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Kurzfassung

Der flexible Betrieb elektrifizierter chemischer Prozesse, die mit erneuerbarem Strom be-
trieben werden, bietet sowohl wirtschaftliche als auch ökologische Vorteile. Die Umstellung
vom herkömmlichen stationären Betrieb auf einen flexiblen Betrieb stellt jedoch eine große
Herausforderung für die Prozessentwicklung und den Betrieb dar. Dieser Paradigmenwech-
sel bereitet zwar den Weg für einen optimalen flexiblen Betrieb, erfordert aber auch die Ein-
beziehung der Prozessdynamik in Planungsentscheidungen. Dies ist vor allem für chemische
Anlagen, wie z. B. Biodieselproduktionsprozesse, relevant, bei denen die zeitlichen Cha-
rakteristika mit den Zeitpunkten der Strompreisschwankungen übereinstimmen. In dieser
Dissertation entwickeln und implementieren wir modellierungs- und optimierungsbasier-
te Methoden, um Schlüsselaspekte des optimalen dynamischen Betriebs in elektrifizierten
chemischen Prozessen zu adressieren.

Wir entwickeln und wenden einen Modellierungs- und Optimierungsrahmen an, um das
Ziel eines optimalen flexiblen Betriebs für einen elektrifizierten Biodieselproduktionsprozess
zu erreichen. Die Kapitel der Dissertation sind um diesen Rahmen aufgebaut, beginnend
mit der Modellentwicklung, gefolgt von der Elektrifizierung und der Offline-Optimierung
mit Berücksichtigung zur Prozessgestaltung, und abschließend mit der Online-Regelung.
Wir beginnen mit dem Modellentwicklungsschritt, in der wir ein mechanistisches dynami-
sches Modell des Biodieselproduktionsprozesses zusammen mit zwei anlagenweiten Rege-
lungsstrukturen einführen. Wir simulieren die Antworten der Anlage auf verschiedene Stö-
rungen, um die Notwendigkeit modellbasierter Kontrollstrategien zu verdeutlichen. Dieses
Modell dient als Grundlage für die nachfolgenden Kapitel.

In dem Schritt der Offline-Optimierung formulieren wir dynamische Optimierungsproble-
me, die flexibilitätsorientierte Prozessentwürfe einbeziehen. Wir demonstrieren den Nutzen
von Puffertanks, die nicht nur die betriebliche Flexibilität erhöhen, sondern auch eine Sy-
stemzerlegung für eine verteilte Optimierung ermöglichen. Außerdem untersuchen wir die
Auswirkungen der Wärmeintegration auf die betriebliche Flexibilität und zeigen, wie die
Einbeziehung zusätzlicher Elektrifizierung die Freiheitsgrade der Optimierung erhöht.

Aufbauend auf den Ergebnissen der Offline-Studien und den flexibilitätsorientierten Pro-
zesskonfigurationen implementieren wir in dem letzten Schritt Echtzeitregelungsanwen-
dungen. Insbesondere nutzen wir die Prozesskonfiguration, die eine verteilte Optimierung
unterstützt, um eine verteilte ökonomische nichtlineare modellprädiktive Regelung zu ent-
wickeln und anzuwenden. Unsere verteilten Regelungsstrategien umfassen sowohl sequen-
tielle und iterative Kommunikationsarchitekturen als auch Kompensationsverfahren für
Rechenverzögerungen, die Verzögerungen über mehrere Abtastintervalle hinweg berück-
sichtigen.

Indem wir diese drei Schritte systematisch durchlaufen, erreichen wir das endgültige Ziel
eines optimalen und realisierbaren flexiblen Betriebs. Diese Dissertation zeigt nicht nur die
Zusammenhänge zwischen diesen Schritten während der Entwicklung und Implementierung
auf, sondern präsentiert auch Methoden und Werkzeuge, die auf eine Vielzahl anderer
chemischer Prozesse übertragbar sind.
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Summary

The flexible operation of electrified chemical processes powered by renewable electricity
offers both economic and ecological benefits, contributing to more sustainable chemical
production. However, transitioning from conventional steady-state operations presents a
significant challenge to process design and operation. While this change in operational
paradigm paves the way for achieving optimal flexible operation and effective demand-side
management, it also necessitates incorporating process dynamics into scheduling decisions
to ensure both optimal and feasible outcomes. This is particularly relevant for chemical
plants, such as biodiesel production processes, which operate on time scales comparable to
fluctuations in electricity prices. In this dissertation, we develop and implement modeling-
and optimization-based methods and tools to address key aspects of optimal dynamic
operations in electrified chemical processes.

We develop and apply a modeling and optimization framework that guides process sys-
tems through essential stages to achieve the final goal of optimal flexible operation for an
electrified biodiesel production process. The dissertation chapters are structured around
these main stages, beginning with model development, followed by electrification and of-
fline optimization with process design considerations, and concluding with online control.
We begin with the model development phase, where we introduce a rigorous mechanistic
dynamic model of the biodiesel production process, along with two plantwide base-layer
control structures. We simulate plant responses under various disturbances to highlight
the necessity of model-based control strategies in meeting operational goals. This model
serves as the foundation for the subsequent chapters.

Moving to the offline optimization stage, we formulate dynamic optimization problems
that incorporate flexibility-oriented process designs. We demonstrate the dual role of buffer
tanks for storing intermediate and final products, which not only enhance operational flex-
ibility but also enable system decomposition for distributed optimization by decoupling
dynamics between different process sections. Additionally, we explore the impact of heat
integration on operational flexibility and demonstrate how incorporating additional elec-
trified heating units increases the degrees of freedom in optimization.

Building on the offline studies and flexibility-oriented process configurations, we then
move to the final stage—online control—where we implement real-time control applica-
tions. In particular, we leverage the process configuration that supports distributed op-
timization to develop and apply distributed economic nonlinear model predictive control.
Our distributed control strategies incorporate both sequential and iterative communication
architectures, as well as compensation schemes for computational delays. These schemes
account for subsystem couplings and delays across multiple sampling intervals.

By systematically progressing through these three stages, we achieve the final objective
of optimal and feasible flexible operation for chemical processes. This dissertation not
only demonstrates the interconnectivity between these stages during both development
and implementation but also provides methods and tools with broad applicability to other
chemical processes targeting optimal dynamic operations.

XIII





Publications and Copyrights

This dissertation stems from research conducted by the author during his time at the Chair
of Process Systems Engineering at RWTH Aachen University (AVT.SVT). Parts of this
work have been previously published, and the relevant material is incorporated into the
chapters with permission, as outlined below. A detailed description of the contributions
made by all authors is also provided.

• The introduction incorporates excerpts from the abstracts published in [1–5].

• Chapter 2 is partially based on [1]: M. El Wajeh, A. Mhamdi, and A. Mitsos. Dy-
namic Modeling and Plantwide Control of a Production Process for Biodiesel and
Glycerol. Industrial & Engineering Chemistry Research, 62(27):10559–10576, 2023.
doi: 10.1021/acs.iecr.3c00934. Copyright © 2023 American Chemical Society.
Author contributions: Mohammad El Wajeh: Conceptualization, Methodology, Soft-
ware, Investigation, Validation, Formal analysis, Writing - Original draft. Adel
Mhamdi : Conceptualization, Project administration, Supervision, Funding acqui-
sition, Writing - Review and editing. Alexander Mitsos : Conceptualization, Project
administration, Supervision, Resources, Writing - Review and editing.

• Chapter 3 is partially based on [2]: M. El Wajeh, A. Mhamdi, and A. Mitsos.
Optimal Design and Flexible Operation of a Fully Electrified Biodiesel Produc-
tion Process. Industrial & Engineering Chemistry Research, 63(3):1487–1500, 2024.
doi: 10.1021/acs.iecr.3c03074. Copyright © 2024 American Chemical Society.
Author contributions: Mohammad El Wajeh: Conceptualization, Methodology, Soft-
ware, Investigation, Validation, Formal analysis, Writing - Original draft. Adel
Mhamdi : Conceptualization, Project administration, Supervision, Funding acqui-
sition, Writing - Review and editing. Alexander Mitsos : Conceptualization, Project
administration, Supervision, Resources, Writing - Review and editing.

• Chapter 4 is partially based on [3]: M. El Wajeh, A. Mhamdi, and A. Mitsos. Optimal
Flexible Operation of Electrified and Heat-Integrated Biodiesel Production. IFAC-
PapersOnLine, 58(14):513–518, 2024. doi: 10.1016/j.ifacol.2024.08.388. Copyright
© 2024 The Authors. Peer review under responsibility of International Federation
of Automatic Control (IFAC). Published by Elsevier Ltd.
Author contributions: Mohammad El Wajeh: Conceptualization, Methodology, Soft-
ware, Investigation, Validation, Formal analysis, Writing - Original draft. Adel
Mhamdi : Conceptualization, Project administration, Supervision, Funding acqui-
sition, Writing - Review and editing. Alexander Mitsos : Conceptualization, Project
administration, Supervision, Resources, Writing - Review and editing.

• Chapter 5 is partially based on [4]: M. El Wajeh, M. Granderath, A. Mit-
sos, and A. Mhamdi. Distributed Economic Nonlinear Model Predictive Con-

XV

https://doi.org/10.1021/acs.iecr.3c00934
https://doi.org/10.1021/acs.iecr.3c03074
https://doi.org/10.1016/j.ifacol.2024.08.388


Publications and Copyrights

trol for Flexible Electrified Biodiesel Production—Part I: Sequential Architec-
tures. Industrial & Engineering Chemistry Research, 63(42):17997–18012, 2024.
doi: 10.1021/acs.iecr.4c02453. Copyright © 2024 American Chemical Society.
Author contributions: Mohammad El Wajeh: Conceptualization, Methodology, Soft-
ware, Investigation, Validation, Formal analysis, Writing - Original draft. Mar-
cel Granderath: Methodology, Software, Investigation, Writing - Review and edit-
ing. Alexander Mitsos : Conceptualization, Project administration, Supervision, Re-
sources, Writing - Review and editing. Adel Mhamdi : Conceptualization, Project
administration, Supervision, Funding acquisition, Writing - Review and editing.

• Chapter 6 is partially based on [5]: M. El Wajeh, M. Granderath, A. Mitsos, and
A. Mhamdi. Distributed Economic Nonlinear Model Predictive Control for Flexi-
ble Electrified Biodiesel Production—Part II: Sequential and Iterative Architectures
with Computational Delay Compensation. Industrial & Engineering Chemistry Re-
search, 63(42):18013-18026, 2024. doi: 10.1021/acs.iecr.4c02454. Copyright © 2024
American Chemical Society.
Author contributions: Mohammad El Wajeh: Conceptualization, Methodology, Soft-
ware, Investigation, Validation, Formal analysis, Writing - Original draft. Mar-
cel Granderath: Methodology, Software, Investigation, Writing - Review and edit-
ing. Alexander Mitsos : Conceptualization, Project administration, Supervision, Re-
sources, Writing - Review and editing. Adel Mhamdi : Conceptualization, Project
administration, Supervision, Funding acquisition, Writing - Review and editing.

Additionally, during his time at AVT.SVT, the author published the following article [6],
which is not included in this dissertation: M. El Wajeh, F. Jung, D. Bongartz, C. D.
Kappatou, N. Ghaffari Laleh, A. Mitsos, and J. N. Kather. Can the Kuznetsov Model
Replicate and Predict Cancer Growth in Humans? Bulletin of Mathematical Biology,
84(11):130, 2022. doi: 10.1007/s11538-022-01075-7.

While at AVT.SVT, the author supervised the Bachelor’s theses of Mohamad Morobeid
[7], Jérôme Jordan [8], and Andres Lachmund [9], as well as the Master’s theses of Marcel
Granderath [10], Niklas Groll [11], Vincent Klippel [12], and Aaron Weber [13]. The con-
tributions of all students are acknowledged. The results from the Master’s thesis of Marcel
Granderath [10] were partially utilized in the publications [4, 5] (see author contributions),
and are subsequently incorporated into Chapter 5 and Chapter 6.

XVI

https://doi.org/10.1021/acs.iecr.4c02453
https://doi.org/10.1021/acs.iecr.4c02454
https://doi.org/10.1007/s11538-022-01075-7


1. Introduction

The electrification of chemical processes refers to the substitution of traditional fossil fuel-
based energy sources with electricity, which can be derived from renewables such as wind,
solar, or hydropower. This transition supports more sustainable chemical production,
aligning with broader goals of defossilizing industrial processes [14–16]. As renewable en-
ergy sources are inherently variable—fluctuating due to weather conditions and time of
day—the flexible operation of electrified and renewable-powered chemical processes offers
economic and potentially ecological incentives [15, 17–19]. Notably, in response to fluc-
tuating electricity prices, production rates can be increased during low-price periods and
decreased otherwise. However, such an operational paradigm requires a departure from the
traditional steady-state (SS) mode of operation, thereby realizing what is often referred to
as demand-side management (DSM).

Zhang and Grossmann [17] describe DSM as a framework of coordinated activities be-
tween grid operators and electricity consumers aimed at adjusting the amount or timing
of electricity use to improve grid performance and enhance consumer benefits. Grid oper-
ators assess the need for load adjustments and offer financial incentives, while consumers
respond by making physical load adjustments. Mitsos et al. [15] highlight the importance
of DSM in addressing the variability and unpredictability of renewable energy sources. In
this context, an optimally flexible process operation enables effective DSM, allowing chem-
ical processes to adapt to fluctuating energy and feedstock supplies—essentially managing
dynamic operational conditions.

Dynamic operation of flexible chemical processes enables continuous adjustments in pro-
duction rates, optimizing energy consumption while leveraging fluctuating energy prices
[15]. Simultaneously, some industrial plants operate on time scales comparable to the fre-
quency of these fluctuations. Consequently, the plant may remain in a transient state for
extended periods during dynamic operation. Hence, achieving optimal and feasible flexible
operations requires the consideration of process dynamics, operational limits, and product
qualities. In other words, process dynamics must be incorporated into frequent scheduling
decisions aimed at capitalizing on fluctuating energy prices. This, in turn, necessitates
integrating decision-making across various time scales in process operations [20–22]. Such
integration can be facilitated through trajectory optimization, which seeks to optimize
process variables over a defined time horizon to maximize profit while ensuring operational
feasibility and product quality requirements [23]. Conversely, the majority of conventional
chemical plants are designed for continuous operation around SS operating points, requir-
ing a constant energy and feedstock supply, thereby presenting significant challenges for
flexible operation. Therefore, reassessing conventional process design to enhance flexibility
in accommodating variable energy availability becomes imperative in this paradigm shift
in process operation.

Recent research has explored methodologies for integrating decision-making in chemical
process operations across various time scales, resulting in the emergence of two primary
operational paradigms: top-down and bottom-up approaches [20, 22, 24–28]. Figure 1.1
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1. Introduction

illustrates the hierarchical separation of operational decisions by time scales for the conven-
tional, top-down, and bottom-up paradigms. The conventional paradigm treats scheduling
and process control as distinct layers, separated by time scales (cf. Figure 1.1a). In this
paradigm, scheduling is typically performed under quasi-stationary assumptions, disregard-
ing the detailed dynamics of the process and its control system [29, 30]. In contrast, the
top-down approach involves incorporating detailed process information, including dynam-
ics and control, into scheduling calculations (cf. Figure 1.1b). This is often achieved using
dynamic real-time optimization [31], where dynamic models are utilized during schedul-
ing, often based on data-driven models informed by closed-loop data from the process and
control system [20–22]. Production schedules from top-down calculations are presented
as setpoints for implementation by a multivariable tracking controller. This controller
calculates manipulated variable profiles, passing them directly to the process or through
subordinate base-layer controllers. On the other hand, the bottom-up paradigm embeds
economic considerations directly within the process control layer itself, often via a super-
visory controller such as economic nonlinear model predictive control (eNMPC) [32, 33],
as shown in Figure 1.1c. eNMPC addresses an online dynamic optimization (DO) problem
with an economic objective over a sufficiently long time horizon, using open-loop process
models that are typically mechanistic or hybrid in nature. Unlike the top-down paradigm,
a subordinated advanced tracking controller is unnecessary. Instead, eNMPC maximizes
economic performance and directly controls the process.

Top-down integration of 
scheduling and control

Bottom-up integration of 
scheduling and control

Conventional scheduling 
and control

Planning

Process

Setpoints Measurements

Open-loop dynamic models, 
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Figure 1.1.: Hierarchical separation of operational decisions in chemical processes by time
scales, along with scheduling and control approaches for: (a) conventional, (b) top-down, and
(c) bottom-up paradigms. Adapted from [21].

To achieve the aforementioned objectives in electrified chemical plants—specifically op-
timal flexible operations—modeling- and optimization-based strategies and tools are essen-
tial. Process systems engineering plays a key role in the development and implementation
of these strategies within industrial processes, particularly chemical processes. Beginning
with defining the final objectives for optimal flexible operation and systematically pro-
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gressing through the necessary steps to achieve them, process development and operation
strategies can be conceptualized within the modeling and optimization framework illus-
trated in Figure 1.2. This framework is specifically tailored to align with our final goals
and application requirements. The target industrial process, an electrified chemical plant
powered by renewable energy, aims to optimize flexible operations in response to fluctuating
electricity prices. As discussed earlier, model-based scheduling and control are essential for
meeting these goals. Consequently, the first step involves developing mathematical models
to describe the plant and its control systems, specifically tailored to support the desired
outcomes. In our case, these models are nonlinear and dynamic and can be mechanistic,
data-driven, or hybrid in nature.

Objective
Optimal and 
feasible flexible 
operation

Modeling
•Full-order or reduced-order 
models

•Mechanistic, data-driven, 
or hybrid in nature

•Control-oriented models
•Digital twins for process 
simulations

Offline optimization
• Integrated process design 
and operation

•Process retrofitting and 
electrification

•Heat integration
•Flexibility-oriented process 
designs and configurations

Online control
• Integration of scheduling 
and control

•eNMPC
•Dynamic scheduling with
advanced tracking control

•System decomposition
•Distributed control

Chapters 3 & 4 Chapters 5 & 6Chapter 2

Chemical plant

Process development and operation strategies

Figure 1.2.: Conceptual representation of process development and operation strategies within
a modeling and optimization framework, highlighting the essential steps to achieve the desired
process operation objectives.

Following model development, integrated process design and operational strategies must
be established and evaluated, allowing for reassessment of process design considerations
that facilitate optimal flexible operation. This stage may involve defining, formulating, and
solving offline DO problems, including coupled design and operation problems. Retrofitting
existing chemical plants to support flexibility-oriented designs is also essential. This could
involve, e.g., reconfiguring or upgrading process units, integrating energy storage systems,
and/or incorporating buffer (storage) tanks for intermediate and final products within
the process to enable and enhance flexible operations. Offline optimization studies may
further explore strategies for electrification, process intensification, and heat and material
integration while considering flexible operation targets.

The third stage is online control, where the developed models, offline optimization strate-
gies, retrofitting measures, and flexibility-oriented process designs are combined and ap-
plied in real-time plant operations. This phase primarily focuses on model-based control,
particularly eNMPC in our case. Here, control-oriented models, reduced-order models,
distributed control strategies, and system decomposition methods can be employed to
enable online-tractable control. Additionally, flexibility-oriented process designs, such as
decoupling process dynamics through the use of buffer tanks, can facilitate the practical
application of distributed control strategies.

3



1. Introduction

As illustrated in the flowchart in Figure 1.2, these three primary stages consist of various
sub-steps and are inherently iterative. Each stage is interconnected and mutually influ-
ential. For instance, models developed in the initial stage may be refined or adapted to
accommodate different optimization strategies and control approaches at later stages. This
feedback mechanism illustrates the interplay between the second and third stages with the
initial modeling phase. Similarly, real-time control strategies and distributed control imple-
mentations are significantly influenced by the optimization problem formulations, process
configurations, and buffer tank allocations established earlier, exemplifying the feedback
loop between the second and third stages. Consequently, these three main stages are not
only iteratively refined with respect to the underlying process but also together and are
continuously adapted in the development phase and later during the implementation of
the online control phase.

In this dissertation, we address several topics related to the optimal flexible operation
of chemical processes. Our focus is on developing and applying the necessary methods
and tools, as illustrated in Figure 1.2, to optimize in silico the flexible operation of elec-
trified transesterification processes under fluctuating electricity prices. Specifically, we
examine the production of fatty acid methyl esters (FAME)—the primary chemical species
in biodiesel—from vegetable oil [34, 35]. We consider the alkali-catalyzed homogeneous
transesterification process, as it is the most widely used route in both academic literature
and industry for biodiesel production [36–38]. This process consists of a main reaction
unit, multiple separation processes, and two recycle streams. It typically operates on time
constants of several hours and in SS modes [1, 36]. Consequently, achieving feasible flexible
operation in such a process requires accounting for its transient behavior, as the relatively
slow dynamics coincide with or even exceed the time scales of fluctuating electricity prices,
which are treated here as known parametric process disturbances. We electrify the pro-
cess using heat pumps and electric coils. Additionally, we incorporate buffer tanks to
store intermediate and final products within the process, which not only enables flexible
production but also enhances the overall operational flexibility [2].

Operational flexibility is central to this dissertation but is often interpreted in varied
ways across the literature. Foundational work by Grossmann and Morari [39] introduced
formal definitions of flexibility, resiliency, and operability for chemical processes. Although
these definitions have not been consistently adopted in subsequent research, they provide
valuable conceptual grounding. In this work, we adopt a practical definition of opera-
tional flexibility as the ability of a process to dynamically adjust production rates and
operating conditions—through manipulation of control variables—in response to external
disturbances, particularly electricity price fluctuations, while maintaining feasibility and
performance.

The potential for optimal flexible operations has been explored in several load-shifting
applications for electricity-intensive processes such as air separation units [21, 33], water
desalination plants [40, 41], and chlor-alkali electrolyzers [42, 43]. However, the develop-
ment and application of DSM methods to chemical processes, particularly those involving
reaction, separation, and recycle components, have received limited attention in the litera-
ture. Additionally, the exploration of process design modifications in chemical plants—such
as incorporating buffer tanks to enable flexible operation—remains largely unexamined.
The biodiesel production process considered in this dissertation shares many characteris-
tics with other chemical processes, particularly those involving reaction, separation, and
recycle components—key elements of classical chemical plants. Therefore, the methods
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developed and applied in this dissertation have broad applicability across a range of chem-
ical processes, underscoring the generalizability of our approach. The selected electrified
biodiesel production process, along with the interplay between its slow process dynamics
(including regulatory control) and the integration of scheduling and control, underpins the
theme of this dissertation: Optimal Dynamic Operation of Electrified Biodiesel Production.

Moreover, biodiesel has attracted significant attention from both industry and academia
over the past few decades [44–47]. It is a promising alternative to fossil-based diesel due
to its similar physico-chemical properties [44, 46], low aromatic and sulfur content [48],
and the fact that it is a biomass-derived, biodegradable fuel [47]. Biodiesel production
processes can utilize a variety of feedstocks [49], including various vegetable oils [50], algae
oil, and waste cooking oil [51]. However, its production costs are higher than those of
conventional diesel [52]. Therefore, reducing overall manufacturing costs and leveraging
fluctuating energy prices through flexible operations are critical for ensuring its economic
viability. Thus, examining the biodiesel production process not only advances the under-
standing and application of modeling- and optimization-based strategies for the flexible
operation of electrified chemical processes but also integrates sustainability concepts from
diverse research domains. This integration is crucial for the future of industrial biofuel and
chemical synthesis powered by renewable energy sources.

The modeling- and optimization-based approaches outlined in Figure 1.2 require spe-
cialized methods and software capable of handling optimization problems with embed-
ded dynamic models. Such tools are widely used in various engineering fields and typ-
ically involve differential-algebraic equation (DAE) systems with additional process con-
straints. Effective application and analysis of DO methods demands a framework that
is both efficient, to handle large-scale problems, and modular, to support various algo-
rithms and facilitate the integration of complex process models. In this dissertation,
we utilize the Dynamic Optimization Software (DyOS) [53], an open-source DO frame-
work developed at AVT.SVT. DyOS is based on direct adaptive shooting algorithms
[54–57] and supports multi-stage problem formulations, including binary decision-making.
Models can be imported as standardized Functional Mockup Unit (FMU), flat Model-
ica models, or C++ models. The modular design of DyOS allows for the use of a va-
riety of open-source and commercial integrators and nonlinear program (NLP) solvers,
which are based on different numerical methods. DyOS can be accessed through C++,
MATLAB, or Python interfaces, and has been applied in several case studies involving
optimal operation, model predictive control (MPC), and process design [53]. An open-
source version of DyOS, including several components of its framework, is available at
permalink.avt.rwth-aachen.de/?id=295232.

The following provides an overview of the chapters in this dissertation, detailing how each
aligns with the steps outlined in the flowchart in Figure 1.2. We begin with the development
of the biodiesel production process design and modeling, proceed to the implementation
of offline DO strategies coupled with process intensification, and conclude with online
control via eNMPC. Each chapter is self-contained, featuring an introduction, motivation,
literature review, methodology, results, and conclusions specific to the topic addressed.
Throughout, we emphasize the specific steps and sub-steps employed from the flowchart to
ultimately achieve the goal of real-time tractable control for optimal flexible operation of
the considered electrified biodiesel production process under fluctuating electricity prices.

Chapter 2 details the model development phase outlined in Figure 1.2, presenting
a modular and rigorous mechanistic dynamic model for biodiesel and glycerol produc-
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1. Introduction

tion via homogeneous alkali-catalyzed oil transesterification. We implement the model
in Modelica [58], an open and powerful equation-based modeling language that en-
ables the creation of modular and hierarchical building blocks adaptable to other chem-
ical processes and fluid systems. The Modelica model is available as open-source at
permalink.avt.rwth-aachen.de/?id=135903. Moreover, to investigate the plant’s dy-
namic behavior, assess its controllability, and establish a basic control level for subsequent
studies, we design two plantwide decentralized control structures. A plantwide approach is
essential due to the interconnected unit operations and recycle streams within the biodiesel
production process. The first plantwide control (PWC) structure assumes information-rich
measurement configurations, including species concentration data from process analytical
technologies such as in-situ infrared or Raman spectroscopy [59, 60]. In contrast, the second
PWC structure relies on conventional measurement setups using standard process variables
like temperature, pressure, and flow rate, reflecting current industrial practices. We explore
several disturbance scenarios to assess dynamic behavior, demonstrating the importance
of a plantwide perspective. The information-rich PWC structure shows satisfactory con-
trol performance, while the conventional structure fails to always satisfy product quality
requirements, underlining the need for dynamic models to enable model-based control and
estimation techniques. This dynamic model forms the basis for subsequent models used in
the offline optimization and online control phases. Since all studies in this dissertation are
performed entirely in silico, it also represents the underlying operational process within
the framework depicted in Figure 1.2.

Using the model developed in Chapter 2, Chapter 3 explores offline DO studies alongside
flexibility-oriented process designs and configurations. This chapter addresses the second
stage of the flowchart in Figure 1.2, incorporating process retrofitting with DO strategies
tailored to achieve the final objectives of optimal flexible operations. Specifically, we in-
vestigate the role of buffer tanks for storing intermediate and final products within the
biodiesel production process in enabling and enhancing flexible operation. We formulate
several DO problems tailored to these configurations, targeting optimized and feasible flex-
ible operations. We examine the operational flexibility of three process configurations and
compare the outcomes of their DO strategies with those of a SS operation, considering a
typical DSM scenario. The three process configurations differ based on the number and
placement of the buffer tanks incorporated. For all strategies, we employ local gradient-
based optimization and solve them using DyOS. We aim to demonstrate that, when chem-
ical processes are electrified and powered by renewable energy, novel operational strategies
rooted in flexibility through dynamic operation may emerge as the new paradigm for chem-
ical plant operations. Achieving this transition requires leveraging advanced modeling and
optimization techniques and reevaluating traditional process design considerations to fully
harness the benefits of flexible operation. Our findings indicate that by incorporating in-
termediate tanks, we fully exploit the process flexibility potential, leading to energy cost
savings of up to 29%. Moreover, we show that these tanks not only decouple dynamics
across different process sections—facilitating more flexible operations—but also enable the
implementation of a distributed optimization strategy with smaller problem sizes, leading
to enhanced computational performance. This proposed distributed optimization strategy
yields similar energy cost savings to centralized optimization approaches while significantly
reducing computational costs by over tenfold, thereby paving the way for real-time control
applications.

The offline DO studies and the flexibility-oriented process designs explored in Chapter 3
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do not consider heat integration (HI). However, HI is crucial for enhancing energy effi-
ciency by reducing external energy requirements, making it a common practice in modern
chemical plants. In Chapter 4, we investigate the impact of incorporating HI on operational
flexibility, focusing on how it influences the degrees of freedom available for optimization.
Continuing with the second stage of the flowchart in Figure 1.2, we further explore process
intensification techniques and their implications for offline DO strategies. Integrating heat
across multiple units introduces additional complexities and interdependencies within the
process, which can complicate flexible operation and limit optimization options [61]. We
present two configurations that implement full HI across all three distillation columns in
the process. One configuration includes additional heating units for the reboilers, while the
other operates without them. We aim to evaluate the effect of these external heat sources
on process flexibility under dynamic operation. As anticipated, adding supplementary
heating units enhances flexibility and results in greater energy cost savings. Additionally,
we introduce a third configuration that enables the use of two distributed optimizers, each
addressing a smaller DO problem, in contrast to the centralized optimization used in the
other configurations. In this setup, vapor recompression (VRC) [62, 63] is applied to one
column, while the remaining two columns are heat-integrated. The three configurations
are subsequently benchmarked against their respective SS operations, as well as against a
dynamic operation of a previous configuration from Chapter 3 without HI. Notably, the
configuration employing distributed optimization significantly reduces computational costs
while achieving comparable energy cost savings to its centralized counterparts, making it
more suitable for online control.

Building on the offline DO strategies and flexibility-oriented process designs—
particularly the strategy that enables decomposing the process into subsystems for dis-
tributed optimization—we progress to the third stage of the flowchart in Figure 1.2 to de-
velop and implement methods for real-time control. Specifically, in Chapter 5, we present
and apply distributed economic nonlinear model predictive control (DeNMPC) to optimize
the flexible operation of the considered biodiesel production process under fluctuating elec-
tricity prices. Our approach utilizes sequential communication protocols for distributed
control, employing non-cooperative cost functions. By leveraging the process configu-
ration that incorporates buffer tanks for intermediate and final products, we decouple
process dynamics, thereby segmenting the process into three distinct subprocesses. This
decomposition significantly reduces the computational complexity of the eNMPC controller
by breaking down the optimization problem into smaller subproblems managed by local
controllers, i.e., DeNMPC. The DeNMPC strategy yields significant energy cost savings
of 20% compared to SS operation while being real-time tractable and ensuring opera-
tional feasibility. This stands in contrast to a benchmark strategy based on conventional
scheduling with simple quasi-stationary models, which results in infeasible outcomes. Fur-
thermore, the DeNMPC strategy handles unexpected disturbances in production demand
and feed composition, mitigated by the buffer tanks. These tanks prove essential not only
for enhancing operational flexibility but also for enabling realizable DeNMPC applications
through system decomposition. Additionally, in this chapter, we extend the DeNMPC with
two stability formulations from the literature, assessing their suitability and implications
within the specific context of our biodiesel production application.

While the DeNMPC presented and applied in Chapter 5 enables an online-tractable con-
trol application, the computational times required to solve the optimization problems, even
within subsystems, remain significant relative to the DeNMPC sampling periods. This is
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particularly relevant in our case, as nonconvex problems involving nonlinear systems of
equations must be solved at every sampling instant. Ignoring the computational delays
involved in calculating control variables can result in discrepancies between predicted and
actual system states, leading to degraded closed-loop performance or stability [64, 65].
In Chapter 5, we do not account for the computational delays incurred while solving the
optimization problems, despite the considerable CPU times required. Additionally, along-
side sequential communication architectures in DeNMPC, iterative architectures represent
another primary protocol [66–68], which we do not consider in Chapter 5. Thus, to fur-
ther advance the online control stage illustrated in Figure 1.2, Chapter 6 addresses an
iterative DeNMPC approach additionally and incorporates computational delay compen-
sation schemes. These compensation schemes leverage model-based predictive simulation
algorithms [69–71] to mitigate the impact of delays. Notably, our control scheme incor-
porates delay compensation over multiple sampling time intervals, addressing subsystem
couplings in distributed control. We provide the DeNMPC framework as open-source at
permalink.avt.rwth-aachen.de/?id=619269. This framework, implemented in Python
and integrated with DyOS, includes both sequential and iterative communication archi-
tectures, computational delay compensation schemes, and all associated model extensions.
Through closed-loop simulations, we demonstrate that computational delays can signif-
icantly impact the stability and performance of DeNMPC strategies. Particularly, the
sequential approach shows considerable discrepancies in control performance when com-
paring ideal computational conditions with those accounting for computational delay. Our
results reveal that the iterative architecture, with bidirectional communication, outper-
forms the sequential approach, providing higher energy cost savings and greater adaptabil-
ity to disturbances. Chapter 6 contributes to advancing DeNMPC applications with delay
compensation techniques, underscoring their potential for sustainable biodiesel production
and possible extensions to other chemical processes.

After developing and implementing the proposed methods across the stages outlined in
Figure 1.2 to achieve the primary objectives of this dissertation—optimal and feasible flexi-
ble operation of electrified biodiesel production—we conclude in Chapter 7 by summarizing
the key findings and highlighting potential directions for future research and applications.
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2. Dynamic Modeling and Plantwide
Control of a Production Process
for Biodiesel and Glycerol

Figure 2.1 visually emphasizes the focus of this chapter within the broader framework
outlined in Figure 1.2. As shown, this chapter concentrates on developing the mathematical
model for the biodiesel production process and its base layer control structures.
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Figure 2.1.: Graphical illustration highlighting the focus of Chapter 2, specifically the model
development phase within the modeling and optimization framework presented in Figure 1.2 in
Chapter 1.
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2. Dynamic Modeling and Plantwide Control of a Production Process for Biodiesel and
Glycerol

2.1. Introduction

Different catalytic and noncatalytic processes are employed for biodiesel production
[49, 72]. Among the noncatalytic supercritical, acid/alkali catalytic heterogeneous, and
acid/alkali catalytic homogeneous transesterification processes, the homogeneous alkali-
catalyzed transesterification process is the most commonly utilized in practice and has
been well considered in the literature [36–38, 46, 73]. It replaces glycerol from oil triglyc-
erides with radicals from the alcohol used for the conversion process in presence of an
alkali catalyst. The produced monoesters, known as FAME, are the biodiesel product
[34, 35]. However, the industrial production of biodiesel still faces technical and economic
challenges. The final product has to comply with stringent quality standards, while its
purification relies on energy-intensive units (distillation), and the raw material may ex-
hibit high variability [49]. This motivates the development of techniques to improve the
economic and operational performance of its production processes while complying with
the demanding quality standards.

Biodiesel production involves interconnected unit operations and recycle streams leading
to complex process dynamics. Their modeling and simulation improve the understanding
of the plant’s dynamics and enable economic improvements in its design and operation.
Biodiesel production processes have been considered extensively in the literature from dif-
ferent perspectives. For instance, Mandari and Devarai [74] reviewed biodiesel production
processes using different catalysts, their prospects, and their challenges. Mohiddin et al.
[75] presented a review of the recent advancement and classification of the feedstock and
catalyst for biodiesel production. Salvi and Panwar [76], and Santori et al. [77] reviewed
biodiesel production technologies and resources. Enweremadu and Mbarawa [78] studied
the technical aspects of production and quality analysis of biodiesel from used cooking
oil. Other studies focused on the techno-economic analysis of different transesterification
methods [36, 46, 79–83]. Lee et al. [84] addressed the economic analysis of biodiesel pro-
duction using fresh and waste vegetable oil and supercritical methanol. Zavarukhin et al.
[85] focused on the plant design and economics of a biodiesel production and refining pro-
cess using rapeseed oil. West et al. [80] studied four biodiesel production processes and
their economic assessment with different levels of complexity. Other studies focused on the
transesterification process only and its kinetic modeling. Noureddini and Zhu [86] modeled
the kinetics of the soybean oil transesterification with methanol. Sharma et al. [87] studied
the development of heterogeneous catalysts for transesterification reaction processes, and
the development of their kinetics was investigated in refs. [73], [88], and [89]. Moreover,
other process concepts for biodiesel production have been suggested. Wali et al. [90] de-
veloped a novel continuous microwave reactor for the conversion of waste oil and fats into
biodiesel, and studied its temperature control. Also, biodiesel production with reactive
absorption technology has been investigated [91].

The process dynamics and control of biodiesel production have also been addressed in
the literature. Kariwala and Rangaiah [46] developed a PWC concept for a biodiesel pro-
duction plant using control heuristics assisted with simulation. Shen et al. [92] studied the
design and control of a biodiesel production process with phase separation and recycle. Da
Silva et al. [93] proposed key performance indicators for the evaluation of different PWC
structures for a biodiesel production process. The process control of biodiesel production by
reactive absorption has been also studied [91, 94, 95]. Mjalli and Hussain [96] addressed
the dynamics and control of a continuous reactor unit for biodiesel production. Brásio
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et al. [97] applied nonlinear model predictive control (NMPC) for the reaction section of
a continuous biodiesel plant. They determined optimal profiles of the process variables
using a nonlinear mechanistic model of the whole transesterification section. Benavides
and Diwekar [98] developed an optimal control problem for biodiesel production in a batch
reactor to maximize the final concentration of FAME by determining the optimal temper-
ature profile. They extended their work and studied the effect of uncertainty in the reactor
feed [99], and developed a two-layer optimization strategy to minimize operation time and
maximize conversion in the reactor [100].

The aforementioned studies rely on commercial process simulators, mainly Aspen Plus
[101] and Aspen HYSYS [102], and thus the model equations cannot be accessed. This
is discussed in the comprehensive review by Chang and Liu [103]. Besides, Martín and
Grossmann [51] used a surface response methodology to model reactors and shortcut meth-
ods for distillation columns modeling in biodiesel production processes. Brásio et al. [104]
developed first principle models for the reaction section and a simple decanter model based
on fixed split ratios. Others developed mechanistic models for the reaction section of oil
transesterification processes only [99, 105–107]. Farobie et al. [108] created an artificial
neural network model by using experimental data, in order to predict biodiesel yield of
a supercritical noncatalytic production reactor. However, we are unaware of any study
in the literature that developed a detailed first-principle dynamic model of a complete
biodiesel production plant with accessible and editable model equations that can be used
as a digital twin and for model-based control applications like NMPC. Such a digital twin
may be used to support the scaleup of biodiesel production processes and could improve
cost-effectiveness in design and operation. Moreover, compared to models from commer-
cial software, such modular models are needed for benchmark purposes and have a generic
value for optimization and control applications, as they share features with many other
chemical processes.

We present a rigorous mechanistic dynamic model of biodiesel production via homoge-
neous alkali-catalyzed transesterification of vegetable oils and provide the corresponding
implementation open-source. We decouple unit operations and thermodynamic models.
We model the reactors using material and energy balances and apply second-order ele-
mentary rate laws for kinetic modeling. We use the Material balance, phase Equilibrium,
Summation, and Heat balance (MESH) equations for the separation units. Thermody-
namic nonidealities are calculated based on the non-random two-liquid (NRTL) model
[109] and the Design Institute for Physical Properties (DIPPR) relations [110]. We build
the model framework in Modelica [58] as an open and powerful equation-based modeling
language, which leads to modular and hierarchical building blocks that can be used for
other chemical processes and fluids. Furthermore, we implement the same process in Aspen
Plus v11 [101] in order to compare the SS results of both models.

Moreover, in order to investigate the dynamic behavior of the plant, assess its control-
lability and provide a basic control level for future investigations, we design two plantwide
decentralized control structures. Plantwide considerations are necessary due to the inter-
connected unit operations and recycle streams. For one PWC structure, we assume the
availability of information-rich measurement configurations, including species concentra-
tion measurements, e.g., through process analytical technologies such as in-sito infrared or
Raman spectroscopic technologies [59, 60]. For the other PWC structure, we consider a
structure that uses only conventional configuration with measurements for process quanti-
ties such as temperature, pressure, or flow rate, and thus matches current industrial prac-
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tice. The design of the PWC structures and the tuning of their control loops must be based
on the overall plant objectives [93, 111]. Only few PWC methodologies are available, e.g.,
Luyben’s heuristic-based methodology [112], self-optimizing control [46, 113–115], and the
integrated framework of simulation and heuristics (IFSH) [46, 116]. We choose the IFSH
methodology because it employs process simulation for assistance in using the heuristic
PWC design steps. In addition, Murthy Konda et al. [116] and Kariwala and Rangaiah
[46] provide detailed applications of the IFSH methodology.

Our work primarily addresses the lack of open-source and rigorous dynamic models
of chemical processes for model-based applications. Specifically, the model is versatile,
making it suitable for optimization and control applications, and also significant on its
own due to its application potential. It encompasses the reaction, separation, and recycle
aspects of a chemical plant, making it relevant to a wide range of processes. Furthermore,
by applying the two PWC structures, assuming different measurement availability, we
aim to demonstrate the importance of having dynamic models developed for model-based
control and estimation as well as the application potential of advanced process analytics
for process control purposes. Overall, the novelty of the work lies in providing an open-
source dynamic model that can serve as a benchmark for the application of model-based
techniques in chemical processes.

The remainder of the chapter is structured as follows. We first introduce the consid-
ered biodiesel production process and discuss the operating conditions. Then, we ex-
plain the considered assumptions behind the mathematical process model. Afterward,
we discuss the developed PWC structures following the steps of the IFSH methodol-
ogy. Before discussing the results of the plant dynamic simulation and control, we
show how we simulate the plant under several scenarios to assess the performance of
the PWC structures in terms of setpoint tracking and disturbance rejection. Finally,
we draw conclusions about our contribution. We provide the full mathematical model
in Section A.1 in Appendix A and the Modelica model including the PWC structures at
permalink.avt.rwth-aachen.de/?id=135903.

2.2. Process Description and Operating Conditions

We consider the homogeneous transesterification process of vegetable oil utilizing an alkali
catalyst to produce biodiesel. This process is widely used in industrial production and
is preferred over the acid-catalyzed and supercritical methods due to its faster reaction
rates and lower methanol to oil ratios required under mild operating conditions [46, 73].
However, the alkali-catalyzed process is sensitive to the presence of water and free fatty
acids (FFA) in the feed. The presence of water may cause ester saponification under
alkaline conditions, while FFA can react with the alkali catalyst to produce soaps and
water [36, 46]. Saponification consumes the alkali catalyst and may cause the formation
of emulsions, which can complicate the downstream recovery and purification of biodiesel.
Hence, if the feed contains water and FFA levels beyond the maximum tolerance level, a
pretreatment step is necessary to eliminate them. For our study, we assume the use of
pretreated and refined vegetable oil.

Rapeseed oil, palm oil, and soybean oil are typical oil feedstocks [49, 50]. The main
constituents of these oils are the glycerides of the fatty acids. The glycerides of oleic
fatty acid, mainly triglycerides, have been considered to represent the vegetable oil in
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many case studies of biodiesel production in literature because it is the main constituent
of rapeseed oil and soybean oil as well as the second main constituent in palm oil after
the glycerides of palmitic acid [36, 46, 82, 117–120]. Chang and Liu [103] summarized
the vegetable oil constituents used in several reported simulation models for biodiesel
production plants. Triolein, the triglyceride of oleic acid, was mainly used to represent the
oil feed in those models. Therefore, we use the glycerides of oleic acid to represent the
vegetable oil. Based on Zhang et al. [36], Myint and El-Halwagi [82], and the summarized
vegetable oil constituents in Chang and Liu [103], we use 95 wt% triolein and 5 wt%
diolein as the nominal fed oil composition because it is a typical composition of oleic acid
glycerides of vegetable oils. We use methanol for the transesterification of oil and sodium
hydroxide solution (NaOH ·H2O) as the alkali catalyst [36, 46], due to their low prices and
availability.

A process flowsheet of the considered biodiesel and glycerol production plant is depicted
in Figure 2.2. The design of all process units and operating conditions are based on Zhang
et al. [36]. Methanol and NaOH ·H2O are mixed before they are fed into the transesterifier,
i.e., a continuous stirred-tank reactor (CSTR). We feed the oil feed as well as the mixture
of methanol and NaOH ·H2O into the CSTR without preheating. The outlets of the reactor
are the biodiesel product, i.e., FAME, glycerol as a byproduct, the remaining reactants,
and the catalyst solution. The products are then separated and purified in the separation
section of the plant, and the reactants are recycled to the reactor. There are several
configurations reported in the literature for the process separation section [36, 46, 82]. We
apply the design of Zhang et al. [36] for the homogeneous alkali-catalyzed transesterification
process. The main advantage of this design is that we can separate the unreacted oil from
the biodiesel in a separate column, because methanol is separated in the methanol column
before the decantation or water washing steps.

The optimal operating temperature of the CSTR for such a process is within the range of
[55–75] ◦C [36, 38, 96]. Following Zhang et al. [36], we choose a nominal operating temper-
ature of 60 ◦C. The homogeneous transesterification reaction could operate at atmospheric
pressure. However, we operate the CSTR at 1.5 bar absolute pressure, by supplying nitro-
gen gas, to guarantee that methanol remains in the liquid phase at the nominal operating
temperature as the bubble point of methanol at 1 bar is 65 ◦C [121]. We use the operating
conditions that are optimal according to Zhang et al. [36] and Abbaszaadeh et al. [38] to
achieve maximum conversion. We thus operate the CSTR at the optimal residence time
of the reactor content of 1 h. The amount of the total methanol fed into the reactor is
determined such that an optimal 6:1 methanol-to-oil mole ratio entering the reactor is
achieved. The NaOH ·H2O is fed such that 2 wt% of NaOH in the mixture of methanol
and NaOH ·H2O entering the reactor is preserved. We target 88% oil conversion with the
6:1 methanol-to-oil mole ratio and the preserved 2 wt% of NaOH ratio. We maintain the
temperature of the reactor content by switching between hot and cold water as the input
stream to the jacket of the CSTR.
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Figure 2.2.: Process flowsheet with controllers of a biodiesel production plant by oil alkali-catalyzed transesterification. The shown control
structure is for the PWC structure having information-rich measurement configurations available (PWC-A).
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The CSTR product stream is fed into the methanol column to recover methanol by a
distillation process. The distillate, which has 99.5 wt% methanol as the nominal purity, is
recycled to the transesterifier. The bottom product is cooled by a cooler that operates on
water and fed to a wash column as the input raffinate. Water is fed as the input extract to
the wash column to remove the polar species in the input raffinate. Glycerol, the dissolved
NaOH, part of the methanol, and water are extracted from it to the fed water. The
output raffinate is fed to the FAME column to separate the unreacted oil. The distillate
is the biodiesel product which is mainly FAME and traces of water, monoglycerides, and
methanol. The bottom product is recycled to the transesterifier after mixing it with the
fresh-fed oil. The output extract of the wash column is sent to the glycerol purification
section.

We adhere to the European specifications EN 14214 [122] (cf. Table 2.1) for biodiesel
quality. The required low methanol concentration is achieved by adding the proper amount
of water to the wash column. The oil glycerides concentration limits are guaranteed by
achieving the required methanol-to-oil mole ratio entering the reactor.

Table 2.1.: Biodiesel specifications according to the European standard EN 14214 [122].

Ester content ≥ 96.5 wt%
Triglycerides ≤ 0.20 wt%
Diglycerides ≤ 0.20 wt%
Monoglycerides ≤ 0.80 wt%
Methanol ≤ 0.20 wt%
Water ≤ 0.05 wt%
Glycerol ≤ 0.25 wt%

We consider a biodiesel production rate of 17,120 kg/h corresponding to the average
capacity of an industrial biodiesel production plant in Germany (150,000 t/yr) according
to the German Union for the Promotion of Oil and Protein Plants (UFOP) [123].

The byproduct glycerol is also valuable [124], but needs to be neutralized and purified
(cf. Figure 2.2). The output extract is fed to a neutralization reactor (neutralizer) to remove
the dissolved NaOH species by the addition of phosphoric acid solution (H3PO4 ·H2O) [82].
The resulting salt from the neutralization reaction is valuable too as it can be used as a
fertilizer. We determine the amount of acid added such that the neutralized solution
reaches a pH value of 2.5 [125]. At this pH value, salt precipitation takes place and the
formed solids can thus be filtered out in the filter unit. We assume that all of the dissolved
NaOH is removed, and that the formed salt, which is monosodium phosphate (NaH2PO4),
is completely precipitated. The liquid stream from the filter enters the glycerol column
to purify glycerol from water and methanol. There are several grades of glycerol purity
[126]. With the considered process design and operating conditions from Zhang et al. [36],
we target to have the pharmaceutical purity grade, which is 99 wt% glycerol [46], in the
bottom stream of the glycerol column.

The methanol, FAME, glycerol, and wash columns have nine, five, five, and six separa-
tion stages, respectively. Low pressure (LP) steam, synthesized thermal oil, and medium
pressure (MP) steam are used to heat the reboiler of the methanol, FAME, and glycerol
columns, respectively. These utilities are suitable for the respective reboiler duties of each
column. For the condensers of the three columns, refrigerants are the utility streams.
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The purge streams shown in the process flowsheet in Figure 2.2 are used to start up the
plant. After starting the controller system (cf. Section 2.4), the plant is operated full
automatically and the purge streams can thus be gradually decreased to zero.

2.3. Dynamic Process Model

We summarize in this section the chemical system involved in the process and the assump-
tions considered in the modeling. We provide further details in Section A.1 in Appendix A.

Ten species belong to the chemical system of the process model. Methanol, water, NaOH,
triolein, diolein, and H3PO4 are the feeds. Monoolein is an intermediate educt and could
be a constituent of the fed oil as well if its composition changes. The products are methyl
oleate (FAME), glycerol, and NaH2PO4.

We model the transesterifier as a perfectly mixed CSTR by energy and material balances.
We assume for the alkali-catalyzed transesterification of oil with methanol, the well-studied
and known reversible three-step reaction system in the literature [73, 86, 117, 127]. We
provide the reaction system and the rate law coefficients, and material and energy balances
in Section A.1.1.1 in Appendix A. To account for the spatial distribution of the temperature
of the reactor jacket, we model it as a series of equivalent continuous stirred tanks (CSTs),
by which the spatial dynamics of the jacket temperature are accurately determined. We
assume a quasi-steady-state approximation for each jacket CST because their temperature
dynamics are much faster than that of the reactor temperature. This can be validated by
simulating and comparing the accumulation terms of the reactor and jacket temperatures.
Moreover, such an assumption is often considered when modeling energy balances for
jacketed CSTRs [128, 129].

For the distillation and wash columns, we use equilibrium models for each stage of
the columns to determine species distributions among phases, flow rates, temperature
profiles, etc. We consider the following assumptions when developing the equilibrium
models: perfect mixing in vapor and liquid phases; the tray holdup is only due to the liquid
phase (heavy liquid in the wash column) since the quantity of vapor (light liquid in the wash
column) holdup is typically much smaller than the total holdup [130]; two-phase system in
thermal and mechanical equilibrium; no heat of mixing; no heat losses to the surroundings;
and the temperature dynamics of the column structure are neglected. The wash column
is a liquid-liquid extraction process, where the light phase is the raffinate stream. Since
temperature dynamics on the column trays are faster than material dynamics, we utilize
a quasi-steady-state approximation for their energy balances. This results in an index-1
differential-algebraic (DA) system as the outlet vapor (raffinate) flow from each tray can
then be explicitly determined [130].

We model the heat exchangers by dividing them into segments. The thermal inertia
from the metal wall between the two heat-exchanging streams is larger than that of the
two streams. Therefore, we apply quasi-steady-state energy and SS material balances for
the two heat-exchanging streams [131]. We neglect the axial heat of conductivity inside
the metal wall.

We use the DIPPR temperature-dependent models for heat capacities to determine the
molar heat capacities, enthalpies, entropies, and Gibbs free energies of the system’s species
in the solid, liquid, and vapor phases. Species’ molar densities in the liquid and solid
phases are also determined by the DIPPR correlations. All the coefficients of the DIPPR
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correlations are retrieved from DIPPR’s Project 801 database [110]. The values are unique
for each species in each phase. The distillation columns operate at low pressure values.
The transesterifier has the highest operating pressure value in the process, which is 1.5
bar. Therefore, we use the ideal gas equation of state to determine the molar densities in
the vapor phase.

To account for the interactions among the polar species present in the system and de-
scribe the non-ideality in the liquid phase, we choose the NRTL [109] as an activity co-
efficient model and the Racket equation [132] for determining the liquid mixture molar
densities. To avoid minimizing the Gibbs free energy globally, we assume that the ther-
modynamics are such that the number of the existing phases is known. We thus use
the isofugacity conditions for describing the liquid-liquid equilibrium (LLE), vapor-liquid
equilibrium (VLE), and vapor-liquid-liquid equilibrium (VLLE). We use the extended An-
toine correlation [133] to allow the description of the entire vapor pressure curves of the
species when determining vapor pressures. Since the process operates at low pressures, the
Poynting correction is neglected when computing equilibrium relations.

Albuquerque et al. [119] created databases of VLE, LLE, and VLLE experimental data
for the mixtures in the biodiesel production processes. They regressed the binary in-
teraction parameters of the NRTL model for triolein, diolein, monoolein, methyl oleate,
methanol, glycerol, and water. We use these values, which are provided in Table 6 and Ta-
ble 7 in their publication [119]. We retrieve the parameter values of the remaining binary
species from the database of Aspen Plus Physical Property [134].

2.4. Design of the Plantwide Control Structures

To design the PWC structures, we apply the IFSH methodology, which decomposes the
control system design process into several tasks at different levels in a vertical hierarchy
of priorities. Table 2.2 summarizes the main steps involved in applying the IFSH method-
ology. Murthy Konda et al. [116] and Kariwala and Rangaiah [46] provided detailed ap-
plications of the methodology. We consider two structures that assume the availability of
different measurement configurations. We first discuss the PWC structure that is based
on information-rich measurement configurations, where inline product quality measure-
ments such as species concentrations are available. This structure is motivated by the
recent advances in process analytical technology, e.g., infrared or Raman spectroscopy, for
real-time process control applications. In the following, we refer to this PWC structure
as PWC-A. We also provide a second PWC structure that is based on a more practi-
cal measurement configuration, in the sense of current industrial practice. Therein, only
conventional measurements are available, i.e., real-time measurements for temperatures,
pressures, flow rates, and pH (for the neutralizer output). We refer to this PWC structure
as PWC-B. We illustrate the main steps of the conducted IFSH methodology for PWC-A,
point out the differences for PWC-B, and summarize the two structures in Table 2.4. We
tuned all control loops heuristically.
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Table 2.2.: Main steps involved in the application of IFSH methodology, adapted from
Murthy Konda et al. [116] and Kariwala and Rangaiah [46].

Step Commonly conducted tasks

1 Definition of control objectives
Achieve the required throughput and product quality
Preserve stable operation and process constraints
Involve safety and environmental constraints

2 Analyze the control degrees of freedom
Identify the potential manipulated variables
Involve material and energy streams
Look-up tables exit for assistance in identification

3 Identification of throughput manipulator
Identify the primary process path
Selection of the throughput manipulator

4 Definition of quality controllers
Identify primary quality manipulators
Selection of the corresponding control loops

5 Controlling the more severe controlled variables
Identify the manipulators of the more severe controlled variables
Controlled variables involved in process, safety, and environmental constraints

6 Controlling the less severe controlled variables
Controlled variables involved in material inventory
Levels for liquids and pressures for gases

7 Checking the material balances and remaining control degrees of freedom
Material balance checks for the whole process as well as for its units
Check if the control system performance can still be further enhanced

2.4.1. IFSH Methodology for PWC-A

Step 1: Definition of PWC Objectives

The PWC overall objectives of the plant include achieving the required production rate
while preserving product quality specifications, stable operation of the plant, process
and equipment constraints, safety concerns, and environmental regulations. We target
to achieve a production rate of 17,120 kg/h of biodiesel while preserving its quality ac-
cording to the standard EN 14214 [122] as well as the pharmaceutical purity grade of the
by-product glycerol, and operating below their thermal decomposition temperatures. The
thermal decomposition temperature of glycerol is in the range of [150–180] ◦C [46, 135–
137]. Therefore, we constrain the maximum allowable temperature in the reboiler of the
glycerol column to 150 ◦C. The thermal decomposition temperature of FAME depends on
the considered fatty acids in the oil. It is reported in the literature to be within a wide
range of [250–350] ◦C [46, 138, 139]. For the FAME of oleic fatty acid, methyl oleate, the
range starts from 325 ◦C [138]. We consider a maximum allowable temperature in the
reboiler of the FAME column to be 300 ◦C since we represent the fed oil as the glycerides
of oleic acid.

To achieve the required recovery in the distillation columns as well as product puri-
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ties, while constraining the reboiler temperatures to the thermal decomposition limits, the
FAME and the glycerol columns operate at low pressures. The absolute pressure values at
the top of the FAME and glycerol columns are designed to be 3 kPa and 2 kPa, respec-
tively. We also target to attain the required oil conversion in the transesterifier, which is
88 %. In addition, we target to have 94 wt% of methanol recovery in the methanol column
and 2 wt% of FAME loss in the bottom product of the FAME column. We thus design
the PWC structure and its tuning based on those overall objectives.

Step 2: Control Degrees of Freedom Analysis

We analyze the plant’s control degrees of freedom (CDOF) to know what potential process
streams we can manipulate to achieve the control objectives defined in Step 1. By following
the flowsheet-oriented method of Murthy Konda et al. [140] and Kariwala and Rangaiah
[46], CDOF is defined as:

CDOF = Nstreams −Nrestraining −Nredundant . (2.1)

The total number of streams (including material and energy streams) Nstreams is 65 (cf.
numbered streams in Figure 2.2). The number of process streams that cannot be manip-
ulated due to their dependency on other streams Nrestraining is 25. The total number of
process streams that need not be manipulated Nredundant is nine because each distillation
column has three redundant streams [46, 140]. Table 2.3 provides the restraining and
redundant number of streams of each process unit. It is easy to compute Nstreams, given
a process flowsheet. However, Nrestraining and Nredundant depend on the nature of the unit
and its operation. Consequently, they are determined based on the theoretical and opera-
tional knowledge of any given unit or combination of units (such as a distillation column
with a condenser, reflux drum, and reboiler) in a process [46, 140]. Both terms are thus
characteristic of a given unit and remain the same irrespective of whether the unit is a
standalone or an integral part of a process. Therefore, once determined, they do not require
recalculation and can be accessed from look-up tables such as the tables in Murthy Konda
et al. [140] and Kariwala and Rangaiah [46]. Nevertheless, it should be noted that the
value of Nrestraining is contingent on the number of streams considered around a unit oper-
ation and whether holdups are modeled or not. For instance, if all streams are considered
around a unit operation without modeling material holdup, then Nrestraining would be one.
Consequently, it may differ from the values listed in the aforementioned look-up tables,
depending on whether all material and energy streams are taken into account or not. As a
result, we obtain 31 CDOF as a maximum limit for the manipulated variable (MV)s that
we could consider to control the plant.

Step 3: Identification of Throughput Manipulator

We identify the throughput manipulator (TPM) of the plant, by determining the primary
process path from the main raw material to the main product. For our process, it is the
fed oil to biodiesel product path. Therefore, we control the desired production rate of
biodiesel by setting the flow controller FC|400, where the MV is the fed-oil flow rate, as
shown in Figure 2.2.
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Table 2.3.: Restraining and redundant number of streams of process units according to
Murthy Konda et al. [140] and Kariwala and Rangaiah [46].

Unit operation Number of units Nrestraining per unit Nredundant per unit

CSTR 2 1 0
Distillation column † 3 0 3
Wash column 1 0 0
Condenser 3 2 0
Reboiler 3 1 0
Distillate drum 3 0 0
Cooler 1 1 0
Filter 1 1 0
Pump 4 1 0
Mixer 3 1 0
Splitter 5 1 0

Total 25 9
† Excluding condensers, reboilers, distillate drums, and splitters for reflux.

Step 4: Definition of Quality Controllers

In this step, we define the quality controllers for the FAME and glycerol products. By
introducing fresh water into the wash column, glycerol, NaOH, and methanol are extracted
from the raffinate, which is the feed of the biodiesel purification unit (FAME column). We
thus control the concentration of methanol in the biodiesel product by manipulating the
input water to the wash column. Therefore, we set the quality controller QC|400, where
we assume the mass fraction of methanol in the biodiesel product is measured and use it
as its controlled variable (CV). The flow rate of the input water to the wash column is its
MV.

Higher reaction conversions in the transesterifier mean lower unreacted oil entering the
FAME column. We thus control the oil glycerides limits in the biodiesel product by
achieving the required oil conversion in the transesterifier. High oil conversions are achieved
by feeding enough excess methanol to the transesterifier. Thus, we set a cascade controller,
where the CV of its primary loop (QC|100) is the oil conversion, and the CV of its secondary
loop (QC|101) is the methanol-to-oil mole ratio of the streams entering the transesterifier.
The MV of the controller is the flow rate of the input methanol to the plant. This cascade
control loop is shown in Figure 2.2.

Achieving the required grade of glycerol product is a single-end composition control case
for the glycerol column. Hence, we control glycerol purity by implementing a cascade
controller, with purity as the primary CV in QC|600 and the reboiler temperature of the
glycerol column as the secondary CV in TC|600. The controller TC denotes temperature
controller. Its MV is the flow rate of the input MP steam into the reboiler. We set the
maximum reboiler temperature of the controller to the thermal decomposition temperature
of glycerol.
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Step 5: Controlling the More Severe Controlled Variables

In the IFSH methodology, the more severe CVs are the variables associated with process
constraints, e.g., operating and equipment constraints, safety concerns, and environmental
regulations.

To minimize losing FAME in the recycled bottom product of the FAME column, we
control its recovery by inputting adequate reboiler duty. We thus set a cascade controller,
where the CVs of its primary (QC|401) and secondary (TC|400) control loops are the
FAME mass fraction in the bottom product and the reboiler temperature, respectively.
Its MV is the flow rate of the input thermal oil into the reboiler. We set the maximum
limit of the reboiler temperature in the controller to the considered thermal decomposition
temperature of methyl oleate.

We achieve the nominal purity of the recycled methanol from the methanol column
to the transesterifier by manipulating the flow rate of the column reflux by QC|200. In
addition, similar to the FAME column recovery, we target to recycle most of the methanol
in the methanol column. Therefore, we control its recovery by also implementing a cascade
controller. The CVs of its primary (QC|201) and secondary (TC|200) control loops are the
column recovery and the reboiler temperature, respectively. Its MV is the flow rate of the
input LP steam into the reboiler.

The nominal temperature of the transesterifier content is maintained by exchanging
heat with the flowing medium in the reactor jacket. The jacket medium flows through an
external loop in which cold water, hot water, and purge valves open or close according to the
required heating or cooling duties of the jacket/reactor system. We model this external
loop by considering a temperature change ∆TJacket of the jacket medium after passing
through a pseudo heat exchanger [128, 129]. In this way, we control the heating or cooling
modes of the reactor by one control loop with one MV. After the jacket medium exits the
jacket, it changes its temperature by ∆TJacket value after passing through the external heat
exchanger, to enter again the jacket. We thus control the reactor temperature by a cascade
controller, where the CVs of its primary (TC|100) and secondary (TC|101) control loops
are the temperatures of the reactor content and the water medium entering the jacket,
respectively. Its MV is ∆TJacket with extreme values of ±10 ◦C.

Finally, we set QC|102 to control the mass fraction of NaOH in the mixture of methanol
and NaOH ·H2O entering the transesterifier by manipulating the NaOH ·H2O feed flow
rate.

Step 6: Controlling the Less Severe Controlled Variables

Less severe CVs are the variables associated with the material inventory. These CVs are
the pressures at the top of the three distillation columns and in the reactors, and the
liquid levels in process units. We set pressure controllers (PC) to control column pressures
(PC|200, PC|400, and PC|600) by manipulating the refrigerant flow rates entering the
condensers, and reactor pressures (PC|100, and PC|500) by manipulating the N2 gas flow
rate leaving the reactors. The level controllers (LC) control liquid levels in the transesteri-
fier (LC|100), neutralizer (LC|500), reflux drums (LC|200, LC|400, and LC|600), reboilers
(LC|201, LC|401, and LC|601), and the bottom and top sections of the wash column
(LC|300, and LC|301), by manipulating the flow rates of their respective output streams.
We implement variable level control for the transesterifier to avoid snowball effects in the
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recycle loops. Recycle systems tend to exhibit large variations in the magnitude of their
recycle flows in the presence of small disturbances [141]. This high sensitivity of the recycle
flow rates is known as the snowball effect. Hence, according to Luyben et al. [141], we
implement the variable level control as a cascade controller where the outer loop controls
the desired residence time of the reactor content to 1 h and sends level setpoints to the
LC in the inner loop. In addition, we add a pH controller (YC|500) for the outlet stream
of the neutralizer, where its MV is the flow rate of the H3PO4 ·H2O feed stream.

Step 7: Checking the Material Balances and Remaining CDOFs

In the final steps of the IFSH framework, we check the material balances in the plant as well
as in its single units by simulating the process. We also check if we can use the remaining
CDOFs, which are five (we used 26, cf. stream numbers marked in orange rectangles in
Figure 2.2), to enhance the performance of the control system. Based on the defined PWC
objectives and structure, no additional control loops are needed.

2.4.2. IFSH Methodology for PWC-B

To design the PWC-B structure, we perform the same steps of the IFSH methodology as
for the case of the PWC-A, except for the quality controls. Since quality measurements
for product and educt streams are not available, we replace the quality controllers with
flow rate ratio controllers (RC). We use the SS values from PWC-A for determining and
setting the ratio values in these controllers.

For the transesterifier, we replace QC|100 and QC|101 with RC|100, where the methanol
feed flow rate is manipulated to maintain a fixed ratio between the flow rates of the total
methanol and NaOH ·H2O mixture, and the oil entering the transesterifier. Likewise, we
manipulate the NaOH ·H2O feed flow rate through RC|101 instead of QC|102 by main-
taining a fixed ratio between the flow rates of the NaOH ·H2O feed, and the methanol and
NaOH ·H2O mixture entering the transesterifier.

For the methanol column, we remove QC|200 and fix the design setpoint for the reflux
ratio, and replace QC|201 with RC|200. Similar to PWC-A, the MV of RC|200 is the
setpoint of TC|200. RC|200 changes its MV to preserve a fixed ratio between the flow
rates of the output bottom and the input feed of the methanol column.

We replace QC|400 in the FAME column with RC|300 to determine the water feed flow
rate into the wash column. RC|300 maintains a fixed ratio between the flow rates of water
feed and input raffinate into the wash column. RC|400 manipulates the setpoint of TC|400
to maintain a fixed ratio between the flow rates of the output distillate and the input feed
of the FAME column.

Similar to the methanol column, RC|600 preserves a fixed ratio between the flow rates of
the output bottom and the input feed of the glycerol column by manipulating the setpoint
of TC|600.

We provide the process flowsheet for PWC-B in Section A.2 in Appendix A. The used
CDOF for this case is 25 because we remove QC|200 and fix the reflux ratio in the methanol
column.

PWC-B can be configured in other ways. A common configuration is to use internal
temperature controllers for the distillation columns instead of the cascade ratio controllers.
However, with the plant disturbances we introduce (cf. Section 2.5), we expect difficulties
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to track the product purity setpoints (particularly methanol impurity and glycerol purity)
for either configuration.

We summarize the two PWC structures in Table 2.4.

Table 2.4.: Comparison of PWC-A and PWC-B structures.

PWC-A PWC-B

Available
measurements

Temperature, pressure, flow rate, pH,
and concentration

Temperature, pressure, flow rate, and
pH

Used CDOF 26 25 (QC|200 is removed)

Material inventory
control

Pressure and level controllers for all unit
operations Same as PWC-A

Production rate
control By oil feed flow rate (TMP) Same as PWC-A

Methanol feed flow
rate manipulation

Determined by cascade control of the
reaction conversion in the transesterifier

Determined by a ratio controller with
the flow rate of the feed oil

Catalyst feed flow
rate manipulation

Determined by controlling the NaOH
concentration in the methanol-catalyst
mixture entering the transesterifier

Determined by a ratio controller with
the flow rate of the methanol-catalyst
mixture entering the transesterifier

Water feed flow
rate manipulation

Determined by controlling methanol
impurity in the biodiesel product

Determined by a ratio controller with
the flow rate of the raffinate entering
the wash column

Acid feed flow rate
manipulation For pH control in the neutralizer Same as PWC-A

Reboiler duties
manipulation

For controlling products purities and
column recoveries

Determined by ratio controllers of the
column distillate/bottom with feed
flow rates

2.5. Simulation Scenarios for Assessment of Process
Dynamics and PWC Performance

We first let the plant reach a steady state, after initializing its dynamic model and applying
the developed PWC structures while gradually decreasing the purge streams to null. To
study its dynamic behavior as well as the performance of the applied PWC structures, we
introduce several process disturbances and setpoint tracking scenarios that are commonly
found in literature and practice. We perform simulations under the following seven sce-
narios (one at a time), corresponding to one production rate setpoint change (ST) and six
alternative disturbances (SD):

• ST1: setpoint change of biodiesel production rate. The red-dashed line in Figure 2.6f
shows the setpoint of the biodiesel production rate over time. The setpoint changes
at 1 h over 4 h while being ramped by ±10% from its nominal value until it returns to
it at 5 h. Such setpoint changes could be required when the targeted plant capacity
changes in accordance with product amount demand. Plant capacity flexibilization
for optimizing production costs is also a potential reason for such changes.
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• SD1: decrease in the rate coefficients of the transesterifier forward reactions by 20%
at time 8 h (tk). This scenario could occur when the quality or type of the fed oil
changes. Also, fouling in the reactor is a potential reason for such a disturbance.

• SD2: 30% drop in the overall heat transfer coefficient in the transesterifier reactor/-
jacket system at time 13 h (tU). This could occur when fouling in the reactor/jacket
system is present.

• SD3: trays fouling and wear in the methanol column. As a result, their separation
efficiency decreases. We model this disturbance by eliminating two trays of the
column at time 15 h (ttray). Trays fouling and wear are common and occur in practice.

• SD4: column flooding in the FAME column. We model this disturbance by omitting
two trays at time 21 h over 0.5 h.

• SD5: foaming in the glycerol column. We model this disturbance by omitting two
trays at 25 h over 0.5 h.

• SD6: change in the composition of the fed oil from [0.95 wt% triolein, 0.05 wt%
diolein, 0 wt% monoolein] to [0.8 wt% triolein, 0.1 wt% diolein, 0.1 wt% monoolein].
We introduce this disturbance at 27 h (tfeed) before the plant reaches a new steady
state at 35 h. This disturbance occurs when the fed oil type or quality changes.

The scenarios are introduced at the times depicted in Figure 2.3. The time points are
selected to ensure that new steady states are reached in between scenarios. However, it is
worth noting that some of the introduced events, such as fouling in the reactor/jacket sys-
tem of the transesterifier or tray fouling in the methanol column, may require significantly
longer durations to manifest in practical situations. Nevertheless, for the purpose of study-
ing the dynamic behavior of the process units under such circumstances, we intentionally
introduce these disturbances at the specified time points.

2.6. Simulation Results for Validation of the Dynamic
Model and Assessment of the PWC Structures

We implement the process model with the developed PWC structures using the object-
oriented modeling language Modelica [58]. The model components can be used with dif-
ferent fluids because we decouple the component equations (e.g., mass and energy balance
equations) from thermodynamic property equations (e.g., calculation of specific enthalpy
or activity coefficient). The PID controller equations of the PWC structures are part of
the DA system of equations within the model. We simulate the process in Dymola 2020
[142] and use the implicit, multi-step Differential Algebraic System Solver (DASSL) [143].

Due to the large number of process variables and control loops present, it is impractical
to show the profiles of each process variable and every control loop. Hence, we analyze the
dynamic behavior of the plant and the performance of control structures in a plantwide
context. We first provide profiles for some process variables of the three main types of unit
operations involved in the process, simulated for the case of applying PWC-A. These units
are the CSTRs, distillation columns, and a wash column.
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Initial steady state, after initializing the dynamic model and applying the 
developed PWC structure while gradually decreasing the purge streams to null

Simulation 
time [h]

A new steady state

25
25.5

13

15

0

35

1

5

8

21
21.5

27

tk: 20 % decrease in the forward reaction rate coefficients

tU: 30 % drop in the overall heat transfer coefficient in the transesterifier

ttray: Drop in separation efficiency of the methanol column

tfeed: Change in feed composition

Change in the setpoint of biodiesel production rate

Drop in separation efficiency of the FAME column due to column flooding

Drop in separation efficiency of the glycerol column due to column foaming

of the transesterification reactions

due to tray fouling

Figure 2.3.: Changes in the setpoint of biodiesel production rate and plantwide disturbances
over the simulation time of the plant.

We then study the performance of the two developed PWC structures and compare
them by providing and discussing the profile of the process feed and product flow rates,
the reboiler duties, as well as some of the more severe and product quality CVs in the
plant. In addition, based on Vasudevan and Rangaiah [144] and Kariwala and Rangaiah
[46], we provide three measures to quantitatively compare the dynamic performance of the
two PWC structures. The performance measures correspond to the overall settling time,
the total plant accumulation, and the total deviation from the production target.

We also compare the SS simulation results of the model with that of Aspen Plus. We
implemented a similar process with the same inputs and operating conditions in Aspen
Plus v11 [101], which we also provide at permalink.avt.rwth-aachen.de/?id=135903.
The main models used in the Aspen Plus process are the RCSTR, RadFrac, and Extract for
the transesterifier, the distillation columns, and the wash column, respectively. We selected
the NRTL model as the base method with the default Route ID for properties. We provide
results for mole fraction, flow rate, and temperature profiles in Section A.3 in Appendix A
for each of the aforementioned three main unit operations comparing both models. The
results are very close, demonstrating the validity of our model. Nonetheless, there are some
differences in the results due to mainly the different used numerical integration schemes.

2.6.1. Dynamic Behavior of the Main Unit Operations

Figure 2.4 shows the net reaction rate profiles of the considered three transesterification
reactions in the transesterifier. In the blue-shaded region, we perform setpoint changes in
the biodiesel production rate. In this region, the reaction rates follow the feed flow rate
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profiles, which are provided in Figures 2.6a–e. At tk, a drop in the forward reaction rate
coefficients results in a proportional drop in the reaction rates. The disturbance at tU (drop
in overall heat transfer coefficient in the transesterifier) does not affect the reaction rates.
The disturbance in the light-brown region has also no effect because there are no recycle
streams from the glycerol column to the transesterifier. In the last disturbance at tfeed,
because the composition of the fed oil has more diolein and less triolein, the triolein transes-
terification (Reaction (A.1a)) shifts more toward the reverse reaction direction. Therefore,
its net reaction rate decreases. For diolein transesterification (Reaction (A.1b)), although
the fed oil has more diolein, the net reaction rate decreases because more monoolein is fed,
which drives the reaction more into the backward direction. For the last reaction, since
monoolein input increases, the reaction is shifted to the forward direction, and thus the
net reaction rate increases as indicated in Figure 2.4 for Reaction (A.1c).
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Figure 2.4.: Net reaction rate profiles of the three alkali-catalyzed transesterification reactions
in the transesterifier, simulated under the disturbances and setpoint changes provided in Fig-
ure 2.3. The reactions are indicated by the number of their respective rate coefficient subindex
j in A.1 in Appendix A. The dotted-red, solid-black, and dashed-dotted-green lines correspond
to reactions (A.1a), (A.1b), and (A.1c), respectively.

For the distillation columns, we provide the temperature profile of the methanol column
in Figure 2.5a. The temperature values increase in the direction from stage one, the con-
denser, to stage eleven, the reboiler. At tk, due to the drop in the forward reaction rate
coefficients, less methanol reacts in the transesterifier and thus more enters the column.
Therefore, lower reboiler temperatures are needed to attain the required column recovery
and methanol purity in the distillate stream. This explains the decrease in the temper-
ature values in Figure 2.5a. At ttray, the number of trays in the column is decreased by
two. Therefore, higher temperature values are needed to preserve the required purity and
recovery. However, the purity controller increases the reflux rates and thus the temper-
ature values decrease back to their previous SS values. In the last disturbance, due to
the increase in the rate of Reaction (A.1c), more methanol reacts in the transesterifier,
thus, less fraction enters the column. Therefore, higher temperature values are needed to
keep the desired recovery and purity. This can be seen in Figure 2.5a at tfeed, where the
temperature values increase to reach a new steady state.

In Figure 2.5b, we show the activity coefficient profile of methanol in the extract phase
in the wash column. The values of the activity coefficient decrease by going from stage one
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to stage six. The raffinate enters the column at the sixth stage. In the final disturbance at
tfeed, more glycerol is being produced in the transesterifier, since monoolein mass fraction
in the fed oil increases. Therefore, a higher amount of glycerol enters the wash column
and is extracted to the extract phase. Glycerol is a polar species and higher amounts of
it increase the attractive forces among the polar species in the mixture. Therefore, the
activity coefficient values of the polar species decrease in the extract phase and so does
that of methanol, as shown in Figure 2.5b.
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(a) Temperature profile in the methanol column.
Stage 11 is the reboiler.
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(b) Methanol activity coefficient (γ) profile in the
extract phase of the wash column.

Figure 2.5.: Process variable profiles in two main unit operations of the process, simulated
under the disturbances and setpoint changes provided in Figure 2.3.

2.6.2. Performance of the PWC Structures

We provide the results for all disturbances in Section A.4 in Appendix A. In this section,
we provide the profiles only for scenarios ST1, SD1, and SD6. The disturbances of tray
fouling in the methanol column SD3 and flooding in the FAME column SD4 have less
interpretable results. For SD3, higher reboiler duties in the methanol column are required
to maintain the desired methanol recovery and purity in the column. For SD4, higher
mass fraction of monoolein impurity is present in the biodiesel product. However, it stays
significantly below its maximum limit. There are no effects on the process dynamics for the
drop in the overall heat transfer coefficient scenario SD2. Also, since there are no recycles
from the glycerol purification section, the disturbance of foaming in the glycerol column
SD5 does not affect the plant.
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2.6.2.1. Scenario ST1: Change in Biodiesel Production Rate Setpoint

Figure 2.6 provides the results for the scenario ST1 for both PWC structures, PWC-A
(solid-black curves) and PWC-B (dashed-dotted-green curves). The biodiesel production
rate is the plant throughput. Its setpoint is shown in the red-dashed line in Figure 2.6f.
The flow rates of all feeds are MVs. The oil feed flow rate (Figure 2.6c) is the TPM
and is manipulated based on the changes in the biodiesel production rate setpoint. For
both PWC structures, its profiles look similar because they have the same FC|400. For
PWC-A, the methanol (Figure 2.6a) and NaOH ·H2O (Figure 2.6b) feed flow rates are
manipulated according to the required oil conversion (88%) in the transesterifier and NaOH
mass fraction in their fed mixture stream, respectively. For PWC-B, they are manipulated
according to RC|100 and RC|101, respectively, and thus follow the oil feed flow rate.
Therefore, for both PWC structures, the flow rates of the three transesterifier feeds are
proportional to that of the biodiesel production rate.

Glycerol product flow rates (Figure 2.6g) are proportional to that of biodiesel because
they are produced in the same reaction direction. Since the addition of acid is dependent
on the fed NaOH ·H2O, its and the formed solids flow rates (Figure 2.6e and Figure 2.6i,
respectively) are also proportional to that of biodiesel, for PWC-A and PWC-B. The
profiles of water-methanol product (Figure 2.6h) follow the profiles of NaOH ·H2O and
methanol feeds. Therefore, they are also proportional to the produced biodiesel profile.

For PWC-B, since the addition of water feed (Figure 2.6d) is controlled by RC|300, its
flow rate profile is proportional to that of the fed raffinate into the wash column. Thus,
it is proportional to the produced biodiesel flow rate. On contrary, for PWC-A, when low
production rates are required, higher water flow rates are fed to the wash column and vice
versa. Lower production rates of biodiesel result in lower formation rates of FAME in the
transesterifier. Therefore, the outlet stream of the transesterifier will have higher fractions
of methanol, since the consumption rate of methanol is proportional to the formation rate
of FAME. As a result, for PWC-A, more water will be needed for methanol extraction in
the wash column to achieve the required methanol concentration in the biodiesel product,
which is controlled by QC|400.

In Figures 2.6j–l, the reboiler duties are proportional to the production rate of biodiesel,
as the stream flow rates in the reboiler units are proportional to it.

For PWC-A, all quality controllers (Figures 2.6m–p) are able to return the corresponding
CVs to their setpoints while achieving tight control for methanol recovery and glycerol
purity. We set the setpoint for methanol mass fraction in the biodiesel product to 0.0013.
While there is no direct quality control in PWC-B, the indirect control for the quality CVs
by ratio controllers can return these CVs to their corresponding setpoints. Nevertheless,
RC|600 is unable to preserve the required purity of the final product glycerol at all times,
reflecting the effects of changes in production load.
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Figure 2.6.: The profiles for the scenario ST1 of the change in biodiesel production rate
setpoint as provided in Figure 2.3. The load changes take place in the blue-shaded region.
(a)–(e): feed mass flow rates. (f)–(i): product mass flow rates. (j)–(l): reboiler duties. (m):
methanol recovery in the methanol column. (n): methanol mass fraction in the methanol
column distillate. (o): glycerol mass fraction in the glycerol column bottom. (p): methanol
mass fraction in the biodiesel product. The solid-black and dashed-dotted-green curves are for
the results of PWC-A and PWC-B, respectively. The dashed-red and dashed-dotted-magenta
lines are the setpoints and bounds, respectively.
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2.6.2.2. Scenario SD1: 20 % Decrease in the Forward Reaction Rate Coefficients

Figure 2.7 provides the results for the scenario SD1 for both PWC structures. For PWC-A,
more NaOH ·H2O (Figure 2.7b) starts to enter the plant to compensate for the drop in
the reaction rate coefficients at tk and preserve the required oil conversion in the reactor.
Methanol feed flow rate (Figure 2.7a) increases then returns to its previous SS value,
because its needed amount to achieve the required oil conversion is compensated by the
increase in NaOH ·H2O while preserving the required methanol recovery and purity in the
methanol column. For PWC-B, since the forward reaction rates decrease, less methanol
reacts in the transesterifier and thus more enters the methanol column. With a fixed ratio
in RC|200, the required methanol recovery cannot hence be achieved. This is shown by the
drop in the dashed-green curve in Figure 2.7m. However, its purity increases (Figure 2.7n)
because more methanol enters the column. Since less methanol is recovered in the methanol
column, more methanol feed is fed to preserve the ratio in RC|100 between the total oil,
and methanol and NaOH ·H2O mixture entering the transesterifier. This also explains
the increase in NaOH ·H2O feed flow rate, which is manipulated by RC|101 in the case of
PWC-B. Since both PWC structures have the same FC|400, they have similar behavior in
controlling the desired biodiesel production rate (Figure 2.7f), and thus in manipulating
the fed oil flow rates (Figure 2.7c).

Since more methanol leaves the transesterifier due to the decrease in the forward reaction
rates, more enters the wash column and thus appears in the distillate of the FAME column.
To preserve the required methanol fraction in the biodiesel product, more water enters the
wash column for the PWC-A, as can be seen in Figure 2.7d. However, the ratio controller
RC|300 in PWC-B manipulates the fed water flow rate according to a preserved ratio with
the fed raffinate and thus fails to feed a sufficient amount of water to preserve the required
setpoint of methanol in the biodiesel product. This is shown in Figure 2.7p, where the
dashed-green curve increases to approach the maximum allowed mass fraction of methanol.

For both PWC structures, the increase in NaOH ·H2O flow rates leads to an increase
in the needed amount of acid for neutralization. As a result, more water-methanol and
solids products (Figure 2.7h and Figure 2.7i, respectively) are produced. By preserving
the required purity of the glycerol product (Figure 2.7o), its flow rate profile (Figure 2.7g)
should follow the controlled biodiesel production rate because it is formed proportionally to
FAME formation. This is the case for PWC-A. In contrast, for PWC-B, since more water is
fed to the glycerol purification section, the RC|600 increases the produced glycerol product
while decreasing its purity. Therefore, in this disturbance scenario, PWC-B fails to achieve
the required glycerol product purity, track the setpoint of methanol mass fraction in the
biodiesel product (rather shifts to its upper abound), and preserve the desired methanol
recovery in the methanol column.

For both PWC structures, higher reboiler duties are needed in the methanol and glycerol
columns (Figure 2.7j and Figure 2.7l, respectively) because more water enters the columns,
thus increasing the enthalpies of vaporization in the reboilers. Since for PWC-B, the
required oil conversion is not achieved by the addition in the fed NaOH ·H2O as for PWC-
A, more residual oil, especially triolein, leaves the transesterifier and ends in the reboiler
of the FAME column. This increases the heat duty in the reboiler as shown in Figure 2.7k.
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Figure 2.7.: The profiles for the scenario SD1 of 20% decrease in the forward reaction rate
coefficients of the transesterification reactions as provided in Figure 2.3. The disturbance takes
place at tk = 8 h (vertical dashed-dotted-blue line). (a)–(e): feed mass flow rates. (f)–(i):
product mass flow rates. (j)–(l): reboiler duties. (m): methanol recovery in the methanol
column. (n): methanol mass fraction in the methanol column distillate. (o): glycerol mass
fraction in the glycerol column bottom. (p): methanol mass fraction in the biodiesel product.
The solid-black and dashed-dotted-green curves are for the results of PWC-A and PWC-B,
respectively. The dashed-red and dashed-dotted-magenta lines are the setpoints and bounds,
respectively.
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2.6.2.3. Scenario SD6: Change in the Oil Feed Composition

Figure 2.8 provides the results for the scenarios SD6 for both PWC structures. In this last
disturbance, we increase the diolein and monoolein mass fractions in the fed oil. Therefore,
less methanol and NaOH ·H2O fraction are needed to achieve the same oil conversion. In
PWC-A, since the oil conversion is directly controlled by QC|100, the fed methanol and
NaOH ·H2O flow rates are adjusted accordingly and hence decreased. This also explains
the drop in the fed acid flow rate (Figure 2.8e) and thus the formed solids (Figure 2.8i)
for PWC-A. In contrast, in the case of PWC-B, since there is no direct control for the oil
conversion in the transesterifier, more methanol is present in the reactor and thus fed into
the methanol column. Therefore, the methanol recovery decreases, and its purity increases
(Figure 2.8m and Figure 2.8n, respectively). Hence, both methanol and NaOH ·H2O feed
flow rates increase as explained in the previous disturbance scenario for PWC-B.

Increasing the diolein and monoolein mass fractions in the fed oil results in an increase
in glycerol formation in the transesterifier (cf. reaction rates in Figure 2.4). This explains
the increase in glycerol product flow rates in Figure 2.8g for both PWC structures. As
aforementioned, glycerol increases the polarity of the extract mixture in the wash column.
Therefore, the activity coefficient value of methanol in the extract phase decreases (cf. Fig-
ure 2.5b). Thus, less water is needed for methanol extraction. This explains the decrease
in the fed water flow rate for PWC-A in Figure 2.8d. On the other hand, since the fed
water flow rate is manipulated by a fixed ratio in RC|300 for PWC-B, it increases with the
increase of the input raffinate to the wash column. The input raffinate increases because
more glycerol is being produced while having the same amount of the produced biodiesel.

The produced water-methanol follows the profiles of the fed water into the wash column,
acid, and NaOH ·H2O. For PWC-A, less water, acid, and NaOH ·H2O are fed, which is the
opposite for PWC-B. This explains the product flow rate profiles for both PWC structures
in Figure 2.8h.

In the case of PWC-B, increasing the diolein and monoolein mass fractions in the fed oil,
while also increasing the methanol and NaOH ·H2O feeds flow rates, results in an increase
in the oil conversion. Therefore, less residual oil ends in the reboiler of the FAME column.
This explains the decrease in the reboiler duty of the FAME column in Figure 2.8k for
PWC-B. On contrary, it increases for PWC-A, because the overall amount of residual
oil increases for the same desired oil conversion in the transesterifier. For both PWC
structures, the reboiler duties of the methanol and glycerol columns (Figure 2.8j and
Figure 2.8l, respectively) follow the profiles of the fed water into the columns. As aforesaid,
when more water enters the columns (cf. Figure 2.8b, Figure 2.8d and Figure 2.8e), the
enthalpies of vaporization in the reboilers increase and thus their duties.

Since in the case of PWC-B higher amount of methanol is fed (Figure 2.8a), while having
lower recoveries in the methanol column, a higher amount of methanol enters the wash
column. The ratio controller RC|300 that manipulates the fed water flow rate (Figure 2.8d)
follows the total amount of the input raffinate and not that of methanol only. Therefore,
higher concentrations of methanol remain in the raffinate stream that enters the FAME
column. As a result, the mass fraction of methanol in the final biodiesel product increases
from the previous SS value and gets beyond the permitted bound, as shown in Figure 2.8p.
Moreover, the ratio controller RC|600 could not bring the glycerol mass fraction to the
desired purity in the produced glycerol product. Therefore, under this disturbance, the
implemented PWC-B could not satisfy the quality constraints on the final products.
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Figure 2.8.: The profiles for the scenario SD6 of the change in the fed oil composition as
provided in Figure 2.3. The disturbance takes place at tfeed = 27 h (vertical dashed-dotted-blue
line). (a)–(e): feed mass flow rates. (f)–(i): product mass flow rates. (j)–(l): reboiler duties.
(m): methanol recovery in the methanol column. (n): methanol mass fraction in the methanol
column distillate. (o): glycerol mass fraction in the glycerol column bottom. (p): methanol
mass fraction in the biodiesel product. The solid-black and dashed-dotted-green curves are for
the results of PWC-A and PWC-B, respectively. The dashed-red and dashed-dotted-magenta
lines are the setpoints and bounds, respectively.
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2.6.2.4. Quantitative Measures of Dynamic Performance

We present measures to quantitatively assess the dynamic performance of PWC-A and
PWC-B. A suitable performance measure should capture essential process behavior, and
be easily measurable and reliable. We use three performance criteria which are: (a) the
accumulation-based settling time, which is the time required for the overall accumulation
in process units to settle [46]; (2) the integral of the overall accumulation [145]; and (3) the
integral of the deviation from the production target [144]. Table 2.5 provide the results of
the three criteria for both PWC-A and PWC-B.

The provided values in Table 2.5 are for applying the disturbances solely and not consec-
utively as shown in Figure 2.3. The settling times for both PWC structures are similar for
all disturbances except for SD6. It is higher for PWC-B. This can be explained by the feed
and product flow rate profiles in Figure 2.8, in particular, the methanol feed flow rate. As
aforementioned, SD2 and SD5 have no effects on the process dynamics. This explains their
zero values of settling times and deviations from the production target. For both PWC
structures, the production rate follows its target well (cf. Figure 2.6f, Figure 2.7f, and
Figure 2.8f), as the integral of the deviation from the production target for all scenarios
is significantly small compared to the production target. The highest value is for PWC-A
for ST1 and is less than 1.2 % of the total nominal production amount over 5.4 h.

Table 2.5.: Quantitative performance assessment of the developed PWC structures. The
results for PWC-B are shown in parentheses.

Scenario Accumulation-based
settling time [h]

Integral of the overall
accumulation [kmol]

Integral of the deviation from
the production target [kg]

ST1 5.4 (5.4) 188 (188) 1079 (961)
SD1 2.8 (2.8) 204 (194) 101 (95)
SD2 0 (0) 188 (188) 0 (0)
SD3 1.6 (1.6) 189 (187.6) 32 (37)
SD4 2 (2) 188 (188) 268 (283)
SD5 0 (0) 188 (188) 0 (0)
SD6 3.5 (4) 190 (210) 191 (158)

Recall that due to the interconnected unit operations with PWC loops and recycle
streams from the methanol and FAME columns, the analysis of the dynamic behavior of
process variables and control loops should be carried out in a plantwide context. Overall,
the applied PWC-A assumes that the control structure has an information-rich measure-
ment configuration, which makes it highly suitable for the plant and yields satisfactory
performance. The PWC-B, which relies solely on conventional measurement, is capable
of satisfactorily handling scenarios involving changes in biodiesel production setpoint. Its
control loops exhibit similar behavior to those of PWC-A. However, for the second and last
disturbance scenarios, the control structure fails to meet the necessary standards for the
final product quality, particularly the maximum allowable methanol concentration in the
biodiesel product, due to a lack of measurements. These two disturbances involve changes
in the reaction rates and fed oil composition that directly affect the quality of the products
produced. As a result, by utilizing the IFSH method for two measurement-availability
scenarios, we can provide insights into the need for process analytics. Specifically, the im-
portance of inline concentration measurements for process control could be demonstrated,
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2.7. Conclusion

which is motivated by recent advancements in process analytics and spectrometry. Con-
versely, in situations where few conventional measurements are available, the importance
of developing dynamic models for use in model-based control and estimation applications
was shown. This underscores the significance and relevance of our developed model and
implemented PWC structures for benchmark purposes.

While having information-rich measurements would be desirable, this does not cor-
respond to current industrial practice. Thus, alternative control techniques should be
considered to overcome the aforementioned limitations in the absence of information-rich
measurements. Modern concepts, such as hierarchical control strategies including MPC,
state estimation, and soft sensors, are promising solutions. Herein, the system observabil-
ity needs to be considered. Notably, dynamic models, such as our proposal, need to be
utilized for such model-based control and estimation methods.

2.7. Conclusion

We develop a detailed mechanistic dynamic model with rigorous thermodynamics for a
biodiesel production plant via the production route of homogeneous alkali-catalyzed trans-
esterification of vegetable oil. The model is implemented in Modelica with modular and
hierarchical building blocks and provided open-source. Because we decouple the equations
of the model components, the model could be adapted for other processes and used for
modeling and simulating chemical processes in general. Therefore, using other production-
route alternatives like homogeneous acidic or heterogeneous, utilizing other vegetable oils,
or adding the oil (waste cooking oil) pretreatment process should be straightforward.

Moreover, we build a similar process in Aspen Plus and show that its SS results are very
close to that of the proposed Modelica dynamic Model. Commercial tools like Aspen Plus
are often used in academia and industry for process modeling and simulation. However,
their model equations are not accessible and editable. In contrast, our proposed dynamic
model is open-source and modular with full control on model equations. Such models
are needed for optimization and model-based studies as well as for benchmark purposes.
Notably, the proposed model shares many features with general chemical processes, partic-
ularly, it has the reaction, separation, and recycle parts. This underlines its generic value
and significance as an open-source model.

We develop and implement two PWC structures based on the IFSH methodology. The
PWC structures are based on decentralized PID controllers. The first control structure is
based on the assumption of having information-rich measurement configurations (quality
measurements), motivated by recent advances in process analytical technology and spec-
troscopy. In the other structure, we consider that only conventional measurements are
available. Thus, a structure that more matches current industrial practice. We study the
dynamic behavior of the plant and conduct comparisons between the two applied PWC
structures by simulating it under several plantwide disturbances and production rate set-
point changes. The plantwide analysis of the process variable profiles and control loops
shows how the process units are interconnected with recycle streams and control loops and
their interrelated dynamic behavior. The first PWC structure is adequate for the plant
and performs satisfactorily in terms of setpoint tracking and disturbance rejection. The
second PWC structure fails to satisfy product quality constraints at all times and thus
cannot achieve the PWC objectives of the plant. Its behavior deviates from the first PWC
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structure, especially for the drop in the forward reaction rate coefficients and change in
feed composition disturbances. This performance comparison between the two PWC struc-
tures and the limitations of the one that is based on conventional measurements motivate
the importance of more advanced control strategies. Model-based control and estimation
techniques in hierarchical control structures can be potential solutions to overcome the
aforementioned limitations of conventional decentralized PID controllers. This reflects the
importance of developing dynamic models of biodiesel production processes that can be
utilized for such model-based control.

The developed model and PWC frameworks may be used to support the scaleup of
biodiesel production processes, for instance, in terms of sizing of equipment, and iden-
tification of potential bottlenecks (e.g., availability of reactants, reactor residence time,
catalyst alternatives, and important recycle streams). The model can also be employed
as a digital twin for biodiesel production plants as well as for model-based experimental
design applications. However, experimental validation of the model is still needed and can
be conducted as future work.

We design the process and fix some setpoint values based on reported operating param-
eters in the literature. Some of those reportedly optimal values were determined for single
process units (e.g., transesterifier) and not in a plantwide context. It is thus suggested to
apply numerical optimization for the synthesis and design of sustainable biodiesel processes
in a plantwide context. Optimal control problems can be formed, for instance, to mini-
mize methanol usage, energy consumption, wash water usage, or waste streams. Moreover,
eNMPC methods may be employed to operate the process flexibly based on economical ob-
jectives while satisfying all operational and quality constraints. Mass integration synthesis
along with HI can also be conducted for process optimization. Furthermore, the process
model may be extended with respect to the characterization of the oil feed as well as the
upstream processing like the pretreatment of waste cooking oil or preparation of algae oil.

In the subsequent chapters, we build upon this model and the base layer control struc-
tures, extending them for optimization- and control-oriented purposes. Our goal is to
develop and implement offline DO and online control strategies for the optimal flexible
operation of the biodiesel production process. Notably, the model serves not only as the
controller and optimization model but also as the plant model for the underlying biodiesel
production process, as all our work is conducted in silico.
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3. Optimal Design and Flexible
Operation of a Fully Electrified
Biodiesel Production Process

Figure 3.1 provides a graphical overview of the focus of this chapter within the broader
framework illustrated in Figure 1.2. This chapter addresses the integration of process
design and optimal operation by developing and solving offline DO strategies. Specifically,
we explore flexibility-oriented process designs that incorporate buffer tanks to facilitate and
enhance the flexible operation of the biodiesel production process under consideration.

Flexible 
operation

BiodieselVegetable 
oil

GWElectricity price Decoupling of 
dynamicsDynamic 

optimization 

Objective 
Optimal and 
feasible flexible 
operation

Chemical plant

Process development and operation strategies
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• Mechanistic, data-driven, 
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• Control-oriented models
• Digital twins for process 

simulations

Offline optimization
• Integrated process design 

and operation
• Process retrofitting and 
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• Heat integration
• Flexibility-oriented process 

designs and configurations

Online control
• Integration of scheduling 

and control
• eNMPC
• Dynamic scheduling with

advanced tracking control
• System decomposition
• Distributed control

Chapter 2 Chapters 3 & 4 Chapters 5 & 6

Figure 3.1.: Graphical illustration highlighting the focus of Chapter 3, emphasizing the offline
DO and flexibility-oriented process design phase within the modeling and optimization frame-
work presented in Figure 1.2 in Chapter 1.
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3.1. Introduction

Flexible operations in chemical processes not only allow for continuous adjustments in
production rates to leverage fluctuating energy prices [17, 146], but also enable flexibility
in product purities and types, with varying products and grades requiring different power
levels and diverse feedstocks available [23, 147]. However, most conventional chemical pro-
cesses are designed for continuous operation around SS operating points, which necessitates
a constant energy and feedstock supply, thereby posing significant challenges for flexible
operation [23]. Therefore, this paradigm shift requires a reevaluation of the conventional
process design and operation to enable greater flexibility in accommodating variable energy
availability. Simultaneously, achieving optimal flexible operation necessitates trajectory
optimization, which entails optimizing the process degrees of freedom over a specified time
horizon to maximize profit or minimize carbon footprint while satisfying operational con-
straints and meeting product quality requirements [23]. Several DO techniques, including
direct sequential [148, 149] and full discretization methods [150], enable such trajectory
optimization. The potential of optimal flexible trajectories has been investigated in sev-
eral load-shifting applications for electricity-intensive processes like air separation units
[21, 33], water desalination plants [40, 41], chlor-alkali electrolyzers [42, 43], and multi-
energy systems [151, 152]. However, numerical solutions to these optimization problems
can be challenging, with computational costs increasing with model size and complexity,
length of considered time horizon, and temporal resolution.

Chemical plants are composed of several unit operations, most prominently involving
reaction and separation. These different unit operations exhibit varying levels of opera-
tional flexibility, making it difficult to utilize the plant’s full flexibility potential or adjust
its load as a whole. For instance, the production flexibility of a unit operation may be lim-
ited by the operational constraints, particularly level limits, of the downstream processes.
Incorporating intermediate and final storage units for the products may allow individual
units to operate at different flexibility levels within their respective limits. Such a solu-
tion is simple yet effective as it also avoids the need to retrofit the unit operation sizes.
Nonetheless, the exchange between upstream and downstream processing through these
storage units must be coordinated optimally. This operational complexity and flexibility-
oriented process design have not been fully comprehended in existing chemical processes
involving reaction, separation, and recycle parts that consider some degree of process
flexibility [61, 153]. Despite the added complexity, this strategy may become one of the
new paradigms for chemical process design and operation in the era of renewable-powered
chemical production.

Biodiesel production processes are an exemplary case of classical chemical plants that
involve reaction and separation processes along with multiple material recycle streams
[1, 36]. Moreover, biodiesel is a “renewable” fuel derived from biomass that has the potential
to replace fossil-based diesel [36]. However, its production costs are higher than those
associated with producing conventional diesel [52]. Thus, reducing total manufacturing
costs and leveraging fluctuating energy prices through flexible operations are critical to
ensuring its economic viability. Therefore, designing an optimal and flexible electrified
biodiesel production process would not only explore DSM in a classical chemical plant but
also unify sustainability concepts from various research areas. This integration is a key
aspect for future industrial biofuel and chemical synthesis using renewable energy.

We investigate a process for the homogeneous transesterification of vegetable oil using
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an alkali catalyst to produce biodiesel. Our process design builds upon the work presented
in Chapter 2, in which we develop a rigorous first-principle model in Modelica with two
PWC structures, and make it available as open-source. We electrify the process using
heat pumps and electric coils. The process has a main reaction part, several separation
processes, and two recycle streams. It produces two final products with specific quality
requirements, as glycerol is a by-product. The process involves operational limits and
stringent quality standards, which pose challenges to exploiting process flexibility. As the
process educts are in the liquid state, they are suitable for intermediate and final storage
without requiring additional liquefaction. Moreover, the process provides an opportunity
to explore how operational flexibility affects HI across multiple units.

To investigate the potential of flexibility-oriented designs and operations of the process,
we examine three different process configurations using intermediate and final buffer tanks
and compare the operating profits obtained from their respective economic DO strategies
with that of a conventional optimal SS operation. The three process configurations differ
based on the number and the location of the buffer tanks incorporated. We employ the
three DO strategies offline, utilizing local gradient-based optimization. We aim to illus-
trate that, when electrifying chemical processes and utilizing renewable electricity, novel
operational strategies rooted in flexibility through dynamic operation may emerge as the
new standard for chemical plant operations. Realizing this transition would require the
utilization of advanced modeling and optimization techniques, along with a reevaluation of
process design considerations, to fully exploit the potential of flexible operation. Further-
more, we demonstrate that intermediate buffer tanks not only decouple dynamics between
different process parts but also facilitate the implementation of a distributed optimization
strategy with smaller problem sizes, leading to enhanced computational performance.

The chapter is structured as follows. First, we introduce the biodiesel production process
under consideration and provide a summary of our modeling approach. Next, we discuss
the several configurations examined to achieve process flexibilization, along with the cor-
responding optimization problem assumptions and formulations. We further elaborate on
the considered operational scenario and implementation before presenting and discussing
the results. Lastly, we draw conclusions based on our findings.

3.2. Biodiesel and Glycerol Production Process

Figure 3.2 depicts the flowsheet of the entire process, including all buffer tanks and opti-
mization variables. In Section 3.3, we elaborate on the use of buffer tanks and optimization
strategies. For completeness, we present a summary of the process description in this sec-
tion, excluding buffer tanks, and briefly discuss our modeling methodology and underlying
assumptions. We refer the reader to Chapter 2 for more detailed information on the process
description and modeling.
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Figure 3.2.: Superstructure flowsheet of the considered configurations of the biodiesel pro-
duction process. We denote by ṅOil, ṅMeOH, and ṅBase the molar flow rates of the vegetable
oil, methanol, and base mixture feeds, respectively. The outlet molar flow rates of the trans-
esterifier and buffer tanks InterTankRSR, InterTankB, and InterTankG, are indicated by
ṅTransOut, ṅInterTankRSR, ṅInterTankB, and ṅInterTankG, respectively. The temperature change of the
transesterifier jacket medium after passing through the external heat exchanger is ∆TJacket.
The temperature setpoints of the column reboilers are indicated by Tsp,MeOHcol, Tsp,FAMEcol, and
Tsp,GLYcol, respectively. All buffer tanks are excluded for the SS optimization case, OptSS, while
the DO FOwFinalTank-CO includes only the final buffer tanks FinalTankB and FinalTankG.
The distributed optimization subproblems FOforRSR-DO, FOforB-DO, and FOforG-DO in-
clude all buffer tanks, whereas the DO FOwInterTank-CO exclude InterTankOil. The cooler,
CoolerOil, is only considered for the distributed optimization case.

3.2.1. Process Flowsheet

The oil feed composition consists of 95 wt% triolein and 5 wt% diolein [1, 36]. We use
methanol for transesterification and sodium hydroxide (NaOH) solution as a catalyst. They
are fed into the transesterifier, which converts oil and methanol into FAME and glycerol.
The resulting products are then separated and purified. The methanol column recovers the
unreacted methanol to recycle it to the reactor. The bottom product is cooled and sent
to a decanter to separate most of the glycerol, water, the dissolved NaOH, and methanol
from FAME and unreacted oil. The light product is then further purified in the FAME
column, producing biodiesel that meets European quality standards [122]. The residual
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3.2. Biodiesel and Glycerol Production Process

oil is recycled back into the reactor after being mixed with fresh oil. The decanter bottom
is sent into a neutralizer unit, where it is neutralized using a phosphoric acid solution to
remove dissolved NaOH species [82]. The solution is then filtered to remove the formed
salt in a filter unit. The remaining liquid is purified in a glycerol column to remove water
and methanol from glycerol with a pharmaceutical-grade purity of 99 wt% [1, 46].

3.2.2. Process Modeling

Before presenting the electrification approach, we briefly summarize the considered model-
ing formulation and assumptions for the unit operations and thermodynamics. In addition,
we provide the base-layer control considered and further modeling aspects.

3.2.2.1. Unit Operations

We describe the transesterifier as a perfectly-mixed CSTR using energy and material bal-
ances. We model the reaction system based on the well-studied reversible three-step trans-
esterification system in the literature [1, 86]. We model the transesterifier jacket as a
series of equivalent CSTs. We utilize MESH models for the decanter and each stage of
the distillation columns. Our approach includes several assumptions, such as the perfect
mixing of vapor and liquid phases, and that the tray holdup only accounts for the liquid
phase since the vapor holdup is typically insignificant [130]. We use a quasi-steady-state
approximation for the energy balances at the trays, which allows reformulating the model
to an index-1 DAE system [130].

Regarding the methodology employed for sizing the main unit operations, particularly
the distillation columns, we refer the reader to refs. [154], [155], and [156]. For the
transesterifier, we employ a sizing approach based on a one-hour residence time, ensuring
it operates at half of its capacity during nominal operation. We utilize residence times of
five seconds for the column trays and 30 seconds for the condensers and reboilers. The
sizing of other units follows similar heuristics [154–156]. Across all units with holdups, the
sizing is such that they operate at approximately half of their capacity during nominal
operation.

3.2.2.2. Chemical System and Thermodynamics

We consider ten species, including triolein, diolein, methanol, water, NaOH, and phos-
phoric acid, as feeds. Monoolein is an intermediate educt. The products are methyl
oleate (FAME), glycerol, and monosodium phosphate (solids product). We use the DIPPR
temperature-dependent correlations to determine the molar heat capacities [110]. We then
determine species enthalpies, entropies, and Gibbs free energies through analytical inte-
gration. We determine the vapor pressures using the extended Antoine correlation [133].
To account for non-ideality in the liquid phase, we use the NRTL model [109]. The Racket
equation is used to determine liquid-mixture molar densities [132]. We employ isofugacity
conditions to describe the LLE and VLE, assuming that the number of existing phases is
known.
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3.2.2.3. Base-Layer Control System

A base-layer control system consisting of PI controllers (cf. Figure 3.2) is implemented to
determine the condenser cooling duties for the design pressure values at the top of the
distillation columns by pressure controllers (PCs), and the acid feed flow rate based on a
fixed pH value at the outlet of the neutralizer by a pH controller (YC). We control the
liquid levels in the distillate drums, reboiler kettles, decanter, and neutralizer by cascade
controllers for fixed residence times. Temperature controllers are employed to control the
reboiler temperatures to their setpoints by manipulating the reboiler heating duties. The
temperature setpoints are determined by an optimizer.

3.2.2.4. Buffer Tanks

We consider energy and material holdups for buffer tanks with half-full nominal liquid
levels. We assume the tanks to be thermally insulated.

3.2.2.5. Water-Methanol Waste Stream

To account for the water-methanol waste stream (cf. Figure 3.2) in the optimization cal-
culations, we assume the presence of a downstream purification unit that separates water
and methanol (water-methanol column). The energy cost incurred by this unit, as well
as the revenue generated by its purified methanol product, are considered contributors
to the overall energy cost and product revenue. Therefore, based on SS simulations of a
rigorous model for the water-methanol column, we fit an equation that describes the total
electrical power demand of this purification unit and its methanol product flow rate as a
function of the water-methanol waste flow rate and its methanol mass fraction. An equa-
tion that relates the purity of the purified methanol as a function of this mass fraction is
also fitted. We include those empirical equations along with the corresponding coefficient
of determinations in (B.1) in Appendix B.

3.2.3. Electrification of Process Units

The condensers and reboilers of the distillation columns, as well as the heating unit of the
transesterifier, are the power-consuming components. In the following, we explain how we
electrify these units in this work.
Condensers

We model the needed electric power for cooling in distillation column condensers through
an ideal vapor-compression refrigeration cycle. We use a single-stage compression with an
isentropic efficiency of 0.8 [157, 158]. We opt for ammonia as a refrigerant due to its high
coefficient of performance (COP) compared to other refrigerants, and widespread use in
industrial systems [159, 160]. To enhance heat transfer during the refrigeration process,
air fans are employed. We determine their needed electrical power by a linear correlation
with the transferred heat [161]. The resulting COP values are around 2.7.
Reboilers

To electrify the distillation column reboilers, we utilize heat pumps or electric coils with
different systems employed based on the required heat sink temperature. We model the
heat pumps similarly to the refrigeration cycles used for the condensers. The methanol
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column reboiler operates within a temperature range of around 65 ◦C, for which we use a
single-stage heat pump with cyclopentane as the working fluid. Such systems are charac-
terized by high COP values for the given source and sink temperatures compared to other
fluids [162, 163]. As a result, the COP values are around 3.5. For the glycerol column
reboiler, which operates within a temperature range of around 140 ◦C, we employ a two-
stage cascade heat pump as described in refs. [164] and [165]. We use cyclopentane as the
working fluid for the low-temperature stage, while water is used for the high-temperature
stage, as suggested by ref. [166]. The cascade structure enables the single stages to op-
erate at different pressure and temperature ranges, which are appropriate for the specific
refrigerant. The COP values for this system are around 2. Additionally, all heat pumps
are equipped with an internal heat exchange system, which reduces the mass flow of the
working fluid and thereby improves the COP, as noted by refs. [158] and [167]. Further-
more, the compression process is carried out in two steps with intercooling, which further
enhances the COP and reduces the thermal stress on the compressors due to lower tem-
peratures [164, 168]. The temperature operating range of the FAME column reboiler is
around 295 ◦C. We thus employ an internal electric coil with a power-to-heat efficiency of
99% as a suitable heating source for such temperature values [166, 169, 170].
Transesterifier

To regulate the temperature inside the transesterifier, its jacket medium circulates
through an external loop, with valves controlling the flow of hot or room-temperature
water, as well as purging, depending on the desired heating or cooling mode. Heating
is achieved using an electric coil, so the electrical power consumption of the transesteri-
fier is attributed to the heating mode only. We model this by applying complementarity
constraints (CCs) as follows:

Q̇ = Q̇h − Q̇c , (3.1a)

Q̇c · Q̇h = 0 , Q̇c ≥ 0 , Q̇h ≥ 0 , (3.1b)

where Q̇c and Q̇h are the cooling and heating power demand, respectively. The overall
power demand Q̇ depends on the process inputs and variables. We model the external
loop of the transesterifier jacket medium by a heat exchanger through which the jacket
medium changes its temperature by ∆TJacket. We thus control the cooling or heating modes
via a single control loop with one MV [1].

Using (3.1b) to model the transesterifier heating duty in optimization results in math-
ematical programs with CCs, which are challenging for NLP solvers [171, 172]. To allow
for the use of standard NLP solvers and DAE integrators, we thus reformulate (3.1b),
using the Fischer-Burmeister function with the smoothing term ϵ [172, 173], to a smooth
nonlinear complementary problem (NCP) function as follows:

Q̇c + Q̇h :=

√
Q̇2

c + Q̇2
h + ϵ . (3.2)

This NCP function is equivalent to an equality path constraint that can be incorporated
directly into the integrator and solved along with the DAE system of the process model
when using sequential optimization methods, unlike full discretization methods [172, 174].
In this work, we use single-shooting [54, 148] as a direct sequential approach to solve the
implemented DO problems. Without the smoothing term ϵ, (3.2) leads to a nonsmooth
DAE system, requiring special treatment for integration and sensitivity analysis. The value
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of ϵ should be sufficiently small to ensure accurate convergence of the DAE system to the
exact solution, yet not overly small impeding the NLP solver’s ability to explore the search
space beyond the initial guess [172, 175].

3.3. Process Optimization for Flexible Operation Using
Buffer Tanks

In this section, we present the considered process configurations and optimizations for in-
corporating buffer tanks to enable flexible dynamic operation, along with the benchmark
standard SS operation. We first provide the general mathematical formulations of the
implemented DO problems. Afterward, we discuss the approach for solving the SS op-
timization problem for the benchmark process design, as well as the DO considered for
different flowsheet configurations using the intermediate and final buffer tanks. For all
considered optimizations, we provide the buffer tanks and process units included, process
modifications, and all controls and constraints in Table 3.1.

3.3.1. Mathematical Formulation

Based on the modeling approach and the smooth approximation (3.2) for the transesterifier
heating duty, the developed process models for all considered optimizations are smooth
DAE systems of index-1. Accordingly, we solve, in all considered process configurations,
DO problems on a finite time horizon T = [t0, tf ] of the following form:

min
u,x,y

Φ(u,x,y, pel,v) =

tf∫
t0

−L(u(t),x(t),y(t), pel(t),v) dt , (3.3a)

s.t. Mẋ(t) = f(u(t),x(t),y(t), pel(t),v), ∀t ∈ T , (3.3b)
0 = g(u(t),x(t),y(t), pel(t),v),∀t ∈ T , (3.3c)
0 = h(x(t0),y(t0), pel(t0),v) , (3.3d)
0 ≥ c(u(t),x(t),y(t), pel(t),v), ∀t ∈ T , (3.3e)

where f : X → Rnx and g : X → Rny describe the DAE system of the process model with
the non-singular and constant matrix M ∈ Rnx×nx , while X := Rnx×Rny×Rnu×R×Rnv .
The initial conditions are indicated by h : Rnx × Rny × R× Rnv → Rnx , and c : X → Rnc

represents the path and endpoint constraints. We denote the control, state, and algebraic
variables by u : T → Rnu , x : T → Rnx , and y : T → Rny , respectively. The predefined
time-variant parameter, which is the electricity prices, is given by pel : T → R, while
v : T → Rnv are the predefined time-invariant parameters, which are the production rate
demands and material prices. The initial and final times are denoted by t0 ∈ R and tf ∈ R,
respectively. The objective function Φ generally consists of the operating profit L : X → R,
but depending on the considered optimization case, L can consist of the operating costs
only or the power consumption instead of the cost. In the following sections, we define
L for each of the considered process configurations and the corresponding optimization
problems.

44



3.3. Process Optimization for Flexible Operation Using Buffer Tanks

Table 3.1.: Summary of the included buffer tanks and units, process modifications, control
variables, and operational constraints for the implemented process configurations. Due to the
thermal degradation limits of biodiesel and glycerol products, the maximum temperatures in
the FAME and glycerol column reboilers are 300 ◦C and 150 ◦C, respectively. The maximum
temperature changes of the transesterifier jacket medium ∆TJacket are limited to ±10 ◦C. Time-
variant is indicated by TV. We denote by LL and EC the liquid levels and equality constraints,
respectively. Purities are in kg/kg.

OptSS FOwFinal-
Tank-CO

FOwInter-
Tank-CO

FOwInter-
Tank-DO

Additional process units and modifications
FinalTankB and FinalTankG – ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG – – ✓ ✓
InterTankOil and CoolerOil – – – ✓
Tearing the residual oil recycle stream – – – ✓

Controls Constant TV TV TV

ṅOil [kmol/h] ✓ ✓ ✓ ✓
ṅMeOH [kmol/h] ✓ ✓ ✓ ✓
ṅBase [kmol/h] ✓ ✓ ✓ ✓
ṅTransOut [kmol/h] ✓ ✓ ✓ ✓
∆TJacket [K], limited to ±10 ◦C ✓ ✓ ✓ ✓
Tsp,MeOHcol [K] ✓ ✓ ✓ ✓
Tsp,FAMEcol [K], upper bound of 300 ◦C ✓ ✓ ✓ ✓
Tsp,GLYcol [K], upper bound of 150 ◦C ✓ ✓ ✓ ✓
ṅInterTankRSR [kmol/h] – – ✓ –
ṅInterTankB [kmol/h] – – ✓ ✓
ṅInterTankG [kmol/h] – – ✓ ✓

Path and endpoint constraints

Transesterifier LL [m] ✓ ✓ ✓ ✓
FinalTankB and FinalTankG LL [m] – ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG LL [m] – – ✓ ✓
InterTankOil LL [m] – – – ✓
InterTankRSR content purities – – – ✓

Path constraints

Decanter and neutralizer LL [m] ✓ ✓ ✓ –
Columns: reboilers, distillate drums, and trays LL [m] ✓ ✓ ✓ ✓
EN 14214 [122] biodiesel purities ✓ ✓ ✓ ✓
99 wt% glycerol purity ✓ ✓ ✓ ✓
Biodiesel production demand [kg/h] (EC) ✓ ✓ ✓ ✓
Glycerol production demand [kg/h] (EC) ✓ ✓ ✓ ✓
InterTankRSR outlet [kg/h] (EC) – – – ✓
InterTankOil outlet [kg/h] (EC) – – – ✓

Endpoint constraints
Transesterifier content purities – ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG content
purities – – ✓ ✓

3.3.2. Steady-State Optimization via Dynamic Terminal-State
Optimization

We consider here the base case that we use for comparison purposes, which corresponds
to a standard process design leading to a SS optimization. In this process configuration,
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all buffer tanks in the flowsheet in Figure 3.2 are excluded. All controls, which are de-
picted by the blue arrows, are considered except for the InterTankRSR, InterTankB, and
InterTankG outlet molar flow rates (ṅInterTankRSR, ṅInterTankB, and ṅInterTankG, respectively).
Also, the CoolerOil unit and the flow rate equality constraints after InterTankRSR and
InterTankOil are excluded here. We denote by OptSS (optimal steady-state operation)
the SS optimization case.

We aim to determine an optimal constant operation benchmark that produces the re-
quired production rates of biodiesel and glycerol, and satisfies all operational requirements
while minimizing power consumption and material costs and maximizing product revenues.
To achieve this, we could set the right-hand side of (3.3b) of the DAE system in (3.3) equal
to zero and solve the resulting SS optimization problem. However, we use here an alter-
native approach via optimizing the dynamic terminal-state of the DAE system, which is
obtained by integrating for an extended period and using constant control variables. This
approach is considered more robust in the literature, e.g., refs. [176] and [131]. Therefore,
the controls u in (3.3) are considered constant in the SS optimization. Moreover, pel is ex-
cluded from (3.3a) since the results are independent of any specific electricity price profile.
Instead, a fixed price pel, fixed is utilized, representing the average electricity price over the
considered time horizon. In this case, L is defined as:

L(t) =

nProd∑
i=1

ṁi(t)vi − pel, fixedWTot(t)−
nFeed∑
j=1

ṁj(t)vj , (3.4a)

WTot(t) = WTrans(t) +WMc(t) +WFc(t) +WGc(t) +WWMc(t) , (3.4b)

where ṁi and ṁj indicate the production and consumption rates of products and feeds,
with the corresponding specific material prices, denoted by vi and vj, respectively. The
nProd products are biodiesel, glycerol, solids, and purified methanol by the water-methanol
column (cf. Figure 3.2 and Section 3.2.2.5). The nFeed feeds are vegetable oil, methanol,
base mixture, and acid mixture. The total power demand is given by WTot. The power
demands of the transesterifier, methanol, FAME, glycerol, and water-methanol columns
are indicated by WTrans, WMc, WFc, WGc, WWMc, respectively.

We use a final time tf of two days, which is sufficiently large for the DAE system to
obtain a new quasi SS, starting at the initial DAE state defined by (3.3d). We selected
the time horizon by forward simulation of the model, ensuring that a SS is obtained. By
optimizing the terminal-state of the DAE system using constant controls, we obtain one
feasible SS solution. However, there may be multiple solutions, and the found one may
not necessarily be stable. Therefore, we perform a stability check by linearizing the DAE
system at the found SS solution and using the indirect method of Lyapunov. We observe
that all the real parts of the eigenvalues of the linearized system matrix are negative,
indicating that the DAE system is stable at the found SS solution.

3.3.3. Process Configurations and Dynamic Optimization for
Flexible Operation

To enable flexible process operation, we add final and/or intermediate buffer tanks. We
aim to dynamically operate the process by solving (3.3) for the different buffer tank con-
figurations while producing the same amount of biodiesel and glycerol as the SS operation
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benchmark within the considered time horizon. The controls u are time-variant variables,
and pel is kept in (3.3a). Accordingly, the operating profit L is defined as follows:

L(t) =

nProd∑
i=1

ṁi(t)vi − pel(t)WTot(t)−
nFeed∑
j=1

ṁj(t)vj . (3.5)

First, we discuss the configuration of adding final buffer tanks exclusively, before mov-
ing on to the use of intermediate tanks. Furthermore, in Section 3.3.3.3, we demonstrate
how intermediate buffer tanks enable the implementation of distributed optimization as
an alternative to centralized monolithic approaches, potentially enhancing the computa-
tional efficiency of optimization problem solving. Additionally, flexibility potential exists
not only in production rates but also in the purity of final products. In Section 3.3.3.4,
we elaborate on how product purity specification can be used to achieve more process
flexibility, particularly for the glycerol product.

3.3.3.1. Process Flexibilization via Final Buffer Tanks Only

As shown in Figure 3.2 and Table 3.1, we include in this case only the two final buffer
tanks, namely FinalTankB and FinalTankG, in the process flowsheet. All intermediate
buffer tanks are excluded here. Final buffer tanks are essential when aiming for flexible
operation while simultaneously meeting specific production demands, such as biodiesel and
glycerol production in our study. We solve (3.3) for this configuration, investigating the
operational flexibility that can be achieved through the use of final buffer tanks only. The
operating profit L is defined here as in (3.5). We represent the optimization for this case
as FOwFinalTank-CO (flexible operation with final tanks - centralized optimization).

We impose additional endpoint constraints for the liquid levels in FinalTankB and
FinalTankG (cf. Table 3.1) to guarantee that the optimizer does not exploit the initial
holdups in the tanks to satisfy production demands. Therefore, the liquid levels have to
be maintained at their initial values at the end of the time horizon. Our analysis aims to
investigate the production flexibility of both biodiesel and glycerol products while ensuring
that their respective demands are met.

3.3.3.2. Process Flexibilization via Final and Intermediate Buffer Tanks

Various unit operations have different potentials for flexibility, depending on their opera-
tional requirements and positions in the process. For instance, a unit operation’s ability
to be flexible in production, and thus in its power consumption, may be limited by down-
stream processes. In particular, liquid level limits in downstream processes may impede
the production flexibility potentials of upstream processes. As a solution, the incorpora-
tion of additional intermediate buffer tanks can decouple the dynamics between process
parts and consequently render full exploitation of the production flexibility of the overall
process.

In this work, the output production rate of the methanol column bottom is restricted
by the liquid level limits in the downstream processes, notably, the decanter and columns.
Thus, we incorporate the buffer tank InterTankRSR to realize the full potential of produc-
tion flexibility for the methanol column (cf. Figure 3.2 and Table 3.1). Consequently, the
outlet flow rate of InterTankRSR is a new control variable in the DO problem.
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Furthermore, to enable varying the production rates through the other downstream
power-consuming units, namely the FAME and glycerol columns, we include the buffer
tanks, InterTankB and InterTankG, respectively. As a result, the outlet flow rates of these
tanks need to be manipulated, making them new controls in the DO problem (cf. Figure 3.2
and Table 3.1). For all intermediate buffer tanks, we add endpoint constraints for their
liquid levels as well as for the purities of their content species (cf. Table 3.1) to ensure that
the state at the final time is equal to its initial value.

We denote the optimizer that solves (3.3), where the operating profit L is defined as in
(3.5), for the entire process including all intermediate buffer tanks by FOwInterTank-CO
(flexible operation with intermediate and final tanks - centralized optimization). In this
case, the convergence of the NLP solver is sensitive to the initial guess and the scaling of
controls and constraints. In DO problems with large-scale DAE systems, the optimization
algorithm is particularly susceptible to encountering ill-conditioning issues, which adversely
impact convergence. Utilizing distributed optimizers for different parts of the process leads
to DO problems with smaller DAE systems, thus, reducing the number of variables that
the user needs to initialize and scale. Consequently, the optimization algorithm is less
prone to non-convergence and is computationally more efficient.

3.3.3.3. Process Flexibilization via Buffer Tanks and Distributed Optimization

In addition to fully exploiting production flexibility, the added intermediate buffer tanks
can also facilitate the implementation of multiple distributed optimizers for different pro-
cess parts, rather than relying on a centralized monolithic optimizer for the entire process.
Given the high computational cost and convergence challenges associated with large-scale
DO problems, we propose another optimization strategy for employing intermediate buffer
tanks. We introduce an additional buffer tank for the residual oil recycle (cf. Figure 3.2
and Table 3.1), and employ three distributed optimizers instead of a centralized monolithic
one.

By introducing an additional buffer tank, InterTankOil, and the water-operating cooler,
CoolerOil, for the residual oil recycle, we fix its flow rate and temperature, thereby, allowing
to tear this recycle stream (cf. Figure 3.2 and Table 3.1). Consequently, we can decouple
the upstream processes of the InterTankRSR tank from its downstream processes. How-
ever, to enable this, we need additional constraints. Specifically, we constrain the outlet
flow rates of InterTankRSR and InterTankOil tanks to fixed flow rates and impose path
constraints on the species purities of the InterTankRSR outlet (cf. Table 3.1). Therefore,
we can implement the three optimizers FOforRSR-DO, FOforB-DO, and FOforG-DO (flex-
ible operation for the reaction-separation-recycle/biodiesel/glycerol process - distributed
optimization), as shown in Figure 3.2. Collectively, we refer to them as FOwInterTank-
DO (flexible operation with intermediate and final tanks - distributed optimization). This
approach involves solving three DO problems of (3.3), with smaller DAE systems, leading
to fewer non-convergence issues and less computational cost. However, it is important to
note that these additional constraints are restrictive. Notably, fixing the flow rate of the
residual oil recycle stream results in less efficient material consumption of the oil feed.
This increases the overall material costs compared to the FOwInterTank-CO case where
we have full degrees of freedom. In Section 3.6, we examine whether these restrictions are
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significant. The operating profits for the three problems are given by:

LFOforRSR-DO(t) = −pel(t) (WTrans(t) +WMc(t))−
nFeed, FOforRSR-DO∑

j=1

ṁj(t)vj , (3.6a)

LFOforB-DO(t) = ṁB(t)vB − pel(t)WFc(t) , (3.6b)

LFOforG-DO(t) =

nProd, FOforG-DO∑
i=1

ṁi(t)vi − pel(t) (WGc(t) +WWMc(t)) , (3.6c)

such that the acid feed is not included in LFOforRSR-DO; B indicates biodiesel; and the
products in LFOforG-DO are glycerol, solids, and purified methanol by the water-methanol
column.

It is worth noting that the additional InterTankOil serves the sole purpose of facilitating
the decoupling of process parts and enabling distributed optimizations. Consequently, it
does not provide any additional flexibility benefits for the centralized monolithic optimiza-
tion case. In our process, the two recycle streams from the methanol and FAME columns
are already buffered within the transesterifier, rendering intermediate buffer tanks unneces-
sary for these streams. Furthermore, the presence of InterTankOil is a practical necessity.
Without it, achieving the decoupling of various process sections (by decoupling their dy-
namics) and fixing the residual oil recycle stream would be unattainable. Essentially, the
considered distributed optimization approach relies on the existence of InterTankOil.

The distributed optimization approach we employ is based on a sequential algorithm,
wherein only the downstream processes are influenced by the upstream ones, and not vice
versa. In a sequential algorithm, subproblems are addressed in a predetermined order.
After the optimization of the initial subproblem is completed, the results are shared with
the subsequent subproblems. Subsequent subproblems are constrained by the fixed so-
lutions obtained from the previous subproblems. Additionally, we utilize independent,
non-cooperative algorithms, where each subproblem seeks to minimize an individual cost
function, focusing solely on its specific objective. In our case, FOforRSR-DO remains
unaffected by the output of FOforB-DO due to the fixed recycle stream of residual oil.
In contrast, both FOforB-DO and FOforG-DO receive as inputs the outlet streams de-
termined by FOforRSR-DO. Additionally, FOforB-DO and FOforG-DO are concurrently
addressed once FOforRSR-DO is finalized. As a result, the utilization of parallel comput-
ing for solving FOforB-DO and FOforG-DO holds the potential for significant benefits,
particularly when considering the real-time application of optimal control strategies in a
moving-horizon fashion, such as MPC.

3.3.3.4. Flexible Purity Production

Enforcing the purity constraints of the final products at the outlet streams of the buffer
tanks, FinalTankB and FinalTankG, enables the flexibilization of the produced product
purities at their inlet streams. Specifically, a higher degree of freedom is given to the
optimizer to vary the purity at the buffer tank inlet streams while satisfying its require-
ments at the outlet side. Producing higher purities in distillation columns is associated
with higher power consumption. As a result, flexibilizing the produced purities of biodiesel
and glycerol products leads to additional savings in energy costs. Thus, we impose the
required purity limits for both biodiesel and glycerol products at the outlet streams of the
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corresponding final buffer tanks. However, flexibility in purity production is more signifi-
cant when having purity limits for a single species only. That is the case for the glycerol
product in our study, where we only control glycerol species purity. In contrast, there
are, practically, purity limits for FAME, methanol, water, glycerol, and monoolein for the
biodiesel product.

3.4. Operational Scenario

Here, we introduce the considered demand-response scenario for all optimization cases,
that is, how we define pel(t) and v. We conduct simulations over a time horizon of
one day, during which constant production demands of 20 t/h for biodiesel and 2.12 t/h
for glycerol are required. We use historical electricity price data from the German day-
ahead spot market for September 3, 2022 [177], which is depicted in Figure 3.3. We use
constant prices for raw materials and final products, which are provided in Table B.1
in Appendix B. For all DO problems, we discretize the control variables at an equidis-
tant interval of one hour, while the constraints are discretized at 30-minute intervals.
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Figure 3.3.: German day-ahead
electricity prices for September 3,
2022 [177].

3.5. Implementation

We solve all optimization problems to local NLP con-
vergence with direct single shooting [54, 148] using our
open-source framework DyOS [53]. Using NIXE Is eX-
trapolated Euler (NIXE) [178] as a DAE integrator
and Sparse Nonlinear OPTimizer (SNOPT) [179] as an
NLP, the DO problems are solved sequentially. The
Modelica model is coupled to DyOS as a FMU [180]
generated by Dymola [142]. As FMU only supports
ODEs, Dymola performs numerical reduction and sym-
bolic reformulation of the DAE system to provide an
FMU. In addition, we use Dymola for model lineariza-
tion and for calculating the eigenvalues of the linearized
system matrix. We set the DAE integrator, NLP fea-
sibility, and optimality tolerances to 10−4.

3.6. Results and Discussion

We present production rates and the total power demand results for all the considered
process configurations first, before we discuss how the buffer tanks are utilized to enhance
the production and, thus, power consumption flexibility. Afterward, we demonstrate how
glycerol product purity can vary based on energy costs. We also evaluate the economic
performance of the considered optimizations and compare them with the SS operation
benchmark OptSS. Lastly, we compare the computational performance of FOwInterTank-
DO and FOwInterTank-CO. We provide additional results in Section B.3 in Appendix B,
including profiles for all controls, production rates, tank levels, and product purities.
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3.6.1. Production Rate and Power Demand

The biodiesel production rates are presented in Figure 3.4a for all considered process
configurations. We observe that all DO optimizations, as compared to OptSS, enable pro-
duction flexibility based on electricity prices. We see how the production rate profiles are
opposite to that of the electricity prices. The DO optimizers promptly increase the pro-
duction rates to move away from the nominal starting point due to lower electricity prices
during this period. Subsequently, the production rates are adjusted according to prices
to optimize the operating profit while adhering to operational constraints, particularly
level limits. The intermediate buffer tanks provide significant additional flexibility, as evi-
dent from the profiles of FOwInterTank-CO and FOwInterTank-DO compared to that of
FOwFinalTank-CO. For instance, between time periods 10 and 17, the use of intermediate
tanks enables considerably higher production rates. On the other hand, FOwFinalTank-
CO cannot fully leverage the low prices or always maintain production rates at minimum
levels during high prices. During periods around 8, 10, and 23, FOwFinalTank-CO op-
erates at high production rates, even exceeding the nominal rate, despite high prices. In
contrast, FOwInterTank-CO and FOwInterTank-DO maintain the production rate at its
minimum operating limit. In addition, the production in FOwInterTank-DO is identical to
that of FOwInterTank-CO, indicating that the use of distributed optimizers rather than a
centralized monolithic one has a similar flexibility potential. Moreover, by comparing the
profiles of FOwFinalTank-CO with those of FOwInterTank-CO and FOwInterTank-DO, it
is evident that the dynamics in the latter cases are buffered due to the intermediate buffer
tanks.
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Figure 3.4.: Production rates and total power demand for all optimizers. (a): biodiesel
production rates; (b): solids production rates; (c): total power consumption rates. The shaded
areas illustrate the electricity price profile, which corresponds to the secondary axes.

The production rate profiles for the glycerol product and water-methanol waste (cf. Fig-
ure B.2 in Appendix B) are similar to that of biodiesel. However, during periods of
increased production (e.g., between 10 and 17), more water enters the glycerol purifica-
tion section for FOwInterTank-DO compared to the other DO cases. This is due to the
additional purity constraints on the InterTankRSR outlet stream that are needed when
separating the upstream processes of InterTankRSR from the downstream ones. There-
fore, during periods of increased production, higher amounts of water-methanol waste are
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produced for FOwInterTank-DO compared to FOwFinalTank-CO and FOwInterTank-CO,
resulting in higher power demands for both glycerol and water-methanol columns.

Figure 3.4b shows the production rates of solids, the product obtained from the filter
unit. Although the produced amount is relatively insignificant compared to the primary
products, it provides insights into how the buffer tanks affect the process dynamics, espe-
cially the InterTankRSR. For FOwFinalTank-CO, the production rate is similar to that of
biodiesel since this case only considers the final buffer tanks. However, for FOwInterTank-
CO, the production rate is the opposite and follows the electricity price profile. The solids
product is a downstream product directly after the InterTankRSR, without any buffer
tanks in between. In FOwInterTank-CO, all intermediate buffer tanks have full degrees of
freedom, enabling InterTankRSR to deliver high flow rates to the downstream buffer tanks,
InterTankB, and InterTankG, during periods of high prices, and vice versa. On the other
hand, InterTankB and InterTankG operate oppositely as they are responsible for achieving
flexible production rates for biodiesel and glycerol, respectively, as shown in Figure 3.4a.
Therefore, before the prices increase, InterTankRSR fills these tanks, explaining the high
flow rates of the solids product during high prices. During low-price periods, the outlet
stream of InterTankRSR decreases, allowing InterTankRSR to refill while InterTankB and
InterTankG are not utilized as much as during high prices. Section 3.6.2 provides fur-
ther elaboration on the buffer tank utilization. Conversely, for FOwInterTank-DO, the
solids production rate is mostly unaffected by the flexibilization of the other process parts.
When using distributed optimizers and fixing the outlet flow rate of InterTankRSR, all
process units between InterTankRSR and its downstream buffer tanks, InterTankB and
InterTankG, operate almost constantly. Slight variations in the production rates occur due
to changes in the species purities of the InterTankRSR outlet. As those species purities are
not fixed, the outlet streams from the decanter vary according to their degree of separation.
It is noteworthy how distributed optimizers can decouple the dynamics of various process
parts using intermediate buffer tanks, allowing different parts of the process to operate at
varying degrees of flexibility.

The total power consumption rates are illustrated in Figure 3.4c, which resemble
the biodiesel production rate profiles. Additionally, we see how FOwInterTank-CO and
FOwInterTank-DO decrease the power consumption rates at periods around 3 and 6, as
compared to FOwFinalTank-CO. This again demonstrates the effectiveness of intermediate
buffer tanks in exploiting slight variations in prices. We provide the power demand profiles
of all unit operations in Figure B.3 in Appendix B.

For the three process parts, Table 3.2 provides the production rates of their respective
products, namely, the methanol column bottom, biodiesel product, and glycerol product.
We compare their minimum and maximum achievable values to the corresponding values in
the SS operation. This analysis enables a quantitative assessment of the extent of flexibility
improvement within the examined process configurations for flexible operation. The results
underscore the substantial impact of intermediate buffer tanks on augmenting production
flexibility, primarily in the direction of increasing production rates. Notably, differences
between configurations employing intermediate buffer tanks and that relying solely on final
tanks are relatively modest when examining reductions in production rates. Moreover, we
observe that the potential for reducing production rates in the three columns is similar.
However, in terms of increasing production rates, the glycerol column demonstrates a
notably higher degree of flexibility compared to the other columns, particularly when
intermediate tanks are utilized.
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Table 3.2.: Quantitative evaluation of the improved production rate flexibility across the
various process configurations under consideration. For the three process parts, this assessment
presents their corresponding minimum and maximum achievable production rates: the methanol
column bottom, biodiesel product, and glycerol product. These values are compared with the
corresponding nominal values in the SS operation. Relative differences between these values
and those of the SS operation are presented in parentheses.

OptSS FOwFinalTank-CO FOwInterTank-CO FOwInterTank-DO

Production rate [t/h] min max min max min max
Bottom of methanol
column 24.55

4.82
(−80%)

32.56
(33%)

4.68
(−81%)

45.5
(85%)

4.71
(−81%)

46.53
(89%)

Biodiesel 20
4.03

(−80%)
27.28
(36%)

3.25
(−84%)

32.75
(64%)

3.24
(−84%)

32.9
(64%)

Glycerol 2.12
0.44

(−79%)
2.9

(37%)
0.44

(−79%)
4.41

(108%)
0.44

(−79%)
4.41

(108%)

3.6.2. Buffer Tank Levels

The liquid levels and controls of InterTankRSR, InterTankB, and FinalTankB in Figure 3.5
demonstrate how the final and intermediate buffer tanks enable high degrees of produc-
tion flexibility. In Figure 3.5a, FinalTankB levels increase when electricity prices are low
and decrease otherwise. The tank holdup is utilized during high-price periods to ensure
that the required biodiesel demand is met, despite the decrease in production rates (Fig-
ure 3.4a). The changes in the levels are steeper for FOwInterTank-CO and FOwInterTank-
DO than for FOwFinalTank-CO, highlighting the additional flexibility that intermediate
buffer tanks provide.

For the glycerol product, the profiles for FinalTankG (cf. Figure B.4 in Appendix B) re-
semble those of FinalTankB. In contrast, InterTankB (Figure 3.5c) or InterTankG (cf. Fig-
ure B.4 in Appendix B) exhibit the opposite behavior of final tanks. These intermediate
tanks supply the required flow rates for downstream units to operate at the desired capacity.
Therefore, they are utilized during low-price periods and filled during high-price periods.
For example, during the period between 10 and 17, InterTankB is used to operate at high
outlet flow rates (Figure 3.5e) so that the FAME column operates at maximum capacity.
Consequently, the levels in InterTankB decrease while they increase in FinalTankB.

Unlike InterTankB or InterTankG, InterTankRSR is utilized similarly to the final tanks.
It is filled during low-price periods and utilized otherwise (Figure 3.5b). InterTankRSR fills
InterTankB and InterTankG before low-price periods so that the latter tanks are utilized
during high-price periods. This is evident from the InterTankRSR control variable profile
(only in the FOwInterTank-CO case), which shows high flow rate values during high-price
periods and vice versa (Figure 3.5d).
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Figure 3.5.: (a), (b), and (c) show the liquid levels in FinalTankB, InterTankRSR, and
InterTankB, respectively. The control variables for InterTankRSR and InterTankB, which
are the outlet flow rates, are shown in (d) and (e), respectively. For FOwInterTank-DO, the
InterTankRSR outlet flow rate is an equality constraint. Therefore, only FOwInterTank-CO
has it as a control variable. The secondary axes correspond to the electricity prices, which are
depicted in shaded areas.

3.6.3. Flexible Purity Production

Figure 3.6 shows the variability of the produced purity of the glycerol product, which
enables additional operational flexibility. The figure depicts the purities before and after
FinalTankG, as well as the reboiler temperature setpoint of the glycerol column, which
is an optimization control variable. The temperature setpoints increase during low-price
periods and decrease otherwise for all DO cases (Figure 3.6a), resulting in added power
demand flexibility. During periods of lowest price, specifically between 10 and 17, the
temperature setpoints reach their maximum allowable limit (glycerol thermal degradation
limit) to maximize the power demands of the glycerol column during those periods. This
leads to higher glycerol purities being produced and stored in FinalTankG (Figure 3.6b).
On the other hand, lower purities are produced during high-price periods and mixed with
the higher-purity content in FinalTankG, resulting in glycerol being delivered at the tank
outlet with purities above the required limit (Figure 3.6c). The purity profiles at the inlet
of FinalTankG (Figure 3.6b) mirror the reboiler temperature profiles, particularly how
they decrease and then increase during the period of highest prices, i.e., between 17 and
24. During this period, the purities decrease to below 97.5 wt% (for FOwInterTank-DO),
while they remain above the minimum limit at the FinalTankG outlet (Figure 3.6c).
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Furthermore, we observe that the purities at the FinalTankG outlet around 17 are not
at the minimum limit (Figure 3.6c), in contrast to other periods. Just before this period,
i.e., between 10 and 17, the purities at the inlet reach their highest operational limit (due
to temperature limit), resulting in slightly higher purities at the outlet during the period
around 17. Consequently, during the next period when the prices are high (between 17 and
24), the tank inlet purities can be minimized while maintaining the outlet purities above
the minimum limit.
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Figure 3.6.: (a) shows the temperature setpoint of the glycerol column reboiler, which is
an optimization control variable. (b) and (c) illustrate the glycerol purity in the inlet and
outlet streams of FinalTankG, respectively. It can be observed from (b) that lower purities are
produced during high-price periods and vice versa, while the delivered product purity (in (c))
meets the minimum limit of 99 wt%. The profile of the electricity prices is represented by the
shaded area, which corresponds to the secondary axis.

3.6.4. Economic Evaluation

In Table 3.3, we present the total operating profits, energy costs, and material costs for
all optimization case studies. The energy costs for three parts of the process are pro-
vided: RSRprocess (reaction-separation-recycle process), which includes the transesterifier
and methanol column, Bprocess (biodiesel process) for the FAME column, and Gprocess
(glycerol process) for the glycerol and water-methanol columns. Additionally, all costs and
profits for the DO strategies are given relative to the SS optimization benchmark.

We find that FOwFinalTank-CO incurs 20% less total energy cost relative to OptSS,
while FOwInterTank-CO and FOwInterTank-DO result in 29% and 28% less total en-
ergy cost, respectively. The total energy cost savings are similar for the implemen-
tation of distributed optimizers FOwInterTank-DO compared to the centralized mono-
lithic FOwInterTank-CO. However, there are differences in the savings for different pro-
cess parts, particularly for the RSRprocess and Gprocess. We observe that tearing
the recycle oil stream and fixing its flow rate, while imposing purity limits on the
InterTankRSR outlet and also fixing its flow rate, leads to less power consumption in
the methanol column for FOwInterTank-DO compared to FOwInterTank-CO. However,
as explained in Section 3.6.1, more water entering the glycerol purification process for
FOwInterTank-DO results in additional power consumption in the glycerol and water-
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methanol columns. This explains the higher energy cost incurred for FOwInterTank-DO
compared to FOwInterTank-CO and FOwFinalTank-CO.

Table 3.3.: Total operating profit, and energy and material costs for each optimizer. Energy
costs for different parts of the process are given. RSRprocess energy includes the transesterifier
and the methanol column power demands. Bprocess energy indicates the FAME column power
demand, while Gprocess energy indicates that of the glycerol and downstream water-methanol
columns. The economic performance (savings) relative to the SS operation case, OptSS, is
given in parentheses.

OptSS FOwFinalTank-
CO

FOwInterTank-
CO

FOwInterTank-
DO

RSRprocess energy cost [kAC] 11.4 10.4 (9.3%) 9 (22%) 8.2 (28%)
Bprocess energy cost [kAC] 77.8 64.6 (17%) 56.4 (28%) 56.5 (27%)
Gprocess energy cost [kAC] 22.3 14.4 (36%) 14.4 (36%) 16.1 (28%)
Total energy cost [kAC] 111.5 89.4 (20%) 79.8 (29%) 80.8 (28%)
Total material cost [kAC] 563.9 556.8 (1.3%) 556.3 (1.4%) 562.9 (0.2%)
Total profit [kAC] 639.8 667 (4.3%) 678.6 (6.1%) 672.4 (5.1%)

A comparison of the RSRprocess energy costs for FOwFinalTank-CO with that of
FOwInterTank-DO and FOwInterTank-CO reveals significant differences in terms of sav-
ings, emphasizing the additional operational flexibility that InterTankRSR offers for the
methanol column. In the case of Bprocess, the savings for both FOwInterTank-CO and
FOwInterTank-DO are significantly higher than FOwFinalTank-CO, indicating the added
flexibility of InterTankRSR when combined with InterTankB. It is worth noting that the
intermediate tanks do not lead to additional energy savings for the Gprocess, as demon-
strated by the comparison of energy costs between FOwFinalTank-CO and FOwInterTank-
CO.

We find only slight savings in material costs for the DO cases compared to the SS
benchmark, which is expected since the material prices remain unchanged. However, when
comparing FOwInterTank-DO to FOwFinalTank-CO or FOwInterTank-CO, we observe
fewer material cost savings for FOwInterTank-DO due to the restrictive consideration of
tearing the recycle oil stream and fixing its flow rate. Fixing the recycle stream results in
less efficient utilization of the expensive oil raw material, which is also the process TPM.
Thus, the additional material cost incurred for FOwInterTank-DO can be explained by the
less efficient use of the oil feed.

After analyzing the total operating profits, it is evident that material costs exceed en-
ergy costs, resulting in considerably lower additional profits by an order of magnitude, as
compared to energy costs savings. We also observe that FOwInterTank-DO results in 1%
less additional profit (relative to OptSS) compared to FOwInterTank-CO. In Section 3.6.5,
we compare the computational costs and comment on the NLP solver convergence for
FOwInterTank-CO and FOwInterTank-DO assessing the significance of this 1% reduction
in savings.

Furthermore, it is noteworthy that when undertaking economic comparisons between
the considered configurations, the inclusion of buffer tanks may influence the overall cost,
particularly when factoring in the investment cost associated with these tanks. The pro-
cess designs for configurations considering flexible operation differ from the SS counterpart
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solely by the inclusion of the buffer tanks. Moreover, these process designs exhibit differ-
ences among themselves based on the incorporation of these tanks. Consequently, a more
comprehensive analysis, encompassing the capital costs involved in integrating these buffer
tanks, might be necessary for a more precise comparison. Nevertheless, it is important
to emphasize that such storage tanks are typically cost-effective and easily integrable into
chemical plants, making the anticipated payback period for this investment relatively short.

3.6.5. Solution Times

We provide the CPU times required to solve the DO problems under consideration in Fig-
ure 3.7. A comparison of the solution times for FOwFinalTank-CO and FOwInterTank-CO
reveals that the addition of intermediate buffer tanks and implementation of a centralized
monolithic optimizer results in a 108% increase in solution time. On the other hand, the to-
tal solution time for FOwInterTank-DO is 85% and 93% less than that of FOwFinalTank-
CO and FOwInterTank-CO, respectively, highlighting the effectiveness of implementing
distributed optimizers and solving DO problems with smaller-scale DAE systems in terms
of computational cost. Notice that FOforRSR-DO must be solved before FOforB-DO and
FOforG-DO, which are solved in parallel afterward.

CPU time [s]

FOwFinalTank-CO

FOforRSR-DO

FOforB-DO

FOforG-DO

FOwInterTank-DO

638

70

23

16

93

FOwInterTank-CO 1325

Figure 3.7.: CPU times for solving the DO problems of the considered optimizers. After
solving FOforRSR-DO, FOforB-DO and FOforG-DO run in parallel. Collectively, these three
optimizers are referred to as FOwInterTank-DO.

Furthermore, implementing a centralized monolithic optimizer for the entire process
leads to DO problems with large-scale DAE systems. NLP convergence for such problems,
particularly for FOwInterTank-CO, is highly sensitive to the initial guess and variable
scaling, resulting in ill-conditioning issues and consequently non-convergence. However,
for the FOwInterTank-DO distributed optimizers, the NLP solvers converge robustly and
are easier to initialize and scale due to the significantly smaller DAE systems involved in
their DO problems.

Therefore, although the FOwInterTank-DO yields 1% less addition in the total oper-
ating profit than FOwInterTank-CO, it is preferable to implement the former, especially
for online applications, due to the significant reduction in solution time and the easier
convergence of the NLP solvers in its DO problems.
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3.7. Conclusion

We investigate the operational flexibility potential of electrified biodiesel production by
proposing different process configurations using buffer tanks and solving offline DO prob-
lems. The examined process comprises reaction, separation, and recycle components, indi-
cating the application potential of its operational flexibility for a broad range of chemical
processes. By incorporating both intermediate and final buffer tanks, we fully exploit the
flexibility potential of the process, leading to total energy savings of up to 29% relative to
the SS benchmark. Furthermore, we demonstrate that intermediate buffer tanks facilitate
the implementation of distributed optimization, resulting in superior computational per-
formance. Nonetheless, it is essential to acknowledge that different electricity price profiles
may lead to varying energy cost savings, particularly given the considerable electricity
price fluctuations in our case study. While the considered dynamic operation methods
and the concept of incorporating buffer tanks for maximizing flexibility potential and fa-
cilitating distributed optimization may not directly transfer to all chemical processes, our
study underscores that when electrifying chemical processes with renewable electricity,
conventional SS operation may no longer be the most suitable approach. Instead, novel
operational strategies based on flexibility through dynamic operation may become the new
paradigm for chemical plant operations. Achieving this shift requires the use of advanced
modeling and optimization techniques to implement suitable control strategies. Further-
more, reevaluating design considerations becomes crucial to enhance flexibility and fully
realize the potential of dynamic operation.

It is worth noting that flexible operation can reduce the operational lifespan of process
equipment and potentially lead to increased maintenance requirements. This is particularly
evident in the case of mechanically-driven units, such as compressors, pumps, and valves,
which may experience shorter operational lifespans. In our study, we do not consider the
influence of dynamic operation on the durability of process equipment. Furthermore, we
perform the sizing of process units and buffer tanks heuristically and based on literature
findings. Alternatively, one could formulate these also as optimization variables/problems
to be solved alongside the DO problems for flexible operation. This would involve employ-
ing stochastic programming and presents an interesting avenue for future work. Decisions
regarding the sizing and configuration of process units typically demand longer time hori-
zons than the one considered in our study. However, extending the time horizon can
complicate the optimization problem significantly, rendering it intractable. In such scenar-
ios, the utilization of stochastic programming in conjunction with distributed optimization,
while considering a select set of representative electricity price profiles for a specific time
period, could potentially provide a promising solution. Nevertheless, it is important to
acknowledge that addressing this aspect might entail handling considerably large problem
sizes due to the necessity of considering multiple operational scenarios, particularly for
electricity price profiles.

Although our current process design lacks consideration of HI, it is important to note
that the integration of heat across multiple units is common in complex and modern
chemical plants. Notably, the considered process incorporates three distinct distillation
columns, each with specific energy duties, creating an opportunity for HI among these
columns. Such integration would increase the overall interconnectivity of the process,
influence the degrees of freedom available for optimization, and introduce added complexity
to the implementation of the distributed optimization approach. To address these aspects,
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Chapter 4 investigates the implications of HI on process flexibility, particularly exploring
the degrees of freedom available to optimization.

To electrify the process, we utilize separate heat pumps for refrigeration and heating
in reboilers, multiple heat pump stages, and multistage compression, based on literature
research. In light of this, future work should focus on implementing process design opti-
mization to determine optimal structures, as well as heat pump integration.

Applying online DO for DSM, specifically eNMPC, to the considered process would
greatly enhance our understanding of the real-time applicability of the proposed flexibility-
oriented process design and flexibilization strategies. The use of distributed optimization
promises good computational performance and should be considered for online applica-
tions. In Chapter 5 and Chapter 6, we present and apply eNMPC with distributed control
to optimize the flexible operation of the process. Additionally, hierarchical control struc-
tures with optimal scheduling and lower-level tracking control can be explored as future
work. Finally, in cases where optimization problems are computationally expensive and
encounter convergence issues, it would be worthwhile to investigate model reduction tech-
niques, such as incorporating surrogate models, and explore algorithm and implementation
improvements.
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4. Optimal Flexible Operation of
Electrified and Heat-Integrated
Biodiesel Production

We proceed in this chapter by further examining the offline DO stage within the mod-
eling and optimization framework shown in Figure 1.2. As illustrated in Figure 4.1, we
focus on exploring the impact of HI within the considered biodiesel production process on
the degrees of freedom available for optimization. Specifically, we implement offline DO
strategies while considering different process configurations for HI to assess their opera-
tional flexibility.

Flexible 
operation

BiodieselVegetable 
oil

GWElectricity price Implications of 
heat integration

Dynamic 
optimization 

Additional
heating units

Objective 
Optimal and 
feasible flexible 
operation

Chemical plant

Process development and operation strategies

Modeling
• Full-order or reduced-order 

models
• Mechanistic, data-driven, 

or hybrid in nature
• Control-oriented models
• Digital twins for process 

simulations

Offline optimization
• Integrated process design 

and operation
• Process retrofitting and 

electrification
• Heat integration
• Flexibility-oriented process 

designs and configurations

Online control
• Integration of scheduling 

and control
• eNMPC
• Dynamic scheduling with

advanced tracking control
• System decomposition
• Distributed control

Chapter 2 Chapters 3 & 4 Chapters 5 & 6

Figure 4.1.: Graphical illustration highlighting the focus of Chapter 4 within the modeling and
optimization framework outlined in Figure 1.2. The chapter investigates the implications of HI
on the operational flexibility of the biodiesel production process under consideration.
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4.1. Introduction

In Chapter 3, we propose electrifying biodiesel production and investigate its optimal
flexible operation using intermediate and final buffer tanks. We explore the operational
flexibility of three process configurations and compare the outcomes of their DO strategies
with those of an optimal SS operation while considering a typical demand-response sce-
nario. Our findings underscore that, as expected, intermediate buffer tanks facilitate the
full realization of process flexibility potential, leading to heightened economic performance
in dynamic operations. However, this process design do not incorporate HI. The integra-
tion of heat across multiple units is a prevalent practice in complex and modern chemical
plants, aiming for energy efficiency, i.e., minimal external energy supply. Despite this, the
optimal flexible operation in heat-integrated chemical processes with the aid of buffer tanks
remains underexplored. HI introduces additional intricacies and interdependencies among
unit operations, potentially making the flexible operation more intricate and constraining
the optimization options [61].

Herein, we examine how HI impacts the flexible operation of the considered biodiesel pro-
duction process, particularly in terms of the degrees of freedom available for optimization.
We present three different process configurations for HI. In the initial two configurations,
complete HI is applied to all three distillation columns within the process. We investigate
the flexible operation of the process, both with and without external heating units for the
reboilers. Since these additional heating units are only relevant in the context of flexi-
ble operation, particularly concerning DSM, our objective is to assess the effect of these
external heat sources on the process flexibility in dynamic operation.

Furthermore, we introduce a third configuration allowing the implementation of two
distributed optimizers, each dealing with a smaller problem. This contrasts with the cen-
tralized approach used in the other configurations. Within this setup, VRC [62, 63] is
applied to one column, while the other two columns are heat-integrated. This configura-
tion stems from the potential demonstrated by distributed optimizers in terms of computa-
tional performance, as highlighted in Chapter 3. The three configurations are subsequently
benchmarked against their respective SS operations, as well as against a dynamic operation
of a previous configuration from Chapter 3 without HI. While our evaluation of the three
configurations is based on economic objectives, the inclusion of additional units in each
configuration may have varying implications for sustainability in terms of overall energy
consumption and capital costs.

The structure of the chapter unfolds as follows. We begin with detailing the configura-
tions employed for HI within the biodiesel production process. Following this, we present
the formulation of the solved optimization problems before elaborating on their implemen-
tation and the operational scenario considered. Lastly, we present and discuss the findings
derived from this study, before drawing our conclusions.

4.2. Biodiesel Production Application

In Chapter 2, we introduce and detail the biodiesel production process under consideration,
presenting its dynamic model and making it readily accessible as open source. In Chapter 3,
we explore its flexible operation for DSM, investigating different process configurations and
optimization methodologies. Herein, we use the process configuration that incorporates
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both intermediate and final buffer tanks and extend it to accommodate HI. Consequently,
we focus only on explaining these specific configurations along with their corresponding
optimization strategies.
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Figure 4.2.: Biodiesel process flowsheet including both intermediate and final buffer tanks and
incorporating a centralized optimization approach. The configurations with full heat integration
adopt this flowsheet, wherein the heat-integrated three columns are interconnected by the
dashed-red streams depicted.

4.2.1. Process Configurations with Full Heat Integration

Figure 4.2 illustrates the considered process with full HI across the three distillation
columns within the system. The heat exchange in the transesterifier system primarily
operates in cooling mode, utilizing room-temperature water, while its electrified heating
mode (cf. Section 3.2.3), if activated at all, is negligible compared to the power demand of
the columns. The transesterifier is thus not considered in the HI. We provide a succinct
explanation here regarding the necessity of the buffer tanks depicted, and we direct readers
to Chapter 3 for more detailed description.

The potential for flexibility varies among different unit operations, determined not only
by their operational limits but also by their locations within the process. To exemplify,
limitations on liquid levels in downstream processes can impede the flexibility of produc-
tion in upstream processes. An effective remedy involves the incorporation of intermediate
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buffer tanks between distinct sections of the process, enabling the uncoupling of their dy-
namics and thereby facilitating the maximal utilization of overall production flexibility. In
the context of this study, we introduce the buffer tank InterTankRSR to fully unlock the
production flexibility potential of the methanol column. This is essential as the output
production rate of this column is constrained by liquid level limitations in downstream
processes, specifically the decanter and columns. Moreover, InterTankB and InterTankG
enable variable production rates within the other downstream power-consuming units,
namely the FAME and glycerol columns, respectively. Additionally, FinalTankB and
FinalTankG are indispensable in enabling flexible production of both purities and flow
rates while simultaneously fulfilling the demands for final products.

We investigate two distinct process configurations, both of which incorporate complete
HI across the three distillation columns. The vapor outlet of the FAME column undergoes
heat exchange with the bottoms of the glycerol column and subsequently the methanol
column, serving as the essential heat source for evaporating their respective bottoms. We
impose constraints on the temperature differences of the outlet streams of the heat exchang-
ers, stipulating a minimal temperature difference of 10 ◦C. The differing element between
the two configurations lies in the presence or absence of supplementary external heating
sources for the reboilers of the methanol and glycerol columns. These configurations are
denoted as HI-Cen and HI&Q-Cen, respectively, with the added heating sources indicated
by red arrows pointing toward the reboilers (cf. Figure 4.2). The optimization variables
are highlighted by arrows, wherein Tsp,MeOHcol and Tsp,GLYcol are exclusive to HI&Q-Cen
configuration, acting as additional optimization variables. For both configurations, a cen-
tralized optimization approach is employed, entailing the resolution of the corresponding
optimization problems articulated in Section 4.3.

4.2.2. Process Configuration with Vapor Recompression and Heat
Integration

Considering the high computational demands and challenges in achieving convergence when
addressing large-scale DO problems, we propose an alternative configuration for HI that
allows for the use of a distributed optimization approach. In Chapter 3, we demonstrate
that by introducing the buffer tank, InterTankOil, alongside the cooler, CoolerOil, we
can fix and thus tear the residual oil recycle, as depicted in Figure 4.3. This, in turn,
allows for the decoupling of the upstream processes of InterTankRSR from its downstream
processes. Consequently, we perform HI exclusively for the FAME and glycerol columns
while employing VRC for the methanol column (cf. Figure 4.3). Our method involves
direct VRC for the methanol column, utilizing the vapor leaving from the top of the
column. This vapor is compressed, condensed within the reboiler, and partially refluxed
back to the column after pressure reduction via a valve. To ensure balanced heat input,
particularly due to compressor-generated heat, a trim condenser becomes necessary [62].

By leveraging this approach, we can implement two separate distributed optimizers for
the two distinct process parts, as illustrated in Figure 4.3. This stands in contrast to relying
on a centralized optimizer, as for the cases of HI-Cen and HI&Q-Cen. These distributed
optimizers are designated as VRC&HI-RSR and VRC&HI-BG, collectively referred to as
VRC&HI-Dec for this specific process configuration. This methodology involves tackling
two distinct DO problems, encompassing smaller DAE systems. Consequently, this ap-
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proach mitigates non-convergence concerns and reduces overall computational costs.
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Figure 4.3.: Biodiesel process flowsheet incorporating intermediate and final buffer tanks and
employing a distributed optimization approach. The configuration with vapor recompression
and heat integration adopts this flowsheet. As indicated by dashed-red streams, the methanol
column utilizes vapor recompression, while the other two columns are heat-integrated. Two
distributed optimizers are considered here (VRC&HI-RSR and VRC&HI-BG).

4.3. Dynamic Optimization Problem

In all the process configurations under consideration, our objective is to maximize the op-
erating profit of the process while satisfying all operational constraints within a finite time
horizon. Our assessment of operating profit includes the revenue generated by all process
products, accounting for all material and energy costs, where electricity prices fluctuate
as a time-variant parameter. The optimization variables (cf. Figure 4.2) encompass feed
flow rates (ṅOil, ṅMeOH, and ṅBase), the temperature change of the transesterifier jacket
fluid (∆TJacket), temperature setpoints for the column reboilers (Tsp,MeOHcol, Tsp,FAMEcol,
and Tsp,GLYcol), and outlet flow rates from the transesterifier and intermediate buffer tanks
(ṅTransOut, ṅInterTankRSR, ṅInterTankB, and ṅInterTankG). Purity limits for final biodiesel and
glycerol products, along with their required production rates, serve as path constraints.
Liquid levels within the reactors, decanter, column trays, distillate drums, reboilers, and all
buffer tanks are also subject to path constraints. Furthermore, buffer tanks have endpoint
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constraints, regulating liquid levels and content purity, preventing optimizers from exploit-
ing initial tank conditions, and ensuring convergence to a similar state as the process’s
initial state. For a comprehensive understanding of optimization problem formulations
and mathematical definitions, we direct readers to Chapter 3.

4.4. Scenario and Implementation

In the simulations of all considered optimization strategies, the demand-response scenario
spans a one-day time frame, during which a constant production demand of 20 t/h for
biodiesel and 2.12 t/h for glycerol must be met. To capture the electricity price dynamics,
we utilize historical data from the German day-ahead spot market for September 3, 2022
[177], which is depicted in Figure 3.3 in Section 3.4. Raw material and final product prices
remain constant throughout. Within the domain of all DO problems, the optimization
variables are discretized at uniformly spaced intervals of one hour, while the constraints
undergo discretization at 30-minute intervals.

In terms of additional benchmarks, we establish a comparison between the dynamically
operated three configurations and their corresponding SS counterparts. Furthermore, we
compare these configurations against an optimally flexible operation scenario, similar to
the one depicted in Figure 4.2, but excluding the incorporation of HI. We refer to this
scenario as NoHI-Cen, where we also employ a centralized optimization approach.

Using our open-source optimization framework DyOS [53], we employ direct single-
shooting [148] for solving all optimization problems under consideration. The DAE inte-
grator utilized is NIXE [178], while SNOPT [179] is employed as the (local) optimization
solver. The underlying model comprises 182 differential and 10336 algebraic variables and
is developed in Modelica and integrated into DyOS as a FMU. We configure the DAE
integrator tolerances at 10−5, and the solver feasibility and optimality tolerances at 10−4.

4.5. Results and Discussion

In order to assess the extent of operational flexibility within the three proposed process
configurations for HI, we start by discussing the results pertaining to the production rates of
biodiesel and glycerol, in addition to the total power consumption of the process. Following
this, we undertake a comparative analysis of their economic performances against the NoHI-
Cen configuration, considering energy and material costs, as well as profits. Furthermore,
we conduct a parallel evaluation relative to their respective SS operations. Lastly, we
evaluate the computational performances, particularly the CPU-time savings arising from
implementing the distributed optimization approach VRC&HI-Dec.

4.5.1. Production Rates and Power Demand

Comparing the biodiesel production rate results depicted in Figure 4.4a with those of
the NoHI-Cen configuration, it becomes evident that the three HI configurations exhibit
reduced operational flexibility. Specifically, the NoHI-Cen configuration showcases the
capacity to operate at notably reduced levels, especially during time intervals between
17.5 and 24. This behavior arises due to the constraints imposed by the HI of process
columns, notably the FAME and glycerol columns, which in turn limit the degrees of
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freedom available for optimization. As opposed to the NoHI-Cen configuration, where the
biodiesel production rates can attain these lower limits, the HI configurations display fewer
instances of reaching maximal production rates, such as during the periods spanning 5.5
to 7.5.

Analyzing the production profile of the HI-Cen configuration in Figure 4.4a, it becomes
apparent that biodiesel production flexibility is comparatively diminished in comparison
to the HI&Q-Cen and VRC&HI-Dec configurations. This observation underscores the
advantages of employing external heating sources to enhance the production flexibility of
biodiesel. Moreover, the profile of the VRC&HI-Dec configuration exhibits higher flexibility
in contrast to the HI&Q-Cen configuration. This illustrates that heat-integrating solely the
glycerol and FAME columns while simultaneously utilizing an additional heating source,
confers enhanced production flexibility compared to the full HI of all three columns.
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Figure 4.4.: Production rates and overall power demand results for all examined configura-
tions, both in dynamic operation and their corresponding SS counterparts. (a), (b), and (c)
show the production rates of biodiesel and glycerol and the overall power consumption, respec-
tively. SS represents the steady-state operations. The power demand results for steady-state
operations in (c) correspond to NoHI-Cen, HI-Cen, and HI&Q-Cen, shown in descending order
of values, respectively. The shaded regions within the graphs illustrate the electricity price
profile corresponding to the secondary axes.

Examining Figure 4.4b, the flexibility in glycerol production is significantly reduced for
the HI configurations in comparison to NoHI-Cen. Within the glycerol column, the flow
rates are tightly limited to the extent of heat transfer occurring in the column reboiler
that engages in thermal exchange with the vapor outlet stream of the FAME column. This
interplay imposes limitations, especially evidenced by the incapacity to reduce flow rates
beyond specific thresholds, a notable contrast to the NoHI-Cen configuration. Furthermore,
the power consumption of the glycerol column during nominal operations is approximately
half that of the NoHI-Cen configuration, leading to a decreased necessity for extensive
flexibility in glycerol production.

Additionally, the pronounced advantages stemming from the incorporation of supple-
mentary heating sources become clearly apparent. This holds particularly true during the
period between 11.5 to 15.5 in Figure 4.4b. During this interval, the flexibility in glyc-
erol production rates experiences a significant sudden increase in both the HI&Q-Cen and
VRC&HI-Dec configurations. Incorporating the supplementary heating sources facilitates
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increasing the flow rates within both the methanol and glycerol columns, enabling them to
approach higher thresholds. The necessary heating duties for vaporizing these increased
flow rates through their respective reboilers are met by the supplementary heating sources.
That goes beyond the constraints solely imposed by the extent of heat exchange with the
vapor outlet stream of the FAME column, as observed in the HI-Cen configuration.

The examination of total power consumption, as depicted in Figure 4.4c across the three
HI configurations, stems from the identical analysis applied to biodiesel and glycerol pro-
duction rates. In general, there is a noticeable reduction in flexibility when compared to
the NoHI-Cen configuration. Notably, the enhanced flexibility observed in HI&Q-Cen and
VRC&HI-Dec in comparison to HI-Cen aligns with the increased flexibility observed in
the production rates. This alignment becomes particularly pronounced during the time-
frame from 11.5 to 15.5, wherein the increased glycerol production rates contribute to an
additional layer of flexibility.

4.5.2. Economic Evaluation

Table 4.1 provides an overview of the total profit, energy cost, and material cost asso-
ciated with each considered HI configuration, compared against those of NoHI-Cen. As
anticipated, the incorporation of HI across all configurations yields substantial reductions
in energy costs, with VRC&HI-Dec displaying the least pronounced decrease. Noteworthy
is that while material costs experience an increase, the overall profits remain superior to
those of the NoHI-Cen baseline.

Table 4.1.: Operating profit, energy cost, and material cost for each optimizer. The savings
relative to NoHI-Cen are given in parentheses.

NoHI-Cen HI-Cen HI&Q-Cen VRC&HI-Dec

Energy cost [kAC] 80 67 (17%) 65 (18%) 68 (14%)
Material cost [kAC] 556 560 (−0.6%) 558 (−0.2%) 563 (−1.2%)
Profit [kAC] 679 688 (1.4%) 692 (2%) 685 (1%)

In Table 4.2, we present a comparative evaluation of profit and cost outcomes for each
HI configuration in relation to their corresponding SS operations. Within all HI configu-
rations, the attained savings, though significant, fall short of those realized by NoHI-Cen.
This underscores the additional constraints that HI introduces, thereby constricting the
available optimization degrees of freedom. In comparison to HI-Cen, both HI&Q-Cen and
VRC&HI-Dec yield heightened energy cost savings, emphasizing the elevated flexibility
stemming from the incorporation of external heating sources. Furthermore, VRC&HI-Dec
surpasses HI&Q-Cen in energy cost savings due to its distinct configuration wherein HI is
confined to the FAME and glycerol columns, thus expanding optimization options. Addi-
tionally, it is worth highlighting that the increase in total profit for the HI configurations
is comparatively more restrained compared to NoHI-Cen.
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Table 4.2.: Savings of energy and material costs and increase in profit for each optimizer
relative to its corresponding SS operation.

NoHI-Cen HI-Cen HI&Q-Cen VRC&HI-Dec

Energy cost 29% 16% 17% 19%
Material cost 1.4% 0.7% 1.1% 0.2%
Profit 6.1% 2.4% 2.9% 2.7%

4.5.3. Computational Performance
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Figure 4.5.: CPU times for solving the
dynamic optimization problems of the con-
sidered process configurations.

In Figure 4.5, we provide the CPU times re-
quired for solving the DO problems associated
with the three HI configurations. As antici-
pated, the adoption of a distributed optimiza-
tion strategy in VRC&HI-Dec yields a notable
reduction in CPU time, amounting to approxi-
mately threefold savings when compared to HI-
Cen or HI&Q-Cen. Additionally, in the pro-
cess of configuring and scaling the optimization
problems for VRC&HI-Dec, a lesser degree of ef-
fort was expended, owing to the comparatively
smaller DAE systems. This, in turn, led to im-
proved convergence during the problem-solving
phase.

4.6. Conclusion

We show how HI increases the interconnectivity within the biodiesel production process,
thereby limiting the degrees of freedom available for optimization during flexible opera-
tion. Process configurations incorporating HI show significant reductions in operational
flexibility compared to the one without HI, mainly due to constraints imposed by heat in-
tegrating the process columns. In these columns, product flow rates are closely tied to the
heat transfer occurring in the column reboilers, which exchange heat with the vapor outlet
streams of other columns. This interdependence restricts the ability to adjust flow rates
beyond specific thresholds, a limitation not observed in the configuration without HI. Con-
versely, adding supplementary heating sources to the reboilers allows for higher flow rates
in the process columns, enabling them to reach upper operational limits. These heating
sources provide the necessary energy to vaporize the increased flow rates, thus surpass-
ing the constraints imposed by heat exchange alone, as observed in the HI configuration
without additional heating units.

While incorporating external heating sources for the reboilers is unnecessary when opti-
mizing for SS profitability, we demonstrate that this configuration, as applied to biodiesel
production, delivers superior results in dynamic operation, especially when considering
DSM. Furthermore, despite that the configuration employing a distributed optimization
approach involves a lesser extent of HI and subsequently fewer energy cost savings, its
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superior computational performance renders it more suitable for online applications. This
is especially relevant for eNMPC, which will be the focus of Chapter 5 and Chapter 6. It
is worth noting that the results obtained from our investigation in the context of biodiesel
production may not necessarily apply to other chemical processes to the same extent. Dif-
ferent processes may encounter limitations due to constraints on educts storage or may
have fewer degrees of freedom in optimization. Nevertheless, it is crucial to emphasize
that the selection of HI process configurations necessitates a departure from conventional
process designs, especially when considering dynamic operation applications.
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Figure 5.1.: Graphical illustration highlighting the focus of Chapter 5, which addresses the
third stage of online control within the framework depicted in Figure 1.2.

As illustrated in Figure 5.1, this chapter advances to the third stage of the flowchart
shown in Figure 1.2, focusing on the online control of the biodiesel production process
under consideration. Specifically, we introduce a sequential DeNMPC approach for optimal
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flexible operation and evaluate its performance against benchmark operational strategies.

5.1. Introduction

The operational time scales of some chemical plants align with the frequency of renew-
able energy supply fluctuations, leading to prolonged periods of transient states during
dynamic operations [23]. Thus, to achieve optimal and feasible flexible operations of such
plants, it is crucial to incorporate process dynamics and constraints into frequent schedul-
ing decisions [181], as hypothetically illustrated in Figure 5.2. eNMPC emerges as an
effective approach for integrated decision-making in chemical plants across various time
scales [32]. Unlike traditional hierarchical automation tasks in chemical plants, eNMPC
maximizes economic performance while directly controlling the process [20]. Employing a
receding horizon approach, eNMPC solves online DO problems with an economic objec-
tive over a sufficiently extended time horizon, utilizing an open-loop process model while
accounting for process constraints. Several studies in the literature explore the method-
ological [182–186] and application [131, 187–189] aspects of eNMPC. Ellis et al. [32] pro-
vide a comprehensive overview of the principles, methodologies, and practical implications
of eNMPC, addressing both closed-loop stability and performance for nonlinear systems.
Notably, the real-time tractability of eNMPC is particularly critical for its applications
in chemical processes, where it encompasses DO problems involving large-scale nonlinear
systems. Therefore, implementing real-time tractable eNMPC necessitates efficient strate-
gies, such as fast update schemes [190, 191], model reduction techniques [172, 192–194],
and/or system decomposition with non-centralized control [66, 187].
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Figure 5.2.: Illustration of a hypothet-
ical process. (a) Feasible operation un-
der conventional scheduling, wherein the
process stabilizes at steady states during
infrequent decision intervals. (b) Fre-
quent scheduling resulting in temporary
constraint violations in the output, as the
process fails to reach steady states be-
tween scheduling setpoints.

To reduce the computational complexity of eNMPC, an effective approach involves de-
composing its optimization problem into smaller subproblems comprising smaller subsys-
tems, while employing local controllers. Several studies present reviews and methods on
non-centralized control [66–68, 187, 195, 196]. Scattolini [66] reviews several strategies
developed for controlling multiple subsystems, highlighting decentralized and distributed
control as primary approaches. Decentralized control operates with no information ex-
change between subsystems, disregarding the dynamics and coupling between them during
optimization. This approach can result in system instability and suboptimal performance
due to inadequate consideration of subsystem interactions. In contrast, distributed con-
trol allows communication between subsystems, primarily employing sequential or iterative
communication protocols [66, 187]. In sequential, non-iterative algorithms, subproblems

72



5.1. Introduction

are addressed in a fixed order. The optimization results of one subproblem are exchanged
with the other subproblems. Therefore, only limited information is available to subprob-
lems that are solved first. For the missing information, results from the previous time
step can be used as an estimation. Subproblems addressed subsequently are constrained
by the fixed solutions of preceding ones [187, 197]. In contrast, iterative algorithms solve
interconnected subproblems iteratively until a termination criterion is met [67, 187]. Be-
sides communication protocols, distributed control algorithms vary based on the objective
function used in each subproblem [66, 67]. In independent algorithms, each subproblem
minimizes an individual cost function, focusing solely on its own objective, progressing
toward a Nash equilibrium [198]. In contrast, cooperative algorithms optimize a global
cost function in each subproblem, leading to solutions close to the Pareto front. While
integrating global cost functions in linear systems is well-established [198, 199], it remains
challenging for large-scale nonlinear systems. One approach involves exchanging sensitivi-
ties of individual objectives among the subproblems, incorporating them into the objective
functions of other subproblems [195]. Nonetheless, generating and considering sensitivities
augment the computational complexity of each subproblem.

In addition to considering distributed control strategies for the practical implementation
of eNMPC, integrating process designs that consider operational flexibility is essential for
fully capitalizing on the capabilities of eNMPC, particularly in accommodating variable
energy supply. Chemical plants typically involve multiple unit operations with varying
operational limits. Incorporating buffer tanks for intermediate and final products between
unit operations enables their full operational flexibility within their respective limits during
dynamic operation [2]. Buffer tanks for final products facilitate flexible operation within
chemical plants while meeting production demand. Figure 5.3a and Figure 5.3b illustrate
(in hypothetical scenarios) how buffer tanks enable dynamic operation upstream of them
while fulfilling both the required production rates and purity specifications of the final
products. Figure 5.3c further demonstrates how buffer tanks effectively decouple dynamics
between their upstream and downstream processes. This decoupling not only enhances
operational flexibility but also facilitates decomposing the system into subsystems, enabling
the implementation of distributed control strategies [2].
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Figure 5.3.: Hypothetical scenar-
ios illustrating how buffer tanks
decouple dynamics between up-
stream and downstream processes,
thereby facilitating enhanced dy-
namic operation while satisfying
operational constraints.

The application of eNMPC for demand response applications in chemical processes, par-
ticularly those involving reaction, separation, and recycle components, has received limited
attention in the existing literature. Moreover, the exploration of DeNMPC schemes in
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chemical plants encompassing process design modifications, such as incorporating buffer
tanks for flexible operation, remains unexplored. In this chapter, we present and imple-
ment a DeNMPC scheme employing sequential algorithms for the flexible operation of
an electrified and renewable-powered biodiesel production process under fluctuating elec-
tricity prices. This investigation not only demonstrates the application of DeNMPC to a
classical chemical process characterized by a large-scale nonlinear system but also bridges
various sustainability aspects by utilizing renewable energy for biofuel production. The
modeling, design, and flexible operational strategies of the biodiesel production process we
examine builds on the previous chapters. In Chapter 2, we introduce the process model
and PWC structures, while in Chapter 3, we conduct offline DO studies, demonstrating
the potential of buffer tanks to enable and improve flexible operation for demand response.
The process comprises a primary reaction unit, multiple separation units, and two recycle
streams. By incorporating intermediate and final buffer tanks within the process, we en-
able straightforward process segmentation and the practical application of DeNMPC for
optimal flexible operation. We benchmark our DeNMPC approach against three refer-
ence operational strategies, including optimal SS operation, offline DO, and conventional
scheduling with simple quasi-stationary models, and assess it under operational distur-
bances. These disturbances involve sudden and unexpected changes in production demand
and feed composition, representing practical scenarios within the process. Furthermore,
we integrate two stability formulations from the literature into our DeNMPC scheme, aim-
ing to evaluate their impact on closed-loop performance under operational disturbances
affecting the process within the specific context of our biodiesel production application. In
Chapter 6, we further explore DeNMPC with iterative architectures and introduce com-
pensation schemes for computational delays inherent in solving the optimization problems,
considering system couplings within the DeNMPC framework.

The chapter unfolds as follows. We first provide a succinct overview of the process de-
scription, flexibilization, segmentation, modeling, and configurations for the operational
strategies considered, referring readers to Chapter 2 and Chapter 3 for a more compre-
hensive description. Afterward, we detail the implementation of the DeNMPC scheme,
including the distributed control approach, mathematical formulation, and appended sta-
bility formulations. Subsequently, we explain the operational scenarios, disturbances, and
strategies explored, along with the numerical implementation. Lastly, we present and
discuss the results, before drawing conclusions.

5.2. Biodiesel Production Process

Figure 5.4 illustrates the flowsheet of the biodiesel production process under consideration,
encompassing all buffer tanks for operational flexibility alongside optimization variables.

5.2.1. Process Description

The biodiesel production process is designed to produce FAME, with glycerol as a by-
product, through the transesterification of vegetable oil with methanol in the presence of
an alkali catalyst within the transesterifier unit. Downstream, the products undergo further
separation and purification. Methanol is recovered and recycled to the transesterifier via
the methanol column. FAME, representing the biodiesel product, is purified in the FAME
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column, while any unreacted oil is recycled to the transesterifier from the bottom of this
column. Glycerol, the heavier product from the decanter, undergoes additional purification
in the glycerol column after neutralization and filtration. The biodiesel product must
adhere to European quality standards [122], while our target purity for glycerol is 99wt%
[1, 46]. We implement a base-layer control system (cf. Figure 5.4) primarily comprising
pressure controllers at the top of the distillation columns and level controllers for unit
holdups. The entire process is electrified using electric coils and heat pumps.
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Figure 5.4.: Flowsheet of the considered biodiesel production process, incorporating buffer
tanks to facilitate flexible operation.

5.2.2. Buffer Tanks for Flexible Operation and Process
Segmentation

To facilitate flexible production while meeting the required demands for both biodiesel and
glycerol, we incorporate two final buffer tanks, designated as FinalTankB and FinalTankG,
for each respective product, as illustrated in Figure 5.4. These two tanks correspond to
the tanks depicted in Figure 5.3a and Figure 5.3b, representing essential components for a
process configuration that enables dynamic production of the final products while satisfying
their specified requirements.

Additionally, while the intermediate buffer tanks prefixed with “Inter” (cf. Figure 5.4)
are not strictly necessary for operational flexibility, they significantly broaden the oper-
ational window of all unit operations within the process, thereby enhancing operational
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flexibility [2]. As visually depicted in Figure 5.3c, these tanks enable unit operations both
upstream and downstream to operate at their limits, particularly concerning level con-
straints, during flexible operations. This approach fully exploits the flexibility potential of
the overall process. For a detailed understanding of the design, location, and functionality
of these tanks, we direct readers to Section 3.3.3 in Chapter 3.

Furthermore, the intermediate buffer tank InterTankOil enables tearing the residual oil
recycle stream (cf. Figure. 5.4) entering the reaction-separation-recycle (RSR) section, thus
stabilizing its flow rate. By additionally stabilizing the outlet stream of InterTankRSR, we
effectively disconnect the RSR subprocess from its downstream counterparts, the FAME
and Glycerol subprocesses. This segmentation facilitates distributed optimization across
the three process sections, as opposed to a centralized monolithic approach, thereby en-
abling tractable online optimization.

5.2.3. Process Modeling

We model the transesterifier as a CSTR and each stage of the distillation columns using
MESH equations. We use the NRTL model for nonidealities and DIPPR correlations [110]
for temperature dependence. We consider energy and material holdups for modeling the
buffer tanks and assume them to be thermally insulated. The power demand for heating
and cooling modes of the transesterifier is modeled through a smooth NCP function, with
the heating mode attributed solely to electric power consumption [2, 200]. The resulting
mechanistic model constitutes an index-1 DAE system. For detailed information on the
sizing approaches employed for the unit operations, we direct readers to Chapter 2 and
Chapter 3.

5.2.4. Operational Degrees of Freedom

Optimization variables within the process (operational degrees of freedom for the
DeNMPC) are indicated by blue arrows in Figure 5.4. Molar flow rates of the vegetable oil,
methanol, and base mixture feeds are denoted by ṅOil, ṅMeOH, and ṅBase, respectively. We
indicate by ṅTransOut, ṅInterTankRSR, ṅInterTankB, and ṅInterTankG the outlet molar flow rates
of the transesterifier and the buffer tank InterTankRSR, InterTankB, and InterTankG,
respectively. The temperature change of the transesterifier jacket medium after passing
through an external heat exchanger is denoted by ∆TJacket [1, 2]. The temperature setpoints
of the three column reboilers are represented by Tsp,MeOHcol, Tsp,FAMEcol, and Tsp,GLYcol, re-
spectively.

5.2.5. Process Configurations

In addition to the DeNMPC approach, we consider three reference operational strate-
gies: optimal SS operation, offline DO, and conventional scheduling using simple quasi-
stationary models. We discuss these strategies in Section 5.4.2. With regard to the buffer
tanks included in the process, we use distinct process configurations aligned with each
operational strategy under examination in this study.
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5.2.5.1. Configuration for Optimal SS Operation

We consider here a process configuration designed for SS operation without any flexibiliza-
tion strategy. Consequently, in this configuration, devoid of flexibility considerations, all
buffer tanks illustrated in Figure 5.4, along with their associated optimization variables,
are omitted.

5.2.5.2. Configuration for Offline DO

In this setup, we consider a centralized optimization approach for the entire process, in-
corporating all necessary buffer tanks to enhance operational flexibility. Hence, we incor-
porate all buffer tanks depicted in Figure 5.4, along with their corresponding optimization
variables. The only exception is InterTankOil, as its primary function is to facilitate
decoupling of the RSR section from the FAME section by stabilizing the flow rate of the
residual oil recycle stream. Therefore, the residual oil recycle stream is not torn, and
InterTankOil is omitted from this configuration, as we refrain from segmenting the pro-
cess into subprocesses in this configuration.

5.2.5.3. Configuration for Conventional Scheduling with Simple Quasi-Stationary
Models

This configuration involves simple scheduling without considering process dynamics or em-
ploying complex models. Consequently, the intermediate tanks within the process cannot
be accommodated. Thus, we solely consider the final tanks, FinalTankB and FinalTankG.
As a result, all intermediate buffer tanks, along with their optimization variables, are
disregarded in this configuration.

5.2.5.4. Configuration for DeNMPC

In this setting, we include all buffer tanks, including InterTankOil, facilitating the seg-
mentation of the process into three distinct sections, as explained in Section 5.2.2. Con-
sequently, the residual oil recycle stream is torn, and the outlet flow of InterTankOil is
fixed. Here, we consider all optimization variables, except for the outlet flow rate of the
intermediate buffer tank InterTankRSR, which is constrained and maintained at a fixed
value.

5.3. Distributed Economic Nonlinear Model Predictive
Control Scheme

In the following, we elaborate on the considered optimization approach for DeNMPC and
the coupling of DeNMPC subsystems, present the mathematical formulation of eNMPC,
and discuss two extensions using stability formulations from the literature, which we em-
ploy in our numerical studies.
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5.3.1. Distributed Control

As elaborated in Section 5.2.2, we introduce buffer tanks to facilitate the independent
optimization of various sections within the biodiesel production process, namely the RSR,
FAME, and Glycerol sections (cf. Figure 5.4). The only interlinking process dynamics
involve fluctuations at the outlet stream of the RSR section and the oil recycle stream
from the FAME column to the RSR section, both of which are mitigated in the buffer
tanks. Consequently, we employ the sequential algorithm within a distributed control
strategy as a simple and appropriate approach for the segmented biodiesel production
process. Furthermore, we utilize independent, non-cooperative objective functions due to
the computational impracticality of integrating the full process dynamics and considering
analytical sensitivities for a global cost function in optimizing each subproblem.

As illustrated in Figure 5.5, the DeNMPC consists of three eNMPC controllers:
eNMPCRSR, eNMPCFAME, and eNMPCGlycerol, corresponding to the three sections of the
process. The optimization of the process sections follows a specific sequence: first, the RSR
section (sequence one) undergoes optimization, followed by simultaneous optimization of
the FAME and Glycerol sections (sequence two). Since the RSR section is optimized ini-
tially, information regarding the operation of the FAME section is not yet available, leading
to the exclusion of fluctuations in the oil recycle stream from consideration. Neglecting
these fluctuations during the optimization of the RSR section could potentially result in
process instability. To address this, the buffer tank InterTankOil serves to mitigate pu-
rity fluctuations and maintain a fixed flow rate of the recycle stream (cf. Section 5.2.2 and
Figure 5.5). Fluctuations in the composition and temperature of the residual oil stream
are disregarded in optimization, assuming the residual oil stream to be at a steady state.
The FAME and Glycerol sections, being downstream processes and non-interconnecting,
are optimized in parallel and independently of each other.

Sequence 1

Sequence 2

InterTankOil

eNMPCRSRRSR section

eNMPCFAME

eNMPCGlycerol

FAME section

Glycerol section

Figure 5.5.: Sequential algorithm for DeNMPC
of biodiesel production. The RSR section (se-
quence 1) is optimized initially, followed by the
simultaneous optimization of the FAME and Glyc-
erol sections (sequence 2). The buffer tank
InterTankOil facilitates the decoupling of the
interlinking stream between the FAME and RSR
sections, enabling the application of the sequen-
tial algorithm.

5.3.2. System Coupling for Distributed Control

The concept of distributed control necessitates the exchange of simulation results among
subsystems. Input data from other subsystems must span the entire prediction horizon of
the optimized subsystem. Otherwise, the optimization process requires estimation of the
missing input data. When subproblems are solved sequentially, the results of sequences
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optimized first (the RSR section) are required for subsequent sequences (the FAME and
Glycerol sections). Here, we explain the coupling of subproblems using the sequential
approach with a two-subproblem example. The information exchange is depicted schemat-
ically in Figure 5.6. The same logic applies to more sequences.

As depicted in Figure 5.6a, the prediction horizon of sequence one (∆h,1) must be at
least as long as that of sequence two (∆h,2) to encompass the entire prediction horizon
of sequence two with input data. At time tn, both sequences are optimized, with the
sampling time of sequence one (∆s,1) longer than that of sequence two (∆s,2) . Therefore,
at time tn+1, sequence one is not yet re-optimized, while sequence two will be. As the
control trajectory of sequence one remains fixed from the previous optimization step, the
predicted state trajectory can be updated with a forward simulation starting at time tn+1.
The input data of sequence two is updated with the new simulation results (cf. Figure 5.6b).
As indicated by this scheme, the sampling time of any subsequent sequence must be equal
to or shorter than that of the earlier sequences (∆s,2 ≤ ∆s,1). Otherwise, sequence one
would be updated more frequently, resulting in deviating input data from sequence one to
sequence two. Consequently, the control trajectory of sequence two would not adapt to the
new input data, potentially leading to instability and degraded performance, particularly
in sequence two.

tn +∆s,2
+∆s,1

+∆h,2
+∆h,1

Input data
Sequence 1

Sequence 2

Time

Prediction Optimization Operation

(a)

tn tn+1
+∆s,1,2

+∆h,2
+∆h,1

Update prediction

Updated input data
Sequence 1

Sequence 2

Time

(b)

Figure 5.6.: Prediction horizons
(∆h,1,2) and sampling times (∆s,1,2)
for sequential coupling in distributed
optimization. The prediction horizon
of sequence one must exceed that of
sequence two to provide the necessary
input data. Given the shorter sampling
time of sequence two compared to
sequence one, the predicted input data
of sequence one at time tn+1 should be
updated based on the system state at
that time. Note that after advancing
one more time step, the illustrations in
(b) will resemble those in (a).

5.3.3. Mathematical Formulation

For each of the three eNMPC controllers, eNMPCRSR, eNMPCFAME, and eNMPCGlycerol,
illustrated in Figure 5.5, we repeatedly solve an online DO problem with an economic
objective on a rolling horizon spanning the finite time interval T = [tn, tn +∆h]. The DO
problem is based on the current (e.g., measured or estimated) system state x̃(tn) at time
tn, utilizing the DAE system of the process model. The resulting optimal control problem,
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starting at tn and corresponding to the n-th time step, is formulated as follows:

min
x,y,u

∫ τ=tn+∆h

τ=tn

lstage(x(τ),y(τ),u(τ),p(τ),d(τ)) dτ +
nu∑
j=1

wj

nc,j∑
θ=2

(uj,θ − uj,θ−1)
2 ,

(5.1a)
s.t. ẋ(τ) = f(x(τ),y(τ),u(τ),p(τ),d(τ)) , ∀ τ ∈ [tn, tn +∆h] , (5.1b)

0 = g(x(τ),y(τ),u(τ),p(τ),d(τ)) , ∀ τ ∈ [tn, tn +∆h] , (5.1c)
0 = h(x̃(tn),y(tn),p(tn),d(tn)) , (5.1d)
0 ≥ cp(x(τ),y(τ),u(τ),p(τ),d(τ)) , ∀ τ ∈ [tn, tn +∆h] , (5.1e)
0 ≥ ct(x(tn +∆h),y(tn +∆h),u(tn +∆h),p(tn +∆h),d(tn +∆h)) ,

(5.1f)
u(τ) = u(tn +∆c) , ∀ τ ∈ [tn +∆c, tn +∆h] , (5.1g)

where f : X → Rnx and g : X → Rny encapsulate the DAE system with X := Rnx ×Rny ×
Rnu ×Rnp ×Rnd . The initial conditions are governed by h : Rnx ×Rny ×Rnp ×Rnd → Rnx ,
while cp : X → Rncp and ct : X → Rnct represent the path and economic endpoint
constraints, respectively. We denote the state, algebraic, and control variables by x : T →
Rnx , y : T → Rny , and u : T → Rnu respectively. The parameters and disturbances are
represented by p : T → Rnp and d : T → Rnd , while the control and prediction horizons
are ∆c and ∆h, respectively. The index-1 DAE system of the process model enables
the direct specification of state initial conditions. The objective function comprises the
integral of an economic stage cost function lstage and a penalty term aimed at penalizing
large adjustments in control variables, using the weights w ∈ Rnu . These weights can be
adjusted to prioritize the economic component of the objective function over the penalty
term. Control variables, represented by uj, j ∈ [1, nu], are discretized employing nc,j

elements, where (uj,θ−uj,θ−1)
2 penalizes changes between consecutive discretization points

θ − 1 and θ. We employ direct single shooting [148] for solving (5.1). Therefore, through
the incorporation of this convex penalty term, we aim to achieve smoother profiles for
control variables, thereby facilitating the numerical integration of the DAE system during
optimization by reducing fluctuations in control variable trajectories.

5.3.4. eNMPC Stability Formulations

With the core concept of eNMPC, where nonconvex economic terms replace traditional
tracking objectives, the controller no longer targets predefined SS setpoints. Consequently,
the stability analysis methods traditionally employed for tracking controllers are not di-
rectly applicable to eNMPC [182]. Recent research has introduced strategies aimed at
ensuring closed-loop stability within eNMPC [182, 201, 202]. However, their applicability
does not always guarantee closed-loop stability [65]. We employ here two stability formu-
lations from existing literature on eNMPC, each rooted in distinct assumptions. Our goal
is to assess their relevance and evaluate their impact on closed-loop performance. Partic-
ularly, we seek to compare the performance of DeNMPC with and without the inclusion
of these stability terms under operational disturbances affecting the process.
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5.3.4.1. Terminal Costs and Constraints

The first stability formulation entails introducing terminal constraints and costs into the
eNMPC problem [182]. To incorporate terminal costs, we extend the stage cost function
(5.1a) with a function Vf(x(tn + ∆h)), which evaluates the final states at the end of the
prediction horizon. Additionally, we incorporate terminal constraints on the states by
adding x(tn +∆h) ∈ Xf to (5.1f).

When enforcing terminal equality constraints to ensure the final state matches the op-
timal steady state (Xf = xSS), the terminal costs can be set to zero (Vf = 0) [201]. For
terminal inequality constraints, with Xf defining a suitable compact region encompassing
the steady state, incorporating a terminal cost becomes essential [182]. Employing termi-
nal region and terminal cost is preferred over terminal equality constraints as it expands
the feasible set of initial conditions and potentially enhances closed-loop performance.
Hence, we opt for employing a terminal region with a terminal cost instead of terminal
equality constraints. However, determining the terminal region and corresponding cost is
challenging due to the absence of a generalized formulation for either term. Amrit et al.
[182] suggest utilizing the deviation of the final state from the optimal steady state as the
terminal cost function:

Vf(x(tn+∆h)) =
1

2
(x(tn +∆h)−xSS)

TP(x(tn +∆h)−xSS)+pT(x(tn +∆h)−xSS) . (5.2)

The two terms denote quadratic and linear cost functions, where P acts as a positive
definite weighting matrix and p as a weighting vector.

This stability approach imposes stringent system requirements, demanding dissipativity
concerning the optimized stage costs and state controllability [32, 182, 201]. These prereq-
uisites are system-specific and challenging to ensure in general applications, often proving
difficult to verify in practice, especially in eNMPC problems involving large-scale nonlin-
ear DAE systems [202, 203]. Consequently, validating such underlying assumptions for
our biodiesel production application makes guaranteeing closed-loop stability inherently
challenging.

5.3.4.2. Tracking Cost Constraints

Unlike the first approach, the second stability formulation does not rely on dissipativity
with respect to the optimized stage costs. Instead, this formulation incorporates dissipation
through a Lyapunov inequality, constructed using conventional tracking cost terms [203].
Thus, in this approach, we add a stabilizing inequality constraint as follows:∫ τ=tn+∆h

τ=tn

ltr(x(τ),u(τ))n dτ ≤
∫ τ=tn−1+∆h

τ=tn−1

ltr(x(τ),u(τ))n−1 dτ

− δ · ltr(x(tn−1),u(tn−1)) ·∆s , (5.3a)

ltr(x(τ),u(τ)) = ∥x(τ)− xSS∥2 + λ · ∥u(τ)− uSS∥2 . (5.3b)

The integrated tracking cost function ltr at time step n, typically utilized in tracking
controllers, is constrained with an upper bound. This upper bound is derived from the
tracking cost function of the previous time step n − 1. The additional term, including
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δ ∈ (0, 1], determines the level of restriction, with stricter constraints for δ = 1 and less
strict constraints as δ approaches zero. Consequently, the right-hand side remains a fixed
value during every optimization step, updated iteratively to establish the upper bound for
integrated tracking costs. Therefore, in this formulation, we augment the eNMPC problem
with (5.3) by adding it to (5.1f).

When comparing the two stability approaches, we anticipate that the tracking cost
constraints in (5.3) will facilitate a more gradual enforcement of the stabilizing term,
leading to a gradual convergence toward the steady state. Notably, the parameter δ can
be adjusted to balance economic performance with stabilizing objectives during closed-
loop operation. This contrasts with the first approach, which employs terminal costs and
region constraints, leading to an immediate and direct penalization toward the steady state
from the outset. In scenarios requiring continuous flexible operation, such as our demand
response application, the second stability approach is expected to yield a better balance
between closed-loop performance and stability compared to the first approach. However,
for applications where the primary objective is to ensure closed-loop stability, the first
approach may be more suitable due to its more restrictive imposition of constraints.

5.4. Operational Scenarios and Strategies

In this section, we first elaborate on the operational scenarios considered, namely, how we
define the parameter p(τ) and disturbance d(τ) values in (5.1). Subsequently, we outline
the operational strategies evaluated in our simulations, including the DeNMPC strategy
and benchmarks as references for comparison.

5.4.1. Operational Scenarios
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Figure 5.7.: Electricity prices from
the German day-ahead spot market for
September 3 and 4, 2022 [177].

We conduct simulations over a time horizon
of one day. Under nominal conditions, we as-
sume a constant biodiesel product demand of
20 t/h, and correspondingly, a glycerol demand
of 2.12 t/h (by stoichiometry and mass balance),
throughout the day. All operational schemes
presented below must adhere to these nominal
product demands. To capture the dynamics of
electricity prices, we utilize historical data from
the German day-ahead spot market on Septem-
ber 3 and 4, 2022 [177], as depicted in Figure 5.7.
Despite the simulation timeframe being one day
(indicated by the gray area in Figure 5.7), we
require data from the subsequent day due to
the receding prediction horizon in the DeNMPC
strategy.

To evaluate the performance of the DeNMPC strategy with the sequential algorithm
concerning its ability to manage changes in required production demand and how this
transfer occurs online between subsystems within the distributed optimization approach,
we consider a scenario where the production demand for biodiesel increases by 20 % at
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12 h and subsequently returns to its nominal value at 18 h. This load disturbance is only
known at the time of occurrence, thus remaining unforeseen by the DeNMPC algorithm
until both 12 h and 18 h. Therefore, it is not accounted for within its prediction horizon
before it takes place.

To assess the performance of DeNMPC with and without the inclusion of the two stability
formulations introduced in Section 5.3.4, we consider a disturbance involving a change in
the composition of the vegetable oil feed in the process. The oil feed is initially modeled
with a nominal composition of 95wt% triolein, 5wt% diolein, and 0wt% monoolein, which
changes to 80wt% triolein, 10wt% diolein, and 10wt% monoolein. This feed disturbance
occurs at 12 h and is only known to the DeNMPC after 30min from its initiation. Such
a disturbance may arise due to a change in oil type or variations in oil quality, possibly
resulting from an oil pretreatment process upstream. During plant operation, the inlet
feed composition is not measured online but through laboratory samples taken at regular
intervals, with a measurement time of 30min.

5.4.2. Operational Strategies

We consider four operational strategies: the DeNMPC strategy and three benchmarks.
The first two benchmarks represent lower and upper bounds, respectively, illustrating the
extent of achievable flexibility. The lower bound represents SS operation without any
flexibilization, while the upper bound reflects the best attainable flexibilization through
offline DO. The third benchmark entails a simple scheduling approach, demonstrating
the benefits and importance of integrating process dynamics into scheduling decisions.
The process configurations, control variables, and operational constraints for each of the
operational strategies considered are summarized in Table C.1 in Appendix C.

5.4.2.1. Optimal Steady-State Operation

In this strategy, we consider the process configuration tailored for constant operation
(cf. Section 5.2.5.1). Our objective is to establish an optimal benchmark for constant
operation by minimizing both power consumption and material costs while ensuring that
the production rates of biodiesel and glycerol meet specified requirements and that all
operational constraints are met. Notably, we do not need to consider electricity price
fluctuations within this strategy, as we target minimal energy demands regardless of the
electricity price profile. This SS operation serves as a baseline for profit, representing the
lower bound, as any economically optimal dynamic operation should surpass the perfor-
mance of the best SS counterpart [201]. The results obtained from this strategy are used
to initialize the system states and controls for all subsequent operational strategies.

5.4.2.2. Offline Dynamic Optimization

The offline DO strategy entails the configuration for centralized DO outlined in Sec-
tion 5.2.5.2. We consider a similar approach for centralized optimization as presented
in Chapter 3. This strategy serves as a lower bound for cost (an upper bound for profit),
representing the best achievable operational flexibility, where both energy and material
costs are minimized. It is solved offline to establish a benchmark for nominal operation,
while taking into account the electricity price dynamics for the entire day, depicted in gray

83



5. Distributed Economic Nonlinear Model Predictive Control for Flexible Electrified
Biodiesel Production: Sequential Architectures

in Figure 5.7. We discretize the control variables at one-hour intervals, aligning with the
electricity price dynamics. Endpoint constraints are imposed on the liquid levels and com-
positions of all buffer tanks, as well as the transesterifier, ensuring that the final states at
the end of the optimization duration match the initial states. These endpoint constraints
prevent the optimization from leveraging initial holdups within the process units.

It is important to note that although the offline DO approach is computationally
tractable, it is not applied online, unlike DeNMPC. As a result, the offline DO approach
cannot account for real-time process disturbances or plant-model mismatch. Furthermore,
it relies on centralized, monolithic optimization, which results in higher CPU times (ap-
proximately one hour). The convergence of the NLP solver in this approach is also partic-
ularly sensitive to the initial guess and the scaling of control variables and constraints. In
DO problems involving large-scale DAE systems, the optimization algorithm is more prone
to ill-conditioning, which can negatively impact convergence. In contrast, the DeNMPC
approach utilizes distributed optimization, leading to smaller-scale DO problems with fewer
DAE variables. This reduces the number of variables that need to be initialized and scaled,
making the optimization algorithm in the DeNMPC strategy less prone to non-convergence
and more computationally efficient.

5.4.2.3. Optimal Quasi-Stationary Scheduling

To underscore the significance of integrating scheduling and control within the presented
DeNMPC scheme, we introduce an optimal quasi-stationary scheduling (QSS) approach
as a third benchmark, utilizing the process configuration for simple scheduling outlined in
Section 5.2.5.3. This approach employs a simplified model based on SS optimizations in
scheduling calculations, reflecting a conventional approach in chemical plants where the dy-
namics of the process and its control system are disregarded in scheduling decisions. Given
that electricity prices fluctuate hourly, whereas the time constants within the considered
biodiesel production process can extend to six hours (cf. Section 2.6.2.4 in Chapter 2),
the process is likely to remain in a transient state for prolonged periods during dynamic
operations, potentially leading to infeasible operation (cf. Figure 5.2) when employing such
a basic approach for frequent scheduling tasks.

In this scheduling approach, we utilize linear regression to model the overall power con-
sumption of the process as a function of the biodiesel production rate. For the reference
dataset, multiple SS optimizations (based on the strategy outlined in Section 5.4.2.1) are
conducted at various biodiesel production rate setpoints, with the glycerol production rate
scaled proportionally to the biodiesel production rate. The linear regression of the to-
tal electricity usage Wel as a function of the biodiesel production rate ṁB is depicted in
Figure C.1a in Appendix C. Biodiesel production rate setpoints for the scheduling opti-
mization are discretized hourly over the 24-hour time horizon, aligning with the electricity
price profile pel. The optimal production setpoints are determined offline by minimizing
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the total electricity costs Cel:

min
Wel,ṁB,LFinalTankB

Cel =
23∑
θ=0

Wel,θ · pel,θ , (5.4a)

s.t. Wel,θ = f(ṁB,θ) , ∀θ ∈ {0, .., 23} , (5.4b)
ρB · A · (LFinalTankB,θ+1 − LFinalTankB,θ)

= (ṁB,θ − ṁB,SP) ·∆θ , ∀θ ∈ {0, .., 23} , (5.4c)
7 t/h ≤ ṁB,θ ≤ 26 t/h , ∀θ ∈ {0, .., 23} , (5.4d)
0 ≤ LFinalTankB,θ ≤ LFinalTankB,max , ∀θ ∈ {0, .., 23} , (5.4e)
LFinalTankB,0 = 0.5 · LFinalTankB,max , (5.4f)
LFinalTankB,24 = 0.5 · LFinalTankB,max . (5.4g)

The biodiesel buffer tank level LFinalTankB is determined using a discretized mass balance
that links consecutive time points θ and θ + 1 (cf. (5.4c)). We assume a constant density
of biodiesel ρB, with A representing the cross-sectional area of the tank. The outlet flow
of the tank ṁB,SP is set to meet the biodiesel production demand of 20 t/h, as outlined in
Section 5.4.1. Due to cooling limitations in the transesterifier system, we constrain ṁB,θ

to 26 t/h (cf. (5.4d)). Since we maintain the temperature of the transesterifier content
at a fixed setpoint using a cascade PI controller (cf. Section 2.4 in Chapter 2) in this
strategy, stabilization for higher production rates is not guaranteed over prolonged dura-
tions. Physical constraints, such as minimal holdups, impose a lower limit of 7 t/h on the
production rate (cf. (5.4d)). The buffer tank level is bounded by the maximum tank level
LFinalTankB,max (cf. (5.4e)), and it must be at the initial level at 50% of LFinalTankB,max after
24 hours (cf. (5.4f) and (5.4g)).

After solving (5.4), we obtain an optimal quasi-stationary schedule for the biodiesel
production rate (ṁB), which we then incorporate into a control law. This control law is
also derived from SS optimizations and encompasses the control variables fitted as functions
of ṁB. The resulting fits and functions are depicted in Figure C.1 in Appendix C. Notably,
temperature control in the transesterifier and the FAME and glycerol column reboilers is
excluded from this control law, as their temperatures exhibit minimal deviations from
their optimal nominal values. Instead, PI controllers are implemented for their control (cf.
Section 2.4 in Chapter 2).

5.4.2.4. DeNMPC Operation

For the closed-loop simulations in the DeNMPC strategy, we assume full-state feedback
with no plant-model mismatch. The optimized controls are instantaneously transferred
to the plant model, neglecting computational time delays for solving the optimization
problems of the DeNMPC. In other words, we assume zero computational time, meaning
that the control variables are computed instantaneously at each eNMPC step during the
closed-loop simulations. We initialize the control variables for all eNMPC optimizations
using the solution of the optimal SS operation (cf. Section 5.4.2.1). Additionally, we
set the holdups of all buffer tanks to start with half-full levels. Table 5.1 provides the
prediction and control horizons, sampling times, and control discretizations for the three
eNMPC controllers. To reduce the risk of intermediate constraint violations, we discretize
the constraints to twice the extent as the controls are discretized. Ensuring a sufficiently
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long prediction horizon is one requirement among several to preserve the stability and
economic performance of eNMPC [32, 202]. Over a short prediction horizon, economic
advantages such as the transient usage of buffer tanks are not fully realized, leading to
shortsighted operation [32]. Additionally, we opt for control horizons two hours shorter
than prediction horizons. With a shorter control horizon, the last control is applied over
the entire remaining prediction horizon, combining performance and stability advantages
with reduced computational costs. Moreover, we set the prediction horizon of sequence
one (RSR section) to be one hour longer than that of sequence two (FAME and Glycerol
sections) to ensure that sequence one encompasses the entire prediction horizon of sequence
two with input data (cf. Section 5.3.2). We define the economic stage costs lstage in (5.1a)
for the three eNMPC controllers as follows:

lstage,RSR(τ) = pel(τ) (WTrans(τ) +WMcol(τ)) +

nFeed∑
i=1

ṁi(τ)vi , (5.5a)

lstage,FAME(τ) = pel(τ)WFcol(τ)− ṁB(τ)vB , (5.5b)

lstage,Glycerol(τ) = pel(τ) (WGcol(τ) +WWMcol(τ))−
nProd, G∑

i=1

ṁi(τ)vi , (5.5c)

where ṁi and vi indicate the production rate and specific price (cf. Section B.2 in Ap-
pendix B) of stream i, respectively. The power demands of the transesterifier, methanol,
FAME, glycerol, and water-methanol (cf. Section B.1 in Appendix B) columns are indi-
cated by WTrans, WMcol, WFcol, WGcol, WWMcol, respectively. The terms nFeed and nProd,G

correspond to the RSR section feeds and Glycerol section products, respectively. These
three economic stage costs in (5.5) are utilized as per the methodology outlined in Sec-
tion 5.3.1, where non-cooperative objective functions are employed within the DeNMPC
algorithm.

Table 5.1.: Settings for the three eNMPC controllers, including the control and prediction
horizons, as well as the sampling times and control discretizations.

eNMPCRSR eNMPCFAME eNMPCGlycerol

Control horizon [h] 10 9 9
Prediction horizon [h] 12 11 11
Sampling time [min] 15 15 15
Control discretization [min] 30 15 15

The control variables u and the path and endpoint constraints in (5.1e) and (5.1f) are
detailed in Table C.1 in Appendix C. Path constraints include required purity limits and
production rates for final biodiesel and glycerol products. The operational windows for unit
operations featuring holdups, including column trays, are constrained by their respective
minimum and maximum liquid level limits. We employ economic endpoint constraints
pertaining to levels and purities in unit operations with holdups, including buffer tanks, to
prevent the optimization from capitalizing on initial tank conditions and to ensure recursive
eNMPC feasibility. These endpoint constraints are enforced at the end of each prediction
horizon in every eNMPC optimization step. Additionally, point constraints are enforced
at the end of the day (at 24 h in Figure 5.7). These point constraints, including levels and
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purities in unit operations with holdups (cf. Table C.1 in Appendix C), are utilized for
comparison purposes with the other benchmark strategies.

5.5. Performance Comparison for Operational
Strategies

We use two metrics for the evaluation and comparison of the alternative operational strate-
gies.

5.5.1. Electricity Cost Normalization

For the economic assessment of the operational strategies under consideration, we examine
the cumulative electricity costs at the end of the day (highlighted in gray in Figure 5.7).
However, given that the process involves multiple unit operations with holdups, notably
the transesterifier and buffer tanks, different material holdups and compositions influence
the overall electricity demand. While we enforce endpoint constraints on both liquid levels
and holdup purities within the dynamic operational strategies, we additionally account
for the total production to normalize electricity costs within each process section. This
normalization ensures fair evaluation of different production amounts in the economic
assessment of the operational strategies. In calculating total production, we consider the
primary products of each of the three process sections: the bottom stream of the methanol
column, the biodiesel product, and the glycerol product for the RSR, FAME, and Glycerol
sections, respectively. We utilize the total production from the nominal SS operation as
a reference for normalization. Consequently, we normalize the total electricity costs Cel

of each process section by the ratio of the total reference production mprod,ref from the SS
operation to the actual total production mprod achieved by the respective section under
the dynamic operational strategy. Thus, the electricity costs of the three process sections
over the operational period are normalized as follows:

Cel,norm = Cel ·
mprod,ref

mprod

. (5.6)

5.5.2. Control Action

For the feed disturbance scenario outlined in Section 5.4.1, we introduce an additional
criterion to evaluate the performance of the DeNMPC strategy, with and without the
incorporation of the previously introduced stability formulations. We consider quantifying
the level of total control action Σ∆u executed by the eNMPC controllers for each control
variable as follows:

Σ∆u =

√∑
θ

(uθ − uθ−1)2 . (5.7)

The squared difference between successive control setpoints (uθ−uθ−1)
2 serves as a measure

of the control action applied within a single step. The summation over all setpoints θ
indicates the accumulation of control steps executed by the eNMPC controllers. This
formulation of Σ∆u is closely related to the stabilizing control move penalty, introduced in
the form of a tracking cost term in (5.1a).
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5.6. Numerical Implementation

We model the process DAE system in Modelica and export it as an FMU [180], serving
as both the DeNMPC and plant models within our closed-loop simulations. For the RSR,
FAME, and Glycerol sections, the DAE systems of the corresponding process models con-
sist of 81, 68, and 56 differential variables, and 3541, 2540, and 1997 algebraic variables,
respectively. The closed-loop system, including the DeNMPC framework, is implemented
in Python, utilizing our open-source optimization framework DyOS [53] through its Python
interface. Within DyOS, we employ direct single shooting and use the sequential quadratic
programming (SQP) solver SNOPT [179] and the DAE integrator NIXE [178] for solving
optimization problems and process simulations, respectively. The DAE integration toler-
ances are set to 10−4, while the NLP feasibility and optimality tolerances are set to 5 ·10−4.
We limit the major SQP iterations of SNOPT to 20. It is important to note that the selec-
tion of NLP tolerances is strongly influenced by the scaling of the objective function and
constraints. In our case, given the scaling we apply, the DAE integration tolerances are
significantly finer—more than two orders of magnitude smaller—than the NLP tolerances,
as the variables in the NLP formulation are scaled down. We also experimented with finer
DAE integration tolerances, but although the closed-loop simulation results remained con-
sistent, the computational times increased unnecessarily. All computations are executed
on an Intel(R) Core(TM) i7-1270P processor running at 4.8GHz with 32GB RAM.

5.7. Results and Discussion

We begin by presenting the results of the QSS strategy, illustrating the anticipated in-
feasible operation when utilizing such simplistic models for frequent scheduling tasks in
chemical plants. Subsequently, we discuss the results of the DeNMPC strategy by compar-
ing them to those obtained from benchmark references. Next, we outline the computational
costs associated with the three eNMPC controllers and the two sequences within the se-
quential distributed optimization approach. Following this, we examine the performance
of the DeNMPC controller under the load disturbance. Finally, we evaluate the DeNMPC
performance under the feed disturbance while incorporating the stability formulations in-
troduced previously.

5.7.1. Quasi-Stationary Scheduling

In this strategy, the simplified scheduling model fails to capture process dynamics or con-
sider the full complexity of the production process, as it omits intermediate process steps
and does not model unit operations. Consequently, operational constraints such as physi-
cal level limits in unit operations and limitations of cooling capacity in the transesterifier
cannot be integrated into the scheduling optimization. This is expected to result in op-
erations that violate constraints (cf. Figure 5.2), as illustrated in Figure 5.8 (labeled as
QSS-Regular), where both the holdup in the decanter and the reboiler of the FAME column
exceed their respective level limits.

However, an alternative scheduling-based approach can be implemented by imposing
tighter operating windows during scheduling calculations. For example, if the biodiesel
production rate is constrained between 80% and 120% of its nominal value (i.e., 16 t/h ≤
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ṁB,θ ≤ 24 t/h in (5.4)), the operational limits are not surpassed (shown as QSS-Limited in
Figure 5.8). Nevertheless, this reduced production flexibility drives the process to operate
closer to the nominal SS operating point, resulting in higher energy costs and consequently
fewer savings. Moreover, despite achieving adherence to operational limits through the
implementation of tighter production bounds, it is anticipated to encounter feasibility
issues again in the presence of disturbances.
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Figure 5.8.: Limitations of the QSS approach. Results with regular production rate limits
(QSS-Regular) and tighter limits (QSS-Limited). Liquid levels in the decanter (a) and the
reboiler of the FAME column (b) exceed their bounds for the regular production rate limits.

5.7.2. Comparison of DeNMPC with Benchmark Strategies

We first conduct an economic evaluation, comparing the energy costs of the considered
strategies. Next, we present results for the production rates of the final products and total
power consumption. Subsequently, we discuss the role of the different buffer tanks within
the process and how the DeNMPC controller utilizes them.

5.7.2.1. Energy Costs

Table 5.2 presents the energy costs and their savings compared to those of the optimal SS
operation after normalization using (5.6) for both the overall process and each of its three
sections. The upper bound of energy cost savings is the offline DO strategy, resulting in
significant savings of 27% in total. While the QSS-Regular approach yields total savings
of 14%, it is an unrealizable strategy due to the resulting infeasibilities, as previously
discussed in Section 5.7.1. Note that we do not consider the resulting infeasible operations
when determining the corresponding energy costs for the QSS-Regular approach. For
the case where we limit the operational window of the production rate (QSS-Limited), the
total savings are reduced to 6%, indicating a significant reduction in operational flexibility.
Conversely, the DeNMPC operation results in total savings of 20% while simultaneously
guaranteeing that all operational constraints are satisfied. These results underscore the
superior capabilities of DeNMPC over the conventional scheduling approach for frequent
scheduling tasks, particularly in demand response applications. DeNMPC not only achieves
feasible operation but also enables enhanced flexible operation and thus higher energy cost
savings.
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Table 5.2.: Normalized energy costs for all operational strategies, both total and for each
of the three process sections. The savings compared to the SS operation are indicated in
parentheses.

Normalized energy costs [kAC]
RSR FAME Glycerol Total

SS 12 78 20 109
Offline DO 9 (21%) 57 (27%) 13 (31%) 80 (27%)
QSS-Regular 10 (16%) 66 (15%) 18 (9%) 94 (14%)
QSS-Limited 11 (8%) 72 (7%) 19 (2%) 102 (6%)
DeNMPC 11 (8%) 60 (22%) 16 (17%) 87 (20%)

Upon examining the results of the individual process sections, the RSR section demon-
strates the lowest savings compared to the other two process sections for all operational
strategies. This discrepancy arises because the RSR section encompasses the feed streams
into the process, where material costs primarily contribute to the optimization objective
function. Moreover, the savings achieved through the DeNMPC operation in the RSR
section are significantly lower than those of the offline DO counterpart, notably equivalent
to the QSS-Limited approach. In the DeNMPC approach, we restrict the number of SQP
iterations in the NLP solver to ensure computationally tractable problems. Since material
costs dominate the objective function of the eNMPCRSR optimization problems, achieving
higher energy cost savings and approaching the offline DO results would necessitate more
major SQP iterations. This accounts for the considerable discrepancy between the savings
of the DeNMPC operation and those of the offline DO counterpart. In contrast, there are
no material costs in the objective functions of eNMPCFAME and eNMPCGlycerol (cf. (5.5)),
resulting in fewer discrepancies in their respective results between the DeNMPC operation
and the offline DO counterpart.

5.7.2.2. Production and Power Consumption

As illustrated in Figure 5.9a and Figure 5.9b, the production rates of both final products,
biodiesel and glycerol, exhibit an opposite trend to the electricity price profile across all
dynamic operations. These dynamic strategies, in contrast to the SS operation, enable
production flexibility based on electricity prices. Initially, all dynamic operations swiftly
ramp up production rates to diverge from the nominal starting point during periods of
lower electricity prices. Subsequently, production rates are adjusted in response to price
fluctuations to optimize operating costs while adhering to operational constraints, partic-
ularly level limits.

The profiles shown for the QSS approach corresponds to the scenario where stricter
bounds are imposed on biodiesel production rates (i.e., QSS-Limited). Although both
offline DO and QSS-Limited encompass the full-day electricity price profile, the stricter
operational window enforced by the simple scheduling approach significantly reduces pro-
duction flexibility. Conversely, the DeNMPC operation facilitates greater production flex-
ibility, with production rate profiles resembling those of the offline DO counterpart, espe-
cially during the period of lowest prices, i.e., between 10 h and 17 h.

However, in the DeNMPC operation, production rates do not consistently align with the
trajectories of the offline DO counterpart. Particularly, during the initial periods of the
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day, DeNMPC operation exhibits lower production rates. This discrepancy arises because
the higher electricity prices during the final hours of the day are initially unknown due to
the 12-hour prediction horizon. Consequently, only the lower electricity prices between 12 h
and 16 h are incorporated into the prediction horizon, resulting in diminished production
in the initial hours relative to the offline DO approach. Moreover, the 12-hour prediction
horizon in the DeNMPC operation accounts for the deviations in the profiles around 9 h
and 17 h from its offline DO counterpart. Furthermore, during the final hours of the
day, the DeNMPC operation demonstrates an increase in production rates, especially for
biodiesel, compared to the offline DO results. This increase is necessary to compensate
for the total amount of produced products and fulfill the endpoint constraints imposed at
the end of the day. Offline DO benefits from knowledge of the complete electricity price
profile, allowing for increased production initiation followed by reduction at the end during
high-price periods.
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Figure 5.9.: Production rates of biodiesel (a) and glycerol (b), along with total power con-
sumption (c), for the operational strategies under consideration. The gray area represents the
electricity price profile.

The total power consumption rates are depicted in Figure 5.9c, closely mirroring the
production rates, with distillation columns, particularly the biodiesel purification column,
demanding the highest energy input. Since power consumption is directly related to pro-
duction rates, the analysis of the behavior of the profiles in Figure 5.9c is similar to that
of production rates, particularly for biodiesel production. The 12-hour prediction horizon
in the DeNMPC operation limits its ability to anticipate final prices at the end of the day,
leading to decreased power consumption at the beginning and increased consumption at
the end compared to the offline DO counterpart. Ultimately, this results in increased en-
ergy costs for the DeNMPC operation compared to the offline DO approach, as previously
discussed in Section 5.7.2.1.

5.7.2.3. Buffer Tanks

Figure 5.10 demonstrates the utilization of final and intermediate buffer tanks within the
dynamic operation strategies under consideration, as exemplified by the liquid levels in
FinalTankB, InterTankB, and InterTankRSR, facilitating significant production flexibility.
During periods of low electricity prices, production is increased, and the excess is stored in
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tanks for utilization during high-price intervals. In Figure 5.10a, the levels of FinalTankB
rise during periods of low electricity prices and decrease otherwise. The reserve capacity
of the tank is employed during high-price intervals to ensure that the required biodiesel
demand is met, despite the decrease in production rates (cf. Figure 5.9a). In the DeNMPC
operation, absolute values of FinalTankB levels are shifted to lower values compared to
the offline DO results due to divergent operation patterns at the beginning and end of
the 24-hour period. As discussed in Section 5.7.2.2, production rates are lower for the
DeNMPC operation due to the 12-hour prediction horizons, resulting in reduced tank
levels during the first five hours. Between 22 h and 24 h, production for the DeNMPC
operation is increased compared to offline DO to meet the 24-hour point constraints on
tank levels. Nevertheless, the rate of change of the FinalTankB levels for the DeNMPC
strategy closely resembles that of the offline DO counterpart, particularly in the period
between 9 h and 18 h. Conversely, the tank is barely utilized by the QSS-Limited approach
due to the limited operational window of biodiesel production.
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Figure 5.10.: Liquid levels in FinalTankB (a), InterTankB (b), and InterTankRSR (c)
for the considered operational strategies. The intermediate buffer tanks InterTankRSR and
InterTankB are absent in the QSS approach. The gray area represents the electricity price
profile.

For glycerol production, profiles for FinalTankG resemble those of FinalTankB. In con-
trast, InterTankB (depicted in Figure 5.10b) or InterTankG exhibit the opposite behavior
of final tanks. These intermediate tanks supply the required flow rates for downstream
units to operate at the desired capacity. Therefore, they are utilized during low-price pe-
riods and filled during high-price periods. For instance, during the period between 10 h
and 17 h, InterTankB is utilized to operate at high outlet flow rates so that the FAME
column operates at increased production capacity. Consequently, levels in InterTankB and
InterTankG decrease while they increase in FinalTankB and FinalTankG.

Unlike InterTankB or InterTankG, InterTankRSR is utilized differently for the
DeNMPC operation compared to its offline DO counterpart as illustrated in Figure 5.10c.
This is because the outlet flow of InterTankRSR is a control variable for the offline DO,
while it is fixed for the DeNMPC operation (cf. TableC.1 in Appendix C). Since the outlet
flow of InterTankRSR is fixed for the DeNMPC operation, the tank acts as a final buffer
tank, reaching its maximum level during periods of the lowest electricity prices. With its
outlet flow as a control variable in the offline DO strategy, InterTankRSR fills InterTankB
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and InterTankG before low-price periods so that the latter tanks are utilized during such
periods, offering higher degrees of freedom compared to the DeNMPC operation.

5.7.3. Computational Costs

In Table 5.3, we provide the CPU times required for solving the online DO problems
within the DeNMPC strategy. As detailed in Section 5.3.1, the optimization steps within
the DeNMPC scheme are sequenced, with eNMPCRSR being solved first in sequence one,
followed by eNMPCFAME and eNMPCGlycerol being solved concurrently in sequence two.
Hence, the CPU times relevant to our DeNMPC scheme correspond to sequence 1 and se-
quence 2 in Table 5.3. For sequence one, we consider the CPU times for solving eNMPCRSR,
while for sequence two, we take into account the maximum values between the CPU times
for eNMPCFAME and eNMPCGlycerol. The mean CPU times for both sequences in the se-
quential approach are notably lower than the sampling times, with none of the maximum
values exceeding the sampling times. Despite disregarding computational delays within
our DeNMPC scheme, these CPU times are non-negligible, necessitating consideration of
computational delays in closed-loop simulations. Nonetheless, employing an appropriate
delay compensation scheme [71, 204] within the DeNMPC algorithm can effectively render
it practically applicable in real-time scenarios.

Table 5.3.: CPU times within the considered DeNMPC scheme. Sequence 1, addressed prior to
sequence 2, involves solving eNMPCRSR, while in sequence 2, eNMPCFAME and eNMPCGlycerol

are concurrently solved, taking into account the maximum CPU times between them within
sequence 2.

CPU time [s]
Mean Maximum Standard deviation

eNMPCRSR 179 387 87
eNMPCFAME 67 121 27
eNMPCGlycerol 67 164 37
Sequence 1 179 387 87
Sequence 2 83 164 30

5.7.4. DeNMPC under Load Disturbance

In the load disturbance scenario described in Section 5.4.1, we also adjust the glycerol
demand to maintain plant feasibility during operation. Specifically, we scale the glycerol
demand proportionally to the biodiesel demand, increasing it by 20% between 12 h and
18 h. Additionally, we update the SS reference and constraints, including the outlet flow
of InterTankRSR, which represents the production demand of the RSR section, to the
optimal SS values corresponding to the new biodiesel load during this period.

As indicated in Table 5.4, the overall energy cost savings for this scenario decrease to
15%, compared to 20% for the nominal operation results (cf. Table 5.2). This reduction
stems from the diminished margin of operational flexibility when the load is increased,
resulting in less flexibilized power consumption and consequently lower energy cost savings.
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Table 5.4.: Normalized energy costs for the DeNMPC operation under the load disturbance
and for the corresponding SS operation, presented both in total and for each of the three
process sections. The savings compared to the corresponding SS operation are indicated in
parentheses.

Normalized energy costs [kAC]
RSR FAME Glycerol Total

SS 12 80 20 112
DeNMPC 11 (9%) 66 (17%) 18 (11%) 95 (15%)

Figure 5.11 provides a comparison between the results of the DeNMPC strategy under
the load disturbance and those of the nominal operation counterpart for durations after
12 h, as the disturbance occurs at this time. It is evident that the operation is minimally
affected by the change in production demand. Intermediate and final buffer tanks, par-
ticularly InterTankB and FinalTankB, play a crucial role in mitigating the effects of the
disturbance. The buffer tank holdup (cf. Figure 5.11a) is utilized to counteract the demand
change and facilitates a gradual adaptation of production rates. Between 12 h and 17 h,
production is already operating at maximum capacity, even without the increased demand
(cf. Figure 5.11b). The additional demand is accommodated by FinalTankB being filled
at a reduced rate. Surplus biodiesel demand is produced during periods around 18 h and
22 h, leveling the lower tank level to meet the 24-hour point constraint.

The implemented DeNMPC scheme, employing the sequential optimization approach,
demonstrates its effectiveness in managing sudden and unexpected shifts in biodiesel load.
The buffer tanks are pivotal in maintaining operational flexibility and stability during such
disturbances in real-time scenarios characterized by uncertainty.
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Figure 5.11.: Profiles depicting the FinalTankB liquid level (a) and biodiesel production rate
(b) for the DeNMPC operation. A comparison is made between the results for the nominal
operation without any disturbance and those with the load disturbance, which entails a sudden
and unexpected increase in biodiesel demand by 20% between 12 h and 18 h. The gray area
illustrates the electricity price profile.

94



5.7. Results and Discussion

5.7.5. DeNMPC with Stability Formulations under Feed
Disturbance

For the feed disturbance outlined in Section 5.4.1, we compare in Table 5.5 and Figure 5.12
the outcomes of the DeNMPC strategies with and without the inclusion of the previously
introduced stability terms. For the terminal region constraints (cf. Section 5.3.4.1), we use
(5.2) as a terminal cost and select Xf such that the terminal states are limited to a maximum
deviation of 20% from the steady state (0.8 · xSS ≤ x(tn + ∆h) ≤ 1.2 · xSS). Regarding
the formulation with tracking cost constraints (cf. Section 5.3.4.2), we heuristically set δ
in (5.3) to 0.5, 0.1, and 0.1 for eNMPCRSR, eNMPCFAME, and eNMPCGlycerol, respectively.
This selection is based on multiple runs assessing the convergence and robustness of the
NLP solver. A stricter value for eNMPCRSR is set due to its greater degrees of freedom
in satisfying the constraint, attributed to the inlet feed streams into the RSR section as
control variables.
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With feed disturbance and terminal region constraints
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Figure 5.12.: Profiles depicting the transesterifier liquid level (a), methanol power demand (b),
and InterTankG liquid level (c) for the DeNMPC operation. A comparison is made between the
results for the nominal operation without any disturbance and those with the feed disturbance,
with and without stability terms. The gray area represents the electricity price profile.

As provided in Table 5.5, the energy cost savings for the RSR section are higher under
the feed disturbance compared to the nominal operation counterpart. Altering the feed
composition, as outlined in Section 5.4.1, appears to enable greater operational flexibility
in the RSR section compared to the nominal operation case. Notably, the DeNMPC
strategy with tracking cost constraints achieves significantly higher energy cost savings,
reaching 27%. Examining the profiles in Figure 5.12a, we observe that the DeNMPC
with tracking cost constraints employs a gradual approach to the steady state, penalizing
the deviation from it gradually to operate around it during the periods after 15 h. This
approach is advantageous, particularly during periods of higher electricity prices later in
the day. Consequently, adjusting levels in the transesterifier by recycling less methanol
from the methanol column during this time reduces power consumption in the methanol
column. Conversely, DeNMPC operations without this stability term could not achieve
such optimization due to suboptimal optimizations resulting from the limit on major SQP
iterations within the NLP solver. Although this limit is also imposed for the optimization of
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the DeNMPC strategy with tracking cost constraints, the additional stabilizing constraint
leads to enhanced operational flexibility due to the aforementioned reasons. As evidenced in
Figure 5.12b, the power consumption of the methanol column exhibits higher flexibility for
the strategy with tracking cost constraints. In contrast, the DeNMPC with terminal region
constraints operates closer to the steady state from the beginning of the day, hindering
flexible operation from capitalizing on fluctuating electricity prices.

Table 5.5.: Normalized energy costs for the DeNMPC operation, with and without stability
terms, under the feed disturbance, along with the corresponding SS operation, depicted both
in total and for each of the three process sections. The savings compared to the corresponding
SS operation are indicated in parentheses.

Normalized energy costs [kAC]
RSR FAME Glycerol Total

SS 13.6 77 19.4 110
DeNMPC 11.6 (15%) 61.9 (20%) 17.7 (9%) 91.2 (17%)
DeNMPC with terminal region constraints 12.5 (8%) 62.6 (19%) 20.1 (−4%) 95.2 (14%)
DeNMPC with tracking cost constraints 10 (27%) 63.3 (18%) 18.2 (6%) 91.5 (17%)

In Figure 5.12c, we present the liquid level profile of InterTankG to compare the
DeNMPC strategies for the Glycerol section. While the DeNMPC operation with track-
ing cost constraints closely mirrors the behavior of operations without stability terms, the
one with terminal region constraints exhibits oscillatory behavior around the steady state.
This not only restricts operational flexibility, as observed in the RSR section, but also
leads to adverse effects, including increased energy costs compared to the corresponding
SS operation (cf. Table 5.5). Furthermore, in all DeNMPC operations under the feed
disturbance, operations in the Glycerol section result in higher energy costs compared to
nominal operation, attributed to more glycerol species entering the Glycerol section during
the disturbance, thereby increasing energy demands for glycerol purification in the glycerol
column (cf. Section 2.6.2.3 in Chapter 2).

In the FAME section, the operation and energy cost savings of DeNMPC strategies with
stability terms closely resemble those without stability terms. Regarding total energy cost
savings, the DeNMPC with tracking cost constraints achieves savings of 17%, similar to
operations without stability terms, while the DeNMPC operation with terminal region
constraints results in fewer savings of 14%.

Furthermore, Table 5.6 provides the values of the Σ∆u term introduced in Section 5.5.2
for the three DeNMPC operations under the feed disturbance. Overall, Σ∆u is signifi-
cantly lower for most control variables in the DeNMPC operations with stability terms
compared to those without, demonstrating their stabilizing effects on plant operation.
Particularly, the DeNMPC strategy with tracking cost constraints facilitates operational
flexibility with energy cost savings similar to those without any stabilization terms while
requiring less control action and enhancing closed-loop stability. Notably, the tracking cost
term introduced in (5.3) enables gradual imposition of the enforced stabilizing constraints
throughout plant operation, with the parameter δ adjustable to find a balance between
economic performance and stabilizing objectives for closed-loop operation.

Based on the profiles in Figure 5.12, the energy costs in Table 5.5, and the Σ∆u values in
Table 5.6, the DeNMPC strategy with tracking cost constraints achieves a better balance
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between closed-loop performance and stability compared to the approaches using terminal
region constraints or no stability formulation. Therefore, considering both economic per-
formance and operational stability, the DeNMPC approach with tracking cost constraints
proves to be the most effective among the three strategies compared.

Table 5.6.: Total control action Σ∆u for the DeNMPC operations under the feed disturbance.
The Σ∆u values of control variables for the controllers incorporating different stability terms
are compared to those without stabilization.

Σ∆u for DeNMPC
without

stabilization

Σ∆u for DeNMPC with
terminal region

constraints

Σ∆u for DeNMPC with
tracking cost
constraints

ṅOil [kmol/h] 110 28 86
ṅBase [kmol/h] 119 52 86
ṅMeOH [kmol/h] 234 85 190
∆TJacket [K] 26 18 24
ṅTransOut [kmol/h] 340 116 398
Tsp,MeOHcol [K] 17 8 14
ṅInterTankB [kmol/h] 135 143 74
Tsp,FAMEcol [K] 118 38 53
ṅInterTankG [kmol/h] 130 209 154
Tsp,GLYcol [K] 59 69 35

5.8. Conclusion

We present and apply a DeNMPC scheme with sequential communication protocols to
optimize the flexible operation of electrified and renewable-powered biodiesel production.
In a demand response scenario with fluctuating electricity prices, our DeNMPC strategy
demonstrates significant energy cost savings compared to SS operation while ensuring
operational feasibility. Unlike conventional scheduling with quasi-stationary models, which
leads to infeasible operation, our approach integrates process scheduling and control tasks,
demonstrating the suitability of DeNMPC for frequent scheduling decisions in chemical
plants. Furthermore, while the absolute savings compared to SS operation may vary with
different electricity price profiles, we expect the relative performance of dynamic operation
strategies to remain consistent across these scenarios.

The incorporation of buffer tanks for intermediate and final products within our con-
sidered process proves essential for enabling process segmentation into subprocesses by
decoupling process dynamics. This segmentation facilitates system decomposition, al-
lowing for the employment of subproblems in a distributed control strategy. Such an
approach is crucial for practical eNMPC application in the biodiesel production process
under consideration. By utilizing buffer tanks with compatibility constraints, we enable
the implementation of DeNMPC with a sequential architecture and non-cooperative objec-
tives, providing a simple yet effective and real-time tractable approach. Furthermore, the
buffer tanks mitigate the impact of process disturbances, such as sudden and unexpected
changes in production demand, by counteracting these disturbances and enabling gradual
adaptation of production rates within process sections. These tanks are instrumental for
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maintaining operational flexibility and stabilizing the process under practical disturbances
marked with uncertainty.

The presented DeNMPC strategy targets significant dynamic operations under the de-
mand response scenario, yet the stability approach based on terminal region constraints
imposes limitations on flexible operation. In contrast, the stability approach with the track-
ing cost constraints allows for the gradual imposition of enforced stabilizing constraints,
balancing closed-loop performance and stability. Notably, the bound of the tracking cost
constraint can be adjusted to reduce control action throughout plant operation without
overly hindering flexible operation. While we apply two eNMPC stability formulations es-
tablished from the literature and find the approach with tracking cost constraints promis-
ing, their applicability does not necessarily guarantee closed-loop stability. These stability
approaches entail system-specific requirements, such as dissipativity and controllability,
which can be challenging to ensure in general applications. Such prerequisites are often
proving difficult to verify in practice, especially in eNMPC problems involving large-scale
nonlinear systems, as in our biodiesel process application. Furthermore, it is important to
note that our analysis of the two considered stability formulations does not imply system
stability. Rather, it concerns improving numerical conditioning and suppressing excessive
control actions.

The examined biodiesel production process encompasses the reaction, separation, and re-
cycle components of a chemical plant, indicating the potential transferability of our study
findings to a broader range of chemical processes. Particularly notable is the dual role
played by buffer tanks, not only in enhancing operational flexibility but also in facilitat-
ing the application of DeNMPC. Such process design, considering operational flexibility,
coupled with distributed control, holds promise for application in other chemical processes
aiming for dynamic operation, especially under scenarios like demand response applica-
tions. However, application-specific operational considerations and challenges may arise,
such as the utilization of buffer tanks and the phase of the stored products, whether liquid
or vapor. Nevertheless, our study underscores the emergence of novel operational strategies
rooted in flexibility-oriented process design as a potential new paradigm in future chemical
production. This paradigm emphasizes the integration of process design and operation to
enable feasible and efficient operational strategies.

In the presented DeNMPC scheme, we neglect the computational delays for solving the
optimization problems. Although the solution CPU times within the sequences of the
sequential approach are notably below the sampling times, they are non-negligible, indi-
cating the necessity for considering delay compensation methods. Additionally, further
research could explore alternative non-centralized control strategies, such as distributed
control with iterative architectures or hierarchical control structures, which may yield su-
perior closed-loop performance compared to the sequential architecture. However, such
strategies may also entail higher computational demands, impeding their real-time appli-
cability. In Chapter 6, we address iterative architectures and present computational delay
compensation schemes for the DeNMPC framework. Furthermore, utilizing cooperative
objective functions in the controller of each process section within the DeNMPC could po-
tentially enhance overall economic performance. However, implementing such cooperative
objectives requires information exchange between all process sections, leading to increased
computational complexity and costs. Surrogate models (in hierarchical structures) could
be employed to reduce computational complexity, although these models may not capture
all process dynamics, potentially restricting consideration of all operational limits.
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Figure 6.1.: Graphical illustration emphasizing the focus of Chapter 6, which further examines
the online control stage within the framework presented in Figure 1.2.
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As illustrated in Figure 6.1, this chapter further explores the online control stage depicted
in the flowchart in Figure 1.2. Specifically, we focus on developing iterative DeNMPC and
comparing its performance with sequential DeNMPC while incorporating computational
delay compensation schemes.

6.1. Introduction

An effective strategy for realizing practical eNMPC applications in chemical processes
involves utilizing eNMPC with distributed control schemes and system decomposition
[4, 66, 68, 187]. In distributed MPC, multiple local controllers with inter-controller com-
munication are cooperatively utilized across the subsystems of a decomposed system. Each
local MPC controller addresses a smaller control problem and computes control actions.
Overall, closed-loop plant objectives are achieved with a reduced computational burden
(CPU times) compared to centralized control solutions [68, 205, 206]. Several studies
provide reviews and methodologies on distributed control [26, 66–68, 187, 195], identify-
ing two primary distributed MPC systems based on information communication architec-
tures: sequential distributed MPC and iterative distributed MPC. In sequential distributed
MPC, information exchange between neighboring controllers occurs unidirectionally. Con-
sequently, controller subproblems in each MPC step are solved in a predetermined or-
der, with subsequent subproblems constrained by the fixed solutions of preceding ones
[4, 68, 187, 197]. Conversely, iterative distributed MPC allows for bidirectional commu-
nication where interconnected subproblems are solved repeatedly, exchanging information
iteratively within each MPC step until a termination criterion is met [67, 68, 187]. The
termination criterion can be defined by reaching a maximum number of iterations, the
computational time required for solving the total problem, or the difference in solution
trajectories between consecutive iterations being smaller than a predetermined threshold
value [205].

While utilizing distributed MPC facilitates tractable eNMPC applications in chemical
processes, the computational time required to solve an optimization problem, even within
subsystems, is often significant relative to the MPC sampling period. This is particularly
relevant in eNMPC, where nonconvex problems involving nonlinear systems of equations
are solved at every sampling instant. Consequently, neglecting the computational delay
inherent in calculating control variables may result in discrepancies between predicted and
actual system states, leading to degradation in closed-loop performance and/or closed-loop
instability [64, 65]. Early efforts addressing computational delays in nonlinear MPC involve
adapting the MPC problem-solving strategy to explicitly incorporate these delays [69, 70],
or prematurely terminating the optimization to maintain closed-loop stability [207, 208].
Grüne et al. [71] propose a model-based predictor with timestamping to manage communi-
cation delays between sensors, controllers, and actuators, ensuring stable system operation
through prediction consistency. Advances in strategy include NLP sensitivity analysis in
managing computational delays, separating the optimization into a pre-feedback nonlinear
problem and a post-feedback quick update phase utilizing NLP sensitivities [204, 209, 210].
More recently, Zhou et al. [211] address fractional-order delay issues by proposing compen-
sation methods that integrate predictive simulation to correct control actions before actual
system execution, thereby mitigating the impact of delays on system performance. How-
ever, research specifically targeting computational delays in economic MPC, particularly
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DeNMPC, remains largely underexplored [65, 210, 212].
In Chapter 5, we present a DeNMPC scheme employing sequential communication ar-

chitectures to optimize the flexible operation of electrified and renewable-powered biodiesel
production under fluctuating electricity prices. We underscore the significance of integrat-
ing buffer tanks for storing intermediate and final products within the biodiesel production
process, not only for enhancing operational flexibility but also for facilitating process seg-
mentation. Employing compatibility constraints, we apply three eNMPC controllers across
three process segments, achieving a tractable eNMPC implementation with CPU times
shorter than the sampling times. However, we do not account for the computational delays
in solving the optimization problems, despite the considerable CPU times incurred. Ad-
ditionally, we do not consider iterative DeNMPC. In this chapter, we address an iterative
DeNMPC approach while considering and presenting computational delay compensation
schemes for our DeNMPC. The proposed delay compensation schemes leverage model-
based predictive simulation algorithms [69–71], considering subsystem coupling within the
DeNMPC for both the sequential and iterative architectures. We provide the DeNMPC
framework as open-source software at permalink.avt.rwth-aachen.de/?id=619269. Im-
plemented in Python and integrated with the DO framework DyOS, it includes both se-
quential and iterative communication architectures, computational delay compensation
schemes, and all relevant model extensions. We evaluate and compare the two control
schemes, assessing their closed-loop performance with delay compensation under a practi-
cal disturbance in feed composition. Notably, the considered biodiesel production process
shares similarities with many chemical processes, characterized by large-scale nonlinear
systems and involving reaction, separation, and recycle components typical in chemical
plants. Hence, our study not only explores the application of DeNMPC with computa-
tional delay schemes to a representative chemical process but also aims to bridge various
sustainability aspects by optimizing biofuel production using renewable energy sources.

The structure of the chapter is as follows. We first present the DeNMPC strategies
considered, along with the corresponding process configurations. Afterward, we detail
the implementation of the delay compensation schemes for DeNMPC. Subsequently, we
elaborate on the operational scenarios, disturbance, and strategies explored. Finally, we
present and discuss the results before drawing our conclusions.

6.2. Distributed Control for Flexible Biodiesel
Production

Figure 6.2 depicts the considered biodiesel production process with buffer tanks. This pro-
cess produces biodiesel and glycerol as a by-product through the alkali-transesterification
of vegetable oil with methanol. The control variables, indicated by arrows on the flowsheet,
include feed flow rates, temperature changes of the transesterifier jacket fluid, temperature
setpoints for column reboilers, and outlet flow rates from the transesterifier and interme-
diate buffer tanks. To apply DeNMPC through system decomposition, we partition the
process utilizing the buffer tanks into three segments: the RSR, FAME, and Glycerol
sections. Notably, by stabilizing the outlet flow rate of the tank InterTankRSR, we de-
couple the RSR section from downstream processes. We employ three eNMPC controllers
correspondingly on the three process subsystems, each with independent, non-cooperative
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objective functions due to the computational impracticality of integrating full process dy-
namics and considering analytical sensitivities for a global cost function in optimizing each
subproblem [4, 195]. The communication architectures for the sequential and iterative
schemes differ primarily in how the controllers of the RSR and FAME sections interact
via the residual oil recycle stream, as illustrated in Figure 6.2. The following sections out-
line the distributed control strategies, system coupling in both control architectures, and
the eNMPC mathematical formulation. For a more comprehensive understanding of the
process description, modeling, and strategies for process flexibilization and segmentation
using buffer tanks, we refer to the previous chapters.
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Figure 6.2.: Flowsheet of the biodiesel production process incorporating buffer tanks to enable
flexible operation and distributed control. The configurations for the sequential and iterative
architectures of the DeNMPC differ primarily in how the residual oil recycle stream from the
FAME section connects to the RSR section, as shown downstream of the tank InterTankOil.

6.2.1. Distributed Control Strategies

Sequential Architecture
As illustrated in Figure 6.2 and Figure 6.3a, the outlet stream of the tank InterTankOil

is fixed, and the residual oil recycle stream is torn in the sequential architecture. This con-
figuration allows the RSR section to be optimized without considering downstream pro-
cess dynamics, meaning that variations in the composition and temperature of the recycle
stream from the FAME section are not included in the controller model. Consequently,
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the residual oil recycle stream is treated as a fixed input to the RSR section. Without
feedback from downstream processes, the RSR section can be optimized independently
of the FAME and Glycerol sections. Therefore, the optimization of the process sections
follows a predetermined sequence at each MPC sampling instant (cf. Figure 6.3a). The
controller eNMPCRSR (sequence one) is solved first, followed by the simultaneous run of
eNMPCFAME and eNMPCGlycerol (sequence two). Because the FAME and Glycerol sec-
tions are downstream processes and not interconnected, they are optimized in parallel and
independently of each other.
Iterative Architecture

In the iterative architecture, we do not tear the residual oil recycle stream (cf. Fig-
ure 6.2 and Figure 6.3b) as in the sequential approach. Instead, we treat the outlet flow
from InterTankOil as a control variable for eNMPCRSR. Thus, the control variables for
eNMPCRSR and eNMPCFAME in this architecture are those enclosed in the two circles
respectively in Figure 6.2, with the addition of ṅInterTankOil for eNMPCRSR. This architec-
ture differs from the sequential approach by offering greater flexibility and more degrees
of freedom in optimization through manipulation of the recycle stream in eNMPCRSR.

Consequently, we iteratively solve both eNMPCRSR and eNMPCFAME in sequence one,
incorporating the downstream process dynamics of the FAME section into the optimization
of the RSR section. At each MPC sampling instance, multiple optimizations are performed
in an alternating manner between the two controllers until a termination criterion is met.
The iterative optimization process begins by running eNMPCRSR, where differential states
are initialized, and input data from the FAME section are exchanged based on the re-
sults of the previous MPC sampling instance. Next, within the same sampling instance,
eNMPCFAME is executed, using the recent optimization results from eNMPCRSR for input
data exchange from the RSR section to the FAME section. We then rerun eNMPCRSR,
using the most recent control variable values as the initial guess and incorporating the up-
dated results from eNMPCFAME for input data exchange. This iterative process continues
until one of the following termination criteria is satisfied: (a) reaching a maximum number
of iterations (i ≤ Imax), or (b) meeting a convergence condition, which is based on the
deviation of control trajectories for both controllers between consecutive iterations i − 1
and i. This convergence condition is defined as:

nu∑
j=1

nc,j∑
θ=1

|uj,θ,i − uj,θ,i−1|
uj,scale

≤ ϵ , (6.1)

where the control variables uj, j ∈ [1, nu], are scaled by uj,scale and discretized with nc,j

elements. If the cumulative difference in all control trajectories between two consecutive
iterations, for both eNMPCRSR and eNMPCFAME, falls below the threshold ϵ, the dynamic
operation of the system remains substantially unchanged from iteration i − 1 to i. Since
the only feedback dynamics between the RSR and FAME sections is the oil recycle stream,
and with the buffering effect of InterTankOil, the solution is expected to converge within
a few iterations.

Alternatively, if the maximum number of iterations (Imax) is reached before meeting the
convergence condition, the solution is still expected to be feasible, though suboptimal. This
is because the input data exchange and initial guesses of the control variables are recursively
updated based on the latest runs. The consequence of not reaching convergence is merely a
suboptimal solution, as the system has not yet fully adapted to the most recent fluctuations
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in input data exchange between the two controllers. However, due to the buffering effect of
the tanks on process dynamics, these fluctuations are minimal, typically resulting in only
a small number of iterations needed for convergence.

Subsequently, eNMPCGlycerol is solved sequentially in sequence two since the Glycerol
section is a downstream process without a recycle stream, thus not affecting the operation of
the RSR section. It is important to note that our DeNMPC approach employs independent,
non-cooperative objective functions across the three controllers, as previously mentioned.
Consequently, no iterative optimization is required between eNMPCRSR and eNMPCGlycerol,
since global system performance is not the objective here. While the operation of the
RSR section does affect the Glycerol section, only a single iteration is necessary, as data
is transferred unidirectionally from the RSR section to the Glycerol section. After this
one-time data transfer, no further communication between the sections is needed. The
eNMPCGlycerol inputs are updated, and its optimization is run once at the respective MPC
sampling instance, without impacting the solution of eNMPCRSR or operation of the RSR
section.

Sequence 1

Sequence 2

InterTankOil

eNMPCRSRRSR section

eNMPCFAME

eNMPCGlycerol

FAME section

Glycerol section

(a)

Sequence 1

eNMPCRSR

eNMPCFAME

RSR section

FAME section

InterTankOil

Sequence 2

eNMPCGlycerolGlycerol section

ሶ𝑛Inter- 
TankOil

(b)

Figure 6.3.: DeNMPC architectures applied to the considered biodiesel production process:
(a) sequential; (b) iterative. In the sequential architecture, the RSR section (sequence 1) is
optimized first, followed by the concurrent optimization of the FAME and Glycerol sections (se-
quence 2). In contrast, in the iterative architecture, the RSR and FAME sections are optimized
iteratively in the first sequence, with the Glycerol section then optimized sequentially in the
second sequence.

6.2.2. System Coupling in Distributed Control

In distributed control, where information exchange occurs between subsystems, the input
data from other subsystems should span the entire prediction horizon of the subsystems
undergoing optimization. Otherwise, the optimization process would require estimating the
missing input data. Below, we outline the coupling algorithms and information exchange
for the two DeNMPC strategies.
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Sequential Coupling
When subproblems are solved sequentially, the results of earlier sequences (RSR sec-

tion) are needed for subsequent sequences (FAME and Glycerol sections). To illustrate
this coupling with two subproblems, we schematically depict the information exchange in
Figure 5.6 in Section 5.3.2. The same logic extends to more sequences. As depicted in
Figure 5.6a, the prediction horizon of sequence one (∆h,1) must cover at least the entire
prediction horizon of sequence two (∆h,2) to provide input data. Notably, the sampling
time of any later sequence (∆s,2) must be equal to or shorter than that of the earlier se-
quences (∆s,1). This ensures that sequence one is not updated with a higher frequency
than sequence two, avoiding potential instability and performance degradation, especially
in sequence two. Meanwhile, at time tn+1, while sequence two undergoes optimization,
sequence one remains unchanged. Thus, the predicted state trajectory of sequence one can
be updated through forward simulation, starting from tn+1. The input data of sequence
two is then updated with these new simulation results (cf. Figure5.6b). We employ this
coupling approach in our sequential DeNMPC strategy, where sequence one optimizes the
RSR section, and sequence two optimizes the FAME and Glycerol sections concurrently
and independently, receiving their input data from the RSR section, as shown in Figure 5.6.
Iterative Coupling

In the iterative architecture, where subproblems are solved within a single sequence
iteratively, all coupled subproblems require identical sampling times. Differing sampling
times are impractical due to the iterative nature of solving these subproblems, rendering
no subsystem capable of independent optimization. Consequently, all subsystems are op-
timized and updated at the same frequency. As illustrated schematically in Figure 6.4 for
two subsystems, each subsystem necessitates input data from others. Therefore, to ensure
coverage of the entire prediction horizon for each subproblem, the prediction horizons of
all subproblems must be equal. Any discrepancies in prediction horizons would result in
incomplete input data from shorter-horizon subproblems to longer-horizon counterparts.

We apply this coupling approach in our iterative DeNMPC strategy to optimize the RSR
and FAME sections in sequence one. In Figure 6.4, subsystems one and two represent the
RSR and FAME sections, respectively. The input data exchange refers to the transfer of
the stream from the RSR section to the FAME section via the decanter when moving from
subsystem one to subsystem two, and the transfer of the oil recycle stream when going
in the opposite direction. Notably, while we use iterative coupling within sequence one in
our iterative DeNMPC strategy, we employ the sequential coupling shown in Figure 5.6
for data exchange between sequences one and two, specifically when transferring data
unidirectionally from the RSR section to the Glycerol section.

tn +∆h,1 = ∆h,2

Prediction horizon 1

Prediction horizon 2

Input data exchangeSequence 1
Subsystem 1

Subsystem 2

Time

Figure 6.4.: Information ex-
change in the iterative coupling
approach. The prediction hori-
zons of the two subsystems must
be equally long to ensure the pro-
vision of required input data for
each other.
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6.2.3. eNMPC Mathematical Formulation

Considering the system coupling in the two distributed architectures described above, we
repeatedly solve a DO problem online with an economic objective over a rolling horizon
spanning the finite time interval T = [tn, tn+∆h] for each of the three eNMPC controllers:
eNMPCRSR, eNMPCFAME, and eNMPCGlycerol, illustrated in Figure 6.3. Therefore, we
formulate the resulting optimal control problem based on the current system state x̃(tn)
at time tn and corresponding to the n-th time step, as defined in (5.1) in Section 5.3.3.

6.3. Computational Delay Compensation Scheme

We address the computational delay inherent in solving optimization problems in the
proposed DeNMPC by implementing a compensation scheme leveraging model-based pre-
dictive simulation [69–71]. First, we explain the scheme for a single controlled system over
one MPC sampling time interval in Section 6.3.1. Afterward, we extend the concept to en-
compass multiple MPC sampling time intervals in Section 6.3.2. Subsequently, we examine
the application of delay compensation within DeNMPC in Section 6.3.3. Specifically, we
explain how we consider system coupling in both the sequential and iterative architectures
within the compensation scheme. Furthermore, in Section 6.3.4, we illustrate an eNMPC
implementation without considering delay compensation, which we subsequently use in our
numerical studies.

tn tn+1 tn+2 tn+3

Prediction Optimization

Time

x

(a)
tn tn+1 tn+2 tn+3

Prediction Optimization
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(b)

tn tn+1 tn+2 tn+3
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u

(c)
tn tn+1 tn+2 tn+3

Time

u
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Figure 6.5.: Delay compensation over one MPC sampling time interval. The fixed control
trajectory between tn and tn+1 (cf. Figure 6.5c) is determined by the previous optimization (i.e.,
the previous MPC step) and is used to predict the future state of the system. The predicted
future state sets the initial state for the optimization (cf. Figure 6.5a), which should conclude
by tn+1 to repeat the procedure (cf. Figure 6.5b and Figure 6.5d).
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6.3.1. Delay Compensation over One Sampling Time Interval

In Figure 6.5, we schematically illustrate the compensation scheme over one sampling time
interval, assuming that the CPU times for controller optimizations are less than the MPC
sampling time. The scheme is also outlined in Algorithm 1. We distinguish between sys-
tem operation (solid lines), controller prediction (dotted lines), and controller optimization
(dashed lines). Specifically, system operation depicts the plant operation through the sim-
ulation of the plant surrogate model, while controller prediction and optimization represent
the forward simulation and optimization run using the controller model, respectively. The
scheme uses the controller model to perform forward simulations (predictions) for opti-
mization at a later point in time. Specifically, the optimization time horizon does not start
at the current time tn but rather at a time point tn+1 in the future. The control trajectory
applied between tn and tn+1 (solid-blue line in Figure 6.5c) is determined in the previous
optimization (i.e., the previous MPC step). The state trajectory of the system between tn
and tn+1 (dotted-blue line in Figure 6.5a) is predicted by forward simulation of the con-
troller model, starting at the measured state x̃(tn) and utilizing the fixed control trajectory.
The predicted state x(tn+1) (corresponding to the dotted line in Figure 6.5a) serves as the
initial state for the subsequent optimization. Meanwhile, this optimization, initiated at tn
(i.e., the current MPC step), is targeted to conclude by tn+1. During this optimization,
the system progresses from tn to tn+1 (solid-blue line in Figure 6.5b). Notably, the actual
state of the system may deviate from the predicted state due to a mismatch between the
controller model and the real system (plant surrogate). At tn+1, the optimized control
trajectory between tn+1 and tn+2 is fixed (solid-red line in Figure 6.5d), and the procedure
is repeated.

Algorithm 1: Delay compensation scheme over one sampling time interval
Step 1: System initialization at time tn:

• Measure the system state: x̃(tn).
• Fix the control trajectory for tn ≤ t ≤ tn+1 based on the previous MPC step (solid-blue

line in Figure 6.5c).
Step 2: Controller prediction:

• Perform forward simulation of the system state from tn to tn+1 using the controller
model (dotted-blue line in Figure 6.5a).

• Predict the system state at tn+1: x(tn+1).
Step 3: Controller optimization:

• Initialize the optimization using the predicted state x(tn+1) from Step 2.
• Determine the optimal control trajectory over the horizon [tn+1, tn+1 +∆h].

Step 4: System operation:
• Apply the control trajectory for tn ≤ t ≤ tn+1, determined in the previous MPC step

(solid-blue line in Figure 6.5c).
• The system evolves based on the plant surrogate model (solid-blue line in Figure 6.5b).
• The predicted state at tn+1 (x(tn+1)) may differ from the actual system state (x̃(tn+1))

due to potential model mismatches.
Step 5: Progress to time tn+1: Shift the time horizon forward by one step (cf. Figure 6.5b and

Figure 6.5d).
Step 6: Return to Step 1 and repeat the procedure.
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6.3.2. Delay Compensation over Multiple Sampling Time Intervals

In the previous section, we assume that the controller optimization concludes before tn+1.
However, if the required CPU time exceeds the MPC sampling time, a longer time horizon
must be considered in the predictive simulation of the compensation scheme. In such cases,
multiple sampling time intervals are taken into account, resulting in multiple optimizations
running in parallel since the sampling time is shorter than the considered time horizon
in the predictive simulation. While we demonstrate the resulting control scheme for a
maximum CPU time of two sampling time intervals in Figure 6.6 and Algorithm 2, the
same methodology applies for longer CPU times. At tn, the optimization for time tn+2

begins since the maximum CPU time equals two sampling time intervals (cf. Figure 6.6a
and Figure 6.6d). During the predictive simulation between tn and tn+2, the latest available
optimized control trajectory is utilized. Notably, only the control trajectory between tn and
tn+1, determined at tn−2, is fixed and applied to the system. As the time tn+1 is reached,
another optimization, initiated at tn−1 and running in parallel, concludes, and the resulting
control trajectory is applied between tn+1 and tn+2 (cf. Figure 6.6b and Figure 6.6e). By
tn+2, the optimization initiated at tn concludes. The optimal control trajectory is then
applied to the system and utilized for the predictive simulation of the new optimization
(cf. Figure 6.6c and Figure 6.6f).
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Figure 6.6.: Delay compensation over multiple MPC sampling time intervals. We illustrate
the resulting control scheme for a maximum CPU time of two sampling time intervals. The
optimization for time tn+2 initiates at tn.
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Algorithm 2: Delay compensation scheme over multiple sampling time intervals
Step 1: System initialization at time tn:

• Measure the system state: x̃(tn).
• Fix the control trajectory for tn ≤ t ≤ tn+1, determined at tn−2 in the second previous

MPC step (solid-blue line in Figure 6.6d).
Step 2: Controller prediction:

• Perform forward simulation of the system state from tn to tn+2 using the controller
model (dotted-blue line in Figure 6.6a).

• The control trajectory for tn ≤ t ≤ tn+2 is based on the second previous MPC step, and
is fixed only for tn ≤ t ≤ tn+1, as mentioned in Step 1 (cf. Figure 6.6d).

• Predict the system state at tn+2: x(tn+2).
Step 3: Controller optimization:

• Initialize the optimization using the predicted state x(tn+2) from Step 2.
• Determine the optimal control trajectory over the horizon [tn+2, tn+2 +∆h].

Step 4: System operation:
4.1: From tn to tn+1:

• Apply the control trajectory from tn to tn+1, determined at tn−2 in the second
previous MPC step (solid-blue line in Figure 6.6d).

• The system evolves based on the plant surrogate model from tn to tn+1 (solid-blue
line in Figure 6.6b).

• The predicted state at tn+1 (x(tn+1)) may differ from the actual system state
(x̃(tn+1)) due to potential model mismatches (cf. Figure 6.6b).

4.2: From tn+1 to tn+2:
• Apply the control trajectory from tn+1 to tn+2, determined at tn−1 in the first

previous MPC step (solid-red line in Figure 6.6e).
• The system evolves based on the plant surrogate model from tn+1 to tn+2 (solid-red

line in Figure 6.6c).
• The predicted state at tn+2 (x(tn+2)) may differ from the actual system state

(x̃(tn+2)) due to potential model mismatches (cf. Figure 6.6c).
Step 5: Progress to time tn+2: Shift the time horizon forward by two steps (cf. Figure 6.6c

and Figure 6.6f).
Step 6: Return to Step 1 and repeat the procedure.

6.3.3. Delay Compensation in Distributed Control

We extend the previously discussed concepts of delay compensation to distributed MPC,
considering the system coupling approaches outlined in Section 6.2.2.

6.3.3.1. Delay Compensation with Sequential Coupling

We adapt the delay compensation scheme to the sequential coupling approach, as concep-
tually depicted in Figure 6.7. This illustration considers two sequences with equal sampling
times, but the same concept applies to additional sequences and different sampling times.
As outlined in Section 6.2.2, the sampling time for sequence two (∆s,2) must be shorter
than or equal to that of sequence one (∆s,1). At time tn, sequence one is optimized first
with a total delay ∆CPU,1 (cf. Figure 6.7a), accounting for the computational delays for the
optimization of both sequences (CPUseq1 and CPUseq2). The CPU time of sequence one is
less than two sampling time intervals, i.e., CPUseq1 < tn+2−tn. Therefore, the optimization
for sequence one is completed by tn+2. These optimization results then serve as input data
for sequence two (cf. Figure 6.7b). Based on this input data, sequence two is optimized
between tn+2 and tn+3. Subsequently, at tn+3, the optimized control trajectories for both
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sequences are simultaneously applied to the system, since the CPU time for sequence two
(CPUseq2) was also considered in the total delay calculation for sequence one. The total
computational delay for sequence one is calculated as follows:

∆CPU,1 =
⌈
⌈CPUseq1⌉∆s,2 + CPUseq2

⌉
∆s,1

, (6.2)

where the maximum CPU time for sequence one (CPUseq1) is rounded up to the nearest
sampling time instant of sequence two. In the given illustration, this time corresponds to
tn+2, at which the optimization of sequence two is started. Notably, its maximum CPU
time (CPUseq2) is also added in computing ∆CPU,1. The overall resulting delay is then
rounded up to the next sampling time instant of sequence one. This corresponds to the
next possible time point (tn+3 in Figure 6.7b) at which the optimized control trajectories
of both sequences are applied to the system.

The computational delay CPUseq2 is incorporated into ∆CPU,1 to stabilize the operation
of the entire system. Without considering CPUseq2, the optimization of sequence one
would conclude and be applied immediately at tn+2. Meanwhile, the control trajectory
of sequence two at tn+2 would be optimized based on outdated predictions from sequence
one. As a result, the current operation of sequence one would not influence the control
decisions for sequence two. The presented scheme ensures that each sequence adapts its
operations to align with the fixed operations of other sequences.

tn +∆s,1,2
+∆CPU,1

+∆h,2
+∆h,1

CPUseq1 CPUseq2
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Input data
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Prediction Optimization

(a)

tn tn+1 tn+2
+∆CPU,2

CPUseq2

Input data

Sequence 1

Sequence 2

Time

(b)

=

Figure 6.7.: Delay compensation with sequential coupling. In sequence one, the CPU time of
sequence two is considered additionally. Once the optimization of sequence one concludes at
time tn+2, sequence two is optimized using the optimized input data from sequence one.

Simultaneously with the optimization of sequence one starting at time tn, the output
of sequence one is predicted using previous optimization results. The predicted output
provides the necessary input data for the optimization of sequence two, which also begins
at time tn (cf. Figure 6.7a). Notably, the prediction horizon of sequence one (∆h,1) must
be sufficiently long to cover the entire prediction horizon of sequence two (∆h,2) at each
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sampling time. Since sequence two is optimized after sequence one, the computational
delay of sequence one does not need to be considered. Thus, the total delay of sequence
two is calculated as follows:

∆CPU,2 = ⌈CPUseq2⌉∆s,2 . (6.3)

6.3.3.2. Delay Compensation with Iterative Coupling

In the iterative coupling approach, the coupled subproblems are solved within one sequence
with equal sampling times and prediction horizons (cf. Section 6.2.2). For the computa-
tional delay of this sequence (CPUseq), we consider the maximum CPU times of the coupled
subproblems (CPUsub) and the maximum number of iterations (Imax):

CPUseq = Imax ·
∑

sub ∈ seq

CPUsub . (6.4)

As illustrated in Figure 6.8 for two subsystems, the resulting maximum delay CPUseq is
considered for the predictive simulation of all subsystems within the sequence.

tn tn+3
+∆h,1,2

Imax (CPUsub1 +CPUsub2)Sequence 1

Subsystem 1

Subsystem 2

Time

Prediction Optimization

Figure 6.8.: Delay compensation with iterative coupling, illustrated for two subsystems. The
maximum CPU times for the coupled subproblems (CPUsub,1,2) and the maximum number of
iterations (Imax) are considered.

tn +∆CPU
+∆s

∆CPU Optimal controls
Optimization

Operation

Time

Figure 6.9.: An illustration showing a plant operation scenario where computational delay
is considered, but without compensation in the controller model. The optimized controls are
applied to the system once the optimization concludes at time tn +∆CPU.

6.3.4. Computational Delay without Compensation

In our numerical studies, we also explore a scenario where we include the computational
delay (∆CPU) in the operation of the plant surrogate during closed-loop simulations but
without compensating for it in the controller model. Figure 6.9 schematically depicts
this scenario, where the optimization process in the controller model initiates at tn, but
the optimized controls are applied only after the optimization concludes. Meanwhile,
the operation of the plant advances based on the controls determined in the previous
optimization.
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6.4. Operational Scenarios and Strategies

We employ settings similar to those in Chapter 5. Here, we briefly describe the operational
scenarios and strategies considered. We use historical data from the German day-ahead
spot market on September 3 and 4, 2022 [177] to reflect the dynamics of electricity prices.
Our closed-loop simulations span a time horizon of one day, during which we aim to meet
constant product demands for biodiesel and glycerol under nominal conditions. Addition-
ally, to compare the performances of the sequential and iterative DeNMPC strategies while
considering computational delay compensation, we introduce a disturbance in the feed.
Specifically, the composition of the vegetable oil feed undergoes a sudden change at 12 h
and is only known (measured) to the DeNMPC controllers 30min later (cf. Section 5.4.1
in Chapter 5).

In the closed-loop simulations, we employ the same process model for both the DeNMPC
controllers and the plant surrogate, assuming full-state feedback with no plant-model mis-
match. System states at the beginning of the simulations and the control variables for
all eNMPC optimizations are initialized using the solution of an optimal SS operation
(cf. Section 5.4.2.1 in Chapter 5). Additionally, we initialize the buffer tank holdups with
half-full levels. Table 6.1 lists the prediction and control horizons, sampling times, and
control discretizations for the three controllers in both the sequential and iterative strate-
gies. Notably, the prediction horizons in sequence one are set to one hour longer than that
in sequence two within both architectures, ensuring sequence one encompasses the entire
prediction horizon of sequence two (cf. Section 6.2.2). The economic stage costs lstage in
(5.1) for the three eNMPC controllers include the operating costs for each corresponding
process section and are defined in (5.5) in Section 5.4.2.4.

Table 6.1.: Settings for the three controllers in both sequential and iterative strategies, in-
cluding control and prediction horizons, sampling times, and control discretizations.

Sequential eNMPC Iterative eNMPC
RSR FAME Glycerol RSR FAME Glycerol

Control horizon [h] 10 9 9 10 10 9
Prediction horizon [h] 12 11 11 12 12 11
Sampling time [min] 15 15 15 15 15 15
Control discretization [min] 30 15 15 30 15 15

Furthermore, we benchmark our DeNMPC strategies against SS and offline DO coun-
terparts, both utilizing centralized monolithic optimization. These benchmarks represent
the lower and upper bounds of achievable operational flexibility. The lower bound rep-
resents SS operation without any flexibilization, while the upper bound reflects the best
possible flexibilization achieved through offline DO. The SS operation excludes the use
of any buffer tanks, whereas offline DO leverages all available buffer tanks through cen-
tralized optimization with a full-day prediction horizon. Additional information about
these benchmarks can be found in Chapter 3 and Chapter 5. Table D.1 in Appendix D
summarizes the process configurations, control variables, and operational constraints for
each operational strategy. Notably, we incorporate economic endpoint constraints related
to levels and purities in unit operations with holdups, including buffer tanks, to prevent
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the optimization from exploiting initial tank conditions and to ensure recursive eNMPC
feasibility.

6.5. Numerical Results and Discussion

We implement the process models in Modelica and use our open-source optimization frame-
work DyOS [53] to solve the DO problems, employing direct single shooting. We use
SNOPT [179] as the SQP solver and NIXE [178] as the DAE integrator, with integration
tolerances set to 10−4 and NLP feasibility and optimality tolerances set to 5 · 10−4. We
perform all computations on an Intel(R) Core(TM) i7-1270P processor running at 4.8GHz
with 32GB RAM.

We begin by presenting the results for both the sequential and iterative DeNMPC strate-
gies under ideal computational conditions, i.e., without accounting for computational de-
lays, as assumed in Chapter 5. In other words, the optimized control actions are computed
and applied to the plant model instantaneously at each MPC step during the closed-
loop simulations, assuming zero computational time for solving the DeNMPC optimiza-
tion problems. Under these conditions, we compare the two DeNMPC strategies to the
SS operation and offline DO benchmarks (cf. Chapter 5). Following this, we discuss the
computational costs for both DeNMPC strategies, highlighting the necessity for delay com-
pensation. Subsequently, we compare the performances of the two DeNMPC controllers
under the feed disturbance while considering delay compensation. Finally, we underscore
the need for delay compensation by comparing the DeNMPC strategies with counterparts
that account for computational delays in the plant surrogate but lack any compensation
scheme in the controller models (cf. Section 6.3.4).

6.5.1. Evaluation of the DeNMPC Strategies under Ideal
Computational Conditions

As indicated in Table 6.2, both DeNMPC strategies demonstrate considerable energy cost
savings compared to the SS operation. The presented energy costs are normalized by the
total production amounts of the respective process sections, with the SS operation serving
as the reference for normalization (cf. Section 5.5.1 in Chapter 5). Although the DeNMPC
strategies operate with half the prediction horizon of the offline DO counterpart (cf. Ta-
ble 6.1), the discrepancies in the savings are relatively modest. Notably, the sequential
and iterative strategies yield similar results under the assumption of ideal computational
conditions (i.e., zero computational time) in the closed-loop simulations, both resulting in
savings of 20%.

In Figure 6.10, we present the biodiesel production rates and the liquid levels in the final
buffer tank of the biodiesel product (FinalTankB) and the intermediate buffer tank in the
Glycerol section (InterTankG). We aim to demonstrate that both DeNMPC strategies
perform similarly within the process sections compared to the presented benchmarks. For
a more detailed analysis of the results, particularly the discrepancies between the DeNMPC
strategies and the offline counterpart, refer to Section 5.7.2. As shown in Figure 6.10a, the
production rates of biodiesel for the DeNMPC strategies exhibit an opposite trend to the
electricity price profile, resembling that of the offline DO counterpart and in contrast to
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the SS operation. Notably, the iterative strategy results in a smoother profile, primarily
due to the non-fixed outlet stream of InterTankOil, unlike the sequential strategy.

Table 6.2.: Normalized energy costs for all operational strategies considered, under nominal
conditions and without considering computational delay in closed-loop simulations, both total
and for each of the three process sections. Savings compared to SS operation are provided in
parentheses.

Normalized energy costs [kAC]
RSR FAME Glycerol Total

Steady-state 11.8 77.5 19.6 108.9
Offline 9.3 (21%) 56.8 (26.7%) 13.5 (31.2%) 79.6 (26.9%)
Sequential 10.8 (7.9%) 60.4 (22.2%) 16.2 (17.4%) 87.4 (19.8%)
Iterative 10.6 (9.4%) 60.3 (22.3%) 16.3 (16.9%) 87.2 (19.9%)
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Steady-state Offline DO Sequential Iterative Bounds

Figure 6.10.: Biodiesel production rate (a) and liquid levels in FinalTankB (b) and
InterTankG (c) for the considered operational strategies. The gray area represents the elec-
tricity price profile.

However, because the DeNMPC strategies have a 12-hour prediction horizon, the later
increase in electricity prices is initially unknown, leading to production rates that do not
fully align with that of the offline DO counterpart, particularly with lower production rates
early in the day. This is evident in the absolute values of FinalTankB levels in Figure 6.10b,
which are shifted to lower values compared to the offline DO results. Furthermore, com-
pared to the offline DO results, the DeNMPC strategies demonstrate increased production
rates during the final hours to meet endpoint constraints and achieve the total required pro-
duction (cf. Figure 6.10a and Figure 6.10b). Additionally, Figure 6.10b and Figure 6.10c
illustrate that the two DeNMPC strategies utilize the buffer tanks in the FAME and Glyc-
erol sections similarly. Specifically, excess production is stored in the final buffer tanks
during periods of low electricity prices (cf. Figure 6.10b) to be used during higher-price
periods. Conversely, the intermediate buffer tanks (cf. Figure 6.10c) exhibit the opposite
behavior compared to the final buffer tanks.

Figure 6.11 further illustrates the operational differences between the sequential and
iterative DeNMPC strategies. Overall, the iterative strategy demonstrates behavior more
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aligned with the offline DO compared to the sequential strategy. This is clear in the profiles
of the liquid level in the transesterifier and the temperature setpoint of the FAME column
reboiler depicted in Figure 6.11a and Figure 6.11b, respectively. From 14 h onward, the
transesterifier liquid level for the sequential strategy decreases compared to the offline DO,
unlike the iterative counterpart. Notably, the temperature setpoint of the FAME column
reboiler, a control variable, exhibits more fluctuations and diverges more from the offline
DO in the sequential strategy than in the iterative approach. This discrepancy primarily
arises from the greater degrees of freedom available in the iterative approach for the residual
oil recycle stream. In the sequential strategy, fixing the outlet flow rate of InterTankOil
leads to different behavior with more oscillating control variables due to the imposed
constraint. Additionally, for the sequential approach, the state variables, exemplified by
the oil purity in the FAME column reboiler in Figure 6.11c, exhibit more fluctuations
compared to the iterative counterpart, for the same aforementioned reasons. Utilizing the
outlet stream of InterTankOil as a control variable in the iterative strategy brings its
operation closer to that of a centralized optimization, as demonstrated in comparison to
the offline DO.

0 6 12 18 24
Time [h]

0

2

4

6

8

10

Tr
an

se
st

er
ifi

er
 le

ve
l [

m
]

0

150

300

450

600

E
le

ct
ri

ci
ty

 p
ri

ce
 [€

/M
W

h]

(a)

0 6 12 18 24
Time [h]

520

540

560

580

T s
p,

FA
M

E
co

l [
K

]

0

150

300

450

600

E
le

ct
ri

ci
ty

 p
ri

ce
 [€

/M
W

h]

(b)

0 6 12 18 24
Time [h]

0.0

0.1

0.2

0.3

0.4

0.5

x T
ri

,R
es

O
il 

[m
ol

/m
ol

]

0

150

300

450

600

E
le

ct
ri

ci
ty

 p
ri

ce
 [€

/M
W

h]

(c)

Steady-state Offline DO Sequential Iterative Bounds

Figure 6.11.: Transesterifier liquid level (a) and temperature setpoint of the FAME column
reboiler (b) for all operational strategies considered. Comparison of the oil purity in the reboiler
of the FAME column for the two DeNMPC strategies (c). The gray area depicts the electricity
price profile.

6.5.2. eNMPC Computational Costs

Table 6.3 outlines the CPU times required to solve the DO problems for the two DeNMPC
strategies. In the sequential strategy, the CPU times for solving eNMPCRSR are considered
for sequence one, while the maximum values between the CPU times for eNMPCFAME and
eNMPCGlycerol are used for sequence two. Conversely, in the iterative strategy, we account
for the total CPU times required to solve eNMPCRSR and eNMPCFAME iteratively in
sequence one until either the convergence condition in (6.1) is met or the maximum number
of iterations is reached. For sequence two, the CPU times for solving eNMPCGlycerol are
considered.

Both DeNMPC strategies have mean and maximum CPU times in sequence one less
than the sampling time (cf. Table 6.1). Thus, the required computational delay (∆CPU,1)
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for both strategies in the compensation scheme in (6.2) (for coupling two sequences) is
30min, equivalent to two sampling time intervals. This delay is set to 30min, rather than
15min, because our compensation approach for sequential coupling accounts for the delays
in subsequent sequences when calculating the delay for preceding ones, as described in
Section 6.3.3.1. Thus, the compensation scheme for sequence one includes not only its
own 15min delay but also an additional 15min to account for the delay in sequence two.
Therefore, we implement the compensation scheme presented in Section 6.3.2 over two
sampling time intervals in sequence one for both DeNMPC strategies. On the other hand,
the compensation scheme over one sampling time interval (cf. Section 6.3.1) is used in
sequence two for both strategies, as ∆CPU,2 = 15min in (6.3) (i.e., there are no subsequent
sequences after sequence two).

While all required CPU times fall below the eNMPC sampling times, they remain con-
siderable, especially for sequence one in the iterative strategy, emphasizing the need for
the delay compensation schemes. Notably, the closed-loop performance of the iterative
approach, particularly in sequence one, is anticipated to be more affected by computa-
tional delays compared to the sequential approach, as indicated by the CPU time results
for sequence one in Table 6.3.

With the scaling used in the convergence condition in (6.1) and since we take
the maximum cumulative difference in all control trajectories between eNMPCRSR and
eNMPCFAME, setting ϵ = 0.01 is sufficient to ensure that the dynamic operation of the sys-
tem remains substantially unchanged in the iterative algorithm. Furthermore, as discussed
for the iterative architecture in Section 6.2.1, only a few iterations are required to meet
this convergence condition. Accordingly, we set Imax = 4. During the closed-loop simula-
tions, this convergence condition is satisfied in all MPC sampling instances for i ≤ Imax,
except for the sampling instance at 10 h, where a value of 0.02 is reached. Nevertheless, all
solutions remain feasible. The mean and standard deviation for the number of iterations i
are 2.7 and 0.6, respectively, while for the maximum cumulative deviations in the control
trajectories in (6.1), the values are both 0.003.

Table 6.3.: Required CPU times for solving the DO problems within the considered DeNMPC
strategies. In the sequential strategy, eNMPCFAME and eNMPCGlycerol are solved concurrently
in sequence two. In the iterative strategy, eNMPCRSR and eNMPCFAME are solved iteratively
in sequence one until a termination criterion is met.

CPU time [s]
Mean Maximum Standard deviation

Sequential

eNMPCRSR 179 387 87
eNMPCFAME 67 121 27
eNMPCGlycerol 67 164 37
Sequence 1 179 387 87
Sequence 2 83 164 30

Iterative

eNMPCRSR 302 814 121
eNMPCFAME 53 150 26
eNMPCGlycerol 47 116 16
Sequence 1 354 859 127
Sequence 2 47 116 16
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6.5.3. Comparison of the DeNMPC Strategies with Delay
Compensation under Feed Disturbance

As shown in Table 6.4, the energy cost savings under the feed disturbance, while consid-
ering delay compensation, decrease for the sequential strategy compared to the iterative
counterpart, accounting for 13.2% and 18.5%, respectively. This discrepancy primarily
stems from the lower savings observed in the RSR and FAME sections for the sequential
strategy. The iterative optimization within the RSR and FAME sections in the iterative
strategy leads to better closed-loop performance and thus higher cost savings, attributed
to the increased degrees of freedom available through the manipulation of the residual oil
recycle stream. Furthermore, in Chapter 5, the sequential strategy yields 17% savings for
the same disturbance but under ideal closed-loop computational conditions. This difference
compared to the current savings under non-ideal computational conditions highlights the
impact of computational delay on the closed-loop performance of the sequential strategy.

Table 6.4.: Normalized energy costs for the proposed DeNMPC strategies under the feed
disturbance, accounting for computational delay compensation in closed-loop simulations. Total
costs and costs for each of the three process sections are presented, with savings compared to
the corresponding SS operation provided in parentheses.

Normalized energy costs [kAC]
RSR FAME Glycerol Total

Steady-state 13.6 77 19.4 110
Sequential 11.7 (14%) 66 (14.3%) 17.8 (8.3%) 95.5 (13.2%)
Iterative 11 (19.1%) 61 (20.8%) 17.6 (9.3%) 89.6 (18.5%)

Figure 6.12 illustrates the superior closed-loop performance of the iterative strategy
compared to its sequential counterpart under the current scenario, explaining the reasons
behind the lower energy cost savings for the sequential approach. Despite electricity prices
remaining low until 18 h, the biodiesel production rate, shown in Figure 6.12a, begins to
decline around 15 h in the sequential strategy, unlike in the iterative strategy. This trend
is also reflected in Figure 6.12b, where the liquid levels in FinalTankB plateau despite the
low prices between 15 h and 18 h. In contrast, the iterative strategy adjusts the outlet flow
of InterTankOil as a control variable in response to the disturbance after it is detected at
12.5 h. As shown in Figure 6.12c, the outlet flow rate of InterTankOil increases at 12.5 h
compared to the nominal operational scenario for the iterative strategy (depicted by the
solid black line).

The considered feed disturbance results in more unreacted oil entering the FAME section,
leading to higher residual oil quantities in the bottom of the FAME column, which explains
the increase in the outlet stream of InterTankOil for the iterative strategy. Conversely,
in the sequential strategy, this stream remains fixed, constraining the flexible operation of
the FAME section. Specifically, the outlet stream of the intermediate tank InterTankB
cannot sustain an increased flow rate between 15 h and 18 h, resulting in reduced production
through the FAME column, as shown in Figure 6.12a. Without flexibility in adjusting the
outlet of InterTankOil, the endpoint constraints at 24 h for the levels in FinalTankB
and InterTankOil would not be met due to increased oil quantities in the FAME column
bottom. This is evident from the earlier increase in the biodiesel production rate around
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19 h in the sequential approach (cf. Figure 6.12a) to fulfill the total production quantity
and endpoint constraints. In contrast, production in the iterative counterpart begins to
rise later, around 22 h. Notably, in Chapter 5, where computational delays are overlooked,
the feed disturbance do not impact closed-loop performance in the sequential strategy as
it does in the current scenario.
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Sequential with feed disturbance Iterative with feed disturbance Iterative without disturbance

Figure 6.12.: Results for the two DeNMPC strategies under the feed disturbance with delay
compensation. Biodiesel production rate (a), liquid level in FinalTankB (b), and outlet flow
from InterTankOil as a control variable in the iterative strategy (c).

Table 6.5.: Total control actions Σ∆u for the sequential and iterative DeNMPC strategies
under the feed disturbance, both with and without compensation for computational delays.
The Σ∆u values of all control variables for the controllers are compared.

Σ∆u for sequential Σ∆u for iterative
Delay comp. No delay comp. Delay comp. No delay comp.

ṅOil [kmol/h] 83 110 68 82
ṅBase [kmol/h] 118 130 105 112
ṅMeOH [kmol/h] 189 250 198 245
∆TJacket [K] 28 26 30 27
ṅTransOut [kmol/h] 342 320 331 357
Tsp,MeOHcol [K] 16 20 21 19
ṅInterTankB [kmol/h] 138 128 76 96
Tsp,FAMEcol [K] 80 100 49 98
ṅInterTankG [kmol/h] 113 118 112 109
Tsp,GLYcol [K] 57 55 55 82
ṅInterTankOil [kmol/h] – – 10 13

6.5.4. Effects of Computational Delay

We further compare the two DeNMPC strategies under the feed disturbance with counter-
parts that do not incorporate any delay compensation schemes in the control algorithm,
while accounting for the computational delay in solving the DO problems in the plant
surrogate (cf. Section 6.3.4). Table 6.5 provides the total control actions Σ∆u executed by
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the control variables of the two DeNMPC controllers for strategies with and without delay
compensation. This control action metric represents the cumulative control steps executed
by the DeNMPC controllers (cf. Section 5.5.2 in Chapter 5). Overall, Σ∆u is lower for
most control variables in both DeNMPC strategies with delay compensation compared to
those without, indicating the impact of computational delay on closed-loop stability.

Figure 6.13a and Figure 6.13b depict the temperature setpoint of the FAME column
reboiler and the oil purity of its liquid content for the iterative strategy with and without
delay compensation, under the feed disturbance. The strategy that neglects computational
delay in the controller scheme exhibits greater fluctuations in both the temperature control
and purity state variables, demonstrating the stabilizing effects of considering delay com-
pensation.

0 6 12 18 24
Time [h]

520

540

560

580

T s
p,

FA
M

E
co

l [
K

]

0

150

300

450

600

E
le

ct
ri

ci
ty

 p
ri

ce
 [€

/M
W

h]

(a)

0 6 12 18 24
Time [h]

0.0

0.1

0.2

0.3

0.4

0.5

x T
ri

,R
es

O
il 

[m
ol

/m
ol

]

0

150

300

450

600

E
le

ct
ri

ci
ty

 p
ri

ce
 [€

/M
W

h]

(b)

With delay comp. Without delay comp. Bounds

Figure 6.13.: Results for the iterative strategy with and without delay compensation under
feed disturbance. Temperature setpoint of the FAME column reboiler (a) and oil purity in the
reboiler of the FAME column (b).

Furthermore, when delay compensation is not incorporated, the energy cost savings for
the sequential strategy remain similar to those of its counterpart that includes delay com-
pensation. However, for the iterative strategy, the savings drop to 17.7% (cf. Table 6.4).
As mentioned in Section 6.5.2, since the CPU times are higher for the iterative strategy,
especially for sequence one, neglecting computational delays impacts it more compared to
the sequential counterpart. Notably, the decrease from 18.5% to 17.7% for the iterative
strategy when neglecting the computational delay is mainly due to the reduced performance
of eNMPCRSR. The savings in the RSR section drop to 17.4%, down from 19.1%. There-
fore, incorporating computational delay compensation in the applied DeNMPC strategies
not only improves closed-loop stability but also enhances performance, leading to higher
energy cost savings, particularly in the iterative strategy.

Using shorter prediction horizons in the iterative strategy, thereby reducing computa-
tional times, could mitigate the effects of not compensating for computational delays in
the control algorithm. However, the observed drop in energy cost savings (from 18.5% to
17.7%) suggests that the negative impact on closed-loop performance from shorter pre-
diction horizons may be more significant than from neglecting computational delays. In
contrast, for the currently applied prediction horizons in the sequential strategy, as men-
tioned earlier, the energy cost savings remain consistent even without delay compensation
due to the relatively low computational times (cf. Table 6.3). While extending prediction
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horizons in the sequential strategy could potentially improve closed-loop performance, it
may also increase the effects of computational delays, potentially offsetting the performance
benefits.

6.6. Conclusion

We present DeNMPC with computational delay compensation, employing both sequen-
tial and iterative communication architectures. Notably, our delay compensation scheme
considers compensation over multiple sampling time intervals and addresses considerations
with both sequential and iterative couplings. We assess the performance of sequential and
iterative DeNMPC strategies in optimizing the flexible operation of biodiesel production
under fluctuating electricity prices. Under ideal computational conditions (i.e., zero com-
putational time), both DeNMPC strategies yield similar energy cost savings compared to
SS operation. Overall, the iterative approach exhibits operation closer to that of a cen-
tralized optimization, as demonstrated in comparison to the offline DO, mainly due to
utilizing the outlet stream of InterTankOil (the oil recycle) as a control variable.

Our numerical findings underscore the significant impact of computational delays on
the closed-loop performance of DeNMPC strategies. In particular, accounting for com-
putational delays in closed-loop simulations with compensation schemes reveals superior
closed-loop performance of the iterative strategy under practical disturbances compared
to the sequential counterpart. This advantage stems from the greater degrees of freedom
available in optimization within the iterative architecture with bidirectional communica-
tion, allowing for better adaptability to feed disturbances through iterative optimization
of the oil recycle stream and data exchange between upstream and downstream processes
during closed-loop optimizations.

The proposed delay compensation scheme effectively mitigates the adverse effects of com-
putational delays on closed-loop stability and operational performance. It enables more sta-
ble control and enhanced energy cost savings in flexible biodiesel production, particularly
for the iterative DeNMPC. However, future research could explore further improvements
in delay compensation techniques, investigate more complex control architectures, and ex-
amine the applicability of these strategies in other chemical process applications to ensure
stability and optimized economic performance. Additionally, while our DeNMPC strategies
are based on independent, non-cooperative objective functions, future work might consider
employing global objective functions to potentially enhance closed-loop performance fur-
ther. Although using global objectives demands data exchange within the distributed
control framework, leading to higher computational burdens, low-order models in a hierar-
chical structure offer a promising solution for tractable applications. Specifically, reduced
models incorporating only the relevant process dynamics could be used at a higher control
level to coordinate data communication among the DeNMPC controllers.
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In this dissertation, we focus on developing and applying the necessary methods and tools
to achieve optimal flexible operation of electrified and renewable-powered chemical pro-
cesses under fluctuating electricity prices. To conclude, we summarize the key findings,
draw conclusions, and outline potential directions for future research. Figure 7.1 highlights
the dissertation’s main findings and perspectives after the development and application of
the modeling and optimization framework shown in Figure 1.2, achieving the objectives
for optimal flexible operation of electrified biodiesel production.

Achieved objectives of optimal
flexible operation of electrified
biodiesel production
Potential transferability of
dissertation findings to other
chemical processes
Apply to other chemical processes
Utilize global objectives in the
distributed control strategies
Adapt developed methods for real-
world applications under non-ideal
conditions

Figure 7.1.: Key findings and perspectives of the dissertation following the development and
application of the modeling and optimization framework presented in Figure 1.2, fulfilling the
objectives for optimal flexible operation of electrified biodiesel production.

This dissertation explores in depth the stages of model development, offline optimiza-
tion, and online control within the process systems framework illustrated in Figure 1.2,
with the goal of achieving optimal flexible operation. We emphasize the importance of
considering the interconnectivity and mutual influences between these stages during both
the development and real-time application phases. Starting with the definition of objec-
tives for optimized flexible operation, we systematically address several topics related to
the flexible operation of dynamic processes. Specifically, we focus on optimizing in silico
the flexible operation of an electrified biodiesel production process—based on the alkali-
catalyzed homogeneous transesterification of vegetable oil—under fluctuating electricity
prices. As model-based strategies are essential, the first step involves developing mathe-
matical models of the process, tailored to support the desired outcomes. Next, we examine
offline DO studies alongside flexibility-oriented process designs, demonstrating that when
chemical processes are electrified and powered by renewable energy, novel process designs
and operational strategies rooted in flexibility may emerge as a new paradigm for chemical
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plant operations. Finally, we integrate scheduling and control through online-tractable
eNMPC, leveraging the developed models and offline strategies to achieve optimal flexible
operations. We demonstrate that process dynamics must be accounted for to enable both
optimal and feasible flexible operation. Neglecting these dynamics results in performance
losses, suboptimal, or even infeasible process behavior, hindering effective DSM. This
dissertation demonstrates how modeling approaches, optimization methods, and control
strategies can be developed and applied to tailor dynamic processes for flexible operations.
We illustrate that optimal flexible operation has substantial economic potential and that
incorporating flexibility considerations into process design can unlock this potential.

In Chapter 2, we describe the model development phase outlined in Figure 1.2, pre-
senting a modular and rigorous mechanistic dynamic model for the biodiesel production
process, which is made available as open-source. Additionally, we apply and compare two
PWC structures based on differing assumptions of measurement availability. The first
PWC structure assumes access to advanced measurement configurations, including species
concentration data from technologies like Raman spectroscopy, while the second relies on
conventional measurement setups that monitor standard process variables, reflecting cur-
rent industry practices. We evaluate the two PWC structures by simulating plant responses
under various disturbance scenarios and production rate setpoint changes. While the first
PWC structure performs well in terms of setpoint tracking and disturbance rejection, the
second structure fails to consistently meet product quality specifications, demonstrating its
inadequacy in maintaining the desired control objectives. This performance discrepancy
underscores the need for more advanced control strategies, such as model-based control
and estimation techniques, to overcome the limitations of conventional PID-based config-
urations. Thus, Chapter 2 underlines the importance of developing dynamic models that
support advanced control strategies, forming the foundation for the offline optimization
and online control strategies discussed in the subsequent chapters.

After model development, Chapter 3 and Chapter 4 focus on formulating offline DO
strategies for achieving optimal flexible operation while considering flexibility-oriented pro-
cess designs and configurations. In particular, we investigate how incorporating buffer
tanks for storing intermediate and final products within the biodiesel production process
can fully unlock production flexibility. We demonstrate that buffer tanks decouple the dy-
namics between different process sections, allowing each unit operation, and consequently
the overall process, to reach its operational limits. Additionally, we show that flexibility
extends beyond production rates to include product purities, as higher purification often
requires increased energy consumption, particularly in distillation, and vice versa. In Chap-
ter 4, we examine the impact of heat integration on process flexibility, highlighting how the
incorporation of additional heating units increases the degrees of freedom for optimization,
thus enhancing production flexibility. Specifically, while adding extra heating sources for
reboilers may not be relevant when optimizing for SS profitability, we demonstrate that this
configuration yields superior results during dynamic operation, especially when considering
DSM. Furthermore, we explore configurations that support distributed optimization as op-
posed to centralized monolithic approaches, driven by the reduced computational burden
associated with solving smaller DAE problems through system decomposition. These con-
figurations are enabled by the critical role of buffer tanks in decoupling process dynamics.
Consequently, the process configurations facilitating distributed optimization in Chapter 3
and Chapter 4 pave the way for online-tractable control applications, which are the focus
of Chapter 5 and Chapter 6.
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In Chapter 5 and Chapter 6, we address the final stage of the framework illustrated in
Figure 1.2 by implementing DeNMPC to enable real-time control, thereby achieving the
final objectives of optimal flexible operation of the biodiesel production process. Chap-
ter 5 presents a DeNMPC scheme with sequential communication protocols under ideal
computational conditions and compares it to conventional QSS. In a demand response sce-
nario with fluctuating electricity prices, our DeNMPC strategy achieves substantial energy
cost savings compared to SS operation while ensuring operational feasibility. Unlike QSS,
which results in infeasible operations, our approach integrates scheduling and control tasks,
demonstrating its suitability for frequent scheduling in chemical plants. Chapter 6 extends
this work by introducing a DeNMPC scheme with iterative communication architectures
and compares it to the sequential approach under non-ideal computational conditions. In
this chapter, we incorporate delay compensation schemes into our DeNMPC strategies to
address the impact of computational delays. Notably, our compensation scheme considers
delays across multiple sampling intervals and addresses both sequential and iterative cou-
plings. The proposed delay compensation scheme effectively mitigates the adverse effects
of computational delays on closed-loop stability and operational performance. Our nu-
merical results highlight the significant impact of computational delays on the closed-loop
performance of the DeNMPC strategies. Specifically, simulations incorporating delay com-
pensation reveal superior closed-loop performance of the iterative strategy under practical
disturbances compared to the sequential approach. This advantage arises from the greater
degrees of freedom in optimization and bidirectional communication within the iterative
architecture, allowing for better adaptation to disturbances by iterative optimizations.

The biodiesel production process examined in this dissertation shares several charac-
teristics with many chemical processes, including the reaction, separation, and recycle
components commonly found in chemical plants. It also features heat integration, a preva-
lent practice in modern industrial plants, as well as interconnected unit operations with
relatively slow process dynamics. These similarities suggest that the findings of this disser-
tation are transferable to a broader class of chemical processes. Specifically, the modeling
and optimization framework presented in Figure 1.2, along with the systematically devel-
oped methods and tools, can be effectively applied to other processes aiming for optimal
flexible operation or other objectives where modeling- and optimization-based strategies
are essential. This underscores the generalizability of the methodologies and approaches
developed throughout this work. A key aspect of our methodology is the use of flexibility-
oriented process designs to facilitate both optimal and real-time tractable control. Notably,
the incorporation of buffer tanks plays a dual role: not only does it enhance operational
flexibility, but it also enables the practical implementation of DeNMPC strategies. This
is particularly relevant for chemical processes characterized by large-scale nonlinear sys-
tems, where distributed optimization through system decomposition facilitates achieving
realizable control solutions. Such an integrated approach to process design and operation,
which considers both operational flexibility and distributed control, shows great promise
for applications in other chemical systems, especially those aiming for dynamic operation,
such as DSM scenarios. While the general applicability of these strategies is promising,
process-specific operational considerations and challenges may arise, such as the use of
buffer tanks and the phase of stored products—whether liquid or vapor. Nevertheless, this
dissertation underscores the emergence of novel operational strategies rooted in flexibility-
oriented process design as a potential new paradigm for future chemical production.

While this dissertation covers a range of topics, it also uncovers promising avenues for
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future research. Given the potential transferability of our findings to other chemical pro-
cesses, it would be particularly interesting to apply our proposed methods and approaches
to optimize the flexible operation of processes involving intermediate or final products in
the vapor phase, where storage in buffer tanks would require liquefaction. Since liquefac-
tion incurs additional energy costs, this would introduce a trade-off between enhancing
process flexibility to take advantage of variable energy prices and the increased costs asso-
ciated with liquefaction. Furthermore, our work focuses on retrofitting an existing chemical
process for flexible operation by incorporating buffer tanks. Future research could explore
integrating optimal process design and flexible operation from the outset, particularly in
the context of designing new chemical plants or resizing unit operations to inherently
support flexibility. Additionally, while we size the buffer tanks heuristically and based
on literature findings, an alternative approach would be to formulate these also as opti-
mization variables to be solved concurrently with the DO problems for flexible operation.
This approach would involve employing stochastic programming, presenting an interesting
direction for future work.

While our current DeNMPC strategies employ independent, non-cooperative objective
functions, future research could explore the use of global objective functions to potentially
enhance closed-loop performance. Although implementing global objectives would require
increased data exchange within the distributed control framework, resulting in higher com-
putational costs, using low-order models in a hierarchical structure could offer a feasible
solution. Specifically, simplified models that capture only the most relevant process dy-
namics could be employed at a higher control level to facilitate data coordination among
DeNMPC controllers. However, these reduced models might not fully capture all system
dynamics, potentially limiting the consideration of operational constraints.

In addition to distributed control strategies and system decomposition, future work could
explore model-reduction techniques, such as data-driven or hybrid models, or their inte-
gration with distributed control to enable real-time tractable control. This is particularly
promising due to the trade-off between the high controller performance and model accu-
racy provided by mechanistic models and the reduced computational effort and enhanced
tractability offered by data-driven models. Moreover, determining the required level of
optimality (ranging from fast-update approaches to global optimality via local solutions)
and the appropriate model complexity for satisfactory process operation remains an open
question for future studies on optimal flexible operation.

Since the majority of methods proposed in this dissertation rely on DO, leveraging
parallel computing to accelerate DO is another promising direction for future research.
Additionally, the use of DO with CCs could be explored for rigorous process design to
achieve high operational flexibility, including optimal start-up and shutdown strategies.
Another promising research area is the deterministic global optimization of dynamic prob-
lems. While local DO is relatively mature and widely applicable, global DO remains
computationally intensive and impractical for many real-world applications. Future efforts
should target scenarios where local optimization is insufficient—either because a global op-
timum is necessary or because multiple local optima hinder convergence to a satisfactory
solution.

Furthermore, we develop and apply the methods and strategies in this dissertation within
idealized settings. To ensure their practical relevance, it is crucial to adapt them for real-
world applications, both for small- and large-scale industrial processes operating under
nonideal conditions. This transition introduces increased uncertainty, potentially impact-
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ing the performance of operational strategies and adding system complexity. Specifically,
integrating these tools into actual process control systems for flexible industrial operation
will require building confidence in the computational methods and addressing potential
security concerns.
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Appendix A.

Dynamic Modeling and Plantwide
Control of a Production Process for
Biodiesel and Glycerol

Herein, we first present the full mathematical model of the process. Subsequently, we
provide the process flowsheet for implementing the PWC-B structure. We then compare
the SS results of our model simulation with that of Aspen Plus in tabular form.

A.1. Full Process Model

We provide details on the models of the main unit operations and relevant thermodynamic
properties.

A.1.1. Unit Operations Models

In this section, we provide the dynamic models of the transesterifier, distillation columns,
wash column, and heat exchangers.

A.1.1.1. Transesterifier

We abbreviate triolein, diolein, monoolein, methanol, methyl oleate, and glycerol to TG,
DG, MG, ME, MO, and G, respectively. We assume for the alkali-catalyzed trans-
esterification of oil with methanol, the following reversible three-step reaction system
[73, 86, 117, 127]:

triolein + methanol
k1f−−→←−−
k1r

diolein + methyloleate , (A.1a)

diolein + methanol
k2f−−→←−−
k2r

monoolein + methyloleate , (A.1b)

monoolein + methanol
k3f−−→←−−
k3r

glycerol + methyloleate , (A.1c)

where kjf and kjr, j ∈ {1, 2, 3}, are the reaction rate coefficients of the respective forward
(f) and reverse (r) reactions of reaction j and determined by the Arrhenius equation [213]:

kj{f,r} = Aj{f,r} exp

(
−Ej{f,r}

RT

)
.
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The pre-exponential factor Aj{f,r} and the activation energy Ej{f,r} values of the three reac-
tions are taken from Narváez et al. [117] and Aspen Technology [214], and are summarized
in Table A.1. The temperature of the reactor content and the universal gas constant are
T and R, respectively.

Table A.1.: Pre-exponential factor Aj{f,r} and activation energy Ej{f,r} values for the three
alkali-catalyzed transesterification reactions j, taken from Narváez et al. [117] and Aspen Tech-
nology [214].

j{f, r} Aj{f,r} × 10−3 Ej{f,r} [kJ/mol]

1f 31174
[
L2/(mol2 s)

]
56.48

1r 17.26 [L/(mol s)] 43.10
2f 62408595

[
L2/(mol2 s)

]
72.80

2r 200324 [L/(mol s)] 67.78
3f 0.897

[
L2/(mol2 s)

]
25.94

3r 29.81 [L/(mol s)] 49.79

Following second-order elementary rate laws, the reaction rates rj are then:

r1 = k1f CTG CME CNaOH − k1rCMO CDG ,

r2 = k2f CDG CME CNaOH − k2rCMOCMG ,

r3 = k3f CMG CME CNaOH − k3rCMO CG ,

where Ci represents the concentration of species i in the reactor. The effect of the catalyst
NaOH is considered in the forward reactions only [117, 214].

We model the total and species material balances as follows:

dN

dt
= Ṅin − Ṅout ,

dnTG

dt
= ṅin

TG − ṅout
TG − r1V ,

dnDG

dt
= ṅin

DG − ṅout
DG + (r1 − r2)V ,

dnMG

dt
= ṅin

MG − ṅout
MG + (r2 − r3)V ,

dnME

dt
= ṅin

ME − ṅout
ME − (r1 + r2 + r3)V ,

dnMO

dt
= ṅin

MO − ṅout
MO + (r1 + r2 + r3)V ,

dnG

dt
= ṅin

G − ṅout
G + r3V ,

dnNaOH

dt
= ṅin

NaOH − ṅout
NaOH ,

dnH2O

dt
= ṅin

H2O
− ṅout

H2O
,
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where ni, ṅin
i , and ṅout

i are the species mole holdup, input, and output flow rates, re-
spectively. The total input and output mole flow rates of the reactor are Ṅin and Ṅout,
respectively. We control Ṅout such that the residence time of the reactor content is 1 h.
The volume of the reactor content V is determined from the total mole holdup N and the
specific molar density of the mixture. The mixture density is determined using the Rackett
equation (A.5).

We model the reactor and its jacket by the following energy balances.

dNhtotal

dt
= Ṅinh

total
in − Ṅouth

total
out + U

A

Ns

Ns∑
s=1

(TJ,s − T ) ,

0 = ṄJacket
in

(
hJacket,s
in − hJacket,s

out

)
− U

A

Ns

(TJ,s − T ) , ∀ s ∈ {1, 2, . . . , Ns} .

The molar enthalpies of the reactor content, input and output flows are htotal, htotal
in and

htotal
out , respectively. They are determined based on the standard state as a reference state

(cf. Section A.1.2.1). The overall heat transfer coefficient and area are U and A, respec-
tively. A segment of the jacket is denoted by s and its content temperature is TJ,s. The
number of jacket segments is Ns. The molar enthalpies of the input and output flows of
each jacket segment are represented by hJacket,s

in and hJacket,s
out , respectively.

A.1.1.2. Distillation Columns

For the columns, equilibrium equations, energy, and material balances are calculated for
each stage. All three distillation columns of the process have total condensers. A column
has M trays. A tray can generally have a feed, and an input or output heat flux. We
model each tray m ∈ {1, 2, . . . ,M} as follows:

dNm

dt
= Lin,m + Vin,m − Lout,m − Vout,m + Fm ,

Lout,m =
Nm

τm
, (A.2a)

Nm
dxi,m

dt
= Lin,m (xin,i,m − xi,m) + Vin,m (yin,i,m − xi,m)

− Vout,m (yout,i,m − xi,m) + Fm (zi,m − xi,m) , (A.2b)

yi,mPm = γl
i,mxi,mPvp,i,m ,

0 =
∑
i

yi,m −
∑
i

xi,m,

0 = Lin,m

(
hl
in,m − hl

out,m

)
+ Vin,m

(
hv
in,m − hl

out,m

)
− Vout,m

(
hv
out,m − hl

out,m

)
+ Fm

(
hfeed
m − hl

out,m

)
+Qm , (A.2c)

where Nm is the total mole holdup on the tray m, Lin,m and Vin,m are the input liquid and
vapor mole flow rates, Lout,m and Vout,m are the output liquid and vapor mole flow rates,
respectively. The hydraulic parameter τm is applied for determining Lout,m. The liquid
and vapor mole fractions of species i are xi,m and yi,m, respectively, which are equal to
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their respective compositions xout,i,m and yout,i,m in the outlet flows. The liquid and vapor
species mole fractions in the input flows are xin,i,m and yin,i,m, respectively, Pvp,i,m is the
species vapor pressure, and γl

i,m is its activity coefficient. The total molar enthalpies of
the input and output flows are hin,m and hout,m, and their superscripts l and v indicate
liquid and vapor phases, respectively. The feed mole flow rate is Fm, zi,m is the species
mole fraction in the feed, and hfeed

m is the total molar enthalpy of the feed. We denote the
input or output heat flux by Qm.

For all trays, except for the feed tray, Fm is null. All trays have zero Qm, except for
the reboiler and condenser trays, it is positive nonzero and negative nonzero, respectively.
For the condenser tray, Lin,m and Vout,m are null because the three columns have total
condensers. The reboiler tray has no Vin,m. The Lout,m of the reboiler tray is the bottom
product and that of the condenser tray is split between the reflux stream and the distillate
product after accumulating in a distillate drum.

The formulation of species material balance (A.2b) and total energy balance (A.2c)
equations as well as (A.2a) is a result of the assumption that the tray holdup is only due
to the liquid phase. For the energy balance, we apply a quasi-steady-state approximation,
resulting in an index-1 DA system [130].

A.1.1.3. Wash Column

The wash column is a liquid-liquid extraction process, where we introduce water as the
extraction solvent to remove the polar species from the raffinate stream containing the
biodiesel product. Glycerol, water and methanol are extracted from the light oil-based
raffinate stream to the heavy water-based extract stream.

The model of a tray m ∈ {1, 2, . . . ,M} of the wash column with M trays reads:

dNm

dt
= Ein,m +Rin,m − Eout,m −Rout,m ,

Eout,m =
Nm

τm
, (A.3a)

Nm

dxE
i,m

dt
= Ein,m

(
xE
in,i,m − xE

i,m

)
+Rin,m

(
xR
in,i,m − xE

i,m

)
−Rout,m

(
xR
out,i,m − xE

i,m

)
, (A.3b)

γR
i,mx

R
i,m = γE

i,mx
E
i,m ,

0 =
∑
i

xR
i,m −

∑
i

xE
i,m,

0 = Ein,m

(
hE
in,m − hE

out,m

)
+Rin,m

(
hR
in,m − hE

out,m

)
−Rout,m

(
hR
out,m − hE

out,m

)
, (A.3c)

where E and R represent the extract and raffinate phases, respectively. The other variables,
subscripts, and superscripts have the same indications as for the distillation column model.
We apply a quasi-steady-state approximation for the energy balance (A.3c), resulting in
an index-1 DA system. We also use the hydraulic parameter τm for determining Eout,m in
(A.3a). Assuming that the tray holdup is only due to the extract phase, we could formulate
(A.3b), (A.3c), and (A.3a) as provided [130].

130



A.1. Full Process Model

A.1.1.4. Heat Exchangers

We model the heat exchangers by dividing them into segments and solving energy balances
on each segment. The metal wall between the two heat-exchanging streams is carbon
steel (CS) with a density ρCS of 7842 kg/m3 and a specific heat capacity cp,CS of 0.49
kJ/(kgK). We denote the first and second streams exchanging heat through the CS wall
by S1 and S2, respectively.

For a segment m ∈ {1, 2, . . . ,M} of a heat exchanger with M segments, the model reads:

eCSρCScp,CS
dTCS,m

dt
= US2 (TS2,m − TCS,m)− US1 (TCS,m − TS1,m) ,

0 = ṄS1

(
hin
S1,m − hout

S1,m

)
+ US1Am (TCS,m − TS1,m) ,

0 = ṄS2

(
hin
S2,m − hout

S2,m

)
− US2Am (TS2,m − TCS,m) ,

where eCS is the thickness of the metal wall, Am is the heat transfer area of the segment,
and US1 and US2 are the overall heat transfer coefficients on the sides of S1 and S2 streams,
respectively.

A.1.2. Models of the Thermodynamic Properties

We first introduce the temperature-dependent equations used to determine the molar heat
capacities, enthalpies, entropies, and Gibbs free energies of the system’s species in the
solid, liquid, and vapor phases. Second, we provide the used correlations for calculating
the densities in the three phases. Finally, we provide the applied LLE, VLE, and VLLE
models.

A.1.2.1. Heat Capacity, Enthalpy, Entropy, and Gibbs Free Energy Models

For determining the molar heat capacity at a constant pressure cp, for both the solid and
the liquid phases as a function of temperature, we use the DIPPR equation 100 for all
species except for monoolein and FAME in the solid phase we use the DIPPR equation
102 [110].
DIPPR equation 100:

c s or lp,i = C1i + C2iT + C3iT
2 + C4iT

3 + C5iT
4 , C6i ≤ T ≤ C7i .

DIPPR equation 102:

c sp,i =
C1iT

C2i

1 + C3i/T + C4iT 2
, C6i ≤ T ≤ C7i .

For the vapor-phase heat capacities, we apply the DIPPR equation 107 by Aly and Lee
[215]:

c vp,i = C1i + C2i

(
C3i/T

sinh(C3i/T )

)2

+ C4i

(
C5i/T

cosh(C5i/T )

)2

, C6i ≤ T ≤ C7i .
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For each phase, the molar enthalpy hi and entropy si of each species i are explicitly
calculated based on analytical integration of:

dhi

dT
= cp,i ,

dsi
dT

=
cp,i
T

,

using href
i and srefi at the standard state (25 ◦C and 1 bar) as reference values.

The molar Gibbs free energy g is then determined as follows:

gi = hi − Tsi .

The solid, liquid, and vapor phases are denoted by s, l, and v, respectively. All the
coefficients Cb,i, b ∈ {1, 2, . . . , 7}, as well as the values of href

i and srefi are retrieved from
DIPPR’s Project 801 database [110].

To account for the enthalpy of mixing (hE) in the liquid phase, we determine the excess
Gibbs free energy (gE) using the NRTL activity coefficient (γ) model, which we provide in
Section A.1.2.3:

hE = −RT 2

[
∂(gE/RT )

∂T

]
P,x

,

gE = RT
∑
i

xi ln γi .

We observe that the enthalpy of mixing in liquid mixtures has negligible effects on the
simulation results. Moreover, since there are ten chemical species present, determining
hE using the NRTL model increases the size of the DA system of the model drastically
(doubling). In the proposed Modelica model we allow for both options, but in the shown
simulation results we ignore the enthalpy of mixing.

A.1.2.2. Density Models

The process operates at low pressure values. Thus, for determining the the molar densities
(ρ) in the vapor phase, we use the ideal gas law. For all species in the solid phase and for
NaH2PO4 in the liquid phase, we use the DIPPR molar density equation 100 [110]:

ρ s or l
i = C1i + C2iT + C3iT

2 + C4iT
3 + C5iT

4 , C6i ≤ T ≤ C7i .

We use the DIPPR molar density equation 105 for the remaining species in the liquid phase
except for water, we apply the DIPPR molar density equation 116 [110].
DIPPR equation 105:

ρ l
i = C1i/C

1+(1−T/C3i)
2i

C4i

, C6i ≤ T ≤ C7i .

DIPPR equation 116:

ρ l
i = C1i + C2iτ

0.35 + C3iτ
2/3 + C4iτ + C5iτ

4/3 , C6i ≤ T ≤ C7i ,
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where

τ = 1− T

Tci

.

We determine the molar density of a liquid mixture (ρ l
m) by applying the Rackett equa-

tion [132]:

ρ l
m =

Pcm

RTcmZcm
1+(1−Tr)2/7

, (A.5)

where
Tcm =

∑
i

∑
j

xixj (VciVcj) (TciTcj)
1/2 (1− kij) /V

2
cm ,

kij = 1− 8 (VciVcj)
1/2(

V
1/3
ci + V

1/3
cj

)3 ,

Tcm

Pcm

=
∑
i

xi
Tci

Pci

,

Zcm =
∑
i

xiZci ,

Vcm =
∑
i

xiVci ,

Tr = T/Tcm .

For every species i or j, Tci or Tcj, Pci or Pcj, and Vci or Vcj denote the species critical
temperature, pressure, and volume, respectively. The species mole fraction in the liquid
phase is represented by xi or xj, Zci indicates the species critical compressibility factor, and
Tr is the reduced temperature of the mixture. The mixture’s critical temperature, pressure,
volume, and compressibility factor are denoted by Tcm, Pcm, Vcm, and Zcm, respectively.

A.1.2.3. Equilibrium Models

For describing the LLE, VLE, and VLLE, we apply the isofugacity conditions. In gen-
eral these are necessary only (i.e., not sufficient) for stable equilibrium. A more rigorous
approach would be to minimize the Gibbs free energy globally or follow sophisticated ap-
proaches [216–218] that consider (dis)appearing phases. We instead make use of the fact
that the number of the existing phases is known and constant in time. We use SS simula-
tions in Aspen Plus to properly initialize the dynamic simulations in Modelica and observe
that the isofugacity conditions result in the expected (nontrivial) equilibrium, which we
thus assume to be stable. For LLE, where I and II indicate the first and second liquid
phases, respectively, isofugacity implies isopotential:

γI
ix

I
i = γII

i x
II
i ,

where γi is the activity coefficient of species i.
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The isofugacity condition for VLE, with the ideal gas assumption, gives:

yiP = γl
ixiPvp,i ,

where yi and Pvp,i are the mole fraction and vapor pressure of species i in the vapor phase,
respectively.

For VLLE, the isofugacity condition is then:

yiP = γI
ix

I
iPvp,i = γII

i x
II
i Pvp,i .

By applying the extended Antoine correlation [133] for each species, we determine its
vapor pressure:

lnPvp,i = C1i +
C2i

T + C3i

+ C4iT + C5i lnT + C6i T
C7i , C8i ≤ T ≤ C9i .

All the coefficients Cb,i, b ∈ {1, 2, . . . , 9} are retrieved from DIPPR’s Project 801 database
[110].

We use the NRTL model [109] to determine the activity coefficients in the liquid phase:

ln γi =

∑
j

xjτjiGji∑
k

xkGki

+
∑
j

xjGij∑
k

xkGkj

(
τij −

∑
m

xmτmjGmj∑
k

xkGkj

)
,

where

Gij = exp(−cijτij) , τij = aij + bij/T , Gii = 1 , τii = 0 ,

aij, bij, and cij are the binary interaction parameters of the chemical species. The param-
eters aij and bij are unsymmetrical. That means aij may not be equal to aji, etc. We
retrieve the values of all binary interaction parameters from Albuquerque et al. [119] and
Aspen Technology [134].

A.2. Process Flowsheet with PWC-B Configuration
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Figure A.1.: Process flowsheet with PWC-B configuration of a biodiesel production plant by oil alkali-catalyzed transesterification. The
shown control structure is for the PWC structure having only conventional measurement configurations available.
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A.3. Comparison of the Steady-State Simulation
Results to That of Aspen Plus

For further validation of the developed Modelica model, we compare its SS simulation
results to that of Aspen Plus. We provide the results of mainly the mole fractions, tem-
peratures, and flow rates for the transesterifier, FAME and wash columns.

A.3.1. Transesterifier

Table A.2.: Comparison between the steady-state simulation results of the Modelica model
with that of Aspen Plus for the transesterifier unit.

Modelica Aspen Plus

xTG 4.62e−3 4.31e−3
xDG 2.20e−3 2.06e−3
xMG 8.40e−3 8.11e−3
xME 4.09e−1 4.10e−1
xNaOH 1.35e−2 1.35e−2
xMO 3.27e−1 3.28e−1
xG 1.12e−1 1.12e−1
xH2O

1.23e−1 1.23e−1
Ṅout [kmol/h] 1.76e2 1.76e2

V
[
m3
]

2.86e1 2.78e1

htotalout [kJ/kmol] −4.62e5 −4.60e5
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A.3.2. FAME Column

Table A.3.: Steady-state simulation results of the Modelica model for the FAME column.

Modelica: FAME column

Stage 1 2 3 4 5 6 7

xTG 3.64e−14 2.10e−10 7.54e−7 2.56e−3 2.67e−3 3.70e−3 2.95e−1
xDG 2.69e−15 2.77e−11 1.89e−7 1.22e−3 1.27e−3 2.30e−3 1.41e−1
xMG 3.97e−4 1.70e−3 5.69e−3 1.86e−2 6.88e−2 4.84e−1 5.29e−1
xME 1.19e−2 8.24e−6 2.34e−6 2.50e−6 2.15e−9 2.31e−12 2.30e−15
xNaOH 0 0 0 1.32e−14 1.38e−14 1.81e−14 1.52e−12
xMO 9.86e−1 0.9995 9.96e−1 9.79e−1 9.29e−1 5.11e−1 3.70e−2
xG 4.06e−12 4.99e−15 1.35e−15 1.40e−15 0 0 0

xH2O
2.73e−3 2.46e−8 7.05e−9 8.01e−9 0 0 0

T [K] 2.83e2 4.99e2 5.02e2 5.05e2 5.08e2 5.18e2 5.69e2

Lout [kmol/h] 1.17e2 1.62e2 1.62e2 3.18e2 3.05e2 2.32e2 2.76

Vout [kmol/h] 0 1.17e2 2.20e2 2.20e2 3.15e2 3.02e2 2.30e2

Q [kW] −7.29e3 – – – – – 7.06e3
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Table A.4.: Aspen Plus simulation results for the FAME column.

Aspen Plus: FAME column

Stage 1 2 3 4 5 6 7

xTG 3.46e−14 1.99e−10 7.16e−7 2.41e−3 2.56e−3 3.90e−3 2.89e−1
xDG 2.56e−15 2.64e−11 1.80e−7 1.16e−3 1.23e−3 2.40e−3 1.39e−1
xMG 3.99e−4 1.70e−3 5.71e−3 1.87e−2 6.96e−2 4.90e−1 5.36e−1
xME 1.18e−2 8.20e−6 2.33e−6 1.88e−6 1.62e−9 1.74e−12 1.73e−15
xNaOH 0 0 0 1.22e−14 1.30e−14 1.87e−14 1.46e−12
xMO 9.85e−1 9.98e−1 9.94e−1 9.78e−1 9.27e−1 5.04e−1 3.66e−2
xG 3.64e−12 4.46e−15 1.21e−15 1.25e−15 0 0 0

xH2O
2.70e−3 2.43e−8 6.98e−9 7.48e−10 0 0 0

T [K] 2.83e2 4.99e2 5.02e2 5.05e2 5.08e2 5.18e2 5.69e2

Lout [kmol/h] 1.17e2 1.62e2 1.61e2 3.15e2 2.96e2 2.05e2 2.62

Vout [kmol/h] 0 1.17e2 2.20e2 2.20e2 3.12e2 2.94e2 2.03e2

Q [kW] −7.29e3 – – – – – 7.01e3

A.3.3. Wash Column
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Table A.5.: Steady-state simulation results of the Modelica model for the wash column.

Modelica: Wash column

Stage 1 2 3 4 5 6

xETG 5.21e−4 5.20e−4 5.17e−4 5.15e−4 4.87e−4 1.25e−5
xEDG 1.35e−3 1.37e−3 1.35e−3 1.35e−3 1.33e−3 4.56e−8
xEMG 5.94e−2 8.65e−2 9.91e−2 1.05e−1 1.07e−1 1.42e−6
xEME 1.42e−2 1.83e−2 1.98e−2 2.04e−2 2.13e−2 6.09e−2
xENaOH 2.45e−11 1.75e−9 1.21e−7 8.26e−6 5.62e−4 4.00e−2
xEMO 1.47e−4 2.93e−4 3.88e−4 4.42e−4 4.80e−4 3.43e−4
xEG 9.05e−10 4.76e−8 2.51e−6 1.33e−4 7.01e−3 3.30e−1
xEH2O

9.25e−1 8.94e−1 8.81e−1 8.72e−1 8.62e−1 5.68e−1
xRTG 1.33e−2 1.32e−2 1.31e−2 1.30e−2 1.30e−2 1.30e−2
xRDG 6.34e−3 6.53e−3 6.50e−3 6.47e−3 6.46e−3 6.45e−3
xRMG 2.42e−2 3.71e−2 4.35e−2 4.66e−2 4.81e−2 4.87e−2
xRME 1.14e−2 1.43e−2 1.53e−2 1.56e−2 1.58e−2 1.60e−2
xRNaOH 6.86e−14 5.54e−12 4.02e−10 2.81e−8 1.93e−6 1.32e−4
xRMO 9.43e−1 9.27e−1 9.20e−1 9.17e−1 9.15e−1 9.14e−1
xRG 3.88e−12 2.06e−10 1.09e−8 5.83e−7 3.11e−5 1.65e−3
xRH2O

2.61e−3 2.85e−3 2.95e−3 2.99e−3 2.99e−3 1.90e−3
T [K] 3.32e2 3.33e2 3.33e2 3.33e2 3.33e2 3.33e2

Eout [kmol/h] 1.39e1 1.44e1 1.46e1 1.48e1 1.49e1 5.97e1

Rout [kmol/h] 6.12e1 6.22e1 6.27e1 6.30e1 6.31e1 6.32e1
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Table A.6.: Aspen Plus simulation results for the wash column.

Aspen Plus: Wash column

Stage 1 2 3 4 5 6

xETG 4.81e−4 4.79e−4 4.75e−4 4.73e−4 4.47e−4 1.17e−5
xEDG 1.26e−3 1.28e−3 1.27e−3 1.26e−3 1.25e−3 4.31e−8
xEMG 5.77e−2 8.43e−2 9.68e−2 1.03e−1 1.05e−1 1.41e−6
xEME 1.42e−2 1.83e−2 1.97e−2 2.03e−2 2.12e−2 6.10e−2
xENaOH 2.27e−11 1.64e−9 1.15e−7 8.01e−6 5.54e−4 4.00e−2
xEMO 1.40e−4 2.77e−4 3.68e−4 4.18e−4 4.57e−4 3.42e−4
xEG 8.30e−10 4.45e−8 2.38e−6 1.29e−4 6.90e−3 3.30e−1
xEH2O

9.26e−1 8.95e−1 8.81e−1 8.75e−1 8.64e−1 5.68e−1
xRTG 1.24e−2 1.23e−2 1.22e−2 1.22e−2 1.22e−2 1.21e−2
xRDG 5.95e−3 6.13e−3 6.10e−3 6.08e−3 6.07e−3 6.06e−3
xRMG 2.34e−2 3.59e−2 4.22e−2 4.52e−2 4.67e−2 4.74e−2
xRME 1.13e−2 1.43e−2 1.52e−2 1.56e−2 1.57e−2 1.60e−2
xRNaOH 6.28e−14 5.13e−12 3.78e−10 2.68e−8 1.88e−6 1.30e−4
xRMO 9.44e−1 9.29e−1 9.21e−1 9.18e−1 9.16e−1 9.15e−1
xRG 3.49e−12 1.89e−10 1.02e−8 5.54e−7 3.01e−5 1.62e−3
xRH2O

2.58e−3 2.81e−3 2.91e−3 2.95e−3 2.94e−3 1.87e−3
T [K] 3.32e2 3.33e2 3.33e2 3.33e2 3.33e2 3.33e2

Eout [kmol/h] 1.39e1 1.44e1 1.46e1 1.47e1 1.48e1 5.96e1

Rout [kmol/h] 6.11e1 6.22e1 6.27e1 6.29e1 6.30e1 6.31e1

A.4. Additional Results

We here provide for both PWC-A and PWC-B, simulated under all plant disturbances and
setpoint changes, profiles of feed flow rates; product flow rates; heating and cooling duties
for individual units and the whole plant; oil conversion in the transesterifier, and column
recoveries and purities; and the species mass fraction in the biodiesel product.
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Figure A.2.: Profiles of feed mass flow rates for both PWC-A (solid-black) and PWC-B
(dashed-dotted-green), simulated under all disturbances and setpoint changes.
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Figure A.3.: Profiles of product mass flow rates for both PWC-A (solid-black) and PWC-B
(dashed-dotted-green), simulated under all disturbances and setpoint changes. The setpoint of
biodiesel production rate is indicated by the red-dashed line in the top graph.
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plant for both PWC-A (solid-black) and PWC-B (dashed-dotted-green), simulated under all
disturbances and setpoint changes.
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Figure A.5.: Cooling duties in the transesterifier, condensers and cooler, as well as that of
the whole plant for both PWC-A (solid-black) and PWC-B (dashed-dotted-green), simulated
under all disturbances and setpoint changes.
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Figure A.6.: CV profiles of oil conversion in the transesterifier and column recoveries and
purities for both PWC-A (solid-black) and PWC-B (dashed-dotted-green), simulated under all
disturbances and setpoint changes. Design setpoints are indicated by the red-dashed lines.
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146



Appendix B.

Optimal Design and Flexible
Operation of a Fully Electrified
Biodiesel Production Process

We present here the empirically fitted equations for the purification unit of the water-
methanol waste stream (water-methanol column). We provide the prices of raw materials
and final products. We also show the profiles of all control variables, transesterifier and
buffer tank levels, production rates, and power demand of all process units. In addition,
the purities of the final biodiesel product and InterTankRSR outlet stream are provided.

B.1. Fitted Equations for the Water-Methanol Column

Using SS simulations of a rigorous model for the purification unit of the water-methanol
waste stream (water-methanol column), we fit the following empirical equations:

WWMc = 1.87 ṁWM wMeOH,WM , R2 = 0.955 , (B.1a)
ṁWMc,Dist = 1.48 ṁWM wMeOH,WM , R2 = 0.996 , (B.1b)

wMeOH,WMc,Dist = 1− exp
(
−180w3

MeOH,WM + 160w2
MeOH,WM

−55wMeOH,WM) , R2 = 0.919 , (B.1c)

where ṁWM and wMeOH,WM are the mass flow rate of the water-methanol waste stream and
its methanol mass fraction, respectively. The total power demand of the water-methanol
column is denoted by WWMc, while ṁWMc,Dist is its distillate mass flow rate with the
methanol purity wMeOH,WMc,Dist. The R2 values represent the coefficient of determination
for each fitted equation.
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Production Process

B.2. Material Prices

Table B.1.: Specific prices of raw materials and final products.

Material Price [AC/kg]

Vegetable oil (rapeseed oil) 1.1 [219, 220]
Methanol 0.55 [221, 222]
Sodium hydroxide (20 wt%) 0.1 [223]
Phosphoric acid (20 wt%) 0.19 [224]
Biodiesel (EN 14214 [122]) 2.57 [225]
Glycerol (99 wt%) 1.4 [226]
Monosodium phosphate (solids) 1 [227]
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B.3. Further Profiles
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Figure B.1.: Control variable profiles. The acid mixture feed is not a control variable in
optimizers. It is manipulated by a pH controller to control the pH of the neutralizer outlet
stream. Treb denotes reboiler temperatures, and ∆TJacket is the temperature change of the
transesterifier jacket medium after passing through the external heat exchanger.
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Figure B.2.: Production flow rate profiles for the final products, FAME column bottom, and
methanol column outlet streams.
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Figure B.3.: Power demands of all process units.
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Figure B.4.: Liquid levels in the transesterifier and buffer tanks.
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Figure B.5.: Purities in the biodiesel product. MeOH, Gly, and Mono indicate methanol,
glycerol, and monoolein, respectively.
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Figure B.6.: Purities in the InterTankRSR outlet stream. MeOH and Gly indicate methanol
and glycerol, respectively. The bounds are only in the case of FOwInterTank-DO.
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Appendix C.

Distributed Economic Nonlinear
Model Predictive Control for Flexible
Electrified Biodiesel Production:
Sequential Architectures

C.1. Model Fitting for Quasi-Stationary Scheduling
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ṁBiodiesel [kg/h]

ṅ
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Figure C.1.: Total power consumption (a) and control variables (b)–(f) plotted against the
biodiesel production rate, utilized in the QSS approach. All control variables and total power
consumption are linearly fitted, except for τTrans, which is fitted with a hyperbolic function.
Here, τTrans represents the residence time in the transesterifier, and Q̇reb,MeOHcol denotes the
reboiler duty in the methanol column.
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C.2. Overview of Process Configurations, Control Variables, and Constraints of the
Considered Operational Strategies

Table C.1.: Summary of the included buffer tanks, process modifications, control variables,
and constraints for the considered operational strategies. Due to the thermal degradation limits
of biodiesel and glycerol products, the maximum temperatures in the FAME and glycerol column
reboilers are set at 300 ◦C and 150 ◦C, respectively. The maximum temperature changes of
the transesterifier jacket medium ∆TJacket are restricted to ±10 ◦C. Time-variant parameters
are denoted by TV, while time-dependent setpoints are represented by SP. Liquid levels and
equality constraints are indicated by LL and EC, respectively. Purities are expressed in kg/kg.
In DeNMPC, endpoint constraints are enforced at every iteration (I) and as point constraints
at the 24-hour time point.

SS Offline DO QSS DeNMPC

Additional process units and modifications

FinalTankB and FinalTankG – ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG – ✓ – ✓
InterTankOil and tearing the residual oil recycle stream – – – ✓

Control variables Constant TV SP TV

ṅOil, ṅMeOH, and ṅBase [kmol/h] ✓ ✓ ✓ ✓
ṅTransOut [kmol/h] – ✓ – ✓
τTrans [h] ✓ – ✓ –
∆TJacket [K], limited to ±10 ◦C ✓ ✓ – ✓
Tsp,MeOHcol [K] – ✓ – ✓
Q̇reb,MeOHcol [MW] ✓ – ✓ –
Tsp,FAMEcol [K], upper bound of 300 ◦C ✓ ✓ – ✓
Tsp,GLYcol [K], upper bound of 150 ◦C ✓ ✓ – ✓
ṅInterTankRSR [kmol/h] – ✓ – –
ṅInterTankB and ṅInterTankG [kmol/h] – ✓ – ✓

Path constraints

Distillation columns: reboilers, distillate drums, and trays LL ✓ ✓ – ✓
Decanter and neutralizer LL ✓ ✓ – –
Transesterifier LL ✓ ✓ – ✓
InterTankRSR, InterTankB, and InterTankG LL – ✓ – ✓
InterTankOil LL – – – ✓
FinalTankB LL – ✓ ✓ ✓
FinalTankG LL – ✓ – ✓
Biodiesel purities (EN 14214 [122]) ✓ ✓ – ✓
Glycerol purity (99wt%) ✓ ✓ – ✓
InterTankRSR composition – – – ✓
Biodiesel production demand (EC) ✓ ✓ ✓ ✓
Glycerol production demand (EC) ✓ ✓ – ✓
InterTankRSR and InterTankOil outlets [kg/h] (EC) – – – ✓

Endpoint constraints

Distillation columns: reboilers, distillate drums, and trays LL – ✓ – –
Decanter and neutralizer LL – ✓ – –
Transesterifier LL – ✓ – ✓(I, 24 h)
InterTankRSR, InterTankB, and InterTankG LL – ✓ – ✓(I, 24 h)
InterTankOil LL – – – ✓(I, 24 h)
FinalTankB LL – ✓ ✓ ✓(I, 24 h)
FinalTankG LL – ✓ – ✓(I, 24 h)
Transesterifier and InterTankRSR composition – ✓ – ✓(I, 24 h)
InterTankB and InterTankG composition – ✓ – –
InterTankOil composition – – – ✓(24 h)
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Appendix D. Distributed Economic Nonlinear Model Predictive Control for Flexible
Electrified Biodiesel Production: Sequential and Iterative Architectures with
Computational Delay Compensation

Table D.1.: Summary of buffer tanks, process modifications, control variables, and constraints
for the operational strategies under consideration. Time-varying parameters are designated as
TV. Liquid levels and equality constraints are denoted by LL and EC, respectively. Purities are
expressed in kg/kg. In DeNMPC, endpoint constraints are enforced at each iteration (I) and
as point constraints at 24 h.

SS Offline DO Sequential Iterative

Additional process units and modifications

FinalTankB and FinalTankG – ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG – ✓ ✓ ✓
InterTankOil – – ✓ ✓
Tearing the residual oil recycle stream – – ✓ –

Control variables Constant TV TV TV

ṅOil, ṅMeOH, and ṅBase [kmol/h] ✓ ✓ ✓ ✓
ṅTransOut [kmol/h] – ✓ ✓ ✓
τTrans [h] ✓ – – –
∆TJacket [K], limited to ±10 ◦C ✓ ✓ ✓ ✓
Tsp,MeOHcol [K] – ✓ ✓ ✓
Q̇reb,MeOHcol [MW] ✓ – – –
Tsp,FAMEcol [K], upper bound of 300 ◦C ✓ ✓ ✓ ✓
Tsp,GLYcol [K], upper bound of 150 ◦C ✓ ✓ ✓ ✓
ṅInterTankRSR [kmol/h] – ✓ – –
ṅInterTankB and ṅInterTankG [kmol/h] – ✓ ✓ ✓
ṅInterTankOil [kmol/h] – – – ✓

Path constraints

Distillation columns: reboilers, distillate drums, and trays LL ✓ ✓ ✓ ✓
Decanter and neutralizer LL ✓ ✓ – –
Transesterifier LL ✓ ✓ ✓ ✓
InterTankRSR, InterTankB, and InterTankG LL – ✓ ✓ ✓
InterTankOil LL – – ✓ ✓
FinalTankB and FinalTankG LL – ✓ ✓ ✓
Biodiesel purities (EN 14214 [122]) ✓ ✓ ✓ ✓
Glycerol purity (99wt%) ✓ ✓ ✓ ✓
InterTankRSR composition – – ✓ ✓
Biodiesel and glycerol production demands (EC) ✓ ✓ ✓ ✓
InterTankRSR outlet [kg/h] (EC) – – ✓ ✓
InterTankOil outlet [kg/h] (EC) – – ✓ –

Endpoint constraints

Distillation columns: reboilers, distillate drums, and trays LL – ✓ – –
Decanter and neutralizer LL – ✓ – –
Transesterifier LL – ✓ ✓(I, 24 h) ✓(I, 24 h)
InterTankRSR, InterTankB, and InterTankG LL – ✓ ✓(I, 24 h) ✓(I, 24 h)
InterTankOil LL – – ✓(I, 24 h) ✓(I, 24 h)
FinalTankB and FinalTankG LL – ✓ ✓(I, 24 h) ✓(I, 24 h)
Transesterifier and InterTankRSR composition – ✓ ✓(I, 24 h) ✓(I, 24 h)
InterTankB and InterTankG composition – ✓ – –
InterTankOil composition – – ✓(24 h) –

158



Bibliography

[1] M. El Wajeh, A. Mhamdi, and A. Mitsos. Dynamic Modeling and Plantwide Con-
trol of a Production Process for Biodiesel and Glycerol. Industrial & Engineering
Chemistry Research, 62(27):10559–10576, 2023.

[2] M. El Wajeh, A. Mhamdi, and A. Mitsos. Optimal Design and Flexible Operation of
a Fully Electrified Biodiesel Production Process. Industrial & Engineering Chemistry
Research, 63(3):1487–1500, 2024.

[3] M. El Wajeh, A. Mhamdi, and A. Mitsos. Optimal Flexible Operation of Electrified
and Heat-Integrated Biodiesel Production. IFAC-PapersOnLine, 58(14):513–518,
2024.

[4] M. El Wajeh, M. Granderath, A. Mitsos, and A. Mhamdi. Distributed Economic
Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production—
Part I: Sequential Architectures. Industrial & Engineering Chemistry Research, 63
(42):17997–18012, 2024.

[5] M. El Wajeh, M. Granderath, A. Mitsos, and A. Mhamdi. Distributed Economic
Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production—
Part II: Sequential and Iterative Architectures with Computational Delay Compen-
sation. Industrial & Engineering Chemistry Research, 63(42):18013–18026, 2024.

[6] M. El Wajeh, F. Jung, D. Bongartz, C. D. Kappatou, N. Ghaffari Laleh, A. Mitsos,
and J. N. Kather. Can the Kuznetsov Model Replicate and Predict Cancer Growth
in Humans? Bulletin of Mathematical Biology, 84(11):130, 2022.

[7] M. Morobeid. Model Predictive Control of a Biodiesel Purification Unit. Bachelor’s
thesis, Chair of Process Systems Engineering, RWTH Aachen University, 2022.

[8] J. Jordan. Reduced Dynamic Modeling for Process Columns Based on Artificial
Neural Networks and Compartmentalization. Bachelor’s thesis, Chair of Process
Systems Engineering, RWTH Aachen University, 2023.

[9] A. Lachmund. Dynamic Modeling of a Wash Unit in an Industrial Biodiesel Produc-
tion Plant. Bachelor’s thesis, Chair of Process Systems Engineering, RWTH Aachen
University, 2024.

[10] M. Granderath. Economic Nonlinear Model Predictive Control for Optimal Flexi-
ble Operation of Biodiesel Production. Master’s thesis, Chair of Process Systems
Engineering, RWTH Aachen University, 2024.

[11] N. Groll. Dynamic Scheduling with Tracking Nonlinear Model Predictive Control for
Flexible Biodiesel Production. Master’s thesis, Chair of Process Systems Engineering,
RWTH Aachen University, 2024.

159



Bibliography

[12] V. Klippel. Cooperative Distributed Economic Nonlinear Model Predictive Con-
trol for Flexible Chemical Production. Master’s thesis, Chair of Process Systems
Engineering, RWTH Aachen University, 2024.

[13] A. Weber. Temperature Profiles in Distillation Columns: Behavior under Different
Operating Points. Master’s thesis, Chair of Process Systems Engineering, RWTH
Aachen University, 2025.

[14] Z. J. Schiffer and K. Manthiram. Electrification and Decarbonization of the Chemical
Industry. Joule, 1(1):10–14, 2017.

[15] A. Mitsos, N. Asprion, C. A. Floudas, M. Bortz, M. Baldea, D. Bonvin, A. Caspari,
and P. Schäfer. Challenges in process optimization for new feedstocks and energy
sources. Computers & Chemical Engineering, 113:209–221, 2018.

[16] J. L. Barton. Electrification of the chemical industry. Science, 368(6496):1181–1182,
2020.

[17] Q. Zhang and I. E. Grossmann. Planning and Scheduling for Industrial Demand Side
Management: Advances and Challenges. In M. Martín, editor, Alternative Energy
Sources and Technologies: Process Design and Operation, pages 383–414. Springer
International Publishing, Cham, 2016.

[18] Agora Energiewende. Electricity Data. https://www.agora-energiewende.de,
2023. Accessed: March 29, 2023.

[19] C. M. Masuku, R. S. Caulkins, and J. J. Siirola. Process decarbonization through
electrification. Current Opinion in Chemical Engineering, 44:101011, 2024.

[20] M. Baldea and I. Harjunkoski. Integrated production scheduling and process control:
A systematic review. Computers & Chemical Engineering, 71:377–390, 2014.

[21] A. Caspari, C. Tsay, A. Mhamdi, M. Baldea, and A. Mitsos. The integration of
scheduling and control: Top-down vs. bottom-up. Journal of Process Control, 91:
50–62, 2020.

[22] D. Dering and C. L. Swartz. A scenario-based framework for the integration of
scheduling and control under multiple uncertainties. Journal of Process Control,
129:103055, 2023.

[23] M. Cegla, R. Semrau, F. Tamagnini, and S. Engell. Flexible process operation for
electrified chemical plants. Current Opinion in Chemical Engineering, 39:100898,
2023.

[24] I. Harjunkoski, R. Nyström, and A. Horch. Integration of scheduling and con-
trol—Theory or practice? Computers & Chemical Engineering, 33(12):1909–1918,
2009.

[25] E. N. Pistikopoulos and N. A. Diangelakis. Towards the integration of process design,
control and scheduling: Are we getting closer? Computers & Chemical Engineering,
91:85–92, 2016.

160

https://www.agora-energiewende.de


Bibliography

[26] P. Daoutidis, W. Tang, and S. S. Jogwar. Decomposing complex plants for distributed
control: Perspectives from network theory. Computers & Chemical Engineering, 114:
43–51, 2018.

[27] P. M. Castro, I. E. Grossmann, and Q. Zhang. Expanding scope and computational
challenges in process scheduling. Computers & Chemical Engineering, 114:14–42,
2018.

[28] D. Dering and C. L. Swartz. Integration of Scheduling and Control for Plants Con-
trolled by Distributed MPC Systems. Industrial & Engineering Chemistry Research,
63(27):12016–12034, 2024.

[29] Q. Zhang, I. E. Grossmann, C. F. Heuberger, A. Sundaramoorthy, and J. M. Pinto.
Air separation with cryogenic energy storage: Optimal scheduling considering electric
energy and reserve markets. AIChE Journal, 61(5):1547–1558, 2015.

[30] Q. Zhang, A. Sundaramoorthy, I. E. Grossmann, and J. M. Pinto. A discrete-time
scheduling model for continuous power-intensive process networks with various power
contracts. Computers & Chemical Engineering, 84:382–393, 2016.

[31] H. Li and C. L. Swartz. Approximation techniques for dynamic real-time optimization
(DRTO) of distributed MPC systems. Computers & Chemical Engineering, 118:195–
209, 2018.

[32] M. Ellis, H. Durand, and P. D. Christofides. A tutorial review of economic model
predictive control methods. Journal of Process Control, 24(8):1156–1178, 2014.

[33] A. Caspari, C. Offermanns, P. Schäfer, A. Mhamdi, and A. Mitsos. A flexible air
separation process: 2. Optimal operation using economic model predictive control.
AIChE Journal, 65(11):e16721, 2019.

[34] H. Fukuda, A. Kondo, and H. Noda. Biodiesel fuel production by transesterification
of oils. Journal of Bioscience and Bioengineering, 92(5):405–416, 2001.

[35] G. Vicente, M. Martinez, and J. Aracil. Integrated biodiesel production: a com-
parison of different homogeneous catalysts systems. Bioresource Technology, 92(3):
297–305, 2004.

[36] Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates. Biodiesel production from
waste cooking oil: 1. Process design and technological assessment. Bioresource Tech-
nology, 89(1):1–16, 2003.

[37] N. Nazir, N. Ramli, D. Mangunwidjaja, E. Hambali, D. Setyaningsih, S. Yuliani,
M. A. Yarmo, and J. Salimon. Extraction, transesterification and process control in
biodiesel production from Jatropha curcas. European Journal of Lipid Science and
Technology, 111(12):1185–1200, 2009.

[38] A. Abbaszaadeh, B. Ghobadian, M. R. Omidkhah, and G. Najafi. Current biodiesel
production technologies: A comparative review. Energy Conversion and Manage-
ment, 63(4):138–148, 2012.

161



Bibliography

[39] I. E. Grossmann and M. Morari. Operability, Resiliency and Flexibility – Process De-
sign Objectives for a Changing World. In Proceedings of the 2nd International Con-
ference on Foundations of Computer-Aided Process Design, pages 931–1030, 1984.

[40] A. Ghobeity and A. Mitsos. Optimal time-dependent operation of seawater reverse
osmosis. Desalination, 263(1):76–88, 2010.

[41] K. Oikonomou and M. Parvania. Optimal Participation of Water Desalination Plants
in Electricity Demand Response and Regulation Markets. IEEE Systems Journal,
14(3):3729–3739, 2020.

[42] L. C. Brée, K. Perrey, A. Bulan, and A. Mitsos. Demand side management and
operational mode switching in chlorine production. AIChE Journal, 65(7):e16352,
2019.

[43] J. I. Otashu and M. Baldea. Demand response-oriented dynamic modeling and oper-
ational optimization of membrane-based chlor-alkali plants. Computers & Chemical
Engineering, 121:396–408, 2019.

[44] K. W. Scholl and S. C. Sorenson, editors. Combustion of Soybean Oil Methyl Ester
in a Direct Injection Diesel Engine, 1993. SAE International.

[45] L. E. Wagner, S. J. Clark, and M. D. Schrock. Effects of soybean oil esters on the
performance, lubricating oil, and water of diesel engines. Society of Automotive
Engineers, Inc.,Warrendale, PA, United States, 1984.

[46] V. Kariwala and G. P. Rangaiah. Plantwide Control: Recent Developments and
Applications. John Wiley & Sons Ltd, United Kingdom, 2012.

[47] P. U. Okoye, A. Longoria, P. J. Sebastian, S. Wang, S. Li, and B. H. Hameed. A
review on recent trends in reactor systems and azeotrope separation strategies for
catalytic conversion of biodiesel-derived glycerol. Science of The Total Environment,
719:134595, 2020.

[48] A. Demirbas. Biodiesel from vegetable oils via transesterification in supercritical
methanol. Energy Conversion and Management, 43(17):2349–2356, 2002.

[49] P. Maheshwari, M. B. Haider, M. Yusuf, J. J. Klemes, A. Bokhari, M. Beg, A. Al-
Othman, R. Kumar, and A. K. Jaiswal. A review on latest trends in cleaner biodiesel
production: Role of feedstock, production methods, and catalysts. Journal of Cleaner
Production, 355:131588, 2022.

[50] E. Shahid and Y. Jamal. A review of biodiesel as vehicular fuel. Renewable and
Sustainable Energy Reviews, 12:2484–2494, 2008.

[51] M. Martín and I. E. Grossmann. Simultaneous Optimization and Heat Integration
for Biodiesel Production from Cooking Oil and Algae. Industrial & Engineering
Chemistry Research, 51(23):7998–8014, 2012.

[52] S.N. Gebremariam and J.M. Marchetti. Economics of biodiesel production: Review.
Energy Conversion and Management, 168:74–84, 2018.

162



Bibliography

[53] A. Caspari, A. M. Bremen, J. Faust, F. Jung, C. D. Kappatou, S. Sass, Y. Vau-
pel, R. Hannemann-Tamás, A. Mhamdi, and A. Mitsos. DyOS - A Framework
for Optimization of Large-Scale Differential Algebraic Equation Systems. In A. A.
Kiss, E. Zondervan, R. Lakerveld, and L. Özkan, editors, Computer Aided Chemi-
cal Engineering: 29 European Symposium on Computer Aided Process Engineering,
volume 46, pages 619–624. Elsevier, 2019.

[54] R. G. Brusch and R. H. Schappelle. Solution of Highly Constrained Optimal Control
Problems Using Nonlinear Programing. AIAA Journal, 11(2):135–136, 1973.

[55] H. Bock and K. Plitt. A Multiple Shooting Algorithm for Direct Solution of Optimal
Control Problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

[56] M. Schlegel, K. Stockmann, T. Binder, and W. Marquardt. Dynamic optimization
using adaptive control vector parameterization. Computers & Chemical Engineering,
29(8):1731–1751, 2005.

[57] F. Assassa and W. Marquardt. Dynamic optimization using adaptive direct multiple
shooting. Computers & Chemical Engineering, 60:242–259, 2014.

[58] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
3.3: A Cyber-Physical Approach. Wiley – IEEE Press, Piscataway, NJ 08854, 2nd
edition, 2015.

[59] K. A. Esmonde-White, M. Cuellar, C. Uerpmann, B. Lenain, and I. R. Lewis. Raman
spectroscopy as a process analytical technology for pharmaceutical manufacturing
and bioprocessing. Analytical and Bioanalytical Chemistry, 409(3):637–649, 2017.

[60] Z. D. Harms, Z. Shi, R. A. Kulkarni, and D. P. Myers. Characterization of Near-
Infrared and Raman Spectroscopy for In-Line Monitoring of a Low-Drug Load For-
mulation in a Continuous Manufacturing Process. Analytical Chemistry, 91(13):
8045–8053, 2019.

[61] C. Chen and A. Yang. Power-to-methanol: The role of process flexibility in the in-
tegration of variable renewable energy into chemical production. Energy Conversion
and Management, 228:113673, 2021.

[62] A. Harwardt and W. Marquardt. Heat-integrated distillation columns: Vapor re-
compression or internal heat integration? AIChE Journal, 58(12):3740–3750, 2012.

[63] L. Guedes do Nascimento, L. P. Costa Monteiro, R. de Cássia Colman Simões, and
D. M. Prata. Eco-efficiency analysis and intensification of the biodiesel production
process through vapor recompression strategy. Energy, 275:127479, 2023.

[64] Y. Su, K. K. Tan, and T. H. Lee. Computation delay compensation for real time
implementation of robust model predictive control. Journal of Process Control, 23
(9):1342–1349, 2013.

[65] M. Ellis and P. D. Christofides. Handling computational delay in economic model
predictive control of nonlinear process systems. In 2015 American Control Conference
(ACC), pages 2962–2967, 2015.

163



Bibliography

[66] R. Scattolini. Architectures for distributed and hierarchical Model Predictive Control
– A review. Journal of Process Control, 19(5):723–731, 2009.

[67] P. D. Christofides, R. Scattolini, Muñoz de la Peña, David, and J. Liu. Distributed
model predictive control: A tutorial review and future research directions. Computers
& Chemical Engineering, 51:21–41, 2013.

[68] M. A. Müller and F. Allgöwer. Economic and Distributed Model Predictive Control:
Recent Developments in Optimization-Based Control. SICE Journal of Control,
Measurement, and System Integration, 10(2):39–52, 2017.

[69] W.-H. Chen, J. O’Reilly, and D. J. Ballance. Model predictive control of nonlinear
systems: Computational burden and stability. IEE Proceedings - Control Theory
and Applications, 147(4):387–394, 2000.

[70] R. Findeisen and F. Allgöwer. Computational Delay in Nonlinear Model Predictive
Control. IFAC Proceedings Volumes, 37(1):427–432, 2004.

[71] L. Grüne, J. Pannek, and K. Worthmann. A prediction based control scheme for
networked systems with delays and packet dropouts. In Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pages 537–542, 2009.

[72] S. Tayari, R. Abedi, and A. Rahi. Comparative assessment of engine performance
and emissions fueled with three different biodiesel generations. Renewable Energy,
147:1058–1069, 2020.

[73] B. Freedman, R. O. Butterfield, and E. H. Pryde. Transesterification kinetics of
soybean oil 1. Journal of the American Oil Chemists’ Society, 63(10):1375–1380,
1986.

[74] V. Mandari and S. K. Devarai. Biodiesel Production Using Homogeneous, Hetero-
geneous, and Enzyme Catalysts via Transesterification and Esterification Reactions:
a Critical Review. BioEnergy Research, 15(2):935–961, 2022.

[75] M. N. B. Mohiddin, Y. H. Tan, Y. X. Seow, J. Kansedo, N. M. Mubarak, M. O.
Abdullah, Y. S. Chan, and M. Khalid. Evaluation on feedstock, technologies, catalyst
and reactor for sustainable biodiesel production: A review. Journal of Industrial and
Engineering Chemistry, 98:60–81, 2021.

[76] B. L. Salvi and N. L. Panwar. Biodiesel resources and production technologies – A
review. Renewable and Sustainable Energy Reviews, 16(6):3680–3689, 2012.

[77] G. Santori, G. Di Nicola, M. Moglie, and F. Polonara. A review analyzing the
industrial biodiesel production practice starting from vegetable oil refining. Applied
Energy, 92:109–132, 2012.

[78] C. C. Enweremadu and M. M. Mbarawa. Technical aspects of production and analysis
of biodiesel from used cooking oil—A review. Renewable and Sustainable Energy
Reviews, 13(9):2205–2224, 2009.

164



Bibliography

[79] M. J. Haas, A. J. McAloon, W. C. Yee, and T. A. Foglia. A process model to estimate
biodiesel production costs. Bioresource Technology, 97(4):671–678, 2006.

[80] A. H. West, D. Posarac, and N. Ellis. Assessment of four biodiesel production pro-
cesses using HYSYS.Plant. Bioresource Technology, 99(14):6587–6601, 2008.

[81] A. A. Apostolakou, I. K. Kookos, C. Marazioti, and K. C. Angelopoulos. Techno-
economic analysis of a biodiesel production process from vegetable oils. Fuel Pro-
cessing Technology, 90(7):1023–1031, 2009.

[82] L. L. Myint and M. M. El-Halwagi. Process analysis and optimization of biodiesel
production from soybean oil. Clean Technologies and Environmental Policy, 11(3):
263–276, 2009.

[83] G. Santana, P. F. Martins, N. de Da Lima Silva, C. B. Batistella, R. Maciel Filho,
and M. R. Wolf Maciel. Simulation and cost estimate for biodiesel production using
castor oil. Chemical Engineering Research and Design, 88(5):626–632, 2010.

[84] S. Lee, D. Posarac, and N. Ellis. Process simulation and economic analysis of biodiesel
production processes using fresh and waste vegetable oil and supercritical methanol.
Chemical Engineering Research and Design, 89(12):2626–2642, 2011.

[85] S. G. Zavarukhin, V. A. Yakovlev, V. N. Parmon, V. G. Sister, E. M. Ivannikova,
and O. A. Eliseeva. Development of a process for refining rape seed oil into biodiesel
and high-cetane components of diesel fuel. Chemistry and Technology of Fuels and
Oils, 46(1):1–8, 2010.

[86] H. Noureddini and D. Zhu. Kinetics of transesterification of soybean oil. Journal of
the American Oil Chemists’ Society, 74(11):1457–1463, 1997.

[87] Y. C. Sharma, B. Singh, and J. Korstad. Latest developments on application of
heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel:
A review. Fuel, 90(4):1309–1324, 2011.

[88] D. Kusdiana and S. Saka. Kinetics of transesterification in rapeseed oil to biodiesel
fuel as treated in supercritical methanol. Fuel, 80(5):693–698, 2001.

[89] G. Vicente, M. Martínez, J. Aracil, and A. Esteban. Kinetics of Sunflower Oil
Methanolysis. Industrial & Engineering Chemistry Research, 44(15):5447–5454,
2005.

[90] W. A. Wali, A. I. Al-Shamma’a, K. H. Hassan, and J. D. Cullen. Online genetic-
ANFIS temperature control for advanced microwave biodiesel reactor. Journal of
Process Control, 22(7):1256–1272, 2012.

[91] C. S. Bildea and A. A. Kiss. Dynamics and control of a biodiesel process by reactive
absorption. Chemical Engineering Research and Design, 89(2):187–196, 2011.

[92] Y. H. Shen, J. K. Cheng, J. D. Ward, and C. C. Yu. Design and control of biodiesel
production processes with phase split and recycle in the reactor system. Journal of
the Taiwan Institute of Chemical Engineers, 42(5):741–750, 2011.

165



Bibliography

[93] B. F. Da Silva, J. E. Schmitz, I. C. Franco, and F. V. Da Silva. Plantwide control
systems design and evaluation applied to biodiesel production. Biofuels, 12(10):
1199–1207, 2021.

[94] C. S. Bildea and A. A. Kiss. Plantwide Control of a Biodiesel Process by Reactive
Absorption. In S. Pierucci and G. B. Ferraris, editors, Computer Aided Chemical
Engineering: 20 European Symposium on Computer Aided Process Engineering, vol-
ume 28, pages 535–540. Elsevier, 2010.

[95] A. Regalado-Méndez, R. Romero, R. Natividad, and S. Skogestad. Plant-Wide
Control of a Reactive Distillation Column on Biodiesel Production. In R. Silhavy,
R. Senkerik, Z. K. Oplatkova, P. Silhavy, and Z. Prokopova, editors, Automation
Control Theory Perspectives in Intelligent Systems, pages 107–117, Cham, 2016.
Springer International Publishing.

[96] F. S. Mjalli and M. A. Hussain. Approximate Predictive versus Self-Tuning Adap-
tive Control Strategies of Biodiesel Reactors. Industrial & Engineering Chemistry
Research, 48(24):11034–11047, 2009.

[97] A. S. Brásio, A. Romanenko, N. C. Fernandes, and L. O. Santos. First principle
modeling and predictive control of a continuous biodiesel plant. Journal of Process
Control, 47:11–21, 2016.

[98] P. T. Benavides and U. Diwekar. Optimal control of biodiesel production in a batch
reactor: Part I: Deterministic control. Fuel, 94:211–217, 2012.

[99] P. T. Benavides and U. Diwekar. Optimal control of biodiesel production in a batch
reactor: Part II: Stochastic control. Fuel, 94:218–226, 2012.

[100] P. T. Benavides and U. Diwekar. Studying various optimal control problems in
biodiesel production in a batch reactor under uncertainty. Fuel, 103:585–592, 2013.

[101] Aspen Technology. Aspen Plus | Process Simulation Software | AspenTech, 2022.

[102] Aspen Technology. Aspen HYSYS | Process Simulation Software | AspenTech, 2022.

[103] A.-F. Chang and Y. A. Liu. Integrated Process Modeling and Product Design of
Biodiesel Manufacturing. Industrial & Engineering Chemistry Research, 49(3):1197–
1213, 2010.

[104] A. S. Brásio, A. Romanenko, J. Leal, L. O. Santos, and N. C. Fernandes. Nonlin-
ear model predictive control of biodiesel production via transesterification of used
vegetable oils. Journal of Process Control, 23(10):1471–1479, 2013.

[105] M. Reza Talaghat, S. Mokhtari, and M. Saadat. Modeling and optimization of
biodiesel production from microalgae in a batch reactor. Fuel, 280:118578, 2020.

[106] V. K. Aniya, R. K. Muktham, K. Alka, and B. Satyavathi. Modeling and simulation
of batch kinetics of non-edible karanja oil for biodiesel production: A mass transfer
study. Fuel, 161:137–145, 2015.

166



Bibliography

[107] L.-H. Cheng, S.-Y. Yen, Z.-S. Chen, and J. Chen. Modeling and simulation of
biodiesel production using a membrane reactor integrated with a prereactor. Chem-
ical Engineering Science, 69(1):81–92, 2012.

[108] O. Farobie, N. Hasanah, and Y. Matsumura. Artificial Neural Network Modeling
to Predict Biodiesel Production in Supercritical Methanol and Ethanol Using Spiral
Reactor. Procedia Environmental Sciences, 28:214–223, 2015.

[109] H. Renon and J. M. Prausnitz. Local compositions in thermodynamic excess func-
tions for liquid mixtures. AIChE Journal, 14(1):135–144, 1968.

[110] Design Institute for Physical Property Data. DIPPR Project 801, Full Version:
Evaluated Standard Thermophysical Property Values. BYU DIPPR, Thermophysical
Properties Laboratory, Provo, 2010.

[111] J. J. Downs and S. Skogestad. An industrial and academic perspective on plantwide
control. Annual Reviews in Control, 35(1):99–110, 2011.

[112] W. L. Luyben, B. D. Tyréus, and M. L. Luyben. Plantwide Process Control. McGraw-
Hill, New York, United States, 1998.

[113] S. Skogestad. Control structure design for complete chemical plants. Computers &
Chemical Engineering, 28(1-2):219–234, 2004.

[114] A. C. de Araújo, M. Govatsmark, and S. Skogestad. Application of plantwide control
to the HDA process. I steady-state optimization and self-optimizing control. Control
Engineering Practice, 15(10):1222–1237, 2007.

[115] A. C. B. de Araújo, E. S. Hori, and S. Skogestad. Application of Plantwide Control
to the HDA Process. II Regulatory Control. Industrial & Engineering Chemistry
Research, 46(15):5159–5174, 2007.

[116] N. V. S. N. Murthy Konda, G. P. Rangaiah, and P. R. Krishnaswamy. Plantwide
Control of Industrial Processes: An Integrated Framework of Simulation and Heuris-
tics. Industrial & Engineering Chemistry Research, 44(22):8300–8313, 2005.

[117] P. C. Narváez, S. M. Rincón, and F. J. Sánchez. Kinetics of Palm Oil Methanolysis.
Journal of the American Oil Chemists’ Society, 84(10):971–977, 2007.

[118] D. M. Yancy-Caballero and R. Guirardello. Modeling and parameters fitting of
chemical and phase equilibria in reactive systems for biodiesel production. Biomass
and Bioenergy, 81(1):544–555, 2015.

[119] A. A. Albuquerque, F. T. Ng, L. Danielski, and L. Stragevitch. Phase equilibrium
modeling in biodiesel production by reactive distillation. Fuel, 271(6):117688, 2020.

[120] A. Salehi, A. Karbassi, B. Ghobadian, A. Ghasemi, and A. Doustgani. Simulation
process of biodiesel production plant. Environmental Progress & Sustainable Energy,
38(6):e13264, 2019.

167



Bibliography

[121] J. D. Engerer, G. R. Jackson, R. Paul, and T. S. Fisher. Flash Boiling and Des-
orption From a Macroporous Carbon-Boron-Nitrogen Foam. In Volume 6B: Energy.
American Society of Mechanical Engineers, 2013.

[122] British Standards Institution. Automotive fuels — Fatty acid methyl esters (FAME)
for diesel engines — Requirements and test methods: EN 14214:2008+A1:2009, 2010.

[123] German Union for the Promotion of Oil and Protein Plants. Annual Report
2020/2021: Biodiesel production capacities in Germany in 2020, 2020.

[124] K. M. Ebeling, D. Bongartz, S. Mürtz, R. Palkovits, and A. Mitsos. Thermodynamic
and Economic Potential of Glycerol Oxidation to Replace Oxygen Evolution in Water
Electrolysis. Industrial & Engineering Chemistry Research, 63(18):8250–8260, 2024.

[125] R. Manosak, S. Limpattayanate, and M. Hunsom. Sequential-refining of crude glyc-
erol derived from waste used-oil methyl ester plant via a combined process of chemical
and adsorption. Fuel Processing Technology, 92(1):92–99, 2011.

[126] R. Ciriminna, C. Della Pina, M. Rossi, and M. Pagliaro. Understanding the glycerol
market. European Journal of Lipid Science and Technology, 116(10):1432–1439, 2014.

[127] S. B. Glisic and A. M. Orlović. Review of biodiesel synthesis from waste oil under
elevated pressure and temperature: Phase equilibrium, reaction kinetics, process
design and techno-economic study. Renewable and Sustainable Energy Reviews, 31:
708–725, 2014.

[128] V. Hagenmeyer and M. Nohr. Flatness-Based Two-Degree-of-Freedom Control of
Industrial Semi-Batch Reactors. In T. Meurer, K. Graichen, and E. D. Gilles, editors,
Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems,
pages 315–332. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[129] T. Meurer, K. Graichen, and E. D. Gilles, editors. Control and Observer Design
for Nonlinear Finite and Infinite Dimensional Systems. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[130] A. U. Raghunathan, M. Soledad Diaz, and L. T. Biegler. An MPEC formulation for
dynamic optimization of distillation operations. Computers & Chemical Engineering,
28(10):2037–2052, 2004.

[131] A. Caspari, C. Offermanns, P. Schäfer, A. Mhamdi, and A. Mitsos. A flexible air
separation process: 1. Design and steady–state optimizations. AIChE Journal, 65
(11):467, 2019.

[132] H. G. Rackett. Equation of state for saturated liquids. Journal of Chemical &
Engineering Data, 15(4):514–517, 1970.

[133] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell. The properties of gases and
liquids. McGraw-Hill, New York, 5th edition, 2001.

[134] Aspen Technology. Aspen Physical Property System: Physical property methods
and models, 2013.

168



Bibliography

[135] Q. M. Yu-Wu, E. Weiss-Hortala, R. Barna, H. Boucard, and S. Bulza. Glycerol and
bioglycerol conversion in supercritical water for hydrogen production. Environmental
Technology, 33(19-21):2245–2255, 2012.

[136] N. R. Jaegers, W. Hu, T. J. Weber, and J. Z. Hu. Low-temperature (< 200 °C)
degradation of electronic nicotine delivery system liquids generates toxic aldehydes.
Scientific Reports, 11(1):7800, 2021.

[137] W. Sakdasri, S. Ngamprasertsith, P. Saengsuk, and R. Sawangkeaw. Supercritical
reaction between methanol and glycerol: The effects of reaction products on biodiesel
properties. Energy Conversion and Management: X, 12(2):100145, 2021.

[138] H.-Y. Shin, S.-M. Lim, S.-Y. Bae, and S. C. Oh. Thermal decomposition and stability
of fatty acid methyl esters in supercritical methanol. Journal of Analytical and
Applied Pyrolysis, 92(2):332–338, 2011.

[139] Y. Zhu. An Experimental Study on Thermal Stability of Biodiesel Fuel. Master
Thesis, Syracuse University, 2012.

[140] N. V. S. N. Murthy Konda, G. P. Rangaiah, and P. R. Krishnaswamy. A simple and
effective procedure for control degrees of freedom. Chemical Engineering Science, 61
(4):1184–1194, 2006.

[141] W. L. Luyben, B. D. Tyreus, and M. Luyben. Plantwide process control. McGraw-
Hill, New York, United States, 1999.

[142] Dassault Systèmes. Dymola Systems Engineering. https://www.3ds.com/
products-services/catia/products/dymola, 2022. Accessed: March 22, 2023.

[143] University of California Santa Barbara. DASSL: Software | Computational Science
and Engineering Research Group, 2022.

[144] S. Vasudevan and G. P. Rangaiah. Criteria for Performance Assessment of Plantwide
Control Systems. Industrial & Engineering Chemistry Research, 49(19):9209–9221,
2010.

[145] N. V. S. N. Murthy Konda and G. P. Rangaiah. Performance Assessment of Plantwide
Control Systems of Industrial Processes. Industrial & Engineering Chemistry Re-
search, 46(4):1220–1231, 2007.

[146] Neste market data. Palm and rapeseed oil prices. https://www.
agora-energiewende.de, 2023. Accessed: March 29, 2023.

[147] B. Bruns, F. Herrmann, M. Polyakova, M. Grünewald, and J. Riese. A systematic
approach to define flexibility in chemical engineering. Journal of Advanced Manu-
facturing and Processing, 2(4):e10063, 2020.

[148] R. W. H. Sargent and G. R. Sullivan. The development of an efficient optimal control
package. In J. Stoer, editor, Optimization Techniques, pages 158–168. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1978.

169

https://www.3ds.com/products-services/catia/products/dymola
https://www.3ds.com/products-services/catia/products/dymola
https://www.agora-energiewende.de
https://www.agora-energiewende.de


Bibliography

[149] C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. Efficient direct multiple
shooting for nonlinear model predictive control on long horizons. Journal of Process
Control, 22(3):540–550, 2012.

[150] S. Kameswaran and L. T. Biegler. Simultaneous dynamic optimization strategies:
Recent advances and challenges. Computers & Chemical Engineering, 30(10):1560–
1575, 2006.

[151] C. Pablos, A. Merino, L. F. Acebes, J. L. Pitarch, and L. T. Biegler. Dynamic op-
timization approach to coordinate industrial production and cogeneration operation
under electricity price fluctuations. Computers & Chemical Engineering, 149:107292,
2021.

[152] F. J. Baader, A. Bardow, and M. Dahmen. Simultaneous mixed-integer dynamic
scheduling of processes and their energy systems. AIChE Journal, 68(8):e17741,
2022.

[153] C. Hank, S. Gelpke, A. Schnabl, R. J. White, J. Full, N. Wiebe, T. Smolinka,
A. Schaadt, H.-M. Henning, and C. Hebling. Economics & carbon dioxide avoid-
ance cost of methanol production based on renewable hydrogen and recycled carbon
dioxide-power-to-methanol. Sustainable Energy and Fuels, 2(6):1244–1261, 2018.

[154] Y. H. Chew, A. L. Ling, and A. Jaya. Distillation Column Selection and Sizing,
2011.

[155] A. A. Kiss. Advanced Distillation Technologies: Design, Control and Applications.
Wiley, 2013.

[156] R. W. Serth and T. Lestina. Process Heat Transfer: Principles, Applications and
Rules of Thumb. Elsevier Science, 2014.

[157] D. W. Green and M. Z. Southard. Perry’s chemical engineers’ handbook. McGraw
Hill Education, New York, ninth edition, 85th anniversary edition, 2019.

[158] R. Sánta. Investigations of the performance of a heat pump with internal heat
exchanger. Journal of Thermal Analysis and Calorimetry, 147(15):8499–8508, 2022.

[159] S. S. Baakeem, J. Orfi, and A. Alabdulkarem. Optimization of a multistage vapor-
compression refrigeration system for various refrigerants. Applied Thermal Engineer-
ing, 136:84–96, 2018.

[160] M. O. McLinden, C. J. Seeton, and A. Pearson. New refrigerants and system config-
urations for vapor-compression refrigeration. Science (New York, N.Y.), 370(6518):
791–796, 2020.

[161] T. H. Karakoc and M. B. Ozerdem. Sustainable Aviation: Energy and Environmental
Issues. Springer International Publishing and Imprint: Springer, Cham, 1st edition,
2016.

[162] B. Eppinger, L. Zigan, J. Karl, and S. Will. Pumped thermal energy storage with
heat pump-ORC-systems: Comparison of latent and sensible thermal storages for
various fluids. Applied Energy, 280:115940, 2020.

170



Bibliography

[163] G. F. Frate, L. Ferrari, and U. Desideri. Analysis of suitability ranges of high temper-
ature heat pump working fluids. Applied Thermal Engineering, 150:628–640, 2019.

[164] K. A. Aikins, S.-H. Lee, and J. M. Choi. Technology Review of Two-Stage Vapor
Compression Heat Pump System. International Journal of Air-Conditioning and
Refrigeration, 21(03):1330002, 2013.

[165] A. Mota-Babiloni, C. Mateu-Royo, J. Navarro-Esbrí, F. Molés, M. Amat-Albuixech,
and Á. Barragán-Cervera. Optimisation of high-temperature heat pump cascades
with internal heat exchangers using refrigerants with low global warming potential.
Energy, 165:1248–1258, 2018.

[166] C. Arpagaus, F. Bless, M. Uhlmann, J. Schiffmann, and S. S. Bertsch. High temper-
ature heat pumps: Market overview, state of the art, research status, refrigerants,
and application potentials. Energy, 152:985–1010, 2018.

[167] C. Mateu-Royo, C. Arpagaus, A. Mota-Babiloni, J. Navarro-Esbrí, and S. S. Bertsch.
Advanced high temperature heat pump configurations using low GWP refrigerants
for industrial waste heat recovery: A comprehensive study. Energy Conversion and
Management, 229:113752, 2021.

[168] A. Cavallini, L. Cecchinato, M. Corradi, E. Fornasieri, and C. Zilio. Two-stage tran-
scritical carbon dioxide cycle optimisation: A theoretical and experimental analysis.
International Journal of Refrigeration, 28(8):1274–1283, 2005.

[169] L. J. Müller, A. Kätelhön, S. Bringezu, S. McCoy, S. Suh, R. Edwards, V. Sick,
S. Kaiser, R. Cuéllar-Franca, A. El Khamlichi, J. H. Lee, N. von der Assen, and
A. Bardow. The carbon footprint of the carbon feedstock CO 2. Energy & Environ-
mental Science, 13(9):2979–2992, 2020.

[170] C. Schoeneberger, J. Zhang, C. McMillan, J. B. Dunn, and E. Masanet. Electrifica-
tion potential of U.S. industrial boilers and assessment of the GHG emissions impact.
Advances in Applied Energy, 5:100089, 2022.

[171] L. T. Biegler. Nonlinear programming: concepts, algorithms, and applications to
chemical processes. SIAM, 2010.

[172] A. Caspari, L. Lüken, P. Schäfer, Y. Vaupel, A. Mhamdi, L. T. Biegler, and A. Mit-
sos. Dynamic optimization with complementarity constraints: Smoothing for direct
shooting. Computers & Chemical Engineering, 139:106891, 2020.

[173] A. Fischer. A special newton-type optimization method. Optimization, 24(3-4):
269–284, 1992.

[174] M. Patrascu and P. I. Barton. Optimal campaigns in end-to-end continuous pharma-
ceuticals manufacturing. Part 2: Dynamic optimization. Chemical Engineering and
Processing - Process Intensification, 125:124–132, 2018.

[175] D. Ralph and S. J. Wright. Some properties of regularization and penalization
schemes for MPECs. Optimization Methods and Software, 19(5):527–556, 2004.

171



Bibliography

[176] R. C. Pattison and M. Baldea. Multistream heat exchangers: Equation-oriented
modeling and flowsheet optimization. AIChE Journal, 61(6):1856–1866, 2015.

[177] SMARD. Market data visuals. http://www.smard.de, 2023. Accessed: March 22,
2023.

[178] R. Hannemann, W. Marquardt, U. Naumann, and B. Gendler. Discrete first- and
second-order adjoints and automatic differentiation for the sensitivity analysis of
dynamic models. Procedia Computer Science, 1(1):297–305, 2010.

[179] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algorithm for Large-
Scale Constrained Optimization. SIAM Review, 47(1):99–131, 2005.

[180] Functional mock-up interface for model exchange and co-simulation. https://
fmi-standard.org, 2023. Accessed: March 22, 2023.

[181] R. C. Pattison, C. R. Touretzky, T. Johansson, I. Harjunkoski, and M. Baldea.
Optimal Process Operations in Fast-Changing Electricity Markets: Framework for
Scheduling with Low-Order Dynamic Models and an Air Separation Application.
Industrial & Engineering Chemistry Research, 55(16):4562–4584, 2016.

[182] R. Amrit, J. B. Rawlings, and D. Angeli. Economic optimization using model pre-
dictive control with a terminal cost. Annual Reviews in Control, 35(2):178–186,
2011.

[183] P. N. Köhler, M. A. Müller, and F. Allgöwer. Transient performance of economic
model predictive control with average constraints. In 2017 IEEE 56th Annual Con-
ference on Decision and Control (CDC), pages 5557–5562, 2017.

[184] M. Alamir and G. Pannocchia. A new formulation of Economic Model Predictive
Control without terminal constraint. Automatica, 125:109420, 2021.

[185] K.-H. Lin and L. T. Biegler. Self-stabilizing economic model predictive control
without pre-calculated steady-state optima: Stability and robustness. Computers
& Chemical Engineering, 178:108349, 2023.

[186] J. Köhler, M. A. Müller, and F. Allgöwer. Analysis and design of model predictive
control frameworks for dynamic operation—An overview. Annual Reviews in Control,
57:100929, 2024.

[187] J. Liu, X. Chen, Muñoz de la Peña, David, and P. D. Christofides. Sequential and
iterative architectures for distributed model predictive control of nonlinear process
systems. AIChE Journal, 56(8):2137–2149, 2010.

[188] R. Moliner-Heredia, I. Peñarrocha-Alós, and R. Sanchis-Llopis. Economic model pre-
dictive control of wastewater treatment plants based on BSM1 using linear prediction
models. In 2019 IEEE 15th International Conference on Control and Automation
(ICCA), pages 73–78, 2019.

[189] G. D. Patrón, K. Toffolo, and L. Ricardez-Sandoval. Economic model predictive
control for packed bed chemical looping combustion. Chemical Engineering and
Processing - Process Intensification, 198:109731, 2024.

172

http://www.smard.de
https://fmi-standard.org
https://fmi-standard.org


Bibliography

[190] R. Huang, V. M. Zavala, and L. T. Biegler. Advanced step nonlinear model predictive
control for air separation units. Journal of Process Control, 19(4):678–685, 2009.

[191] P. Schäfer, A. Caspari, K. Kleinhans, A. Mhamdi, and A. Mitsos. Reduced dy-
namic modeling approach for rectification columns based on compartmentalization
and artificial neural networks. AIChE Journal, 65(5):e16568, 2019.

[192] P. Schäfer, A. Caspari, A. Mhamdi, and A. Mitsos. Economic nonlinear model pre-
dictive control using hybrid mechanistic data-driven models for optimal operation in
real-time electricity markets: In-silico application to air separation processes. Journal
of Process Control, 84:171–181, 2019.

[193] R. Nian, J. Liu, and B. Huang. A review On reinforcement learning: Introduction
and applications in industrial process control. Computers & Chemical Engineering,
139:106886, 2020.

[194] J. C. Schulze, D. T. Doncevic, and A. Mitsos. Identification of MIMO Wiener-type
Koopman models for data-driven model reduction using deep learning. Computers
& Chemical Engineering, 161:107781, 2022.

[195] H. Scheu and W. Marquardt. Sensitivity-based coordination in distributed model
predictive control. Journal of Process Control, 21(5):715–728, 2011.

[196] C. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger. Distributed synthesis and
stability of cooperative distributed model predictive control for linear systems. Au-
tomatica, 69:117–125, 2016.

[197] L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algo-
rithms. Communications and Control Engineering. Springer Cham, Cham, 2017.

[198] J. B. Rawlings and B. T. Stewart. Coordinating multiple optimization-based con-
trollers: New opportunities and challenges. Journal of Process Control, 18(9):839–
845, 2008.

[199] A. N. Venkat, J. B. Rawlings, and S. J. Wright. Stability and optimality of distributed
model predictive control. In Proceedings of the 44th IEEE Conference on Decision
and Control, pages 6680–6685, 2005.

[200] A. Caspari, C. Offermanns, A.-M. Ecker, M. Pottmann, G. Zapp, A. Mhamdi, and
A. Mitsos. A wave propagation approach for reduced dynamic modeling of distillation
columns: Optimization and control. Journal of Process Control, 91:12–24, 2020.

[201] D. Angeli, R. Amrit, and J. B. Rawlings. On Average Performance and Stability of
Economic Model Predictive Control. IEEE Transactions on Automatic Control, 57
(7):1615–1626, 2012.

[202] T. Faulwasser, L. Grüne, and M. A. Müller. Economic Nonlinear Model Predictive
Control. Foundations and Trends® in Systems and Control, 5(1):1–98, 2018.

[203] D. W. Griffith, V. M. Zavala, and L. T. Biegler. Robustly stable economic NMPC
for non-dissipative stage costs. Journal of Process Control, 57:116–126, 2017.

173



Bibliography

[204] V. M. Zavala and L. T. Biegler. The advanced-step NMPC controller: Optimality,
stability and robustness. Automatica, 45(1):86–93, 2009.

[205] S. Chen, Z. Wu, D. Rincon, and P. D. Christofides. Machine learning-based dis-
tributed model predictive control of nonlinear processes. AIChE Journal, 66(11):
e17013, 2020.

[206] T. Zhao, Y. Zheng, and Z. Wu. Feature selection-based machine learning modeling for
distributed model predictive control of nonlinear processes. Computers & Chemical
Engineering, 169:108074, 2023.

[207] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive
control (feasibility implies stability). IEEE Transactions on Automatic Control, 44
(3):648–654, 1999.

[208] M. Diehl, H. G. Bock, and J. P. Schlöder. A Real-Time Iteration Scheme for Non-
linear Optimization in Optimal Feedback Control. SIAM Journal on Control and
Optimization, 43(5):1714–1736, 2005.

[209] L. Würth, R. Hannemann, and W. Marquardt. Neighboring-extremal updates for
nonlinear model-predictive control and dynamic real-time optimization. Journal of
Process Control, 19(8):1277–1288, 2009.

[210] I. J. Wolf, D. A. Muñoz, and W. Marquardt. Consistent hierarchical economic NMPC
for a class of hybrid systems using neighboring-extremal updates. Journal of Process
Control, 24(2):389–398, 2014.

[211] Z. Zhou, Z. Liu, H. Su, and L. Zhang. Model predictive control with fractional-order
delay compensation for fast sampling systems. Science China Information Sciences,
64(7):172211, 2021.

[212] J. Jäschke, X. Yang, and L. T. Biegler. Fast economic model predictive control based
on NLP-sensitivities. Journal of Process Control, 24(8):1260–1272, 2014.

[213] S. R. Logan. The origin and status of the Arrhenius equation. Journal of Chemical
Education, 59(4):279, 1982.

[214] Aspen Technology. Biodiesel Production from Vegetable Oil: Aspen Plus Biodiesel
Model, 2014.

[215] F. A. Aly and L. L. Lee. Self-consistent equations for calculating the ideal gas heat
capacity, enthalpy, and entropy. Fluid Phase Equilibria, 6(3):169–179, 1981.

[216] V. Gopal and L. T. Biegler. Nonsmooth dynamic simulation with linear programming
based methods. Computers & Chemical Engineering, 21(7):675–689, 1997.

[217] A. M. Sahlodin, H. A. J. Watson, and P. I. Barton. Nonsmooth model for dynamic
simulation of phase changes. AIChE Journal, 62(9):3334–3351, 2016.

[218] T. Ploch, M. Glass, A. M. Bremen, R. Hannemann-Tamás, and A. Mitsos. Modeling
of dynamic systems with a variable number of phases in liquid-liquid equilibria.
AIChE Journal, 65(2):571–581, 2019.

174



Bibliography

[219] Neste market data. Palm and rapeseed oil prices. https://www.neste.
com/investors/market-data/palm-and-rapeseed-oil-prices, 2023. Accessed:
March 23, 2023.

[220] FRED economic data. Global price of Rapeseed Oil. https://fred.stlouisfed.
org/series/PROILUSDM, 2023. Accessed: March 23, 2023.

[221] Chemanalyst. Methanol Price Trend and Forecast. https://www.chemanalyst.com,
2023. Accessed: March 23, 2023.

[222] Methanex. Methanex Methanol Price. https://www.methanex.com/
about-methanol/pricing, 2023. Accessed: March 23, 2023.

[223] Chemanalyst. Caustic Soda Price Trend and Forecast. https://www.chemanalyst.
com, 2023. Accessed: March 23, 2023.

[224] ChemNet. Phosphoric Acid Market. http://news.chemnet.com/Chemical-News/
detail-2461845.html, 2023. Accessed: March 23, 2023.

[225] Statista. Wholesale biodiesel price in Germany from 2019
to 2022. https://www.statista.com/statistics/1295994/
biodiesel-fuel-wholesale-price-in-germany, 2023. Accessed: March 23,
2023.

[226] C. A. Quispe, C. J. Coronado, and J. A. Carvalho Jr. Glycerol: Production, con-
sumption, prices, characterization and new trends in combustion. Renewable and
Sustainable Energy Reviews, 27:475–493, 2013.

[227] World Bank Blogs. Fertilizer prices expected to remain
higher for longer. https://blogs.worldbank.org/opendata/
fertilizer-prices-expected-remain-higher-longer, 2023. Accessed: March
23, 2023.

175

https://www.neste.com/investors/market-data/palm-and-rapeseed-oil-prices
https://www.neste.com/investors/market-data/palm-and-rapeseed-oil-prices
https://fred.stlouisfed.org/series/PROILUSDM
https://fred.stlouisfed.org/series/PROILUSDM
https://www.chemanalyst.com
https://www.methanex.com/about-methanol/pricing
https://www.methanex.com/about-methanol/pricing
https://www.chemanalyst.com
https://www.chemanalyst.com
http://news.chemnet.com/Chemical-News/detail-2461845.html
http://news.chemnet.com/Chemical-News/detail-2461845.html
https://www.statista.com/statistics/1295994/biodiesel-fuel-wholesale-price-in-germany
https://www.statista.com/statistics/1295994/biodiesel-fuel-wholesale-price-in-germany
https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer
https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer


DOI: 10.18154/RWTH-2025-03483


	Acronyms
	Kurzfassung
	Summary
	Publications and Copyrights
	Introduction
	Dynamic Modeling and Plantwide Control of a Production Process for Biodiesel and Glycerol
	Introduction
	Process Description and Operating Conditions
	Dynamic Process Model
	Design of the Plantwide Control Structures
	IFSH Methodology for PWC-A
	IFSH Methodology for PWC-B

	Simulation Scenarios for Assessment of Process Dynamics and PWC Performance
	Simulation Results for Validation of the Dynamic Model and Assessment of the PWC Structures
	Dynamic Behavior of the Main Unit Operations
	Performance of the PWC Structures

	Conclusion

	Optimal Design and Flexible Operation of a Fully Electrified Biodiesel Production Process
	Introduction
	Biodiesel and Glycerol Production Process
	Process Flowsheet
	Process Modeling
	Electrification of Process Units

	Process Optimization for Flexible Operation Using Buffer Tanks
	Mathematical Formulation
	Steady-State Optimization via Dynamic Terminal-State Optimization
	Process Configurations and Dynamic Optimization for Flexible Operation

	Operational Scenario
	Implementation
	Results and Discussion
	Production Rate and Power Demand
	Buffer Tank Levels
	Flexible Purity Production
	Economic Evaluation
	Solution Times

	Conclusion

	Optimal Flexible Operation of Electrified and Heat-Integrated Biodiesel Production
	Introduction
	Biodiesel Production Application
	Process Configurations with Full Heat Integration
	Process Configuration with Vapor Recompression and Heat Integration

	Dynamic Optimization Problem
	Scenario and Implementation
	Results and Discussion
	Production Rates and Power Demand
	Economic Evaluation
	Computational Performance

	Conclusion

	Distributed Economic Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production: Sequential Architectures
	Introduction
	Biodiesel Production Process
	Process Description
	Buffer Tanks for Flexible Operation and Process Segmentation
	Process Modeling
	Operational Degrees of Freedom
	Process Configurations

	Distributed Economic Nonlinear Model Predictive Control Scheme
	Distributed Control
	System Coupling for Distributed Control
	Mathematical Formulation
	eNMPC Stability Formulations

	Operational Scenarios and Strategies
	Operational Scenarios
	Operational Strategies

	Performance Comparison for Operational Strategies
	Electricity Cost Normalization
	Control Action

	Numerical Implementation
	Results and Discussion
	Quasi-Stationary Scheduling
	Comparison of DeNMPC with Benchmark Strategies
	Computational Costs
	DeNMPC under Load Disturbance
	DeNMPC with Stability Formulations under Feed Disturbance

	Conclusion

	Distributed Economic Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production: Sequential and Iterative Architectures with Computational Delay Compensation
	Introduction
	Distributed Control for Flexible Biodiesel Production
	Distributed Control Strategies
	System Coupling in Distributed Control
	eNMPC Mathematical Formulation

	Computational Delay Compensation Scheme
	Delay Compensation over One Sampling Time Interval
	Delay Compensation over Multiple Sampling Time Intervals
	Delay Compensation in Distributed Control
	Computational Delay without Compensation

	Operational Scenarios and Strategies
	Numerical Results and Discussion
	Evaluation of the DeNMPC Strategies under Ideal Computational Conditions
	eNMPC Computational Costs
	Comparison of the DeNMPC Strategies with Delay Compensation under Feed Disturbance
	Effects of Computational Delay

	Conclusion

	Conclusion and Outlook
	Dynamic Modeling and Plantwide Control of a Production Process for Biodiesel and Glycerol
	Full Process Model
	Unit Operations Models
	Models of the Thermodynamic Properties

	Process Flowsheet with PWC-B Configuration
	Comparison of the Steady-State Simulation Results to That of Aspen Plus
	Transesterifier
	FAME Column
	Wash Column

	Additional Results

	Optimal Design and Flexible Operation of a Fully Electrified Biodiesel Production Process
	Fitted Equations for the Water-Methanol Column
	Material Prices
	Further Profiles

	Distributed Economic Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production: Sequential Architectures
	Model Fitting for Quasi-Stationary Scheduling
	Overview of Process Configurations, Control Variables, and Constraints of the Considered Operational Strategies

	Distributed Economic Nonlinear Model Predictive Control for Flexible Electrified Biodiesel Production: Sequential and Iterative Architectures with Computational Delay Compensation
	Overview of Process Configurations, Control Variables, and Constraints of the Considered Operational Strategies

	Bibliography

