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Abstract
The paper develops elementary linear algebra methods to compute the determinants
of the tensor symmetrizations of quadratic and Hermitian forms over fields of good
characteristic. Explicit results are given for the partitions (n), (1n), (2, 1n−2) and
(3, 1n−3) as well as for all partitions of n ≤ 7. For orthogonal groups, these sym-
metrizations are not irreducible, and we continue to find the determinants of their
irreducible constituents, the refined symmetrizations, over fields of characteristic 0.

Keywords Symmetric group · Schur–Weyl duality · Symmetrizations · Quadratic
and Hermitian forms
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1 Introduction

Let K be a field and V be a vector space over K of finite dimension, say, N . For n ∈ N,
the symmetric group Sn acts linearly on the nth tensor power ⊗nV by permuting the
tensor factors thus turning ⊗nV into a K Sn-module. To avoid trivialities, we assume
that n ≥ 2, and to avoid problems, we assume that the characteristic of K is either 0
or > n. It is well known that the simple K Sn-modules are labelled by the partitions λ

of n. A formula for a primitive idempotent ẽλ ∈ K Sn is given in [5, Theorem 3.1.10].
The direct summand

Symλ(V ) := ẽλ(⊗nV )

is known as the λ-symmetrization of V . Its dimension d(λ, N ) := dim(Symλ(V ))

is the number of semi-standard λ-tableaux with content contained in {1, . . . , N } (see
[5, Theorem 5.2.14]).
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Now let B : V × V → K be a symmetric bilinear or Hermitian sesquilinear form
on V . Then, B defines a respective form ⊗n B on ⊗nV by

⊗n B(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn) :=
n∏

i=1

B(vi , wi ).

We put Symλ(B) to denote the restriction of ⊗n B to Symλ(V ).
One important invariant of B is its determinant det(B) which is defined to be the

class of the determinant of a Gram matrix of B in K/(K×)2 for symmetric bilinear
forms and in F/NK/F (K×) for K/F Hermitian forms.

The main result of this note is a formula for the determinant of Symλ(B).

Theorem 1.1 det(Symλ(B)) = c(λ, N ) det(B)d(λ,N )n/N , where c(λ, N ) can be
computed using combinatorial algorithms in Sn.

Explicit formulas for c(λ, N ) have been obtained for symmetric and exterior powers
of symmetric bilinear forms (where λ = (n), respectively, λ = 1n) in [7] and [6]. In
this paper, we additionally derive such formulas for the two hooks λ = (2, 1n−2)

and λ = (3, 1n−3). For small n, more results are obtained by computer (see table in
Sect. 5 for n ≤ 7). These are helpful to compute determinants of even degree unitary
characters as illustrated in Sect. 6, where the symmetrizations of the 12-dimensional
unitary representation of 6.Suz are used to obtain most of the determinants of the
faithful, simple Q[√−3](6.Suz)-modules.

For symmetric bilinear forms B, the symmetrizations are usually not irreducible
modules for the orthogonal group O(B). The last section investigates certain O(B)-
invariant submodules of Symλ(B), the refined symmetrizations. For n ≤ 6, a table
that can be used to compute their determinants is given in Sect. 7.4. As an application,
we obtain some orthogonal determinants for the sporadic simple Conway group Co1
that were not contained in the database described in [1, BBBNP23] yet.

I thank Thomas Breuer for motivation, helpful comments and pointing out the
reference [3].

2 Notation

Weuse the standard notation as given in the textbook [5]. Apartition λ = (λ1, . . . , λk)

of a natural number n is a sequence of integers λi with λ1 ≥ λ2 ≥ . . . ≥ λk such
that

∑k
i=1 λi = n. It is visualised by its Young diagram with k rows and λi boxes

in row i . A Young tableau tλ is obtained by labelling these n boxes of the Young
diagram by the n numbers in {1, . . . , n}. Such a Young tableau defines two partitions
of {1, . . . , n}, the horizontal partition .∪k

j=1 Pj = {1, . . . , n} where Pj consists of the
λ j labels in row number j and a corresponding vertical partition given by the labels in
the λ1 columns of the Young tableau. The horizontal group Hλ of tλ is the stabiliser
in Sn of all sets in the horizontal partition and the vertical group Gλ the stabiliser of
all sets in the vertical partition.
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With this notation, the formula for a primitive idempotent ẽλ from [5, Theorem
3.1.10] is ẽλ = dλ

n! eλ with

eλ =
∑

σ∈Gλ

∑

ρ∈Hλ

sign(σ )σρ.

An N -semi-standard Young tableau t of shape λ is given by filling elements in
{1, . . . , N } into the boxes of the Young diagram of λ such that they are non-decreasing
along the rows and strictly increasing along the columns. The content cont(t) of t is
the multi-set of its entries in {1, . . . , N }. Put

T (λ, N ) := {t | t in an N -semi-standard Young tableau of shapeλ}.

The following result is well known:

Remark 2.1 Let d(λ, N ) := |T (λ, N )| denote the number of N -semi-standard Young
tableaux of shape λ. Then, each element of {1, . . . , N } occurs with the same
multiplicity in the union of the contents of the elements of T (λ, N ) and hence

⋃

t∈T (λ,N )

cont(t) = {1d(λ,N )n/N , . . . , Nd(λ,N )n/N }.

3 Proof of themain theorem

Let (v1, . . . , vN ) be an orthogonal basis of (V , B) and put ai := B(vi , vi ). Then,
det(B) is represented by a1 · · · an .
Remark 3.1 The pure tensors vi1 ⊗ . . .⊗vin form an orthogonal basis of (⊗nV ,⊗n B)

with

⊗n B(vi1 ⊗ . . . ⊗ vin , vi1 ⊗ . . . ⊗ vin ) =
n∏

j=1

ai j .

Fix a partition λ of n and fix a Young tableau tλ to label the positions in ⊗nV .
Then, any t ∈ T (λ, N ) defines a pure tensor

v(t) := w1 ⊗ . . . ⊗ wn ∈ ⊗nV

where wi = v j , if the box that is labelled by i in tλ has content j in t .

Remark 3.2 Let t ∈ T (λ, N ) and C := cont(t) be its content. Then,

⊗n B(v(t), v(t)) =
∏

i∈C
ai =: q(C)

only depends on C .
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Lemma 3.3 ([4, Section 4.3], [5, Section 5.2]) A basis of Symλ(V ) is given by

{eλ(v(t)) | t ∈ T (λ, N )}.

As the summands in eλ(v(t)) are (up to a sign) pure tensors of the basis elements
vi with the same multi-set of indices, the value

⊗n B(eλ(v(t)), eλ(v(t))) = c(t)q(C)

is a constant multiple of q(C) where C = cont(t).
The following trivial remark is fundamental for the computations:

Remark 3.4 For t, s ∈ T (λ, N ), we get

⊗n B(eλ(v(t)), eλ(v(s))) = 0

unless cont(t) = cont(s).

Ordering the basis from Lemma 3.3 according to the content C of t , we hence
obtain a Gram matrix of Symλ(B) as a block diagonal matrix

diag(q(C)XC : C ∈ cont(T (λ, N )))

and hence Theorem 1.1 follows with

c(λ, N ) =
∏

C∈cont(T (λ,N ))

det(XC ).

For computing the Grammatrices XC , I wrote a small ad hoc program. Up to n = 7,
the results are given in table in Sect. 5.

4 Small examples

4.1 The partition (2, 1)

This partition is the smallest case that it not yet available in the literature. To illustrate
the algorithm used to compile table in Sect. 5 I explain these computations in detail.
The formula in [5, Theorem 5.2.14] yields

dim(Sym(2,1)(V )) = 1

3
N (N − 1)(N + 1), where N = dim(V ).

So

det(Sym(2,1)(B)) = det(B)(N−1)(N+1)c((2, 1), N )

for some c((2, 1), N ).
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Proposition 4.1 c((2, 1), N ) = 3(
N
3)z2 for some z ∈ N with prime divisors in {2, 3}.

Proof We give the N -semi-standard Young tableaux of shape (2, 1) by listing the
entries in positions ((1, 1), (1, 2), (2, 1)) in this ordering.

Choosing a < b < c, a, b, c ∈ {1, . . . , N }, there are four sorts of N -semi-standard
(2, 1)-tableaux:

{(a, a, b), (a, b, b), (a, b, c), (a, c, b)}

Then,

e(2,1)(a, a, b) = 2((a, a, b) − (b, a, a))

e(2,1)(a, b, b) = (a, b, b) − (b, b, a)

e(2,1)(a, b, c) = (a, b, c) − (c, b, a) + (b, a, c) − (c, a, b)
e(2,1)(a, c, b) = (a, c, b) − (b, c, a) + (c, a, b) − (b, a, c)

giving rise to

Xa2b = (8) with multiplicity
(N
2

)

Xab2 = (2) with multiplicity
(N
2

)

Xabc =
(

4 −2
−2 4

)
with multiplicity

(N
3

)

yielding

det(Sym(2,1)(B)) = 16(
N
2)12(

N
3) det(B)(N−1)(N+1).

	


4.2 Two partitions of 4

Proposition 4.2

dim(Sym(3,1)(V )) = 1

8
(N + 2)(N + 1)N (N − 1) = 3

(
N + 2

4

)

and, up to squares,

det(Sym(3,1)(B)) = 2(
N
3) det(B)(N+2)(N+1)(N−1)/2.
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Proof For λ = (3, 1), we compute the relevant XC , C ∈ cont(T (λ, N ) as in the
previous section and obtain:

Xa3b = (72) with multiplicity
(N
2

)

Xa2b2 = (16) with multiplicity
(N
2

)

Xab3 = (8) with multiplicity
(N
2

)

Xa2bc =
(
24 −8
−8 24

)
with multiplicity

(N
3

)

Xab2c =
(
24 −8
−8 8

)
with multiplicity

(N
3

)

Xabc2 =
(
24 −8
−8 8

)
with multiplicity

(N
3

)

Xabcd =
⎛

⎝
12 −4 −4
−4 12 −4
−4 −4 12

⎞

⎠ with multiplicity
(N
4

)

Up to squares c(λ, N ) = det(Xa2bc)
(N3). 	


Proposition 4.3

dim(Sym(2,2)(V )) = 1

12
(N 4 − N 2)

and, up to squares,

det(Sym(2,2)(B)) = 3(
N
4)2(

N
3) det(B)N (N+1)(N−1)/3

Proof For λ = (2, 2), we obtain

Xa2b2 = (64) with multiplicity
(N
2

)

Xa2bc = (32) with multiplicity
(N
3

)

Xab2c = (8) with multiplicity
(N
3

)

Xabc2 = (32) with multiplicity
(N
3

)

Xabcd =
(
16 −8
−8 16

)
with multiplicity

(N
4

)

Up to squares c(λ, N ) = det(Xab2c)
(N3) det(Xabcd)

(N4). 	
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4.3 The partitions (n) and (1n)

The module Sym(1n)(V ) = �n(V ) is better known as the n-th exterior power of V ,
whereas Sym(n)(V ) is the n-th symmetric power of V .

Proposition 4.4 (see also [6]) dim(Sym(1n)(V )) = (N
n

)
and

det(Sym(1n)(B)) = (n!)(Nn ) det(B)(
N−1
n−1).

Proof Let λ := (1n). Then, the horizontal group Hλ = {1} and the vertical group
Gλ = Sn . Moreover, the N -semi-standard tableaux of shape λ are in bijection with
the n-element subsets of {1, . . . , N }, in particular

dim(Symλ(V )) = |T (λ, N )| =
(
N

n

)

and any element t ∈ T (λ, N ) is uniquely determined by its content C = cont(t). So
XC is a scalar and equals to the length of the Gλ-orbit of t , which shows that

⊗n B(eλ(v(t)), eλ(v(t))) = n!q(C).

So

det(Sym(1n)(B)) = (n!)(Nn )
∏

1≤i1<...<in≤N

ai1 · · · ain .

As each element i ∈ {1, . . . , N } occurs
(N−1
n−1

)
times in an n-element subset of

{1, . . . , N }, the latter product is just ∏N
i=1 a

(N−1
n−1)

i = det(B)(
N−1
n−1). 	


To state the result for λ = (n), we introduce the set

Comp(n, k) := {(x1, . . . , xk) ∈ Z
k
>0 | x1 + . . . + xk = n}

of all compositions of n.

Proposition 4.5 (see also [7, Proposition 3.9]) dim(Sym(n)(V )) = (N+n−1
n

)
and

det(Sym(n)(B)) =
n∏

k=1

∏

(x1,...,xk )∈Comp(n,k)

(
n!

(x1!) · · · (xk !)
)(Nk )

det(B)(
N+n−1
n−1 ).

Proof For λ = (n), the vertical group of λ is trivial and the horizontal group Hλ = Sn .
Now, the N -semi-standard tableaux of shape λ are in bijection with the n-element
multi-subsets of {1, . . . , N }, in particular

dim(Symλ(V )) = |T (λ, N )| =
(
N + n − 1

n

)
.
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Again any element t ∈ T (λ, N ) is uniquely determined by its content C = cont(t)
and XC is a scalar. Instead of working with eλv(t), we divide this vector by the order
of the stabiliser of t , and hence just work with the orbit sum

∑
{v(σ (t)) | σ ∈ Sn}.

This results in multiplying XC be an integral square. If C = {nx11 , . . . , nxkk } with
n1 ≤ . . . ,≤ nk then XC = n!

(x1!)···(xk !) . Therefore,

c(λ, N ) =
n∏

k=1

∏

(x1,...,xk )∈Comp(n,k)

(
n!

(x1!) · · · (xk !)
)(Nk )

.

	


4.4 A result for hooks

Another situation, where XC can be computed for general λ and N , is if C is a subset
of {1, . . . , N } or cardinality n, i.e. every element of the multi-set C occurs in C with
multiplicity 1.

Lemma 4.6 Assume thatλ = (�, 1n−�) is a hook. If C ismultiplicity free, then 〈eλv(t) |
t ∈ T (λ, N ), cont(t) = C〉 ∼= Sλ′

is the irreducible representation of Sn isomorphic
to the Specht module associated with the transposed partition λ′ = (n − � + 1, 1�−1)

and XC is a Gram matrix of an Sn-invariant symmetric bilinear form on Sλ′
with

det(XC ) = ((� − 1)!(n − � + 1)!)(n−�
�−1)n(n−1

�−1).

Proof Let C ⊆ {1, . . . , N }with |C | = n and let a be the minimal element of C . Then,
the semi-standard λ-tableaux with content C are the

(n−�
�−1

)
elements of

{tS | S ⊆ C \ {a}, |S| = � − 1}

where the elements of the first rowof tI form the set S∪{a}. As all summands in eλv(tS)
are distinct, we have⊗n B(eλv(tS), eλv(tS)) = �!(n−�+1)!.For R �= S ⊆ C\{a}, the
common summands of eλv(tR) and eλv(tS) are those v(t), where the set of elements
in the first column of t are identical, i.e. the last � − 1 elements of the first row are
{a} ∪ (R ∩ S), i.e. we only obtain nonzero inner product if |R ∩ S| = � − 2. So

⊗n B(eλv(tS), eλv(tR)) =
⎧
⎨

⎩

�!(n − � + 1)! if S = R
±(� − 1)!(n − � + 1)! if |R ∩ S| = � − 2
0 if |R ∩ S| < � − 2

⎞

⎠

where the sign depends on the sign of the permutation πR,S mapping [x, b, c, d, . . .]
to [y, b, c, d, . . .] where S\R = {x} and R\S = {y}.
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To compute the (�−1)st exterior power of the root lattice An−1, we choose a basis

An−1 = 〈b2 := e1 − e2, . . . , e1 − en =: bn〉

such that the Gram matrix of (b2, . . . , bn) is In−1 + Jn−1 of determinant n. To an
� − 1 element subset R = {i1, . . . , i�−1} of C\{1} = {2, . . . , n}, we associate the
basis vector bR = bi1 ∧ . . . ∧ bi�−1 . So in ��−1(An−1), we obtain the inner product
of the subsets R and S as the � − 1 × � − 1-minor

det(In−1 + Jn−1)R×S = ± det(

(
0 0
0 IR∩S

)

+J�−1) =
⎧
⎨

⎩

� if R = S
sign(πR,S) if |R ∩ S| = � − 2
0 if |R ∩ S| < � − 2.

So the lattice

(Z(n−�
�−1), ((� − 1)!(n − � + 1)!)−1XC ) ∼= ��−1(An−1)

and hence

det(XC ) = ((� − 1)!(n − � + 1)!)(n−�
�−1)n(n−1

�−1).

	


4.5 The partitions (2, 1n−2)

Proposition 4.7 Let λ := (2, 1n−2). Then,

dim(Symλ(V )) = (n − 1)

(
N

n

)
+ (n − 1)

(
N

n − 1

)
= (n − 1)

(
N + 1

n

)

and

c(λ, N ) = n(Nn )((n − 1)!)(n−1)(N+1
n ).

Proof For t ∈ T (λ, N ) the content C of t has either n − 1 or n distinct elements.
If one element occurs twice in C , then this is either the minimal element of C and
t = (a, a, b, c, d, . . .) such that

eλv(t) = 2
∑

g∈Sn−1

sign(g)v(gt)
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or it is not the minimal element and the tableau is s = (a, x, b, c, d, . . .) where
x ∈ {b, c, d, . . .} and then

eλv(s) =
∑

g∈Sn−1

sign(g)v(gs).

In both cases, the tableau is uniquely determined by its content. We compute

B(eλv(s), eλv(s)) = B(1/2eλv(t), 1/2eλv(t)) = (n − 1)!q(C).

This gives a contribution of (n − 1)
( N
n−1

)
to dim(Symλ(V )) and of

(n − 1)!(n−1)( N
n−1) to c(λ, N ).

If every element in C = {a, b, c, d, . . .} occurs with multiplicity 1,
then Lemma 4.6 shows that XC ∼= (n − 1)!An−1. In total, these C contribute

(n − 1)
(N
n

)
to the dimension and

(n(n − 1)!(n−1))(
N
n ) to c(λ, N ).

	


4.6 The partitions (3, 1n−3)

Proposition 4.8 Let λ := (3, 1n−3). Then,

dim(Symλ(V )) =
(
n − 1

2

)
(

(
N

n

)
+ 2

(
N

n − 1

)
+

(
N

n − 2

)
)

and

c(λ, N ) = (n − 2)!x2ynz

where

x = (
( N
n−2

) + (N
n

)
)
(n−1

2

)
(n − 2)

( N
n−1

)

y = ( N
n−2

)(n−2
2

) + (n − 3)
( N
n−1

) + (N
n

)
)
(n−1

2

)

z = ( N
n−1

) + (n − 2)
(N
n

)
.

Proof For t ∈ T (λ, N ), the contentC of t has either n−2, n−1 or n distinct elements.
If one element occurs three times in C , then this is either the minimal element of

C and t = (a, a, a, b, c, d, . . .) such that

eλv(t) = 6
∑

g∈Sn−2

sign(g)v(gt)
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or it is not the minimal element, and the tableau is s = (a, x, x, b, c, d, . . .) where
x ∈ {b, c, d, . . .} and then

eλv(s) = 2
∑

g∈Sn−2

sign(g)v(gs).

In both cases, the tableau is uniquely determined by its content. We compute

B(1/2eλv(s), 1/2eλv(s)) = B(1/6eλv(t), 1/6eλv(t)) = (n − 2)!q(C)

So we obtain a contribution of
( N
n−2

)
(n − 2) to the dimension and of

(n − 2)!( N
n−2)(n−2) to c(λ, N ).

If two elements occur twice in C , then either one of them is the minimal element of
C and t = (a, a, x, b, c, d, . . .) where x ∈ {b, c, d, . . .}. Then,

eλv(t) = 2

⎛

⎝
∑

g∈Sn−2

sign(g)v(gt) +
∑

g∈Sn−2

sign(g)v(gt ′)

⎞

⎠

where t ′ = (a, x, a, b, c, d, . . .). Or s = (a, x, y, b, c, d, . . .) where x < y ∈ C \ {a}
and

eλv(s) =
∑

g∈Sn−2

sign(g)v(gs) +
∑

g∈Sn−2

sign(g)v(gs′)

where s′ = (a, y, x, b, c, d, . . .). We compute

B(1/2eλv(t), 1/2eλv(t)) = B(eλv(s), eλv(s)) = 2(n − 2)!q(C)

So we obtain a contribution of
( N
n−2

)(n−2
2

)
to the dimension and of

(2(n − 2)!)( N
n−2)(

n−2
2 ) to c(λ, N ).

If C consists of n − 1 distinct elements, then one element of C occurs twice. If this is
the minimal element of C , then t = (a, a, x, b, c, d, . . .) where x /∈ {a, b, c, d, . . .}.
Then,

eλv(t) = 2

⎛

⎝
∑

g∈Sn−2

sign(g)v(gt) +
∑

g∈Sn−2

sign(g)v(gt ′) +
∑

g∈Sn−2

sign(g)v(gt ′′)

⎞

⎠

where t ′ = (a, x, a, b, c, d, . . .) and t ′′ = (x, a, a, b, c, d, . . .). We compute

B(1/2eλv(t), 1/2eλv(t)) = 3(n − 2)!.
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There are in total n − 2 = |{x, b, c, d, . . .}| semi-standard λ tableaux with the same
content. The inner product of distinct such tableaux is ±(n − 2)! depending on the
product of the signs of the permutations sorting the respective [x, b, c, d, . . .]. So the
determinant of XC is

(n − 2)!n−2(det(2In−2 + Jn−2)) = (n − 2)!n−22n−3n

adding (n − 2)
( N
n−1

)
to the dimension and a factor

((n − 2)!n−22n−3n)(
N

n−1) to the determinant.

If a non-minimal element occurs twice in C , then the tableau is either

t = (a, x, x, b, c, d, . . .) or s = (a,min(x, y),max(x, y), b, . . . , x, . . .)

We get

B(1/2eλv(t), 1/2eλv(t)) = 3(n − 2)!, B(eλv(s), eλv(s)) = 4(n − 2)!,

In total there are n − 2 such semi-standard tableaux with the same content C , one
tableau t and (n − 3) possibilities for tableaux of type s depending on the choice of
y ∈ {b, c, d, . . .}. For such s, s′, we compute

B(1/2eλv(t), eλv(s)) = ±2(n − 2)! = B(eλv(s), eλv(s′)).

where the sign is the signum of the permutation mapping [x, b, c, d, . . .] to
[y, b, c, d, . . .], respectively [y, b, c, d, . . .] to [y′, b, c, d, . . .]. So after multiplying
those basis vectors eλv(s) by −1 that have B(1/2eλv(t), eλv(s)) = −2(n − 2)!, we
obtain

XC = (n − 2)!

⎛

⎜⎜⎜⎝

3 2 . . . 2
2 4 . . . 2
...

. . .
. . .

...

2 . . . 2 4

⎞

⎟⎟⎟⎠

of determinant (n − 2)!n−22n−3n. Such C contributes in total (n − 2)
( N
n−1

)
to the

dimension and

((n − 2)!n−22n−3n)(
N

n−1) to c(λ, N ).

If every element in C = {a, b, c, d, . . .} occurs with multiplicity 1,
then Lemma 4.6 yields that XC ∼= 2(n − 2)!�2(An−1) has determinant

(2(n − 2)!)(n−1
2 )nn−2.
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Sowe obtain an additive contribution of
(n−1

2

)(N
n

)
to the dimension and amultiplicative

contribution of

((2(n − 2)!)(n−1
2 )nn−2)(

N
n ) to the determinant.

	


5 Determinants of symmetrizations

This section gives tables of dimensions and determinants of (Symλ(V ),Symλ(B)) for
partitions λ of n and all n ≤ 7. Here, (V , B) is either a non-degenerate symmetric
bilinear or Hermitian space over a field of characteristic not dividing n!. For fixed
partition λ of n, the dimension d(λ) := dim(Symλ(V )) is a polynomial in N :=
dim(V ). We also give c(λ) such that det(Symλ(B)) = c(λ) det(B)d(λ)n/N , up to
squares.

n λ d(λ) c(λ)

2 (2) N (N + 1)/2 2(
N
2)

(12) N (N − 1)/2 2(
N
2)

3 (3) N (N + 1)(N + 2)/6 6(
N
3)

(2, 1) N (N − 1)(N + 1)/3 3(
N
3)

(13) N (N − 1)(N − 2)/6 6(
N
3)

4 (4) N (N + 1)(N + 2)(N + 3)/24 2(
N
2)+(N4)3(

N
2)+(N3)+(N4)

(3, 1) N (N − 1)(N + 1)(N + 2)/8 2(
N
3)

(22) N 2(N − 1)(N + 1)/12 2(
N
3)3(

N
4)

(2, 12) N (N − 1)(N − 2)(N + 1)/8 6(
N
3)+(N4)

(14) N (N − 1)(N − 2)(N − 3)/24 6(
N
4)

5 (5) N (N + 1)(N + 2)(N + 3)(N + 4)/120 6(
N
3)+(N5)5(

N
5)

(4, 1) N (N − 1)(N + 1)(N + 2)(N + 3)/30 3(
N
3)5(

N
5)

(3, 2) N 2(N − 1)(N + 1)(N + 2)/24 3(
N
5)

(3, 12) N (N − 1)(N − 2)(N + 1)(N + 2)/20 2(
N
3)5(

N
5)

(22, 1) N 2(N − 1)(N − 2)(N + 1)/24 3(
N
3)6(

N
5)

(2, 13) N (N − 1)(N − 2)(N − 3)(N + 1)/30 5(
N
5)

(15) N (N − 1)(N − 2)(N − 3)(N − 4)/120 30(
N
5)
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λ d(λ) c(λ)

(6) N (N + 1)(N + 2)(N + 3)(N + 4)(N + 5)/720 2(
N
5)3(

N
3)5(

N
2)+(N5)+(N6)

(5, 1) N (N − 1)(N + 1)(N + 2)(N + 3)(N + 4)/144 2(
N
3)3(

N
2)+(N5)+(N6)

(4, 2) N 2(N − 1)(N + 1)(N + 2)(N + 3)/80 2(
N
2)+(N6)5(

N
5)

(4, 12) N (N − 1)(N − 2)(N + 1)(N + 2)(N + 3)/72 6(
N
3)3(

N
5)

(32) N 2(N − 1)(N + 1)2(N + 2)/144 2(
N
2)+(N6)3(

N
3)+(N5)

(3, 2, 1) N 2(N − 1)(N − 2)(N + 1)(N + 2)/45 3(
N
3)5(

N
5)

(3, 13) N (N − 1)(N − 2)(N − 3)(N + 1)(N + 2)/72 3(
N
5)

(23) N 2(N − 1)2(N − 2)(N + 1)/144 3(
N
5)

(22, 12) N 2(N − 1)(N − 2)(N − 3)(N + 1)/80 3(
N
5)30(

N
6)

(2, 14) N (N − 1)(N − 2)(N − 3)(N − 4)(N + 1)/144 5(
N
6)30(

N
5)

(16) N (N − 1)(N − 2)(N − 3)(N − 4)(N − 5)/720 5(
N
6)

λ d(λ) c(λ)

(7)
(N+6

7
)

6(
N
5 )5(

N
5 )+(N7 )7(

N
3 )+(N5 )+(N7 )

(6, 1) N (N − 1)(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)/840 3(
N
3 )+(N5 )5(

N
3 )7(

N
3 )+(N5 )+(N7 )

(5, 2) N2(N − 1)(N + 1)(N + 2)(N + 3)(N + 4)/360 2(
N
3 )3(

N
3 )+(N5 )+(N7 )5(

N
3 )

(5, 12) N (N − 1)(N − 2)(N + 1)(N + 2)(N + 3)(N + 4)/336 3(
N
3 )+(N5 )7(

N
5 )

(4, 3) N2(N − 1)(N + 1)2(N + 2)(N + 3)/360 3(
N
3 )+(N7 )5(

N
5 )+(N7 )

(4, 2, 1) N2(N − 1)(N − 2)(N + 1)(N + 2)(N + 3)/144 2(
N
7 )3(

N
3 )+(N5 )+(N7 )

(4, 13) N (N − 1)(N − 2)(N − 3)(N + 1)(N + 2)(N + 3)/252 21(
N
5 )

(32, 1) N2(N − 1)(N − 2)(N + 1)2(N + 2)/240 2(
N
3 )+(N7 )3(

N
5 )+(N7 )

(3, 22) N2(N − 1)2(N − 2)(N + 1)(N + 2)/240 3(
N
5 )+(N7 )5(

N
7 )

(3, 2, 12) N2(N − 1)(N − 2)(N − 3)(N + 1)(N + 2)/144 2(
N
7 )3(

N
5 )+(N7 )

(3, 14) N (N − 1)(N − 2)(N − 3)(N − 4)(N + 1)(N + 2)/336 30(
N
5 )105(

N
7 )

(23, 1) N2(N − 1)2(N − 2)(N − 3)(N + 1)/360 15(
N
7 )

(22, 13) N2(N − 1)(N − 2)(N − 3)(N − 4)(N + 1)/360 3(
N
7 )

(2, 15) N (N − 1)(N − 2)(N − 3)(N − 4)(N − 5)(N + 1)/840 7(
N
7 )

(17)
(N
7
)

35(
N
7 )

6 Unitary determinants of the Suzuki group

To illustrate the use of the determinants of the symmetrizations, we give a small
example. The covering group 6.Suz of the Suzuki group has a unitary representation
of degree 12 over the field K = Q[√−3]. This representation fixes a Hermitian form
B of determinant 1. The symmetrizations of this 12-dimensional Hermitian form up
to degree 7 allow to find the determinants of quite a few irreducible unitary characters
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of covers of the Suzuki group. Note that
(12
k

)
is even for k = 1, 2, 3, 5, 6, 7, 9, 10, 11

and odd for k = 4, 8.

Partition χ χ(1) det
(1, 1) 78 66 1
(2) 80 78 1

(2, 1) 48 572 1
(3) 46 364 1
(22) 85 1716 3
(15) 154 + 156 12 + 780 1 × 1

(2, 13) 156 + 162 780 + 4368 1 × 1
(22, 1) 164 8580 1
(3, 12) 174 12012 1
(3, 2) 170 12012 1
(4, 1) 172 12012 1
(5) 160 4368 1

(4, 12) 21 50050 1
(17) 153 + 155 12 + 780 1 × 1

(2, 15) 153 + 155 + 157 + 163 12 + 780 + 924 + 8580 1
(22, 13) 155 + 161 + 163 + 179 780 + 4368 + 8580 + 27456 1
(23, 1) 155 + 161 + 163 + 185 780 + 4368 + 8580 + 42900 1
(3, 14) 157 + 175 + 179 924 + 23100 + 27456 1

(3, 2, 12) 163 + 179 + 199 8580 + 27456 + 144144 1
(3, 22) 173 + 185 + 191 12012 + 42900 + 77220 1
(32, 1) 169 + 199 12012 + 144144 1
(4, 13) 175 + 193 23100 + 105600 1
(4, 2, 1) 207 300300 1
(4, 3) 169 + 201 12012 + 144144 1
(5, 12) 203 171600 1
(5, 2) 171 + 205 12012 + 180180 1
(6, 1) 159 + 195 4368 + 112320 1
(7) 159 + 177 4368 + 27456 1
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Just considering the faithful characters (with numbers 153 to 210) of 6.Suz, this
allows us to conclude that all the characters that occur in one of the symmetriza-
tions above of one of the two complex conjugate characters 153 or 154 have unitary
determinant 1. The missing ones are 165 − 168, 181 − 184, and187 − 190 which
have character fields of degree 4 over the rationals, and 197, 198 and 209, 210. The
latter four characters occur in Symλ(χ153) resp. Symλ(χ154) for λ = (3, 24) resp.
λ = (4, 2, 15) which are sums of even degree absolutely irreducible characters with
character field Q[√−3].

The complex conjugate characters χ21 and χ22 are the unique absolutely irreducible
characters of the simple Suzuki group Suz of even degree and indicator o. They have
degree 50050, and the computation above shows that their determinant is 1. Similary,
we can conclude that all (4 pairs of) even degree indicator o characters of 2.Suz have
determinant 1, where we need to consider

λ = (4, 15) of dim. 1/6480
3∏

i=−5

(N + i) and det 3(
N
7)

and

λ = (33) of dim. 1/8640(N − 2)(N − 1)2N3(N + 1)2(N + 2) and det 6(
N
3 )10(

N
7 )15(

N
9 ).

For the faithful characters of 3.Suz, these symmetrizations show the ones of degree
66, 78, and 1716 have determinant 1.

7 Refined symmetrizations for orthogonal groups

In this section, we assume that char(K ) = 0 and that B : V × V → K is a symmetric
bilinear form. Then, there are

(n
2

)
linearly independent O(B)-invariant epimorphisms

πi j for all 1 ≤ i < j ≤ n by evaluating B in positions i, j of the tensors:

πi j : ⊗nV → ⊗n−2V , πi j (w1 ⊗ . . . ⊗ wn) = B(wi , w j )w1 ⊗ . . . ⊗ wn

where in the last tensor product, the vectors wi and w j are omitted. There are O(B)-
invariant monomorphism ϕi j : ⊗n−2V → ⊗nV with πi j ◦ ϕi j = N id⊗n−2V :
Choose a basis (v1, . . . , vN ) of V and define (v′

1, . . . , v
′
N ) to denote its dual basis, i.e.

B(vi , v
′
j ) = δi j . Then for all w1, . . . , wn−2 ∈ V , we put

ϕi j (w1 ⊗ . . . ⊗ wn−2) :=
N∑

k=1

(w1 ⊗ . . . ⊗ vk ⊗ . . . ⊗ v′
k ⊗ wn−2)

where vk is inserted in position i and v′
k in position j . The compositions ϕi j ◦ πi j are

O(B)-invariant endomorphism of⊗nV giving rise to generators of the Brauer algebra,
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the endomorphism algebra of the O(B)-module ⊗nV . See also [2] for an application
of these ideas to a Schur–Weyl duality for orthogonal groups in odd characteristic.

Proposition 7.1 For all 1 ≤ i < j ≤ n, the maps

ϕi j : (⊗n−2V , N ⊗n−2 B) → (⊗nV ,⊗n B)

are O(B)-invariant isometric embeddings.

Proof For a pair (v1, . . . , vN ) and (v′
1, . . . , v

′
N ) of dual basis of V , the Gram matrices

are inverse to each other, so

((B(vi , v j )1≤i, j≤N )((B(v′
i , v

′
j )1≤i, j≤N ) = IN .

Now observe that

⊗2B(

N∑

k=1

vk ⊗ v′
k ,

N∑

k=1

vk ⊗ v′
k) =

∑

k,�

B(vk , v�)B(v′
k , v

′
�) =

∑

k,�

B(vk , v�)B(v′
�, v

′
k) = N

as the trace of the product of these two Gram matrices. 	

Note that the same proof also works for a non-degenerate skew-symmetric bilinear

form B, where interchanging v′
k and v′

� introduces a minus sign, and hence we need
to replace N by −N in the formula of the proposition.

Remark 7.2 The full symmetrizations have an orthogonal decomposition according to
the different n-element multi-subsets

C = {i x11 , . . . , i xkk } ⊂ {1, . . . , N }

where the dimension of the orthogonal summand with Gram matrix XC only depends
on the composition (x1, . . . , xk) of n. For the refined symmetrization, the dimensions
of the naturally occurring orthogonal summands grow with N = dim(V ). Follow-
ing [3], who uses [8] to determine the absolutely irreducible O(B)-submodules of
Symλ(V ) for partitions λ of n and n ≤ 6, we write

Symλ(V ) ∼= Sym′
λ(V ) ⊕

⊕

γ

m(λ, γ )Sym′
γ (V )

where γ runs over certain partitions of n − 2, n − 4, . . .. Here, m(λ, γ ) ∈ N is
the multiplicity of Sym′

γ (V ) as a composition factor of Symλ(V ). As Sym′
γ (V ) are

absolutely irreducible, there is a one-dimensional space of O(B)-invariant quadratic
forms on these modules. So there are symmetric invertible matrices

c(λ, γ ) ∈ Km(λ,γ )×m(λ,γ )
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such that

Symλ(B) ∼= Sym′
λ(B) ⊕

⊕

γ

c(λ, γ ) ⊗ Sym′
γ (B).

To determine the values of c(λ, γ ) for a partition γ of n − 2 (with m(λ, γ ) = 1), it
suffices to choose a suitable embedding ϕi j : ⊗n−2V → ⊗nV and compute

c(λ, γ ) = (⊗n B(eλϕi j (v), eλϕi j (v)))/(⊗n−2B(v, v))

for a suitable v ∈ Sym′
γ (V ), e.g. v = eγ (v1 ⊗ . . .⊗ vn−2). For partitions γ of smaller

n, we need to iterate this procedure, i.e. consider

ϕk,l ◦ ϕi, j : ⊗n−4V → ⊗nV

and so on.

The following sections contain some examples illustrating an elementary way to
compute determinants of refined symmetrizations for non-degenerate symmetric bilin-
ear forms. As in the previous sections, we fix an orthogonal basis (v1, . . . , vN ) of V
and put ai := B(vi , vi ).

7.1 The refined symmetrizations for (1n) and (n)

Remark 7.3 For the exterior power, all Sym(1n)(V )i j are zero. As dim(Sym(1n)(V )) =
(N
n

)
, this dimension is even, if and only if c((1n), N ) = (n!)(Nn ) is a square. Then,

det(Sym(1n)(B)) = det(B)(
N
n )

n
N = det(B)(

N−1
n−1).

Proposition 7.4

Sym(n)(V ) ∼=
�n/2�⊕

j=0

Sym′
(n−2 j)(V )

with

c((n), (n − 2)) = 2n!(n − 2)!(N + 2(n − 2))

and

c((n), (n − 4)) = 8n!(n − 4)!(N + 2(n − 4))(N + 2(n − 3)).
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Proof Let I = {1, . . . , n−2} andw := en−2(v1⊗ . . .⊗vn−2) ∈ Sym′
(n−2)(V ). Then,

⊗n−2B(w,w) = (n − 2)!q(I ) and

e(n)ϕ12(w) = ∑N
k=1

1
ak
e(n)vk ⊗ vk ⊗ w =

(n − 2)!∑N
k=1

1
ak
e(n)vk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2 =

(n − 2)!∑n−2
k=1

1
ak
e(n)vk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2

+(n − 2)!∑N
k=n−1

1
ak
e(n)vk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2.

The norms of the pure tensors in the first sum are 3!n!q(I ), whereas the pure tensors
in the second sum have norm 2!n!q(I ). So in total, we compute ⊗n B(e(n)ϕ12(w)) =

(n − 2)!2((n − 2)3!n! + (N − (n − 2))2!n!)q(I ) = (n − 2)!22n!(N + 2(n − 2))q(I ),

and hence,

c((n), (n − 2)) = 2(n − 2)!n!(N + 2(n − 2)) = (n − 2)!2(2(n(n − 1)))(N + 2n − 4).

To compute c((n), (n−4)), we choose I = {1, . . . , n−4} and w := e(n−4)v1 ⊗ . . .⊗
vn−4 ∈ Sym′

(n−4)(V ) of norm (n − 4)!. Now,

e(n)ϕ12 ◦ ϕ34(w) = e(n)

N∑

k=1

N∑

�=1

1

ak

1

a�

vk ⊗ vk ⊗ v� ⊗ v� ⊗ w

has summands of five different types:

Case Norm/norm(w) anz
k = � ∈ I n!(n − 4)!5! n − 4
k �= � ∈ I n!(n − 4)!3!3!2 (n − 4)(n − 5)
k ∈ I , � /∈ I n!(n − 4)!3!2!2 (n − 4)(N − (n − 4))
k /∈ I , � ∈ I n!(n − 4)!2!3!2 (n − 4)(N − (n − 4))
k = � /∈ I n!(n − 4)!4! (N − (n − 4))
k �= �, k, � /∈ I n!(n − 4)!2!2!2 (N − (n − 4))(N − (n − 3))

So

c((n), (n − 4)) = n!(n − 4)!(5!(n − 4) + 2 · 3!2(n − 4)(n − 5)

+ 22(2!3!(n − 4)(N − (n − 4))) + 4!(N − (n − 4))

+8(N − (n − 4))(N − (n − 3))

= n!(n − 4)!8(N + 2n − 8)(N + 2n − 6)
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Remark 7.5 Of course it is possible to continue like this and compute c((n), (n−2 j))
for j ≥ 3. However, this becomes more and more tedious. There should be a better
way, as Sym′

(n)(V ) is just the space of harmonic polynomials for the Laplace operator
∑N

i=1 ai
d2

dx2i
associated with the quadratic form defined by B.

7.2 The refined symmetrizations for (2, 1) and (3, 1)

Proposition 7.6

(Sym(2,1)(V ),Sym(2,1)(B)) ∼= (V , 8(N − 1)B) ⊥ (Sym′
(2,1)(V ),Sym′

(2,1)(B)).

Hence, dim(Sym′
(2,1)(V )) = 1

3N (N − 2)(N + 2) and

det(Sym′
(2,1)(B)) = 3(

N
3)2N (N − 1)N det(B)N

2−2.

In particular, the dimension of the refined symmetrization Sym′
(2,1)(V ) is even, if and

only if,dim(V ) = N is even. In this case,
(N
3

)
is also even, and hence,det(Sym′

(2,1)(B))

is a square.

Proof A basis of e(2,1)ϕ12(V ) is given by

(bi :=
N∑

k=1

1

ak
e(2,1)(vk ⊗ vk ⊗ vi ) | 1 ≤ i ≤ N ).

Now, bi = ∑
k �=i

2
ak

(vk ⊗ vk ⊗ vi − vi ⊗ vk ⊗ vk) satisfies

⊗3B(bi , bi ) = 8
∑

k �=i

1

a2k
B(vk, vk)B(vk .vk)B(vi , vi ) = 8(N − 1)B(vi , vi ).

	


Proposition 7.7

Sym(3,1)(V ) ∼= Sym(1,1)(V ) ⊕ Sym′
(2)(V ) ⊕ Sym′

(3,1)(V ),

so

dim(Sym′
(3,1)(V )) = 1

8
(N − 2)(N − 1)(N + 1)(N + 4).

Up to squares, we get c((3, 1), (1, 1)) = 2(N + 2) and c((3, 1), (2)) = N.
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Proof Put

b1 :=
N∑

k=1

1

ak
e(3,1)(vk ⊗ vk ⊗ v1 ⊗ v2) and b2 :=

N∑

k=1

1

ak
e(3,1)(vk ⊗ vk ⊗ v2 ⊗ v1).

Then,

⊗4B(b1, b1) = ⊗4B(b2, b2) = (24(N − 2) + 62 · 2 + 22 · 2)a1a2 = 8(3N + 4)a1a2

and

⊗4B(b1, b2) = (−8(N − 2) − 2 · 8 · 3)a1a2 = −8(N + 4)a1a2.

So b1 − b2 = e(3,1)ϕ1,2(e(1,1)(v1 ⊗ v2)) has norm 64(N + 2)a1a2 giving
c((3, 1), (1, 1)) = 2(N + 2), and b1 + b2 = e(3,1)ϕ1,2(e(2)(v1 ⊗ v2)) has norm
32Na1a2 which yields c((3, 1), (2)) = N . 	


7.3 The refined symmetrizations for (2, 1n−2)

Proposition 7.8 Sym(2,1n−2)(V ) ∼= Sym(1n−2)(V ) ⊕ Sym′
(2,1n−2)

(V ), so

dim(Sym′
(2,1n−2)

(V ) = (n − 2)

(
N

n

)
+ (n − 1)

(
N

n − 1

)
.

Up to squares

c((2, 1n−2), (1n−2)) = (n − 1)(N − (n − 2)).

Proof Let I = {1, . . . , n − 2} and put

w := e(1n−2)v1 ⊗ . . . ⊗ vn−2 ∈ Sym(1n−2)(V ).

Then, the norm of w is (n − 2)!. For λ := (2, 1n−2), we compute

eλϕ1,2(w) = ∑N
k=1

1
ak
eλvk ⊗ vk ⊗ w =

(n − 2)!∑N
k=1

1
ak
eλvk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2 =

(n − 2)!∑n−2
k=1

1
ak
eλvk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2+

(n − 2)!∑N
k=n−1

1
ak
eλvk ⊗ vk ⊗ v1 ⊗ . . . ⊗ vn−2.

Now, the first summand is 0, whereas the last (N − (n − 2)) summands have norm
(n − 2)!222(n − 1)!q(I ). Hence, c(λ, (1n−2)) = 4(n − 1)!(n − 2)!(N − (n − 2)) =
(n − 1)(2(n − 2))2(N − (n − 2)). 	
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7.4 Determinants of refined symmetrizations

This section gives tables of the c(λ, γ ) for partitions λ of n and all n ≤ 6. Here,
(V , B) is a non-degenerate symmetric bilinear space over a field of characteristic 0,
N = dim(V ) is assumed to be≥ n. For fixed partition λ of n, we display the partitions
γ of m ≤ n and give c(λ, γ ) ∈ N (up to squares) such that

Symλ(B) ∼= Sym′
λ(B) ⊕γ c(λ, γ )Sym′

γ (B).

We omit the rows for 1n since Sym(1n)(V ) = Sym′
(1n)(V ). The composition factors

of Symλ(V ) are taken from the table in [3, p. 157]. The only composition factor that
occurs with multiplicity > 1 is Sym′

(2)(V ) in Sym(4,2)(V ), where the multiplicity is
2. Here,

A := c((4, 2), (2)) = 28
(
12N 2 − 32 2N 2 − 32
2N 2 − 32 7N 2 + 20N − 32

)
∈ Z[N ]2×2

is of determinant

2205(N − 2)N (N + 1)(N + 4).

To compute A, we chose the embeddings

f1 := e(4,2) ◦ ϕ1,2 ◦ ϕ3,4 and f2 := e(4,2) ◦ ϕ1,2 ◦ ϕ5,6 : Sym′
(2)(V ) → Sym(4,2)(V ).

For v = e(2)(v1 ⊗ v2) ∈ Sym′
(2)(V ), we computed Ai j = ⊗6B( fi (v), f j (v)).
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λ γ c(λ, γ )

(2) () N
(3) (1) 3(N + 2)

(2, 1) (1) 2(N − 1)
(4) (2), () 6(N + 4), 3N (N + 2)

(3, 1) (2), (12) N , 2(N + 2)
(22) (2), () N − 2, 2N (N − 1)

(2, 12) (12) 3(N − 2)
(5) (3), (1) 10(N + 6), 15(N + 2)(N + 4)

(4, 1) (3), (2, 1), (1) 6(N + 1), 5(N + 4), 6(N − 1)(N + 2)
(3, 2) (3), (2, 1), (1) (N − 2), 3(N + 1), (N − 1)(N + 2)
(3, 12) (2, 1), (13) 6(N − 1), 15(N + 2)
(22, 1) (2, 1), (1) 6(N − 3), 6(N − 1)(N − 2)
(2, 13) (13) (N − 3)

(6) (4), (2) 15(N + 8), 5(N + 4)(N + 6)
() 15N (N + 2)(N + 4)

(5, 1) (4), (3, 1) 2(N + 2), N + 6
(2), (1, 1) 6N (N + 4), (N + 2)(N + 4)

(4, 2) (4), (3, 1), (2, 2) N − 2, 10(N + 2), 30(N + 4)
2 · (2), () A, N (N − 1)(N + 2)

(4, 1, 1) (3, 1), (2, 1, 1), (1, 1) N , 2(N + 4), (N − 2)(N + 2)
(3, 3) (3, 1), (1, 1) 3N , 3(N + 1)(N + 2)

(3, 2, 1) (3, 1), (2, 2), (2, 1, 1) 6(N − 3), 2(N − 1), 15(N + 1)
(2), (1, 1) N (N − 2), 15(N + 2)(N − 2)

(23) (2, 2), (2), () N − 4, 2(N − 2)(N − 3), 6N (N − 1)(N − 2)
(3, 13) (2, 12), (14) 2(N − 2), 6(N + 2)
(22, 12) (2, 12), (12) 2(N − 4), 3(N − 2)(N − 3)
(2, 14) (14) 5(N − 4)

Note that the same programs prove that the refined symmetrization Sym′
γ (V ) does

occur as an orthogonal summand of the O(B)-module Symλ(V ), whenever we com-
pute c(λ, γ ) �= 0. We can also obtain the multiplicity (at least a lower bound m) by
finding c(λ, γ ) ∈ Km×m of full rank m.

7.5 An example: the refined symmetrizations of the 24-dimension representation
of 2.Co1

The covering group of the sporadic simple Conway group 2.Co1 is a subgroup of
index 2 of the automorphism group of the 24-dimensional extremal unimodular lat-
tice, the Leech lattice. So this group has a 24-dimensional rational representation
of determinant 1. The refined symmetrizations for partitions of even numbers hence
yield representations of the simple group Co1. The table below lists the ones that are
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orthogonally stable together with their decomposition into irreducibles and the cor-
responding determinants as predicted by the table in Sect. 7.4. For partitions of odd
numbers, the refined symmetrizations are faithful representations of 2.Co1 and hence
have orthogonal determinant 1 (see for instance [1, Theorem 4]) which is confirmed
by the computation of the determinants of the refined symmetrizations.

Determinants of orthogonally stable characters for Co1

Partition χ χ(1) det

(2) 2 276 1
(2,1,1) 8 37,674 1
(2,2) 7 27,300 253
(4) 6 17,250 91
(3, 13) 15 + 23 483,000 + 1,771,000 1
(3,2,1) 31 4,100,096 161
(5,1) 24 1,821,600 65
(4,2) 29 2,816,856 13
(23) 12 + 19 313,950 + 822,250 77
(6) 10 + 14 80,730 + 376,740 35
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