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a b s t r a c t

The interpretation of the cone penetration test (CPT) still relies largely on empirical correlations that
have been predominantly developed in resource-intensive and time-consuming calibration chambers.
This paper presents a CPT virtual calibration chamber using deep learning (DL) approaches, which allow
for the consideration of depth-dependent cone resistance profiles through the implementation of two
proposed strategies: (1) depth-resistance mapping using a multilayer perceptron (MLP) and (2)
sequence-to-sequence training using a long short-term memory (LSTM) neural network. Two DL models
are developed to predict cone resistance profiles (qc) under various soil states and testing conditions,
where Bayesian optimization (BO) is adopted to identify the optimal hyperparameters. Subsequently, the
BO-MLP and BO-LSTM networks are trained using the available data from published datasets. The results
show that the models with BO can effectively improve the prediction accuracy and efficiency of neural
networks compared to those without BO. The two training strategies yielded comparable results in the
testing set, and both can be used to reproduce the whole cone resistance profile. An extended com-
parison and validation of the prediction results are carried out against numerical results obtained from a
coupled Eulerian-Lagrangian (CEL) model, demonstrating a high degree of agreement between the DL
and CEL models. Ultimately, to demonstrate the usability of this new virtual calibration chamber, the
predicted qc is used to enhance the preceding correlations with the relative density (Dr) of the sand. The
improved correlation with superior generalization has an R2 of 82% when considering all data, and 89.6%
when examining the pure experimental data.
© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The cone penetration test (CPT) is one of the most common and
popular in situ test tools for site characterization (Liyanapathirana,
2009). One notable advantage of the CPT is to rapidly obtain
continuous and reproducible soil testing records (i.e. cone resis-
tance qc and sleeve friction fs), with minimal disturbance compared
to laboratory element testing (Lunne et al., 2002). The cone resis-
tance profile obtained from the CPT has been widely used to
interpret soil properties. However, many CPT-based interpretations
of soil parameters still greatly rely on empirical correlations (Yu
et al., 1996; Butlanska et al., 2014). The majority of these
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pu
correlations are presented from calibration chamber tests, where
the soil state and properties can be well-controlled (Chen et al.,
2020). However, calibration chamber testing is resource-intensive
and time-consuming. As a result, the available CPT data from cali-
bration chamber tests remains limited, which in turn renders some
of the presented empirical correlations applicable only to specific
soil types and conditions (e.g. overconsolidation ratio)
(Pournaghiazar et al., 2013).

To address the aforementioned scarcity of CPT data in calibra-
tion chambers, analytical modeling (e.g. cavity expansion theory
(Cudmani and Osinov, 2001; Mo et al., 2017)) and numerical sim-
ulations (e.g. coupled Eulerian-Lagrangian (CEL) method (Susila
and Hryciw, 2003; Wang et al., 2015) and discrete element
method (DEM) (Zhang et al., 2019)) have been proposed to estimate
qc profiles for various types of soils. However, the complicated
formulations lead to a gap between the analytical solutions and
their practical applications. The numerical solutions are notorious
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for being challenging due to the high computational costs and the
complexity of the calibration process for constitutive models (Fan
et al., 2018; Yu et al., 2022), although the DEM has been previ-
ously presented as a solution for virtual calibration chambers.

Over the past decades, deep learning (DL) approaches have
emerged as a compelling alternative, offering a robust capacity to
leverage existing data for predictive modeling without making any
prior assumptions (Zhang, 2019; Lai et al., 2023). Extensive at-
tempts have been made towards the application of DL-based
models in practice (Phoon and Zhang, 2023), e.g. prediction of
TBM parameters (Gao et al., 2019), crack detection in tunnels
(Huang et al., 2018; Protopapadakis et al., 2019), landslide suscep-
tibility (Bui et al., 2020; Nhu et al., 2020), evaluation of soil strength
(Yousefpour et al., 2021a; Jas and Dodagoudar, 2023), and bridge
scour forecast (Yousefpour et al., 2021b; Yousefpour and Correa,
2023). However, there is little research investigating the predic-
tion of CPT profiles, which are largely dependent on soil type and
depth (overburden stress), based on DL approaches. To bridge this
gap, a nonlinear mapping that can accommodate sequence loading
scenarios may be more appropriate. Two potential DL options are
the multilayer perceptron (MLP) and the long short-term memory
(LSTM) neural networks (Guan et al., 2023). For example, Zhang
et al. (2020a) and Guan and Yang (2023) demonstrated the effi-
cacy of the LSTM model in reproducing the constitutive responses
of sands under both monotonic and cyclic loading. Wang and Sun
(2018) employed a multiscale framework in conjunction with an
LSTM to capture the hydro-mechanical coupling effects of porous
media. Guan et al. (2023) and Wu et al. (2023) employed an MLP to
describe the constitutive behaviors of soils and incorporated the
MLP into the finite element method. Their results demonstrated
that both MLP and LSTM have great potential in predicting
nonlinear-mapping datasets. Therefore, it can be hypothesized that
MLP and LSTM neural networks are capable of reproducing and
predicting cone resistance profiles in calibration chambers.

The selection of hyperparameters is a critical task for the con-
struction of DL-based models. The current methods for optimizing
hyperparameters, such as grid search or random search
(Yousefpour and Correa, 2023), typically necessitate substantial
computational resources. To address this limitation, some re-
searchers (Yazici and Taskin, 2023) have used Bayesian optimiza-
tion (BO) to identify the optimal hyperparameters for various
networks. The BO can utilize previously observed historical infor-
mation to update prior knowledge and rapidly identify global
optimal solutions in smaller iterations with greater efficiency (Liu
et al., 2024). In addition, the BO has a reduced risk of overfitting
for DL models compared to some metaheuristic algorithms (Yazici
and Taskin, 2023). For these reasons, this paper combines the
MLP and LSTM neural networks with BO (i.e. BO-MLP and BO-
LSTM) to rapidly predict the CPT profiles in calibration chamber
tests and to discuss their applications in soil interpretation based
on the predicted CPT data.

The objective of this paper is to develop accurate and compu-
tationally efficient virtual calibration chambers for the generation
of qc profiles of the CPT in sand through the utilization of DL ap-
proaches. First, an overview of the MLP, LSTM, and BO algorithms is
provided to illustrate the fundamental principles of Bayesian-
optimized neural networks. Subsequently, the BO-MLP and BO-
LSTM models are developed and trained by feeding observed
data, and their performance is then evaluated using the testing
dataset. The developed models are further compared and validated
against the solutions from the CEL method. Ultimately, an example
is provided to illustrate how the developed models are used to
correlate cone resistance with soil properties and to enhance the
empirical equations.
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2. Fundamentals of DL approaches

2.1. MLP

The MLP is one of the most popular deep neural networks for
modeling and predicting complex nonlinear responses and pro-
cesses (Kohestani and Hassanlourad, 2016). Fig. 1 shows a typical
MLP structure consisting of an input layer, one or multiple hidden
layers, and an output layer. A set of neurons are arranged in each
layer and connected through weights and bias. The input data are
first presented through the input layer and then pass through the
hidden layers to eventually predict values in the output layer. This
process can be mathematically expressed by considering a feed-
forward propagation process that uses input x to estimate the
output y:

h1 ¼ FðW1xþb1Þ (1a)

h2 ¼ FðW2h1 þb2Þ (1b)

y¼W3h2 þ b3 (1c)

Eqs. (1a) and (1b) represent two hidden layers, where h1 and h2
signify the results of the first and second hidden layers, respec-
tively; W1, W2, and W3 represent the weight matrices of the cor-
responding layer; b1, b2, and b3 are the bias vectors of the
corresponding layer; and F represents the activation function. The
result of each neuron is included in h1 and h2, where h1 ¼ [h11, h12,
…, h1i, …, h1Nn1

], and h2 ¼ [h21, h22, …, h2i, …, h2Nn2
], in which Nn1

and Nn2 are the number of neurons in the first and second hidden
layers, respectively.

The most commonly used activation functions include sigmoid,
hyperbolic tangent (tanh), rectified linear unit (Relu), and leaky
Relu activation functions (Zhang et al., 2021). The weight matrices
and the bias vectors are randomly initialized and then updated
throughout the training process. The training of MLP can be
considered to comprise two phases: forward calculation and
backward propagation. During the forward process, the value of
each hidden neuron is calculated by summing the values of input
neurons multiplied by the corresponding connection weights. The
error between the output and the real values can be calculated and
then minimized by the backward algorithm, which updates the
connectionweights. Further details on MLP can be found in Dai and
MacBeth (1997).
Fig. 1. Structure of a general MLP.
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2.2. LSTM neural network

LSTM is a representative type of recurrent neural networks
(RNNs), which has been widely used to predict sequence-based
problems. The outputs of an RNN depend on the inputs of the
network, including not only the current time step but also previous
time steps. This presents the ability to predict future information
related to previous inputs, thereby enabling its application in
modeling sequential problems. By introducing a memory cell in
place of the neurons, the LSTM can overcome the shortcoming of
gradient vanishing or exploding in the back-propagation algorithm
for conventional RNNs (Hochreiter and Schmidhuber, 1997; Guan
and Yang, 2023).

The typical structure of an LSTM memory cell is illustrated in
Fig. 2 (Guan and Yang, 2023). The memory cell has three gates (the

forget gate f t , the input gate it , and the output ot) that regulate the

information flow. Firstly, the output at the previous time step ht�1

in a memory cell and the input at the current time step xt are both

used to calculate the forget gate f t , input gate it , output gate ot , and

the storage cell ~ct , as shown in Eqs. (2a)e(2d). Then, the forget gate

f t acts on the memory cell state at the previous time step ct , while

the input gate it acts on the storage cell at the current time step ~ct ,

as shown in Eq. (2e). The f t and it together determine whether
information should be discarded or stored, and update the current
memory cell state ct . Ultimately, the output ot decides the final

results of ht , as shown in Eq. (2f). The specific formulas are provided
below:

it ¼s
�
W ix

t þU ih
t�1 þbi

�
(2a)

f t ¼s
�
W fx

t þU fh
t�1 þbf

�
(2b)

ot ¼ s
�
Woxt þUoh

t�1 þbo
�

(2c)

~ct ¼ tanh
�
Wcxt þUch

t�1 þbc
�

(2d)

ct ¼ f t5ct�1 þ it5~ct (2e)

ht ¼ot5tanh ct (2f)

where Wi, Wf, Wo, and Wc represent the weight matrices corre-
sponding to the inputs within different gates; Ui, Uf, Uo, and Uc
represent the weight matrices corresponding to the outputs at the
Fig. 2. Structural diagram of an LSTM memory cell (Guan and Yang, 2023).
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previous time step with different gates; bi, bf, bo, and bc denote the
bias matrices of each gate; s is the sigmoid activation function; and
5 signifies the element-wise product of vectors.

2.3. BO

Although applying LSTM or MLP to predict CPT cone resistance
profiles is promising, the selection of hyperparameters for a neural
network often requires manual optimization. To address this issue,
this paper employs a global optimization algorithm, BO, to identify
the optimal combination of model hyperparameters that minimize
the model error. BO utilizes a probabilistic model to fit real objec-
tive functions, where the next most probable point is selected for
evaluation based on the fitting results. The framework comprises
two key components: the probabilistic model and the acquisition
function, which will be discussed in more detail in the following
sections.

2.3.1. Probabilistic model
The probabilistic model is developed using a widely used

Gaussian process (Tao et al., 2022), with the assumption that the
responses follow a multidimensional normal distribution. Corre-
spondingly, the error ε is assumed to follow an independent
Gaussian distribution:

pðεÞ ¼ N

0
@0;

2
4 kðx1; x1Þ … kðx1; xnÞ

« 1 «
kðxn; x1Þ … kðxn; xnÞ

3
5
1
A (3)

where ε ¼ y e f(x), in which y is the observation, and f(x) is the
model response; k denotes the covariance function; and xi (i ¼ 1, 2,
…, n) represents the input value (i.e. hyperparameters of MLP and
LSTM). Accordingly, the likelihood distribution is given by

pðyjf Þ ¼ N

0
@f ;

2
4 kðx1; x1Þ … kðx1; xnÞ

« 1 «
kðxn; x1Þ … kðxn; xnÞ

3
5
1
A (4)

where f is the assembly of f(x). The joint distribution can be
expressed as follows:

�
y
f*

�
� N

 
0;

"
K KT

*

K* K**

#!
(5)

where f* is the predicted model response, K is the covariance
matrix of the assumed prior distribution, K* is the covariance
matrix of the observed set, and K** is the covariancematrix of new-
added samples.

2.3.2. Acquisition function
Acquisition functions are employed to select the next probable

point that enables the model's optimal performance. The acquisi-
tion function can obtain the posterior distribution through the
observed dataset D1:n, thereby guiding the next evaluation point
xnþ1. Expected improvement (EI), which is awidely used acquisition
function, is employed here:

anðx;D1:nÞ¼ ðv*�mnðxÞÞf
�
v* � mnðxÞ

4nðxÞ
�
þ 4nðxÞf

�
v* � mnðxÞ

4nðxÞ
�
(6)

where an is the expectation; y* is the current optimum function
value; f is the standard normal distribution probability density
function; and 4n and mn are the variance and mean value,
respectively.
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2.4. Bayesian-optimized MLP/LSTM

The selection of the hyperparameters of MLP and LSTM can be
considered using BO in the following formula:

x*¼ arg min f ðxÞ ðx2XÞ (7)

where f(x) is the objective function (also known as the model
response); x represents a set of hyperparameters; X denotes the
space of hyperparameter combinations; and x* signifies the x that
makes f(x) obtain an optimized solution. In this contest, the mean
squared error (MSE) of the neural network response is used as the
objective function f(x):

MSE¼1
n

Xn
i¼1

ð~yi � yiÞ2 (8)

where n represents the number of output elements; and ~yi and yi
denote the predicted and true values of a neural network,
respectively.

In summary, this paper uses the Gaussian process to search for
the optimal hyperparameter combination x for the neural net-
works. The posterior distribution is obtained from the observed
dataset. Furthermore, the next evaluation point is selected by the EI
acquisition function. Thus, the BO can improve step by step until
the optimal hyperparameter combination is obtained.
3. Implementation of BO-MLP and BO-LSTM

3.1. Data source and processing

The selected cone resistance profiles from previously reported
calibration chamber tests are summarized in Table 1, where cases
1e45 represent the experimental results, and cases 46e64 are
derived from numerical simulations. Each case represents a com-
plete qc profile with depth. It is established that the CPT results are
influenced by various factors. In this paper, five well-recognized
factors that greatly affect qc profiles are considered: the relative
density Dr, initial effective vertical stress sv, lateral earth pressure
coefficient K0, saturation condition (SC, dry or saturated), and
boundary condition (BC) (Huang and Hsu, 2005; Yang et al., 2010).
The five most commonly used BCs (BC1eBC5) are summarized in
Table 2. It should be noted that these boundary conditions are
represented by the numbers 1e5 in the dataset, respectively. In
calibration chambers, the soil stress field is generated artificially
with the pre-set sv and K0 instead of gravity consolidation.
Accordingly, the soil stress can be considered constant throughout
the calibration chamber. It is also assumed that the above five
factors are constant.

For each qc curve, the initial whole profile is processed into 50
points using interpolation. As can be observed in Table 1, a total of
64 groups of data were used for training and testing the network.
About 80% of the data (52 groups) were employed to train the
neural networks, while the remaining 20% (12 groups)markedwith
the symbol “*” in Table 1 were selected as the testing dataset to
evaluate whether the model overfits or underfits. This split ratio of
training and testing datasets has been well-validated for both MLP
(Wu et al., 2023) and LSTM neural networks (Zhang et al., 2020b).

The quality of the input data may significantly affect the pre-
dictive performance of DL models. Normalization is an effective
method for rescaling variables with different scales, thereby
reducing their influence on the model performance and lowering
the computational costs. The following equation is used to
normalize the input data to the common range of 0e1:
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xnorm¼ x� xmin
xmax � xmin

(9)

where x is the raw input variable before normalization; xnorm is the
input variable after normalization; and xmin and xmax are the min-
imum and maximum values of the input variable, respectively.

Furthermore, in many cases, especially in DEM simulations
(Arroyo et al., 2011), the qc profile usually exhibited large oscilla-
tions, which would diminish the quality of the training data.
Therefore, a sliding window approach was introduced to smooth
the raw data (Zhang et al., 2020b). The smoothed value xs can be
calculated by

xs ¼ 1
w

Xn
i¼n�wþ1

xi (10)

wherew is the window size. The mean value of the datasets within
a given window is then assigned as the new value of the studied
parameter under study. A larger window size may result in a
smoother sequential curve, but it also increases the possibility of
deviating from the original curve. Accordingly, the window size is
set to 4e30 according to the oscillation degree, to ensure the reli-
ability and smoothness of the datasets. Fig. 3 shows the data before
and after smoothing for cases 61 and 64 from the DEM (see Table 1).
The magnitude and trend of the sequential curves are largely
consistent with the original results, provided that the enhanced
smoothness is taken into account.

3.2. Training strategy

For the cone resistance profile varying with depth, two strate-
gies are proposed for the depth-dependence of the qc profile. The
first strategy postulates a one-to-one mapping relationship be-
tween depth and qc, where one depth corresponds to a specific qc
value. The second strategy postulates the depth-dependent qc
profile as a whole sequence, wherein the increase of depth is
similar to the time.

The first strategy may be regarded as a regression task, in which
the inputs comprise Dr, sv, K0, SC, BC, and the value of depth z, while
the output is the corresponding qc value, as illustrated in Fig. 4a. In
this context, the MLP is employed to fulfil this task. In the second
strategy, sequence-to-sequence training in LSTM is employed,
where the entire qc curve is regarded as sequential data. The
training and predictive strategy is shown in Fig. 4b. The input
comprises a sequence of data, including Dr, sv, K0, SC, BC, and depth
z in all time steps for a single case in Table 1. The output sequence
represents the entire cone resistance profile qc in all time steps. The
MSE between the measured and predicted cone resistance profiles
is employed as the loss function to train the LSTM. The above five
influencing factors are treated as sequential inputs, maintaining
their constant values across all steps. The output sequence is
required to retain the same length as the input sequence, enabling
the LSTM to perform the sequence-to-sequence training.

3.3. Neural network structures

3.3.1. MLP
The MLP structure employed in this context comprises four

layers: an input layer, two hidden layers, and an output layer, as
shown in Fig. 1. The main hyperparameters of the MLP are
enumerated in Table 3. To train theMLP, three key hyperparameters
are optimized using BO: the number of neurons in the first and
second hidden layers (Nn1 and Nn2) as well as the initial learning
rate (hMLP). Furthermore, the range of Nn1 and Nn2 was set to 5e30



Table 1
Summary of used cases of calibration chamber test.

Case No. Dr sv (MPa) K0 SC BC Reference

1 0.878 0.1 0.45 Dry 5 Kluger et al. (2021)
2 0.748 0.2 0.45 Dry 5
3 0.838 0.1 0.45 Saturated 5
4* 0.78 0.2 0.45 Saturated 5
5 0.952 0.1 0.45 Dry 5
6 0.97 0.1 0.45 Saturated 5
7 0.668 0.2 0.45 Saturated 5
8* 0.606 0.2 0.45 Dry 5
9 0.918 0.2 0.45 Saturated 5
10 0.918 0.2 0.45 Dry 5
11 0.65 0.056 0.393 Dry 5 Huang and Hsu (2005)
12 0.84 0.056 0.393 Dry 5
13 0.25 0.16 0.463 Dry 5
14 0.5 0.16 0.463 Dry 5
15* 0.65 0.16 0.463 Dry 5
16 0.84 0.16 0.463 Dry 5
17 0.5 0.056 0.786 Dry 1
18 0.5 0.056 0.786 Dry 5
19* 0.65 0.056 0.786 Dry 1
20 0.65 0.056 0.786 Dry 5
21 0.84 0.056 0.786 Dry 1
22 0.84 0.056 0.786 Dry 5
23 0.5 0.07 0.4 Dry 1 Bałachowski (2006)
24* 0.5 0.1 0.4 Dry 1
25 0.5 0.15 0.4 Dry 1
26 0.5 0.2 0.4 Dry 1
27 0.5 0.35 0.4 Dry 1
28 0.5 0.4 0.4 Dry 1
29 0.8 0.05 0.4 Dry 1
30 0.8 0.07 0.4 Dry 1
31 0.8 0.1 0.4 Dry 1
32 0.8 0.15 0.4 Dry 1
33 0.8 0.25 0.4 Dry 1
34* 0.8 0.3 0.4 Dry 1
35 0.8 0.4 0.4 Dry 1
36 0.8 0.05 0.4 Dry 3
37 0.8 0.07 0.4 Dry 3
38* 0.8 0.15 0.4 Dry 3
39 0.8 0.2 0.4 Dry 3
40* 0.8 0.25 0.4 Dry 3
41 0.33 0.025 1 Saturated 1 Pournaghiazar et al. (2013)
42 0.33 0.05 1 Saturated 1
43* 0.33 0.1 1 Saturated 1
44 0.61 0.03 1 Saturated 1
45 0.61 0.05 1 Saturated 1
46 0.718 0.15 0.5 Dry 3 Chen et al. (2020)
47* 0.615 0.15 0.5 Dry 3
48 0.395 0.15 0.5 Dry 3
49 0.231 0.15 0.5 Dry 3
50 0.23 0.1 1 Dry 3 Schnaid (1990)
51* 0.63 0.1 1 Dry 3
52 0.86 0.1 1 Dry 3
53 0.65 0.075 0.5 Dry 3
54 0.65 0.15 0.5 Dry 3
55 0.65 0.3 0.5 Dry 3
56 0.752 0.06 1 Dry 1 Arroyo et al. (2011)
57 0.752 0.1 1 Dry 1
58 0.768 0.2 1 Dry 1
59* 0.776 0.3 1 Dry 1
60 0.784 0.4 1 Dry 1
61 0.907 0.1 1 Dry 1
62 0.914 0.14 1 Dry 1
63 0.922 0.2 1 Dry 1
64 0.929 0.3 1 Dry 1

Note: ‘*’ represents the testing dataset.
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to reduce the complexity of the network structure and prevent
overfitting. The adaptive moment estimation (Adam) is employed
to optimize the weight and bias due to its superior performance
(Ruder, 2016), and the Relu activation function is adopted for the
hidden layers. The batch size used for each training iteration is set
to 128. The maximum number of training epochs is selected as 200,
5183
given the relatively limited data (Zhang et al., 2020a; Guan and
Yang, 2023).

3.3.2. LSTM
The LSTM structure is composed of three layers: a sequence

input layer, an LSTM layer, and a fully connected layer. The main



Table 2
Five boundary conditions in the calibration chamber.

BC Top and bottom boundary Lateral boundary

Stress Strain Stress Strain

BC1 Constant e Constant e

BC2 e 0 e 0
BC3 Constant e e 0
BC4 e 0 Constant e

BC5 Constant e Servoecontrolled

Fig. 3. Data smoothing.

Fig. 4. Two training strategies: (a) Depth-qc one-to-one mapping for the MLP; and (b)
Sequence-to-sequence training for the LSTM.
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hyperparameters of the LSTM are listed in Table 4. In this study,
three hyperparameters e the number of neurons in the hidden
layer (Nn), the initial learning rate (hLSTM), and the regularization
parameter (L2) e are determined with the aid of BO. The optimi-
zation ranges covering the general values are also provided in
Table 4. The Adam optimizer is utilized, and the batch size is set to
60. The number of epochs is set to 250 (Zhang et al., 2020b).

3.3.3. Evaluation index
The discrepancy between predicted and target values is

measured using the mean squared error (MSE, see Eq. (8)) as the
loss function. Additionally, two more indicators are utilized: the
coefficient of determination (R2) and the mean absolute percentage
error (MAPE):

R2 ¼1�

Pn
i¼1

ðyi � ~yiÞ2

Pn
i¼1

ðyi � yÞ2
(11)

MAPE¼1
n

Xn
i¼1

����~yi � yi
yi

����� 100% (12)

where y is the mean true value.

3.4. BO-MLP/BO-LSTM modeling

Fig. 5 presents a flowchart illustrating the BO-MLP and BO-LSTM
modeling process. This process can be described by six principal
5184
steps:

(1) Step 1. The raw datasets are obtained under different soil and
penetration conditions, as presented in Section 3.1. Subse-
quently, the dataset is normalized and divided into two
distinct sets: a training set and a testing set.

(2) Step 2. The MLP and LSTM neural networks are established,
and the hyperparameters of the network models are deter-
mined. The range of hyperparameters to be optimized is also
set. Further details can be found in Section 3.3.

(3) Step 3. The BOmodel is constructed. The MSE given in Eq. (8)
is determined as the objective function to be minimized.

(4) Step 4. The neural network is trained under the current
combination of hyperparameters with the training set. The
value of the objective function under the current combina-
tion of hyperparameters is calculated and then returned to
BO. According to the probabilistic model and acquisition
function, the next group of hyperparameters is selected to
update the training until reaching the maximum number of
iterations.

(5) Step 5. The combination of hyperparameters with the
optimal model performance after BO is then output. There-
after, the optimized hyperparameters are employed for
training the neural network.

(6) Step 6. The testing dataset is utilized to evaluate the working
performance of the established neural network.



Table 3
Main hyperparameters of MLP network.

Hyperparameter Description Value

Nh Number of hidden layers 2
Nn1 Number of neurons in the first hidden

layer
[5, 30]#

Nn2 Number of neurons in the second hidden
layer

[5, 30]#

Optimizer Algorithm for optimizing weights and
biases

Adam

MaxEpochs Maximum number of rounds used for
training

200

Batch size The number of samples in each training
process.

128

hMLP Initial learning rate [1 � 10�4,
1 � 10�2]#

Note: “#” represents the hyperparameters to be optimized by BO.

Table 4
Main hyperparameters of LSTM model.

Hyperparameter Description Value

Nh Number of hidden layers 1
Nn Number of neurons in the hidden layer [10, 80]#

Optimizer Algorithm for optimizing weights and
biases

Adam

hLSTM Initial learning rate [1 � 10�4,
1 � 10�2]#

L2 L2 regularization parameter [1 � 10�5,
1 � 10�2]#

MaxEpochs Maximum number of rounds used for
training

250

Batch size The batch size used for each training
iteration

60

Note: “#” represents the hyperparameters to be optimized by BO.
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4. Performance of the DL models

4.1. Effectiveness of BO

When using BO to optimize the neural networks, the iteration
number of the objective function is set to 20 to prevent overfitting
(Huang et al., 2023). The process is displayed in Fig. 6. With the
process of BO, the minimum objective value (i.e. the MSE of the
neural network) decreases to a minimal value, signifying a good
effect achieved by using BO. For the MLP neural network, the
optimized combination of hyperparameters was Nn1 ¼19, Nn2 ¼ 12,
and hMLP ¼ 3.9 � 10�3, while for the LSTM neural network, it was
Nn ¼ 49, hLSTM ¼ 2.1 � 10�5, and L2 ¼ 9.8 � 10�3. These hyper-
parameters were subsequently used to train the neural networks.

To demonstrate the effectiveness of BO for MLP and LSTM, the
evaluation indices R2 and MAPE are depicted in Fig. 7, which are
also compared to theMLP and LSTMwithout optimization. For both
theMLP and LSTM, the R2 with BO is higher in both the training and
testing sets than that without BO, and the MAPE with BO is much
lower than that without BO. This indicates that BO performs well in
searching for suitable hyperparameters. Furthermore, the MLP and
LSTM achieve similar performance in the training and testing sets.
This illustrates that both strategies proposed in this paper are viable
for reproducing cone resistance profiles.
4.2. Results of developed models

4.2.1. Training results
The loss function of the two models with the optimized

hyperparameters is shown in Fig. 8a and b, respectively. For both
models, the MSE rapidly reduces to a relatively small value. The
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MSE for the testing set converges to a small value but shows no
tendency to increase, indicating sufficient training without
overfitting.

To evaluate the accuracy of the developed model, a comparison
between the predicted and the measured qc values for the testing
set is presented in Fig. 9. As expected, the predicted qc values from
the neural networks are in close agreement with the measured
values. The R2 of the BO-LSTM and BO-MLP neural networks both
achieve high values, approximately 95%. This indicates that both
theMLP and LSTM neural networks performwell in predicting cone
resistances among the selected raw datasets. However, some dis-
crepancies between the predicted and measured values remain.
One potential explanation for this is that the fitting degree of neural
networks is not possible to reach 100% to fit all discrepancies using
DL approaches (Zhang et al., 2020b).

To further evaluate the suitability of the optimized hyper-
parameters of the neural networks for the given cases, Fig.10 shows
the variation of R2 with the number of cases used in the neural
networks. It can be observed that R2 for LSTM and MLP present a
general tendency of increasing with the number of cases used in
both training and testing sets. However, the R2 of the testing set in
the used cases 52e58 slightly decreases for both neural networks.
This may be attributed to the fact that the results of these cases are
not identical to those of other research, thereby reducing the
overall quality of the dataset.

4.2.2. Cone resistance profiles
Fig. 11 presents a comparison between the predicted qc profiles

from BO-MLP and BO-LSTM and the corresponding true data. Each
subplot in Fig. 11 illustrates three instances of successful pre-
dictions (red lines) and three instances of less optimal predictions
(black lines). As can be observed in Fig. 11, the variation tendency of
cone resistance with the normalized depth z/ztotal (ratio of the
current penetration depth over the total penetration depth) can be
successfully reproduced by the two neural networks during pene-
tration processes, both in the training and testing sets. Given that
the coefficient of determination R2 has reached relatively large
values for both the training and testing datasets, it can be
concluded that neural networks can accurately predict a significant
number of cases. The predictions by the BO-MLP and BO-LSTM are
similar to the true data, especially for the stable qc values. However,
some cases in the BO-MLP and BO-LSTM exhibit discrepancies be-
tween the measured and predicted values, particularly in the more
problematic cases. As shown in the example of case 4 in Fig.11d, the
actual stable qc is about 23 MPa, while the prediction reaches
21 MPa, resulting in a relative error of around 10%. However, this
discrepancy is not significant in practical applications.

4.2.3. Error evaluation
To comprehensively assess the performance of the developed

models, the relative error (RE) is employed to reflect the percentage
of deviation between the measured values and the predictions:

RE¼ j ~yi � yi
yi

j (13)

Fig. 12 depicts the frequency and cumulative probability of
relative error distribution for the testing set in the BO-MLP and BO-
LSTMmodels. The distribution of relative error for the BO-MLP and
BO-LSTM is similar. The majority of datasets have a cumulative
probability larger than 70% and 60% for BO-MLP and BO-LSTM,
respectively, with relative errors below 10%. Additionally, the BO-
MLP has a higher frequency of errors smaller than 5%. These find-
ings indicate that the developed DLmodels are sufficiently accurate
for calibration chamber tests.



Fig. 5. Flow chart for establishing BO-MLP/BO-LSTM models.
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5. Further validation and application

5.1. Validation with numerical solutions

This section aims to further compare the neural networks with
numerical solutions for other cases that are not included in Table 1.
These cases have been designed to consider the variation of relative
density, vertical effective stress, and saturation conditions of sand,
as listed in Table 5. Subsequently, numerical simulations have been
performed to install the CPT in a calibration chamber for these
cases, resulting in the production of cone resistance profiles. Details
on the CEL model setup and soil constitutive relationships can be
found in Appendices A and B, respectively.

The CEL model is initially evaluated and verified through a
comparison with calibration chamber tests conducted by Kluger
et al. (2021) on Ticino sand. The results of the testing conducted
under two initial effective vertical stresses (sv) of 100 kPa and
5186
200 kPa are presented in Fig. 13. It can be observed from Fig. 13 that
there is a notable alignment between the numerical solutions and
the testing results, which lends credibility to the assertion that the
CEL modeling can facilitate the generation of qc profiles in cali-
bration chamber tests.

Fig. 14 shows the comparisons of cone resistance profiles ob-
tained from the two neural networks and the numerical simula-
tions for the artificial cases presented in Table 5. The qc profiles
obtained from DL models are fair close to the numerical simula-
tions, although some cases like No. 2 in Table 5 still demonstrate a
degree of discrepancy between the two methods. However, the
stable values of cone resistance show a better agreement between
the numerical simulations and the neural networks. It is important
to note that the deployment of numerical models still requires
complex model setup and time-consuming running. In contrast, a
well-trained neural network can swiftly (typically in a few seconds)
generate reliable qc curves under specific soil conditions.



Fig. 6. Process of BO for (a) MLP and (b) LSTM models.

Fig. 7. Evaluation indices for neural networks with and without BO: (a) R2; and (b) MAPE.

Fig. 8. Evolution of the MSE against epochs for (a) BO-MLP and (b) BO-LSTM.

M. Liu, E. Sun, N. Zhang et al. Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 5179e5192

5187



Fig. 9. Measured cone resistances against predicted values for the testing set in (a) BO-MLP and (b) BO-LSTM.

Fig. 10. The R2 of training and testing sets with the number of data cases used in neural
networks.
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5.2. Application: relating qc with soil property

As mentioned before, most of the existing correlations between
qc and soil properties (e.g. relative density Dr) were presented
through a limited number of datasets for specific soil types. The
trained neural networks have been proven as a reliable approach to
rapidly extend the database in calibration chambers. Consequently,
these correlations can be enhanced based on the extended database
from the DL models. This section illustrates an example of how to
potentially improve the Dr-qc correlation based on the developed
DL models.

Table 6 summarizes four reported correlations between Dr and
qc. Here, the normalized cone resistance of Q ¼ (qc e sv)/sv was
introduced to consider the influence of vertical stress whenever it
was available. Fig. 15 presents the deduced correlations of Dr-Q
from Eqs. (14)e(17). The 1787 groups of Dr-Q dataset generated
from the developed neural networks are also presented in Fig. 15. It
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should be noted that only the stable qc values from cone resistance
profiles are used to relate soil properties, and the DL results take the
BO-MLP as an example. The previous experimental results from
Bolton and Gui (1993) and Jamiolkowski (1985) are also displayed
in Fig. 15.

A comparison of the dataset from the developed neural net-
works shows that the linear regression of Eq. (16) is not an optimal
fit for all the data, especially for Dr lower than 50%. Eq. (17) un-
derestimates the relative density derived from the normalized cone
resistance, with the resulting value approaching the lower bound of
the dataset. The logarithmic form of Eqs. (14) and (15) is more
consistent with the Dr-Q relationship. However, Eqs. (14) and (15)
slightly overestimate the dataset. For pure experimental data in
Fig. 15, the R2 of Eqs. (14)e(17) are 68.7%, 71.3%, 75.6%, and 65.2%,
respectively. This demonstrates that traditional empirical equations
regarding a specific soil type are somewhat constrained in their
applicability when extended to other soil states. However, the use
of DL models enables the generation of hundreds of Dr-Q points,
facilitating practical applications. Consequently, an enhanced cor-
relation of Dr-Q by curve fitting to all the data in Fig. 15 is given
below:

Dr¼28:15 ln Q � 75:57 (18)

Eq. (18) has a high fitting degree of 82% to all Dr-Q points. For the
pure experimental data in Fig. 15, Eq. (18) still has a relatively high
R2 value of 89.6%. It is believed that the improved Eq. (18) is more
reliable since the database used for the fitting included not only the
published experimental data but also a large amount of data from
the developed DL models.
6. Conclusions

This study has successfully developed Bayesian-optimized
neural networks for predicting cone resistance profiles in calibra-
tion chamber tests performed on the sand. The process commenced
with the training of the neural networks using 52 cases sourced
from the literature, followed by the validation using a testing
dataset consisting of 12 groups. BO was used to identify the optimal
hyperparameters for both the MLP and LSTM networks. The results
demonstrate that the neural network after BO exhibited superior



Fig. 11. Comparison of measured and predicted qc profiles from BO-MLP in (a) training and (b) testing sets, and from BO-LSTM in (c) training and (d) testing sets. Red lines represent
better predictions, while black lines represent worse cases.

Fig. 12. Frequency and cumulative probability of relative error in the testing set for (a) BO-MLP and (b) BO-LSTM.
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Table 5
Additional cases to be validated by numerical modeling.

No. Dr sv (MPa) K0 Saturation condition

1 0.563 0.13 0.42 Dry
2 0.82 0.15 0.45 Saturated
3 0.734 0.09 0.5 Dry
4 0.8 0.16 0.38 Dry

Fig. 13. Comparison of the simulated cone resistance with the experimental results
(Kluger et al., 2021).

Fig. 14. Comparison of neural networks with CEL model in predicting unseen cases.

Table 6
Summary of representative correlations of Dr-qc-sv.

Empirical formula Empirical coeffici

Dr ¼ 1
C2

ln

"
qc

C0ðsvÞC1

#
(14) C0 ¼ 60, C1 ¼ 0.7,

Dr ¼ C2 log10

�
qc=pa

ðsv=paÞC1
� 1

�
(15) C1 ¼ 0.5, C2 ¼ 68,

Dr ¼ AQ þ B;Q ¼ qc � sv
sv

(16) A ¼ 0.2831, B ¼ 3

Dr ¼ A0 þ B0 ln ðqc =s0:5v Þ (17) A0 ¼ �1.292, B0 ¼

Fig. 15. Correlation between the relative density and normalized cone resistance.
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performance compared to that without optimization.
Two strategies were proposed to produce the cone resistance

profile: (1) depth-resistance mapping using MLP and (2) sequence-
to-sequence training using LSTM. The results illustrated that both
strategies yielded comparative performance and were capable of
reproducing the entire cone resistance profile. Further comparisons
were carried out against the numerical results from the CEL model,
and a favorable agreement between the numerical and predicted
results was observed, providing further evidence of the reliability of
the developed DL models.

Finally, the validated DL models were used to generate a large
number of datasets, correlating cone resistance with the relative
density of sand to prove the validity of the derived results. The
obtained R2 value between the predicted and previous experi-
mental data was 89.6%, indicating a notable degree of predictive
ability with superior generalization.

This study has demonstrated that neural networks can be
applied to provide general models that serve as a possible alter-
native for CPT virtual calibration chambers. This approach out-
performs other previously published calibration chambers based
on numerical models, as it provides pseudo-real-time predictions
and is, therefore, orders of magnitude more computationally effi-
cient. Furthermore, this work paves the way for extending CPT-
based material parameter interpretations, such as soil strength
and stiffness parameters under drained and undrained conditions,
using other DL-based approaches.
ent Reference

C2 ¼ 2.91 Lunne and Christoffersen (1983)

pa is the atmospheric pressure Kulhawy et al. (1990)

2.964 Bolton and Gui (1993)

0.268 Jamiolkowski et al. (2003)
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