying out this study
(Bavaria, Berlin, Brandenburg, Hamburg, Hesse, Lower Saxony, North
Rhine-Westphalia, Saxony, Saxony—Anhalt, and Thuringia), and for all
other federal states from OpenStreetMap, data was retrieved from the
Geofabrik download server [31]. This process and the resulting data are
described in detail in Dabrock et al. [6].

Buildings were classified by their usage type as residential, non-resi-
dential, or mixed. Training data was generated by implementing a direct
mapping from the function attribute and OpenStreetMap tags in the
LoD2 data and OpenStreetMap data, respectively. Only the type infor-
mation in Saxony-Anhalt was disregarded as it included implausible
information. As discussed by Bandam et al. [32], the building use of the
majority of buildings in Germany is not specified in OpenStreetMap. At
the time of writing this study, 68.28 % of German buildings are tagged as
“building="yes’”, instead of providing more detailed information [33],
leading to data gaps which require data imputation steps. Based on the
training data, a machine learning model was trained (for details refer to
Supplementary Material S1) and then applied to assign types to all
previously unclassified buildings. In the following steps of this study,
only the buildings classified as residential or mixed are included.

Additionally, buildings were enriched with data about the roof,
including the following roof characteristics: type, height, orientation,
tilt, and area. From the 3-D building data, the roofType attribute of a
building as defined in the ALKIS Objektartenkatalog [34] and extended
by SIG 3-D for CityGML [35], which was extracted and mapped to a
selection of the roof shapes defined in OpenStreetMap [36]. Height was
calculated by subtracting the height of the lowest point of a roof section
from the height of its highest point and taking the average over all roof
parts. The azimuth, tilt, and areas of all roofs were calculated using
functions from the polygon3dmodule from Biljecki et al. [37]. For the
buildings originating from OpenStreetMap, the roof characteristics of
shape, height, tilt, and orientation were read from tags “roof:shape,”
“roof:height,” “roof:angle,” “roof:direction,” respectively. However, only
7.7 % of German buildings have information for “roof:shape”, and for the
other attributes, the share remains below 1 % [38]. Roof shape values
were cleaned by mapping to more common, similar categories and
removing those that cannot be mapped. Valid roof shape categories and
mapping tables are included in Supplementary Material S2. Height and
tilt data was cleaned by selecting only the first part of the value if a space
is present and removing the strings “m,” “°,”“deg,” and “~” in order to
remove units and other modifiers. Values not matching the floating
point format after cleaning were ignored. Textual representation of roof
orientation was mapped to degrees with “N” for north being set to 0 [°].

The footprint area, i.e., the contact area of a building with the
ground, can be directly calculated from the basic building data by
calculating the area of the footprint polygon. However, in the context of
heat demand modeling, more relevant measures can be calculated by
taking the number of floors or, as a proxy, the building height into
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consideration. The details of the calculation are included in Supple-
mentary Material S3.

3.1.4. Socio-economic data

The training dataset was further enriched with socio-economic data.
Data pertaining to socio-economic factors at the municipal and county
levels were accumulated based on the assumption that a positive socio-
economic environment may serve as an indicator for relatively recent
construction years and higher refurbishment frequencies for buildings.
Studies by the German Economic Institute and analyses of the market-
leading German real estate portal Immoscout24, show a negative cor-
relation between price discounts and energy efficiency classes of
buildings, while modern, energy-efficient buildings are stable in price
[39,40].

Assuming that higher acquisition costs presuppose a high economic
status, in the case of MFHs, these acquisition costs lead to higher rents,
which results in the gentrification of neighborhoods and therefore socio-
economic data may allow for inferences about housing stock quality. As
Edlund et al. [41, p. 23] state, “Gentrification is about price growth and
changes to the housing stock, not population growth.” It is further pre-
sumed that higher income and lower unemployment rates could be
predictive of SFHs, given the prerequisite of a high net worth or income
for procurement and maintenance. The collected spatial socio-economic
data is mimicked after the attributes within the GRW-Indicator (Indi-
cator for the Improvement of the Regional Infrastructure) [42]. In the
German context, the GRW-Indicator is a tool utilized by the Federal
Ministry for the Economy and Climate Protection to discern
socio-economically-underprivileged regions and correspondingly allo-
cate financial support [42, pp. 1-6]. The calculation of this indicator
involves the use of regional gross annual wages per employee, regional
unemployment rates, projections of regional employment in correlation
with overall German development, and the Infrastructure Indicator
2012 [43]. The Infrastructure Indicator 2012 provides a picture of
Germany’s physical capital-, human capital-, and household-oriented
infrastructure. The physical capital-oriented infrastructure is
composed of three sub-indicators, which display the accessibility of the
three nearest national or foreign conurbations, the equipment with
high-level transport infrastructure, and the level of high-performance
broadband infrastructure. The human capital-oriented infrastructure is
described by apprenticeship capacities, the number of employees in
knowledge-intensive and business-oriented services, the number of
employees in technical professions, and in knowledge transfer in-
stitutions. Lastly, the regional population potential represents the
household-oriented infrastructure [43]. Beyond socio-economic data,
this study also employs RegioStaR17 [44] data. RegioStaR17, a regional
statistical spatial typology, stratifies geographical regions into 17
distinct types such as metropolises, urban areas, small town regions, and
rural areas, amongst others [44].

3.2. Machine learning approach for size class and construction year
assignment

The input data previously presented was used to create a labelled
dataset for training and testing, and to derive features for training ma-
chine learning models. Then, the actual model training process,
including hyperparameter optimization, was carried out.

3.2.1. Labelling data for model training

As in Garbasevschi et al. [19] and Droin et al. [18], target labels for
construction year and size classes were generated by assigning the
values of census grid cells containing only one attribute expression to all
buildings located in the respective grid cell, e.g., cells that contain only
SFHs. Furthermore, a specific parameter, indicative of the level of
anonymization, is attributed to each grid cell. Consequently, only grid
cells exhibiting the lowest degree of anonymization were retained. This
serves to ensure maximum data quality for the generated training
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dataset. The grid cells in the census dataset have a size of 100 m x 100m.
The assigned attribute expressions to a grid cell describe the building
type topology of the buildings located within it. Therefore, attributes are
not available on a single building level. By labeling only buildings
located in grid cells with one attribute expression for all buildings in the
grid cell, combined with the lowest degree of anonymization, the pos-
sibility of a correct assignment of the building type on a single building
level is maximized. All buildings that could be labelled using this pro-
cedure were retained for the model training process.

The TABULA framework categorizes buildings into four size classes,
compared to ten found in the census data. Therefore, following the
methodological approach described by Loga et al. [45], a mapping (see
Table 1) was applied to assign each building in the census data one of the
four size classes defined by TABULA. This was performed before
extracting the grid cell data.

The labelled dataset pertaining to building size class classification
contains 10.8 million observations (see Table 2), which accounts for
55.7 % of the German residential building stock in 2021 [46, p. 19], each
characterized by 41 features. The SFH size class dominates the label
distribution, accounting for approximately 86 % of instances, as shown
in Fig. 3. As can be seen, ABs are severely underrepresented. The class
imbalance found in the real building stock is exacerbated in the labelled
data, increasing the overrepresentation of SFHs and THs, as opposed to
ABs.

Like the size classes, the construction year classes also differ between
census and TABULA. To address this mismatch, a uniform distribution of
construction years within the respective year class was assumed and an
exact year was assigned randomly to each building. This allows a flexible
reaggregation of the required construction year classes.

The labelled dataset for construction year class classification in-
cludes approximately 6.9 million samples, encompassing 42 features
(see Table 2). However, the distribution of the dataset is considerably
skewed, as the 1949-1978 class makes up more than half (59.82 %) of
the data (see Fig. 3). Furthermore, the earliest three classes together
contain more than 80 % of the building samples, indicating a significant
imbalance. As all labelled buildings are included in the model training
process without additional sampling steps, this is the combined effect of
the underlying distribution of the ground-truth data and the data
labelling process described above. The imbalance in the training data
can also be seen in the official statistics [47]. However, an over-
representation of the majority class in the training dataset compared to
the real building stock characteristics is apparent.

Class imbalance may lead to overfitting of the trained model on the
dominating class, resulting in a loss of generalizability during inference,
and so sample weights will be used during training as further outlined in
Section 3.2.2.

The census data was utilized not only for extracting target labels for
the size class and construction year classification but also to generate
features. The number of inhabitants per grid cell was extracted and used
as a feature, as well as the average number of occupants per household
per grid cell, which was calculated by dividing the inhabitants per grid
cell by the number of households per grid cell as reported by the census.
This data was equally filtered for non-anonymized cells to exclude the
possibility of randomly generated data being introduced into the dataset

Table 1
Mapping between census and TABULA size classes [45].

TABULA size class Census size classes

SFH Detached single-family house
Detached two-family house
Single-family semi-detached house
Two-family semi-detached house

TH Single-family terraced house
Two-family terraced house
MFH Multi-family house with 3-12 apartments
AB Multi-family house with 13 or more apartments
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Table 2
Number of occurrences in the labelled dataset for each of the two prediction
targets.

Prediction target Number of samples Number of features

Size class
Construction year

10,813,067 41
6861,243 42

and thus ensure a high degree of data quality.

The socio-economic dataset comprises information from eleven
distinct sources. After cleaning the data, a bottom-up data integration
strategy was employed, wherein data at identical regional levels were
merged. This resulted in the formation of two datasets: one specific to
the Local Administrative Unit (LAU) level and another corresponding to
the Nomenclature of Territorial Units for Statistics (NUTS) level 3, due
to the two resolution levels of the input dataset. These two datasets were
merged by assigning the values from the NUTS-3 level to all LAU regions
located within it. This process culminated in a consolidated dataset on
the LAU level. This data was then added to the buildings as additional
features by a spatial join.

Building and neighborhood morphological characteristics were
extracted from the individual building data presented in Section 3.1.3
and used as features. Table 3 provides an overview of all features
included in the three groups “building morphology,” “neighborhood
morphology,” and “socio-economic characteristics.”

3.2.2. Model training

In this study, the XGBoost machine learning algorithm was chosen on
the basis of its numerous benefits over alternative decision tree classi-
fiers such as Random Forest. A primary advantage of XGBoost is its
capacity to process categorical variables, thereby avoiding the necessity
for one-hot encoding, a method for transforming categorical variables
into numerical data by expressing the categories in the form of binary
vectors. This characteristic substantially reduces computational time.
XGBoost processes categorical variables by considering each feature as a
subgroup and executing a partition-based split on the condition that the
value is an element of the categories [48]. This describes the fact that the
condition for splitting is based on the membership of a value in a set of
categories, where categories is a subset of all possible categories.
Moreover, the datasets in this study contained numerous missing values
across all features. Consequently, techniques like MICE imputation, a
method that, when applied to a dataset with multivariate missing data,
iteratively predicts the missing values for all features in the dataset
through a combination of statistical assumptions and machine learning,
were contemplated. However, upon testing, it was discerned that
XGBoost’s “Sparsity-aware Split Finding” technique for the efficient
handling of missing values performed comparably, if not superiorly, and
significantly reduced the computational load. This technique amasses
statistics of non-missing entries in order to determine the optimal split
for a value. In cases of missing values, the split was performed in the
direction that yields the largest decrease in error so far. Statistics
regarding the number of missing features per building are included in
Supplementary Material S4.

Additionally, all target labels in this investigation, regardless of the
classification problem, were heavily imbalanced. Although an approach
akin to Wurm et al. [17] and Bandam et al. [32] utilizing SMOTE [49]
was initially contemplated, it was abandoned due to the substantial
increase in training time required, favoring sample weights instead.
These sample weights can be provided directly to XGBoost when fitting
the model. The weights were calculated using the sample method
“balanced” from the sklearn library, which creates weights that are
inversely proportional to the number of occurrences per class [50], thus
giving higher weight to underrepresented classes. During training, the
gradient of each sample and the loss function were computed and
updated after each iteration. The sample weights affect how the model’s
parameters are updated. If a sample has a higher weight, its gradient will
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Fig. 3. Distribution of occurrences in the labelled datasets for: (a) size classes; and (b) construction years.

have a more substantial influence on the loss function and so a pro-
portionately greater influence on the learning process. XGBoost ranked
third out of 14 in a comparison study on multi-class imbalanced data
classification methods and was the fastest multi-class boosting method
in this study [51]. The first two, CatBoost and SMOTEBoost, could
therefore be candidates for experiments in future studies. However,
SMOTEBoost has training times of hours for datasets where CatBoost
and XGBoost only take seconds [51], thus making it unsuitable for
application on large datasets.

The size class and construction year models were both trained using a
train-test-split of 80/20 alongside a five-fold cross-validation, employ-
ing stratified sampling. Furthermore, early stopping with four rounds
was used to prevent overfitting. Both models were trained with a
learning rate (eta) of 0.05, a maximum depth (max depth) of 34, and a
subsample ratio of 0.6 for constructing trees (colsample_bytree). Beyond
these hyperparameters, default settings were applied. The hyper-
parameters were determined using a subset of the final dataset to
diminish the training time and subsequently adjusted until performance
progression plateaued. The hyperparameter progression used during
testing is included in Supplementary Material S4.

3.2.3. Model evaluation

The models were evaluated using the F1-score. The F1-score (see Eq.
(3)) combines the precision (see Eq. (1)) and recall (see Eq. (2)) metrics
per class, and the weighted average F1-score is the average of the class-
wise Fl-scores weighted by the number of occurrences of each class.
Precision measures the accuracy of the positive predictions made by the
model and recall measures the ability of the model to identify all rele-
vant instances within a dataset.

.. true positives
precision = — — (€]
true positives + false positives
true positives
recall = uep ; (2)
true positives + false negatives
2 x precision x recall
F1 — score = p 3)

precision + recall

In order to determine the performance of the model using the F1-
score, scores are compared with model results from the literature (see
Section 5) and against baseline models, which follow a simple assign-
ment process. The baseline performances were calculated using the
DummyClassifier from the scikit-learn library [52], using the strategies
“most_frequent”, which assigns the most frequently occurring category
in the training data, and “uniform”, which randomly assigns one of the
occurring categories with equal probability, when predicting the output.

3.3. TABULA type assignment and validation

As described in Section 1, it is possible to determine the TABULA
building code of each residential building based on the characteristics
previously assigned (size class, construction year, refurbishment state).
Within the TABULA typology, certain combinations of size classes and
construction years are undefined, such as a TH built before 1960 (see
Supplementary Material S5). However, the assignment of construction
years and size classes is independent of these restrictions. To ensure
internal consistency between those attributes within the final dataset,
the assigning of inexistent TABULA types was not prevented. The extent
of this inaccuracy is analyzed in the validation step. Furthermore, only
non-regionally specified archetypes of the German TABULA typology
were considered. Those that only are valid for the new federal states in
Germany were disregarded.

For the validation, the construction year and size class distributions
were compared to official statistics. This validation was carried out at
the federal state level. Additionally, the accuracy of the assignment of
TABULA types was assessed by comparing the total and relative devia-
tion of TABULA type occurrences assigned by the methodology pre-
sented in this study with the building stock statistics provided in Loga
et al. [45]. Due to the aggregation level of the statistics, this was only
possible at the national level. It also reveals how many buildings were
assigned an undefined TABULA type.

4. Results

The following sections present the performance of the trained ma-
chine learning models at the individual building level (see Section 4.1)
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Table 3
Features for construction year and size class model. For some of the more
complex building morphology features, the table also includes the calculation
formula.

Building morphology
Perimeter P
Conditioned living area AC
Footprint area A
Roof type
Average roof tilt troof, avg
Average roof height Rroof.avg
Roof area Aroof
Height h— hpoop
Average width of footprint polygon Wayg =
(P /z*A)/ (PP «x)

Length 1 =A/Wayg
Wall area Ay, =Pxh
Surface area As = A+ Ay + Argof
Volume v
Sphericity S — (”1/3 *(GV)M)/AS
Normalized perimeter index (2 *\/;*_A) /P
Diameter d
Proximity index: average distance between a footprint’s

centroid and all vertices
Height-length-ratio l/h

*Size class

Neighborhood morphology

Grid complexity

Number of touching residential buildings
Length of shared walls

Area of shared walls

Residential buildings in [30,50, 100, 500] m radius
Socio-economic characteristics

Median income

GDP per capita

GDP per employee

Unemployment rate

Long-term unemployment rate

Broadband expansion

Population potential

Employees in knowledge-intensive industries
Academic employment rate

Population with [high, middle, low] level of education
Inhabitants per grid cell

Average number of occupants per household
RegioStaR17 region

*Only included in the construction year training dataset.

and the characteristics and plausibility checks of the resulting dataset
aggregated to the federal state level (see Section 4.2).

4.1. Model performance

The model performances of the size class and construction year
model were assessed both with regard to the overall performance and
the results in the individual classes. Furthermore, feature importances
per model were analyzed. The suitability of the selected features for
training the machine learning models and the feasibility of the chosen
model for predicting size class, and construction year of individual
buildings were evaluated.

4.1.1. Size class

The model designed for predicting the building size class achieved a
weighted average Fl-score of 97.4 % across five-folds for the test
dataset. Machine learning models tend to perform well in the majority
class but poorly in the minority ones, leading to biased predictions.
Despite the data imbalance depicted in Fig. 3, precision (97.41 %) and
recall (97.46 %) for the test dataset were almost equal, proving the
effectiveness of the approach taken in applying sample weights. The
model exceeded the best baseline model, which uses the “most-frequent”
strategy, by 18.4 percentage points (see Supplementary Material S4).
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Examining precision and recall for each class (see Fig. 4a), it can be
observed that they surpass 90 % and 80 %, respectively, for all classes
apart from ABs. Intriguingly, the precision score for SFHs falls below its
recall, suggesting that while almost all SFHs in the dataset were
correctly identified, other building classes were incorrectly classified as
SFHs. Considering the scores for SFHs and THs together, the reduced
recall score for THs could be attributed to them being incorrectly clas-
sified as SFHs. This in turn contributes, in conjunction with MFHs mis-
classified as SFHs, to the lower precision score for SFHs (see
Supplementary Material S4). The low recall for ABs combined with a
comparatively high precision indicates that while most buildings clas-
sified as ABs are in fact ABs, a relatively large share of ABs is not
identified as such but could be misclassified as MFHs. One reason for this
might be that the difference between ABs and MFHs lies purely in the
number of housing units, as shown in Table 1. MFHs comprise buildings
with 3-12 housing units, with ABs starting from 13 housing units up-
wards. The large range of housing units of MFHs likely results in a high
diversity within this group. Combined with the seemingly arbitrary
threshold of 13 housing units for ABs, this probably makes it difficult for
the machine learning model to differentiate between the two size
classes.

The ten most important features associated with building size class
prediction (Fig. 5) provide information on the neighborhood
morphology (number of touching buildings, the area of shared walls, the
length of shared walls, and residential buildings in the 50 m radius), the
individual building morphology (conditioned living area, wall area,
average width, volume), and socio-economic characteristics (in-
habitants per grid cell, academic employment rate). Further socio-
economic features appear further down in the ranking. Some individ-
ual and neighborhood characteristics also appear to have a low degree of
importance for size classification. This might be due in part to correla-
tion between features, and features such as the footprint area and height
being included in the conditioned living area, wall area, and volume.
Whereas including correlated features is likely to influence feature im-
portances, the model performance of decision tree algorithms, such as
XGBoost, is expected to be relatively robust [53]. Therefore, these
correlated features were all included in the model and not removed
before training.

4.1.2. Construction year

The model designed for predicting construction year classes achieved
a weighted average Fl-score of 73.93 % across five-folds for the test
dataset. As previously mentioned, this metric combines precision and
recall information per class and averages them across classes, taking the
number of occurrences of the respective class into consideration. The
model outperforms the baseline model using the “most-frequent” strat-
egy by 6.33 percentage points (see Supplementary Material S4). The
evaluation of the precision and recall for each class in the test dataset
(see Fig. 4b.1) underscores the influence of the data imbalance on ac-
curacy. Interestingly, the classes representing buildings constructed
before 1979 exhibit the highest accuracy scores, which, if compared to
the sample distribution in Fig. 3, implies a correlation between sample
size and accuracy. Recall of the 1949-1978 class is very high, exceeding
the precision, which indicates that while almost all buildings from this
construction year period were identified as such, buildings from other
construction year periods were mistakenly also assigned this label. The
recall for underrepresented classes, notably the years between 1979 and
1995, is low, which suggests that the imbalance in the training dataset
cannot be fully mitigated. However, the step width of the construction
year classes is unbalanced, with a single class comprising between 3 and
30 years. Therefore, precision and recall were also calculated for
regrouped classes (see Fig. 4b.2) with a more equal distribution of years.
This shows a balanced precision between 78.8 % and 86.2 %. Recall on
the other hand remains lower for the classes after 1979, which, in
combination with the high recall of the 1949-1978 class, indicates that
buildings from these classes were assigned earlier construction years
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Fig. 5. 20 most important features for the building size class model.

than they actually had.

Reviewing feature importance, it can be identified that almost half of
the features demonstrate an importance exceeding 2 % (see Fig. 6).
Amongst the top ten features, socio-economic, individual building
morphology, and neighborhood morphology features are relevant.
Interestingly, building morphology features, while also positively
contributing to the model’s results and roof shape being among the top
five features, are less important than for the size class model. This could
indicate that the construction year is a characteristic shared by buildings
in the same area and that the construction year period of a district
manifests itself in the neighborhood morphology more than at the in-
dividual building level and that socio-economic features are more
strongly correlated with the construction year period than the size class.
Adding additional individual building features that are likely closely
linked to the construction year period, such as facade configuration, are

expected to lead to a further improvement of the model.

4.2. Aggregated dataset characteristics and plausibility check

The final generated dataset including size class, construction year,
refurbishment state, and TABULA type was analyzed regarding the
distribution of classes. Furthermore, it was compared against official
statistics for size class and construction year and against the TABULA
report for TABULA type.

4.2.1. Size class

Fig. 7 depicts the share of size classes of residential buildings for each
of the 16 German federal states (NUTS-1 level) in the generated and
training dataset and according to official statistics [54]. Overall, SFHs
are the dominant size class. In most states, their share lies well above 50
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Fig. 6. 20 most important features for the construction year class model.

%, reaching almost 90 % in Brandenburg. The lowest shares of SFHs can
be observed in the three city states of Bremen, Hamburg, and Berlin. ABs
only constitute a significant share of buildings in Berlin, exceeding 10 %.
A visual comparison shows that the distribution of size classes in the
resulting dataset is similar to official statistics. There is a tendency that
the share of SFHs and THs is overestimated in the generated dataset,
whereas the share of ABs is underestimated. In all states, the share of
SFH+TH is closer to the official dataset in the result than in the training
data. On the other hand, apart from Berlin, where the share of ABs is
highest according to the official data, the share of ABs in the resulting
dataset is even lower than in the training dataset, mirroring the
comparatively low recall for this class as reported in Section 4.1.1.

4.2.2. Construction year

Fig. 8 shows the average construction year of residential buildings at
the NUTS-0 and NUTS-3 levels in the generated dataset. A tendency for
older buildings to be located in the northeastern German states can be
observed. Buildings with more recent construction years are found
predominantly in the west and southeast. This pattern closely follows
the former division of Germany into West and East Germany and is in
line with the official statistics shown in Fig. 7, which highlight a large
share of buildings in the “pre-1919” and “1919-1949" periods for
Thuringia, Saxony, and Saxony-Anhalt, followed by Mecklen-
burg-Western Pomerania, Berlin, and Brandenburg. Although individ-
ual buildings can be of a much more recent construction year, the
average for any NUTS-3 region is not beyond 1970. The NUTS-3 region
with the youngest building stock is Vechta in Lower Saxony, with an
average building construction year of 1969.

It can be observed that there are more buildings from the 1949-1979
period in the generated dataset than in the official statistics (see Fig. 8
and Fig. 7). These buildings are therefore missing from the other con-
struction periods, leading to an underrepresentation of more recent
construction years. In any case, the presented methodology appears to
favor those construction year classes that are dominant. This could be
due to the model being influenced by the class imbalance, despite the
application of weights.

Fig. 7 depicts the distribution of construction year classes in the
result and training dataset and compares it to the official statistics for

each of the German federal states [47]. As in Fig. 3, the dominance of the
1950-1979 period in the training dataset can be observed, as well as a
high level of occurrence of the pre-1919 and 1919-1949 periods.
Overall, the distribution pattern of the result mirrors that of the official
federal state statistics. The tendency to overrepresent majority classes,
which was already apparent for the training data, is also visible in the
result dataset, however. This is especially pronounced for, e.g., Saarland
and Rhineland-Palatinate, whereas the distribution is more similar in
Saxony, Saxony-Anhalt, and Thuringia.

4.2.3. Refurbishment state

Fig. 9 shows the distribution of refurbishment states in the German
federal states. This distribution corresponds to the data provided in
Metzger et al. [28], which the randomized assignment was based upon.
Most buildings have undergone some refurbishment, while buildings
that have been fully refurbished and are in an advanced state of refur-
bishment constitute the smallest group. The highest share of at least
partially refurbished buildings can be found in Saxony-Anhalt, Saxony,
Thuringia, Brandenburg, and Mecklenburg-Western Pomerania, with
70-73 %, the lowest share in Hamburg with 50 %.

4.2.4. TABULA type

The total number of buildings per TABULA type in the generated
dataset is shown in Fig. 10. As can also be seen in Fig. 7, SFHs are the
predominant size class. Amongst the SFHs, there is a similar number
from the second and fourth to the sixth generations, i.e., 1860-1918 and
1949-1978. The gap in the third generation, i.e., 1919-1948, aligns
with the Second World War period (1939-1945) in Germany, which saw
lower construction activity in the building sector. This drop, though not
as pronounced as for SFHs, can be seen across all size classes. A sharp
drop in the number of buildings constructed after 1978 can also be
observed.

The influence of the overestimation of buildings in the construction
year classes mentioned above can also be observed in Fig. 11, which
displays the difference between the areas of TABULA types (neglecting
the refurbishment state) in the generated dataset and those according to
the TABULA report [45]. Values are combined into 5 clusters based on a
KMeans cluster analysis of the respective TABULA type’s specific heat
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Fig. 7. Share of (a) size classes and (b) construction years in the German federal states in training and the resulting dataset and official statistics [54]. In the official
statistics, the most recent category for construction years is 2000-2011.

demand. Cluster 1 comprises the 1950-1979 construction year class for building area between the TABULA report and the generated dataset.

SFHs and partly that for THs. As discussed above, the construction year Cluster 1 and 3 contain the more recent construction year classes, which
class is dominant and a tendency to ascribe this class to buildings has were shown to be more difficult to detect for the model, resulting in
been observed. Combined with the previously discussed over- lower building areas in the generated dataset than in the TABULA
representation of SFHs, this leads to the high deviation of the reference report. This illustrates the complexity of the assignment problem at
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Fig. 9. Distribution of refurbishment states in the German federal states, assigned based on Metzger et al. [28].

hand, as it relies on multiple previous processing steps.

In order to address the aforementioned issue and provide a more
meaningful validation that abstracts from the concrete building types
and focuses more on the applicability of the results dataset, the heat
demand calculated based on the TABULA types was considered (see
Table 4). Table 4 displays the heat demand calculated by multiplying: a)
the areas of TABULA types in the generated dataset considering only size
class and construction year class; and b) the areas according to the
TABULA report, with the specific heat demand of the respective building
type according to TABULA for all three refurbishment states. The heat
demand based on the generated dataset is higher than that based on the
TABULA report. When also considering the refurbishment state of in-
dividual buildings in the generated dataset, this results in a heat demand

of 466 TWh, which is 2.4 % higher than the value of 455 TWh for space
heating reported by the German Environment Agency for 2022 [56] and
7.4 % lower than the value for 2020 reported by the German Federal
Office for Statistics [57]. Even when assuming that all buildings are in
the lowest refurbishment state, the heat demand calculated based on the
TABULA report alone remains 2.9 % below the value reported by the
German Environment Agency [56]. This can in part be attributed to the
fact that the TABULA report dates back to 2012 and is therefore
outdated with regard to building numbers. This indicates that although
the numbers of buildings by TABULA type in the generated dataset
deviate from the TABULA report, the generated dataset is nevertheless
useful for estimating the current heat demand.
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Fig. 10. Number of TABULA types in the generated dataset.

5. Discussion

This study shows that assigning TABULA types to all residential
buildings using a machine learning model trained with data from the
German census is feasible. The performance of the machine learning
model showed that it is possible to predict size classes with a high degree
of accuracy. The construction year prediction is more challenging,
which is at least partly due to the higher number of target classes. Both
models clearly outperform the baseline model. Both machine learning
tasks had unbalanced training data. The results indicate that using

sample weights was useful in balancing performance across classes.
However, there were still some imbalances in both the size class and
construction year prediction performance.

With a weighted average Fl-score of 97.4 %, the size class model
outperformed those by Wurm et al. [17] and Droin et al. [18] who follow
a similar approach and reached scores of 96 % and 95 %, respectively.
The construction year class model performance of 73.93 % falls below
what was reported by Rosser et al. [20] and Garbasevschi et al. [19],
who report scores of 77 % and 80 %, respectively. However, the former
only consider five construction year periods, half as many as in this

12



K. Dabrock et al.

45678 9101112
construction year class

Building and Environment 274 (2025) 112782

P 1e9
— e
£ 1.00
(2]
g 0.75 -
(0]
_E’ 0.50 -
2
32 0.25
S
5 0.00 A
9
% -0.25 A
B T T T T T
©
o ~ N o <t
cluster

Fig. 11. (a) TABULA types clustered by specific heat demand and (b) absolute deviation between building area per TABULA type cluster in the generated dataset and

the report of the TABULA project.

Table 4

Comparison between heat demand for space heating reported by the German
Environment Agency [56], calculated based on the generated dataset including
the assigned refurbishment states, and extrapolated from the TABULA report
and the generated dataset assuming that all buildings are in only one of the three
refurbishment states: ‘existing’, ‘usual’, or ‘advanced’.

Source Total heat demand [TWh]
ETHOS.BUILDA 466
Environment Agency UBA [56] 455
German Federal Office for Statistics [57] 503
TABULA report (all ‘existing’ state) 442
ETHOS.BUILDA (all ‘existing’ state) 614
TABULA report (all ‘usual’ state) 286
ETHOS.BUILDA (all ‘usual’ state) 383
TABULA report (all ‘advanced’ state) 200
ETHOS.BUILDA (all ‘advanced’ state) 275

study, and only train their model for one city. The latter predict the same
number of construction year periods as in this study but also limit their
study to a few cities, all located in one federal state and thus in relatively
close spatial proximity. Therefore, both probably deal with a more ho-
mogeneous building stock, which makes it easier for the model to learn
the connection between characteristics and construction year periods.
However, this could significantly reduce the amount of available
training data per model, which in turn reduces its ability to learn and
could therefore also lead to reduced accuracies. Considering the het-
erogeneity of all German building stock, the performance of the con-
struction year model in this study is therefore competitive. In the future,
adding more features, such as fagade structures and material, could be
tested to improve the model performance.

Despite the high performance of the models, some differences be-
tween the generated dataset and official statistics of German building
stock at the federal state level can be observed. With respect to the
construction year, the share of buildings assigned to the 1949-1979
period is too high in the generated data compared to official statistics.
This issue is caused by a combination of effects that propagate and
magnify through the processing workflow. First, the aforementioned
construction year period is in fact the dominant period for buildings in
Germany. Second, during the selection of census grid cells, only those
cells that include one manifestation of the construction year period for
all buildings within a cell are selected for the training data generation.
This favors the majority class, as it is less likely that homogenous grid
cells with only one of the rarer construction year periods exist. This
amplifies the imbalance present in the training dataset. Third, when
training a machine learning model on this training data, despite using
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weights, the model tends to favor the majority class. Using this model
then exacerbates the imbalance in the final dataset. A similar explana-
tion is also applicable to size classes and explains the overrepresentation
of SFHs in the generated dataset. In sum, this leads to an overly large
proportion of SFHs in the 1949-1979 period. In order to mitigate this
issue, one could test a less restrictive creation procedure for the training
dataset from the census data with the goal of including more of the
minority classes by not only considering homogeneous grid cells. This
could, for example, mean that a grid cell with mainly ABs will also be
considered and the ‘AB’ size class would be assigned to the largest
buildings within the grid cell. Assessing the availability and potentially
including additional datasets for adding new features or labelling more
buildings for training, such as real estate data or local construction year
datasets, might also be options for further studies. Furthermore, it
should be kept in mind that discrepancies, for example in building
numbers, can also be caused by characteristics of the underlying base
data, especially OpenStreetMap data, as discussed in Dabrock et al. [6]
and Bandam et al. [32]. Finally, other approaches to handling data
imbalances should be tested, such as random under-sampling.

Assigning the TABULA type to buildings based on construction year,
size class and refurbishment state is straightforward once these three
characteristics are successfully assigned. After a TABULA type is
assigned, this gives access to a range of typical properties of the
respective building archetype defined by the TABULA project, such as U-
values of building components or typical specific heat demands. This
provides a valuable basis for further analyses of the building sector,
particularly in the context of energy analysis. However, as the TABULA
type is directly derived from the three aforementioned attributes, the
issues explained above that might lead to a misassignment of one of
those also leads to the assignment of a wrong TABULA type. This is
especially evident for the fourth to sixth generation of SFHs, as this is
where the overrepresentation of the majority class in both construction
year and size class coincides. Most likely, buildings are wrongly classi-
fied as a similar type, e.g., an SFH as a TH of the same generation. Un-
fortunately, there is no individual building data or even statistical data
on the distribution of TABULA types below the federal state level
available that could be used for validation and allow analyses regarding
the misclassification of types and its impact on further analyses. How-
ever, the heat demand calculated based on the assigned TABULA types
in the generated dataset has been shown to be close to the value reported
by the Environment Agency. This proves the plausibility and applica-
bility of the generated dataset.

A challenge in the decoupling of the TABULA type assignment from
the construction year, size class, and refurbishment assignment is that it
potentially results in the assignment of types that are not defined within
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the TABULA archetype framework. The validation shows that this is the
case for less than 10,000 buildings, i.e., only about 0.05 % of all resi-
dential buildings in Germany. The impact of handling those buildings
and, for example, mapping them to a TABULA type that is assumed to be
most similar in its characteristics, should be investigated in subsequent
analyses.

Another limitation of the presented approach is the lack of data on
the refurbishment state of buildings, especially on an individual building
level. Therefore, the assignment had to rely on statistics at the level of
federal states. In reality, there are probably smaller scale geographical
variances in the share of refurbished buildings. For instance, differences
between urban and rural areas or more affluent and poorer city districts
may exist. This should be the object of further research. Furthermore, it
should be noted that the current results are based on data from 2011 for
the census data [23] and 2019 for the refurbishment data [28]. While it
can be argued that construction years and size classes of existing
buildings are constant and, as mentioned in the introduction, the new
construction rate is low, it is likely that the share of refurbished build-
ings shows a relevant increase in the nearer future, thus requiring an
update of the result data as soon as new refurbishment data becomes
available.

The TABULA project provides building typologies for most of the EU
countries. For these countries, the overall workflow presented in this
study might be applied. However, the transferability to other regions
depends strongly on data availability and quality. For example, for the
Netherlands an open nationwide 2-D and 3-D building dataset including
detailed information such as the construction year [58] and open census
data at the neighborhood level including the share of single- and
multi-family houses [59] are available, providing a good basis for the
TABULA assignment. For Austria, on the other hand, 3-D building data is
only available for some regions, such as Styria [60] and Tyrol [61], and
the census data with a spatial resolution of 250 m is expensive and may
only be used internally [62], which makes the adaptation of the work-
flow more challenging. Furthermore, there is a great variability of
OpenStreetMap data quality across regions [63]. In regions where
building level data on construction year, size class, or refurbishment
state exists, parts of the workflow can be simplified. Instead of training a
machine learning model, simple direct assignment or mapping proced-
ures might be sufficient. On the other hand, regions with even fewer
datasets available than in Germany could pose a problem in terms of
training data generation. If no nationwide datasets similar to the census
are available, alternative approaches should be considered. One
approach could be gathering sample data that enables the deduction of
target labels for training a machine learning model. Alternatively,
models trained in one geographic region could potentially also be
applied to other regions, given a similar morphological structure of the
building stock. It would, for example, be interesting to test the model in
other countries in Central Europe. This would still require regional data,
at least for validation, however. Additionally, the training of the model
for Germany relies on socio-economic datasets that are likely not
available in the same format in other countries. Future studies could
explore how the general approach, which is transferable to other regions
and has been proven successful for Germany, could be adapted to local
data availability.

The resulting open access dataset contains not only TABULA types
for all residential buildings in Germany but also the constituting attri-
butes, namely size class, construction year and refurbishment state, as
well as some of the basic building morphological features, such as
footprints and heights. The dataset is valuable for further research in the
field of building energy demand analysis, for developing targeted
decarbonization pathways, or for any kind of building-related analysis
requiring spatial data.

When developing decarbonization pathways for the German building
stock, analyses are often top-down and based on statistical data, e.g.,
Thomas et al. [64], Prognos et al. [65] and Fraunhofer IWES/IBP [66].
However, spatially resolved building level data offers many advantages
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and is the basis for bottom-up studies. For example, the data can be used
to configure models for individual buildings, such as ETHOS.HiSim [14],
as shown in Rieck et al. [15]. At the same time, the TABULA types
combined with additional building level data provide an easy way to
cluster the individual buildings, following a combination of the
building-by-building approach described by Mastrucci et al. [67] and
the archetype approach described by Swan et al. [68], in order to draw
conclusions for the entire building stock while minimizing the compu-
tational resources required for the simulation. In contrast to the afore-
mentioned top-down studies, the dataset created in this study, in
conjunction with additional geospatial data, also allows the inclusion of
spatial constraints and potentials relevant to decarbonization options,
such as the availability of space for heat pumps [69,70], the proximity to
clean heat sources for district heating [71], or small-scale regional
geothermal potential [72]. Thus, the dataset allows to define feasible
decarbonization options for individual buildings and can be the basis for
detailed decarbonization pathways beyond national statistical analyses.

However, it should be noted that while the dataset contains attri-
butes for individual buildings, only the size class and construction year
are validated against a test set at the individual building level. Due to the
lack of refurbishment data at the individual building level, no state-
ments can be made at this time regarding the accuracy of refurbishment
states and TABULA types at an aggregation level below the federal state.
Therefore, simulations based on this data should not be considered ac-
curate for each individual building. Instead, results should be aggre-
gated in order to draw reliable conclusions. The data is available
through an API' and can be easily accessed via a Python client.” This
mode of access combined with filtering options facilitates the integra-
tion of building data into existing Python-based workflows and removes
the necessity to download and handle unnecessarily large and complex
datasets. Therefore, this dataset has the potential to significantly
simplify and speed up data-intensive research tasks and thereby con-
tributes to efforts in the research community to advance the energy
transition.

6. Conclusion and outlook

This study demonstrated the feasibility of a methodology for
assigning TABULA types to all residential buildings in Germany by
leveraging machine learning. The census data, in combination with
OpenStreetMap and additional datasets, are suitable for deriving
training data for the machine learning task. The extensive feature set,
which includes building and neighborhood morphological features as
well as socio-economic ones, enables predictions of size and construc-
tion year classes with a high level of performance, with F1-scores of 97.4
% and 73.93 %, respectively. This shows that training and applying a
nationwide machine learning model is possible, thereby going beyond
the small spatial scope previously seen in the literature. The lack of
proper data on refurbishment states constitutes a limitation, and
therefore the acquisition of building level refurbishment data could
significantly enhance the reliability of the results. Additionally, a ten-
dency to overestimate the occurrence of majority classes, namely SFHs
in the 1949-1979 construction year period, which also has an effect on
the TABULA type distribution in the resulting dataset, has been observed
and discussed. However, the methodology is well able to capture the
shares and spatial distribution of attributes within the German building
stock.

The published open data, including TABULA types, size class, con-
struction year, refurbishment state at the individual building level is a
valuable asset for the research community. It helps to fill the gap in
building-related data.

In subsequent studies, analyzing the transferability of the workflow

1 https://ethos-builda.fz-juelich.de/
2 https://github.com/FZJ-IEK3-VSA/ethos-builda-client/
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to regions outside of Germany would be interesting. The effort to adapt
the workflow depends on the data availability. Due to the good data
availability and the close spatial proximity suggesting a similarity in the
building stock, applying the workflow to regions in the Netherlands
would be a reasonable and interesting next step. Finally, this study fo-
cuses exclusively on residential buildings. It would be interesting to
develop a similar methodology for non-residential buildings, for
example using the archetypes developed by Horner and Bischof [73].

Declaration of generative Al and Al-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT for
translations and linguistic revisions in Sections 3.1.1, 3.1.4, 3.2.1, 3.2.2,
and 4.1. Furthermore, DeepL was used for linguistic revisions in Sections
5 and 6. After using these tools, the authors reviewed and edited the
content as needed and take full responsibility for the content of the
published article.

CRediT authorship contribution statement

Kristina Dabrock: Writing — review & editing, Writing — original
draft, Visualization, Validation, Supervision, Software, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Jens
Ulken: Writing — original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis, Data curation. Noah
Pflugradt: Writing — review & editing, Supervision, Methodology,
Conceptualization. Jann Michael Weinand: Writing — review & edit-
ing, Supervision. Detlef Stolten: Supervision, Resources, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by the Helmholtz Association under the
program “Energy System Design.”

Open Access Publications funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation) -
491111487.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.buildenv.2025.112782.

Data availability

https://doi.org/10.5281/zenodo.13771740 (The data is available
at:)

References

[1] European Commission, focus: Energy efficiency in buildings,” European
Commission - European Commission, 2022. Accessed: Apr. 04[Online]. Available:
https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en.
Bundesministerium fiir Wirtschaft und Klimaschutz (BMWi), “Energieeffizienz in
Zahlen 2021 [Energy efficiency in figures 2021],” 2021.

European Commission, “EU building stock observatory.” Accessed: Mar. 22, 2022.
[Online]. Available: https://energy.ec.europa.eu/topics/energy-efficiency/energ
y-efficient-buildings/eu-building-stock-observatory_en.

Joint Research Centre, “Jrc-Idees.” Accessed: May 23, 2023. [Online]. Available:
https://joint-research-centre.ec.europa.eu/potencia/jrc-idees_en.

[2]

[3]

[4]

15

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Building and Environment 274 (2025) 112782

co2online, “Gebdudedaten [building data].” Accessed: May 23, 2023. [Online].
Available: https://www.wohngebaeude.info/.

K. Dabrock, N. Pflugradt, J.M. Weinand, D. Stolten, Leveraging machine learning to
generate a unified and complete building height dataset for Germany, Energy Al 17
(2024) 100408, https://doi.org/10.1016/j.egyai.2024.100408. Sep.

M. Schwanebeck, M. Krueger, R. Duttmann, Improving GIS-based heat demand
modelling and mapping for residential buildings with census data sets at regional
and sub-regional scales, Energies 14 (4) (2021) 1029, https://doi.org/10.3390/
en14041029. Feb.

X. Yang, et al., A combined GIS-archetype approach to model residential space
heating energy: a case study for The Netherlands including validation, Appl.
Energy (2020), https://doi.org/10.1016/j.apenergy.2020.115953.

Tabula Project Team, Typology Approach for Building Stock Energy Assessment.
Main Results of the TABULA Project, IWU Institut Wohnen und Umwelt,
Darmstadt, 2012. Accessed: Jan. 03, 2023. [Online]. Available: https://episcope.
eu/fileadmin/tabula/public/docs/report/TABULA FinalReport.pdf.

ArGe Arbeitsgemeinschaft fiir zeitgemaBes Bauen eV, Gebaudetypologie
Schleswig—Holstein. Leitfaden fiir wirtschaftliche und energieeffiziente
Sanierungen verschiedener Baualtersklassen [Building typology for
Schleswig-Holstein. Guidelines for cost-effective and energy-efficient renovation of
buildings of different ages], Bauen in Schleswig-Holstein 47 (2012).

“TABULA WebTool.” Accessed: Apr. 08, 2024. [Online]. Available:
https://webtool.building-typology.eu/#bm.

“Wohngebaude in Deutschland nach Baujahr [Residential buildings in Germany by
year of construction],” Statista. Accessed: Jan. 03, 2025. [Online]. Available: https
://de.statista.com/statistik/daten/studie/1385022/umfrage/wohngebaeude-in-de
utschland-nach-baujahr/.

D. Heidenthaler, M. Leeb, P. Reindl, L. Kranzl, T. Bednar, M. Moltinger, Building
stock characteristics of residential buildings in Salzburg, Austria based on a
structured analysis of energy performance certificates, Energy Build. 273 (2022)
112401, https://doi.org/10.1016/j.enbuild.2022.112401. Oct.

N. Pflugradt, ETHOS.HiSim - House infrastructure simulator. (Dec. 30, 2024).
Python. Accessed: Jan. 03, 2025. [Online]. Available: https://github.com/FZJ-
IEK3-VSA/HiSim.

K. Rieck, K. Dabrock, N. Pflugradt, J.M. Weinand, D. Stolten, Large-Scale
Quantification of the Future Self-Covered Heat Demand Using a Nationwide
Residential Building Database, Social Science Research Network, Rochester, NY,
2024 4916684. Aug. 05Accessed: Jan. 03, 2025. [Online]. Available: https://paper
s.ssrn.com/abstract=4916684.

L.A. Blanco Bohorquez, M. Aditya, B. Schiricke, B. Hoffschmidt, Classification of
Building Properties from the German Census Data for Energy Analysis Purposes,
presented at the Building Simulation 2023, Shanghai, China, 2023. JunAccessed:
Nov. 29, 2023. [Online]. Available: https://elib.dlr.de/199041/.

M. Wurm, A. Droin, T. Stark, C. Geiss, W. Sulzer, H. Taubenboeck, Deep learning-
based generation of building stock data from remote sensing for urban heat
demand modeling, ISPRS Int. J. Geo-Inf. 10 (1) (2021) 23, https://doi.org/
10.3390/ijgi10010023. Jan.

A. Droin, M. Wurm, W. Sulzer, Semantic Labelling of Building Types, A comparison
of two approaches using Random Forest and Deep Learning, 2020.

O.M. Garbasevschi, et al., Spatial factors influencing building age prediction and
implications for urban residential energy modelling, Comput. Environ. Urban Syst.
88 (2021) 101637, https://doi.org/10.1016/j.compenvurbsys.2021.101637. Jul.
J.F. Rosser, D.S. Boyd, G. Long, S. Zakhary, Y. Mao, D. Robinson, Predicting
residential building age from map data, Comput. Environ. Urban Syst. 73 (2019)
5667, https://doi.org/10.1016/j.compenvurbsys.2018.08.004.

S. Becker et al., “Metastudie zur verbesserung der datengrundlage im
Gebaudebereich - Leistung gemal rahmenvertrag zur beratung der abteilung II des
BMWK [Meta-study to improve the data basis in the building sector - service
according to the framework contract for advising department II of the federal
ministry of economy and climate protection (BMWK)],” Berlin, Miinchen, 2022.
Accessed: Nov. 29, 2023. [Online]. Available: https://www.bmwk.de/Redaktion
/DE/Publikationen/Energie/metastudie-verbesserung-datengrundlage-gebaeu
debereich.pdf?_blob=publicationFile&v=1.

D.K. Alexander, S. Lannon, and O. Linovski, “The identification and analysis of
regional building stock characteristics using map based data,” p. 8, 2009.
Statistische Amter des Bundes und der Linder, “Zensus 2011 - Gebiude- und
wohnungsbestand in Deutschland - endgiiltige ergebnisse [Census 2011 — building
and housing stock in Germany - final results].” 2015. Accessed: May 22, 2023.
[Online]. Available: https://www.zensus2011.de/SharedDocs/Downloads/D
E/Publikationen/Aufsaetze_Archiv/2015_12 NI GWZ_endgueltig.pdf?_blob=publ
icationFile&v=2.

M. Zirak, V. Weiler, M. Hein, U. Eicker, Urban models enrichment for energy
applications: challenges in energy simulation using different data sources for
building age information, Energy 190 (2020) 116292, https://doi.org/10.1016/j.
energy.2019.116292.

M. Zeppelzauer, M. Despotovic, M. Sakeena, D. Koch, M. Doéller, Automatic
prediction of building age from photographs, in: Proceedings of the 2018 ACM On
International Conference On Multimedia Retrieval, in ICMR °18, New York, NY,
USA, Association for Computing Machinery, Jun. 2018, pp. 126-134, https://doi.
org/10.1145/3206025.3206060.

Y. Li, Y. Chen, A. Rajabifard, K. Khoshelham, and M. Aleksandrov, “Estimating
building age from google street view images using deep learning (Short paper),” p.
40:1-40:7, 2018, doi: 10.4230/LIPIcs.GISCIENCE.2018.40.

F. Biljecki, M. Sindram, Estimating building age with 3d gis. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus


https://doi.org/10.1016/j.buildenv.2025.112782
https://doi.org/10.5281/zenodo.13771740
https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en
https://joint-research-centre.ec.europa.eu/potencia/jrc-idees_en
https://www.wohngebaeude.info/
https://doi.org/10.1016/j.egyai.2024.100408
https://doi.org/10.3390/en14041029
https://doi.org/10.3390/en14041029
https://doi.org/10.1016/j.apenergy.2020.115953
https://episcope.eu/fileadmin/tabula/public/docs/report/TABULA_FinalReport.pdf
https://episcope.eu/fileadmin/tabula/public/docs/report/TABULA_FinalReport.pdf
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0010
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0010
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0010
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0010
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0010
https://webtool.building-typology.eu/#bm
https://de.statista.com/statistik/daten/studie/1385022/umfrage/wohngebaeude-in-deutschland-nach-baujahr/
https://de.statista.com/statistik/daten/studie/1385022/umfrage/wohngebaeude-in-deutschland-nach-baujahr/
https://de.statista.com/statistik/daten/studie/1385022/umfrage/wohngebaeude-in-deutschland-nach-baujahr/
https://doi.org/10.1016/j.enbuild.2022.112401
https://github.com/FZJ-IEK3-VSA/HiSim
https://github.com/FZJ-IEK3-VSA/HiSim
https://papers.ssrn.com/abstract=4916684
https://papers.ssrn.com/abstract=4916684
https://elib.dlr.de/199041/
https://doi.org/10.3390/ijgi10010023
https://doi.org/10.3390/ijgi10010023
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0018
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0018
https://doi.org/10.1016/j.compenvurbsys.2021.101637
https://doi.org/10.1016/j.compenvurbsys.2018.08.004
https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/metastudie-verbesserung-datengrundlage-gebaeudebereich.pdf?__blob=publicationFile&tnqh_x0026;v=1
https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/metastudie-verbesserung-datengrundlage-gebaeudebereich.pdf?__blob=publicationFile&tnqh_x0026;v=1
https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/metastudie-verbesserung-datengrundlage-gebaeudebereich.pdf?__blob=publicationFile&tnqh_x0026;v=1
https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/Aufsaetze_Archiv/2015_12_NI_GWZ_endgueltig.pdf?__blob=publicationFile&tnqh_x0026;v=2
https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/Aufsaetze_Archiv/2015_12_NI_GWZ_endgueltig.pdf?__blob=publicationFile&tnqh_x0026;v=2
https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/Aufsaetze_Archiv/2015_12_NI_GWZ_endgueltig.pdf?__blob=publicationFile&tnqh_x0026;v=2
https://doi.org/10.1016/j.energy.2019.116292
https://doi.org/10.1016/j.energy.2019.116292
https://doi.org/10.1145/3206025.3206060
https://doi.org/10.1145/3206025.3206060
http://10.4230/LIPIcs.GISCIENCE.2018.40

K. Dabrock et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

GmbH, Oct. 2017, pp. 17-24, https://doi.org/10.5194/isprs-annals-IV-4-W5-17-
2017.

S. Metzger, K. Jahnke, N. Walikewitz, M. Otto, A. Grondey, S. Fritz,
Hintergrundbericht: Wohnen und Sanieren [Background report: Housing and
Renovation, Umweltbundesamt, 2019 Accessed: Jul. 24, 2024. [Online]. Available:
https://www.umweltbundesamt.de/publikationen/hintergrundbericht-wohnen
-sanieren.

“Zensus 2011 - Methoden und verfahren [2011 census — methods and procedures],”
2015.

Statistische Amter des Bundes und der Lander, “Ergebnisse des zensus 2011 zum
download - erweitert [results of the 2011 census available to download —
expanded].” 2020. Accessed: Dec. 19, 2022. [Online]. Available: https://www.zens
us2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html.

Geofabrik GmbH, “Geofabrik download server.” Accessed: May 24, 2023. [Online].
Available: https://download.geofabrik.de/europe/germany.html.

A. Bandam, E. Busari, C. Syranidou, J. Linssen, D. Stolten, Classification of building
types in Germany: a data-driven modeling approach, Data 7 (4) (2022) 45, https://
doi.org/10.3390/data7040045. Apr.

“building | Keys | Values | OpenStreetMap Taginfo Germany.” Accessed: Jan. 06,
2025. [Online]. Available: https://taginfo.geofabrik.de/europe:
germany/keys/building#values.

Arbeitsgemeinschaft der Vermessungsverwaltungen der Lander der
Bundesrepublik Deutschland (AdV), “Dokumentation zur modellierung der
geoinformationen des amtlichen vermessungswesens (GeolnfoDok) - ALKIS-
objektartenkatalog [Documentation on the modeling of geospatial information for
official cadastral surveying (GeoIlnfoDok) - ALKIS object type catalog].” Apr. 11,
2008. Accessed: May 24, 2023. [Online]. Available: https://www.adv-online.de
/GeolnfoDok/GeoInfoDok-6.0/binarywriterservlet?imgUid=8f830072-8de8-9221-
d5ad-8f138a438ad1&uBasVariant=11111111-1111-1111-1111-111111111111.
SIG 3D, “CityGML code list roofType.” 2012. Accessed: May 23, 2023. [Online].
Available: http://www.sig3d.org/codelists/citygml/2.0/building/2.0/_
AbstractBuilding_roofType.xml.

“Key:roof:shape — openstreetmap wiki.” Accessed: May 23, 2023. [Online].
Available: https://wiki.openstreetmap.org/wiki/Key:roof:shape.

F. Biljecki and H. Ledoux, Solar3Dcity. (May 03, 2023). Python. 3D geoinformation
research group at tu delft. Accessed: May 23, 2023. [Online]. Available: https://
github.com/tudelft3d/Solar3Dcity/blob/8c755fda852f234343f3ff27e1061dcc
fff84a2c/polygon3dmodule.py.

“building | Keys | Combinations | OpenStreetMap Taginfo Germany.” Accessed:
Jan. 06, 2025. [Online]. Available: https://taginfo.geofabrik.de/europe:germ
any/keys/building#combinations.

S. Pekka, V. Michael, Starke mietpreissteigerungen und erste aufwartstendenzen
bei wohnungspreisen [Sharp rent increases and first signs of an upward trend in
apartment prices], Sagner IW-Report (6) (2024). FebAccessed: Apr. 08, 2024.
[Online]. Available: https://www.iwkoeln.de/studien/pekka-sagner-michael-voi
gtlaender-starke-mietpreissteigerungen-und-erste-aufwaertstendenzen-bei-woh
nungspreisen.html.

“Schlechte energieeffizienz driickt die preise [Poor energy efficiency depresses
prices],” ImmobilienScout24. Accessed: Apr. 08, 2024. [Online]. Available: https
://www.immobilienscout24.de/wissen/verkaufen/energieeffizienz-und-preise.ht
ml.

L. Edlund, C. Machado, and M. Sviatchi, “Bright minds, big rent: gentrification and
the rising returns to skill”.

S. Maretzke, J. Ragnitz, G. Untiedt, Betrachtung Und Analyse Von
Regionalindikatoren zur Vorbereitung des GRW-Fordergebietes Ab 2021
(Raumbetrachtung): Gutachten im Auftrag des Bundesministeriums fiir Wirtschaft
Und Energie (BMWi) [Analysis of Regional Indicators For the Preparation of the
GRW Funding Area from 2021 (spatial analysis): Expert opinion On Behalf of the
Federal Ministry For Economic Affairs and Energy (BMW1)], in ifo Dresden Studien,
Dresden, 2019, p. 83, ifo Institut2019.

S. Maretzke, Infrastrukturindikator 2012: Ein Wichtiger Indikator fiir die
Neuabgrenzung der Fordergebiete in Deutschland [Infrastructure Indicator 2012:
an Important Indicator For the New Demarcation of the Funding Areas in
Germany], in BBSR-Analysen Kompakt, 2014 no. 2014,5. Bonn: BBSR.
Bundesministerium fiir Digitales und Verkehr, “Regionalstatistische raumtypologie
(RegioStaR) des BMVI fiir die mobilitéts- und verkehrsforschung [Regional
statistical area typology (RegioStaR) of the BMVI for mobility and transport
research].” 2018. Accessed: Aug. 25, 2022. [Online]. Available: https://www.
bmvi.de/SharedDocs/DE/Anlage/G/regiostar-arbeitspapier.pdf?_blob=publica
tionFile.

T. Loga, N. Diefenbach, B. Stein, R. Born, Tabula Scientific Report Germany, IWU,
2012.

Statistisches Bundesamt, “Bestand an wohnungen und wohngebéduden - Bauabgang
von wohnungen und wohngebauden - Lange Reihen ab 1969 - 2021 [stock of
dwellings and residential buildings - Demolition of dwellings and residential
buildings - Time series since 1969 - 2021],” 2021, [Online]. Available: htt
ps://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen
/Downloads-Wohnen/fortschreibung-wohnungsbestand-pdf-5312301.pdf?_blo
b=publicationFile.

Statistische Amter des Bundes und der Linder, Wohngebiude Nach Baujahr
[Residential Buildings By Year of Construction], Statistische Amter des Bundes und
der Lander | Gemeinsames Statistikportal, 2024. Accessed: Apr. 08[Online].
Available: https://www.statistikportal.de/de/wohngebaeude-nach-baujahr.
“xgboost 1.7.6 documentation - categorical data.” Accessed: Jul. 30, 2023.
[Online]. Available: https://xgboost.readthedocs.io/en/stable/tutorials/categorica
Lhtml.

16

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Building and Environment 274 (2025) 112782

N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, Jair 16 (2002) 321-357, https://doi.org/
10.1613/jair.953. Jun.

“sklearn.Utils.Class_weight.Compute_sample_weight, ” scikit-learn. Accessed: Aug.
15, 2023. [Online]. Available: https://scikit-learn/stable/modules/generated/skle
arn.utils.class_weight.compute_sample_weight.html.

J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, M. Asadpour, Boosting methods for
multi-class imbalanced data classification: an experimental review, J Big Data 7 (1)
(2020), https://doi.org/10.1186/s40537-020-00349-y. Art. no. 1Dec.
“DummyClassifier, ” scikit-learn. Accessed: Jan. 20, 2025. [Online]. Available:
https://scikit-learn/stable/modules/generated/sklearn.dummy.DummyClassifier.
html.

“Understand your dataset with XGBoost — xgboost 1.7.6 documentation.”
Accessed: Apr. 18, 2024. [Online]. Available: https://xgboost.readthedocs.io/en/r
elease_1.7.0/R-package/discoverYourData.html.

“Regionaldatenbank Deutschland. GENESIS-Tabelle: 31211-02-01-4 gebdude mit
wohnraum nach anzahl der wohnungen - Stichtag 09.05.2011, regionale Tiefe:
Kreise und krfr. Stadte, Gebaude- und Wohnungszahlung 2011 (Zensus) [Regional
database for Germany. GENESIS table: 31211-02-01-4 Buildings with living space
by number of dwellings — reference date 09/05/2011, regional depth: districts and
towns, 2011 census of buildings and dwellings (census)].” Accessed: Apr. 08, 2024.
[Online]. Available: https://www.regionalstatistik.de/genesis/online.

Statistische Amter des Bundes und der Linder, “Regionaldatenbank Deutschland.
GENESIS-Tabelle: 31211-03-01-4: gebdude mit wohnraum nach baujahr - Stichtag
09.05.2011 regionale tiefe: kreise und krfr. stadte, Gebdude- und
Wohnungszahlung 2011 (Zensus) [Regional database for Germany. genesis table:
31211-03-01-4: buildings with living space by year of construction — reference date
09/05/2011 regional depth: districts and district-free cities, 2011 census of
buildings and dwellings (Zensus)].” Accessed: Oct. 06, 2023. [Online]. Available:
https://www.regionalstatistik.de/genesis/online.

Umweltbundesamt, “Energieverbrauch privater haushalte,” umweltbundesamt.
Accessed: Apr. 29, 2024. [Online]. Available: https://www.umweltbundesamt.de
/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte.
Statistisches Bundesamt, “Umweltokonomische gesamtrechnungen - private
Haushalte und umwelt [Environmental economic accounts — private households
and the environment],” 2022.

Kadaster, “Datamodel - BAG [data model - BAG].” Accessed: Feb. 17, 2025.
[Online]. Available: https://bag.basisregistraties.overheid.nl/datamodel.

S. Netherlands, Where Can I find District and Neighbourhood Data? Statistics
Netherlands, 2025. Accessed: Feb. 17[Online]. Available: https://www.cbs.nl/en
-gb/faq/infoservice/where-can-i-find-district-and-neighbourhood-data.

Land Steiermark, ALS Gebaudemaske Steiermark [ALS Building Mask Styria], Open
Government Data, Land Steiermark, 2024. Accessed: Nov. 15[Online]. Available:
https://data.steiermark.at/cms/beitrag/11822084,/97108894/.

Amt der Tiroler Landesregierung, “Gebaude tirol [Buildings tyrol].” Accessed: Nov.
15, 2024. [Online]. Available: https://data-tiris.opendata.arcgis.com/maps
/ald63bd7edb34a76aca475d41e9a8ed9/about.

Statistik Austria, “Datenangebot - regionalstatistische Raster [Data supply —
regional statistical grids].” Accessed: Feb. 17, 2025. [Online]. Available: htt
ps://www.statistik.at/atlas/reg-datenkatalog/.

F. Biljecki, Y.S. Chow, K. Lee, Quality of crowdsourced geospatial building
information: a global assessment of openstreetmap attributes, Build. Environ. 237
(2023) 110295, https://doi.org/10.1016/].buildenv.2023.110295. Jun.

S. Thomas, D. Schiiwer, F. Vondung, O. Wagner, Heizen Ohne Ol Und Gas bis 2035
— Ein Sofortprogramm Fiir Erneuerbare Warme und Effiziente Gebaude. Im Auftrag
Von Greenpeace e.V. [Heating Without Oil and Gas By 2035 — an Immediate Action
Program For Renewable Heat and Efficient Buildings, On behalf of Greenpeace e.
V.1, 2022. Greenpeace, 2022. Accessed: Mar. 10[Online]. Available: https://www.
greenpeace.de/publikationen/heizen-oel-gas-2035.

Oko-Institut Prognos, Studie Im Auftrag Von Agora Energiewende, Agora
Verkehrswende Und Stiftung Klimaneutralitat [Climate-neutral Germany. Study
commissioned By Agora Energiewende, Agora Verkehrswende and the Climate
Neutrality Foundation], Wuppertal-Institut, “Klimaneutrales Deutschland,
Prognos; Oko-Institut; Wuppertal-Institut, 2020. Accessed: Apr. 14, 2022. [Online].
Available: https://www.agora-energiewende.de/veroeffentlichungen/klimaneutr
ales-deutschland/.

Fraunhofer IWES/IBP, Warmewende 2030. Schliisseltechnologien zur Erreichung
der mittel- und langfristigen Klimaschutzziele im Gebaudesektor. Studie im Auftrag
von Agora Energiewende. [Heat Transition 2030. Key technologies For Achieving
medium- and long-Term Climate Protection Targets in the Building sector. Study
commissioned By Agora Energiewende.], Fraunhofer IWES/IBP, 2017. Accessed:
Mar. 25, 2022. [Online]. Available: https://www.agora-energiewende.de/fileadm
in/Projekte/2016/Sektoruebergreifende EW/Waermewende-2030_WEB.pdf.

A. Mastrucci, A. Marvuglia, U. Leopold, E. Benetto, Life cycle assessment of
building stocks from urban to transnational scales: a review, Renewable
Sustainable Energy Rev. 74 (2017) 316-332, https://doi.org/10.1016/j.
rser.2017.02.060. Jul.

L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the residential
sector: a review of modeling techniques, Renewable Sustainable Energy Rev. 13 (8)
(2009) 1819-1835, https://doi.org/10.1016/].rser.2008.09.033. Oct.
Forschungsstelle fiir Energiewirtschaft e. V., “Warmepumpen-Ampel [Heat pump
traffic light].” Accessed: Mar. 08, 2023. [Online]. Available: https://waermepumpe
n-ampel.ffe.de/.

K. Dabrock, K. Knosala, N. Pflugradt, H. Beuth, L. Kotzur, D. Stolten, The Potential
of Combined PV and Air Source Heat Pump Systems in German Residential
Buildings, presented at the EuroSun, 2022.


https://doi.org/10.5194/isprs-annals-IV-4-W5-17-2017
https://doi.org/10.5194/isprs-annals-IV-4-W5-17-2017
https://www.umweltbundesamt.de/publikationen/hintergrundbericht-wohnen-sanieren
https://www.umweltbundesamt.de/publikationen/hintergrundbericht-wohnen-sanieren
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
https://download.geofabrik.de/europe/germany.html
https://doi.org/10.3390/data7040045
https://doi.org/10.3390/data7040045
https://taginfo.geofabrik.de/europe:germany/keys/building#values
https://taginfo.geofabrik.de/europe:germany/keys/building#values
https://www.adv-online.de/GeoInfoDok/GeoInfoDok-6.0/binarywriterservlet?imgUid=8f830072-8de8-9221-d5ad-8f138a438ad1&tnqh_x0026;uBasVariant=11111111-1111-1111-1111-111111111111
https://www.adv-online.de/GeoInfoDok/GeoInfoDok-6.0/binarywriterservlet?imgUid=8f830072-8de8-9221-d5ad-8f138a438ad1&tnqh_x0026;uBasVariant=11111111-1111-1111-1111-111111111111
https://www.adv-online.de/GeoInfoDok/GeoInfoDok-6.0/binarywriterservlet?imgUid=8f830072-8de8-9221-d5ad-8f138a438ad1&tnqh_x0026;uBasVariant=11111111-1111-1111-1111-111111111111
http://www.sig3d.org/codelists/citygml/2.0/building/2.0/_AbstractBuilding_roofType.xml
http://www.sig3d.org/codelists/citygml/2.0/building/2.0/_AbstractBuilding_roofType.xml
https://wiki.openstreetmap.org/wiki/Key:roof:shape
https://github.com/tudelft3d/Solar3Dcity/blob/8c755fda852f234343f3ff27e1061dccfff84a2c/polygon3dmodule.py
https://github.com/tudelft3d/Solar3Dcity/blob/8c755fda852f234343f3ff27e1061dccfff84a2c/polygon3dmodule.py
https://github.com/tudelft3d/Solar3Dcity/blob/8c755fda852f234343f3ff27e1061dccfff84a2c/polygon3dmodule.py
https://taginfo.geofabrik.de/europe:germany/keys/building#combinations
https://taginfo.geofabrik.de/europe:germany/keys/building#combinations
https://www.iwkoeln.de/studien/pekka-sagner-michael-voigtlaender-starke-mietpreissteigerungen-und-erste-aufwaertstendenzen-bei-wohnungspreisen.html
https://www.iwkoeln.de/studien/pekka-sagner-michael-voigtlaender-starke-mietpreissteigerungen-und-erste-aufwaertstendenzen-bei-wohnungspreisen.html
https://www.iwkoeln.de/studien/pekka-sagner-michael-voigtlaender-starke-mietpreissteigerungen-und-erste-aufwaertstendenzen-bei-wohnungspreisen.html
https://www.immobilienscout24.de/wissen/verkaufen/energieeffizienz-und-preise.html
https://www.immobilienscout24.de/wissen/verkaufen/energieeffizienz-und-preise.html
https://www.immobilienscout24.de/wissen/verkaufen/energieeffizienz-und-preise.html
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0042
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0043
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0043
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0043
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0043
https://www.bmvi.de/SharedDocs/DE/Anlage/G/regiostar-arbeitspapier.pdf?__blob=publicationFile
https://www.bmvi.de/SharedDocs/DE/Anlage/G/regiostar-arbeitspapier.pdf?__blob=publicationFile
https://www.bmvi.de/SharedDocs/DE/Anlage/G/regiostar-arbeitspapier.pdf?__blob=publicationFile
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0045
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0045
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/fortschreibung-wohnungsbestand-pdf-5312301.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/fortschreibung-wohnungsbestand-pdf-5312301.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/fortschreibung-wohnungsbestand-pdf-5312301.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/fortschreibung-wohnungsbestand-pdf-5312301.pdf?__blob=publicationFile
https://www.statistikportal.de/de/wohngebaeude-nach-baujahr
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://scikit-learn/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html
https://scikit-learn/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html
https://doi.org/10.1186/s40537-020-00349-y
https://scikit-learn/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://xgboost.readthedocs.io/en/release_1.7.0/R-package/discoverYourData.html
https://xgboost.readthedocs.io/en/release_1.7.0/R-package/discoverYourData.html
https://www.regionalstatistik.de/genesis/online
https://www.regionalstatistik.de/genesis/online
https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte
https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte
https://bag.basisregistraties.overheid.nl/datamodel
https://www.cbs.nl/en-gb/faq/infoservice/where-can-i-find-district-and-neighbourhood-data
https://www.cbs.nl/en-gb/faq/infoservice/where-can-i-find-district-and-neighbourhood-data
https://data.steiermark.at/cms/beitrag/11822084/97108894/
https://data-tiris.opendata.arcgis.com/maps/a1d63bd7edb34a76aca475d41e9a8ed9/about
https://data-tiris.opendata.arcgis.com/maps/a1d63bd7edb34a76aca475d41e9a8ed9/about
https://www.statistik.at/atlas/reg-datenkatalog/
https://www.statistik.at/atlas/reg-datenkatalog/
https://doi.org/10.1016/j.buildenv.2023.110295
https://www.greenpeace.de/publikationen/heizen-oel-gas-2035
https://www.greenpeace.de/publikationen/heizen-oel-gas-2035
https://www.agora-energiewende.de/veroeffentlichungen/klimaneutrales-deutschland/
https://www.agora-energiewende.de/veroeffentlichungen/klimaneutrales-deutschland/
https://www.agora-energiewende.de/fileadmin/Projekte/2016/Sektoruebergreifende_EW/Waermewende-2030_WEB.pdf
https://www.agora-energiewende.de/fileadmin/Projekte/2016/Sektoruebergreifende_EW/Waermewende-2030_WEB.pdf
https://doi.org/10.1016/j.rser.2017.02.060
https://doi.org/10.1016/j.rser.2017.02.060
https://doi.org/10.1016/j.rser.2008.09.033
https://waermepumpen-ampel.ffe.de/
https://waermepumpen-ampel.ffe.de/
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0070
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0070
http://refhub.elsevier.com/S0360-1323(25)00264-1/sbref0070

K. Dabrock et al. Building and Environment 274 (2025) 112782

[71]1 C. Su, J. Dalgren, B. Palm, High-resolution mapping of the clean heat sources for [73] M. Horner and J. Bischof, “Typologie Der Nichtwohngebaude in Deutschland —
district heating in Stockholm city, Energy Convers. Manage. 235 (2021) 113983, Methodik, Anwendung und Ausblick [Typology of non-residential buildings in
https://doi.org/10.1016/j.enconman.2021.113983. May. Germany — methodology, application and outlook]”.

[72] J.M. Miocic, M. Krecher, Estimation of shallow geothermal potential to meet
building heating demand on a regional scale, Renew Energy 185 (2022) 629-640,
https://doi.org/10.1016/j.renene.2021.12.095. Feb.

17


https://doi.org/10.1016/j.enconman.2021.113983
https://doi.org/10.1016/j.renene.2021.12.095

	Generating a nationwide residential building types dataset using machine learning
	1 Introduction
	2 Related work
	3 Methodology and data
	3.1 Input data
	3.1.1 Census data
	3.1.2 Refurbishment state data
	3.1.3 Building data
	3.1.4 Socio-economic data

	3.2 Machine learning approach for size class and construction year assignment
	3.2.1 Labelling data for model training
	3.2.2 Model training
	3.2.3 Model evaluation

	3.3 TABULA type assignment and validation

	4 Results
	4.1 Model performance
	4.1.1 Size class
	4.1.2 Construction year

	4.2 Aggregated dataset characteristics and plausibility check
	4.2.1 Size class
	4.2.2 Construction year
	4.2.3 Refurbishment state
	4.2.4 TABULA type


	5 Discussion
	6 Conclusion and outlook
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	Data availability
	References


