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High-Speed 3D Printing Coupled with Machine Learning to
Accelerate Alloy Development for Additive Manufacturing

Avinash Hariharan,* Marc Ackermann, Stephan Koss, Ali Khosravani,
Johannes Henrich Schleifenbaum, Patrick Köhnen, Surya R. Kalidindi,
and Christian Haase*

Developing novel alloys for 3D printing of metals is a time- and
resource-intensive challenge. High-throughput 3D printing and material
characterization protocols are used in this work to rapidly screen a wide range
of chemical compositions and processing conditions. In situ, alloying of
high-strength steel with pure Al in the targeted range of 0–10 wt.% and flexible
adjustment of the volumetric energy input is performed to derive 20 individual
alloy combinations. These conditions are characterized using large-area
crystallographic analysis combined with chemistry and nanoindentation
protocols. The significant influence of Al content and processing conditions
on the constitutive material behavior of the metastable base alloy allowed for
efficient exploration of the underlying process-structure-properties (PSP)
relationships. The extracted PSP relations are discussed based on the
dominant physical mechanisms observed in the samples. Furthermore, the
microstructure-property relationship based on limited experimental data is
supported by an explainable machine-learning approach.

1. Introduction

Additive manufacturing (AM) stands out as a highly promis-
ing technology for sustainable production and design-specific
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fabrication of high-performance compo-
nents.[1] Notably, the metal AM sector is an-
ticipated to experience substantial growth
in the coming years.[2] While AMmachines
have reached nominal levels of industrial
maturity, there remains a significant limi-
tation in their application to a wide range
of metallic alloys. Among the limited al-
loys that can be produced via AM, only
a very small portion was specifically de-
signed for AM.[2–6] The primary challenge
hindering the widespread use of AM tech-
niques is the complexity of optimizing the
extensive accessible parameter space while
obtaining defect-free specimens. Success
in this endeavor is inherently dependent
on the response of conventional alloys to
the rapid solidification process. Moreover,
rapid solidification conditions during AM
are being leveraged to design new alloys

and develop novel microstructures.[6] The parameter space for
designing new alloys for/and using AM is high-dimensional, in-
cluding features describing the raw materials (such as chemical
composition, size, morphology of the powder, powder produc-
tion techniques, and their associated parameters) and AM pro-
cessing parameters (including laser power, angle, raster pattern,
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and spacing), and post-AM processing (such as annealing). It is
essential to implement high-throughput screening protocols in
all aspects of the AM process development: (i) the fabrication
process, (ii) the microstructure characterization, and (iii) the me-
chanical property assessment to expedite microstructure and al-
loy development.
Laser-based powder bed fusion of metals (PBF-LB/M) is the

leading AM process in industries for fabricating complex-shaped
parts. However, designing newmetallic alloys for PBF-LB/M (and
AM in general) presents challenges primarily due to the time-
intensive atomization process required to produce pre-alloyed
powders. This requirement greatly increases lead times for alloy
design using the PBF-LB/M process. In these circumstances, the
dominant advantage of laser-based AM techniques, Direct En-
ergy Deposition (DED), and Extreme High-Speed Laser Material
Application (EHLA) over other methods such as Laser Powder
Bed Fusion (LPBF),[7,8] is to createminiature alloy specimens fab-
ricatedwith diverse process parameter combinations required for
high-throughput characterization protocols. These include pre-
cise control over composition (via in-situ supply of multiple pow-
ders) and process parameters (e.g., a wide range of cooling condi-
tions, influencing solidification behavior) of the individual layers,
resulting in a wide range of microstructures of the printed spec-
imens. Although previous studies, focusing on AM alloy compo-
sitions for steels,[9] nickel alloys,[10] and high-entropy alloys,[11]

involve the use of DED, the transferability of this knowledge to
LBPF is challenging due to its contrasting process and solidifica-
tion conditions. In this regard, the EHLA process allows for effi-
cient, cost-effective, and easymanipulation of the process param-
eters that overlap the domains of DED and LPBF solidification
conditions. Coupled with a wide range of laser scanning speeds
up to 200mmin−1, the typical cooling rates observed in the EHLA
process range between 104 to 106 K s−1, overlapping with the
conditions observed in DED and LPBF respectively. Therefore,
EHLA offers an opportunity to simulate process conditions and
cooling rates across a range from DED to LPBF, offering control
over the solidification cell structure, phase fraction, and othermi-
crostructural features that mimic the desired range of processing
conditions.[12,13] This aids in high-throughput design of novel al-
loys via in-situ powder mixing to rapidly screen microstructures
and mechanical properties. The traditional EHLA process, nor-
mally utilized in coating technologies, has been explored here
for the first time to evaluate its potential for miniature sample
production for rapid exploration of AM-specific alloy design.
The highly nonlinear mappings between the AM process pa-

rameters and the material properties of interest in the pro-
duced parts have prompted the use of data-driven approaches
for capturing the important relationships required to accelerate
alloy design. The integrated computational materials engineer-
ing approach (ICME), incorporating physics-based tools to for-
mulate the desired process-structure (P-S)[14,15] and structure-
property (S-P)[16] relationships, computationally expensive and
time-consuming. The previously established experimental and
ICME-based approaches in the materials science field can be
enhanced using machine learning (ML) algorithms to acceler-
ate AM alloy design. Most prior ML-assisted experimental ap-
proaches have focused on component design for AM,AMprocess
monitoring,[17,18] and AM digital production. The potential to ex-
ploit these techniques in accelerated alloy design with P-S and

S-P linkages has been less explored.[19] Popova et al.[15] primarily
established a general automated workflow to extract P-S linkages
for synthetic AM microstructural evolution. The primary chal-
lenge arises from the limited data size and the high expense of
producing large data sets (from both experiments and simula-
tions). Ackermann et al.[19] elucidated a computationally efficient
data-driven framework achieving nearly 91% accuracy in predic-
tive quantification of P-S linkages with 960 synthetically gen-
erated 3D microstructures mimicking powder bed fusion. The
study revealed how ML-based approaches can be applied to iden-
tify desired microstructures within the wide process-parameter
space.
In this work, we explore the benefits of an EHLA-based high-

throughput screening protocol across the entire cycle, encom-
passing fabrication,microstructure quantification, propertymea-
surements, and data acquisition for training ML-based surro-
gate models. Toward this goal, high manganese steel (HMnS)
samples with ≈21 wt.% Mn is fabricated, with varying alu-
minum content (in the range of 0–10 wt.%), via in-situ mix-
ing of gas-atomized powders of high manganese steel and
pure aluminum. HMnS is chosen here as a promising can-
didate due to its inherent work-hardenability by the activation
of different deformation mechanisms, through the manipula-
tion of stacking fault energy (SFE) and phase composition of
fcc and bcc phases with targeted additions of Al. Alloying ad-
ditions to HMnS can stabilize or destabilize the austenite (fcc
phase) and secondly, promote the formation of a single-phase
or dual-phase microstructure with varied deformation mecha-
nisms. Aluminum additions to HMnS lower the density of high
Mn steels, reduce strength ductility trade-off, enhance their oxi-
dation resistance due to the formation of an Al2O3-rich protective
layer, and wear resistance because of their high/work hardening
capacity.[2,20–22]

This alloy design concept coupledwith rapid solidification con-
ditions of AM is used to tune the stability, and fraction of fcc
austenite and bcc ferrite to obtain a wide range of mechanical
responses for structural parts. The maximum Al addition is re-
stricted to 10 wt.%, as a further increase can render the alloy sus-
ceptible to solidification cracking and cavitation.[23] Furthermore,
our previous studies using LPBF[24,25] and DED[25] of HMnS +
(0–2 wt.%) Al alloy revealed differences in segregation of solutes,
solidification and melt pool characteristics, and grain size differ-
ences. This understanding provides a strong fundamental back-
ground to compare with the proposed novel approaches using the
EHLA process. The microstructure of the EHLA fabricated sam-
ples is assessed using Electron Backscatter Diffraction (EBSD)
combined with energy-dispersive X-ray Spectroscopy (EDS). Ad-
ditionally, mechanical properties are evaluated utilizing spherical
nanoindentation stress-strain curve protocols on sample surfaces
without the need for producing macroscopic samples for me-
chanical testing (e.g., tensile specimens). From the experimen-
tal EBSD data, suitable grain descriptors were extracted, and the
yield strength derived from nanoindentation experiments was
benchmarked as the target. With this understanding, a specific
parameter set from EHLA was translated to the LPBF process
to fabricate alloys of similar chemical composition, to study their
macroscopicmechanical response using tensile tests. The results
are compared with the data obtained from the EHLA samples.
The overall approach presented here is generalizable to a broad
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Table 1.Main process parameters used for the EHLA process.

Laser power
[W]

Track displacement
[mm per rev]

Process speed
[m min−1)

Powder mass flow
X30Mn21 [g min−1]

Powder mass flow
Al [g min−1]

Carrier Ar gas
flow [l min−1]

Shielding Ar gas
flow [l min−1]

Laser spot
diameter [mm]

2400–3000 0.35 50 25.63 0-7 7 12 1.2

range of AMmetals to further advance the field of additivemanu-
facturing in the direction of a sustainablemanufacturing process.

2. Experimental Section

2.1. Material and Methods

2.1.1. Powders for EHLA Process

X30Mn21 powder, supplied by ThyssenKrupp Raw Materials
GmbH (Germany), was produced via argon gas atomization us-
ing the EIGA (Electrode Induction Melting Gas Atomization)
technique. Likewise, Al powder, provided by TLS Technik GmbH
(Germany), underwent argon gas atomization through the VIGA
(Vacuum Induction Melting Gas Atomization) technique. The
chemical compositions of both powder materials are presented
in Table 1. The powder particles were spheroidal in shape and
underwent sieving and air separation to achieve a size distribu-
tion ranging from 10 to 45 μm. The particle size distribution
was determined through optical image analysis following ISO
13322-2, utilizing a Camsizer X2 particle analyzer (Retch Tech-
nology GmbH, Germany). To improve mixability with the larger
X30Mn21 powder particles, the Al powder size distribution was
adjusted toward smaller particle sizes. The average particle size
was measured at 14.94 μm, with the first decile (D10) at 9.95 μm,
the median (D50) at 12.99 μm, and the last decile (D90) at 22.84
μm. The apparent powder density was found to be 4.11 g/cm3, as
measured using the Hall funnel method per ISO 3923-1. Addi-
tionally, the avalanche angle was recorded at 35.53° using a revo-
lution powder analyzer (PS Prozesstechnik GmbH, Germany).

2.1.2. Sample Fabrication by Extreme High-Speed Laser Material
Deposition

Microstructure analysis and mechanical testing specimens were
3D printed using aHornet EHLA system (Hornet Laser Cladding
BV, Netherlands). This system features a 4-axis handling mech-
anism equipped with a tiltable turning spindle, enabling the
processing of rotationally symmetrical components with dimen-
sions of up to Ø 400 × 400 mm. The rotation speed is adjustable,
reaching up to 650 rpm. The laser source is a TruDisc8001 disk
laser (Trumpf GmbH + Co. KG., Germany) with a wavelength of

1030 nm and a maximum output power of 8 kW. Seamless pre-
cision steel tubes (E355 + C (St52-BK), EN 10305-1/DIN 2391)
serve as the substrate cylinders for the printing process.[12,13]

On the tubes, 7 mm wide tracks with multiple layers are ap-
plied with substrate at room temperature. Each stripe defines
a different process parameter set. The process parameters used
for the EHLA samples produced for this study are provided in
Table 2. The laser powers for the individual specimens were var-
ied within the range of 2400 up to 3000Wwhile keeping the other
process parameters constant.
The particle velocity and the powdermass flow rate in the pow-

der gas stream are the process parameters that influence the en-
ergy input into the powder particles and the substrate material.
As m˙p increases, the energy absorption per powder particle de-
creases. This results in reduced heating of the particles. An in-
creased carrier gas flow rate leads to an increased vparticle and re-
duced interaction time with the laser beam, thereby reducing the
heating of individual particles. The energy input into the sub-
strate is mostly influenced by process speed (vp) and track dis-
placement (f) which is the lateral distance between one coating
pass and the following pass.[12,13] With increasing vp, the inter-
action time between the laser beam and the substrate decreases,
reducing energy input into the substrate. This leads to a reduc-
tion of melt pool size and the size of the heat-affected zone. Fur-
ther details of the physics behind the EHLA process and the
comparison with LPBF and DED have been described in prior
work.[12,26,27]

2.1.3. Sample Fabrication by LPBF for Validation

Powder mixtures of X30Mn21 and Al were produced using a Tur-
bula 2F tumbler mixer (Willy A. Bachofen AG, Switzerland) for
45 min to ensure a homogeneous distribution of powder par-
ticles. Additively manufactured bulk specimens for mechanical
testing andmicrostructure analysis were produced using an EOS
SINT 270 LPBFmachine (EOS GmbH, Germany) equipped with
a single-mode fiber Yb: YAG-laser (400 W) and a Gaussian laser
intensity profile. The building chamber was flooded with argon
gas (purity ≥ 99.996%) with a flow rate of 3 L mi−1n to achieve a
build chamber excess pressure of 100 mbar and an average oxy-
gen concentration of ≈100 ppm during LPBF. A laser power of
120W and a volumetric energy density (Ev) of 76.19 J mm−3 were
used in combination with a bidirectional scan strategy. Two scan

Table 2. Chemical composition of X30Mn21 metal powder and pure aluminum powder. Fe, Mn, Al, Cr, and Ni were measured by ICP-OES and C, O by
the combustion method. All contents are given in wt.%.

Powder Fe Mn C Al Cr Ni O

X30Mn21 balance 21.0 0.330 0.030 0.150 0.080 0.100

Al – – – balance – – 0.001
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rotation strategies, 0 and 90° between each layer were chosen to
replicate the layer-wise deposition in DED and LPBF respectively.
These process parameters produced dense bulk specimens with
a relative density of ≥ 99.9%.

2.1.4. Sample Preparation

Microstructural characterization was conducted on the cross-
section of the substrate cylinder + EHLA deposited material.
The specimens were prepared for EBSD analysis by mechan-
ical cutting, mechanical grinding (up to 1200 SiC grit paper),
mechanical polishing (3 and 1 μm diamond suspensions), and
electro-polishing with a LectroPol-5 electrolytic polishing ma-
chine (Struers GmbH,Germany) using an A2 electrolyte (Struers
GmbH, Germany) for 20 s at 28 V at room temperature.

2.1.5. Tensile Testing of LPBF Samples

LPBF-produced bulk specimens were subjected to uniaxial ten-
sile testing using aZ100 testing device (Zwick/Roell GmbH&Co.
KG, Germany) at a strain rate of 0.001 s−1 at room temperature.
During tensile testing, the strain was measured with a videoX-
tens extensometer (Zwick/Roell GmbH&Co. KG, Germany) and
the force with an Xforce load cell (Zwick/Roell GmbH & Co. KG,
Germany). Three tensile specimens were tested for each condi-
tion.

2.1.6. Microstructure Characterization of EHLA Specimens

For EBSD and EDS analyses, a field emission gun SEM
(Carl Zeiss AG, Germany) was used in combination with a
NordlysNano (Oxford Instruments plc, UK) detector with a step
size of 500 nm. EBSD and EDS measurements were conducted
in the region of interest (ROI) shown to examine the existing
phases, average grain size, average grain aspect ratio defined as
the ratio of length/width (major axis and the one perpendicular)
of the grains, and the microtexture. The EBSD data were pro-
cessed and analyzed with the MATLAB (Mathworks Inc., USA)
toolboxMTEX.[28–30] The grain sizewas defined as the diameter of
a circle with an area equivalent to themeasured grain. Smoothing
of EBSD data was performed with a half-quadratic filter, which
preserves inner grain structures. High-angle grain boundaries
were defined by a misorientation angle 𝜃 ≥10° between adjacent
measurement points. For combined EDS and EBSD measure-
ments, an X-Max 50 EDS detector (Oxford Instruments PLC, UK)
was used.

2.1.7. Spherical Nanoindentation Strain–Stress Analysis on EHLA
Specimens

Nanoindentation tests were carried out to examine the spheri-
cal indentation stress-strain response at the regions of interest
(ROIs) specified in Figure 1. These tests were conducted on the
same samples that had been previously prepared for microscopy.
To determine mechanical properties, an Agilent G200 Nanoin-
denter (KLA Inc., Milpitas, CA, USA) was used, equipped with an

XP head and a continuous stiffness measurement (CSM) mod-
ule. The testing involved a diamond conical indenter with a tip
radius of 100 μm. Indentations were applied at a constant nom-
inal strain rate of 0.05 s−1, calculated as the loading rate divided
by the applied load, reaching a maximum depth of 800 nm. The
CSMmodule operated with an oscillation frequency of 45Hz and
a displacement amplitude of 2 nm. A minimum of 10 indenta-
tions were performed on each individual ROI, totaling 240 tests
across all samples.[31]

SEM images were used to confirm the exact locations of in-
dentations. Post-test imaging of residual indents via SEM pro-
vided further insights into the deformation mechanisms in the
material (Figure S5, Supporting Information). The obtained load-
displacement data was converted into indentation stress-strain
curves following the analytical procedures outlined in the subse-
quent section (Figure S6, Supporting Information).
The analysis protocols used in this work are based on Hertz’s

theory,[32] and have been presented and validated in prior
literature.[33–39] In these protocols, the indentation stress and the
indentation strain are calculated as[40,41]

𝜎ind =
P
𝜋a2

(1)

𝜀ind =
4
3𝜋

ht
a

(2)

a = S
2Eeff

(3)

where P, ht, S, a, and Eeff denote the indentation load, the total
indentation depth, the stiffness (from CSM), the contact radius,
and the effective indentation modulus. Eeff is estimated from the
initial elastic loading segment of the curve, and assumed to be
same for the entire loading history imposed on the sample.[42]

From each measured indentation stress-strain curve, the inden-
tation elastic modulus, the indentation yield strength, and the
indentation work hardening rate were extracted. A 0.002 plas-
tic strain offset was employed to identify the indentation yield
strength. The indentation work hardening rate was extracted by
fitting a line to the indentation stress-strain plot from the in-
dentation yield point up to 0.015 indentation plastic strain. In-
dentation techniques have already been utilized extensively in
prior studies[43–47] for the mechanical characterization of diverse
material systems. One of their main advantages is that they al-
low studies of material responses using very small volumes. In
recent work, we have demonstrated the benefits of the spheri-
cal indentation stress-strain protocols described above for (i) the
rapid exploration of PSP relationships in structural alloys,[48–51]

and (ii) obtaining new physical insights into microscale defor-
mation mechanisms in composite materials.[33–36] These newly
developed protocols offer several key advantages: i) the ability
to extract meaningful indentation stress-strain curves that dis-
tinctly separate elastic and plastic regimes, ii) the use of ini-
tial loading segments instead of unloading segments, which
are typically used in conventional protocols–-this approach al-
lows for significantly smaller indentation depths, thereby reduc-
ing the required material sample volume for reliable mechani-
cal characterization, and iii) the flexibility to systematically ad-
just the sample volume probed during indentation experiments

Adv. Sci. 2025, 12, 2414880 2414880 (4 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 1. a) Illustration of the extreme high-speed laser material application (EHLA) process used in this study. X30Mn21 and Al powder are mixed
in the nozzle and deposited on a rotating substrate cylinder using a laser beam with varying laser power (2400–3000 W). b) Cut out of the substrate
cylinder and deposited material with different volumetric energy densities by increasing the laser power in four neighboring (horizontal) sections of the
specimen. The cutting plane for microstructural and mechanical analysis is marked as a red line. c) Example micrograph of the 2400 W section revealing
6 deposited layers with increasing Al-content (0–8 wt.%) and the area for EBSD, EDS, and nanoindentation analysis. d) The nominal and volumetric size
distribution of Al, X30Mn21, and X30Mn21+6.8Al powders.

by employing indenter tips of varying radii. This enables pri-
mary indentation zones to be controlled within a range of ≈50
nm to 500 μm in most metallic alloy samples. The values ob-
tained from these tests are summarized in Table S2 (Supporting
Information).

2.1.8. Data-Driven Structure-Property Relationship and Statistical
Analysis

The resulting data frame described under Section 4.6 for build-
ing the structure-property ML models consists of 18873 × 6

Adv. Sci. 2025, 12, 2414880 2414880 (5 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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(rows × columns). Each row represents individual grains. Fur-
ther information on the distribution of input features and on
their correlation can be seen in supplementary Figure S7 and
Table S3 (Supporting Information). The input vectors were fur-
ther pre-processed by normalization and randomized in order.
The complete available experimental dataset was split into 70%
train set and 30% test set.
Building the (micro)structure-property relationship was for-

mulated as regression task using the open-source pycaret
library.[52] Highly correlated features were removed, and 10-fold
cross-validation was used for model validation. Besides R2 val-
ues, pycaret provides further results on error metrics, e.g., by
mean squared error (MSE), and mean absolute error (MAE).
The trained and tested model was then further analyzed with
SHAP measures using the Python-based SHAP (SHapley Ad-
ditive exPlanations) library.[53] In contrast to other methods,
SHAP values offer model-agnostic interpretations of local and
global feature contributions on model outputs. For further in-
formation on explainability of data models, we refer to previous
publications.[19,54] So far, transferability of the model on other
EHLA setups (different laser settings or powder nozzle types) is
not directly possible. An ongoing study focuses on the possibility
of transfer learning and the limitations to build a generalizedML
model for the EHLA process. Python code was used to complete
all pre-processing and ML-related tasks.

2.1.9. Phase Diagram Calculations

Calculations of equilibrium phase diagrams were performed
using Thermo-Calc 2019b (Thermo-Calc Software, Sweden)
with the PrecHiMn-4 thermodynamic database developed for
HMnS.[55]

3. Results

3.1. EHLA Process and Specimen Preparation

Figure 1a illustrates the extreme high-speed laser material ap-
plication (EHLA) used to fabricate the specimens. The pow-
der particles revealed a spheroidal shape and were sieved,
and air separated to ensure a size distribution between 10–45
μm (Figure 1a,d). Figure 1b shows the deposited material of
X30Mn21 on the substrate cylinder with a targeted variation in
the aluminum content (from 0 to 10 wt.%), along the build di-
rection (BD) of the specimen. Four different laser powers, from
2400 W up to 3000 W, were used to fabricate the specimens. The
cross-section of each of the deposited materials (for all samples)
was analyzed using the protocol depicted in Figure 1c. The cross-
section is the optical micrograph of the EHLA specimen fabri-
cated at 2400 W laser power, showing the 6 different layers of
“specimens”, each specimen with varying Al content as we tra-
verse from bottom to top. The specimens are differentiated using
ROI 1 up to ROI 6. Subsequently, these nomenclatures are mod-
ified in terms of their measured and averaged Al concentration
from SEM EDS. Each specimen with a specific Al content was
≈8 layers thick. The overlapped zones were identified using op-
tical and SEM imaging, however, the individual layers with spe-
cific aluminum compositions were identified away from these

overlapped zones shown as ROI 1 to ROI 6. Initial observations
showed that the first layer of ROI-1 specimen partially remixed
with the substrate cylinder. A comparable examination was con-
ducted on the specimens fabricated with 2600, 2800, and 3000W,
respectively. The melt pool geometry, depth, and other extensive
analyses using optical microscopy will be discussed in the subse-
quent sections.
Microstructure and chemistry analysis on EHLA specimens in

Figure 2 presents the integrated EBSD and EDS measurements
along BD of the six EHLA-printed specimens at four different
laser powers. The EDS measurements are presented as plots of
the distance (along BD inmm) versus aluminum content (wt.%).
IPF maps and the corresponding phase maps depicting ferrite
(blue), austenite (grey), and 𝜖− martensite (red) are shown. The
EDS line scans were taken along the center of the ROI. The ini-
tial analysis was aimed at qualitative estimation of the amount
of aluminum content within each of the specimens. The black
dashed line shows the average of the Al content measured from
the line scans. In general, the plots depict that measured Al con-
tent gradually increases from the base layer of X30Mn21 steel to
≈8 wt.% across all the samples. The yellow lines illustrate the lo-
cal fluctuations in the Al concentration within each layer. Such
a phenomenon is anticipated in rapid solidification processes
due to solute redistribution and local phase transformations. The
IPF maps (middle column) reveal the differences in grain size,
along BD, for all the specimens. A significant intermixing of the
base layers with the substrate material is also observed for all the
specimens. The phase maps (right column) clearly show that the
base layers are predominantly austenitic (with low Al content)
grains that are columnar in nature. However, with increasing Al
content along BD, there is a transition region with a mixed fcc
austenite and bcc ferrite region. Additionally, from the IPFmaps,
these regions appear to be fine-grained in nature. At higher Al
contents, the microstructures are fully ferritic. Interestingly, the
ROI-1 regions for all the specimens exhibit a small fraction of
𝜖−martensite. However, the change in the local chemistry due to
the intermixing of the base layers of ROI-1 with the substratema-
terial makes it challenging to decipher the phase transformation
trends in ROI-1 layers. Hence, for the subsequent discussions,
the ROI-1 layers will not be considered. In addition, the ROI-
1 specimens reflect the base material of X30Mn21 alloy, which
has been extensively analyzed in our prior LPBF[24] and DED-
based studies.[7,25] These prior results serve as a baseline for un-
derstanding the results obtained in this study from the EHLA
process with varying Al content (Figure 2).

3.2. Chemical distribution within the Fabricated EHLA Specimens

Figure 3a presents the IPF image from the EBSD data for the
specimens fabricated with 2400W. Figure 3b,c present EDS plots
showing the variation ofMn and Al content between the different
ROIs, for specimens fabricated with all the EHLA laser powers.
Each point on the plots is the Mn and Al content (wt.%) averaged
from the EDS line scans across the transverse direction up to a
distance of at least 150 μmof each ROI. This is further elucidated
in Figure S1 (Supporting Information). For all the specimens
produced, we observe Mn vaporization. This reduces its content
in all specimens (for all input laser energies) below the targeted
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Figure 2. Integrated EBSD/EDS measurements along the build direction
(BD) of six EHLA-printed layers at four different laser powers. The Al con-
tent added to the base X30Mn21 steel was gradually increased from bot-
tom to the top (left column) which changed microstructure and existing
phases. Microstructure representation is using color-coding according to
the inverse pole figure (middle column) and to the phases present (right
column) region.

value of 21 wt.%. The elevated Mn vapor pressure compared to
the other elements drives its evaporation, as observed in other
LPBF processing of HMnS.[7,56] The lower Mn content leads to
significant effects on the local stacking fault energy, phase stabili-
ties, and the corresponding phase transformation kinetics.[24,57,58]

Since the measured average Al content in the individual ROIs is
slightly lower than the targeted values, we rename the individ-
ual ROIs in terms of their measured Al contents, which are Al-2,
Al-3.5, Al-5, Al-6.5, and Al-8 respectively.

3.3. Grain Size and Phase Evolution

Figure 4a,b compares the evolution of the phase fractions for all
the specimens and average grain size for all phases as a function
of Al content. Both plots were extracted from the EBSD data for
all the specimens. The evolution of the phase fractions for fcc and
bcc phases follows the stability of the austenite and ferrite phases
with increasing Al content.
The grain size evolution for the fcc and bcc phases are com-

pared in Figure 4c,d. All the specimens show a significant re-
finement of the austenite grain size from Al-2 to Al-8 resulting
from increasing phase transformations. The ferrite grain size is
initially less than 3 μm for all the specimens, however, the grain
size increases by at least 5 times for all the specimens. In ad-
dition, there is a significant local variation in the trends based
on the processing condition. This microstructural control toward
grain refinement and potential texture randomization bymodify-
ing the laser AM process parameters is possible in HMnS steels
with targeted additions of Al. This has been exploited in previ-
ous works using both LPBF and DED techniques.[7, 24, 25, 56] By
virtue of modifying the solidification sequence, grain refinement
of the fcc phase was possible, although dependent on the limited
range of the liquid to fcc phase transformation and the stability
of the fcc phase. Grain refinement of the FCC phase is driven
by the interplay between thermodynamics and kinetics during
solidification.[59,60] Processes like EHLA, with their rapid cooling
and high-temperature gradient,[12,61] provide conditions for pro-
moting finer FCC grains. However, the extent of refinement is
limited by the stability of the FCC phase, the liquid-to-FCC trans-
formation range, and EHLA process parameters
The Al-2 and Al-3.5 specimens exhibit a minor fraction of bcc

grains at the melt pool boundaries (also see 3). In specimens
fabricated with 2400 W, the ferrite grains are less than 1 μm in
size. Al-5 and Al-6.5 samples show a duplex microstructure with
a significant refinement of fcc grains (nearly 50%) and larger bcc
grains in themelt pool boundaries, specifically in Al-6.5, for spec-
imens fabricated with 2400 W (also see 3). Specimens of Al-8
exhibited significant fcc grain refinement (2 μm) compared to
the Al-2 specimens, and a pronounced size of bcc grains particu-
larly for samples fabricated with 2600 and 3000 W. Experimental
and thermodynamic calculations have shown that in Al-alloyed
HMnS, the solid-state transformation of delta bcc to fcc occurred
during solidification cooling.[56] This solid-state phase transfor-
mation potentially hinders epitaxial growth, thereby promoting
the nucleation and growth of fcc grains. This mechanism con-
tributes to the grain refinement observed specifically in the fcc
grains at higher Al contents.

Adv. Sci. 2025, 12, 2414880 2414880 (7 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 3. Panel (a) is the EBSD-generated phase map of the sample produced at 2400 W with increasing Al concentration (target value of 2 to 10 wt.%).
The map is divided into individual regions of interest (ROI) based on the Al content. The layer of X30Mn21 (with 0% Al) is not considered for the
chemical analysis because of the intermixing with the low-carbon steel substrate during solidification. Panels (b) and (c) are the Mn and Al contents in
the individual ROIs depending on laser power and sample height by EDS measurements in the middle of every ROI. Vertical lines indicate error bars.

Figure 4. Plots showing the influence of Al content on the a,b) average phase fraction and c,d) average grain size evolution (evaluated from the EBSD
data) of the individual FCC and the BCC phases for varying laser inputs (2400–3000 W).

Adv. Sci. 2025, 12, 2414880 2414880 (8 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Bar graphs showing the variation of the average melt pool depth and width as a function of increasing input laser power during the EHLA
process. All the measurements were performed on the topmost layer of the individual samples. Vertical lines indicate error bars.

The EHLA-fabricated specimens show a dominant response to
the evolution of grain size, grain morphology, and phase fraction
evolution comparable to its LPBF and DED counterparts. The
evolution of fine-grained austenite-ferrite duplex microstructure
in the Al-5 and Al-6.5 specimens can be attributed to the transi-
tion from a fully fccmode to fcc-bccmode of solidification.[24,56,57]

Al-2 and Al-3.5 samples were fully austenitic and comparable to
samples produced via LBPF[56,62] andDED.[7] The fcc-bccmode of
solidification observed in Al-5 is comparable to the observations
made in LPBF-processed X30Mn21 with 5 wt.% of Al.[56] For Al-
6.5 and Al-8, the stability of the bcc phase increases irrespective
of the input energy of the laser (with the other EHLA parameters
being constant) and the subsequent effects on cooling rate, the
solidification mode is predominantly ferritic.

3.4. Effect of Melt Pool Characteristics and Phase
Transformations in EHLA Specimens

Figure 5 shows the influence of the input laser power in the
EHLA process on the melt pool geometries of all the specimens.
The measurements were performed for the topmost layer of the
specimens, which constitutes the ROI Al-8. In general, the melt
pool depth and width are the lowest for the 2400 W specimens.
Themelt pool depth increases by 16%, from an average of 150 μm
at 2400 W to ≈175 μm for 2600 W specimens. Similarly, there is
a 17% increase in the measured melt pool width, from 425 μm at
2400W to≈500 μmfor 2600W specimens.However, only a slight
increase in the melt pool depth and width is observed as the laser
power is further increased from 2600 until 3000 W. Generally,
higher laser speeds coupled without pre-heating of the substrate
plate drive shallower and thinner melt pools, subsequently lead-
ing to higher cooling rates.However, deeper andwidermelt pools
are characteristic of lower laser scan speeds, leading to lower cool-
ing rates.[24]

3.5. Microstructure-Property Assessment using Nanoindentation

The indentation stress-strain curves are extracted for all nanoin-
dentation measurements. The SEM images of the indentation

imprints after unloading at different laser powers and different Al
content are in Figure S5 (Supporting Information). In addition,
Figure S6 (Supporting Information) shows the series of indenta-
tion stress-strain curves collected at the center of each ROI for all
laser powers and Al contents. The indentation yield strength is
defined as the indentation stress at 0.002 (offset) plastic indenta-
tion strain. The highlighted band represents the average indenta-
tion yield strength with one standard deviation. The indentation
yield strength as a function of the Al content is plotted in Figure 6.
In the EHLA-fabricated specimens, the wide range of achieved

microstructures with different alloy compositions and laser
power allowed for achieving compositions with varying local
scale mechanical properties. The indentation yield strength grad-
ually increases with Al content up to 8 wt.%. Due to the larger
melt pools induced by the EHLA process at 3000 W, the fer-
rite fraction of at least 2% was observed in the specimens. This
contributed to the higher yield strength amidst all specimens
of Al-2. In addition, the secondary effect of the melt pool depth

Figure 6. Dependence of indentation yield strength on the Al content
(wt.%) and input laser power of EHLA process.

Adv. Sci. 2025, 12, 2414880 2414880 (9 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 7. a) Regression plot on the actual and predicted yield strength (derived from indentation testing) on the test dataset, b) global feature importance
reveals phase fractions as driving factors for the yield strength prediction, e.g. decreased fractions of austenite (FCC) result in higher SHAP values (high
SHAP values (red color) indicate a higher probability for a material response with higher yield strength). b) Partial dependence of austenite (FCC) and
fraction of ferrite (BCC) shows in tendency to lower SHAP values for higher values of FCC combined with lower values of BCC. EPS, grain_aspect ratio
(ar), grain_area, and gam represent fraction of 𝜖-martensite, grain aspect-ratio, and the area of grains, respectively.

variation and the higher cooling rates (104 K s−1) refines the par-
ent austenite grains (PAG) due to large thermal gradient and slow
growth rate. Studies have shown the prior austenite grain size at
very high laser power (4000 W) was calculated at 8 μm.[61] Hence
EHLA solidification conditions can generate fine columnar PAGs
that further contribute to the grain refinement. Furthermore, the
general increase in the yield strength of the specimens can be at-
tributed to the increasing content of the bcc phase coupled with
solid solution strengthening by Al. The solute Al enhances the
solid solution strengthening in HMnS (by ≈20 MPa/wt.%) due
to its effect on lattice distortion and modulus misfit.[63]

3.6. Data-Driven Structure-Property Relationship

To derive a fast yet interpretable relationship between (mi-
cro)structure and properties, machine learning (ML) based on
the experimental data was used to generalize the SP relation-
ship. Selected grain descriptors from EBSD data (section 0) were
merged with measured phase fractions in a pandas data frame
containing grain area, aspect ratio of grains (AR), grain aver-
age misorientation (GAM), austenite, ferrite, and 𝜖-martensite.
The target variable derived from averaged nano hardness mea-
surements (Section 2.5) represents a microscale property. In the

following, this target variable will be denoted as yield strength,
but referring to a microscale-related yield strength derived by
nanoindentation. The correlation with macroscopic mechanical
behavior (yield strength) is evaluated in Section 3.3. After test-
ing on previously unseen data, such an ML model allows inter-
ference for new values of the input variables without the neces-
sity to run additional experiments. A non-comprehensive param-
eter study was used to determine the model parameters of the
artificial neural network as described in Section 2.8. Pycaret[52]

was used to identify the Gradient Boosting Regressor (GBR) as
model with the lowest error metrics (e.g., mean average error,
root mean squared error) and the highest R2 value of 0.89 and a
mean squared error (MSE) of 0.0004, as seen in the parity plot
shown in Figure 7a indicating that the model predictions agreed
well with the experimental data. Therefore, within the boundaries
of the input dataset, the model has achieved a reasonable predic-
tion of the yield strength of the alloys.
So far, the ML model lacks further information on the in-

dividual contributions of microstructural features on the yield
strength. Therefore, a subsequent SHAP analysis was used to
reveal further insights into individual and global contributions
of microstructural features. SHAP values allow for quantitative
evaluation of input feature contributions. A rather high or low
data point (indicated by its index color) represents a positive
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(SHAP value > 0) or negative (SHAP value < 0) contribution to
the output. For example, the greatest impact on the SHAP val-
ues, and therefore on an increase of yield strength, was identi-
fied by a low fraction of austenite marked in blue (Figure 7b).
Features, describing the grain morphology appear more impor-
tant than the grain average misorientation (GAM). Additionally,
dependence plots using the SHAP library enable pair-wise fea-
ture analysis on the yield strength (Figure 7c). The increase in the
yield strength intensifies if low fractions of austenite are paired
with higher fractions of ferrite.

4. Discussion

4.1. Effect of Local Chemical Heterogeneities on Phase
Transformation Behavior

In Figure 3b the fluctuations in Mn content within the EHLA
specimens are comparable to the LPBF-produced specimens of
comparable input energy densities.[56,57] However, the fluctua-
tions are far less pronounced as compared to DED-fabricated
HMnS of similar composition.[7] In addition, one observes sig-
nificant heterogeneity of Al chemistry across the transverse di-
rection, at each ROI and in all the specimens with varying Al
content (Figures S1, S2, Supporting Information), due to the non-
equilibrium solidification. Coupling these process-induced con-
ditions with increasing Al content has a dual effect of acting as
a stabilizer of the ferrite phase, increasing the SFE of the alloy,
thereby, affecting the stability of the austenite phase. This creates
a scenario where regions with low Al content and low SFE ex-
hibit transformation-induced plasticity (TRIP) during deforma-
tion (typically in tension). With subsequent increases in Al con-
tent, the deformationmode changes to twinning-induced plastic-
ity (TWIP) enhancing ductility and shifts finally to pure disloca-
tion slip at high Al contents.[7,24,25]

In the Al-2 specimen for the 2400 W EHLA sample, the Al
content fluctuates between 1.2 to 2.5 wt.%. The strong hetero-
geneity in Al distribution presented in the EDSmeasurements in
Figure 4, has a definitive influence on the phase transformation
behavior at the local regions of the microstructure. This is partic-
ularly advantageous in this alloy design and screening approach.
Al has several benefits amongst other bcc stabilizing solute ele-
ments. Addition of Al to Fe-based alloys reduced the density of
the alloy by 1.3% per wt.%, enhances solid-solution strengthen-
ing in HMnS, delays hydrogen embrittlement in HMnS, and in-
creases the SFE by 8 mJ m−2 per wt.%.[23,56,64] More importantly,
with targeted additions of Al to X30Mn21 and its subsequent par-
titioning within the local regions of the microstructure, we aim
to tune the solidification sequence by stabilizing the bcc ferrite
phase. The combined effects of Marangoni-induced convection
and increased interface velocities during the EHLA process can
reduce the degree of micro segregation of Al to the interfaces,
thereby enhancing ferrite formation. This phenomenon is rele-
vant at the regions in the microstructure which exhibit a high
degree of coarse grain formation, as the solidification induced
partitioning behavior helps in achieving a more homogeneous
ferrite microstructure.[24,59] This is observed in the plots of the
phase fraction evolution with increasing Al content for all the
EHLA fabricated samples. As the Al content increases, the phase
composition (Figure 4a,b) of the EHLA-printed specimen evolves

from fully austenitic (Al-2, Al-3.5), to a mixed austenitic and fer-
ritic microstructure (Al-5, Al-6.5), and subsequently to an almost
fully ferritic microstructure (at Al-8). This is consistent in spec-
imens fabricated with 2400 and 2600 W. For specimens fabri-
cated with 2800 and 3000 W, similar trends were quantified ex-
cept in the Al-2 condition, where a very small fraction (<2%) of
𝜖−martensite is observed (Figure S3, Supporting Information).
The formation of 𝜖−martensite from austenite is thermally in-
duced, possibly resulting due to the low SFE and destabiliza-
tion of fcc phase because of higher loss of Mn.[57] Formation
of 𝜖−martensite phase at the intradendritic regions in the as-
built microstructure of HMnS has been observed in LPBF-[56]

and DED-fabricated samples.[7] However, with increasing Al con-
tent the immediate consequence is an increase in the SFE and
higher driving force for the formation of the bcc phase, leading
to the pronounced phase transition from a single-phase fcc to a
duplex microstructure containing austenitic and ferritic phases
as the composition changes from Al-3.5 until Al-6.5. For all the
Al-8 specimens. Irrespective of the input EHLA laser power, the
microstructure is predominantly ferritic with nearly 15% austen-
ite phase content.
InHMnS, increasing theAl content coupledwith reducingMn

content (due to evaporation) has a dual impact. First, it enhances
the stabilization of the ferrite phase due to Al’s strong ferrite-
forming tendency. Second, this change affects the grain growth
behavior, as higher Al concentrations tend to refine grains by re-
ducing the driving force for grain coarsening. Meanwhile, the re-
duction inMn content, an austenite stabilizer, suppresses the for-
mation of austenite, further promoting ferrite dominance. TEM
analysis showed bcc grains decorated the prior melt pool bound-
aries, aided by the compositional heterogeneities, i.e., bcc grains
were enriched in Al and depleted in Mn or vice versa for the
fcc grains, and the alternating bcc-fcc grains preferred to have a
Kurdjumov-Sachs orientation relationship.[56] Since the cooling
rate in the EHLA process is in the range of 104 to 106 K s−1, it
would be a reasonable inference to use the understanding from
existing studies in AM-processed HMnS for discussing the mi-
crostructural evolution. The local chemical redistribution in Mn
and Al content in all the EHLA specimens, due to microsegrega-
tion and phase transformations, affects the stability of the austen-
ite. The comparison of the calculated equilibrium phase diagram
of X30Mn21 with varying Al content is presented in Figure S4
(Supporting Information). The lowest and the highest input laser
power of the EHLA process was selected to compare the effect of
Mn and Al variation on the stability of the austenite in these re-
spective specimens. For the 2400 W specimens, the average Mn
content in the microstructure measured for all the Al-2 until Al-8
ROIs fromEDS is 17.44wt.%. The austenite phase was calculated
to be stable until nearly 6.4 wt.% of Al. However, with further en-
ergy input at 3000 W, the Mn vaporization was exacerbated and
the average Mn content in these specimens was reduced to 14.16
wt.%. Therefore, the stability of the austenite shifted to lower Al
contents at 5.6 wt.%.

4.2. Melt pool Geometry Effects on Phase Transformation

For specimens fabricated with low Al contents (Al-2 and
Al-3.5), the primary solidification mode is austenitic. However,
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higher laser input energy leads to lower cooling rates because
of larger melt pools induced by the EHLA process. Therefore,
this reduced cooling rate coupled with the redistribution of Al
and Mn, provides a greater driving force and time for ferrite
formation from austenite.[7,24] Therefore, we observe a ferrite
fraction of at least 2% for specimens fabricated with 3000 W,
which is the highest when compared with other specimens (see
Figure 4). For the compositions between Al-3.5 and Al-6.5, the
phase transformation is dictated by the redistribution of Mn and
Al within the interdendritic and melt pool boundaries. At higher
Al contents, the primary solidification mode is ferritic. How-
ever, for higher laser energy the melt pool size is larger, sub-
sequently lowering the cooling rate. Hence there is more time
for austenite formation. Therefore, at 8 wt.% Al, the amount of
austenite is still significantly higher (between 7–16%) for all the
specimens.
The melt pool depths reported here (Figure 5) are at least 60%

higher than values reported for LPBF of HMnS.[24] The remelt-
ing of the previous layers because of deeper laser penetration cre-
ates a higher probability for epitaxial growth, potentially strength-
ening the crystallographic texture. In addition, from the context
of rapid solidification, equiaxed grain formation is driven by en-
hanced grain fragmentation and solute enrichment, both am-
plified by high cooling rates typical in processes like additive
manufacturing.[5,59] However, due to the fcc-bcc type of solidifica-
tion for specimens with intermediate and higher Al content, the
crystallographic texture can be weakened to a more isotropic ran-
dom form. Kies et al. used a mathematical time-dependent heat
model to simulate the melt pool geometry of the DED process
of HMnS + 1% Al, with 2 different laser spot sizes, and found
that the melt pool dimensions were like the width of the laser
beam.[25] The laser beam diameter used in the present EHLA
study is close to 3 mm. Therefore, the melt pool geometries mea-
sured in the present alloy design study using EHLA are between
size range of LPBF and DED melt pool geometries. This further
validates EHLA to be a potential tool that accommodates changes
in cooling rate by modification of the process to meet DED and
LPBF solidification conditions.

4.3. Transferring from EHLA to LPBF

Using the data-driven structure-property relationship, the pre-
diction of the yield strength obtained using selected grain
descriptors from EBSD data (Section 2.4) was merged with
process-related parameters that agreed well with the yield
strength derived from nanoindentation measurements. To test
the transferability of high-throughput alloy design using EHLA
and ML, LPBF samples using powder mixtures (X30Mn21 + x
(Al)) at 120 W laser power were fabricated. This is the lowest in-
put energy density of the LPBF process, comparable to the EHLA
sample fabricated at 2400W. In addition, the highest part density
(min 99.5%) was achieved using these LPBF process parameters.
The samples were fabricated at 2 different scan rotations, namely
0°, that mimics the EHLA process, and the other at 90° to evalu-
ate the upper bound of the scan rotation. More details regarding
the process parameters have been explained in the methods Sec-
tion 2.2. Six different alloy powders of X30Mn21+ xAl were pre-
pared using powder mixtures. The final Al composition of these

alloys after LPBF fabrication varied between 0 to 6.8 wt.%. Fur-
ther details of the Al content have been elucidated in the table in
Table S1 (Supporting Information).
Figure 8 shows the plots of the yield strength of the LPBF-

produced specimens obtained from macroscopic tensile test,
compared with the indentation yield strength of the EHLA spec-
imens fabricated at 2400 W. Figure 8a shows the evolution of
the yield strength from uniaxial tensile strength for LPBF sam-
ples with 0° of scan rotation between subsequent layers. For the
EHLA-produced samples, the trends in the evolution of the in-
dentation yield strength are comparable to the macroscopic ten-
sile yield strength of the LPBF samples. In terms of absolute
values, the yield strength of the LPBF samples (fabricated with
lower and upper scan rotation values) from macroscopic tensile
tests is ≈

1
3
of the indentation yield strength of the EHLA spec-

imens (fabricated on a rotational substrate). LPBF samples pro-
duced with a 90° scan rotation (Figure 8), the yield strength val-
ues are lower compared to the 0° scan rotation samples. Within
the boundary condition of varying macroscopic properties such
as texture, grain size distribution, and residual stress state of the
samples, the evolution of the macroscopic tensile yield strength
for LPBF specimens was found to agree well with the trends ob-
served in the indentation yield strength of EHLA specimens. This
excellent agreement cements the proof of concept that the EHLA-
based high-throughput experiments render a combined synthe-
sis tool to fabricate samples with LBPF conditions along with the
flexibility of DED conditions.

4.4. Assessment of the Present Methodology

The current strategy to fabricate samples with the EHLA pro-
cess enables high-throughput screening of multiple composi-
tions for the additive manufacturing process in a single speci-
men. The evaluation of the mechanical properties along with the
microstructure studies for the EHLA specimens cater to under-
standing firsthand the primary effects of the composition fluc-
tuations on the additively manufactured specimens. The average
indentation yield strength can serve as a surrogate measure of
the bulk yield strength as a function of the composition varia-
tion (compared in Figure 8) but does not account for the effects
of defects, grain boundaries, texture, and residual stresses that
evolve during the individual specimens from the LPBF and DED
process. However, this method provides an enhanced solution
to accelerate high-throughput alloy screening to further evaluate
specific alloy compositions using laser additive manufacturing.
Gradient Boosting Regressor as an ML model was selected as

most accurate amongmore than 20 different models for learning
the relationship between microstructural features and the mate-
rial’s yield strength (derived from microhardness). The general-
izability of the model is limited to the bounds of the training and
testing dataset and is therefore not valid beyond the minimum
and maximum of the derived yield strength values. The current
ML model is trained in data originating from an EHLA print-
ing machine. Transferability of the model on other EHLA setups
(different laser settings or powder nozzle types) is not directly
possible. An ongoing study focuses on the possibility of transfer
learning and the limitations to build a generalized ML model for
the EHLA process.

Adv. Sci. 2025, 12, 2414880 2414880 (12 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 8. Plots comparing the yield strength obtained from the uniaxial tensile test of LPBF-fabricated X30Mn21 and its powder blend derivates with
increasing Al content vis-à-vis the yield strength obtained from nanoindentation of the EHLA-fabricated alloys of X30Mn21 with targeted layer-wise
increase in Al content from 2 to 8 wt.%, fabricated using a laser power of 2400 W. The calculated yield strength values obtained via the nanoindentation
experiments for the EHLA specimens are summarized in Table S1 (Supporting Information) in the supplementary. Tensile specimens with two different
scanning rotations, 0 and 90°, were also used.

These data-driven microstructure-property relationships com-
plement and generalize insights from a cascade of relative labor-
intensive individual experiments. But predictions alone by the
trained model are of back-box-type. Only with support of meth-
ods coming from the field of explainable artificial intelligence
(XAI), as for example by using LIME[65] or calculating Shap-
ley values, individual microstructural feature contributions can
be correlated quantitatively with mechanical properties (e.g., the
material’s yield strength). In contrast to other conventional meth-
ods for interpretability, calculating Shapley values via SHAP is
model-agnostic and therefore applicable to various types of ML
models. However, it must be noted, that SHAP values can be
based on feature space-inherent biases and can therefore be mis-
leading. For this reason, correlations found with SHAP cannot
be seen as causal linkages. With further experiments, such cor-
relations could be proven to be causal.
However, a critical assessment of actual requirements for new

alloys for additive manufacturing commonly demands desired
mechanical properties or defines properties for a minimum valu-
able product (MVP), and asks how to design the microstructure,
or better how to set the manufacturing parameters to achieve
these properties. Such requests are inverse-oriented, while un-
til now, (also in our approach) methods are applied forward-
directed (e.g., from scanning potential process-parameter spaces
toward measuring mechanical properties or part performances
afterward). Invertible neural networks (INN)[66] are more suit-
able to give direct answers to such inverse-oriented tasks while
revealing more than one parameter setting (rather distributions
of parameter settings) to satisfy required properties. First studies
on invertible approaches applied tomicrostructures can be found
in refs. [67–69]
As an example, an SEM dataset was used in ref. [70] to in-

versely design new ferritic martensitic 9–12 wt.% Cr alloys based
on the clustered latent space reduced by kernel PCA of encoded
microstructures with a variational autoencoder (VAE) network.
The first principal component of the PCA-reduced latent space
was interpreted as parameter for new alloy identification. Other

INN-based approaches to material optimization aim at optical
and thermal properties,[71] dual phase (DP) steels,[67] and re-
quirements of photovoltaics for microstructure generation.[72]

For the EHLA dataset of this study, an INN model could be used
to discover possible process parameter combinations where mi-
crostructures or mechanical properties of interest serve as in-
put data for the model. These studies can be seen as a proof
of concept but commonly lack addressing physics-based knowl-
edge. This becomes necessary for scarce datasets, a common
characteristic for datasets in the field of material science. Pos-
sible adjustments of more powerful INNs consider variations in
the loss functions, e.g. by adding terms to comply with realis-
tic microstructure characteristics. Applying INNs on our EHLA
dataset is part of our ongoing research.
The EHLA process for developing high-manganese steels ex-

hibits potential for economic savings and environmental sustain-
ability. The current high-throughput screening process reduces
powder usage, material waste, and energy consumption, lower
harmful fumes and byproducts, and lead times for alloy design
for LPBF and DED processes. Furthermore, the selected HMnS
alloys are durable and lightweight materials (due to their high
specific strength) that are sustainable materials due to the high
abundance of Fe and Mn compared to critical elements such as
Co and Ni. With additions of Al, these lightweight components
are used in downstream industries, such as automotive and re-
newable energy sectors which further improves fuel and energy
efficiency.[73,74] The present EHLA alloy design concept of tuning
local phase transformation behavior due to changing AM solid-
ification conditions and the subsequent high-throughput char-
acterization and data analysis can be translated to all materials
systems to design new materials for additive manufacturing.

5. Conclusion

Combined high-throughput sample synthesis and alloy char-
acterization were used to explore novel alloy compositions,
their corresponding microstructure evolution, and mechanical

Adv. Sci. 2025, 12, 2414880 2414880 (13 of 15) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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properties in additively manufactured (AM) advanced high-
strength steel. Application of Extreme High Laser Application
(EHLA) for the production of 24 individual alloy conditions with
varying chemistry and/or processing history within a single spec-
imen. The process-structure-property (P-S-P) relationships were
revealed experimentally by large-area EBSD analysis and nanoin-
dentation stress-strain protocols. The generated data served as a
basis to derive a reliable machine learning (ML)–based P-S-P sur-
rogate model. The following conclusions can be drawn:

• The employed methodology is a powerful toolset for AM-
specific alloy development as it allows for screening of ad-
ditively manufactured states with strongly varying chemical
composition and processing conditions. However, precise con-
trol of in-situ alloyed element fractions, remelted volume, and
related material mixing in the remelted region must be con-
sidered.

• The selected alloy is a model system, that is flexible in terms
of phase stabilities because of the varying Al content. There-
fore, during the EHLA synthesis, this promoted a wide range
of achieved microstructures allowing for tailoring of the me-
chanical properties. The increased Al contents promoted solid
solution strengthening in the austenitic conditions, grain re-
finement, and multi-phase strengthening in the duplex condi-
tions, and further strengthening due to ferrite stabilization in
the ferritic condition.

• Combining open-source libraries in Python allowed building
satisfactory datamodels to generalize the relationship between
microstructural features with mechanical properties with suf-
ficient accuracy, butmore importantly with explainable feature
contributions.

The excellent agreement in trends between the mechanical
properties of various alloys fabricated using LPBF and EHLA
specimens (with a scale factor of 1/3) establishes EHLA to be
a suitable impersonator to fabricate materials under LPBF con-
ditions with the flexibility of incorporating DED conditions in a
single high-throughput alloy synthesis experiment.
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