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Abstract
Research indicates the effectiveness of machine learning for condition monitoring in sheet metal shearing. However, existing
studies primarily focused onmodel accuracywhile neglectingmodel explainability. In consequence, potential biases and novel
insights captured by the models remained concealed. This work contributes to the state of the art by exploring the intersection
of deep learning and causal inference to obtain an explainable condition monitoring model. A causal representation learning
framework based on the variational autoencoder architecture is adapted to derive a latent variable model of punch force
signals from a fine blanking process. The latent variable model serves two purposes. First, it identifies latent factors explaining
variations in observed force signals. Second, it provides a generative model that translates manipulations of latent factors into
corresponding force signal changes, thereby, enabling interpretation of the factors. The latent variable model is integrated
with a neural network that estimates punch wear. The importance of the latent factors with respect to the network’s wear
predictions is analyzed to understand how the model arrives at its predictions. Experimental findings indicate that the latent
variable model successfully discovered factors which correspond to real-world mechanisms affecting the punch force. One
latent factor isolated a bias from measurement interventions, while another captured force variations which are attributed to
punch wear itself. Furthermore, the approach demonstrated effectiveness in detecting biased prediction models, contributing
to more reliable condition monitoring systems.

Keywords Explainable AI · XAI · Fine blanking · Sheet metal shearing · Condition monitoring · Time series

Introduction

Sheet metal forming and shearing processes are fundamen-
tal for the series production of components, e.g., in the
automotive, the medical, or the household appliances indus-
tries (Klocke, 2013). Many researchers studied data-driven
methods, in particular supervised and unsupervised machine
learning, for condition monitoring in these processes (e.g.,
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Asahi et al, 2021, Molitor et al. 2022). Machine learning
enables to indirectly infer the state of tool components, which
are not directly observable in industrial processes, from pro-
cess signals like acoustic emission data (Unterberg et al.,
2024). Ultimately, the aim of these scientific efforts is to pro-
videmanufacturers with a transparency about their processes
that allows them to optimize their maintenance protocols and
thereby reduce machine downtimes and extend machine life
(Kubik et al., 2022b).

Many publications indicate that machine learning mod-
els achieved promising predictive accuracies in the context
of condition monitoring in sheet metal processing (see Sec-
tion“State of the art of condition monitoring in sheet metal
shearing"). However, existing research often neglects how
the models arrived at their predictions. Models are often
solely validated based on their outputs, neglecting their
explainability and essentially treating them as black boxes.
Consequently, these models only provide limited insights
into the relationship between, e.g.,wearmechanisms andpro-
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cess signals. Moreover, biases in the data and models remain
concealed.

The field of explainable AI (xAI) is concerned with meth-
ods that enhance the explainability of machine learning
models and thereby addresses the aforementioned research
gap. As pointed out by Liewald et al. (2022), xAI methods
are not yet prevalent in in the field of metal forming and
shearing but bear the potential to gain insights about pre-
viously unknown relationships between features of process
data and the physical state of the process. Explainable AI
methods not only contribute to an increased acceptance of
data-driven models, but may also facilitate conclusions for
improved process design.

The effectiveness of a machine learning model heavily
relies on how the input data is represented through features
(Goodfellow et al., 2016). Since the relationship between
wear and process signals is not yet fully understood, manual
feature engineering bears the risk of neglecting relevant but
so far undiscovered features. Thus, amachine learning-based
wearmonitoring systemwould ideally receive thewhole pro-
cess signal and identify relevant features autonomously.

As Section“State of the art of condition monitoring in
sheetmetal shearing"will show, process signals used forwear
monitoring in sheet metal shearing are typically recorded
in the form of time series data (e.g., force signals). Com-
pared to image or tabular data, time series data pose a unique
challenge for explainable AI. Well established xAI meth-
ods like SHAP (Lundberg & Lee, 2017) effectively explain
model decisions for images and tabular data by quantifying
the importance of input pixels or features. Important regions
in images are visually interpretable. For instance, it would be
possible to check whether a vision-based monitoring model
focuses on worn areas in an image or on another spuriously
correlated feature. Similarly, engineered features have a clear
meaning to their human developers. In contrast, when data
points in time series are identified as important, it remains
ambiguous whether the model is responding to the absolute
values, the slope, the shape or other characteristics. Hence,
an xAI model for process signals from sheet metal shearing
processes requires more expressive explanations that facili-
tate interpretation by engineers.

Concluding, there are two interrelated main challenges,
which this paper aims to address: On the one hand, poten-
tially novel and relevant features must be identified from raw
process signals. On the other hand, explanationsmust be suit-
able for time series data from sheet metal shearing processes.

This article advances the current state of the art of con-
dition monitoring in sheet metal shearing by making the
following three contributions:

1. This research presents an approach for learning explain-
able condition monitoring models directly from raw
process data. Through a generative model the method

provides clear and expressive illustrations of process sig-
nal characteristics, which contribute to wear predictions.
The approach is validated using force signals from a fine
blanking machine to estimate punch wear.

2. The learned model is used to identify a specific feature
of the raw force signals which may serve as a valuable
indicator for wear monitoring in fine blanking.

3. The article highlights the importance of xAI by uncover-
ing a bias in a predictive model trained in the course of
this research.

The following Section“State of the art of condition mon-
itoring in sheet metal shearing" reviews related scientific
literature and highlights current research gaps that this article
addresses. Based on these gaps, Section“Research objectives
and approach" establishes the research objectives and ques-
tions of this work.

State of the art of conditionmonitoring in sheet
metal shearing

Lee et al. (1997) fitted an autoregressive model on force peak
values from a blanking process and used the model’s coeffi-
cients as input features for a linear discriminant analysis to
classify punch wear states as sharp or worn. Explanations for
the model’s predictions were not considered. Moreover, the
approach is restrictive in that it only takes into account peak
values of the blanking force.

Jin and Shi (2000) applied principal component analysis
(PCA) to extract features from force signals of a stamp-
ing process. The features were related to (binary) states of
different process variables, e.g., normal vs. abnormal lubri-
cation, using a subsequent regression analysis. The authors
derived a hierarchy indicating the significance of the asso-
ciation between the force signal variations and the process
variables. However, it remained unknown what features of
the force signals related to which process variables, as the
force signals were represented by abstract principal compo-
nents of the PCA.

Ge et al. (2004) proposed the use of support vector
machines (SVM) to classify whether strokes of sheet metal
stamping operations belong to a certain fault type based
on time series signals from strain sensors. Their black box
approach did not provide any explanations as to which
features of the time series signals were relevant for the SVM-
based classification.

Griffin et al. (2021) extracted features from acoustic emis-
sion signals to classify galling wear in sheet metal stamping.
They fitted a decision tree, a neural network as well as a
fuzzy clustering model and concluded from their results that
the two former models outperform their unsupervised alter-
native. While decision trees are inherently able to explain
their predictions, explanations for neither of the models were
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considered. Moreover, the authors restricted the available
information from the acoustic emission signals to a small
number of extracted features like minimum and maximum
amplitude.

Kubik et al. (2021) utilized correlation analysis and lin-
ear regression to investigate the relationship between force
displacement curves, process parameters and resulting com-
ponent quality in blanking.While the authors emphasized the
importance of identifying suitable features of process signals,
their analysis is limited to a set of known relevant features.
In another work, Kubik et al. (2022a) applied an SVM with
a linear kernel to classify different wear states in blanking
based on force signals. The authors again emphasized the
importance of identifying suitable features. Their model was
tested on three different feature sets. The first consisted of
two knowledge-based features, the second of two PCA-based
features and the third of one feature from each of the latter
two sets. While the accuracy was 100% in all cases, Kubik
et al. argued that the distance between the classes varies with
different feature sets. In a third work, Kubik et al. (2022b)
studied multiple machine learning models, including SVMs,
random forest, and k-nearest neighbors, to classify different
states of abrasive wear in blanking. In this study, they again
compared different approaches for feature extraction, either
based on engineering knowledge or based on data-driven
methods like PCAor an autoencoder.While they emphasized
the performance of the latter, both approaches yielded mod-
els with above 99.99% accuracy. In yet another publication,
Kubik et al. (2023a) again considered engineered features
as well as PCA-based features for monitoring of abrasive
wear in blanking and in roll forming. From initially eight
considered regression models they selected an artificial neu-
ral network as a particularly suitable model. They found that
the best model performance is achieved when a combination
of engineered features and principal components is used as
model input. Neither of these publications incorporated xAI
methods to investigate how the single features contributed
to the models’ predictions. Potentially novel and interesting
features extracted by the autoencoder (Kubik et al., 2022b)
also remain concealed.

Unterberg et al. (2021) investigated the use of acoustic
emission (AE)data fromafineblankingmachine for tool con-
dition monitoring. They first extracted features from the time
series signals, before applying PCA and UMAP to project
the data into a lower dimensional space. They found patterns
in the projections that seemed to correlate with the present
punch wear. In a later study, Unterberg et al. (2024) fitted a
Lasso regression model and an XGBoost model on features
from AE data to estimate punch wear in fine blanking. Their
models utilized a broad range of statistical, temporal and
spectral features. Studying SHAP values and the coefficients
of the Lasso model respectively, Unterberg et al. identified
a range of spectral features, in particular several FFT coef-

ficients, which had a high importance for the models’ wear
predictions. Concluding, Unterberg et al. (2024) took into
accountmodel explainability and a broad range of descriptive
features. A limitation of the study is that it relied on generic
time series features extracted via the library TSFEL (Baran-
das et al., 2020), which may only be connected to real-world
phenomena via a complex function and therefore complicate
the model interpretation from an engineering perspective.

Asahi et al. (2021) argued for the use of deep learning
to avoid feature extraction. They proposed a convolutional
autoencoder to estimate punch wear from raw time series
data like pressure, force and sound signals. Asahi et al. fitted
theirmodel ondata recordedwith a newpunch. Subsequently,
the fitted model was applied to new data acquired with dif-
ferent punch wear states. They report that the reconstruction
error, i.e. the difference between the encoder input and the
decoder output, corresponded to the punch wear state and
hence serves as a suitable indicator for wear estimation.
Niemietz et al. (2021) followed the same idea. In their work,
they applied convolutional autoencoders to acoustic emission
and force signals from a fine blanking machine also indicat-
ing that the reconstruction error may serve as a metric for
wear condition monitoring. Antoher related work was pub-
lished by Biegel et al. (2022), who applied autoencoders and
used their learned data representations for statistical process
control in sheet metal forming. Neither of these three works
provided explanations for the learned models or features.

In another study, Niemietz et al. (2022) projected force
signals from a fine blanking process to lower dimensional
representations using PCA, UMAP and an autoencoder.
While the autoencoder learned from raw data, the other two
approaches received a diverse set of extracted features from
the statistical, spectral and time domain. The authors derived
indicators (e.g., cumulative rolling variance) that aimed to
relate variations in the low-dimensional representations to
changes in punch wear states. In a related work, Niemietz
et al. (2023) again compared different methods, including
PCA, discrete Fourier transform, and an autoencoder to
transform fine blanking punch force signals to lower dimen-
sional representations. Their results indicated a relationship
between changes in the low dimensional representation and
the punch wear state. However, the authors acknowledged
themselves that changes in the process signals may originate
from diverse, interdependent causes that are not explained
by their analysis, but should be isolated and understood.

Using a convolutional neural network, Huang and Dzul-
fikri (2021) classified tool wear in a stamping process based
on vibration measurements. Their approach first converts the
signals to the frequency domain via fast Fourier transform.
Thenetwork then categorizes the processed signals into seven
states, representingmild or heavywear at three different posi-
tions or no wear. Model explainability was not considered.
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While the majority of work dealing with data-driven
approaches for condition monitoring in sheet metal shear-
ing is concerned with time series process signals like force or
acoustic emissiondata,Molitor et al. (2022) presented a study
where convolutional neural networks classified abrasive
punch wear states based on images of produced workpieces.
The authors did not employ anymethods to explain the neural
network’s prediction. In a recent study, Schlegel et al. (2024)
explored U-Net, a convolutional neural network for image
segmentation, to assess wear in blanking processes. They
recorded images of the tool at the top dead center point at
600 strokes per minute. The neural network segmented the
images into regions corresponding to different wear types
(e.g., adhesive wear or grooves). However, as pointed out by
Kubik et al. (2023b), optical systems are not yet used in prac-
tice and difficult to integrate in blanking tool systems. Kubik
et al. (2023b) fitted machine learning models to estimate tool
wear in blanking based on quality parameters of the blanked
parts. Their study did not consider the explainabiltiy of the
wear estimation models.

Concluding, the scientific literature suggests that data-
driven methods represent an effective approach for condition
monitoring in sheet metal shearing. However, existing work
typically evaluated models solely based on performance
metrics while treating the models as black boxes. In conse-
quence, potentially novel and useful knowledge captured by
the models remained hidden. Additionally, neglecting model
explainability bears the risk of biased models going unno-
ticed.

Moreover, many studies relied on manually engineered
features rather than letting an algorithm learn relevant fea-
tures directly from raw data. As already argued by Liewald et
al. (2022) feature extraction results in loss of information and
impairs the interpretability of the data from an engineering
point of view.When features are engineered based on current
domainknowledge, newunknown features andnovel patterns
may be overlooked in the data. When using generic feature
extraction libraries to obtain a large number of descriptive
features (e.g. spectral or statistical), the connections between
considered features and the underlying physical phenomena
of a dataset likely become more complicated.

Research objectives and approach

The previous section highlighted two interrelated research
gaps. First, existing work usually omits model explainability.
Second, there is a lack of methods to identify novel features
of process signals that are suitable for condition monitoring
and allow for meaningful explanations of the trained models.

In this paper, we investigate how to learn an explainable
condition monitoring model from raw process data of fine
blanking operations using deep learning. Our research pur-
sues two main objectives:

1. Provide model explanations, allowing to detect biases as
well as generating new insights.

2. Automatically learn features, which reflect relevant real-
world phenomena explaining variations in the measured
data, directly from raw process signals.

In a recent publication, we explored Variational Autoen-
coders (VAE) for learning an explainable wear estimation
model in fine blanking (Becker et al., 2024), building on
O’Shaughnessy et al.’s (2020) argument that deep generative
models provide a rich and flexible vocabulary for xAI.While
the approach generally showed potential, onemain limitation
remained: The VAE provided explanations through learned
factors which only correlated with real-world phenomena.
However, there were no direct one-to-one mappings, where
single factors represented individual real-world causes of
variation in the dataset. Instead, factors blended effects from
several phenomena and single phenomena were spread over
more than one factor. This complicated the domain-specific
interpretation of the model explanations.

Schölkopf et al. (2021) suggested that the integration of
concepts from the field of causal inference into the machine
learning process allows to learn data representations that
better reflect the underlying physical causal mechanisms
of a dataset. Hence, we hypothesize that combining deep
learning and concepts from causal inference will enable the
identification of generative factors from raw fine blanking
force signals, that more accurately correspond to real-world
physical mechanisms and thereby enable more meaningful
explanations. To test this hypothesis, we utilize an algorithm
developed by Locatello et al. (2020), which is motivated by
the independent causalmechanisms (ICM)principle from the
field of causal inference. Our study addresses three research
questions (RQ):

1. Howdoes incorporating the ICMprinciple affect the latent
representation of fine blanking force signals learned by a
variational autoencoder?

2. Can the resulting latent representation be used to provide
interpretable explanations for a wear estimation model?

3. To what extent can the model accurately identify the
underlyingdata-generatingmechanisms fromafineblank-
ing force dataset?

Dataset andmethods

Section“Fine blanking punch force dataset" provides back-
ground on the dataset acquisition and preparation for the
experiments in this work. Section“Model architecture" elab-
orates on the neural network architecture and training regime
explored in this study to fit a data-driven model which (a)
explains its predictions and (b) allows to gain insights regard-
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ing hidden biases and relevant features reflecting real-world
phenomena in a dataset.

Fine blanking punch force dataset

The data used in this work are available at the Harvard
Dataverse (Niemietz, 2022) and consist of punch force sig-
nals recorded with piezoelectric sensors from a Feintool
XFT 2500 speed fine blanking machine. The fine blank-
ing machine was operated at 50 strokes per minute and the
force signals were acquired with a sampling rate of 10 kHz.
The dataset comprises four experiments E1, E2, E3, and E4

with 3,334, 3,204, 2,058, and 3,340 strokes respectively. At
the start of every experiment the punch of the fine blank-
ing tool was in pristine condition. The progressing wear of
the punches was measured twice during each experiment
(approximately after 1000 and after 2000 strokes) as well
as at the end of each experiment. The wear was measured via
scanning electron microscopy (SEM) with 100-fold magni-
fication. For each measurement, SEM images were recorded
at four characteristic edges depicted in Fig. 1a. Subsequently,
the relative amounts of pixels corresponding to the damaged
punch surface were quantified using the OpenCV Python
library. This wear quantification process was described by
Niemietz et al. (2022) and included the following steps: First,
the contrast was increased and the images were smoothed
through application of OpenCV’s median filter. Next, the
images were binarized via thresholding. Following, the con-
tour detection algorithm implemented by OpenCV was used
to detect contours of the worn area. The detected worn area
was completely filled in white and the proportion of white
pixels in the processed SEM images was used as a wear esti-
mate. Figure1b summarizes the image processing steps and
depicts exemplary images. The low frequency of wear mea-
surements (approximately every 1,000th stroke) is due to the
fact that a measurement requires to stop the process and dis-
assemble the punch from the tool. All four experiments were
carried out with X5CrNi18-10 steel.

Due to irregularities concerning an error with the lubri-
cation in E1 and missing data of 1000 strokes in E3 (see
Niemietz et al., 2022), this work focused on the experiments
E2 and E4. Since the findings from E2 were also represen-
tative of E4, only results from E2 are discussed below. The
results from E4 are presented in the appendix (see Appendix
A and B).

As illustrated by Bergs et al. (2020), force signals of sin-
gle fine blanking strokes comprise different process phases,
including the sheet metal insertion into the tool, the clamp-
ing of the sheet metal, the actual shearing phase, and a phase
during which the sheet metal is stripped from the punch
and the sheared part is ejected. From a tribological perspec-
tive, the shearing and the stripping segments of fine blanking
punch force signals are most relevant for wear monitoring.

Fig. 1 a Punch geometry and wear assessment positions and b illustra-
tion of SEM image processing

Fig. 2 aExemplary punch force signal and b isolated stripping segment

Prior research indicated that especially the stripping segment
is useful for data-driven wear monitoring (Niemietz et al.,
2022). This is plausible, as friction resulting fromwearmight
be less prominent during the shearing segment, during which
the force required to separate the material is more dominant.
Hence, the focus of this work is on the stripping segment.
Figure2 depicts a complete punch force signal of a single
stroke as well as the isolated stripping segment of the signal.
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Fig. 3 Theoretical wear progression in three phases (Behrens et al.,
2016)

To train a model which relates features of punch force
measurements to punch wear, a wear label was assigned to
each force signal. As previously described for each exper-
iment only four wear measurements (including the initial
wear state) were available. Hence, the values in between the
measurements were interpolated using SciPy’s (Virtanen et
al., 2020) PiecewiseCubicHermite Interpolating Polynomial
(PCHIP) interpolation. The PCHIP interpolation was chosen
as it allows to approximate the shape of the theoretical wear
progression (see Fig. 3).

The resulting dataset was split into training, validation
and test datasets with a ratio of 70:15:15. A global min-max-
normalization was applied to the force signals as well as the
wear labels, such that all values fall in a range between zero
and one. The parameters for the scaling (i.e., global maxi-
mum and minimum) were determined based on the training
data only to avoid inducing a bias to validation and test data.

Model architecture

Figure4 illustrates the general model architecture that is pro-
posed in this work. It consists of three neural networks. The
encoder network and the decoder network jointly form a
latent variable model (LVM), which will be explained in
more detail in Section“Variational autoencoder as latent vari-
able model". The LVM serves two purposes. First, it aims
to identify latent variables which explain the observed pro-
cess signals. For instance, lubrication, wear (Voss et al.,
2017) or varying material properties (Schenek et al., 2022)
could be latent variables that are not directly observed but
cause variation in the measured force signals. Second, the
LVM provides a generative model which allows to visual-
ize, how an observed force signal would change if the value
of a latent variable was different. Thereby, it provides the
means to interpret the learned latent variables. The predic-
tor network estimates punch wear using the learned latent
variables as input features. Besides, it is used to derive
the importance of latent variables for the wear estimation
task. Details of the predictor network are elaborated in Sec-
tion“Explainable wear predictor". While existing research

has already utilized encoder-decoder architectures to obtain
features for wear monitoring, the approach presented here
differs in two aspects. First, it combines a probabilistic
(generative) decoder with the predictor network, enabling
both visualization of features for interpretation as well as
analysis of their importance for wear predictions. This is
illustrated in detail in Sections “Explainable wear predic-
tor" and “Model constraints for causal disentanglement” and
Figs. 5 and 6, respectively. This analysis goes beyond the
autoencoder-based feature extraction described in existing
research on wear monitoring for sheet metal shearing pro-
cesses. Second, the latent variable model is subjected to
special constraints, inspired by the field of causal inference.
These constraints were first presented by Locatello et al.
(2020). Section“Model constraints for causal disentangle-
ment” describes these constraints in detail and proposes a
strategy to structure training data in pairs of process signals
required for adapting Locatello et al.’s framework. Through
this approach, we aim to identify latent variables that align
with actual causal mechanisms underlying the observed vari-
ations inmeasured force signals, rather than generic variables
that only correlate with the process signals.

Variational autoencoder as latent variable model

This work uses a variational autoencoder (VAE) to identify
latent variables that explain variations in the observed punch
force signals as well as the overall model’s (see Fig. 4) wear
predictions. VAEs jointly optimize an encoder and a decoder.
The encoder qφ(z|x) models how likely values of the latent
variable z are for given observations of a process signal x ,
where φ denotes the parameters (i.e., weights and biases)
of the encoder. The decoder pθ (x |z) is also a probabilistic
model producing the distribution of x for given values of z.
Here, θ denotes the parameters of the decoder. The generative
model

pθ (x, z) = pθ (x |z) · pθ (z) (1)

also requires a prior pθ (z). In this work, the prior is a
multivariate Gaussian pθ (z) = N (z; 0, I ). The optimization
criterion of the VAE is the evidence lower bound (ELBO).
The ELBO is a lower bound on the marginal log-likelihood
log pθ (x (i)) of an observed datapoint x (i). In other words, the
model parameters are optimized, such that according to the
model it is likely to observe the actually observed datapoints.

Kingma and Welling (2014) derived the (Monte Carlo)
estimator of Eq. (2) for the ELBO. The first (right hand side)
term of the equation is the expected negative reconstruction
error for input values x (i). The second term can be interpreted
as a regularization term. The Kullback–Leibler divergence
DKL pushes the modelled posterior qφ(z|x (i)) to be close to
the prior pθ (z). L denotes the number of samples z(i,l) drawn
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Fig. 4 Model architecture

Fig. 5 To interpret the effect of
a change in μi , a value � is
added to μi . The manipulated
vector is used as input for the
probabilistic decoder to generate
a force signal with the
corresponding effect. The
standard deviations σi are set to
zero to obtain the expected
value of z. The resulting force
signal is plotted together with
the force signal corresponding
to the unchanged vector μ to
analyze the manipulation effect

Fig. 6 Interplay of model
components for explainable
wear monitoring system learned
from raw process signals

per data point x (i). As in the original VAE paper (Kingma &
Welling, 2014), L = 1 was used for the experiments in this
paper.

L(θ, φ; x (i)) �
1

L

L∑

l=1

(log pθ (x
(i)|z(i,l)))

−DKL(qφ(z|x (i)||pθ (z)) (2)

When pθ (z) = N (z; 0, I ) and the approximate pos-
terior is a multivariate Gaussian of the form qθ (z|x) =
N (z;μ(i), σ 2(i) I ), where μ(i) and σ (i) are outputs of the
encoder, the KL divergence DKL fromEq. (2) can be directly
computed from μ(i) and σ (i) and no estimation is required.

Even when pθ (z) and qθ (z|x) are Gaussian, deep learning
models allow to approximate complex distributions of the
observed data x (Kingma & Welling, 2019).

To optimize the model through gradient descent and back-
propagation, the random variable z must be reparametrized
to get a differentiable version of the estimator. For the Gaus-
sian case described above, the differentiable transformation
of Eq. (3) is used, where ε is an auxiliary noise variable
ε(l) ∼ N (0, I ) and � denotes an elementwise product.

z(i,l) = μ(i) + σ (i) � ε(l) (3)

In this work, a variation of the VAE called β-VAE (Hig-
gins et al., 2017) is used, where β is a hyperparameter and
factor that is used to control the weight of the KL divergence
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term of the ELBO estimator. We implemented the β-VAE
with six convolutional layers in the encoder and matching
transposed convolutional layers in the decoder. All of these
layers used 64 filters, a kernel size of 4, a stride of 2 and the
tanh activation function, except for the decoder output layer,
which used a single filter and the sigmoid activation. Linear
layers were used to transform the flattened output of the last
convolutional layer into two two-dimensional vectors μ(i)

and σ (i). The optimal value for the hyperparameter β dif-
fers with the dataset under investigation as well as the model
architecture (Higgins et al., 2017). According to Higgins et
al. (2017), higher values of β lead to better and interpretable
latent factors, but may also impair the model’s capability to
preserve information and produce reconstructions with high
fidelity. The results reported in this paper were achieved with
β = 0.1. The valuewas chosen as higher values in initial tests
resulted in a collapse of the latent space and low reconstruc-
tion fidelity.

Explainable wear predictor

As a wear estimation model a simple multilayer percep-
tron (Goodfellow et al., 2016) is used. The model uses the
expected values μ of the latent vector (see Fig. 4) as inputs
to produce a wear estimation as output. In principle, the pre-
dictor model can be any model suitable to solve the desired
downstream task (here wear estimation). However, by mak-
ing it a neural network it can be seamlessly trained jointly
with the latent variable model using a gradient descent algo-
rithm and backpropagation. The wear estimation model is
optimized by minimizing the mean squared error between
predicted wear values ŷi and the target values yi , according
to Eq. (4).

MSE = 1

N

N∑

i

(yi − ŷi )
2 (4)

In the simplest case, the predictor network is a one-
layer neural network without non-linear activation. In this
case, the network resembles a linear regression (trained with
backpropagation) and the layer weights correspond to the
coefficients of the linear regression model. Hence, the layer
weights may be directly interpreted as feature importances,
assuming that the latent vector has a similar scale across all
dimensions due to the KL divergence term from Eq. (2).

By computing the gradients of the predictivemodel’swear
estimates with respect to its input vector μ using backprop-
agation, local explanations of the model’s predictions can
be derived for the case of a nonlinear predictor. The gradi-
ent vector expresses how much a prediction would change,
given an infinitesimal change in the respective input val-
ues. Therefore, the gradients are a measure of importance,

in that they reflect the model’s sensitivity to its individual
input features. Using the generative model pθ (x, z) (see Sec-
tion“Variational autoencoder as latent variable model") it is
possible to interpret the meaning of a small change in an
input value μi of the predictor network. This is illustrated in
Fig. 5.

In this study, we report results for a predictor network that
consisted of threeReLUactivated fully connected layerswith
25, 50, and 25 neurons respectively. Another fully connected
layer with sigmoid activation was used as an output layer to
produce the wear predictions.

Model constraints for causal disentanglement

The ELBO optimization criterion described in Section“Vari-
ational autoencoder as latent variable model" encourages the
VAE to (a) produce a low dimensional latent representation
z of the original force signals that allows to reproduce the
original data as accurately as possible and (b) arrange the
latent space in such a way that it becomes possible to gener-
ate realistic force signals with new values of z. However, the
latent factors zi , i.e. the dimensions of z, do not necessarily
coincide with the actual data generating, causal factors (e.g.
wear or material fluctuations), that cause the variation in the
force signals.

We utilize an approach proposed by Locatello et al. (2020)
to address this issue. Their approach is inspired by the inde-
pendent causal mechanisms (ICM) principle (Peters et al.,
2017; Schölkopf et al., 2021). Peters et al. (2017) illustrate
the ICM principle by example of a joint density p(a, t) of
altitudes a and average annual temperatures t of a set of
cities. Both, p(a|t) · (t) and p(t |a) · (a) are valid decompo-
sitions of p(a, t). The conditional probability p(t |a) gives
the probability of a temperature t , given an observed alti-
tude a. Hence, temperature values follow from the altitude.
This corresponds to the causal direction. The conditional
p(a|t) corresponds to the opposite direction, where ampli-
tude follows from temperature. If data were recorded in cities
from different countries, e.g., Austria and Switzerland, the
distribution of altitudes p(a) might differ between the two
countries. However, the physical mechanism responsible for
temperature changes in dependence of the altitude is likely
the same in both countries. In an idealized setting, the con-
ditional p(t |a) is therefore not affected by a change in p(a)

(hence, “independent causal mechanisms”). Conversely, the
other conditional p(a|t) is not invariant to a change in p(t).

More genereally, the ICM principle states that “the causal
generative process of a system’s variables is composed of
autonomous modules that do not inform or influence each
other” (Peters et al., 2017). While every change in observed
data is due to a change in at least one causal mechanism, the
ICMprinciple implies that changes in causalmechanisms are
usually sparse (i.e., only a fewmechanisms change at a time)
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because of the independence of the mechanisms (Schölkopf
et al., 2021).

Following this idea, Locatello et al. considered a learning
regime where the model observes pairs of input instances for
which some causal mechanisms differ, while others remain
invariant due to the ICM principle. To identify latent vari-
ables corresponding to causal mechanisms zi , they proposed
a VAE-based model, where each input data pair (x1, x2)
shares a set S of mechanisms or latent factors respectively.
This is expressed by Eq. (5).

p(zi |x1) = p(zi |x2) ∀i ∈ S (5)

To enforce input data pairs will have shared factors,
Locatello et al. proposed to constrain the encoder outputs
qφ(ẑi |x1) and qφ(ẑi |x2), where ẑi is an estimation of the true
data generating mechanisms zi . For k of the model’s latent
dimensions i , the encoder outputs qφ(ẑi |x1) and qφ(ẑi |x2)
will be replaced by the average of the two (see Eqs. 6 and 7).

q̃φ(ẑi |x1) = qφ(ẑi |x1) + qφ(ẑi |x2)
2

(6)

q̃φ(ẑi |x2) = qφ(ẑi |x1) + qφ(ẑi |x2)
2

(7)

The averaging is done for those k factors zi for which
qφ(ẑi |x1) and qφ(ẑi |x2) are closest to each other measured
by their KL divergence.

Typically, the number of shared factors k is unknown.
Therefore, Locatello et al. introduced a heuristic to determine
k. When k is unknown, they average all coordinates of z
where δi < τ . The threshold value τ is computed according
to Eq. (8) and δi according to Eq. (9).

τ = 1

2
(max

i
δi + min

i
δi ) (8)

δi = DKL(qφ(ẑi |x1)||qφ(ẑi |x2)) (9)

Locatello et al. (2020) established the term Ada-GVAE to
describe a VAE trained with the constraint described above.
The Ada-GVAE is fitted by optimizing the sum of the β-VAE
ELBOs (Higgins et al., 2017) of both inputs x1 and x2.

If points in time of interventions are known, these could
be used to form pairs of input datapoints for the Ada-GVAE.
For example, if an influence of material property variations
between different coils is suspected, the data can be grouped
within coils such that input data pairs (x1, x2) are from the
same coil. This way, the model will presumably isolate the
variation of the coil in distinct latent dimensions shared by
input data pairs.

Whenever these concrete intervention times are not
known, other assumptionsmust bemade.Wepropose to build
pairs of data instances that are close to each other in time.

More precisely,we define amodel hyperparameter that speci-
fies the number of consecutive fine blanking strokes that form
a group within which force signals are randomly paired each
training epoch. The underlying assumption is that in short
periods of time (i.e., within a small number of consecutive
strokes), the (causal) data generating mechanisms will only
change sparsely. Specifically, we assume that it is likely that
punch wear and other potential external influencing factors
will not all simultaneously and constantly change signifi-
cantly within the time span of four consecutive fine blanking
strokes.

Figure6 summarizes how components described in Sec-
tion“Model architecture" work together to obtain an explain-
able wear monitoring model.

Results

The results are structured into three subsections. First, Sec-
tion“Latent factors explaining variation in fine blanking
force data" compares latent factors learned by a β-VAE and
the previously described Ada-GVAE respectively and shows
that the factors learned by theAda-GVAE seem to indeed bet-
ter align with actual real-world phenomena (RQ 1). Second,
Section“Explainable predictor" presents results illustrating
how a learned wear estimation model based on the Ada-
GVAE explains its predictions. The results emphasize the
importance of model explainability by unveiling a bias the
model relied on (RQ2). Finally, Section“Disentanglement of
synthetically injected features" further validates the suitabil-
ity of the learning framework discussed in this paper through
an experiment, where additional generative factors were syn-
thetically induced into the fine blanking force dataset to
evaluate whether these factors will be correctly identified
by the model (RQ 3).

Latent factors explaining variation in fine blanking
force data

Figure7 depicts two two-dimensional latent representa-
tions of the force dataset. Each marker in the scatter plots
corresponds to one of the original force signals. The repre-
sentation of Fig. 7a was learned by training a conventional
β-VAE without the ICM-inspired constraint explained in
Section “Dataset and methods". In contrast, the repre-
sentation depicted in Fig. 7b was learned by training the
Ada-GVAE with the additional constraint.

Both representations display four clusters.However,while
in Fig. 7a the clusters are arbitrarily rotated in the latent space,
the clusters in Fig. 7b better align with the latent factors. The
latent factor z1 presumably encoded the unobserved, actual
cause of the clusters as the cluster boundaries are orthogonal
to z1.
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Fig. 7 a Latent space learned with model without ICM-based con-
straint. b Latent space learned with model with ICM-based constraint

Figure8 illustrates the variation that is controlled by the
factor z1 of theAda-GVAE. Figure8a depicts four exemplary
strokes that were selected from the latent space, with one
stroke selected per cluster. The arrows in the latent space
visualize themanipulations that were applied to each of these
data points to unveil the effect of changes in z1. For example,
at stroke A1, the value in z0 was kept constant, while the
value of z1 was changed from the value at the root of the
arrow to the value at the arrowhead by adding a value �

(as described in Section “Dataset and methods", Fig. 5). For
visualization purposes the magnitude � of the manipulation
was deliberately chosen high. All effects visualized in this
section are still present for smaller manipulations, but less
discernible in graphical representations.

The blue line in Fig. 8b represents the stripping force sig-
nal that the Ada-GVAE reconstructed from the latent values
corresponding to stroke A1 back to the original (raw signal)
space. The latent values (at the arrowhead) received after
the manipulation in z1 are also decoded into the original
space. The difference between the two resulting stripping
force signals is represented by an orange filled area. Fig-
ure8b exemplarily shows that a change in z1 within a cluster
has almost no effect on the resulting stripping force signals.

Conversely, Fig. 8c and d illustrate that the slope and shape
of the stripping force signals change when moving in z1-
direction between the three large clusters in the latent space.
The stroke numbers that separate these clusters coincide with
the points in time when the wear measurements were con-
ducted. Hence, the factor z1 appears to encode variations in
the force signal that were caused by the wear measurement
procedure (including the disassembly of the tool formeasure-

ment purposes). As z1 identifies force signal changes clearly
attributable to the wear measurement procedure itself, it iso-
lated a bias in the dataset.

Lastly, there is another effect encoded in z1. Moving from
the fourth smaller cluster to its neighboring larger cluster, the
jagged part at the top of the signal changes (see Fig. 8e). The
cause of this effect is unclear. During this part of the time
series, the shearing and the off-stripping of the sheet metal
is already finished. Hence, this variation is presumably not
related to tool wear.

The effect of the second factor z0 is explained by Fig. 9.
Again, four exemplary strokes were selected as depicted by
Fig. 9a. The factor z0 encodes variations in the height of the
“valley” at the beginning of the force signals (see Fig. 9b–e).
This feature is consistent across all clusters and may poten-
tially be caused by punchwear. Increased friction due towear
represents a plausible reason for the shift in the valley height.

The feature is related to a specific area and shape in the
stripping force segment and differs from simple, manually
engineered features like maximum force, mean force or the
area under the force curve, which have been used for wear
monitoring in related research studying fine blanking punch
force data. Besides, other studies have investigated generic
statistical, spectral and temporal features, e.g. obtained with
theTSFEL library, andmethods like PCAorUMAP resulting
in abstract and less interpretable features. Related research
which utilized deep learning, treated models as black boxes
in which the learned features remained hidden. Against this
background, z0 may represent a novel feature for effective
punch wear monitoring in fine blanking.

Concluding, the results indicate that the Ada-GVAE
learned latent factors that indeed isolate real-world mech-
anisms causing the variation in the data. In particular, the
model isolated force signal variations likely caused by human
interventions during the measurement process and a remain-
ing variation which is possibly caused by punch wear.
Conversely, the normal β-VAE learned latent factors that are
composed of a mix of the real-world causes. Results shown
in appendix A and B) underline these findings.

Unlike related work, the machine learning approach
presented in this article neither requires manual feature engi-
neering or extraction nor obscures learned features with a
black box model. It allows to detect new relevant features,
but also biases in datasets, which could go unnoticed when
only relying on a small set of knowledge-based, engineered
features. Moreover, the features learned in this study are
expressive in that they can be visualized through a genera-
tivemodel and appear to isolate real-worldmechanisms (e.g.,
wear and measurement intervention). This may facilitate the
interpretation of data and models by engineers, compared
to the large sets of spectral, temporal and statistical features,
including for example percentiles, autocorrelation, or param-
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Fig. 8 Explanation of factor z1:
a manipulations in latent space,
b minor effect of manipulation
within cluster in direction of z1,
c–e effect of manipulation
between clusters

Fig. 9 Explanation of factor z0:
a manipulations in latent space,
b–e consistent effect of
manipulation within clusters in
direction of z0

eters of wavelet transforms, that some studies obtained with
feature extraction libraries.

Explainable predictor

As outlined in Section“Dataset and methods", we combine
the latent variable model (Ada-GVAE) with a predictive
model that is optimized using supervised learning. Figure10a
shows the model predictions in comparison to the actual tar-
get values for hold-out test data. While locally predictions
significantly deviate from their target values, the model gen-

erally captures the progression of the wear values well. With
the coefficient of determination being R2 = 0.97 on test data,
the model would typically be considered to be a good model
if only judged on its predictive performance.

Figure10b depicts exemplary local feature importances,
i.e. the extents to which features contributed to the model’s
wear prediction for a specific stroke. The signs of the
importance values signify the direction of their impact (i.e.,
increase vs. decrease in predicted wear), while their abso-
lute values quantify the magnitude of their contribution. The
importance values were derived based on the gradient com-
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Fig. 10 Wear predictions and exemplary local feature importances for
a randomly selected stroke

Table 1 Means and standard deviations of (absolute) feature impor-
tances for z0 and z1 over all test data

Mean SD

Importance of z0 0.070 0.038

Importance of z1 0.217 0.369

putation outlined in Section “Dataset and methods". By way
of example, the depicted importance values highlight that
the model’s prediction significantly relies on the factor z1.
As discussed in Section“Latent factors explaining variation
in fine blanking force data", z1 encodes a bias induced by
the wear measurement procedure. Table 1 shows the mean
feature importances of factor z0 and z1 for the whole test
dataset (with 480 strokes). On average, factor z1 contributes
approximately three times as much to the model predictions,
indicating that the model significantly relies on the bias in
general. Since, the executions of the wear measurements as
well as the wear itself both correlate with time, it is plausible
that the model exploited the bias. Nevertheless, the results
underline that it is crucial to evaluate data-driven models not
just by their predictive performance but also by considering
xAI methods - at least when models are used that are not
inherently interpretable like, e.g., linear regression models.

As a second analysis to study the importance of the two
features to the model, an ablation study was conducted. This
was done by averaging out the values of one latent factor, to
isolate the contribution of the other factor to themodel’s wear
estimation. The resulting model predictions are depicted in
Fig. 11. The figure shows that the model’s predictions largely
rely on z1 which encodes the bias originating from the wear
measurement procedure. When the factor z0 is averaged out,
the model’s predictions are still close to the original labels
(see Fig. 11a). Conversely, the predictions are far off the true
values when the factor z1 is averaged out (see Fig. 11b).

Fig. 11 Importance of feature derived from ablating single neurons

Figure11a further underlines that z1 encodes a bias from
the measurement procedure. The wear predictions exhibit
sudden jumps after each measurement, but (after the first
measurement) remain rather stable between measurements
when averaging out z0. This suggests, that the model pri-
marily uses z1 to simply differentiate whether a stroke took
place after the first measurement or after the second mea-
surement. Before the the first measurement, the estimated
wear steadily grows, suggesting that in this region z1 also
contains time-dependent information that is independent of
the measurement interventions.

When the factor z1 is averaged out, the estimated wear
remains stable for some time before it peaks twice shortly
before the first wear measurement (see Fig. 11b). Afterwards
the estimated wear steadily grows between measurements.
Potentially, this behaviour is caused by rapid initial wear
increase (peaks before the first measurement) followed by a
steady wear progression.

Disentanglement of synthetically injected features

The results presented so far indicate that the model success-
fully learned factors from the raw dataset, that align with
real-world phenomena and allow to explain the observed
data variation. However, the ground truth of the dataset is
unknown. Consequently, it is unclear whether in reality there
were additional phenomena that the model did not isolate
from the previously presented factors and therefore remain
hidden. To study whether the model would identify addi-
tional latent factors if they were present in the dataset, we
introduced synthetic data generating factors to the dataset.
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Fig. 12 Results for dataset with
synthetically induced discrete
feature; a manipulations in
latent space, b–d effects of
manipulations in the original
space

First, we introduced a discrete change in all force sig-
nals after stroke number 2500 by manually adding a slope to
the horizontal segment at the end the force signal. In prac-
tice, a discrete change in the signal might for example occur
from events like tool changes. Figure12 shows that themodel
successfully learned to isolate the feature. The group of syn-
thetically changed signals form a new cluster in the latent
space (see Fig. 12a, inside the dashed orange ellipse). When
moving between this cluster and its neighboring cluster, the
synthetically injected feature becomes present or goes absent
(see Fig. 12b, c). When moving within the new cluster in
direction of z0, it becomes apparent that z0 still only iso-
lates the change in height in the left valley of the time series
(see Fig. 12d). Moving in z1-direction within the new cluster
(correctly) has no effect.

Second, we injected the same factor synthetically into the
dataset but as a continuous feature that starts at stroke 1,301
and linearly grows until stroke 2,500 where it ends with
a magnitude that equals the previous discrete feature. Fig-
ure13b exemplifies how the model isolated the continuous
feature in factor z0.

When a change in z0 also leads to a transition between
clusters, the synthetically induced factor starts to be super-
imposed with the force signal alteration caused by the
wear measurement procedure (see larger manipulation in
Fig. 13c). Figure13d illustrates that a change parallel to the
cluster boundaries (here in z1-direction) still controls the
phenomenon, which was previously hypothesized to be a
result of wear. However, in contrast to Fig. 12d the factor also
includes some variation of the synthetically induced feature
this time.

Concluding, the experiments with the synthetic data fur-
ther indicate that the model is capable of learning factors
zi that align with the actual, latent mechanisms that caused

variation in the observed data. Especially, the discrete, syn-
thetic feature was isolatedwell from the previously identified
mechanisms. The continuously changing, synthetic feature
was isolated as well, but two limitations became apparent.
First, when the chosen number of factors zi in the model is
smaller than the actual number of data generating mecha-
nisms, the mechanisms will locally overlap in a single factor
zi . Second, the disentanglement of different mechanisms
became less accurate when twomechanisms changed contin-
uously and simultaneously (see Fig. 12d vs. 13d). In practice,
this scenario, where two causal mechanisms that correlate
with time appear at the same time, might for example occur
when wear grows steadily while at the same time material
characteristics vary continuously along a coil (Ortjohann et
al., 2024). This is also related to a more fundamental limita-
tion affecting the results in general: the true data-generating
mechanisms underlying the measurements are (inevitably)
not fully known. For instance, it is unclear whether the force
measurements used in this study contain anymaterial-related
effects, as well.

Conclusion

This study explored a potential solution to learn expressive
xAI models directly from raw force signals of a fine blank-
ing process for wear condition monitoring. We found that
incorporating concepts from the field of causal inference into
machine learning, as proposed by Locatello et al. (2020),
allows to learn a model from raw fine blanking force sig-
nals that explains the variation in the measured data through
latent factors that correspond to underlying real-world phe-
nomena (RQ 1). For example, the model identified one factor
that explains variation in the dataset, which is related to a
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Fig. 13 Results for dataset with
synthetically induced
continuous feature; a
manipulations in latent space,
b–d effects of manipulations in
the original space

bias caused by human interventions into the fine blanking
machine to measure punch wear. Another factor explains an
effect in the force data that is independent of the measure-
ments and is potentially explained by the punch wear itself.
We demonstrated that the learned latent variable model can
be used to produce explanations for predictions of a down-
stream regression model for wear estimation (RQ 2). This
approach enabled the detection of biases and may serve as a
tool to derive novel insights regarding relationships between
process signals and phenomena like tool wear. Lastly, we
created semi-synthetic datasets, in which we synthetically
introduced effects into the fine blanking force dataset, and
tested whether the data-driven approach will correctly iso-
late them (RQ 3). We found that the model indeed identified
the synthetic effects. In conclusion, the data-driven approach
studied in this work provides a potential tool to (a) uncover
biases in data and models and (b) derive potentially novel
insights, e.g., regarding suitable indicators to monitor wear.

The experiments with semi-synthetic data also revealed
limitations.When twomechanisms affecting the process data
change simultaneously and continuously their separation into
distinct latent factors became less accurate. In practice, this
scenario might for example appear, when material prop-
erties steadily change along a sheet metal coil while tool
wear is also continuously increasing. Moreover, the disen-
tanglement of factors is limited when the number of latent
dimensions of the model is chosen too low to capture all
real-world mechanisms. A general limitation of the research
presented in this paper is that the true mechanisms influ-
encing the measured process signals are not fully known.
Hence, it cannot be ruled out that the data contained any
significant effects from unknown mechanisms. If there had
been any other time-correlated mechanism, it could have
overshadowed the effect of wear and thereby lead to a mis-

interpretation of the latent factor that was attributed to tool
wear in this study. An example of such a mechanism could
be a wear-independent monotonic change in process tem-
perature. Another limitation originates from the closed tool
design of the fine blanking process, which prevented wear
measurements for each stroke. This necessitated the use of
interpolation to estimate wear progression between available
measurements. The interpolated values likely differ from the
actualwear progression to somedegree, introducingpotential
deviations between thewear predictionmodel and real-world
behavior. However, this does not affect the general approach
for obtaining an explainable wear monitoring model pre-
sented in this article.

More research is required with additional datasets to fur-
ther confirm that the approach reliably identifies factors
representing relevant real-world phenomena, suitable for,
e.g., indirect data-driven wear condition or quality monitor-
ing. Another interesting direction for future research is to
investigate whether the generative latent variable model may
also serve as a tool to remove known external influences or
biases from datasets. In other words, is it possible to pro-
duce a dataset that reflects how the data would have looked
like if the cause of a bias would not have been present to
build more robust models. Taking the experiment studied in
this article as an example, an idea could be to keep the val-
ues of z1 (bias) constant while extrapolating the values of z0
(remaining force variance) to estimate how the force signals
would have progressed had the bias not been present. Further
research is needed to investigate whether and how the effect
encoded by latent factors z0 (see figure 9) can be utilized for
robust, feature-based wear monitoring.

The findings presented in this article suggest several prac-
tical implications for conditionmonitoring of industrial sheet
metal shearing processes. First, considering model explain-
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ability during model evaluation is important even when
models show good performance on hold-out test data. Meth-
ods of xAI reveal both spurious correlations that may lead
to model failure as well as new insights regarding poten-
tially useful wear indicators. Second, the results indicate that
wear monitoring systems may be more effective when built
upon features identified through machine learning, rather
than being built upon the machine learning model itself.
Since wear increases with time, other time-dependent phe-
nomena (e.g., temperature increase) or interventions (e.g.,
machine stops or coil changes) affecting the process sig-
nal introduce potentially misleading patterns. By providing
seemingly useful information to distinguish different points
in time - and thus wear levels - they introduce spurious corre-
lations misleading learning algorithms. A simple system that
monitors the evolution of actually relevant features identified
through machine learning may be more robust and inter-
pretable. Third, for the fine blanking process examined in
this study, features related to the punch force "valley" dur-
ing the stripping segment (see figures 9) offer a promising
foundation for developing reliable wear monitoring systems.

Appendix A

Results for fine blanking experiment E4 (cf. Section“Fine
blanking punch force dataset") also indicate that latent factors
learned with the Ada-GVAE (see Fig. 14b) are better aligned
with actual causal factors than those learned by the β-VAE
(see Fig. 14a).

Fig. 14 a Latent space learned with model without ICM-based con-
straint. b Latent space learned with model with ICM-based constraint

Data points are separated along the z0-axis. The gaps
between the resulting clusters coincidewith the points in time
when the tool was disassembled to measure the punch wear.
In Fig. 14b the gaps between the clusters are perpendicular to
the z0 axis indicating the the factor isolated a bias induced by
the measurement procedure. Within each cluster an effect is
isolated along factor z1 that resembles the one also observed
in experiment E2 (cf. Appendix B and Section“Explainable
predictor").

Appendix B

Figures15, 16, 17, and 18 depict exemplary effects of manip-
ulations along z0 or z1 in the latent space shown in Fig. 14b
in Appendix A.

A manipulation in z0-direction across clusters causes a
change in the signal’s overall shape as shown by way of
example in Fig. 15. This effect was also observed in the other
fine blanking experiment (cf. Section“Explainable predic-
tor", Fig. 8) and likely originates from the tool disassembly
performed to measure punch wear.

Manipulations within clusters in z1-direction result in a
change in the height of the valley in the force signal (see
Figs. 16 and 17). This effect, independent from the data
variation caused by the measurement procedure, was also
observed in the other fine blanking experiment (cf. Sec-
tion“Explainable predictor", Fig. 9).

The data points on the left-hand side in Fig. 14b are sep-
arated along the z1-axis into two smaller clusters. Moving
from one of these two clusters to the other in z1-direction
causes a shift in the jagged part after the upwards slope
succeeding the valley in the signal (see Fig. 18). A z1-
manipulation within these clusters isolates the change in the
valley as already illustrated in Fig. 17. Variance in the jagged
part of the signal was also isolated by the model trained

Fig. 15 Exemplary visualization of effect from changing between two
clusters in z0-direction (here from z = (

1.0 0.0
)
to z = (

0.0 0.0
)
)
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Fig. 16 Exemplary visualization of effect of manipulation within clus-
ter in z1-direction (here from z = (

1.0 0.0
)
to z = (

1.0 1.0
)
)

Fig. 17 Exemplary visualization of effect from changing between two
clusters in z0-direction (here from z = (−1.0 0.5

)
to z = (−1.0 2.0

)
)

Fig. 18 Exemplary visualization of effect from changing between
two clusters in z0-direction (here from z = (−1.0 −0.25

)
to z =(−1.0 0.25

)
)

on data from the other fine blanking experiment (see Sec-
tion“Explainable predictor", Fig. 8e),
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