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Abstract

Belief-based programming is a probabilistic extension of the GOLOG program family
where every action and sensing result can be noisy and every test condition refers to the
agent’s subjective beliefs. Inherited from GOLOG programs, the action-centered feature
makes belief programs fairly suitable for high-level robot control under uncertainty. An
important step before deploying such a program is to verify whether it satisfies certain
properties. At least two problems exist in verifying such programs: how to formally specify
program properties and what is the complexity of the verification problem.

In this paper, we propose a formalism for belief programs based on a modal logic of
actions and beliefs which allows us to conveniently express PCTL-like temporal properties.
We also investigate the decidability and undecidability of the verification problem.

1. Introduction

GoroG (Levesque et al., 1997) is a high-level logic programming language for the spec-
ification and execution of complex actions in dynamical domains based on the situation
calculus (McCarthy, 1963; McCarthy & Hayes, 1981; Reiter, 2001). The idea behind
GOLOG is to define powerful program constructs like iteration, test, non-determinism, and
(while) loops as macros, which eventually expand into situation calculus formulas. The
action-centered feature makes such a language rather suitable for robot control. Since its
proposal, GOLOG has been expanded to incorporate features such as coccurrency, inter-
rupts, erogenous actions, see CONGOLOG (Giacomo et al., 2000), knowledge and sensing,
see INDIGOLOG (De Giacomo & Levesque, 1999; Sardina et al., 2004), decision theory, see
DTGoLOG (Boutilier et al., 2000; Soutchanski, 2001). More recently, Belle and Levesque
(2015) proposed an extension called belief-based programs (or belief programs), where ac-
tions and sensing could be noisy. With the feature that test conditions refer to the agent’s
subjective degree of belief, belief programs are fairly suitable for robot control in a partially
observable uncertain environment.

For safety and economic reasons, verifying such a program to ensure that it satisfies
certain properties as designed before deployment is essential and desirable. As an illustrative
example, consider a robot searching for coffee in a one-dimensional world as in Fig 1.
Initially, the horizontal position hpos of the robot is at 0 and the coffee is at 2, the space
is infinite, namely hpos could be any integer. Additionally, the robot has a knowledge
base about its own location (usually a belief distribution). The robot might perform noisy
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1 while B(hpos =2) <1 do
2 east(1)|sensecoffee;
3 endWhile

Table 1: An online belief program for the coffee robot.
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Figure 1: A coffee searching robot.

sensing sensecoffee to detect whether its current location has the coffee or not and an action
east(1) to move one unit east. The action east(1) might be stochastic and end up moving,
say, 1 or 2 units, causing the agent’s belief about its position to shift to another distribution.
Likewise, sensecoffee might be noisy, yet receiving a sensing result will somehow strengthen
the agent’s belief. A possible belief program is given in Table. 1. While the robot does not
fully believe that it reached the coffee (Line 1), it non-deterministically selects the action
east(1) or sensing sencfe to execute (Line 2). The program is an online program and its
execution depends on the outcome of sensing.
Some example properties one may be interested in are:

1. P1: whether the probability that within 2 steps of the program’s execution the robot
believes it reached the coffee with certainty is higher than 0.5;

2. P2: whether it is almost certain that eventually the robot believes it reached the
coffee with certainty.

Often, the above program properties are specified by temporal formulas via Probabilistic
Computational Tree Logic (PCTL) (Hansson & Jonsson, 1994). Obtaining the answer of
whether a program satisfies the properties is non-trivial as the result depends on both the
physical world, e.g. the robot’s position and action models of actuators and sensors, and
the robot’s epistemic state, e.g. the robot’s beliefs about its position and action models.
There are at least two questions in verifying such belief programs: 1. how can we formally
specify temporal properties like the ones above; 2. what is the computational complexity
of the verification problem?

The semantics of belief programs proposed by Belle and Levesque (2015) is based on
the seminal BHL formalism (Bacchus et al., 1999), which combines the situation calculus
and probabilistic reasoning in a purely axiomatic fashion. While verification in this fashion
has been studied for the non-probabilistic setting (Giacomo et al., 1997), such an axiomatic
approach has some drawbacks. First, from the presentation point of view, the axiomatic
approach tends to be cumbersome as it relies on the y calculus where the use of second-order
logic is inescapable. For instance, specifying the classical request-and-response property
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(every request will eventually be responded to) is non-trivial:
(Vz, 8, s)Trans*(dp, So, 9, do(request(zx), s)) D ERes(x,0,do(request(x),s))

where Trans* refers to the transitive closure of the Trans predicate (a predicate axiomati-
cally defining the transitions among program configurations (4, s)) and eventually responded
FE Res is defined by

ERes(z,61, 1) ::= ppss{[(3s”)s = do(select Request(x), s" )|V
(3,8 )Trans(d,s,0',s")) A (VY \Trans(d,s,08',s") D P(8,s)]}(01,51).

Here pps s denotes a least fixpoint according to the following formula:

(V2 ) {ppg®(P,y) (@) = [(VP)[(Vy)®(P,§) > P(§)] > P(Z)]}.

Such an example illustrates that formulating properties in this manner is involved and may
be difficult to grasp. Second, closely in spirit, Lakemeyer and Levesque (2011) noticed that
the axiomatic situation calculus substantially complicates answering questions that are not
direct entailment problems such as “if Theory! entails Formulal, is it also the case that
Theory2 entails Formula2”. Yet, such kind of problem lies at the heart of progression with
an action theory (introduced later). Lastly, from the perspective of studying the complexity
of the verification problem, starting with a second-order logic makes things undecidable
immediately. Hence, one might wish to rule out this source of undecidability and start with
a less expressive formalism.

To overcome these drawbacks, in this paper, we propose a new semantics for belief
programs based on the logic DS, (Liu & Feng, 2023), a modal version of the BHL logic with
a possible-world semantics. We will show that by going modal and with proper constraints,
we can avoid the use of second-order logic in expressing program properties. As a result,
our modal formalism makes it easier than the axiomatic approach to express temporal
properties like eventually and globally by using the usual modalities F and G in temporal
logic. Another benefit of using modal logic, as observed by Lakemeyer and Levesque (2011),
is that model-theoretic frameworks tend to lend themselves to more concise proofs.

Besides the new semantics of belief programs, we study the (un-)decidability of the
verification problem. Specifically, ClaBlen et al. (2014) observed that many dimensions
affect the complexity of the GOLOG program verification including the underlying logic,
the program constructs, and the domain specifications, a.k.a action theories. Arguably,
the dimension of domain specification is less well-studied. Hence, we study the boundary
of decidability of the verification for belief programs from this dimension. We show that
the result is strongly negative. However, we also investigate a case where the problem is
decidable.

The rest of the paper is organized as follows. Section 2 introduces the logic DS,,.
Subsequently, we present the proposed semantics and specification of temporal properties
for belief programs in Section 3. In Section 4, we study the boundary of decidability of the
verification problem in a specific dimension: the domain specification. Section 5 considers
a special case where the problem is decidable. In Section 6 and 7, we review related work
and conclude.
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2. Logical Foundations

In this section, we review the logic DS, a first-order probabilistic modal logic with modal-
ities for actions and degrees of belief. We will also briefly touch on the projection problem
in the logic. The projection problem is common in dynamic settings, which is to decide
what holds after a sequence of actions.

2.1 The Logic DS,

While the DS, logic includes all the features of first-order logic, which allows fluents with
an arbitrary number of arguments, we only use the nullary fragment of the logic DS, plus a
special unary fluent to express action likelihood. Here fluents refer to functions whose values
may change as a result of actions. As observed by Belle and Levesque (2013, 2018), allowing
fluents with arguments in degrees of belief might result in having a joint distribution over
possible worlds of infinitely many, perhaps uncountably many, random variables, which is
not handled in DS,,. It is until recently that a continuous modal logic (Liu et al., 2023a),
the logic PS, was proposed to handle such generality, extending its static predecessor (Feng
et al., 2023). However, it is unclear how to perform projection reasoning, a fundamental
problem in reasoning about actions, in PS (we will come back to this problem in the next
subsection). On the other hand, Liu and Feng (2023) provided a solution to the projection
problem in DS, for the nullary fluent fragment by progression. Hence, we focus on the the
nullary fragment of the logic DS,,.

DS, is a many-sorted logic and there are two sorts: number and action. By number,

we mean algebraic real number (Hardy & Wright, 1995) which includes irrational numbers
such as v/2.

2.1.1 THE LANGUAGE

The logic features a countable set of so-called standard names N, which is isomorphic
with a fixed universe of discourse. Roughly, this amounts to having an infinite domain
closure axiom together with the unique name assumption (Levesque & Lakemeyer, 2001).
N = D UN,4 where D and N4 are number standard names and action standard names,
respectively. The language includes a modal operator B for degrees of belief and features
fluent and rigid functions. The interpretation of fluent functions varies as the result of
actions, yet the interpretation of rigid functions is fixed. For simplicity, all action functions
are rigid. Formally, the symbols of the language include equality “=" and

e standard names {n,n’,...} and variables {z,y,...};
e rigid function symbols +, x, sensecoffee(1), etc.;
e finitely many nullary fluent functions {hi, ha,...hy}.

e a special unary fluent [ of sort number that takes an action as its argument and returns
the action’s likelihood. E.g. [(sensecoffee(1)) returns how likely the sensing action
receives a positive signal.!

1. We do not include the usual Poss for action preconditions. Impossible actions are treated as actions
with 0 likelihood.
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The logical connectives are {A, ¥, =}. We treat {V, 3, =, D} as the usual syntactic
abbreviations. For simplicity, no predicates are considered. However, we will use “<”
(defined on numbers) by assuming there is a rigid function to denote it.

Terms are the least set of expressions such that

1. every variable and standard name is a term;
2. if t1,...t; are terms and f is a k-ary function symbol, then f(¢1,...%x) is a term.

A term is said to be rigid if it does not mention fluents. Ground terms are terms
without variables. Primitive terms are terms of the form f(nq,...,n), where f is a function
symbol and n; are number standard names. We denote the set of primitive terms as P.
Additionally, we assume N is just the set of action primitive terms.? For example, the
sensing action sensecoffee(1), i.e. the sensor of the coffee robot reads a positive signal, is
considered a standard action name. Furthermore, Z refers to the set of all finite sequences
of action standard names, including the empty sequence ().

Atomic formulas are expressions of the form t; = 5 for terms t1,t5. Arbitrary formulas
are formed with the usual connectives —, A, the quantifier V, and three modal operators
[ta], 0, B. The two action modalities [t,)o and O are read, respectively, as “a holds after
action t,,” and “a holds after any sequence of actions. The epistemic modality B(a: 1)
should be read as “a is believed with a probability r”. We use K (a) as abbreviation of
B(a: 1). of is the formula obtained by substituting all free occurrences of = in « by ¢.

A sentence is a formula without free variables. We use TrUE as an abbreviation for
Vz(x = x), and raLse for its negation. A formula with no O or [t,] is called static. A
formula with no B is called objective. A formula with no fluent, O or [t,] outside B is
called subjective. A formula with no B, O, [t,], and [ is called a fluent formula. A fluent
formula without fluent functions is called a rigid formula.

2.1.2 THE SEMANTICS

The semantics is given in terms of possible worlds. Intuitively, a world determines what
holds initially and after any actions, and the agent’s beliefs are interpreted by distributions
over possible worlds. More formally, A world w : P; x Z ~ N is a mapping from the
primitive terms P; and action sequences Z to standard names N of the right sort, satisfying
rigidity and arithmetical correctness. That is:

e Rigidity: If t € Py is rigid, then for all worlds w and all 2,2’ € Z, wlt, z] = wlt, 7/];

o Arithmetical Correctness: any arithmetical expression is rigid and has its standard
interpretation. E.g. w[l + 1, z] = 2 for all w, z.

We denote the set of all such worlds as W. Given w € W, z € Z, and a ground term ¢,
we define |t|Z (the denotation for ¢ given w, z) by:

1. If t € N, then |t|Z, = ¢;

2. Alternatively, one could assume action standard names syntactically look like constants as well, our
approach here is just an implicit way for the unique names assumption. Namely, A(Z) and A’(Z) are
different actions, and A(Z) and A(y) are the same action if and only if # and ¥ are the same.
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2. [f (bt = wlf (g, - [Ekl%) 2]

Note that for rigid ground terms ¢, |¢|, and |¢|?, are identical for all w,w’ € W,z € Z,
in which case we write |¢| for short.

By a distribution d, we mean a mapping from W to RZ? and an epistemic state e
is any set of distributions. A comment here is that we do not require distribution d to be
normalized, i.e. “Y -, d(w) =17, as W is uncountable and such a summation is hence
not well-defined. We will come back to this issue later. Another point is that the idea
to incorporate a set of distributions instead of a single distribution in the epistemic state
derives from the philosophical stance that de re knowledge about degrees of belief should
not be valid (Gabaldon & Lakemeyer, 2007). Namely, if epistemic states only contain single
distributions, formulas such as J3z.K(B(¢: x)) would become valid, which seems counter-
intuitive as it would mean that the agent has complete knowledge about the degree of belief
for every sentence. Allowing for multiple distributions easily avoids that problem. By a
model, we mean a triple (e, w, z) consisting of an epistemic state e, a possible world w, and
a sequence of actions z.

Truth of objective sentences is defined as follows:

e,w,z | t1 =to iff [t1]%, and |t2|? are identical;

o c,w,z = aiff e,w, z £~ a;

e ccw,zFEaNfiff e,w,z Eaand e,w, z = f;

o c,w,z Ve iff e,w, z = of for every standard name n of the right sort;
o c,w,z = [ty]aiff e,w,z-n = aand n = |t,|%);

e cow,z Elaiff e,w,z- 2 Eaforall 2/ € Z.

where z - 2/ denotes the concatenation of action sequences z and 2’.

To account for stochastic actions, DS, uses a notion called observational indistinguisha-
bility among actions (Bacchus et al., 1999). The idea is that instead of saying stochastic
actions have non-deterministic effects, DS), says stochastic actions have non-deterministic
alternatives which are mutually observationally indistinguishable from the agent’s perspec-
tive and each of which has a deterministic effect. In the coffee robot example, to express
that action east(1) might end up moving 1 or 2 units east non-deterministically, DS, uses
two actions east(1,1) and east(1,2), and they are interpreted in that the robot intends to
move 1 unit east but nature may select 1 or 2 as outcomes.

More formally, we assume only two types of action symbols are used: stochastic actions
and sensing. Additionally, we assume stochastic actions have at most 2 arguments and
sensing has at most 1 argument. We remark that allowing only one controllable and one
uncontrollable variable for stochastic actions (likewise for sensing) is not really a limitation
as multiple arguments can always be encoded into a single argument by some encoding
function. Nevertheless, this assumption will simplify the presentation a lot.

For stochastic action a(x,y), x is called the controllable and observable argument while
y is called the uncontrollable and unobservable argument. For example the argument 1
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in east(1,2) is controllable and observable while the argument 2 is uncontrollable and un-
observable. The argument x for sensing sen(x) is observable yet uncontrollable, e.g. the
argument 1 in sensecoffee(1).

Of course, the outcome, i.e. the uncontrollable argument, of a stochastic action or
sensing is determined by nature (the world). Nature will also determine how likely each
outcome is by the special fluent /(a). Besides, after observing the outcome, the agent will
change its belief according to the likelihood of the outcome.

Hence, with the above conventions, we define observational indistinguishability among
action sequences as follows:

Definition 1 (Observational Indistinguishability). We define z =~ 2':
L (=2 iff 2/ = ();
2. z-r~7 iff 2/ =2*r, 2z~ 2" and r is a sensing action;
3. z-a(x,y) = 2/ iff 2/ =2*-a(x,y’) for some y and z ~ z*.

Two action sequences z and 2’ are considered observationally indistinguishable to the agent if
they are both empty sequences (Item 1); or their last actions are identical sensing action and
their prefixes up to the last action are observationally indistinguishable (Item 2); or their last
actions are the same except for the uncontrollable argument and their prefixes up to the last
actions are observationally indistinguishable (item 3). For example, east(1,1) - east(1,2) ~
east(1,2) - east(1,3).

Moreover, we define the likelihood of an action sequence in a world.

Definition 2 (Action Sequence Likelihood). Let w € W, we define: I*: W x Z ++ RZ0 as
L M(w, () =1;
2. I"(w, z-a) =1*(w, z) - n where n = w[l(a), z].

In words, the empty sequence has likelihood 1 and the likelihood of an action sequence
z - a is just the likelihood of the z times the likelihood of a after action sequence z.

Since W is uncountable, to obtain a well-defined sum over uncountably many worlds,
the following conditions are used for evaluating beliefs (Belle et al., 2016):

Definition 3 (Normalization). We define BND, EQ, NORM for any distribution d and any
set of pairs V = {(w1, z1), (w2, 22), ...} as follows:

1. BND(d, V,n) iff =3k, (w1, 21), ..., (wy, z) € V such that % d(w;) x I*(ws, ;) > n.
2. EqQ(d,V,n) iff BND(d,V, n) and there is no n’ < n such that BND(d, V), n’) holds.
3. for any U C V, NOrRM(d,U, V), n) iff 3b # 0 such that EQ(d,U,b x n) and EQ(d, V,b).

Intuitively, NOrRM(d,U,V,n) says the ratio of summed weights (under distribution d)
of worlds in U to worlds in V is n. EQ(d,V,n) and BND(d, V, n) express respectively that
the summed weights of worlds in V is n and is bounded by n. Technically, since V might
be uncountable, the condition EQ and BND on d ensure only a countable subset of V (the
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enumeration of (w;, z;) in the definition of BND) will receive non-zero weight in d, hence one
can construct a discrete probability space over this countable subset of V via d. Namely,
d is indeed a discrete probability distribution over possible worlds under the constraint of
NORM (see (Belle et al., 2016) for a proof).

Given e, w, z and sentence a, let ||a|lew. = {(W,7) | Z = z,e,w', 2" = a}. Namely,
la|le,w,> is the set of all pairs of worlds and actions that might result in a under the
epistemic state e. For a distribution d, we abbreviate NORM(d, |||} w2 [| TRUB[| {4} 0,2, )
as NORM(d, ||| {4y w,25 7). Now, we are ready to give truth conditions for B. Let r be a
rigid term.

e c,w,z = B(a: r) iff for all d € e, NORM(d, ||| 4} w,25 [|7]]);

We freely use B(a) < r (or B(a) < r) as formulas. They should be understood as
syntactic abbreviations for 3z.B(«a: x) A x < r and analogous for 7 <”.

For a sentence «, we write e, w = « to mean e, w, () = a. When ¥ is a set of sentences
and « is a sentence, we write ¥ = « (read: X logically entails «) to mean that for all e and
w, if e,w | o for every o/ € ¥, then e, w |= . Satisfiability and validity are defined in the
usual way. If a is an objective formula, we write w |= « instead of e, w = a. Similarly, we
write e = « instead of e, w = « if a is subjective.

2.2 Basic Action Theories and Projection

The projection problem is one of the most important problems in dynamic settings, which
asks what holds after actions. To address the projection problem, one needs to specify the
dynamics of a domain first, namely, how actions change the world.

2.2.1 Basic AcTIiON THEORIES

In the situation calculus, the dynamic aspects of a domain are specified by a set of axioms,
called the basic action theory (BAT) (Reiter, 2001). The logic DS), uses a variant of BATSs.
Given a finite set of nullary fluents H, a BAT X over H consists of the union of the following
sets:

e Yo: a set of fluent sentences describing what holds initially, i.e. initial state aziom;

o Yost: aset of successor state azioms (SSAs), one for each fluent h in H, of the form?
Olalh = u = yp(u,a) Vh =u A =3 (v, a) (1)

to characterize action effects, also providing a solution to the frame problem (Reiter,
2001); Here v, (u,a) is a fluent formula with free variables u, a and is functional in u.
Intuitively, the axiom says it is always the case that if vj,(u,a) holds, then the new
value of h after executing a equals u, otherwise, the value of h remains unchanged.

e Y;: a set of likelihood axioms, one for each action symbol, of the form (for stochastic
actions and sensing, respectively)

3. Free variables are implicitly universally quantified from the outside. The [0 modality has lower syntactic
precedence than the connectives, and [-] has the highest priority.
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Oia(z, y)) = v = ¢a(x, y, u)

Ol(sen(z)) = u = psen(z,u)
where ¢, (z,y,u) (likewise for ¢sen(x,u)) is a fluent formula with free variables z,y, u
(z,u) and is functional in u. Namely, it is always the case that the likelihood of
stochastic action a(x,y) equals u iff ¢q(z,y,u) holds (likewise for sen(x)).

Again, we do not include the usual action precondition axioms, and impossible actions
are treated as actions with 0 likelihood. By a belief distribution, we mean the joint distri-
bution of a finite set of random variables. Formally, assuming H = {hi,...,hn}, a belief
distribution Bf of H is a formula of the form Vii.B(h = @ : f(if)), where @ is a set of vari-
ables, h = @ stands for A hi = u;, and f is a rigid mathematical function of sort number
with free variables .

Note that our choice of Bf essentially limits the epistemic state to a single distribution.
This is needed because we rely on the projection mechanism by progression due to Liu and
Feng (2023) which is only defined for single distributions. It is an interesting open question
how to generalize their results to epistemic states with multiple distributions.

We will use ¥g to denote the union of ¥, and X; as they describe universal laws
obeyed by the domain under consideration. Finally, by a knowledge base (KB), we mean
a sentence of the form Bf A KX, We require that the universal laws Yo of a BAT X
of the actual world is the same as the counterpart known by the agent. In case the two
universal laws do not coincide, the physical world might select an outcome for sensing that
the agent believes to be impossible, making the agent’s belief inconsistent. This is also why
the progression of belief (Theorem 2 below) is only defined for sensing which is known to
have a non-zero likelihood by the agent.

Example 1. Consider the domain of the coffee robot in the introduction as follows. The
only fluent of interest is the robot’s position denoted by hpos. The position of the robot,
i.e. hpos, can only be changed by actions east(x,y); the changed value is determined by
nature’s choice y, not the intended value z; the exact distance moved is unobservable to the
agent; for the stochastic action east(x,y), with the half-half likelihood the exact distance y
moved equals to x or x+ 1 where x is the intended value. Sensing sensecoffee(x) is accurate,
i.e. if the robot is at the location of coffee hpos = 2, a positive signal is read with likelihood
1, likewise if hpos # 2, a negative signal is read with certainty. Initially, the robot is at a
certain non-positive position Apos < 0 and it fully believes its position is at 0 and knows
the dynamics described above. These can be formally specified as below.

Ola]hpos = v = 3x,y.a = east(x,y) AN u = hpos +y

V hpos = u A —~F' (3x,y.a = east(z,y) Au' = hpos + y) (2a)
Oi(east(z,y)) =u=u=05A(y=zVy=x+1)
Vu=0A-(y=zVy=x+1) (2b)
Oi(sensecoffee(x)) =u=u=1A (x =1 A hpos =2V x =0 A hpos # 2)
Vu=0A(x=1Ahpos #2Vx=0A hpos =2) (2c)

Eq.(2a) says that after an action a, the robot’s position is at u, if a is an east(z,y)
action and the new position u equals to the robot’s original position hpos plus the moved
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distance y, otherwise, the robot’s position remains unchanged (hpos = u). Eq.(2b)-(2c) just
specify what is described above. In addition, we have that X9 = {hpos < 0}, and the agent’s
knowledge base is BfoAK Y., where X is consists of Eq.(2a)-(2¢), and B := Vu.B(hpos =
u: fo(u)) is the initial belief distribution, here fo(u) := if uw =0 then 1 otherwise 0. O

2.2.2 PROJECTION BY PROGRESSION

As mentioned before, projection in general is to decide what holds after actions. Progression
is a solution to projection and the idea is to change the initial state according to the effects of
actions and then evaluate queries against the updated state. Lin and Reiter (1997) showed
that progression is second-order definable and conjectured that the use of second-order logic
is inevitable which was confirmed later by Vassos and Levesque (2008). Recently, Liu and
Feng (2023) showed that if all fluents are nullary, for the objective fragment, progression is
first-order definable.

Theorem 1 (Liu and Feng (2023)). Let ¥ := ¥o U X be a BAT, where ¥y is a set of
fluent sentences (over the nullary fluents in H), and t a ground action, then the following
FO sentence is a progression of Yo wrt Xg and t:

35.(So) A\ Vuh = u= (gp)0 (3)
heH

where ¢y, is the right hand side of the SSA in Eq.(1).

For example, let ¥y = {hpos < 0} and X be as in Example 1, then the progression of
Yo wrt ¥ and action east(1,2) is

Vou.(v < 0) A [hpos = u = Tz, y.east(1,2) = east(z,y) A\u=v+y
Vo =uA-3u(Iz,y.east(1,2) = east(z,y) ANu' = v +1y)].

After simplification, we have {hpos < 2}.

Let Pro(Xo,X,t) be the FO progression of ¥y wrt ¥ and action term ¢ (or Pro(X,t)
for short). Liu and Feng also showed that the progression of a KB B/ A K¥g wrt to a
stochastic action t = a(x,y), denoted by Pro(Bf A K¥q,t), is another KB Bf' A KX
with a belief distribution BY":

Theorem 2 (Liu and Feng (2023)). For all subjective a, B NK¥q = [tlo iff B AK Yo =
o where

flay= 3" f(@)y lale,y) x U@, @', a(z,y')) (4)

@'ebm y'eD
and I is an indicator function given by I(-) =1 if Pro(ﬁ =a’, a(:v,y’))f7 and 0 otherwise.

For sensing sen(z) where B/ A K¥g = K(I(sen(z)) # 0), f' is given by f/(i) =
%f(ﬁ) x l(sen(x)), and 7 is a normalizer as 7 = > z/cpm f(@') x I(sen(x)). In short, for a
stochastic action ¢, the posterior f’ is just the compound of the prior f and the likelihood
distribution of ¢, while for sensing, the posterior f’ is updated in a Bayesian way.
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Example 2. Let B/o A KX be as in Example 1, then its progression wrt the stochastic
action east(1,1) is B' A K¥, where f; is given by:

fiw)= D" fo(w) D east(1,y)) x I(u, v/, east(1,y")) (5a)

weDm y'€D
B 05 ¢ =1Vy =1+1 ,
—no S { G TN T Ky ob)
y'eD
B Z 0.5 3 €{1,2} e [Pro(hpos = 0), east(1,y/)] 4P (5¢)
o 0  otherwise 0 otherwise
y'eD
B 0.5 ¢ e{1,2} 1 u=y
o %{ 0  otherwise | 0 otherwise (5d)
y

_{QSUEHJ} (5€)

0 otherwise

Here, Eq. (5a) holds by Theorem 2. Eq. (5b) holds because fo(u') is non-zero only if
u' = 0. Eq. (5¢) holds because f/(0) = 1 and by definition of I(-). Eq. (5d) holds because
the progression of hpos = 0 wrt east(1,y’) is hpos = ¢/, substituting hpos with u thereafter
leads to u = /.
Likewise, the progression of B/t A K'Y wrt the sensing action sensecoffee(1) is B2 A
KXY with
Folu) = { 1 U =2 u

0 otherwise

We comment that the above result is a significant improvement and advancement over
classical progression (Reiter, 2001) as the projection there cannot deal with belief and knowl-
edge, it also goes beyond the epistemic non-probabilistic progression (Scherl & Levesque,
2003) or (Fang et al., 2015) since they cannot deal with stochastic actions. It goes beyond
the progression result in the probabilistic situation calculus (Belle & Levesque, 2020) as it
only works for so-called invertible action theories. Yet, there are also drawbacks as noted
by Liu and Feng (2023). The progression result above makes use of infinite summation
as a (rigid) logical term, which can be alternatively axiomatized by second-order logic. A
problem in doing so is that summation is not closed under algebraic real numbers.* In
other words, for some terms using infinite summation, a denotation may not exist. Another
problem is that it is unknown whether it is decidable to check satisfiability wrt a theory
involving summation.”

To sum up, for both theoretical and practical reasons, one may wish to avoid infinite
summation. For this purpose, we impose some constraints on the basic action theories and

4. In fact, summation is not closed under computable real number. See also Specker Sequence in (Specker,
1949).

5. Since the Maclaurin expansion of the exponential function e® can be expressed in terms of infinite
summation, a positive answer to this would imply the theory of real with exponential is decidable. Yet,
this problem has been open for decades (Macintyre et al., 1996).
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knowledge base. Formally, we assume that ¥; is of the form:

Ol(a(z,y)) =u = \/y =7ri(x) N pj(x) Nu =1 (x)
v | )
Ol(sen(x)) =u = \/1: =riANQjNu=r;;

where 7;(z) and 7; j(x) are rigid terms with variables x; 7, and 7} ;.; are rigid ground terms;
¢j(x), the likelihood contexts, are fluent formulas with free variables among z (likewise
for sentence ¢;). Besides, we require that likelihood contexts are mutually exclusive and
complete (likewise for sensing):

1. for distinct j and j', |= Va.¢j(x) D —¢j (x);
2. EVa. \/j ;(@);
3. forall j, =Va. ), (x) =1

The last item makes sure that for any x only finitely many outcomes of stochastic actions
(ri(x)) receive non-zero likelihoods (7; j(x)). A comment is that while the above assumption
on the form in Eq. (6) is syntactic, the additional restrictions listed in the items above are
semantic (by the use of “=”). In general, it may be undecidable to check if an ¥; satisfies
these assumptions if one considers an expressive enough theory. Here, we leave it to the
modeler to ensure that these assumptions are met.

In addition, we only consider belief distributions where only ﬁmtely many points receive
non-zero degrees of belief. That is, Vi.B(h = @: f(@)) = A B(h = ii;: ;) for some
vectors of standard name 7i; and rigid ground terms r; with >, r; = 1. Clearly, under these
restrictions, the infinite summation in Eq. (4) can be converted into a formula with finite
summation. As an example, the BAT in Example 1 satisfies the above restrictions.

3. The Proposed Framework

With a formalism of actions and degree of beliefs in hand, we can define belief-based pro-
grams, a type of probabilistic program where tests refer to the agent’s subjective degree of

belief.

3.1 Belief Programs

The atomic instructions of our belief programs are the so-called primitive programs which
are actions that suppress their uncontrollable arguments. A primitive program ¢ can be
instantiated by a ground action t,, written o — ¢4, if and only if = Jy.gly] = t,, where
o[y] is the action that restores its suppressed argument by y. For instance, the primitive
program for the ground action east(1,2) and sensecoffee(1) are east(1) and sensecoffee, i.e.
east(1) — east(1,2), sensecoffee — sensecoffee(1), respectively.

Definition 4 (Program Expression). A program expression 0 is defined as:

5= 0| a?] (5:9) | (918) | 6"
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Namely, a program expression can be a primitive program g, a test a? where « is a static
subjective sentence, or constructed from sub-programs by sequence d; 9, non-deterministic
choice d]d, and non-deterministic iteration ¢*. Furthermore, if statements and while loops
can be defined as abbreviations in terms of these constructs:

if a then 0, else 02 endIf := [a?;0;]|[-a?; d2]
while a do § endWhile := [a7;0]"; —a?

Under this convention, the coffee robot program 4., in Table 1 just an abbreviation of
defe := [B(hpos = 2) < 17; (east(1)|sensecoffee)]*; B(hpos = 2) = 17 (7)

We remark that we disallow the so-called pick operator mx.d, which non-deterministically
picks a program argument to execute. One reason to exclude it is that ClaBen et al. (2014)
proved that the pick operator is a source of undecidability for verification already in the
non-probabilistic case.

Given a BAT ¥ := ¥, UYq, a knowledge base Bf A K'Y, and a program expression 6,
a belief program BP is a pair of the form

BP = (2 A B/ AKX, 0).
For the coffee robot, a belief program could be
BP.je = (h <OASo A B AKSH, 60p) (8)

where ¥, Bf0 are as in Example 1 and dcfe as in Equation (7).

To give a uniform semantics for both terminating and non-terminating programs, we
consider infinite execution paths of programs only and extend the finite execution paths of
terminating programs with loops of trivial transitions (defined below). This is done by the
following. First, to handle termination and failure, we reserve two nullary fluents Final
and Fail. Moreover,

Ofa]Final =u=a=eAu=1V Final =uia#e

Ola]Fail =u=a=fANu=1V Fail=uNa#f
is implicitly assumed to be part of ¥ where special actions {e, f} are used to generate trivial
transitions when programs terminate. Besides, we assume that ¥ = Final = 0A Fail = 0,
and actions €, f do not occur in 6. Now, a configuration (z,d) consists of an action sequence

z and a program expression d. For a configuration (z,d), z represents the executed action
history while § represents the remaining programs expression to be executed.

Definition 5 (Program Semantics). Let BP = (X A B/ A K'Y, §) be a belief program, the
transition relation —» among configurations, given an epistemic state e s.t. e = B'ANK o,
is defined inductively:

1. (z,0) 5 (z-t,()), if o= t;

2. (2,01500) = (21,03 82), if (2,61) = (2 -1,6");
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3. (2,01;00) 5 (z-t,8"), if (2,61) € Fin(e) and (z,2) = (2 -t,6');
4. (2,61]00) S (z-t,8), if (2,01) S (2-t,8) or (2,89) S (z-,0) ;
5. (2,0%) S (2 t,8';8%), if (2,0) S (z-t,8') .

where Fin(e) is the set of final configuration wrt e given by:

1. (z,()) € Fin(e);

[\

z,a?) € Fin(e) if e,w, 2z = o

-
-
3. (z,01;02) € Fin(e) if (z,01) € Fin(e) and (z, d2) € Fin(e);
. (2,01]62) € Fin(e) if (z,61) € Fin(e) or (z,d2) € Fin(e);
. (z,0%) € Fin(e);

The set of failing configurations is given by:

Fail(e) = {(2,6) | (2,6) ¢ Fin(e), there is no (z-t,d") s.t. (z,0) = (z-t,0")}.

We extend final and failing configurations with additional trivial transitions by actions
{€,f}. This means that all execution paths of the programs will now be infinite. We achieve

this by defining an extension of <. The extended transition relation < among configurations
is defined as the least set such that:

1. (2,8) < (21,8 if (2,6) S (z-t,6);
2. (2,8) <> (z-¢,()) if (2,8) € Fin(e);
3. (2,0) < (z-,()) if (2,6) € Fail(e).

The execution of a program BP yields a countably infinite® Markov decision process
MDP) M$" wrt e, w s.t. e,w =X A Bf A K3,
é

Definition 6 (MDP). A Markov decision process is a tuple M = (S, Act, P, sp) with a
countable set S of states, an initial state sg, a finite set Act of actions,” and a transition
function P : S x Act x S — [0,1], with g P(s,a,s) =1 for all s € S and a € Act.®

In our program semantics, the MDP M$™ = (S, Act, P, s9) is given by:

1. S : the set of configurations reachable from ((), ) under & (transitive and reflexive

e
closure of —);

2. Act : the finite set of primitive programs in ¢;

6. Our restrictions on ¥; ensure a bounded branching for the MDP, therefore its states are countable.
7. The notion of actions here is different from the notion of actions in the logic DS, which are logical terms.
8. We leave out the classical reward function in MDP as we do not need it.
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3. P : the transition function with P((z,0), o, (2 - t,d")) given by:

o—t,w,zEIt)=p,
and (z,8) <> (z - t,8')
(z,0) € Fin(e) and p =t =09"=¢
(2,0) € Fail(e) and p =t =f,0' = ¢
otherwise

P() =

O = =T

4. s¢: the initial state ((),9).

Now, the non-determinism on the agent’s side is resolved by means of policy o, which
is a mapping o : S — Act. A policy o is said to be proper if and only if for all s = (z,4),
s =(2',9),if z = 2/, then o(s) = o(s’), namely, the robot acts only according to its observed
action histories (not the actual ones). A comment is that under our assumption of stochastic
actions and sensing, z &~ 2’ implies that Pro(B/ A K¥n,z) and Pro(B/ A K¥q, 2') are
equivalent given any initial KB Bf A K¥q. Hence, proper policies also mean that the robot
acts only according to its knowledge base KB.

An infinite path 7 = sp 25 51 = s9--- is called a o-path if o(s;j) = oj for all j > 0.
The j-th state of any such path is denoted by 7[j]. The set of all o-paths starting in s is
denoted by Path?(s, M§™).

Every policy o induces a probability space Pr? on the set of infinite paths starting in s,
using the cylinder set construction (Kemeny, Snell, & Knapp, 2012): For any set of infinite
paths starting with the finite path prefix w5, = sg 2y g - $p, we define the probability
measure of the set of infinite paths as:

Prg, fin = P(s0, 01,81) - P(s1,02,52) - ... - P(8n—1, 0n, $n)

3.2 Temporal Properties of Programs
We use a variant of PCTL to specify program properties. The syntax is given as:
O :=p|-D|DAND| P[] (9a)
U =X | (PUD) | (PUSFD) (9b)
where ( is any static subjective DS, formula. We call formulas according to Eq. (9a)
state formulas and according to Eq. (9b) trace formulas. Here I C [0,1] is an interval.
PU=FD is the step-bounded version of the until operator. Some useful abbreviations are:
F® (eventually ®) for trueU® and G® (globally ®) for -F-®.
Let ® be a temporal state formula, ¥ a temporal trace formula, Mg’w the infinite-state

MDP of a program BP = (SAB/ AKX, §) wrt e,w s.t. e,w = SABf AKYg, and s € S.
The truth conditions of state formulas are given as:

1. My, s = B iff s = (2,0) and e,w,z |= 3 ;
2. M5, s |= —® iff M5, s & & ;

5. M. - By 0 g M,y and ME,s s
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4. M$"Y . s = P[¥] iff for all proper policies o, Pr{(¥) € I, where

Prl(¥) = PrI({m € Path?(s,M5") | M5, 7 |= ¥}).
Items 1-3 are trivial. Item 4 intuitively says that, My, s |= P[] if and only for all
the proper policies o, the set of all infinite paths starting from s, that is induced by ¢ and
satisfy the trace formula ¥ (defined below), has probabilities in terms of the probability
space Pr? that lie in the interval I.
Furthermore, let 7 € Path?(s, M5") be an infinite path for some proper policy o. Then
the truth conditions of trace formulas are given as:

1. My, 7 = X& iff MP™, 1] = P;
2. M5 7 = &1 Uy iff 3i.0 < i s.t. MS™Y, w[i] = @9 and V5.0 < j <4, MP"Y, 7[j] = $y;

3. MY 1 @ USED, iff 3i.0 < i < ks.t. M3, wli] | @2 and V4.0 < j < i, M$™ 7[j] =
Dy

In words: 7 (under M§$™) satisfies X® if and only if the next state of path 7 satisfies state
formula ®; &, Ud, is satisfied by « if and only if along all the states of 7, ®; holds until &,
holds; ®; US*F®, is satisfied by  if and only if along all the states of 7, ®5 will hold within
at most k steps, where ®; holds in all states before.

Definition 7 (The Verification Problem). A temporal state formula & is valid in a program
BP, BP = @, iff for all e,w with e, w = £ A B/ A KX, it holds that M§™, so = ®. Given
a program BP and a temporal state formula ®, the verification problem is then to decide

if BP = ®.

E.g. formulas P> 5[F<2B(hpos = 2: 1)] and P_;[FB(hpos = 2: 1)] specify the two
properties P1 and P2 in the introduction respectively. The two properties are not satisfied
by the coffee program BP.s. in Eq. (8). We show that BP.s. ¥ P_i[FB(hpos = 2: 1)],
the other one is a direct consequence of this. Consider the world w where the robot is
at hpos = 0, which satisfies the constraint hpos < 0 in Xg, in such a world, a policy o
of the robot program is to always select sensecoffee and never choose east(1). Under the
world w and policy o, sensing will always end up receiving a negative signal and the robot’s
beliefs remain unchanged. Hence, B(hpos = 2: 1) will never be satisfied. By Definition 7,
BP.fe # P_i[FB(hpos =2: 1)].

We comment that formulas in the above examples contain two different types of modal-
ities for probability P and B. The probability space of B is defined over possible worlds,
while the probability space of P is defined over the cylinder set of infinite paths. In some
sense, B is subjective since the epistemic state e alone determines the truth value of a B
formula. On the other hand, P is objective and the transition probability from one con-
figuration to another is determined by the actual world w, hence P reflects a property of
the physical world. One may be interested in whether such two kinds of probability can be
unified into one, i.e. for any formula containing both B and P, is there another formula
with only B or P that is logically equivalent to it? This is answered negatively in the
paper (Beauquier et al., 2006) as P depends on the branching of the underlying transition
system while B does not. That is the two types of probability are indeed incompatible.

1220



A FRAMEWORK FOR BELIEF-BASED PROGRAM AND ITS VERIFICATION

Another comment is that the semantics of P only considers proper policies that are
determined by the agent’s knowledge base. In other words, we are interested in the agent’s
strategies to achieve some state in its perspective, which is why 8 in Eq. (9a) is subjective.
Alternatively, one could consider the set of all policies and use objective DS,, formulas in
the state formula, in which case the focus is on whether the “physical world” has strategies
to achieve some goals.

Finally, we remark that our approach does not support strategy synthesis. For example,
questions such as whether there exists a strategy for executing a belief-based program such
that a temporal property is achieved with a certain probability are not addressed. In
contrast, we are concerned with the question of whether such properties hold for all proper
strategies compatible with a belief-based program.

4. Undecidability

The verification problem is undecidable because belief programs are probabilistic variants
of GOLOG programs with sensing, for which undecidability was shown by Zarrie and
Claflen (2016). Clafien et al. (2014) observed that many dimensions affect the complexity of
the GOLOG program verification including the underlying logic, the program constructs, and
the domain specifications. Since then, efforts have been made to find decidable fragments.
Arguably, the dimension of domain specification is less well-studied. Here we study the
boundary of decidability from this dimension. Hence, in this paper, we set the other two
dimensions to a known decidable status.

Formally, we assume our logic only contains +, x as rigid function symbols, and when-
ever we write logical entailment ¥ = «, we mean ¥ U T = o where Tg is the theory of the
reals, where validity is decidable (Tarski, 1998).

In deterministic settings, domain specifications mainly refer to SSAs. Nevertheless, in
our case, the likelihood axiom plays an important role as well. Some relevant variants of
SSAs are strongly context-free (Reiter, 2001) and local-effect SSAs (Liu & Levesque, 2005).
Recall that our SSAs are of the form Oa]h = u = v, (u,a) Vh = uA =3 .4, (v, a) for fluent
h.

Definition 8. A set of SSAs is called:

1. strongly context-free, if for all fluents h, v, is a disjunction of formulas of the form
Jfi.a = A(V), where A is an action symbol, U contains u and p;

2. local-effect, if for all fluents h, v is a disjunction of the form Fji.a = A(v¥) A V(¥),
where A is an action symbol, ¥ contains v and p, and V(7) is a fluent formula with
free variables in ¥.

V(¥) is called the effect condition or effect context. For a local-effect SSA, instantiating
Y (u, a) wrt a ground action A(f) results in a formula of the form \/u = t; A V(t;) where
ti,tj € t (The same holds for strongly context-free SSA but replacing V(¢;) by truk). That
is, the new value of the fluent is determined by the action’s arguments conditioned on the
context formulas V(t;). Strongly context-free SSAs are special local-effect SSAs where the
context is vacuously true, i.e. the effects of an action are independent of the status of the
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world. For example, the SSA

Ofa]powerOn = ¢ =a = turnOn A x = 1V
powerOn = x A a # turnOn

is strongly context-free, which says the ground action turnOmn, irrespective of the current
status of the world, will turn the power on (powerOn = 1). On the other hand, the SSA

Olallevel = x =a = setLevel(z) A powerOn = 1V
level = x A (Vy.a # setLevel(y) V powerOn # 1)

is local-effect, which says that the action setLevel(z) will set the level of a lift to x if the
power is on, i.e. powerOn = 1. The SSA in Example 1 is not local-effect, as the new value
of location h is not part of the argument east(z,y).

We remark that the reason why we are interested in these two types of SSAs is that
verifying CTL* properties for non-probabilistic GOLOG programs with local-effect SSAs
was proven to be decidable (Zarrief & Claflen, 2014). So restricting to local-effect SSAs
for the verification of belief programs seems like a good starting point. Another reason
is that starting with a finite belief distribution Bf, for programs with local-effect SSA,
belief distributions generated during execution will always be finite (hence avoid infinite
summation). This is because (1) new values of fluents are given as action arguments; (2)
every primitive program has finitely many instantiations of ground actions; (3) and there
are finitely many primitive programs in a belief program. This might not be the case for
non-local-effect SSAs. For our coffee robot’s BAT in Example 1, if we iterate the primitive
program east(1) infinitely often, the possible locations of the robot may be arbitrary non-
negative integers, hence the belief distribution is ultimately infinite.

Recall that our likelihood axioms for stochastic actions and sensing are of the form

Di(a(z,y)) =u=\/y=ri(z) Adj(z) ANu=r;(z)
7:7‘7‘
Ol(sen(x)) =u = \/x =riNgj Nu ="}
i)j
Definition 9. A likelihood axiom is called strongly context-free if ¢;(x) and ¢; as above
are equivalent to TRUE.

Intuitively, for strongly context-free likelihood axiom, actions’ likelihood is independent
of the context. We comment that the strongly context-free likelihood axiom excludes sensing
as sensing always involves fluents. It makes no sense to have a sensor that randomly reads
a value. In fact, calling such “sensing” a stochastic action with no effects seems better.

Table 2 lists the undecidability of the belief program verification problem. Dashes mean
no constraint. The result is arranged as follows. We first explore decidability for the case
with no restriction on the likelihood axioms. As it turns out, the problem is undecidable
even if SSAs are strongly context-free (1). Therefore, we set the likelihood axiom to be
strongly context-free, which results in undecidability for the case of local-effect SSAs (2).
The case with the question mark remains open (3).
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# likelihood axiom SSA Decidable
1 - strongly context-free No

2 | strongly context-free local-effect No

3 | strongly context-free | strongly context-free ?

Table 2: Decidability of the verification problem

Theorem 3. The verification problem is undecidable for programs with strongly context-free

SSAs.

The proof is by a reduction to the undecidable emptiness problem of probabilistic au-
tomata (PA) (Paz, 2014). The idea is that for any given PA A, we can construct a belief
program BP to simulate its run. The language recognized by A with probability no less
than a threshold ¢ € [0,1] is empty if and only if BP = P_;[GB(hs € Ng) < £, here
fluent hy records the current state of A, N is a finite set of standard names representing
the accepting states of A. Since the former is known to be undecidable, the verification
problem is undecidable.

More formally, a PA is a quintuple A = (Q, L, (M;);c, ,q1,F) where Q is a finite set of
states, L is a finite alphabet of letters, (M;);cL are the stochastic transition matrices, ¢; € Q
is the initial state and F C Q is a set of accepting states. For each letter I € L, M; € [0,1]®*Q
defines transition probabilities: 0 < M;(g;,¢;) < 1 is the transition probability from state g;
to ¢; when reading a letter [. Given a probability distribution o over Q, and a letter [ € L,
let 0-1 be the probability distribution of states after [, i.e. (0-1)(g;) = EqieQ o(qi)-Mi(ai, g5)-
This naturally extends to a sequence of L* (namely word w): Yw € L*,VI € L,o0- (wl) =
(0-w) - 1. For every state ¢ € Q and for any set of states R C Q, we denote P4(q — R) =
> qcr (0g- W) (q") as the probability to reach the set R from state ¢ when reading word
w. The emptiness problem is that given a PA A and £ € [0, 1], deciding whether there
exists a word w (a sequence of letters) such that P4(q; — F) > &, namely, the probability
of reaching accepting states from the initial state upon reading w is no less than . The
emptiness problem is known to be undecidable.

The idea of the reduction is to use a strongly context-free stochastic action g;(y) to
simulate reading letter [. g;(y)’s effect is to set the current state hg to y with a probability
M;(hs,y), (just like the transition probability M;(¢;, g;)). Moreover, the constructed belief
program simply iteratively non-deterministically selects a primitive program g; to execute
until B(hs € Ng) > € holds. The simulation is sound if a distribution o over Q coincides
with a belief distribution B of hy, ie. for all ¢; € Q, o(q;) = f(n;) where n; is the
standard name representing the state ¢; in A, then for all n; € Q, (0-1)(g;) = f'(n;), where
Bf' = Pro(Bf A KX, 01(y)) and ¥q is as the construction above. See Appendix A.1 for
detailed proofs.

A crucial point in the above reduction is that the actions’ likelihood M;(hs,y) might
depend on the current state hg. A natural question is whether the verification problem is
decidable if we set the likelihood axiom to be strongly context-free. The following theorem
provides a negative answer for this when the SSAs are local-effect.

Theorem 4. The verification problem is undecidable for programs with local-effect SSAs
and strongly context-free likelihood axioms.
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Figure 2: Two possible BATs to simulate an SSPA with a single probabilistic transition.

Since the likelihood axiom is restricted to be strongly context-free, the previous re-
duction breaks as transition probabilities of probabilistic automata may depend on states.
Nevertheless, we reduce the emptiness problem of the simple probabilistic automata (SPA)
(Gimbert & Oualhadj, 2010), i.e. PA whose transition probabilities are among {0, %, 1}, to
the verification problem with context-free likelihood axiom and local-effect SSAs. More pre-
cisely, the simple probabilistic automata we consider are super simple probabilistic automata
(SSPA), that is, SPA with a single probabilistic transition and where every transition has
a unique letter. Fijalkow et al. (2012a) show that the emptiness problem of the SPA with
even a single probabilistic transition is undecidable. In their proofs (Fijalkow, Gimbert, &
Oualhadj, 2012b), the single-step transitions of an SPA are simulated by words of another
SPA (with a single probabilistic transition). The SPA with a single probabilistic transition
is almost super simple except that a letter merge is used multiple times when simulating
different transitions of the original SPA. We can easily relabel it to make it distinct: by
replacing it with new letters merge(a, q) where ¢ records the outgoing state and a records
the latter of the transition in the original SPA.

The idea of the reduction is to shift the likelihood context in likelihood axioms to the
context formula in SSAs. More concretely, instead of saying the action likelihood depends
on the state and the action’s effect is fixed, which is the view of the BAT in the previous
reduction, we say the action’s effect depends on the state and the action’s likelihood is
fixed. This is better illustrated by an example. Consider an SSPA consisting of a single

probabilistic transition with ¢ RN q and ¢ 054, q" as in Fig. 2 where we use standard
names n,n’,n” to represent corresponding states ¢, ¢’,¢” and the primitive program o (with
instantiations p(n’) and o(n”)) to represent the letter [. Clearly, one can construct a BAT
as in the previous reduction to simulate this (Fig. 2 left), i.e., ground action o(n’) (likewise
for o(n”)) will deterministically set hs to n’, yet the likelihood of o(n') depends on what
the current state is. Nevertheless, a BAT with local-effect SSAs and context-free likelihood
axiom can simulate it as well (Fig. 2 right), i.e. the likelihood of o(n’) and p(n”) are the
same, yet they have different effects conditioned on the current state. In the right part
of Fig. 2, both o(n’) and o(n”) have the same effect, i.e. stay in state n’. Consequently,
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executing o in state n’ will end up in n’ with likelihood 1 as well. See Appendix A.2 for
detailed proofs.

5. A Decidable Case

Another source of undecidability comes from the property specification, more precisely, the
unbounded until operators. In fact, in our program semantics, the MDP M$™ is indeed an
infinite partially observable MDP (POMDP) where the set of observations can be thought of
as the set of possible KBs that can be progressed to from the initial KB regarding a certain
possible action sequence of the program. Verifying belief programs against specifications
with unbounded U requires verification of infinite-horizon POMDPs, which is known to
be undecidable (Norman et al., 2017). This motivates us to focus on the case with only
bounded until operators. In contrast to the previous section, we now allow arbitrary domain
specifications.

Definition 10. A state formula ®' is called bounded if it contains no U and no nested P.

Namely, &' ::= 3 | P;[¥] | =®' | &' AP with ¥ ::= X3 | (BUSFB) where 3 is any static
subjective DS, formula as in Eq. (9a). For example, the property P1 P 5[F<?B(hpos =
2: 1)] is bounded while the property P2 P_;[FB(hpos = 2: 1)] is not. We leave out nested
P as the model checking algorithm (Norman et al., 2017) on finite POMDPs we rely on do
not support it. For bounded state formulas, we only need to consider action sequences with
a bounded length, namely, only a finite subset of Mg’w’s states and observations needs to
be considered. Although model-checking the finite subset of I\/Ig’w against PCLT formulas
without unbounded U operators is decidable, this does not entail that the verification
problem is decidable as infinitely many such subsets exist. This is because there are infinitely
many models (e, w) satisfying the initial state axiom. Our solution is to abstract them into
finitely many equivalence classes as in (Zarrie & Claflen, 2016).

First, we need to identify the so-called program context C(BP) of a given program BP,
which contains: (1) all sentences in ¥¢; (2) all likelihood conditions ¢;(x) (grounded by all
possible actions) and ¢; in Eq. (6);° (3) all test conditions in the program expression; (4)
all DS, sub-formulas of the temporal formula; (5) the negation of formulas from (1)-(4).

Now, for a given bounded state formula ®’, we define the maximal step k = maxstep(P’)
for it as (assuming g is a DS), subjective formula):

1. mazstep(®') =0 if ®' = B;

1if o = P;[Xg];

2. mazstep(d’

k' if @ =P [USK B);

4. mazstep(P') = mazstep(P”) if &' = -P”;

(@)
(@)
3. mazxstep(P’)
(@)
5. mazstep(®’) = max{maxstep(P"), mazstep(®"')} if ' = d" A D"

We then define the types of models as follows:

9. Since there are finitely many primitive programs in BP, z has finitely many possible values. Then C(BP)
includes all possible groundings of ¢;(z).
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Definition 11 (Types). Given a belief program BP and a bounded state formula @', let
App be the set of all ground actions with non-zero likelihood in BP, (Agp)* be the set of all
action sequences using actions in Agp with length no greater than k where k = mazstep(®’).
The set of all type elements is given by:

TE(BP,®') = {(2,a) | z € (App)*,a € C(BP)}

A type wrt BP and @' is a set 7 C TE(BP, ®’) that satisfies:

1. Ya € C(BP), Vz € (Agp)*, (z,a) € T or (z,-a) € T;

2. there exists e,w s.t. e,w = Yo A Bf A K¥q U {[z]a| (z,a) € T}

Let Types(BP,®’) denote the set of all types wrt BP and ®'. The type of a model (e, w)
is given by type(e,w) == {(z,a) € TE(BP,®?’) | e,w |= [z]a}. Types(BP,®’) partitions e, w
into equivalence classes in the sense that if type(e,w) = type(e’,w’), then e,w | [z]a iff
e/, w' = [z]a for 2z € (App)* and o € C(BP).

Thirdly, we use a representation similar to the characteristic program graph (Clafien
& Lakemeyer, 2008) where nodes are the reachable subprograms Sub(J), each of which
is associated with a termination condition Fin(d’) (the initial node vy corresponds to the

overall program 0), and where an edge ; E/—% 6o represents a transition from 1 to do by
the primitive program p if test condition a holds. Moreover, failure conditions are given by

Fail(0") ::= —(Fin(¢") v \/yg/_am” Q).

Lastly, we define a set of atomic propositions AP = {p,|a € C(BP) and « is subjective}
one for each subjective o € C(BP).
The finite POMDP for a type 7 of a program BP is a tuple M = (S¢in, Actfin, Pfin, Ofin,

Qfins s?in, Lfin) consisting of:

1. Sgin : the set of states Sgn = (App)F x Sub(d);
2. Actyi, : the set of primitive programs Acts, = Act;

3. Psin @ the transition function Pgn((21,01), 0, (22,02)) as

Pein(-) = rij(x) (see Eq. (6)) if |z1] < k, & ole, 02, (z1,a) € 7, and for some
a(z,y),ri(x), ¢j(x), it holds that (likewise for sensing)

o= a(x,y), 22 = 21+ a(z,y),y = ri(x), (21, ¢(x)) € 75

Pﬂn(.) =1if |Z1| = ka@ = f: Z1 = 22,52 = (51;
Pan() = i (o1, Finy)) € 7, 0= s = €
Piin(-) = 1 if (21, Fail(01)) € 1,0 =02 = ;

4. Ogp : the observations O, = {Pro(Bf A K¥n, 2)|z € Afgp};
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|

east(1,2):

sensecoffee(0): 1
1fee(0) east(1,1): 0.5

sensecoffee(0): 1

E-r

east(1,2):

sensecoffee(0): 1

east(1,1): 0.5
sensecoffee(0): 1

Figure 3: POMDPs induced by type 71 (above) and 79,73 (below) for the coffee robot

example.

5. Qfn : the state to observation mapping Qfn as Qfin((z,0)) = Pro(B/ A K¥q, 2); 1°
6. s2_: the initial state sQ = ((),d);
7. Lgin @ a labeling function Lgin(0) = {pa | pa € AP, 0 = a}.1

Let AP be a set of atomic propositions, M = (Sgn, Actfin, Pfin, Ofin, inn,s?in, Lfin) a finite

POMDP where Ly : Ofin — 24P is a labeling function, ®, be a state PCTL formula defined
as Eq. (9a) but replacing S with atomic observations in AP, we define the satisfaction
relation =, among POMDP and propositional PCTL as in (Norman et al., 2017). Namely,
for a state s € Sgp,

10.

11.

We focus on deterministic observation functions. More general POMDPs with stochastic observa-
tion functions can be transformed into ones with deterministic observation functions in polynomial
time (Chatterjee, Chmelik, Gupta, & Kanodia, 2016). Besides, under such a setting, an observation
in a POMDP is essentially an equivalence class of states. We call a belief distribution an observation
since it represents an equivalence class of action histories in A’gp given by the relation & (observa-
tional indistinguishability): under our assumption of stochastic actions and sensing, z ~ z’ implies that
Pro(Bf A KX, z) and Pro(BY A K¥0,2') are equivalent given any initial KB BY A K¥.

Here, we use a function E[KB, o] to evaluate a subjective formula against a KB. Essentially, the function
is a special case of the regression operator in (Liu & Lakemeyer, 2021) and returns a rigid formula.
Thereafter, KB |= « is reduced to = E[KB, a]. For example, let KB be as in Example 1, E[KB, B(h =
2) < 1] returns fo(2) < 1. Since fo(2) =0and F0< 1, KB= B(h=2) < 1.
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Shape Observation (Belief distribution B/ )
Single circle (sg) {hpos =0 — 1}, i.e. B
Dashed circle (s1, s2) {hpos = 1 — 0.5, hpos = 2 — 0.5}, i.e. Bf1
Dashed double circle (s4, 5, S¢) {hpos = 2 — 0.25, hpos = 3 — 0.5, hpos =4 — 0.25}
Double circle with fills (s7, s3 below ) {hpos =1 — 1}
Double circles without fills (s3 above) {hpos =2 — 1}, i.e. B

Table 3: The observations (belief distributions) for states of POMDPs in Fig. 3.

1. M,s =, piff p € Lan(2(s));
2. M, s =, P[V] iff for all observation-based policies o, PrJ (V) € I, where

Pri (V) = Pr{({m € Path?(s,M) | M, 7 |=, ¥}).

The rules for other state formulas and trace formulas are the same as in Section 3.2.
In addition, a policy o is called observation-based iff for all s,s" € Sgpn, if Qfin(s) = Qfin(s)
then o(s) = o(s’). With these notions, we have that:

Lemma 1. Given a program BP and a bounded state formula ®', for all e,w s.t. e,w =
S ABIAKSo, MyY = @ iff M =, @), where 7 is the type of e,w, ®, a PCTL for-
mula obtained from ® by replacing all its DS, sub-formula with the corresponding atomic
proposition (Proofs in Appendiz A.3).

The lemma suggests that the verification problem can be reduced to model-check a finite
POMDP against propositional PCTL properties. Since there are only finitely many type
elements, there are only finitely many types for a given program. Hence, we can exploit
existing model-checking tools like PrRisM (Kwiatkowska et al., 2011) or STORM (Hensel et al.,
2022) to verify the PCTL properties against these finitely many POMDPs. Consequently,
we have the following theorem.

Theorem 5. The verification problem is decidable for temporal properties specified by
bounded state formulas.

In our coffee robot example, for the belief program BP.¢. in Eq. (8) and property P1
P> 5[F<2B(hpos = 2: 1)], we obtain three types 71, 72, and 73 for worlds satisfying {hpos =
0}, {hpos = —1}, and {hpos < 0 A hpos # —1} in the initial state Ogp,, respectively. This is
because ¥ only says {hpos < 0}. The corresponding finite POMDPs are depicted in Fig. 3.
Note that the POMDPs for 1,13 are the same. The observations of states are indicated
by shape and the corresponding observations (belief distributions of hpos) are given in
Table 5. For the property P1 P> 5[F<2B(hpos = 2: 1)], we only need to consider the first
two choices of proper policies, hence there are four equivalence classes of proper policies:
{east(1)-east(1), east(1)- sensecoffee, sensecoffee - east(1), east(1)- sensecoffee}, it is not hard
to check that only the proper policies in the last class in the POMDP of 7, i.e. starting
with east(1) - sensecoffee can reach the observation B/2 A K'Y which satisfies the label
PB(hpos—2: 1) With a probability 0.5 x 1 = 0.5. Therefore, Mgife p P20,5[F§2p3(hp05:2: ]
as the semantics of |=,, considers all proper policies. Hence, BP ¥ P> 5[F<?B(hpos = 2: 1)]
as the semantics of |= in Def. 7 requires all the underlying POMDPs to satisfy the property.
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6. Related Work

Our formalism extends the modal logic DS, (Liu & Feng, 2023), a variant of the logic DS
(Belle & Lakemeyer, 2017). The idea of using the same modal logic to specify the program
and its properties is inspired by the work of Clalen and Zarrie8 (2017). Similar approaches
to the verification of CTL*, LTL, and CTL properties of GOLOG programs include the
works (ClaBlen & Lakemeyer, 2008), (Zarriel & Claflen, 2015), and (Zarrief & Clafien, 2016)
respectively. Axiomatic approaches to the verification of GOLOG programs can be found in
works (Giacomo et al., 1997, 2016, 2020). While the difference in formalisms of programs
do not affect the computational complexity of verification in principle, it does impact the
approach of verification, for example, axiomatic approaches tend to use theorem-proving
(Lin, 2016; Giacomo et al., 2016) to perform verification, while the above modal approaches
tend to use model-checking or similar techniques for verification. Another comment is
that the difference in program properties that need to be verified indeed influences the
computational complexity of verification. This is evidenced by propositional model-checking
for finite transition systems as in (Baier & Katoen, 2008), where it is shown that the model-
checking problem for LTL, CTL, and CTL* is PSPACE-complete, PTIME, and PSPACE-
complete, respectively.

While the verification of arbitrary GOLOG programs is clearly undecidable due to the
underlying first-order logic, ClaBen et al. (2014) established decidability in case the un-
derlying logic is restricted to the two-variable fragment, the program constructs disallow
non-deterministic pick of action arguments, and the BATs are restricted to be local-effect.
Later, the constraints on BATs are relaxed to acyclic and flat BATs (Zarrie & Claflen,
2016). Under similar settings, the works (Zarrie§ & Claien, 2015; Claen & ZarrieS, 2017)
show that the verification of ALCOK-GOLOG programs, where the underlying logic is a
description logic, and DT-GOLOG programs against LTL and PRCTL specification, respec-
tively, is decidable. What distinguishes our work from the above is that we assume that
the environment is partially observable by the agent, while they assume full observability.

Verifying temporal properties under partial observation has been studied extensively in
model checking (Chatterjee et al., 2016; Norman et al., 2017; Bork et al., 2020), in planning
(Madani et al., 2003), and in stochastic games (Kwiatkowska et al., 2009). Notably the
work on probabilistic planning (Madani et al., 2003) is closely related to our belief pro-
gram verification as belief programs can be viewed as a compact representation of a plan.
Moreover, the paper suggested that probabilistic planning is undecidable under different re-
strictions. Perhaps the most relevant restriction is that probabilistic planning is undecidable
even without observations, which essentially corresponds to our restriction on context-free
likelihood axioms that exclude sensing. However, our results go beyond this as we show the
problem remains undecidable when restricting actions to be local-effect. Another proposal
on compact representations of plans is the belief programs by Lang and Zanuttini (2015).
Nevertheless, the proposal is limited as the underlying logic is propositional. Hence, verifi-
cation there reduces to regular model-checking. In contrast, our framework is based on the
logic DS, which allows us to express incompleteness about the underlying model. There-
fore, to verify a belief program, one has to perform model-checking for potentially infinitely
many POMDPs. Another advantage of our belief programs is that tests of the program can
refer to beliefs about beliefs (meta-beliefs) and beliefs with quantifying-in. Hence, although
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Lang and Zanuttini (2015) showed that the verification problem is decidable when restricted
to a finite horizon, our decidability result is more general than theirs.

Finally, we remark that verification in robotics has been an active area of research for a
long time, see (Luckcuck et al., 2019) for a recent survey. Approaches that deal with stochas-
tic actions predominantly employ probabilistic model checkers such as PRISM (Kwiatkowska
et al., 2011) or Storm (Hensel et al., 2022). An example similar in spirit to our approach
is (Izzo et al., 2016). Here robot programs written in a variant of the agent programming
language Jason (Bordini et al., 2007) are translated into Discrete-time Markov Chains and
MDPs. Temporal properties formulated in PCTL are then verified using PRISM. In con-
trast to our framework, the computational complexity is not analyzed and POMDPs are
not considered.

7. Conclusion

We reconsider the proposal of belief programs by Belle and Levesque based on the logic
DS,. The main contribution of the paper is the study of the complexity of the verification
problem. As it turns out, the problem is undecidable even in very restrictive settings.
However, we also show a case where the problem is indeed decidable.

As for future work, there are two promising directions. Regarding the complexity of
verification, whether it is decidable or not remains open for the case where the SSAs and
likelihood axiom are strongly context-free. We conjecture that, under such a setting, belief
programs, in general, cannot simulate arbitrary probabilistic automata, but only a subset.
Since the emptiness problem of probabilistic automata can be viewed as a special case of
the verification problem, showing the undecidability of the emptiness problem for such a
subset would prove the undecidability of the verification problem for programs with strongly
context-free SSAs and likelihood axioms. Besides, The works (Chatterjee & Tracol, 2012;
Fijalkow et al., 2012a) show a set of decidable decision problems related to special types of
probabilistic automata. It is interesting to see how these problems can be transformed into
verification problems and hence find decidable cases. Another direction is more practical. It
is desirable to design a general algorithm to perform verification of arbitrary belief programs,
even if the algorithm might not terminate. In this regard, based on our new semantics of
belief programs and techniques for solving first-order MDP and first-order POMDP (Sanner
& Boutilier, 2009; Sanner & Kersting, 2010), Liu et al. (2023b) proposed a symbolic
dynamic programming algorithm to verify reachability probability. It would be desirable to
extend it for arbitrary LTL or PCTL-like properties.
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Appendix A. Proofs
A.1 Proof of Theorem 3

Theorem 3 The verification problem is undecidable for programs with strongly context-
free SSAs.

Before turning to the proofs, we introduce some notations. A probability distribution
on a set of (finite) states Q is a mapping o : Q > [0,1] such that }_ qo(q) = 1. The set
{q € Q|o(q) > 0} is called the support of 0 and denoted as Supp(o). We write D(Q) for the set
of all probability distributions on Q and use o, to denote the distribution o(g) = 1. We show
the undecidability by a reduction of the undecidable emptiness problem for probabilistic
automata (Paz, 2014).

Given a PA A = (Q,L, (M), ,q1,F), we construct a belief program to simulate its run.
More formally, we use a single fluent hs to record the current state, a set of standard names
NQ = {n1,n2...n/q|} to represent the states in Q, a set of stochastic actions ;(y) to simulate
the read of letter [; € L, for BAT X, we have ¥ := Xy U X with X9 = {hs = n1} and X as

Olalhs =u = \/a = 0i(u)

Vhs =uA /\Vu’.a # o0i(u) (10)
Di(ei(w) =u=\/  y=nyAhs=n;Au=M,[jj]
53" €{1,-,|Ql}

Here, My, [j, j'] refers to the scalar value of entry [j,j’] of the matrix M;,. One can check
that the likelihood axioms above indeed satisfy the assumptions we imposed as in Eq. (6).

Clearly, the SSA is strongly context-free. Intuitively, the BAT says that fluent hs can
only be changed by action g;(y) and the unobservable argument y determines the new state;
the likelihood of g;(y) depends on the current state hs and equals the transition probability

Mli (h37 y)

Lemma 2. Given a PA A and BAT Y as above, o € D(Q). Let KB be as B/ N K¥q s.t.
f(ng) = o(qr) for 1 <k <|Q|, then for all k s.t. 1 <k < |Q| and all i:

F'(n) = (0-1:)(qe) if Bf N K30 [= [0i(n)]|Bf A K1 for some n € No.

Namely, if the initial belief distribution B/ coincides with the initial distribution over
states o of the probabilistic automaton A, then the progressed belief distribution B/ "of Bf
in terms of p;(n) coincides with the derived distribution over states (o - ;).
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Proof. The proof is straightforward. According to Eq.(4) in the progression theorem,

Flu) =" f) x > Uaiy) x (u,', 0:i(y))

u' €D y'eD
1 u=y
_ / ro
- Z fw) Z Mi, (/) X{ 0 otherwise
U’ENQ y’ENQ
= Z F )M, (v, u)
uENQ

The second equality is because f(u') is non-zero only if v’ € Ng and the definition of
L(a). In addition, since Pro(hs = v, 0;(y")) = {hs = y'}, the indicator function I reduce to
if u =1y then 1 else 0. Since f(nx) = o(gx) for all 1 < k < |Q| by assumption,

Fine) = X weng FOMy (W i) =32 cqolar) x M, (g, ni) = (0 1i)(gr)- O

The lemma can be easily extended from actions to action sequences. As a result, we
have:

Proposition 1. Given a PA A and BATs ¥ as above, o € D(Q). Let KB be as Bf N K¥q
s.t. f(ni) = o(q) for 1 < i < |Q|, additionally, let z be any action sequence of ground
actions with action types in {o1, 02, . - ., QM}, w be the corresponding word of z, then for all
kst 1<k<|Q|,

F'(ng) = (0-w)(q) if Bf N K30 E [2]B/ A K3p.

Now let B/ be as B(hs = ny: 1), then the program BP = (XU B A K¥q, §) simulates
the run of PA A where

6 := while B(hs € Ng) < ¢ do g1 02, .., |0 endWhile.

Here NE is the set of standard names representing the accepting states F in A, o; is the
primitive program corresponding to action g;(y).

Clearly, given e, w s.t. e,w = YABfAKYq, a proper policy o of M;’w can be represented
by a (possibly infinite) sequence g of primitive programs in {p1,..., g||_|}.12

Lemma 3. Given a PA A, a belief program BP as above, and e, w s.t. e,w = SABfANK ¥,
let o = @ be a proper policy of Mg’w. Then for any & € [0, 1],

Pro (GB(hs € Ni) < &) = 1 iff Yw € Fin(g),Pa(q1 > F) <&,
where Fin(Q) is the set of all finite prefizes of the infinite world that corresponds to ¢ in A.

Proof. Pr{ (GB(hs € Nf) < &) = 1iff (by Def. of Prg)

for all m € o-paths, M, |= GB(hs € Nf) < €) iff (by semantics of G)

for all reachable configurations s under o, M;’w, s E B(hs € Ng) < ¢ iff (since every
reachable configurations s = (z,0), z is an instantiation of §’s finite prefix and vise verse)

for all z s.t z is an instantiation of ¢ ’s finite prefix, e,w, z | B(hs € Ng) < £ iff (by
Prop. 1) Vw € Fin(9),Pa(w) < &. O

12. If the program terminates then g'is finite.
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As an €asSy consequence:

Proposition 2. Given a PA A, a threshold £ € [0,1], and a belief program BP as above,
BP = P_1|GB(hs € Ng) <& iff Pa(w) < & for all word w of A.

Proof. of Theorem 3

Since, the emptiness problem is undecidable, whether P 4(w) < £ for all word w of a
given PA A and threshold ¢ is undecidable. Therefore, BP = P_1[GB(hs € Ng) < ] is
undecidable where BP is constructed as above by Proposition 2. O

A.2 Proof of Theorem 4

Theorem 4 The verification problem is undecidable for programs with local-effect SSAs
and strongly context-free likelihood axioms.

Since the likelihood axioms are restricted to be strongly context-free, the previous re-
duction does not work anymore. Nevertheless, one can reduce the emptiness problem of
the simple probabilistic automaton (SPA), i.e. PAs whose transition probability is among
{0, %, 1}, to the verification problem with context-free likelihood axioms and local-effect
SSAs. More precisely, the simple probabilistic automata we consider are super simple prob-
abilistic automata (SSPA), that is, SPA with a single probabilistic transition and every
transition has a unique letter. Fijalkow et al. (2012a) show that, given & € [0, 1], for any

PA A there is an SPA A’ such that, if there exists a word w in A with P4(q; — F) > &,

then there exists a word w’ in A’ with P4 (q “» F) > & Their construction of the SPA
contains exactly one probabilistic transition served as the random bit. By renaming letters
in their SPA, one can obtain an SSPA.

The idea of the reduction is to shift the likelihood context in likelihood axioms to the
context formula in SSAs. More concretely, instead of saying an action’s likelihood depends
on the state and the action’s effect is fixed, which is the view of BATSs in the previous

reduction, we say the action’s effect depends on the state and the action’s likelihood is
fixed.

More formally, a SSPA is a six-tuple A = (Q,L, Tp, Tp,q1,F), where Q,L,q;,F are
as before. Tp are two pairs (¢*,¢') and (¢*,¢") (¢',¢",q* € Q) representing the unique
probabilistic transition. Tp € Q x L x Q is a finite set of triples of the form (g;,(; ;, q;)
specifying the remaining deterministic transitions.

Now given an SSPA A, we design the following program to simulate it. First, our BAT
includes a single fluent hs and the finite set of standard names Ngq as before. We use a
stochastic action g4(y) to simulate the unique probabilistic letter x. For the remaining
deterministic transition (g;,!; ;,q;), they are simulated by stochastic action g; ;(y). The
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BAT ¥ is given by X := 3¢ U Xg with X9 = {hs = n1} and ¥ as
Olalhs = u =a = o«(u) A hg =n*
\/\/a—Q” )Ahs=n;

v hs = u A (Vy.a# 0u(y) Vhs Zn*) A N\(Vya# 0ii(y) Vhs #ms)  (11)
i.j

1 1
Dl(@*(y)):UEy:n//\u=§Vy:n"/\u:§
Oi(oij(y)) =u=y=njAu=1

Clearly, the SSA is local-effect. Intuitively, the BAT says that fluent hs can be changed
by action g,(y) or 0;;(y) and the unobservable argument y determines the new state; the
likelihood of action is fixed: o.(y) always results in o,(n’), 0+(n”) with half-half likelihood
and p; ;(y) always results in g; j(n;), where n; is the corresponding standard name of ¢; (the
successor of ¢;); the effects of o.(y) and g; j(y) depend on the current state hs: o,(y) only
has effects if the current state is exactly the probabilistic transition state, likewise g; ;(y)
have effects if the current state is at the source state ¢;.

With the above construction, we have a lemma similar to Lemma 2.

Lemma 4. Given a SSPA A and BATs % as above, o € D(Q). Let KB be as Bf A K¥p
s.t. f(ng) =o(qr) for 1 <k <|Q|, then for all k s.t. 1 <k <1Q|,

1. f'(nk) = (0-1)(qr) if Bf AN KS0 = [0x(n)] B A K0 for some n € Ng;
2. f'(ng) = (0-1i;)(qr) if Bf AN KSa k= [0i(n)]|BY A KXq for some n € Ny.

Proof. Again, the proof is by the progression theorem. Here we only prove the first item.
The second can be proved likewise. According to Eq.(4) in the progression theorem,

= > F@) x Y Uen()) x L(u, !, 0i(y))

u' €D y'eD

= > JW Z 3 ¥ e{n n} AT u=yAd =t Vu=u Ad # o
0 otherwise 0 otherwise
u'€Nq

On the other hand, as for (o li)(qx), there are four cases qx = ¢/, qx = ¢”, qx = ¢*, and
ar ¢ {q¢*,q',q"}. The first two cases are similar.

1. Case q; = ¢t (0-L)(qr) = 20(¢*) +0(¢), the probability of being in ¢ after reading
I, amounts to the probability of being in ¢’ beforehand plus a half probability of being
in g%

2. Case ¢ = q¢*: (0-1)(qr) = 0. The probability mass of ¢* will shift to ¢’ and ¢” with
half-half likelihood, therefore, after reading li, (0 - {,)(gx) = 0.

3. Case qr ¢ {¢",q,q"}: (0-1)(qx) = o(qr). Nothing changed for such states after
reading .
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Correspondingly, for f/(u), there are four cases as well, we only show one case of them, the
other cases are similar:

1. Case u=n':

! / / *
/ /] n=yANu=n
em,n 1
4 o{/w } X vn! =o' Au # n*
0 otherwise

Ol

ru = 3 1Y

u' €N y’

N | —

= f(n) % 4+ F00) x 5+ () %

S0(a") +0ld) = (0-1.)(d).

The second equality is because the last indicator is non-zero only if v/ = n* or v/ = n/.
The third is by assumption f(qx) = o(gx) for all k.

This completes the proof. O

As an easy consequence, we have a similar proposition to Prop. 1.

Proposition 3. Given a SSPA A and BAT Y as above, o € D(Q). Let KB be as Bf NKYn
s.t. f(ni) = o(q;) for 1 <i <|Q|, additionally, let z be any action sequence of ground actions
with action types in {0, ..., 0ij,--.}, W be the corresponding word of z, then for all k s.t.
1<k<Ql

f'(ni) = (0-w)(q) if B NK¥o = [2]BY A K30

Now let B/ be as B(hs = ny: 1), then the program BP = (XU B/ A K¥, §) simulates
the run of PA A where

6 == while B(hs € N§) < { do o.... |0 |... endWhile.

Here NF is the set of standard names representing the accepting states F in A, o; are the
primitive program of action g;(y).

Proposition 4. Given a SSPA A, a threshold § € [0,1], and a belief program BP as above,
BP = P_1[GB(hs € Ng) < &] iff Pa(w) < & for all word w of A.

The proof is rather simiar to its counter-part in Prop. 2.

Proof. of Theorem 4

Since, the emptiness problem is undecidable for SSPA, whether P 4(w) < & for all word w
of a given SSPA A and threshold ¢ is undecidable. Therefore, BP = P_1[GB(hs € Ng) < ]
is undecidable where BP is constructed as above by Proposition 4. O
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A.3 Proof of Lemma 1

Lemma 1 Given a program BP and a bounded state formula @', for all e, w s.t. e,w = XA
BIANKYo, M | @' iff MT =, @}, where 7 is the type of e, w, ®, a PCTL formula obtained
from @' by replacing all its DS, sub-formula with the corresponding atomic proposition.

Before turning to the proof, we show that our notion of Mg’w is indeed a POMDP.
Consider the set of observations O’ = {Pro(Bf A KX, z)|z € (N4)*}, and the state to ob-
servation mapping Q as Q((z,0)) = Pro(B/ AK¥q), z), clearly, POM = (S, P, Act, O, Q, s¢)
forms a POMDP where S, P, Act, s is the same as in M;’w, and the set of proper policies
in M§™ is exactly the set of observation-based policy (Norman et al., 2017). If the context
is clear, we still use My" to refer to the POMDP POM.

The proof is based on two facts: 1. for a given bounded state formula ®', we only
need to examine finitely many states and observations Mﬁ’ﬁ s of Mg’w. 2) The propositional
POMDP Mj = @' is an abstraction of ME’;;”’(S, ie. M?ﬁié = @ iff M =, @, by the notion
of probabilistic bisimulation.

Recall that for a given bounded state formula @', the maximal step k = mazstep(P’)
for ¢’ is defined as:

/

0if ® = f;

1. mazstep(®

2. maxstep(®’') =1 if &’ = P;[Xj];

K if & = P[fUSF3];

(
(

)
)
3. mazstep(P’)
4. mazstep(P') = mazstep(P”) if &' = =",
) =

5. mazstep(®’) = max{maxstep(P"), maxstep(®")} if ' = " A "

Basically, Mg, s is just the POMDP obtained form M§™ by cutting off all states after
k steps and making states in the last step absorbing. Trivially, we have M?w E o iff
MY o = @
Fin,o :
Now consider the corresponding finite POMDP for a type 7 = type(e, w),
M7 = (Sfin, Spn» Afin, Pfin; Ofin, Qfin, Lfin) consisting of:

the set of states Sgn = (App)* x Sub(d);
the initial state s3. = ((),6);

the set of primitive programs Ag, = Act;

L=

the transition function Pgn((z1,91), 0, (22, 02)) as

o Phin(-) =rij(x)if |21] <k, &1 Q/—a> 92, (21, @) € 7, and for some a(z,y),i(x), §;(x),
it holds that (likewise for sensing)

o= alz,y),z2 = 21 - a(z,y),y = ri(x), (21, 6 (x)) € 75

e Pin(-) =1if [21] =k, 0=, 21 = 22,02 = 013
o Pan() = Lif (21, Fin(81)) € 7,0 = 0> = ¢ ;
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o Pin(-) = 1if (21,Fail(61)) € 7,0 =02 = ;
5. the observations Of, = {Pro(Bf NKYn,z)|z € Agp};

6. the state to observation mapping Qfn as Qin((2,6)) = Pro(Bf A KX, 2);
7. the labeling Lgn(0) = {pa|pa € AP, 0 = a}.

Obviously, M,e:’f: 5 and M% have the same state space, action space, and observation space.

Additionally, every observation-based policy of M?’il: 5 1s a observation-based policy of Mj

and vice versa. Now we show that they are indeed equivalent:

Proposition 5. Given a program BP, a bounded state formula ®', e,w s.t. e,w E X U
B/ ANKYn, and a type T = type(e, w), let Mg s and M} be two POMDPs defined as above.

Then for all z € Afp, 68,0’ € Sub(8), 0 € Act,t € App:
e foralla € C(BP), e,w,z = «a iff (z,a) € T;
o P9((2,0),0 (2-1,8)) = Pan((2,0), 0, (z - 1,0"))
where P9Y s the transition probability of I\/I?iﬁ),é.

Proof. First, e,w,z = a iff e,w [ [z]a iff (2, ) € type(e,w) (by definition of type).

As for the second, we only consider the case |z| < k and ¢ is a stochastic action, the rest
is similar. Suppose t = a(z,y), y = r5(x), and for some ¢;(x): 0 — a(x,y), (2, ¢;(z)) € 7.
By the first item, we have e, w, z |= ¢;(z). Since e,w = X, therefore e, w, z = l(a(z,y)) =
i j(z). On the other hand, & ole, 8, (z,a) € 7,0 — t entails (z,8) == (z-t,8'), by the

definition of program characteristic graphs. Hence P*¥((z,6), o, (2-t,¢")) = Pgn({2,9), 0, (2"
t,0")). O

Proof. of Lemma 1 The lemma is a direct consequence of Prop. 5.
O
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