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Abstract

Measurements of the polarization and spin correlation in top quark pairs (tt) are pre-
sented using events with a single electron or muon and jets in the final state. The mea-
surements are based on proton-proton collision data from the LHC at /s = 13TeV
collected by the CMS experiment, corresponding to an integrated luminosity of
138fb~". All coefficients of the polarization vectors and the spin correlation matrix
are extracted simultaneously by performing a binned likelihood fit to the data. The
measurement is performed inclusively and in bins of additional observables, such
as the mass of the tt system and the top quark scattering angle in the tt rest frame.
The measured polarization and spin correlation are in agreement with the standard
model. From the measured spin correlation, conclusions on the tt spin entanglement
are drawn by applying the Peres—Horodecki criterion. The standard model predicts
entangled spins for tt states at the production threshold and at high masses of the tt
system. Entanglement is observed for the first time in events at high tt mass, where a
large fraction of the tt decays are space-like separated, with an expected and observed
significance of above 5 standard deviations.
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1 Introduction

The top quark is the most massive known fundamental particle with a lifetime of the order
of 10~ s. This is shorter than the quantum chromodynamics (QCD) hadronization time scale
1/Agep =~ 10~2*s, and the spin decorrelation time scale 1,/ AéCD ~ 10~%'s, where m, is
the top quark mass [1, 2]. Consequently, the top quark usually decays before hadronization,
thus preserving its spin information in the angular distribution of the decay products. This
makes top quark and antiquark (tt) pairs excellent candidates for studying polarization and
spin correlation.

We present measurements of the polarization and spin correlation in tt pairs using proton-
proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC. The measurements
are performed using data collected by the CMS detector between 2016 and 2018, correspond-
ing to an integrated luminosity of 138 fb~!. Once produced, a top quark decays via the weak
interaction into a W boson and a b quark. The W boson further decays into either two quarks,
which subsequently hadronize into jets, or a charged lepton and a neutrino. In this analysis,
we focus on the final state with two b jets, two jets from one W boson, and an electron or
muon paired with a neutrino from the other W boson. This decay channel is referred to as the
e/ u+jets channel. Events with tau leptons are treated as tt background and not included in the
e/ u+ets category.

At the LHC tt pairs are produced through gluon-gluon (gg) fusion and quark-antiquark (qq)
annihilation. The top quarks and antiquarks are unpolarized at leading order (LO). However,
their spins are expected to be strongly correlated [3]. The complete spin correlation is encoded
in a 3x3 matrix that depends on the tt production mechanism, the invariant mass of the tt sys-
tem m(tt), and the scattering angle of the top quark. Evidence for tt spin correlation was first
reported by the D0 experiment at the Tevatron in Refs. [4, 5]. The ATLAS and CMS experiments
have performed a number of top quark polarization and spin correlation measurements using
various observables and data sets [6-15].

The top quark polarization and spin correlation measurement is interesting in its own right as
a test of the standard model (SM) [16, 17], but it also provides new opportunities for testing
quantum mechanics (QM) at high energies using the decay products of unstable particles as
probes. This is not possible in experiments with stable particles, such as electrons and pho-
tons. An important prediction of QM is quantum entanglement, which has been studied in
connection with particle physics at high energies only in recent years [18-21]. The ATLAS and
CMS experiments reported the observation of entanglement in the tt system at the production
threshold [14, 15] using events where both W bosons from the tt pair decay into leptons. In this
paper we include measurements of entanglement at the production threshold and at high m(tt)
for tt events in the e/p+jets channel. In [22] it was argued that since collider experiments do
not measure spins of the produced particles directly, but rather infer the spin directions statisti-
cally from the distribution of their decay products, a local hidden variable theory can always be
found that explains the observation. Following [23] we assume that the tt system is described
by QM and we characterize the state as separable or entangled.

This paper is organized in the following way. First, we outline the measurement strategy in
Section 2. We briefly describe the CMS detector in Section 3 and then discuss the signal and
background modeling used for this analysis in Section 4. The event selection and the tt re-
construction are described in Sections5 and 6, respectively, followed by a discussion of the
background estimation in Section 7 and the extraction of the polarization and spin correlation
coefficients in Section 8. Systematic uncertainties are detailed in Section 9. Finally, the results
are presented in Section 10 and the paper is summarized in Section 11. Tabulated results are



provided in the HEPData record for this analysis [24].

2 Measurement strategy

We perform a measurement of the tt polarization and spin correlation in the helicity basis
{n,r,k} following Ref. [25]. This basis is defined by boosting the top quarks and their decay
products from the laboratory frame into the tt rest frame. Afterward, based on the unit vectors
in the top quark direction k and the beam in the positive z-direction b, the axes of the new
coordinate system are given by
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where 6 is the scattering angle of the top quark, i.e., cos(8) = b - k. The Bose—Einstein symmetry
of the gg initial state [25] requires a redefinition of the n and r axes (which are odd under Bose-
Einstein symmetry) to allow nonzero values of the polarization and spin correlation coefficients
involving an odd number of these axes. This is done by multiplying the n and r directions by
the sign of cos(6), which is also odd under Bose-Einstein symmetry, such that all axes are even
under Bose-Einstein symmetry:

{n,r,k} — {sgn(cos(0))n, sgn(cos(0))r, k}. )

Finally, the top quark and antiquark are boosted individually into their rest frames together
with their corresponding decay products.

In this basis, the unit vector

Q(Q) = (sin(fp(p)) cos(Pp(p)), SIN(Bp(5)) SIN(Pp(s)), COS (B () ) ) 3)

describes the direction of a decay product p(p) of the top (anti)quark, where ¢, 5 is the az-
imuthal and 6,5 the polar angle of the decay product. The differential cross section as a func-
tion of the four variables ¢, ) and 6, has the form

o ( 0,5)) = dio
w0t (Pp(p) Op(p)) = d¢p, d cos(6,,) dpp d cos(0) 4)
= Oporm (1 + kP - Q + &P - Q — kRQ - (CQY)),

with two 3-dimensional polarization vectors P and P, and one 3x3 spin correlation matrix
C. This means that ¥, depends linearly on 15 coefficients collectively referred to as Q,, =
{P,,P,,P,P,,...,Cpi,Cpp ..., Ci}. In this analysis, we perform a measurement of all 15 coef-
ficients which we subsequently refer to as the full matrix measurement. There is one additional
coefficient 0, that describes the overall normalization. The spin analyzing power x repre-
sents how much information from the top quark spin is transferred to its decay products. We
use the down-type quarks and the charged leptons in the W boson decays. The magnitude of «
for these decay products have the maximum value of unity at LO. Including QCD corrections,
the magnitude of x for down-type quarks is reduced to 0.966 [26]. However, we perform the
measurements using the LO values and leave the application of different x values for reinter-
pretations. For simplicity, we flip the sign of « for t decays following the convention of Ref. [3],
instead of inverting the axes of the coordinate system as in Refs. [15, 25].

The top quark, being a spin-1/2 particle, can be described as a two-state quantum system
known as a qubit. The minimal example of an entangled state consists of two qubits, e.g.,



a tt pair, where the entanglement can be characterized by their spin correlation. The Peres—
Horodecki criterion [27, 28] can be used to determine if a quantum state is separable. If the
state is not separable, it is considered entangled. In general, a quantum state is described by
a density matrix p, in this case a spin density matrix whose coefficients are probed by Eq. (4).
A quantum state is said to be separable if p can be factorized into individual states belonging
to separate subspaces, i.e., p = ¥, 7,0% ® p%, where p%, p% are density matrices describing the
quantum states of the subsystems a and b and the g,, are the corresponding probabilities. If pis a
separable physical state, the state o2 = ¥, ,,0% ® (0%)7 resulting from taking the transpose for
only subsystem b should also be a physical state. It was demonstrated [27, 28] that a sufficient
condition for entanglement is that p™2 has at least one negative eigenvalue, meaning it is not a
physical state. This translates to a sufficient condition for entanglement based on the diagonal
elements of the spin correlation matrix [18, 29]:

AE = Cnn + ’Crr +Ckk| > 1. ®)

Based on the measured values of the spin correlation matrix we apply this criterion to evaluate
the entanglement of the tt system in different regions of phase space.

As an alternative to the full matrix measurement, we measure angular variables directly sen-
sitive to Ag. The trace of the spin correlation matrix Tr(C) can be probed using the opening
angle x between the two decay products in the helicity basis, cos(x) = Q - Q). This observable
is sensitive to the entanglement in the spin-singlet state [18] expected from gg fusion events at
the tt production threshold. The distribution of ) is given by

do

_ 1
deos(y) ~ Onorm (1 + Dxi cos(x)), where D = 3 Tr(C). (6)

For gg fusion events at low m(tt), both C,, and Cy; are positive [3], which simplifies the entan-
glement criterion to
Ag = —3D =Tr(C) > 1. )

The entanglement in a spin-triplet state, predicted in both qq annihilation and gg fusion events
with high m(tt) and low |cos(0)|, can be probed using a criterion based on [3, 30]

~ 1

D= g(cnn -G — Ckk)' 8
The signs of C,, and Cy;, become negative at transverse momentum of the top quark pr(t) ~
m, [3], so the entanglement criterion based on D in the high-m(tt) region is:

Ag =3D > 1. )

The extraction of D is performed using ¥ = —Q,Q,, + Q,Q, + O, (), analogous to x but with
an inverted sign of the n-component of one of the decay products.

3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward



calorimeters extend the pseudorapidity (1) coverage provided by the barrel and endcap detec-
tors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid.

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 us [31]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1kHz before data storage [32]. For this measurement events are selected using single
electron and muon triggers for isolated leptons with minimum py requirements, depending on
the year, of 24 and 27 GeV for muons and 27 and 32 GeV for electrons.

The primary vertex is taken to be the vertex corresponding to the hardest scattering in the
event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [33].
The particle-flow (PF) algorithm [34] aims to reconstruct and identify each individual parti-
cle in an event, with an optimized combination of information from various elements of the
CMS detector. The energy of photons is obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the electron momentum at the primary in-
teraction vertex as determined by the tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially compatible with originating from
the electron track. The energy of muons is obtained from the curvature of the corresponding
track. The energy of charged hadrons is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
the response function of the calorimeters to hadronic showers. Finally, the energy of neutral
hadrons is obtained from the corresponding corrected ECAL and HCAL energies. A more de-
tailed description of the CMS detector, together with a definition of the coordinate system used
and the relevant kinematic variables, can be found in Ref. [35].

4 Signal and background modeling

The matrix element (ME) event generator POWHEG V2 [36-38] is used to simulate tt events
with next-to-LO (NLO) QCD accuracy. It is subsequently combined with the parton shower
(PS) simulation from PYTHIA 8.230 [39], using the underlying event tune CP5 [40]. In ad-
dition, a sample of tt production at next-to-NLO (NNLO) QCD is generated with POWHEG
MINNLO [41] in combination with the CP5 PYTHIA tune. This is used to estimate uncertainties
in the contribution from higher-order QCD. Similarly, for the estimation of electroweak cor-
rections, we use the HATHOR 2.1-B3 package [42]. The measured coefficients are compared
to the predictions obtained using POWHEG+HERWIG 7.1 [43] with tune CH3 [44] and MAD-
GRAPH5_.aMC@NLO 2.6.1 [45] combining ME calculations at NLO QCD including up to two
additional partons with the PYTHIA PS using the FXFX algorithm [46]. In all tt simulations, the
decays of the top quarks including the spin correlation are evaluated at LO precision.

The tt simulations are normalized to the inclusive cross section value of 832:’32 pb [47] which is
calculated with NNLO precision including soft-gluon resummation at the level of next-to-next-
to-leading-logarithm. The renormalization scale y, and factorization scale i are taken to be
equal to the average transverse mass of the top quark and antiquark, my = 0.5(vVm? + pr(t)> +
Vm? + pr(t)?), where pr is the transverse momentum of the top quark evaluated in the tt rest
frame, and m, = 172.5GeV [48] is used in all simulations, unless stated otherwise. The main
background processes in this analysis are single top quark production, Drell-Yan (DY) and



W boson production in association with jets, and events composed uniquely of jets produced
through the strong interaction, referred to as QCD multijet events. Single top quark produc-
tion via t channel and top quark production in association with a W boson are generated us-
ing POWHEG+PYTHIA, while the production via s channel is generated at NLO QCD using
MADGRAPH5_aMC@NLO+PYTHIA. The simulation of background from DY+jets and W+jets
production is performed at LO QCD using MADGRAPH5_aMC@NLO+PYTHIA with the MLM
PS matching [49, 50] of up to four partons. The QCD multijet processes are simulated at LO
using PYTHIA. The cross sections are taken from NNLO calculations for W+jets and DY+jets
events [51] and NLO calculations for single top quark events [52, 53]. The default parameteri-
zation of the parton distribution functions (PDFs) used in all simulations is the NNLO version
of NNPDF 3.1 [54].

The detector response is modeled using GEANT4 [55]. Additional proton-proton interactions
within the same or nearby bunch crossings (pileup) are overlaid on each simulated event. Sim-
ulated events are assigned event weights based on the number of pileup interactions to match
the pileup distribution in data. The same reconstruction algorithms that are applied to the data
are used for simulated events.

5 Physics object reconstruction

The measurements presented in this analysis depend on the reconstruction and identification of
electrons, muons, jets, and the missing transverse momentum p"** associated with neutrinos.

Electrons [56] and muons [57] are selected if they are isolated and compatible with originat-
ing from the primary vertex. Moreover, they must have pr > 30GeV and |y| < 2.4. In the
2018 data set, the minimum py of electrons was raised to 34 GeV because of the increased trig-
ger thresholds. Leptons are required to satisfy several quality criteria including isolation and
compatibility with the primary vertex. The electron and muon reconstruction and selection
efficiencies are measured in the data using the “tag-and-probe” technique [58]. Depending on
pr and 7, the overall reconstruction and selection efficiency is 50-80% for electrons and 75-85%
for muons.

Jets are clustered from PF candidates using the anti-k jet algorithm with a distance param-
eter of 0.4 implemented in the FASTJET package [59, 60]. Charged PF candidates originating
from a pileup interaction vertex are excluded. The total energy of the jets is corrected for
energy depositions from pileup. In addition, pt- and 5-dependent corrections are applied
to account for detector response effects [61]. If an isolated lepton with pr > 15GeV within
AR = V(A$)? + (Ay)? = 0.4 around a jet exists, the jet is assumed to represent the isolated
lepton and is discarded to prevent counting the lepton momentum twice. The jets are consid-
ered for analysis if they fulfill the kinematic requirements pr > 30GeV and || < 2.4.

For the identification of b jets, the DeepJet algorithm [62, 63] is used. It is based on an artificial
neural network (NN) that provides a discriminant to distinguish between b and other flavored
jets. Jets are categorized based on three thresholds of the discriminant and a jet belongs to the
category with the highest threshold that is smaller than that jet’s discriminant value. The tight,
medium, and loose thresholds have, depending on the jet pt and 7, efficiencies of about 50-70,
70-82, and 85-92%, respectively, and rejection probabilities of about 97, 85, and 55% for c jets
and about 99.5, 98, and 90% for non-heavy-flavor jets.

The missing transverse momentum vector g is computed as the negative vector sum of

the transverse momenta of all the PF candidates in an event, and its magnitude is denoted as



prT“iss [64]. The ﬁ{“iss is modified to account for corrections to the energy scale of the recon-
structed jets in the event.

The data was recorded in the years 2016-2018. For each year individual sets of simulations and
correction factors are used according to the actual data-taking conditions and detector config-
urations. Because of significant changes in the detector configuration affecting the tracking
efficiency, two separate sets of simulations and scale factors are used for 2016 data. Therefore,
four different data-taking periods are analyzed.

6 Event reconstruction

The reconstruction of the tt system is performed using an artificial NN. The goal is the correct
identification of detector-level objects as decay products of the leptonically (t,) and hadroni-
cally (t;,) decaying top quarks in e/pu+jets events. In the simulation, a quark or lepton at the
generator level can be spatially matched to the corresponding detector-level object. Of the pos-
sible candidates, we select the highest pr object within AR = 0.2. If a one-to-one assignment
to a corresponding detector-level object is possible for all of the particles in the generator-level
tt system, the event is labeled “reconstructable”, while all other e/p+jets events are called
“nonreconstructable”.

The input layer of the NN is a vector encoding kinematical information about the detector-
level objects and b tagging category for jets. The first four elements of the vector hold the
four-momentum of the electron or muon (p.(¢), p,(£), p.(£), E(£)), followed by (piss, p‘y“iss .
Finally, for up to eight jets the four-momentum and their b tagging category (p,, Pys Pz E, b cat.)
are stored. The NN is trained to assume the following order of the jets: the b jet in the decay
of t,, the b jet in the decay of t,, the down-type, and the up-type quark in the W boson decay.
The remaining jets are added in descending order of their pt. If there are fewer than eight jets,
the rest of the input vector is filled with zeros. The b tagging information also helps to identify
c jets from W boson decays, since 40-50% of the c jets are loosely b tagged. The input layer is
followed by seven fully connected layers, each with 220 nodes and the hyperbolic tangent as
the activation function. The output layer consists of a single node whose value is transformed
by a sigmoid function into the range [0, 1]. In total, the network has about 300 000 parameters.

The NN is trained using about 20M simulated e/ y+jets events. Events with one selected elec-
tron or muon, no additional isolated electron or muon with pr > 15GeV, and at least four
jets are used. The NN is trained using a batch size of 128 events and the ADAM algorithm [65]
for the minimization of the logistic loss function. For each event in a batch, the network is pro-
vided with all possible permutations for the four jets from the tt decay using up to eight jets per
event, i.e., for 4 (5, 6, 7, 8) jets the training includes 24 (120, 360, 840, 1680) input vectors. Correct
permutations are trained to have a response of one, while all other permutations should result
in zero. The training sample includes “nonreconstructable” events, i.e., those with no correct
permutation. During the training, the logistic loss function is monitored with a validation sam-
ple. The losses for the training and validation samples are compatible and no indication of
overtraining is observed. During the inference, for each event, all possible permutations of as-
signing detector-level jets to the corresponding tt decay products are successively provided as
input to the NN and the permutation resulting in the highest NN score Sy is used.

For the selected permutation, the neutrino four-momentum p, is calculated using the W bo-
son mass constraint (p, + py)*> = m3,, where pIss is taken as the pr of the neutrino. This
constraint results in a quadratic equation for the longitudinal component of the neutrino mo-
mentum p,(v). In the 39.1% of events where this equation yields no real solution, the x and



y components of IS are scaled separately to find a single solution under the condition of
a minimum modification of pT, i.e., in the transverse plane we choose the point with the
smallest distance from pM* for which a solution exists. This modified ps together with
the calculated solution for p,(v) form the neutrino momentum. If there are two solutions
of the quadratic equation, the invariant mass m(t,)> = (p, + p, + pbé)z is calculated for

both p, and the solution with m(t,) closer to m, is selected. This procedure identifies the
correct solution in 69.9% of the events. To enhance the fraction of correctly reconstructed
events and reduce the background contribution, event selection requirements on the recon-
structed particle masses |m(t,) —172.5GeV| < 50GeV, |m(t;,) —172.5GeV| < 50GeV, and
|m(W},) —80.4GeV| < 30GeV are imposed.

The distributions of Sy are shown in Fig. 1 for events in categories where either both (2b)
or exactly one (1b) of the jets identified as b jets from the tt decay are medium b tagged. In
these distributions, it can be seen that the data and the prediction are in agreement within the
uncertainty bands. We reject all events with Sy < 0.1 due to the low fraction of correctly
reconstructed events and the large contribution of background processes.
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Figure 1: Distribution of Sy in the 2b (left) and 1b (right) categories. The data (points) are
compared to the prediction (stacked histograms). The tt contribution is split into the correctly
and incorrectly reconstructed, “nonreconstructable”, and non e/ +jets events. The gray un-
certainty band indicates the combined statistical and systematic uncertainties in the prediction,
while the vertical bars on the points show the statistical uncertainty of the data. The ratios of
data to the predicted yields are provided in the lower panels.

The 2b and 1b categories are further split based on the value of Syy. In the 1b (2b) category
events belong to the Sy, category if Sy > 0.30 (0.36), while the remaining events are placed
in the Sy, category. These requirements define the signal categories for the analysis and were
systematically optimized to minimize the uncertainties in the expected spin polarization and
correlation coefficients.

In the simulation, the fraction of reconstructable e/ +jets events is 73% for 2b Sy;sp, 47% for
2b 54y, 64% for 1b Sygp,, and 38% for 1b Sy,,. The fractions of correctly reconstructed events
with respect to all signal and background events in the various categories are 46% for 2b Sy,
21% for 2b Sy, 37% for 1b Spiep,, and 15% for 1b S,,,,. Figure 2 shows these fractions as func-

tions of m(tt) together with the fraction of correctly reconstructed events with respect to all



reconstructable events.
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Figure 2: Reconstruction efficiency of the NN (left) and the fraction of correctly reconstructed
events (right) as a function of m(tt) estimated from the simulation. The values are shown
separately for the 1b and 2b categories with the S, and Sy, selections. The event counts
Neorreet and N, refer to the number of correctly reconstructed and “reconstructable” tt events,
respectively. All reconstructed events regardless of the process are labeled N,;;. The uncertainty
bands include all systematic uncertainties as detailed in Section 9.

7 Background estimation

The main background contributions of non-tt events are expected from QCD multijet, DY, W
boson, and single top quark production.

The shapes of the QCD multijet (multijet), and DY and W boson (EW) background distribu-
tions are estimated using a combined template of these backgrounds that is obtained from a
b-jet depleted control region (CR). The simulation of these backgrounds suffers from large sta-
tistical uncertainties due to their high cross sections but low fraction of events that pass the
selection. They contribute fractions of about 6.6% (1b Sy4y), 2.4% (1b Spigp), 1.1% (2b Sy4,,), and
0.2% (2b Spigp), i.e., the contribution in the 2b categories is negligible. The shape of the back-
ground distribution is estimated by performing the NN reconstruction for events without any
jet fulfilling the medium b tagging requirement. No selections on Sy are applied, but the
mass ranges of t,, t;,, and the W, boson are required as introduced in Section 6. These selection
requirements define the CR. The expected contributions of tt and single top quark events are
subtracted from the data in the CR. The simulated kinematic distributions obtained in the CR
are generally in agreement with the simulated distributions in the signal categories, as shown
for the 1b signal category in Fig. 3.

As systematic uncertainties in the background template shapes, we evaluate shape differences
between the CR and the signal categories. The definition of the CR is inclusive in Syy. This
choice has the advantage of maximizing the number of events in the CR while minimizing
the contribution from tt events. We obtain alternative shapes from additional control regions,
where the Sy, or Sy}, requirement of the corresponding signal category is also imposed. While
it is expected that these distributions are more similar to the real background, they suffer from
a small sample of events and large tt contributions. Therefore, they are only used to evaluate
the uncertainty in the background templates.

In the CR, there is an excess of about 20% in data. This excess is within the uncertainty in
the simulated event yield. However, to take into account a possible underestimation of tt
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Figure 3: Comparison of the cos(y) (left) and m(tt) (right) distributions of the simulated back-
ground in the control region (MCcgr) shown as the red line, and in the 1b S, signal region
(MCggr) shown as the stacked histograms of the multijet and EW components. The estimated
background template (Tgxg) shown as black markers corresponds to the data distribution in
the CR after subtracting the predicted tt and single top quark contributions. Variations of the
Tpkg are obtained applying the additional Sy selection for the 1b Sy, category (orange line)
and by taking into account the mismatch of the normalization in the CR when subtracting the
tt and single top quark contributions (blue line). All distributions are normalized to the event
yields predicted by the MCgg. The gray uncertainty band shows the statistical uncertainties in
the MCgr. The middle panels show the relative effects of the Ty variations. The lower panels
show the ratio of the MCcy and the Tgy to the MCgg.

production in the CR, an additional systematic uncertainty in the shape is obtained by scaling
the amount of subtracted tt and single top quark events by the ratio of the total observed and
simulated event yields in the CR, shown as the dashed light blue lines in Fig. 3.

The predicted ratio of the multijet and EW event yield (multijet+EW) in each signal category to
the corresponding CR is applied to normalize the background templates. This normalization
factor has a large statistical uncertainty due to the limited number of simulated events in the
signal categories. In addition, the observed differences between the predicted and observed
event yields in the CR are considered as a systematic uncertainty in the normalization of the
background. As a result, the normalization uncertainties can be as large as 50%, depending on
the category.

The obtained background predictions with their shape and normalization uncertainties are in-
cluded in the fits of spin polarization and correlation coefficients, as described in Section 8. The
normalization uncertainties are treated as uncorrelated among all categories, because of their
large statistical component from the simulation. The shape uncertainties are considered as un-
correlated among the categories to account for differences in their selection. In addition, the
uncertainties are assumed uncorrelated among the data-taking periods, because of the differ-
ences in the b tagging performances and selections. It has been verified that the results of the
analysis are not sensitive to these assumptions.

The contribution of single top quark production is about 4.0% (1b Sy,y), 2.2% (1b Sy;gp), 2.4%
(2b Siow), and 1.4% (2b Syep,). Templates according to their SM expectation are taken from the
simulation. We evaluate the relevant uncertainties in these templates (as described in Section 9):
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ME and PS scales, jet resolution and energy scales, and b tagging and lepton efficiencies. The
ME scale uncertainties are treated independently from the corresponding variations of the tt
simulation.

In Figs. 4-9, the distributions of several observables in all signal categories are shown with
the multijet+EW background estimation taken from the CR. The uncertainty bands include
statistical uncertainties and all systematic uncertainties detailed in Section 9, and are in general
dominated by uncertainties in the jet energy scale, the b tagging efficiencies, PS modeling, and
ME scales, with the latter contributing the largest uncertainty in the overall normalization.

8 Extraction of polarization and spin correlation coefficients

Following the formalism introduced in Eq. (4), the differential cross section X;,; can be written
as a linear combination of functions %, which depend on the angles ¢, ;) and 6, of the
decay products of the top quark and antiquark:

15
Lyt = Lo+ Z Q- (10)
m=1

The spin analyzing powers k and the cross section o;,,,,, are absorbed in the definitions of the
functions %,,,.

The values of the coefficients Q,, can be extracted by fitting ¥, with Eq. (10). This approach
is used at the generator level to obtain the QM“—the polarization and spin correlation of the
partonic top quarks as predicted by each of the tt simulations and their uncertainty varia-
tions. These fits are performed in bins of the additional observables m(tt) vs. |cos(6)| and
pr(t) vs. [cos(6)|. A binning in m(tt) of {300,400, 600,800, 13000} GeV with the first m(tt) bin
including a few underflow events, and in p(t) of {0,100,200,300,6500} GeV is used. In both
cases the bins are further divided into |cos(0)| bins with the boundaries {0,0.4,0.7,1}. As a
result we obtain the average values of the QMC in each of these bins. The knowledge of the
QMC facilitates the analytical calculation of ZMC as a function of $p(p) and 0,5 in each bin of
the additional observables.

For the measurement of the Q,,, we are interested in templates T}, that can be fit to the data and
describe only the effect of the corresponding coefficient. At the generator level, these templates
are LY., where L is the integrated luminosity. Accordingly, the T,, are the corresponding dis-
tributions of events at the detector level in the signal categories. The binnings at the generator
and the detector levels are the same. The T, include all tt events selected at the detector level,
meaning that they describe polarization and spin correlation effects of e/ +jets and tt back-
ground events, also referred as tt non e /u+jets. To avoid the full simulation of tt samples for
each Q,, we use a reweighting technique to evaluate the T,,. For this, each event is assigned
a weight equal to %,,/ZMC, which are evaluated for each event based on the generator-level
values of 6,5, Pp(p), and the bin determined by the additional observables m(tt) vs. |cos(0)|
or pr(t) vs. |cos(8)|. In this bin we know the average value of the QMC, as determined from
the fits of the X, at the generator level. The generator-level £, and the T,, for the 2b Sy,
category at the detector level are shown in Fig. 10. Here, the x axis shows the bin number of the
unrolled 4-dimensional distribution of Pp. cos((?p), Pp. and Cos(ﬁp), listed from the outermost
to the innermost variable, where cos(Gp(p)) uses two bins: {—1,0,1}, and Pp(p) IS divided into
four bins: {—m, —7/2,0, 7w/2, 7}, resulting in a total number of 64 bins.

In general, the Q,, are not constant within a bin. At the generator level, the functions %, do
not depend on the kinematic properties of the top quarks, so they factorize and the average
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Figure 4: Distribution of m(tt) in all four categories. The data (points) are compared to the
prediction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
split into the correctly and incorrectly reconstructed, “nonreconstructable”, and non e/ u+jets
events. The gray uncertainty band indicates the combined statistical and systematic uncertain-
ties in the prediction. The vertical bars on the points show the statistical uncertainty of the data.
Ratios to the predicted yields are provided in the lower panels.



12

138 tb™ (13 TeV) 138 tb™ (13 TeV)
F.: 10° - CMs s, ! Daa [l T correct “'; CcMS 1b S, i Data [ €t correct
) [ ttincorrect [ tf nonreco. () 10° [ ttincorrect [ tt nonreco.
O, 10° I T non e/p+ets | Single t O, I t© non e/p+jets | Single t
< I Multijet+EW Uncertainty = 10° I Multijet+EW Uncertainty
S S
= =
< s 1w
[an] m
E 2 10
c c
) o
> >
| L
107
o] 8 1.4 o] 8 1.4
| & C2 1.
®eccccccccccncecs o B Bececeeet inen.an
0.8 ¢ i ‘ 0.8 . .. I} ¥ * , !
0.6 ; ; ; ; ; ; i i 0. i ; ; i ; ; ; i
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
p,(0) [GeV] p,(0) [GeV]
138 fb™ (13 TeV) 138 fb™ (13 TeV)
".; [ CMS 2bs,, 1 Daa Il tf correct “'; 10° & CMS 2b Sy, i Data Il tt correct
) 10 I ttincorrect [ tf nonreco. () P ttincorrect [ tt nonreco.
O, Ml i non e/p+jets | Single t O [l t non e/p+jets | Single t
IS 10* I Multijet+EW Uncertainty = I Multijet+EW Uncertainty
S S
= =
£ £
[an] m
~ ~
a2 2
c c
) o
> >
1| L
Slo 14 [olRe;
oL 1.2 | L
Qo ~ I ' Ol ™
e s v 1 1 leesoeaains i
08 : f 08 o . o, ¢
0.6 0.6

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

p,(t) [GeV] p,(t) [GeV]
Figure 5: Distribution of pr(t) in all four categories. The data (points) are compared to the
prediction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
split into the correctly and incorrectly reconstructed, “nonreconstructable”, and non e/ u+jets
events. The gray uncertainty band indicates the combined statistical and systematic uncertain-
ties in the prediction. The vertical bars on the points show the statistical uncertainty of the data.
Ratios to the predicted yields are provided in the lower panels.



13

138 fb™ (13 TeV) 138 fb™ (13 TeV)
< CMS 1S i Data I t correct < C cMS 1S, i Data I t correct
g 30000 o I ttincorrect [ tf nonreco. g ign I ttincorrect I tf nonreco.
- Ml tT non e/p+ets Single t — 10000~ Il tT non e/p+jets’  Single t
g 25000 I Multijet+EW Uncertainty ‘2 I Multijet+EW Uncertainty
g 2 8000
W 20000 w

6000
15000 r
10000 40001
5000 2000
slg 14 slg 1.4
m S m S
8 1.2 alg 1.21
08 gaetceccece®oco 0000000 rcctccrccrcetsr ocrccres 08 *ii".0'"""""""“""“'"""""""""'
0.6 ; ; i i ; ; i i ; 0.6 i ; ; ; i ; i i i
-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
cos(8,) cos(8,)

138 tb™ (13 TeV) 138 fb™ (13 TeV)
I 40000 CMS 2bs,, 1 Data I f correct S F cMms 2, 1 Data Il f correct
o £ [ ttincorrect [ tt nonreco. S 30000 I ttincorrect 71 tt nonreco.
— 35000 Il tT non e/p+ets.  Single t - C Il tT non e/p+jets  Single t
2 E I Multijet+EW Uncertainty| 2 ¥ Multijet+EW Uncertainty|
$ 30000 - 5
o g i

25000 -
20000
15000 ;
10000 ;
5000 ;
slg 14 o
©| © ©
a 1'21 a
08 . 08i" 000%000,%0000°,0000000000°,%,%000000%0%00000009
0.6 ; ; i i ; ; i i ; 0.6 i ; ; ; i ; i i i
-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
cos(8,) cos(8,)

Figure 6: Distribution of cos(f,,) in all four categories. The data (points) are compared to the
prediction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
split into the correctly and incorrectly reconstructed, “nonreconstructable”, and non e/ u+jets
events. The gray uncertainty band indicates the combined statistical and systematic uncertain-
ties in the prediction. The vertical bars on the points show the statistical uncertainty of the data.
Ratios to the predicted yields are provided in the lower panels.
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Figure 7: Distribution of ¢, in all four categories. The data (points) are compared to the pre-
diction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
split into the correctly and incorrectly reconstructed, “nonreconstructable”, and non e/ u+jets
events. The gray uncertainty band indicates the combined statistical and systematic uncertain-
ties in the prediction. The vertical bars on the points show the statistical uncertainty of the data.
Ratios to the predicted yields are provided in the lower panels.
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Figure 8: Distribution of cos()) in all four categories. The data (points) are compared to the
prediction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
split into the correctly and incorrectly reconstructed, “nonreconstructable”, and non e/ u+jets
events. The gray uncertainty band indicates the combined statistical and systematic uncertain-
ties in the prediction. The vertical bars on the points show the statistical uncertainty of the data.
Ratios to the predicted yields are provided in the lower panels.



16

138 tb™ (13 TeV)

CcMS s, 1 Data [ ] tE correct
[ ttincorrect [ tt nonreco.
Ml tT non e/p+ets Single t

I Multijet+EW Uncertainty|

Events / 0.04

®e0eecectcceecsce®ece t0e00 0000000000000 000 00000

-1 -08-06-04-02 0 02 04 06 08 1
Ccos

138 fb (13 TeV)
cMS 2bs,, I Data [ ti correct
40000 [ tT incorrect [ tt nonreco.
Ml tT non e/p+ets  Single t
I Multijet+EW Uncertainty|

Events / 0.04
w
o1
o
o
o

IReeeessevssssssesssssevssosssvssvsssvesssssvessass

0.6 i i i i i i ; ; i
-1 -08-06-04-02 0 02 04 06 08 _1
Ccos

138 tb™ (13 TeV)
g CMS 1b Sy, i Data -tf correct
S [ ttincorrect [ tt nonreco.
- Il tT non e/p+jets’ Single t
*2 ¥ Multijet+EW Uncertainty|
()
>
L
ol -qc; 1.4
T2 1.2
DD- l- $0000,00040, 0000000,,°%,%%00,0°%,%00c%00%0 000"
0.8 . . . e . . .
0.6 ; : i ; ; ; i : :
-1 -08-06-04-02 0 02 04 06 08 1
cos(
138 tb™ (13 TeV)
S CMS 2b Sy, i Data I f correct
o 35000 [ ttincorrect  [7 tf nonreco.
- Il tT non e/p+jets’  Single t
g ¥ Multijet+EW Uncertainty|
()
>
L
ot -ac). 1.4
T2 1.2
DD- l-.-.o.o.'-..o..o...-.--..-.o..c..--o....oO-a.....-
0.
0.6 :

-1 -08-06-04-02 0 02 04 06 08 _1
Ccos

Figure 9: Distribution of cos(¥) in all four categories. The data (points) are compared to the
prediction (stacked histograms). The tt and single top quark contributions are taken from the
simulation, while the multijet+EW background is obtained from the CR. The tt contribution is
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and 6,;) for the individual coefficients of the polarization vectors and the spin correlation
matrix for events with 400 < m(tt) < 600GeV and |cos(0)| < 0.4. The LL,, (red lines) are
the distributions at the generator level in the full phase space, and the T,, (blue lines) are the
distributions in the 2b Sy, category for the 2018 data. For the purpose of illustration, the
events are required to be reconstructed and generated in the same m(tt) vs. |cos(6)| bin. The
detector-level distributions are enhanced by a factor of 40 to improve their visibility.
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values of the Q,, are fitted in each bin. However, at the detector level, the T,, do change as
a function of the top quark and antiquark kinematic properties due to selection requirements
and detector effects. Therefore, it is important to perform the measurements in sufficiently
small bins such that either the Q,, or the T, are approximately constant within each bin. If the
T,, vary significantly within a fitted bin, the measured Q,, could be biased if the values of the
coefficients change within a bin in a different way than in the SM simulation. The binnings in
m(tt) vs. |cos(0)| and pr(t) vs. |cos(6)| were selected to minimize the bias due to nonconstant
T,, templates within the bins. The way the templates are constructed ensures that a template
fit to the SM prediction extracts the correct Q,,, i.e., the bias is minimized for SM-like data.

The same reweighting procedure is used for the D and D measurements, but decomposing the
distribution of cos() and cos() into constant and linear terms as given by Eq. (6). In these
cases we use 10 equally sized bins in cos (), and cos({) for all measurements. A finer binning
in m(tt) of {300,400, 500,600,700, 800,900,1000, 13000} GeV and p1(t) of {0,50,100, 150,200,
250,300,400, 6500} GeV is selected for the D and D measurements.

We perform a maximum likelihood fit combining the information of the four selections
(2b Spigh, 2b Siw, 1b Spigh, 1b Sigy,) in the four data-taking periods, for a total of 16 categories.
The statistical model describes the total number of events in each bin

Nij’n’(an/ {an}/ {vk}) = Sij’n’(an/ {an}/ {Vk}) + Bij’n’({vk})/ (11)

with i denoting the category and j’ referring to a bin in the 1-dimensional concatenated detector-
level distribution of ¢, () and 0. The index n’ (n) refers to a bin of the m(tt) vs. |cos(0)| or
pr(t) vs. |cos(6)| distribution at the detector (generator) level. The normalization parameters
a, and the Q,,, (or D,,, D,) are defined separately for each bin n and are free parameters in
the fit. The S;;, and B;j,, are the tt and background contributions, respectively, and both can
depend on the nuisance parameters {v,} modeling the variation of the expected event yields
due to systematic uncertainties. The tt contribution takes the form

15
Sij’n’ (an/ {an}r {Vk}) = Zan (TiOnj’n’ ({Vk}) =+ Z_:l anTimnj’n’ ({Vk}))r (12)

where Tj,, ;s are the detector-level distributions (templates) obtained by reweighting the tt
simulation to the individual components proportional to the Q,, and the templates Ty,
correspond to the constant terms. Finally, the function

- 210g <L (anr {an}/ {Vk})) =2 Z [dij’n’ log (Nij’n’ (anf {an}/ {Vk}>)

it
— Niji (@, {Quin }» {Vk})} —2log (G({Vk})> (13)

is minimized with respect to the value of the parameters 4,, Q,,,, and v;. Here, d;;,, are the
observed event yields and G({v,}) describes the Gaussian constraints of the v;. Goodness of
fit tests indicate good agreement between the data and the fitted model with p-values [66] of
0.80-0.95 for all fits. We tested that the Gaussian approximation can be used to describe the
distributions of the uncertainties in the measured parameters. This allows us to use Gaussian
error propagation when evaluating quantities derived from the measured parameters.

In Figs. 11-12, the pre- and post-fit distributions are shown for the full matrix measurement
in the 2b Sy, category. The pre-fit model uses the POWHEG+PYTHIA predictions. In addition,
a model without any polarization and spin correlation is shown as a blue line to demonstrate
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those effects. The 2b Sy, category is shown here as an example since it is the category with
the largest effects from polarization and spin correlation. The agreement between the data and
the model is very similar in the other categories.

The same strategy is used to extract D, (D,,) directly. In this case, j’ represents a bin of cos(x)
(cos(X))- The pre- and post-fit distributions in the 2b Sy, category of the D and D mea-
surements in bins of m(tt) vs. |cos(6)| are presented in Figs. 13-16, respectively. The post-
fit model describes the data well and no significant deviations are observed in any of the
m(tt) vs. |cos(0)| or pr(t) vs. |cos(@)]| bins.

A possible bias in the measured Q,,,, (D,,, D,)) was estimated by performing fits on simulations
with variations of the coefficients of up to +0.3, which exceeds the maximum observed dif-
ference between the expected and measured values. We found that any bias turns out to be
negligible compared to the other uncertainties in the measurements. We also performed the
fit using the POWHEG+HERWIG and MADGRAPH5_aMC@NLO+PYTHIA simulations as pseudo-
data and found that we can extract the correct values of the coefficients.

9 Systematic uncertainties

Several theoretical and experimental systematic uncertainties affect the predicted event yields
and are taken into account for the extraction of the Q,,,, (D,,, D,)). Their templates are obtained
from alternative or reweighted simulations corresponding to variations in a specific uncertainty
source, usually by one standard deviation. We take into account the following theoretical un-
certainties:

e The effect of higher-order contributions to the ME calculation is estimated by vary-
ing the renormalization y,. and factorization p; scales up and down by a factor of
two. Distributions for these variations are obtained using event weights in the
POWHEG+PYTHIA simulation. The variations of y, and y are parameterized in the
fit by two independent nuisance parameters. The ME scales of tt and single top
quark production are treated separately.

e The difference in the py(t) spectrum between the POWHEG+PYTHIA NLO and the
NNLO calculations, obtained with POWHEG MINNLO+PYTHIA exceeds what is ex-
pected based on the y, and y; variations. Therefore, an additional uncertainty is
introduced, whose +1 standard deviation variation corresponds to the reweighting
of the NLO to the NNLO simulation using a NN-based method [67, 68]. The NN-
based approach is used to reduce the statistical fluctuations in this uncertainty.

e First order virtual electroweak corrections are calculated with HATHOR and applied
to LO tt events obtained with MADGRAPH5_.aMC@NLO+PYTHIA. The ratio to the
LO simulation without electroweak corrections is determined as a function of m(tt)
and |cos(0)|. These ratios are used as event weights to correct the POWHEG simu-
lation. The differences between the electroweak corrected and the default POWHEG
simulation are taken into account as uncertainty.

e The 100 Hessian variations of the NNPDF3.1 set plus the variation of strong cou-
pling ag are taken into account as PDF uncertainties. For each of these variations a
nuisance parameter is added. The distributions are obtained using the correspond-
ing event weights. The PDF variations are correlated for tt and single top quark
production.

e The uncertainties in the initial- and final-state parton showers are estimated by vary-
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Figure 11: Pre- and post-fit distributions comparing the data (points) to the POWHEG+PYTHIA
simulation (stacked histograms) for the full matrix measurement in bins of m(tt) vs. |cos(6)|
in the 2b Sy, category. The x axis shows the bins of the unrolled 4-dimensional distribution
of ¢5, cos(6;), ¢p, and cos(6,,), listed from the outermost to the innermost variable in each
of the m(tt) vs. |cos(6)| bins. The boundaries of the |cos(0)| and m(tt) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, tt
events generated in two selected m(tt) vs. |cos(6)| bins are shown in different shades of red.
All other tt contributions are shown in pink. A model without any polarization and spin corre-
lation is shown as a blue line. The gray uncertainty band indicates the combined statistical and
systematic uncertainties in the prediction. The vertical bars on the points show the statistical
uncertainty. Ratios to the predicted yields are provided in the lower panels.

138 fb™ (13 TeV)
‘2 10° } CMS 2b Shigh ¥ Data 5 ttgen: all g)ther bins
(3] . . 400 < m(tt) < 600 GeV, . m(tt) > 800 GeV,
& pre-fit L toen: o5\ Cos(@)] < 0.7 . 98 0.4 < |cos(8)] < 0.7
104 Single t Multijet+EW
tt no correlation Uncertainty
0 ) 4 I | | 1
’ w W i|l| L J#“l ﬁ N
e Jﬂﬂ .J{I ' !
M.l 11 Ly 1y T " WTRRFT AT i
28T ‘ , -
o8 B 10Ul gl A o 0 L R M gl g 0
= ¥ R T Tt ] i it =t T
T s t ' 5 n
o :
@ Ocos®) U ¢ Ocos@®)
|cos(®)] O 0.4 P P 0% "0 1.0
m(tf) [GeV]300 400
138 fb™ (13 TeV)
‘2 10° } CMS 2b Shigh ¥ Data t gen: all other bins
[ N 3 . 400 < m(tt) < 600 GeV, 3 . m(tt) > 800 GeV,
Z post-fit I gen: ) 'C \co(s?e)| <0.7 E i gen: 0.22 cos(@)| < 0.7
10% Single t Multijet+EW
Uncertainty
10° o]
[ .n . o
10 1 fl
LN .
2712 } }
oa 1y A i
TS t
X308 } { t
@ Ocos®) 0@ Ocos@®)
|cos(®)] O 0.4 P % P 1.0
m(tf) [GeV]300 400
138 fb™ (13 TeV)
2 o | CMs 2b Sy, I Daa , gen: s otrer s
o1l " . 400 < m(tt) < 600 GeV, . m(tt) > 800 GeV,
LI>J pre-fit E @ gen: 0.4 <|cos(8)| < 0.7 . gen: 0.4 < |cos(8)| < 0.7
Single t Multijet+EW
104 tt no correlation Uncertainty

5 1.4
o
o012
g o 1k
S=o08
D: il
D06
@ Ocos®) 0 @ Ocos@®)
|cos(®)] O 0.4 [ ") P P 1.0
m(t}) [GeV]400 600
138 b (13 TeV)
‘g 10° CMS 2b Shigh I Data tt gen: all other bins
7] ; . 400 < m(tf) < 600 GeV, . m(tf) > 800 GeV,
Lﬁ pOSt-fIt E € gen: 0.4 <|cos(0)] <0.7 N A gen: 0.4 <|cos(0)] <0.7
Single t Multijet+EW
10* Uncertainty
10°
2812
g [a
©
€308
@ Ocos®) 0@ Ocos@®)
|cos(®)| O 0.4 P rr) P P 1.0
600

m(t}) [GeV]400



21

105 138 fb™ (13 TeV)
‘2 CMS 2b Shigh ¥ Data t gen: all other bins
o ) . 400 < m(tf) < 600 GeV, . m(tf) > 800 GeV,
& pre-fit I gen: S @) < 0.7 I tgen: 700 Cos@) < 0.7
104 Single t Multijet+EW
tt no correlation Uncertainty
10°
5 1.4
o
So12
Sa g
$=o0s8
o .
906 :
@ Ocos®) U ¢ Ocos@®)
|cos(®)] O 0.4 P P 0% "0 1.0
m(tf) [GeV]600 800
138 fb™ (13 TeV)
‘2 CMS 2b Shigh ¥ Data t gen: all other bins
o . 2 Lon. 400 < m(tf) < 600 GeV, 2 1en. M(th) > 800 GeV,
o post-fit I gen ) S sy < 0.7 I gen: 790 os@) < 0.7
10 Single t Multijet+EW
Uncertainty
. L ) Cd )
.. . . . HN o . %o e o L A L
13-,.. e o o, o s fs ot i, o - b A R A A P R
0 -1 ....- ‘... ".'.-. ..."0. .-,'.-? AT .‘.. - B ". o * * ". .
e g 1.2
g a1
©
€308 ,
@ 0 cos(ep) 0@ Ocos(®)
|cos(®)] O 0.4 P P ”o07 1.0
m(t) [GeV]600 800
138 fb™ (13 TeV)
‘g CMS 2b Shigh ¥ Data tt gen: all other bins
) . . 400 < m(tf) < 600 GeV, - m(tf) > 800 GeV,
LI>J 10 pre-fit E @ gen: 0.4 <|cos(8)| < 0.7 . gen: 0.4 < |cos(8)| < 0.7
Single t Multijet+EW
tt no correlation Uncertainty
10°
O N ‘-_4'. A mukla Bl
L & n B 5 e _,-u"-. AR - ._,x: aw u PN
S 5 Vil *. ; ] o ~ ) e
5 1.4
o
012
g a1
T =
=08
D06 :
@ 0 cos(ep) 0@ Ocos(@®)
|cos(®)] O 0.4 [ P "0 1.0
m(t}) [GeV]800 13000
138 b (13 TeV)
‘g CMS 2b Shigh I Data tt gen: all other bins
7] ; . 400 < m(tf) < 600 GeV, . m(tf) > 800 GeV,
Lﬁ 10* pOSt—fIt E € gen: 0.4 <|cos(0)] <0.7 N A gen: 0.4 <|cos(0)] <0.7
Single t Multijet+EW
Uncertainty
10° . . T et aee i
we % 0ty Tt % S e 8 ’ .
LY B E ¥ .
& ¢
=3 1.2 { i {
Sa
g s 1 H * [II * f *
X308 t ;
@ 0 cos(ew) O ¢ Ocos(®)
|cos(®)| O 0.4 P P "0 1.0
13000

m(tf) [GeV]800

Figure 12: Pre- and post-fit distributions comparing the data (points) to the POWHEG+PYTHIA
simulation (stacked histograms) for the full matrix measurement in bins of m(tt) vs. |cos(6)|
in the 2b Sy, category. The x axis shows the bins of the unrolled 4-dimensional distribution
of ¢5, cos(6;), ¢p, and cos(6,,), listed from the outermost to the innermost variable in each
of the m(tt) vs. |cos(6)| bins. The boundaries of the |cos(0)| and m(tt) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, tt
events generated in two selected m(tt) vs. |cos(6)| bins are shown in different shades of red.
All other tt contributions are shown in pink. A model without any polarization and spin corre-
lation is shown as a blue line. The gray uncertainty band indicates the combined statistical and
systematic uncertainties in the prediction. The vertical bars on the points show the statistical
uncertainty. Ratios to the predicted yields are provided in the lower panels.
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Figure 13: Pre- and post-fit distributions of cos(x) comparing the data (points) to the
POWHEG+PYTHIA simulation (stacked histograms) for the D measurement in bins of
m(tt) vs. |cos(0)] in the 2b Sy, category. The boundaries of the [cos(0)| and m(tt) bins are
labeled and indicated by dashed and solid lines, respectively. For the illustration of resolution
effects, tt events generated in two selected m(tt) vs. |cos(0)| bins are shown in different shades
of red. All other tt contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined
statistical and systematic uncertainties in the prediction. The vertical bars on the points show
the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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Figure 14: Pre- and post-fit distributions of cos(x) comparing the data (points) to the

POWHEG+PYTHIA simulation (stacked histograms) for
m(tt) vs. |cos(0)] in the 2b Sy, category. The boundarie

the D measurement in bins of
s of the |cos(0)| and m(tt) bins are

labeled and indicated by dashed and solid lines, respectively. For the illustration of resolution

effects, tt events generated in two selected m(tt) vs. |cos(6

)| bins are shown in different shades

of red. All other tt contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined
statistical and systematic uncertainties in the prediction. The vertical bars on the points show
the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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Figure 15: Pre- and post-fit distributions of cos(f) comparing the data (points) to the
POWHEG+PYTHIA simulation (stacked histograms) for the D measurement in bins of
m(tt) vs. |cos(0)] in the 2b Sy, category. The boundaries of the [cos(0)| and m(tt) bins are
labeled and indicated by dashed and solid lines, respectively. For the illustration of resolution
effects, tt events generated in two selected m(tt) vs. |cos(0)| bins are shown in different shades
of red. All other tt contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined
statistical and systematic uncertainties in the prediction. The vertical bars on the points show

the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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Figure 16: Pre- and post-fit distributions of cos(f) comparing the data (points) to the
POWHEG+PYTHIA simulation (stacked histograms) for the D measurement in bins of
m(tt) vs. [cos(0)] in the 2b Sy;.p, category. The boundaries of the [cos(6)| and m(tt) bins are
labeled and indicated by dashed and solid lines, respectively. For the illustration of resolution
effects, tt events generated in two selected m(tt) vs. |cos(0)| bins are shown in different shades
of red. All other tt contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined
statistical and systematic uncertainties in the prediction. The vertical bars on the points show

the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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ing the scales for the different splittings g — qq, g — gg,q — qg,andb — bgbya
factor of two, resulting in a total of eight independent variations. The corresponding
distributions are obtained using event weights. The parton shower scale variations
are correlated for tt and single top quark production.

e The scale that separates the phase space of the first QCD emission into soft and hard
parts is controlled by the /4., parameter for POWHEG simulations. The values used

for the CP5 tune are 1.387027 m,. Separate samples produced with the different val-
ues Of l1q,mp, are used to obtain the corresponding distributions. To reduce the impact
from statistical fluctuations we employ the NN based approach [67] to determine the
weights applied to the central simulation based on the kinematic properties of top
quarks determined at the generator level.

¢ To estimate the effect of the uncertainty in m,, a variation of 0.5 GeV [48] is taken into
account. For the evaluation of the expected event yields, we use the m;-dependent
tt production cross sections of 843 (820) pb for m, = 172.0 (173.0) GeV [69].

e The uncertainties in the underlying event modeling are estimated using separate
samples that represent an envelope of the uncertainties in the PYTHIA CP5 tune [40].

e The fraction of leptonically decaying b hadrons is changed according to the known
uncertainty in the branching fraction using event-based reweighting [1].

e The uncertainty in the color reconnection is assessed using an alternative model
where the reconnection of colored particles from resonant decays is activated in
PYTHIA, while this is deactivated in the default tune. Other variations use the gluon
move and the QCD-inspired models [70, 71]. The differences between these three
and the default samples are added as symmetric uncertainties.

o At the tt production threshold, theoretical calculations based on nonrelativis-
tic QCD [72] predict tt bound states and other effects not included in the
POWHEG+PYTHIA simulation. To estimate their effects on the measurement, we
mimic the theoretical calculation by adding a pseudoscalar particle 77, with a mass
of 343 GeV and a width of twice the top quark width. It is produced in gg fusion and
decays as 17, — WbWb. This is calculated using MADGRAPH5 aMC@NLO+PYTHIA
and normalized using the cross section of 6.43 pb from Ref. [73]. The difference ob-
served using this model is used to estimate the uncertainty due to bound-state ef-
fects.

All theoretical uncertainties affect all data-taking periods in the same way and the correspond-
ing nuisance parameters are fully correlated between them.

We take into account the following experimental uncertainties:

e The integrated luminosities for the 2016, 2017, and 2018 data-taking years have 1.2—-
2.5% individual uncertainties [74-76], while the overall uncertainty for the 2016—
2018 period is 1.6%.

e The prediction of the number of pileup interactions in simulation is assuming a
total inelastic proton-proton cross section of 69.2mb [77]. Changes in the simu-
lated pileup multiplicity are estimated by varying the total inelastic cross section
by +4.6%. Templates with enhanced and reduced pileup are obtained by applying
event weights. This uncertainty is treated as fully correlated between the data-taking
periods.

o The jet energy scale uncertainties are split into 19 different sources [61]. The com-
bined uncertainties are pt- and r7-dependent, with a magnitude that varies between
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0.3 and 1.8% for the relevant jets. In addition, variations are applied depending on
the true generated type to b jets, c jets, uds jets, and gluon jets. The correlations
among the years are evaluated for each source. The differences in the distributions
are obtained by rescaling the jet momenta in the simulation.

e Separate uncertainties for the jet energy resolution are taken into account for jets
in the endcap and barrel regions by varying the resolution corrections within their
uncertainties. These uncertainties are uncorrelated among the years.

e The dominant uncertainty in the p™i* is due to the jet energy calibration. Therefore,
the pss is also recalculated whenever the jet momenta are rescaled. An additional
contribution to the uncertainty due to particles that do not belong to the selected jets
is estimated [64]. This uncertainty is uncorrelated among years.

e Uncertainties in the electron and muon reconstruction and trigger efficiencies are de-
termined [58]. For each flavor a statistical and systematic uncertainty in the derived
scale factors are taken into account, where the statistical component is uncorrelated
and the systematic component is correlated among the years. In addition, an overall
normalization uncertainty of 0.5% is used to account for the differences in DY and
tt events.

e Since the analysis uses three b tagging categories as input to the NN, we allow for
separate variations of the uncertainties in the scale factors for the tight, medium, and
loose b tagging selections [62, 78]. The variations are performed by recalculating an
event probability using all jets and their true type. The uncertainties in the correction
factors for b and c jets are split into several sources such as statistical, jet energy cor-
rection, and pileup uncertainties. The statistical uncertainty is uncorrelated among
the years, while the rest is treated as correlated. The uncertainties in the correction
factors for the light jet flavors are split into a correlated and an uncorrelated compo-
nent.

e During the data-taking, a gradual shift in the timing of the inputs of the ECAL L1
trigger in the region || > 2.0 and of the muon trigger caused a specific trigger
inefficiency. Correction factors as functions of pr, 77, and time are computed from
data and applied to the simulation. The statistical uncertainties in these correction
factors are taken into account.

e The uncertainties in the background estimations are detailed in Section 7.

For each bin, an additional nuisance parameter is added [79] whose variation corresponds
to the statistical uncertainty in the central templates. It is known that statistical fluctuations
are also important for the systematic variations. In particular, if the variations are evaluated
based on statistically independent simulations, the statistical effects can easily reach or even
exceed the magnitude of the systematic effect. Therefore, it is often helpful to require a certain
smoothness of the relative systematic effects. This reduces unphysical constraints of the related
nuisance parameters. A 6(3)-dimensional smoothing [80] is applied for the full matrix (D and

D) measurements.

10 Results

From the fits to the data we obtain the values of Q,,, (D,, D,) in bins of m(tt) vs. |cos()| or
pr(t) vs. |cos(6)|. In the following, we concentrate on regions of the phase space that are of
special interest, e.g., where a higher level of entanglement is expected. Most of the presented
results are obtained from the combination of several m(tt) vs. |cos(6)| or pr(t) vs. |cos(8)]| bins.
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With the tt event yields of the post-fit model at the generator level Y,,, and the normalization
factors a,, we obtain the total fitted event yields K,, = Y,,4,.. The result in a combined bin g is
then obtained by averaging the measurements from bins {n} using

A 1
ng

= K, Q- 14
ZKnn;g Q (14)

neg

The uncertainties in ng are calculated using error propagation taking into account the uncer-
tainties and their correlations in the event yields and the Q,,, as obtained from the fit. The
combined normalization factors are obtained based on the K,, sum

=y LK (15)

n neg

neg

where Y, are the tt yields of the pre-fit model at the generator level.

Following Refs. [9, 25], we use the new observables Ci>. = C,, &+ C,,, er,i = Cy £ (i, and
C;—Lk = C,; £ Cy,, where for the calculation the covariances are taken into account. These are
either even or odd under parity (P) and charge-parity (CP) transformations.

The inclusive full matrix measurements based on the m(tt) vs. |cos(0)| and py(t) vs. |cos(6)|
fits are obtained from the combination of all bins in the additional observables, and are shown
in Fig. 17. The displayed values of Ag are calculated following Eq. (5).

As expected, both binnings lead to consistent results, where the pr(t) vs. |cos(f)| binning
has a higher expected and observed precision. For the inclusive coefficients, the values
predicted by POWHEG+PYTHIA, POWHEG+HERWIG, MADGRAPH5_.aMC@NLO+PYTHIA, and
MINNLO+PYTHIA are similar. The measured coefficients are in agreement with the predictions
and consistent with the previous measurement in the tt dilepton channel [9]. The measured
polarizations are all compatible with zero. Only the diagonal elements of C differ from zero
with the exception of C}, which is the only even coefficient under P and CP transformation. In
Fig. 18 the results of the inclusive D and D measurements obtained with the m(tt) vs. |cos(0)|
and pr(t) vs. |cos(0)| binnings are shown.

Entangled quantum states are expected at the threshold of tt production and also at high m(tt)
and pr(t) in events with low |cos(6)| [21]. Therefore, taking advantage of the binning in the ad-
ditional observables, we can obtain the spin correlation coefficients and thus test the entangle-
ment criterion in several m(tt) and p1(t) regions and its dependence on |cos(6)|. Figures 19-22
provide the results of the full matrix measurements including the Ag values in bins of m(tt)
and pr(t), i.e.,, we combine the |cos(#)| bins in each of these regions. While POWHEG+HERWIG
predicts a slightly smaller spin correlation than the other simulations, the measured coefficients
are compatible with all predictions. With these measurements, the differences in the spin corre-
lation for various kinematic regions become clearly visible. In particular, for the measurement
in pr(t), we observe the signs of C,, and Cy; changing from positive to negative with increasing
pr(t), indicating the transition from the spin-singlet to the spin-triplet as the dominant state.

At the tt production threshold, the most significant results for entanglement using the full
matrix measurement, based on the criterion Ag > 1, are obtained for m(tt) < 400GeV and
for pr(t) < 100GeV. We evaluate the significance of the deviation from the separable state
hypothesis with Ag = 1 based on the uncertainties in the measured values of Ag. However, the
observed significance for entanglement does not exceed 2 standard deviations.
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Figure 17: Results of the inclusive full matrix measurement obtained by combining the bins of
the m(tt) vs. |cos(8)| (upper) and pr(t) vs. |cos(6)| (lower) measurements. The measurements
(markers) are shown with the statistical uncertainty (inner error bars) and total uncertainty
(outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG,
MADGRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panels, results are pre-
sented with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is
displayed with ME scale and PDF uncertainties. The values of A are displayed for each mea-
surement.
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Figure 18: Results of the inclusive D and D measurement obtained by combining the bins
of the m(tt) vs. |cos(6)| and pr(t) vs. |cos(f)| measurements. The measurements (markers)
are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer er-
ror bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panel, results are presented
with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is dis-
played with ME scale and PDF uncertainties.

The D and D measurements are presented in bins of m(tt) and pr(t) in Fig. 23. The finer
pr(t) binning in the D measurement allows studying events with py(t) < 50GeV, where a
significance for entanglement of 3.5 (4.4) standard deviations is observed (expected). A similar
analysis performed in the dilepton channel [15] has higher sensitivity for entanglement at the
tt production threshold. Overall POWHEG+HERWIG predicts slightly higher values of D in the
threshold region, but the measured coefficients remain compatible with all predictions.

Figure 24 shows the contributions of various uncertainty sources to the uncertainties in the
measured Ag, D, and D in bins of m(tt). In general, the uncertainties in the results are domi-
nated by the statistical contribution, with the exception of the D measurement, where system-
atic effects are more important at low m(tt). The uncertainty in the b tagging calibration is the
dominant source, but depending on the bin, theoretical uncertainties can be of similar sizes, in
particular ME and PS scales.

We further study the results in the region |cos(0)| < 0.4. These are shown in bins of m(tt) in
Figs. 25-26 for the full matrix and in Fig. 27 for the D measurement. The most significant obser-
vation (expectation) of entanglement is obtained for m(tt) > 800GeV and |cos(6)| < 0.4, with
6.7 (5.6) standard deviations for the full matrix measurement and 6.1 (5.5) standard deviations
for the D measurement. The D measurement does not have any sensitivity for entanglement
in this region, since the diagonal elements of the C matrix do not all have the same sign.

Figure 28 summarizes the observed (expected) significance of the measured entanglement vari-
ables. In the upper panels of Fig. 28, the measured results for D (left) near the tt produc-
tion threshold and for D (right) at high m(tt) and low |cos()| are shown. For the full matrix
measurement (lower), the Ay results with the highest expected significance are shown for the
threshold and high-m(tt) kinematic regions.
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Figure 19: Results of the full matrix measurement in bins of m(tt). The measurements (mark-
ers) are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer
error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panels, results are presented
with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is dis-
played with ME scale and PDF uncertainties. The values of Ag are displayed for each measure-
ment.
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Figure 20: Results of the full matrix measurement in bins of m(tt). The measurements (mark-
ers) are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer
error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panels, results are presented
with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is dis-
played with ME scale and PDF uncertainties. The values of Ag are displayed for each measure-

ment.
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Figure 21: Results of the full matrix measurement in bins of p1(t). The measurements (mark-
ers) are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer
error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panels, results are presented
with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is dis-
played with ME scale and PDF uncertainties. The values of Ag are displayed for each measure-
ment.
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Figure 22: Results of the full matrix measurement in bins of p1(t). The measurements (mark-
ers) are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer
error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right panels, results are presented
with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is dis-
played with ME scale and PDF uncertainties. The values of Ag are displayed for each measure-
ment.
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Figure 23: Results of the D and D measurements in bins of m(tt) and py(t). The measurements
(markers) are shown with the statistical uncertainty (inner error bars) and total uncertainty
(outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG,
MADGRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the lower panel results are pre-
sented with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is
displayed with ME scale and PDF uncertainties.
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Figure 26: Results of the full matrix measurement in bins of m(tt) for |cos(6)| < 0.4. The
measurements (markers) are shown with the statistical uncertainty (inner error bars) and
total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+HERWIG, MADGRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the right
panels, results are presented with the POWHEG+PYTHIA predictions subtracted. The
POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values
of Ag are displayed for each measurement.
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Figure 27: Results of the D measurements in bins of m(tt) for |cos(6)| < 0.4. The measurements
(markers) are shown with the statistical uncertainty (inner error bars) and total uncertainty
(outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+HERWIG,
MADGRAPH5_aMC@NLO+PYTHIA and MINNLO+PYTHIA. In the lower panel results are pre-
sented with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is
displayed with ME scale and PDF uncertainties.

Previous measurements of the tt entanglement by ATLAS [14] and CMS [15] were performed
only at the threshold of tt production, where the relative velocity of the top quarks is low. In
this analysis, we additionally measure the entanglement at high m(tt), where, in most of the
selected events, the top quark and antiquark decays are space-like separated because of their
high relative velocity. Using the decay products, the spin correlation is measured when the top
quarks decay. From simulations we know that for m(tt) > 800 GeV the fraction of space-like
separated decays is about 90% [81]. An observation of entanglement could be explained by
an unobserved exchange of classical information between the decaying top quarks. Therefore,
we introduce a more stringent criterion for entanglement that cannot be explained by such an
exchange of information at v < c alone (“critical entanglement”). For this, the time-like sepa-
rated decays are assumed to contribute with the maximum possible value for entanglement of
Ag max = 3, while the space-like separated decays should at least fulfill the condition Ag ., = 1.
Therefore, the lower boundary of critical entanglement Ag ;; can be defined for a given fraction
f of space-like separated decays as follows:

Agcrit = fAEsep + (1 - f)AEmaX' (16)

As was shown in Ref. [82], using top quark decays in the definition of f results in the most
stringent criterion Ag 4. The most sensitive measurements in the threshold and high-m(tt)
kinematic regions are summarized in Fig. 29 together with the value for Ag .;; for each case, and
the significance with respect to critical entanglement and separable states. The first bin pr(t) <
50 GeV was obtained using the D measurement, and the second bin for m(tt) > 800 GeV and
|cos(6)| < 0.4 was obtained using the full matrix measurement. In the second bin, the space-
like fraction is f = 90%, which corresponds to a Ag 4 = 1.2. The measured (expected) value
exceeds this limit by 5.4 (4.1) standard deviations as shown by the blue vertical arrow.

To validate the Gaussian approximation used in calculating these significances, we perform
profile likelihood fits for fixed values of Ag in the bin with m(tt) > 800 GeV and |cos(6)| < 0.4.
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Figure 28: Entanglement results for the D measurement in the threshold region (upper
left), D measurement in the high-m(tt) region (upper right), and the full matrix measure-
ment in different m(tt) regions (lower). The measurements (points) are shown with the
statistical uncertainty (inner error bars) and total uncertainty (outer error bars) and com-
pared to the predictions of POWHEG+PYTHIA, POWHEG+PYTHIA+#, POWHEG+HERWIG, MAD-
GRAPH5_aMC@NLO+PYTHIA, and MINNLO+PYTHIA. The POWHEG+PYTHIA prediction is dis-
played with the ME scale and PDF uncertainties, while for all other predictions only the central
values are indicated. The observed (expected) significance of the deviation from the boundary
of separable states (green region) is quoted in standard deviations (¢).
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Figure 29: The observed levels of entanglement characterized by Ay are shown in the thresh-
old region using the D measurement (first bin), and in the high-m(tt) region using the full
matrix measurement (second bin). The measurements (points) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the pre-
dictions of POWHEG+PYTHIA, POWHEG+PYTHIA+7,. The POWHEG+PYTHIA prediction is dis-
played with the ME scale and PDF uncertainties. The horizontal blue lines correspond to the
maximum level of entanglement Ag;; that can be explained by the exchange of information
between t and t at the speed of light. The significance in standard deviations (c) by which
the measurement exceeds Ag;; and unity is quoted in blue and light green, respectively, and
indicated by the corresponding arrows.
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Figure 30: Results of the profile likelihood scans. The quantity —2Alog(L) is shown as func-
tion of Ag in the bin with m(tt) > 800GeV and |cos(f)| < 0.4 for data (black line) and the
POWHEG+PYTHIA simulation (red line). The observed and expected significances in standard
deviations (¢) for Ag exceeding unity and Ag . are quoted.

For this test, the parameter transformation C,,, = Ag — |C,, + Cy| is applied to make Ag a pa-
rameter of L. The significances are calculated as v —2Alog(L), where Alog(L) is the difference
between the profiled likelihood values for a fixed value of Ag and the global maximum. In
Fig. 30, the scan of —2Alog(L) is shown as a function of Ag. The extracted significances for
Ag = 1and 1.2 are in close agreement with those obtained with the approximate method.
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11 Summary

The polarization and spin correlation in top quark pair (tt) production are measured in events
with an electron or a muon plus jets in the final state. The entanglement between the spins
of the top quark and antiquark is determined from the measured spin correlation by applying
the Peres-Horodecki criterion. The measurements are based on proton-proton collision data
at /s = 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated
luminosity of 138 fb~!. The decay products of the top quarks are identified using an artificial
neural network. The coefficients of the polarization vectors and the spin correlation matrix are
extracted simultaneously from the angular distributions of tt decay products using a binned
likelihood fit. This is done both inclusively and in various regions of the phase space. The
observed polarization and spin correlation are in agreement with the standard model expecta-
tions. The standard model predicts entangled tt states at the production threshold and at high
masses of the tt system. Entanglement is observed in events with high tt mass, with an ob-
served (expected) significance of 6.7 (5.6) standard deviations, while in events with low trans-
verse momentum of the top quark a significance of 3.5 (4.4) standard deviations is observed
(expected). This is the first observation of entanglement at high tt mass where in about 90% of
the observed tt events the decays of the top quark and antiquark are space-like separated.
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