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Abstract

The work presented in this thesis explores the application of Semantic Role Labeling
(SRL) for the generation of test cases from natural language requirements for embedded
systems. The approach, labelled Test Generation with Semantic Role Labeling (TG-SRL),
is composed of five stages and combines machine learning with a rule-based approach.
Information extracted via Semantic Role Labeling (SRL) is initially aggregated into logical
expressions before being translated into First-Order Logic (FOL) formulae. Test case
generation is achieved using Satisfiability Modulo Theory (SMT) solving. By modifying
the SMT instance according to defined tactics, a test suite is generated.

The thesis concludes with an evaluation of TG-SRL using a mutant-based strength
analysis, and a comparison with the Nat2Test approach from Carvalho et al. TG-SRL
performs favorably and provides valuable insights into employing Natural Language
Processing (NLP) methods, and in particular SRL, in the field of test case generation.
The methods and concepts presented in this thesis have been implemented in a publicly
available research framework.
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Zusammenfassung

Die in dieser Dissertation vorgestellte Arbeit untersucht den Einsatz von ”Semantic
Role Labeling (SRL)” zur Generierung von Testféllen aus natiirlichsprachlichen Anforde-
rungen fiir eingebettete Systeme. Der Ansatz, der als "Test Generation with Semantic
Role Labeling (TG-SRL)” bezeichnet wird, besteht aus fiinf Phasen und kombiniert
maschinelles Lernen mit einem regelbasierten Ansatz. Die mittels SRL extrahierten Infor-
mationen werden zunéchst zu logischen Ausdriicken aggregiert, bevor sie in Formeln der
Pradikatenlogik erster Ordnung (FOL) tubersetzt werden. Die Generierung von Testféllen
erfolgt durch die Losung von Erfiillbarkeits-Modulo-Theorie (SMT) Instanzen. Durch die
Modifikation der SMT-Instanzen geméf definierten Taktiken wird eine Testsuite erzeugt.

Die Dissertation schliefit mit einer Evaluierung von TG-SRL mittels einer auf Mutanten
basierenden Stérkeanalyse und einem Vergleich mit dem Ansatz Nat2Test von Carvalho
et al. ab. TG-SRL zeigt eine vorteilhafte Performance und liefert wertvolle Einblicke in
den Einsatz von Methoden des Natural Language Processing (NLP), insbesondere von
SRL, im Bereich der Testfallgenerierung. Die in dieser Arbeit vorgestellten Methoden und
Konzepte wurden in einem 6&ffentlich zugénglichen Forschungsframework implementiert.
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1 Introduction

In the automotive industry there is a paradigm change towards Software Defined Vehicles
(SDVs). Connected, Autonomous, Shared and Electric (CASE) mobility is disrupting the
automotive value chain, and software is emerging as the principal driver of innovation
[1]. Comparable to today’s smartphone, a SDV needs to be seamlessly integrated into a
large software ecosystem. This necessitates regular software deployments via over-the-air
updates to close security vulnerabilities, improve existing features, or simply deliver new
ones. However, in contrast to software for smartphones, software in a vehicle needs to
adhere to strict quality standards and safety regulations, such as the 1SO026262 [2]. Thus,
rigorous testing is critical to guarantee software quality and adherence to regulations.
Nowadays, testing efforts can contribute between 40-70 percent of the overall project
costs [3]. Without countermeasures, this share can be expected to increase significantly
in the context of SDVs.

A core strategy to tackle the challenge of increasing update frequency and rising testing
efforts is automation. Efforts for testing software can be split into effort for test planning,
design, implementation, execution and evaluation. The focus in this thesis is on the design
and implementation phase, i.e., it is assumed that a test strategy has been derived and
requirements-based testing has been identified as a required activity. In today’s automotive
industry, the design and implementation of requirements-based test cases is either partially
automated or a manual activity. In cases of partial automation, most approaches entail
significant manual effort [4]. Thus, the automation of test generation has significant
potential to improve efficiency in software development and reduce associated costs. While
there exist a few approaches which enable test case generation based on formal models,
the effort to create such formal models out of requirements can be considerable. In many
cases, effort for specifying test cases directly from natural language requirements simply
shifts to the formalization of these requirements. In contrast, generating requirements-
based tests directly from natural language requirements has proven difficult due to the
ambiguity, incompleteness, and sometimes inconsistency of such requirements.

This thesis proposes an approach that tries to tackle these challenges with the help
of Natural Language Processing (NLP) methods. In particular, a framework for test
generation based on natural language requirements using Semantic Role Labeling (SRL)
is presented. In addition, the feasibility and performance of the proposed approach is
investigated. As an acronym for the proposed method, TG-SRL (Test Generation with
Semantic Role Labeling) is employed throughout this thesis.

The remainder of this chapter is structured as follows. First, the scope, problem
statement, and objectives of this thesis are defined. Next, the chosen solution approach
is summarized, and major contributions are highlighted. At the end of the chapter, an
outline for the remaining thesis is presented.



1 Introduction

1.1 Scope, Challenges and Objectives

This thesis focuses on automatic test generation based on natural language requirements
for embedded systems. It is assumed that the requirements intended for test generation
have a sufficient level of detail for the generation of executable test cases. The requirements
are also assumed to describe a System under Test (SuT) as a black-box by specifying
system behavior based on observable in- and output signals. Applied to the automotive
context, where software is often developed according to the A-SPICE standard [5], the
presented approach is applicable to requirements that are used in the process areas SWE.1
to SWE.3 (see Section 2.1.1).

Furthermore, the thesis is scoped to functional testing, also referred to as requirements-
based or specification-based testing. In general, it is possible to distinguish between
structural and functional testing (see Section 2.1.2). While structural tests can be
generated automatically based on the structure of the System under Test (SuT), they do
not necessarily reveal errors in the functional behavior of software. Functional testing
instead directly tests the behavior of the SuT against the expected behavior that has
previously been specified in the requirements. Regulations in the automotive domain, such
as the 1SO26262-6 [2], mandate functional testing for safety critical software. Generally,
this test category is crucial for delivering a reliable product with a satisfactory and
dependable user experience.

While solutions exist to generate functional test cases based on formalized requirements,
requirements are usually specified in natural language [6]: according to surveys, 79 % of
requirements are documented in free-flow natural language [3] and only 7 % use a formal
specification [7]. Although natural language is inherently ambiguous, it is used for ease
in comprehension and ease in sharing between the different stakeholders [7]. Existing
approaches in literature to generate test cases based on natural language requirements
face several major challenges:

Challenges

¢ Input domain restrictions: The input domain is restricted in many approaches
to reduce or eliminate challenges that come with natural language. For example,
some methods enforce the adherence to a specific template, while others employ a
Controlled Natural Language (CNL) defined by a grammar. Restrictions on the
input domain can significantly simplify information extraction, and the formalization
into a representation that enables automatic test generation. The trade-off, however,
is the need to partially formalize the requirements, albeit in a subset of natural
language.

o Automation degree & abstraction gap of generated test cases: Another
challenge is the automation degree that can be achieved. Many methods require
manual interaction of a user, e.g., for the creation of a domain-specific dictionary. A
trade-off between generalizability and automation degree can be observed in existing
literature (refer to Chapter 3): approaches that operate on a less constrained input
domain usually require more manual intervention to resolve ambiguity or to deal
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with incomplete domain knowledge.

Furthermore, generated test cases are not always executable. Depending on the
abstraction level of the requirements, but also on the employed approach, the
manual effort to translate abstract test cases into executable ones can be significant.

o Test suite strength & size: Generated test suites need to be strong in order
to provide value. Strength in this context is defined as a test suite’s capability
to detect erroneous behavior of an SuT. If a generated test suite performs worse
than a manually created test suite in detecting faults, regulations and standards
will continue to enforce the manual creation of test suites. On the other side
of the spectrum, generated test suites might be very strong but also very large,
potentially consisting of millions of test cases. Prohibitively large test suites inhibit
the applicability to software development as the time and resource usage for test
execution can be a limiting factor, especially for tests that involve real hardware.

The approach presented in this thesis tries to tackle the mentioned challenges. The
objectives of TG-SRL are enumerated in the following;:

Objectives

e Provide a proof of concept for a test generation framework that operates directly
on natural language requirements. The input domain should be as unconstrained
as possible, i.e. restrictions on the input language should be kept to a minimum.

o Achieve the highest automation degree possible: avoid the manual creation of
dictionaries or domain knowledge, and avoid manual steps within the automation
process. The generated test cases should be executable without manual refinement.

e Optimize the strength of the test suite while accounting for test suite size: maxi-
mize the test suite’s capability to detect system behavior that deviates from the
specification, and keep its size within reasonable boundaries.

1.2 Solution Approach & Contributions

The method for automated test generation adopted in this thesis operates on unrestricted
natural language and combines machine learning with a rule-based approach. To extract
syntactic and semantic information from the natural language requirements, Semantic
Role Labeling (SRL) and other Natural Language Processing (NLP) techniques are
applied. Based on the extracted information, a ruleset is applied to create a formal
representation of the requirements in First-Order Logic (FOL). Concrete test cases are
generated via a Satisfiability Modulo Theory (SMT) solver. By modifying the FOL
constraints according to defined tactics, a robust test suite with strong error detection
capabilities is created. The approach is evaluated with a mutant-based strength analysis.
Figure 1.1 provides an overview of TG-SRL.
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Stage 1 Stage 2

H nformatn

Natural language
requirements

Stage 3 Stage 4 Stage 5

Formalization into Formalization into Test suite generation
logical expressions FOL

Figure 1.1: Overview of the TG-SRL approach presented in this thesis.

In the following, the main contributions of this thesis are summarized:

Contributions

1.3

Development of a method for extracting information relevant for test generation
from natural language requirements based on the output of Semantic Role Labeling.
Formalization of extracted information into logical expressions as an intermediate
representation.

Development of a method to formalize extracted information from the intermediate
representation into First-Order Logic for the purpose of test generation. In particular,
the method considers the need to bring the SuT into a specific state prior to test
execution.

Development of tactics for altering First-Order Logic constraints in order to generate
a strong test suite.

Analysis of existing state-of-the-art Semantic Role Labeling and Frame Semantic
Parsing frameworks to extract semantic information from natural language software
requirements.

Evaluation of the presented test generation approach TG-SRL with a mutant-based
strength analysis, and a comparison to Nat2Test from [8].

Implementation of methods and concepts into a research framework. Publication of
the framework as open source software [9].

Bibliographic Notes

While this thesis addresses test design and implementation, a framework for test execution
and evaluation is required to assess the approach. The framework chosen in this thesis
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is Arttest [10, 11]. Arttest was developed in a joint industrial project between RWTH
Aachen and the Ford Research Center in Aachen. The author of this thesis together
with Norbert Wiechowski and Norman Hansen were major contributors to the tool. The
approach TG-SRL has not yet been published previously and has been created by the
author of this thesis after finishing his work on Arttest independently of any industry
collaboration.

1.4 Outline

The remainder of this thesis is structured as follows. In Chapter 2, necessary terminology
and fundamentals are introduced. Chapter 3 addresses related work, while Chapter 4
presents TG-SRL in detail. In Chapter 5, TG-SRL is evaluated with a mutant-based
strength analysis. Chapter 6 concludes this thesis by summarizing the results.
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2 Fundamentals

This chapter is structured into three main sections. The first section provides an overview
of the automotive product development process. The subsequent section presents an
introduction to test generation from requirements. The final section introduces the
fundamentals of Natural Language Processing (NLP).

2.1 Development of Embedded Software in the Automotive
Industry

In this section, the development processes utilized in the automotive industry are intro-
duced to establish the relevant terminology and define the scope of this thesis.

2.1.1 A-SPICE & Autosar Classic

In the automotive industry, development traditionally happens according to the V-model,
which breaks down product development into several phases of system and software
development. During each phase, the V-model emphasizes the need for Validation &
Verification (V&V) activities. Automotive SPICE (A-SPICE) [5], a domain specific variant
of the international standard ISO 15504, builds on the V-model, and defines a process
framework to ensure that the development process complies with defined qualitative
thresholds. An overview of the A-SPICE framework is provided in Figure 2.1. A-SPICE
defines several process groups that tackle different areas of product development, such as
the project management process group "MAN", or the acquisition process group "ACQ".
The system engineering process group "SYS" combined with the software engineering
process group "SWE" represent the V-model.

System Engineering Process Group The development of a product starts with several
system engineering activities, in which stakeholder requirements are elucidated and
broken down into system and feature-level requirements. These requirements describe
the behavior and architecture of the system in textual notation. In parallel, graphical
notations such as UML or SysML diagrams can be used to specify the system’s static and
dynamic behavior. In the automotive industry, the term Model-based System Engineering
(MBSE) describes a methodology that uses SysML [12] diagrams to model a system’s
architecture and behavior. The employed SysML diagrams heavily differ depending on
the MBSE methodology, but use-case, sequence, activity diagrams, and statecharts are
commonly used. MBSE offers the main benefit that the visualization of the architecture
and behavioral interactions between system elements facilitates the discussion between
stakeholders. In addition, complex dependencies between system elements can be better
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Figure 2.1: Overview of A-SPICE, adapted from [5].

captured by models in comparison to text alone.

System engineering activities can be mapped to SYS.1-3 in Figure 2.1. According to
A-SPICE, it is necessary to define and plan the system integration and qualification tests
for SYS.4 and 5 during these development stages.

Software Architecture according to Autosar Classic After the system architecture has
been designed and the system has been decomposed into hardware and software, software
requirements and the software architecture need to be created. A brief introduction to the
currently prevailing software architecture in the automotive industry is given to establish
common terminology, and clarify the scope for this thesis. The architecture described
here is defined by the Autosar Classic standard [13].

Simplified, embedded software today consists of application software communicating
via a communication layer with either the operating system or other application software,
as depicted in Figure 2.2.

In Autosar Classic, this communication layer is called Runtime Environment (RTE).
The operating system is referred to as basic software and it consists of several modules
that offer services such as diagnostic event monitoring. Basic software services are heavily
standardized in Autosar Classic [13]. The application software may consist of multiple
levels of compositions, which in turn contain Software Components (SW-Cs). SW-Cs
can contain runnables, which contain units. Figure 2.3 depicts this architecture. SW-Cs
are independent of each other in Autosar Classic: an existing SW-C can be deployed on
different hardware according to needs, and will communicate with other SW-Cs and the
basic software via the RTE. During development of the components it is not determined
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Figure 2.2: Autosar Classic architecture and communication between layers [13].

whether this communication will happen via e.g. Ethernet, CAN, LIN, or even onboard
(inter-process) communication. Thus, independence of the application software from the
deployment scenario is achieved. This is one major goal of Autosar Classic as it enables
reuse of application software.

The requirements intended as an input to the TG-SRL approach are requirements to
either application software or operating system services.

Software Engineering Process Group Given an Autosar Classic architecture, in SWE.1
requirements for the application software and basic software are analyzed, derived and
extended. In SWE.2 and SWE.3, the design and requirements for software compositions,
software components, runnables and units are derived. During the design of the software,
A-SPICE foresees the creation of unit, integration, and software qualification tests which
will be executed and evaluated in SWE.4, SWE.5, and SWE.6 respectively.

In the context of this thesis, as an input for the test generation, natural language
requirements from either SWE.1, SWE.2, or SWE.3 are assumed. Such requirements
specify application, composition, component, runnable, or unit behavior based on their
input and output signals. In addition, they usually contain sufficient information to
generate executable test cases. The output from the test generation approach in this
thesis are thus unit or integration tests related to either SWE.4 or 5. In contrast, system
requirements from SYS.1-3 are often too abstract to generate executable test cases. While
there exist approaches to generate abstract test cases from system requirements, the
generation of system qualification tests is not in the scope of this thesis.

Based on the requirements and architecture from SWE.1-3, the software components
and units can be implemented. Implementation can be done within a Model-based
Development (MBD) environment, or by directly writing code.
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Figure 2.3: Application software structure according to Autosar Classic.

Model-based Development With MBD, the main development artifacts are models
rather than code. Models are represented by a graphical notation with defined syntax
and semantics. Based on these models, code can be generated automatically. Abstraction
is a core concept of MBD. Modeling elements of a modeling language are usually
domain specific and thus closer to the actual problem domain than source code of
programming languages [14]. In the automotive domain, MBD enables domain experts,
such as mechanical and electrical engineers, with little to no background in software
development to develop automotive embedded software.

2.1.2 Verification & Validation Activities

Validation & Verification (V&V) activities in automotive product development encompass
a variety of tasks, including static analysis, guideline checking, structural testing, and
functional testing. In this thesis, the focus is on functional test cases derived from
requirements.

For the scope of this thesis, test cases are defined as follows:

Definition 2.1.1 (Test case). A set of test inputs, execution conditions, and expected
results developed for a particular test objective, such as to exercise a particular program
path, or to verify compliance with a specific requirement.

A test suite is defined as a collection of test cases.

Structural tests, such as coverage tests, can be generated automatically by analyzing
the control and data flow of models or code, and achieving certain coverage criteria
(e.g. statement, decision or branch coverage [15]). Combined with techniques from static
analysis, structural test cases can, for instance, help find unreachable code or violations of
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variable ranges. However, structural test cases do not check the system behavior against
its specification and thus do not reveal errors in the functional behavior of code.

Typically, functional test cases are manually derived from requirements. Manual
creation of such test cases has several issues. Firstly, the effort for creating test cases
manually can be significant [3], thus test strategies usually consider a test end criteria to
find a reasonable trade-off between test efforts and test coverage [16]. In requirements-
based testing, exemplary test end criteria are requirements coverage or conformance. For
example, the test strategy could specify that it is sufficient to create one test case per
requirement.

A second challenge comes with changes to requirements as they necessitate an update
of the derived test cases. With software changes becoming increasingly frequent in the
context of SDVs, this implies growing test efforts during the post-production lifecycle of
a vehicle or product.

A third challenge with both manual and automatic test generation is the quality
of the requirements: natural language requirements can be ambiguous, incomplete or
inconsistent. During manual specification, the tester deals with these challenges by
correcting inconsistencies (if perceived), making assumptions about the behavior for
incomplete requirements, and interpreting potentially ambiguous requirements. Thus,
the quality of test cases is heavily dependent on the expertise and knowledge of the
tester. In an automated approach, the quality of requirements themselves is critical. For
instance, in the case of inconsistent requirements, a test generation framework may hint
to the inconsistencies but not automatically resolve them. Chapter 4 provides details on
how the proposed framework deals with ambiguity, incompleteness, or inconsistency in
natural language requirements.

Black-Box, Grey-Box & White-Box Testing Testing methodologies can be categorized
into three types: black-box, grey-box, and white-box testing [15]. If only the inputs and
outputs of an SuT are accessible within a test case, this is called black-box testing. For
functional testing, black-box testing is usually sufficient as requirements often specify the
output behavior of an SuT based on its inputs. In contrast, structural testing necessitates
white-box access to the models or code, i.e. it is necessary to be able to access internal
signals and variables in order to determine the data and control flow. There are use-cases
where selected internal variables need to be monitored or modified, e.g. for fault injection
into a system. In case a testing framework supports monitoring and overriding selected
internal signals, this is referred to as grey-box testing.

2.2 Test Generation from Requirements

This section introduces the fundamentals of generating test cases from requirements.
Whereas Section 2.3 focuses on NLP techniques to extract information from natural
language requirements, this section provides a broader overview.

11
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Figure 2.4: Simplified overview of model-based test generation.

2.2.1 Model-Based Test Generation

An overview of the general approach for model-based test generation is provided in Figure
2.4. Initially, information must be extracted from the input domain. Some approaches
directly create a formal model while others utilize an intermediate representation to first
collect and aggregate extracted information. Once this information is translated into a
formal model, various model-specific strategies can be employed to generate test cases.
Whether resulting test cases are abstract or executable depends on the approach and the
input domain.

Input Domain The input domain can range from informal to formal notations. As
such, requirements can take the form of natural language, Controlled Natural Language
(CNL), use-case diagrams, or state charts that depict the system behavior. Each notation
allows for an enhanced degree of formalization by imposing additional constraints on the
input domain. For instance, a use-case diagram might be constrained to include only
controlled natural language. Further, the use-case diagram’s structure and content may
be constrained by a template. Such a template could stipulate the use of keywords or the
presence of structural elements like pre- and post-conditions.

This thesis focuses on approaches that use either natural language or Controlled
Natural Language (CNL) as the input domain. Approaches that rely on a fully formalized
model are out of scope.

Controlled Natural Languages CNLs are subsets of natural language with a restricted
grammar and vocabulary, designed to reduce or eliminate ambiguity and complexity. Two
methods exist to derive a controlled language: either via restriction of natural language,
or via constructing a CNL from the ground up by defining its grammar and syntax rules.
The latter approach is used by the authors of [17] to generate test cases and is elaborated
upon in Chapter 3. Examples of CNLs include Attempto [18], Simplified Technical English
[19], Processable Language (PENG) [20], Gherkin [21], and SysReq-CNL [8]. Typically, a
trade-off is observed between the naturalness and predictability of controlled languages
[22]. Languages defined via a grammar from the ground up tend to be less natural but
highly predictable. Generating tests with such languages is simpler compared to those
formed by restricting natural language, which are more comprehensible and natural,
albeit less predictable. For a more thorough analysis, the reader is directed to [22].
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Formalization Information extraction is highly dependent on the formalization degree
of the input domain. In the case of a CNL, information extraction can make use of the
restrictions imposed by the CNL. In the case of natural language input, Natural Language
Processing (NLP) techniques can help with extracting the necessary information for test
generation.

Based on the extracted information, an intermediate model might be employed to
aggregate and process the collected information. Following this, a formal model is created,
either directly from the extracted information, or based on the intermediate representation.
Examples of formal models utilized in the literature include hybrid automata, state charts,
logic formula or process algebras.

One peculiarity for test generation is the encoding of time. Some methods do not
account for time-dependent behavior in a test case. Those that do either use formal
models that inherently handle time, such as hybrid automata, or logically encode time
into the formalization. The consideration of time is vital when testing the behavior of
automotive embedded systems, as a test case specifies the behavior of multiple variables
or signals over a certain test duration. In the context of embedded systems, the sample
time, also referred to as step size, refers to the rate at which a discrete system samples
its inputs. Consequently, time can be treated as discrete, and signals can be thought of
as time-value pairs as shown in Table 2.1. For a more comprehensive classification of
formal models for test generation, the reader is referred to [23].

Time Signal A
0.0 1
0.1 2
0.2 5
0.3 0

Table 2.1: Exemplary signal specified as time-value pairs. Step size of 0.1.

Test Generation Once a formal model is created, test cases need to be derived. The
algorithm for test generation highly depends on the underlying formal model. Approaches
employing automata or state charts often use structural methods to generate test cases,
e.g. via path or state coverage algorithms. In contrast, if the formalization is a logical
formula, a solver might be used. For process algebras, refinement checking is one valid
approach to generate test cases. A test generation method from the authors of [24], which
employs refinement checking on a process algebra known as Communicating Sequential
Processes (CSP) [25], is detailed in Chapter 3.

The generated test cases are either abstract or can be directly executed on the SuT.
Methods utilizing requirements on the system level, or less detailed inputs such as use-case
diagrams, will generally only generate abstract test cases. In contrast, approaches utilizing
more detailed requirements, such as software requirements, are capable of generating
executable test cases.
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2.2.2 Mutant-Based Strength Analysis

One method to evaluate the performance of a test suite is so-called mutation testing
or mutation-based strength analysis. With mutation testing, the idea is to artificially
modify the SuT (e.g., a program) and introduce errors. The resulting system is called a
mutant. To automatically and strategically mutate an SuT, so-called mutation operators
can be applied. An example for a mutation operator is replacing basic binary arithmetic
operators such as + or % with other binary arithmetic operators. If the whole test suite
detects the error of a mutated SuT, i.e. at least one test case of the test suite fails, the
mutant is considered killed. If a test suite does not detect the error of a mutated system,
the mutant is considered alive. The mutation score is calculated as the quotient of all
killed mutants and the total number of mutants:

Mutation S Number of Killed Mutants (2.1)
utation Score = .
Total Number of Mutants

A higher mutation score indicates a better performing test suite.

A few limitations exist with mutant-based strength analysis. Firstly, frameworks utiliz-
ing mutation operators for automatically generating mutants often introduce one error
per mutated program. While a test suite might be good at detecting single modifications
of an SuT, it might not be suited to detect cases where multiple errors are introduced
simultaneously. In general, mutant-based strength analysis only provides an indication
for the effectiveness of a test suite to detect errors, but does not prove its effectiveness.
Another disadvantage with automatic mutant generation comes with the undecidability
of program equivalence [26]. Generated mutants can be semantically equivalent to the
original SuT, so the mutation score is always a worst-case estimate for the performance
of the test suite on the given mutants. For instance, Listing 2.1 shows several modifica-
tions that are semantically equivalent to the unmodified statement in the programming
language Java. A test suite will not be able to detect such mutations, thus lowering the
mutation score.

2.3 Natural Language Processing

The test generation method presented in this thesis operates on unrestricted natural
language. In order to extract the necessary information from the natural language
requirements, Natural Language Processing (NLP) techniques are employed. This section
introduces relevant NLP techniques, provides a brief overview of methods for extracting
semantic information from natural language, and presents popular NLP frameworks that
facilitate some form of semantic information extraction.

NLP, an interdisciplinary subfield of linguistics, computer science, and artificial intelli-
gence, aims to enable computers to understand natural language, including its contextual
nuances. While NLP encompasses both written text and speech recognition, the scope of
this thesis is limited to the application of NLP techniques to written text.
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// original code
a=a+ 1;

// mutant (introduce ++)
a=a++ + 1;

// mutant (introduce --)
a=a--+1;

// original code

if (a == true)
// mutant (modify condition)
if (a)

Listing 2.1: Code snippet with semantically equivalent mutations in Java.

2.3.1 NLP Methods and Common Tasks

NLP has traditionally been achieved via rule-based techniques, i.e. the hand-coding
of a set of rules, also referred to as symbolic NLP [27]. In the last decades, statistical
techniques [28, 29, 30, 31, 32] and large, hand-annotated training corpora [33, 34|, as
well as machine learning advancements have had a major impact on the field of NLP and
enabled the development of sophisticated syntactical and semantic analysis [35]. While
statistical techniques such as Hidden Markov Models have been very successful for certain
NLP tasks, the major drawback is the reliance on elaborate feature engineering [36].
With the rise of deep neural networks and automatic / unsupervised learning methods,
neural networks have become the dominant method in current NLP research [37]. Major
advantages of neural networks in comparison to rule-based methods include the robustness
to unfamiliar or erroneous input. In addition, a neural network’s performance can be
improved by simply providing additional training data while improving a system based
on handwritten rules can only be achieved by increasing the complexity of the rules, thus
making maintenance and extension more difficult.

The following paragraph provides a brief overview of the most common NLP tasks, as
specified by [38], which are relevant to both related work and TG-SRL. The overarching
goal of TG-SRL is Natural Language Understanding (NLU), also referred to as natu-
ral language interpretation. NLU involves converting chunks of text into more formal
representations, such as First-Order Logic structures, to facilitate manipulation by a
computer program. NLU involves the identification of the intended semantic using an
array of NLP techniques. The framework presented in this thesis primarily uses Semantic
Role Labeling (SRL), which relies on several other NLP tasks, including Part of Speech
(POS) tagging and Named Entity Recognition (NER).

Text Processing

e Word Segmentation This task involves separating a continuous text into individ-
ual words. As words are separated by spaces in English, this task is easy to achieve
for the English language.
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Morphological Analysis

o Lemmatization This task involves the removal of inflectional endings and returning

the base dictionary form of a word, also known as a lemma. Unlike other techniques
that reduce words to their normalized form, lemmatization utilizes a dictionary to
map words back to their original form. For example:

closed — close

saw — see

Stemming Similarly to lemmatization, inflectional endings from a word are re-
moved. In contrast to lemmatization, a set of rules is used instead of a dictionary.

Part of Speech (POS) Tagging Given a sentence, determine the Part of Speech
for each word. Some examples for POS categories include nouns, verbs, adverbs,
adjectives, conjunctions, and auxiliary verbs. Words can serve as multiple parts of
speech. For example, "book" can be a noun (e.g., "the book on the table") or a verb
(e.g., "to book a flight"). "Set" can be a noun, a verb, or an adjective.

Syntactic Analysis

e Sentence Boundary Disambiguation Given a chunk of text, find the sentence

boundaries. Punctuation marks, in e.g. abbreviations, are special cases that need
to be handled.

Parsing This task involves generating a parse tree for a given sentence. A parse
tree is an ordered, rooted tree that represents the syntactic structure of a sentence
according to the language’s grammar. The grammar for natural languages is
ambiguous and thus, sentences can have multiple, up to thousands, parse trees.
There are two primary types of parsing: dependency parsing and constituency
parsing [39]. Dependency parsing focuses on the relationships between words in a
sentence (marking things like primary objects and predicates), whereas constituency
parsing focuses on building out the parse tree using a probabilistic context-free
grammar.

Lexical Semantics - Semantics of Individual Words in Context

16

o Named Entity Recognition (NER) Given a stream of text, determine which

items in the text map to proper names, such as people or places, as well as the
type of each such name (e.g., person, location, organization). Named entities can
span several words.

Word Sense Disambiguation (WSD) When multiple interpretations for a word
are possible, the task of WSD is to select the meaning which makes the most sense
in a given context. Given a specific word, a database such as WordNet [40] provides
a list of associated word senses. Together with context information, WordNet is
often used to infer the correct word sense.
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Relational Semantics - Semantics of Individual Sentences

o Relationship Extraction Given a piece of text, identify the relationships among
named entities, i.e. entities identified via NER.

« Semantic Role Labeling Given a single sentence, identify and disambiguate
semantic predicates, then identify and classify the semantic roles. Details are
provided in the next subsection.

Discourse Semantics - Semantics beyond Individual Sentences

e Coreference Resolution This task involves identifying words within a text that
reference the same entities. An example of this is anaphora resolution, where
pronouns are mapped to the corresponding nouns or names to which they refer.

o Topic Segmentation and Recognition Given a chunk of text, separate the text
into distinct segments, each centered around a specific topic, and subsequently
identify the topic for each segment.

2.3.2 Semantic Role Labeling with Proposition Bank Annotations

As mentioned in the above overview, SRL identifies semantic predicates and their
associated semantic roles. The following example showcases the need for a semantic
analysis:

e "The system starts."
e "The system starts the database."

In this example, a syntactical analysis is not sufficient to answer the question "Which
entity is started?". Figure 2.5 depicts a dependency parse tree for both sentences.

(ROOT) (ROOT)
Obj
[—% f% [—% fm\ de
The system starts. The system starts he datababe

Figure 2.5: Dependency parse trees for two exemplary sentences.

In both sentences, the verb "to start' is used in active form and constitutes the root of
the parse tree. "The system" is identified in both cases as the subject by a syntactical
parser. However, only in the first sentence "the system" is the entity that is started. In
the second sentence, the object of the sentence, namely "the database', is the entity that
is being started. Thus, for the verb "to start", it depends on the semantic interpretation
and not syntax of a sentence whether the object or the subject of the sentence contains
the entity that is started.
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SRL tries to assign specific semantic roles, also referred to as tags or thematic roles,
to elements that are related to a predicate. The set of related elements together with
the predicate itself are referred to as a predicate argument structure or predicate frame.
A semantic role is assigned to each element in the predicate argument structure by the
SRL task.

In the example above, SRL identifies "starts" as the predicate. "The system", as well as
"the database', are identified as part of the predicate argument structure. Examples are
depicted in Figures 2.6 and 2.7. A semantic role, in the given example "Argl", indicates
which entity is started. It is assigned to "the system" in the first sentence and to "the
database" in the second sentence.

Frames for |starts|:

The system !

Vv

Figure 2.6: Semantic Role Labeling output from the AllenNLP demo [41].

Frames for |starts|:

The system the database
\"/

Figure 2.7: Semantic Role Labeling output from the Allen NLP demo [41].

Semantic roles or tags can, for instance, indicate location, temporal attributes, or the
manner in which something is done. In most SRL frameworks, semantic roles follow the
ProbBank model [35], which is introduced in the following.

Proposition Bank (ProbBank) The ProbBank project and the corresponding model use
the Penn Treebank [33] project as a base. In the Penn Treebank project, approximately
2,500 stories comprising 40,000 sentences from the Wall Street Journal were annotated
with mainly syntactic information, e.g. subjects and objects of a sentence were identified.
The ProbBank project added verb specific semantic annotations to the Penn Treebank
corpus via a rule-based automatic tagger. The output of the tagger was manually hand-
corrected [35].

Due to the difficulty of defining a universal set of semantic roles covering all types
of predicates [35], ProbBank defines semantic roles on a verb-by-verb basis. The roles
associated to a verb are also referred to as the verb’s arguments. Arguments are numbered,
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beginning with zero. In addition to the verb-specific numbered roles, ProbBank defines
several general roles that can apply to any verb. These roles describe, for instance, the
location or a manner in which an activity is performed. An overview of the core semantic
roles defined by the ProbBank model is given in Table 2.2. A predicate together with its
possible semantic roles define a so-called frameset. During the definition of the frameset,
the authors of the ProbBank model tried to consistently use "Arg0" as the role that
exhibits features of an agent, and "Argl" as the role that exhibits features of a patient.

Role Description

Arg0 Generally the argument that exhibits features of an agent
Argl Generally the argument that exhibits features of a patient
Arg2 & higher No consistent generalization possible across predicates
ArgM-Adv General adverbials or clause modifiers

ArgM-Cau Cause

ArgM-Loc Location

ArgM-Mnr Manner
ArgM-Mod Modals

ArgM-Neg Negation

ArgM-Ext Extent

ArgM-Dis Discourse connectives
ArgM-Tmp Temporal features
ArgM-Prp Purpose or reason
ArgM-Dir Directional features

Table 2.2: Overview of core ProbBank semantic roles.

A predicate can have multiple framesets. For instance, the predicate "to decline' can
either carry the meaning of "to reject" or "to go down incrementally”. The two respective
framesets defined by ProbBank are shown in Figure 2.8.

Semantic Roles of Commas While SRL traditionally focuses on semantic roles sur-
rounding predicates, there exists work to analyze the semantic roles surrounding commas.
Commas and the surrounding sentence structure often express relations that are relevant
to understanding the meaning of a sentence [42]. The following example provided by the
authors of [42] illustrates this:

Example
We invited the computer scientists, Susan and Hannah.

Depending on the interpretation, Susan and Hannah are either a substitute for computer
scientists, or the three of them form a list. The authors of [42] have defined 9 relations,
shown in Table 2.3, that commas participate in.
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Frameset: decline.01 “go down incrementally”
o Argl: Entity going down
e Arg2: Amount gone down by
e Arg3: Start point
e Arg4: End point
Example:

[arg1 The net income] declined [arg2 42%)] [Args to 121 million] [ArgM-Tmp in
the first 9 months of 1989].

Frameset: decline.02 “demure, reject”
e Arg0: Agent

e Argl: Rejected thing

Example:
[Arg0 A spokesman]| declined [arg1 to elaborate].

Figure 2.8: Framesets from ProbBank for the word "decline".

2.3.3 Frame Semantic Parsing

A parallel line of work to SRL seeks to extract semantic information from sentences
through a process known as Frame Semantic Parsing (FSP). FSP originates from the
FrameNet project [43] and is based on a theory of meaning called frame semantics. Similar
to the ProbBank project, it was the goal of the FrameNet project to annotate a specific
corpus with semantic roles.

According to frame semantics, the meanings of most words can be understood on the
basis of a semantic frame. A semantic frame in the context of FSP describes a type of
event, relation, or entity, and the participants, also called frame elements, involved in it.
As an example, the concept of cooking can be used [43]. Cooking usually involves a cook,
the food that is to be cooked, a container to hold the food while cooking, and a source of
heat. The notion of cooking is represented by the semantic frame "apply_ heat" in the
FrameNet project. All involved participants such as the cook, food, the source of heat,
and container are called frame elements. However, the semantic frame "apply__heat" can
not only be invoked by the predicate "to cook", but also verbs such as "to fry", "to bake",
"to boil", or "to broil". All words that invoke a certain frame are called lexical units of
the frame. An example for FSP is shown in Figure 2.9.

While in SRL with the ProbBank model, predicates act as the root of a frameset, in
FrameNet also nouns, adjectives, adverbs, and prepositions are allowed as lexical units.
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Relation Description

Substitute Indicates an apposition structure

Attribute Separates a noun from a non-restrictive/non-essential modi-
fier

Locative Separates elements related to locations or places

List Separates elements in a list

Introductory Separates an introductory element at the start of the sentence

from the main clause
Complementary Separates a complementary element from the main clause

Interrupter Delimits an interrupter (word, phrase or clause breaking the
logical flow of a sentence)

Quotation Separates a quote

Other Comma that does not fall into any of the other 8 categories

Table 2.3: Semantic roles of commas according to [42].

In the depicted example, "played" invokes the semantic frame "performance_and_ roles"
with the frame elements performer, role, and performance. "Drying up" invokes the frame
"becoming_dry" with one single frame element called entity.

Hoover Dam played a major role in preventing Las Vegas from drying up

play.v major.a prevent.v dry up.v
Performer PERFORMERS Role Performance
_AND_ROLES
IMPORT- | Factor Undertaking
ANCE

Preventing | THWARTING I Protagonist Action
cause
Entity |BECOMING,DRY|

Figure 2.9: Frame Semantic Parsing example from Swayamdipta et al. [44].

In comparison to SRL, FSP and the FrameNet model emphasizes the semantics of a
frame that entities are associated with. Subsequently, FSP is more domain dependent.
It is essential that semantic frames have been identified and created for events, entities,
or relations relevant to the domain of interest. In comparison, for SRL it is sufficient to
have framesets defined for the predicates employed in the domain of interest.

In the following, two sentences annotated with ProbBank and FrameNet tags are given.
These examples illustrate that ProbBank requires an additional level of inference to
determine the meaning of parts of a sentence [35]. Both the lexical units "bought" and
"sold" invoke the same frame "Commerce" in the FrameNet model. The buyer as well as
the seller is directly identifiable based on the tags. With SRL, it is necessary to look at
the different framesets of the predicates "to buy" and "to sell", and identify the buyer
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and seller according to their arguments. The relevant ProbBank framesets are shown in
Table 2.4.

ProbBank:

[Argo Chuck] bought [arg1 a car] [arg2 from Jerry] [arg3 for 1000€]. [argo Jerry]
sold [Arg1 & car] [Arg2 to Chuck] [arg3 for 1000€].

FrameNet:

[Buyer Chuck] bought [Goods a car] [Seller from Jerry} [Payment for 1000€] [Seller
Jerry] sold [Goods @ car] [Buyer t0 Chuck] [payment for 1000€].

Role buy.01 "purchase" sell.01 "exchange goods for money"
Arg0 Buyer Seller

Argl Thing bought Thing sold

Arg2 Seller Buyer

Arg3 Price paid Money earned

Argd Benefactive Benefactive

Table 2.4: ProbBank Framesets for "to buy" and "to sell".

2.3.4 NLP Frameworks

A range of frameworks and methodologies are available publicly to tackle the challenge
of NLP. For the task of SRL or FSP, most recent approaches use a layered deep neural
network. Frameworks utilizing the ProbBank model for SRL include CogComp-NLP
[45], AllenNLP [41], and Sling [46]. Frameworks using the FrameNet model include
SEMAFOR [47] and Open-Sesame [44]. In general, the NLP community evaluates the
performance of a neural network for NLP on certain published tasks or corpora. For SRL,
one commonly evaluated dataset comes from the Conference on Computational Natural
Language Learning (CoNLL) [48]. In 2004 and 2005, CoNLL provided a training corpus
including correct outputs, a development data set to tune the parameters of the learning
system, as well as an evaluation data set to test the performance of an SRL framework
[49]. In addition to the CoNLL dataset, the OntoNotes [50] dataset is often used for
training and evaluation of SRL approaches. The goal of the OntoNotes project was to
annotate a large corpus comprising various genres of text (news, weblogs, talk shows etc.)
in three languages, including English, with structural information and shallow semantics
[51]. For the evaluation of frameworks using FSP and the FrameNet model, the data sets
provided by SemEval from 2007 [52] are regularly used.

While results of frameworks for both datasets do have some carry-over to the potential
performance for the purpose of extracting semantic information from natural language
requirements for software in the automotive industry, the validity is still limited. All
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approaches have been, to a certain degree, optimized for the published task’s datasets
and thus also for the domains contained in the respective corpora. For this reason, the
frameworks mentioned above have been briefly evaluated in order to make a choice for
the implementation of the test generation framework TG-SRL. The evaluation can be
found in Section 4.7.1 of Chapter 4.

Semantic Role Labeling with BERT models State-of-the-art SRL results are currently
achieved with Bidirectional Encoder Representations from Transformers (BERT) [53].
BERT models are employed in both the CogComp-NLP and AllenNLP frameworks.
While previous neural models for SRL relied on lexical and syntactic features such as
POS tags or parse trees, BERT makes use of pre-training based on language modeling
[54, 55]. The standard SRL task decomposes into four subtasks: first predicates need
to be identified, afterwards the predicate sense needs to be identified (predicate sense
disambiguation), next arguments for the predicate frame need to be identified and lastly,
the arguments need to be classified according to the roles. For the latter three tasks,
BERT together with other neural network layers can be utilized. For details of the neural
network architecture, the reader is referred to [53].
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This chapter provides an overview of relevant literature in the field of test generation.
Research on model-based testing techniques is very extensive as demonstrated by a survey
of Dias et al. [56], which found 219 unique approaches. This chapter primarily focuses on
methods that employ some form of Natural Language Processing to extract information
from sentences. Methods that solely aim to formalize requirements (e.g., [57, 58]), or
those that exclusively generate a formal model from requirements without producing any
test cases (e.g., [59, 58]), are outside the scope of this chapter.

The methods highlighted in this chapter vary in terms of input domain, degree of
automation, abstraction level of the generated test cases, and their approach to handling
inconsistent, ambiguous, and incomplete requirements. The subsequent sections categorize
related work according to the input domain.

3.1 Natural Language as the Input Domain

This section introduces relevant literature where natural language is used as the input
domain.

3.1.1 Solimva

Santiago et al. [60] have presented a methodology named Solimva to generate test cases
from natural language requirements for software for space applications. The approach
formalizes natural language requirements into statecharts, which are then used to generate
test cases. An overview is given in Figure 3.1.

The formalization into statecharts is semi-automatic, i.e. the user needs to partially
define a dictionary that represents the application domain. Within the dictionary, all
properties of the statechart, such as states and transitions, are defined. Subsequently,
so-called test scenarios, which describe the interaction between a user and the SuT, are
manually defined. Variance in the scenarios is introduced via an automated, combinatorial
approach. The natural language requirements are then manually mapped to the scenarios.
Based on the scenarios, dictionary, and mapped natural language requirements, the
statecharts are generated. To extract information from the requirements, POS tagging
in combination with a rule-based approach is employed. Extracted information focuses
on the subjects, actions, and objects of a requirement. However, a manual review of
the extracted information is required as, according to the authors, the algorithm for
information detection "is not general enough to work out with all natural language
sentences" [60, p. 132].

Given the generated statechart, test case generation is then achieved via path traversal.
Several path traversal criteria, such as transition tour and state counting, are applicable
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{Deﬁne dictionary}

|

{Deﬁne scenarios}

l

{Map requirements to scenarios}

|

[Generate statechart}

|

LGenerate test cases via path traversal}

|

[Translate abstract test cases into executable ones}

Figure 3.1: Overview of Solimva based on a figure in [60].

[60]. The resulting test cases are abstract and the gap towards executable test cases is
closed via manual work. The approach has been compared to manually specified test cases
from a domain expert and the evaluation found that the generated test cases covered
more scenarios than those identified by the expert [60]. No evaluation on the capability
of the generated test suite to detect faults in an SuT was performed.

Concluding, the presented approach operates on unconstrained natural language and
extracts information via syntactic analysis. Several steps require manual interaction from
a user and the test generation results in abstract test cases.

3.1.2 Litmus

Dwarakanath et al. [6] have presented an approach named Litmus. A syntactic parser
is employed to extract information from natural language requirements, and to identify
whether a requirement is testable. A requirement is deemed testable if it contains at least
one subject, an action, and optionally an object that can be identified by the parser. In
addition, the identified action must contain modal verbs.

As a first step, all nouns identified by the parser are marked as entities. The set of
extracted entities is then manually validated by a user. Subsequently, input sentences
are broken down into less complex ones. In this phase, conditional parts of a sentence
as well as conjunctions and disjunctions are split. Splitting is done via a keyword-based
search on the parser output. Based on the generated simple sentences, a formalization
into so-called test intents is done. Test intents are defined as "the smallest segment
of a requirement sentence that conveys enough information about the purpose of the
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test" [6, p. 63] and consist of a subject, an action, and optionally an object. Based on
the test intents, positive and negative test cases are generated. The former verify that
an action stated in the requirement does occur while the latter verify that it does not
occur if the respective conditions are not met. In their work, the authors have examined
abstract requirements and thus only abstract test cases are generated. The approach was
evaluated on industrial requirement specification documents by manually analyzing the
generated test cases for accuracy, which the authors defined as the share between correct
and incorrect test cases. No evaluation on the capability of the generated test suite to
detect faults in an SuT was performed.

Concluding, the presented approach operates on constrained natural language as
requirements need to have certain syntactic features in order to be deemed testable. The
automation degree is high as there is only user interaction required for validating the
identified entities. While the generated test cases are not executable, this outcome is also
attributed to the abstraction level of the input requirements. Similar to the approach
Solimva from Santiago et al., the method extracts syntactic information in the form of
subjects, actions, and objects from a sentence in order to generate test cases.

3.1.3 Retna

With their framework called RETNA, Boddu et al. [61] employ the probabilistic Charniak
Parser [32] to extract syntactic information from natural language requirements. The
parser tags elements of a sentence according to the Penn Treebank tagset [62]. Based
on the output from the parser, the authors employ a syntax-directed semantic analysis
to extract predicate-argument structures. The predicate-argument structures are then
formalized into Discourse Representation Structures (DRS) [63]. An example for the
formalization of a sentence into DRS is given in Figure 3.2.

DRS example:

"If a train is on a track then its speed should be less than the specified speed
of the track."

Exists X1, X2 with isa(X1, train), isa(X 2, track), ison(X 1, X2)
=
Exists X3, X4, X5 with isa(X3, speed), of(X1, X3),
isa(X4, speed), of (X4, X2),isa(X4, specified), shouldbelessthan (X3, X4)

Figure 3.2: DRS example from [61].

Predicate structures such as "isa(x1,train)" from the given example are looked up in
a predicate library, which contains a semantic interpretation. A user is asked to either
manually verify and correct the semantic interpretation or, if necessary, manually specify
a semantic interpretation. The Discourse Representation Structures are formalized into
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weak monadic second order logic formula [61], which in turn are converted into state
machines. Test cases are generated via path traversal of the state machine. The authors
evaluated their approach in several case studies and the approach successfully discovered
errors such as deadlocks in a Java program. However, in the case studies a state explosion
was observed. Thus, mitigation strategies such as user steered path traversal algorithms
were suggested.

Concluding, RETNA supports an unconstrained input domain and tackles ambiguity
via a probabilistic parser. The parser extracts syntactic information, semantic information
is added via a rule-based approach and via a lookup in a predicate library. Cases that are
not covered by the predicate library need to be specified manually by the user. RETNA
thus features a medium to high degree of automation. The authors did not specify whether
the generated test cases were executable without additional manual effort.

3.2 Use Cases as the Input Domain

This section presents methods that utilize use cases as an input.

3.2.1 UMTS

Wang et al. [64] present an approach called UMTS to generate test cases based on use
cases written according to the Restricted Use Case Modeling (RUCM) format [65]. The
RUCM format defines a template for a use case to facilitate information extraction for
the purpose of test generation. For instance, a use case according to the RUCM format
contains sections about pre-conditions, post-conditions, and possible execution steps
in a test case. In the original RUCM format, the content of those sections is written
in unrestricted natural language. Wang et al. have extended the template with certain
constraints, e.g., the sections need to contain specific keywords to enable test generation.

After formulating the requirements in use cases according to the RUCM format, the
user is expected to model the domain as a Unified Modeling Language (UML) class
diagram. The domain model includes all relevant entities and specifies their relationships.
Based on the use cases and the domain model, pre- and post-conditions are automatically
extracted via NLP methods by the framework. The employed NLP methods, such as
POS tagging and tokenization, extract syntactical information from the use cases. The
user then needs to manually formulate these conditions as Object Constraint Language
(OCL) constraints. A constraint solver is afterwards used to solve the OCL constraints
and automatically generate test cases. The authors conducted a case study where the
approach was shown to cover more scenarios than a control group that wrote test cases
manually [64].

Concluding, the approach operates on a significantly constrained input domain as
the use case diagrams need to adhere to a template and contain certain keywords. The
automation degree is low as the user is expected to formalize the extracted information
into OCL, and to create the domain model as a UML class diagram. The generated test
cases are executable. The capability of the generated test suite to detect faults in an SuT
was not evaluated.
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3.2.2 Text2Test

In their framework Text2Test [66], Sinha et al. employ NLP methods on use cases that
can contain unconstrained natural language. The extracted information is formalized
into a use case description model, which categorizes information into roles such as actor
or action. For the complete model, the reader is referred to Figures 2 and 3 in [66]. The
employed NLP methods are described in detail in [67].

The NLP pipeline is constructed as follows: POS tagging and shallow parsing are
used to extract syntactic information. Afterwards, semantic information is added via a
so-called dictionary annotator. In the dictionary, predefined semantic classes such as "to
update" are available. A predicate in a given sentence is mapped to a predefined semantic
class by the dictionary annotator. For instance, given a sentence that contains the verb
"to change", the term is mapped to the class "to update" in the assumption that both
carry the same meaning. The dictionary containing the semantic classes is domain specific
and manually created. After mapping verbs to semantic classes, a context annotator
classifies relevant nouns into several categories according to a rule-based scoring system.
The categories distantly resemble the semantic roles from SRL. For instance, one category
represents actors of a sentence. As a last step, a process builder builds the test sequence
as described in the use case. Test generation then happens according to the sequence built
by the process builder. Resulting test cases are abstract. The authors did not evaluate
the strength of the generated test suite.

Concluding, the approach operates on uses cases that may contain unconstrained
natural language. It extracts information in a predicate-centric process that is similar to
SRL, and formalizes it into a use case description model. Apart from the manual creation
of a domain specific dictionary, the test generation process is completely automated.

3.2.3 Test Case Generation, Selection and Coverage from Natural Language

In their work, Nogueira et al. [24] present a framework to generate test cases for the
domain of mobile device applications. As an input, use cases that adhere to a template
are used. The template specifies actions, the order of actions, the system response, and
optionally conditions on the system state that need to hold true before carrying out
an action. The content of the sections specified by the template needs to adhere to a
Controlled Natural Language (CNL). The CNL is domain specific for the domain of
mobile devices and certain actions, such as assignments to input or output signals, need
to be specified in a formal notation that resembles code.

The adherence to the defined CNL is checked via a parser. For valid use cases, a
formalization into Communicating Sequential Processes (CSP) [25] is done. Roughly
described, CSP defines processes that communicate via events. Test generation is achieved
via refinement checking as follows: a CSP formula is constructed such that the shortest
counter example for the formula yields a test case. Once such a test case has been found,
the original formula is extended to exclude this test case. Afterwards, the method is
repeated to find the next test case. The result of the refinement checking are CSP traces
consisting of events. These are mapped back to the CNL used in the use cases. In order
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to achieve the goal of executable test cases, a manual translation from the CNL to an
executable version is required.

The generation of a test suite can be guided by goals which need to be specified
manually. For instance, a goal could either be to test whether a certain state is reachable,
or to simply generate a certain amount of test cases. These constraints need to be
manually encoded into the CSP formula that is used as an input for refinement checking.
The authors hypothesize about possible improvements to guide the test suite generation,
for instance, a transformation from the CSP notation to automata in order to employ
coverage guided algorithms. In a case study, the authors evaluated the performance of
the approach with regards to the time necessary for test generation. No evaluation on
the test suite strength was done.

Concluding, the approach uses a significantly constrained input domain, combining
templated use cases with CNLs. Given valid inputs, the formalization into CSP as well
as the test generation is mostly automated. The resulting abstract test cases need to be
manually translated into executable test cases.

3.3 Controlled Natural Language as the Input Domain

In this section, approaches that operate on CNLs are introduced.

3.3.1 Generating Test Cases for Timed Systems from CNL Specifications

Schnelte et al. [68] present a method to generate test cases for timed systems from CNL
specifications. Listing 3.1 shows an excerpt of the grammar that defines the CNL. Input
requirements need to additionally adhere to a template that defines triggers, pre- &
post-conditions, and a system reaction as shown in Table 3.1. The allowed vocabulary
is defined in a manually created dictionary and contains, among others, signal names
and enumerations. The conditions, actions, and triggers described in the templates are
formalized into temporal qualified expressions according to a ruleset. Based on the
temporal qualified expressions, both positive and negative test cases are generated. The
former check whether the specified behavior occurs. Negative test cases are created based
on the assumption, that the requirements describe the complete behavior of the system,
and that any unspecified, observable reaction from the SuT represents faulty behavior.
Test generation itself happens via a reachability analysis with partial order causal link
planning [69].

Concluding, the approach from Schnelte et al. operates on templated requirements that
need to adhere to a language defined by a grammar. This approach significantly restricts
the input domain, but removes the challenge of solving ambiguity. Given a dictionary
and inputs that satisfy the constraints, the approach is highly automated, and executable
test cases are generated. The strength of the generated test suite was not evaluated.
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<preCond> := <complexCond> (" or " <complexCond>)*
<complexCond> := <simpleCond> (" and " <complexCond>)?
<simpleCond> := (<forAll> | <equalsCond>) (timeCond)?
<equalsCond> := <signalName> " is " <signalValue>
<forAll> := " all " <signalGroup> " are " <signalValue>
<timeCond> := <exactTC> | <forMoreTC> | <forLessTC>
<exactTC> := " for " <timeExpr>

<forMoreTC> := " for more than " <timeExpr>
<forLessTC> := " for less than " <timeExpr>
<timeExpr> := <number> <timeUnit>

<timeUnit> := "ms" | "s" | "m"

Listing 3.1: Grammar excerpt from [68].

Condition before trigger Alarm is set for less than 6 s
Trigger Driver door is open
Condition after trigger -

Reaction Alarm is unset

Table 3.1: Exemplary requirement, taken from [68], conforming to the grammar from
Listing 3.1.

3.3.2 Nat2Test

In their framework Nat2Test [8], Carvalho et al. generate test cases based on requirements
formulated in a CNL called SysReq-CNL. The SysReq-CNL was created to handle
requirements from the automotive domain. Essentially, the grammar allows sentences of
the following form:

When conditiony, conditions, ..., conditiony, the system shall: action,
actiona, ..., actiony.

For a formal definition of SysReq-CNL the reader is referred to Figure 3 of [8]. The
grammar allows ambiguity in certain cases, and Nat27est handles this by presenting
possible interpretations to the user in the form of parse trees. The user then selects the
parse tree that aligns with their understanding. The vocabulary that can be used in
requirements is manually defined in a dictionary. The dictionary also maps each term to
its lexical category such as "noun' or "verb".

As a first step in the test generation process, so-called case frames are generated by
extracting thematic roles from the input requirements. These frames categorize the verbs
in a sentence into two types: those present in conditions and those present in actions. In
addition, each verb is associated with extracted thematic roles such as "patient" or "agent".
Figure 3.3 provides an illustration of a simplified requirement and its corresponding case
frame.
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Exemplary requirement: When the voltage is greater than 80, the lights’ controller
component shall: assign on to the left indication lights.

Case Frame:

Condition #1 - Verb: is

Condition Patient the voltage
Condition From Value -

Condition Modifier greater than
Condition To Value 80

Action #1 - Verb: assign

Agent the lights’ controller component
To Value on
Patient the left indication lights

Figure 3.3: Simplified case frame example from Table 1 in [8].

Thematic roles are extracted via a rule-based approach exploiting the syntax imposed
by the grammar. The supported set of verbs is limited by rules. Action statements can
contain the verbs "to add", "to assign", "to reset", and "to subtract" while conditions may
contain "to be'", "to become", and "to change" [8].

Based on the extracted case frames, an intermediate graph based representation called
Data-Flow Reactive Systems (DFRS) [8] is generated. Given a DFRS formalization,
Nat2Test supports the translation into three different formal models for test generation:
Internal Model Representation (IMR), Communicating Sequential Processes (CSP), and
Software Cost Reduction (SCR) specifications. The specific pipeline to generate executable
test cases differs for all models. For detailed information on the pipeline stages, the reader
is referred to [8, 70, 17].

Every formalization has its strength and weaknesses. One factor is whether the notion
of time is natively supported. Moreover, computational effort due to, e.g. state explosion,
poses a significant challenge for certain pipeline stages. Carvalho et al. have evaluated
Nat2Test with the SCR and IMR formalization via a mutant-based strength analysis.
The evaluation revealed that the SCR approach outperformed random testing [8], as
shown in Table 3.2. The IMR approach showed comparable performance to a manually
created test suite [17]. In the work "Simulation of hybrid systems from natural-language
requirements” [71], Oliveira et al. extended the SysReq-CNL to support requirements
that describe hybrid systems. In particular, support for mathematical functions and
expressions was added.

Nat2Test is publicly available for download. Hence, in the evaluation presented in
Chapter 5 of this thesis, TG-SRL has been compared to Nat2Test in a mutant-based
strength analysis.
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System under test: VM NPP PC TIS
Java (LOC): 64 57 39 325
Mutants: 523 319 134 4320
NAT2TEST

Killed: 302 154 128 1619
Mutation score: 57.74% 48.28%  95.52%  37.48%
Randoop

Killed: 265 123 134 1031
Mutation score: 50.67% 38.56% 100.00% 23.87%
NAT2TEST x Randoop

Killed only by NAT2TEST: 105 83 0 876
Killed only by Randoop: 68 52 6 288

Combined mutation score: 70.75% 64.58% 100.00% 44.14%

Table 3.2: Mutant-based strength analysis results from [8]: Nat2Test compared to random
testing.

Concluding, Nat2Test operates on a CNL and thus on a constrained input domain.
Once a user has defined a dictionary and resolved ambiguities, test case generation is
fully automated, and the resulting test cases are executable.

33



3 Related Work

34



4 Test Generation with Semantic Role Labeling

This chapter provides an in-depth explanation of the TG-SRL approach. The objectives
of this framework, as detailed in Section 1.1, are to minimize constraints on the input
domain, achieve a high automation degree, and to optimize the test suite for strength
and size.

Several assumptions are made for the approach presented in this chapter. These were
partially mentioned in Chapter 1.1 and are summarized as follows:

e The SuT is software for an embedded system. It is a software composition, compo-
nent, runnable, or unit in the context of Autosar Classic (cf. 2.3), or has comparable
properties.

e The software requirements are formulated in natural language. They are either
requirements from the phases SWE.1, SWE.2, or SWE.3 in the A-SPICE process
framework (see Section 2.1.1), or have a comparable level of detail. The requirements
describe the system behavior according to concrete in- and output signals of the SuT,
or at least a mapping is feasible between variables contained in the requirements
and in- and outputs of the SuT.

e Certain information about signals is available a priori, e.g. in a data dictionary. In
particular, it is assumed that the data type, initial value, minimum, and maximum
value are known a priori.

In the next section, an overview of the test generation framework is provided. Afterwards,
each test generation stage is described in detail. Lastly, implementation details, including
tool specific limitations, are presented.

4.1 Overview

A generic pipeline to generate test cases based on natural language requirements may
look as follows:

Generic Test Generation Pipeline

1. Collection of information from other sources than requirements to facilitate test
generation.

2. Preprocessing of requirements.

3. Extraction of information via NLP or rule-based approaches.
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4. Aggregation, processing, and formalization of extracted information.

5. Test generation based on formalized models via a method that highly depends on
the formalization approach.

The aim of the framework proposed in this thesis is to leverage advanced NLP techniques
for semantic information extraction, thereby minimizing restrictions on the input domain.
As described in Section 2.3, both Frame Semantic Parsing and Semantic Role Labeling
are suitable methods to achieve this goal. Ultimately, SRL has been chosen based on a
brief evaluation of available SRL and FSP frameworks, which can be found in Section
4.7.1. For the formalization of requirements, a choice was made to employ First-Order
Logic (FOL) formula. In the following, reasons for favoring FOL formula over alternative
formalization methods, such as automata, are provided.

e The formalization from requirements into FOL formula, process algebras, or other
formal languages has been used extensively in literature, as presented in Section
3. FOL is employed for knowledge representation in artificial intelligence, and is
sufficiently expressive to represent natural language statements in a concise way
[72, Chapter 2].

o By employing SMT solving for test generation, the gap from abstract test cases
to executable test cases is bridged. Even if requirements vaguely specify variable
ranges or leave certain variables unspecified, an SMT solver will assign them specific
values.

e FOL formula and correspondingly SMT problem instances allow for simple mod-
ifications to create a strengthened test suite. Constraints can easily be modified,
removed, or added to generate test cases to test a specific behavior of a system.

e Prior to testing a particular behavior of the SuT, it might be necessary to bring the
system into a specific state. This can efficiently be achieved with SMT instances by
adding constraints that describe the desired initial state.

¢ While the notion of time is not inherently supported with FOL formulas, time can
be encoded symbolically in FOL.

e Via SMT solving, it is possible to deal with inconsistent and, to some extent,
incomplete requirements. For inconsistent requirements, the SMT instance will be
unsatisfiable, while for incomplete requirements, a behavior of the system will be
assumed by the SMT solver.

For an approach employing SMT solving, it is essential to know initial values, data
types, minimum, and maximum values for in- and outputs. These constraints are required
in the SMT instance to ensure the generation of meaningful test cases. Otherwise, the
SMT solver might assign random invalid values for signals to satisfy the SMT instance.

Based on the above two choices in favor of SRL and FOL formulas, the stages for the
test generation pipeline presented in this thesis look as follows:
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TG-SRL Pipeline

Stage 1
Preprocessing of requirements & collection of information from other sources.

Stage 2
Extraction of syntactic and semantic information from requirements via NLP
methods, particularly using SRL.

Stage 3
Formalization of extracted information from Stage 2 into logical expressions accord-
ing to a ruleset. The logical expressions consist of timed conditions and actions.
Aggregation of information into a system function that describes the system behav-
ior.

Stage 4
Formalization of a system function into FOL formula. Use of an SMT solver to find
a satisfying solution, which represents one test case.

Stage 5
Modification of the SMT instance according to predefined tactics in order to
generate a strengthened test suite.

The pipeline presented in this thesis combines machine learning in Stage 2 with a rule-
based approach in Stage 3 for test generation. After extraction of syntactic and semantic
information from the requirements via NLP, a formalization into logical expressions,
which serve as an intermediate representation, is done. The resulting system function
consists of timed conditions and actions, and aggregates all information that is relevant
for test generation. Throughout the rule-based stage, several decisions are taken. For
instance, ambiguity is resolved via the interpretation imposed by the applied ruleset. The
system function is ultimately translated into FOL, and test cases are obtained via finding
a satisfying solution via an SMT solver.

The rule-based stage developed in this thesis serves as a proof-of-concept, and rules have
been implemented for selected verbs and cases only. To extend the scope of the rule-based
stage of the pipeline, two strategies are possible. The first strategy involves expanding
the existing ruleset to cover additional cases that may occur with natural language.
The second strategy entails modifying the input requirements to ensure alignment with
the existing rules, provided that such adjustments do not alter the original semantics
of the requirement. An exemplary valid modification of a requirement could entail the
replacement of words with synonyms that are covered by existing rules.

Challenges With regards to the challenges enumerated in Section 1.1, the presented
pipeline behaves as follows:

Input domain restrictions: With the help of NLP methods such as SRL, the framework
can in theory operate on unrestricted natural language requirements. Subsequently,
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the proposed framework needs to deal with ambiguity, non-completeness and
inconsistency of requirements. As the current state-of-the-art SRL approaches
employ pre-trained neural networks (see Section 2.3.4), resulting annotations are
potentially inaccurate. Thus, a manual preprocessing step is employed to ensure the
extraction of appropriate syntactic and semantic information in later pipeline stages.
The manual preprocessing phase will become less important with advancements in
NLP and domain specific datasets to train the underlying networks. Aside from
the accuracy of SRL, manual preprocessing is necessary due to the limited ruleset
of Stage 3. For information which is required for test generation, but not provided
by NLP methods, heuristics are utilized. These inherently limit the input domain.
For cases that are not handled correctly by these heuristics, the input needs to be
modified manually while retaining semantic equivalence.

Automation degree: The framework presented in this thesis contains two manual steps.
The first step is the aforementioned manual preprocessing of the requirements. The
second step is a worst-case approximation for the maximum test case duration that
needs to be provided by the user and is explained in Section 4.5.1. The generated
test cases are executable without any manual refinements.

Strength & size of the generated test suite: The size and strength of the generated
test suite heavily depends on the applied tactics, which are described in detail
in Section 4.6. As part of the evaluation in Chapter 5, a set of tactics has been
identified that provides a good trade-off between test suite size and strength.

The subsequent sections describe the several pipeline stages in detail.

4.2 Stage 1: Signal Attributes & Preprocessing of Requirements
Stage 1 consists of the following steps:

e Collection of in- and output information from requirements, a data dictionary, or
through other means.

e Depending on the accuracy of the SRL implementation on a given requirement: man-
ual preprocessing of requirements such that the semantic information is extracted
correctly.

e Depending on the extent of the ruleset implemented in Stage 3: apply methods to
narrow down the input domain for the rule-based system (e.g., replace words with
synonyms for which rules have been implemented).

Collection of Input & Output Constraints Signal information can be extracted either
from requirements or from other sources. The collection of in- and output information
from sources other than requirements depends on the SuT and other involved tools, such
as a data dictionary. Generally, the aim is to collect as much information as possible
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about the SuT and its signals in order to specify precise constraints for the SMT instance.
The required information for the pipeline presented in this thesis includes:

o Signal type (input or output)
o Data type (number, boolean, or timer)
e Upper & lower bounds

o Initial value

The signal type is crucial for the creation of the SMT instance, as certain properties
are specific to either output or input signals. Details are provided in Section 4.5. The
data type, signal bounds, and initial values are added as constraints to the SMT instance
to ensure the generation of valid signal specifications. For instance, for a boolean signal,
a constraint is added to limit the signal values to either 0 or 1. The data type "timer"
is specifically used for signals or variables representing timers. Timers have an implicit
property which needs to be added as a constraint to the SMT instance: unless reset, a
timer increments continuously as time in the test case progresses.

It is feasible to formulate these constraints towards signals in software requirements,
and subsequently extract this information. For example, the sentence "Signal a is less
than 100 at all times." can be interpreted as an upper value boundary for a signal a.
However, for the prototypical implementation of this thesis, it is assumed information
about signals is known a priori from external sources, such as a data dictionary, and
provided to the framework as an input by the user.

Preprocessing of Requirements The goal of preprocessing the requirements is to either
reduce the needed complexity in later pipeline stages (e.g., the rule-based stage), or to
fix inaccuracies introduced by the employed NLP techniques. One preprocessing step
could entail replacing words with synonyms, e.g. by looking up synonyms in a lexical
database such as WordNet [40] or VerbNet [73]. This strategy can streamline the process
in Stage 3 by reducing the number of necessary rules - for every group of synonymous
words, only one rule would be required. Additionally, synonym replacement can enhance
the results obtained from NLP. Since the neural networks employed in NLP frameworks
are trained on specific corpora, replacing less common synonyms with more prevalent
ones can increase the prediction accuracy of the network.

In the pipeline presented in this thesis, the preprocessing stage mainly entails the
manual reordering of parts of a requirement, replacing verbs with synonyms, or placing
commas in specific places to improve the accuracy of SRL. Examples are given in 4.7.2.

4.3 Stage 2: Information Extraction via NLP

This section presents how, and which, information is extracted from the software require-
ments via NLP. Stage 2 consists of the following steps:
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e Creation of so-called requirement and predicate frames that serve as a source of
data for all remaining pipeline stages.

o Execution of SRL per requirement. The resulting predicate argument structures
are stored per predicate in the respective predicate frame.

 Identification of conditional parts of a requirement with an algorithm that employs
SRL for commas.

o Identification of a verb’s tense based on POS tags.

Before explaining these steps in detail in Section 4.3.1, additional assumptions and
clarifications are presented in the following:

It is assumed that the requirements specify the behavior of embedded software by
outlining changes in input signals and specifying the expected modifications to output
signals. In particular, input signals can be modified by the user of the SuT and require-
ments do not specify the expected behavior of input signals. In contrast, output signals
cannot be directly modified by the user of the SuT, but requirements specify the expected
behavior of output signals. For TG-SRL, the following assumptions are made towards
the requirements:

e Signals are directly referenced in the requirements or a mapping exists between
signal names used in the natural language requirements and the signals of the
concrete SuT. In the latter case, it is expected that the test automation framework
substitutes the names according to the given mapping.

e Requirements are expected to be valid when taken out of context of other re-
quirements, i.e. a single sentence is expected to contain valid information. This
limitation is required as SRL operates on semantics of individual sentences. No NLP
methods from the domain of discourse semantics have been employed in TG-SRL.
In particular, no coreference resolution (see Section 2.3.1) is applied, thus every
sentence needs to refer to relevant entities directly. Connections across multiple
requirements are only made in later stages such as Stage 3. Future work discussed
in Section 5.4 has the potential to render this assumption obsolete.

o It is assumed that all software requirements can be categorized into either conditional
sentences or non-conditional sentences. The former contain one or several conditions
and subsequent actions if these conditions are met. The latter only contain actions
and it is assumed that these actions hold true under any condition.

The last assumption potentially restricts the input domain, but it aligns with related
work that aims to generate test cases. The frameworks outlined in Chapter 3 in Sections
3.1.2, 3.2.1, 3.2.3, 3.3.1, and 3.3.2, all distinguish between some form of conditions or
triggers and actions in requirements. The following sentences illustrate a conditional and
a non-conditional requirement:

Conditional requirement: "If signal a changes to true, then signal b is set to 1."
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Non-conditional requirement: "Signal a is true."

Conditional sentences describe the system’s behavior via implications. Often conditional
sentences adhere to the following pattern:

"If a user makes changes to certain input signals, then certain changes in the
system’s observable outputs or state are expected."

In this generic example, the conditional section of the sentence refers to input signals.
The non-conditional section of the requirement refers to both output signals and internal
variables, such as a system’s state. However, software requirements might also refer to
outputs and internal variables in their conditional sections:

"If a user makes changes to certain input signals given a specific system state,
and certain output signals have specific values, then certain changes in the
system’s observable outputs or state are expected."

In such instances, a tester executing a test case needs to bring the system into the
desired state exclusively by altering input variables. The same applies to automated test
generation. Details about how this is accomplished using SMT solving are provided in
Section 4.5.

4.3.1 Requirement & Predicate Frames

For the generation of test cases, structures called requirement and predicate frames are
created and populated with information extracted from requirements. They aggregate and
store all information relevant for the remaining pipeline stages: the frames are populated
in Stages 2 and 3 and their data is used across Stages 2 to 5.

Tables 4.1 and 4.2 detail the content of both requirement and predicate frames. Some
content within predicate frames is only relevant for specific predicates. For instance, the
field "source values" is only used for the predicate "to switch", as demonstrated in the

sentence "to switch from value x to value y", where "x" is interpreted as the "source
value'.

Requirement Frame

List of predicate frames
Condition spans

List of conjunction start spans
List of disjunction start spans

Table 4.1: Content of a requirement frame.
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Predicate Frame

Predicate argument structures from SRL
Referenced signals

Flag indicating affiliation to a condition
Tense

Source values

Target values

Delay and duration

Negation

Comparison operator (>,>=, <=,<,=)
Mathematical operator (+, —, x, :)

Table 4.2: Content of a predicate frame.

Semantic Role Labeling of Verbs SRL is performed on the (preprocessed) requirements.
SRL analyses all predicates in a given sentence and creates the corresponding predicate
argument structures. The particular SRL pipeline varies based on the implementation.
Following an evaluation of available frameworks (refer to Section 4.7.1), CogComp-NLP
was selected for the implementation of TG-SRL. In the framework CogComp-NLP, the
SRL pipeline utilizes Part of Speech tagging, lemmatization, dependency parsing, and
Named Entity Recognition analysis. For details, the reader is referred to [45].

In software requirements for embedded systems, predicates refer to one or multiple
signals and describe signal changes. Thus, it is necessary to extract the signals and their
value changes from appropriate tags identified by SRL. Consider the following example
and the corresponding SRL output in Figure 4.1.

"If the mode is 1 and the request timer is lower or equal to 30 then the mode
should be modified to 3 and the request timer should be reset."

SRL identifies two predicates in the conditional part of the sentence and five in the
non-conditional part. However, three predicates in the non-conditional section do not
have any semantic roles associated to them. In such cases, no predicate frame is created.
For the other cases, the identified semantic roles are stored in corresponding predicate
frames. Stage 2 only stores information directly obtained from SRL, the extraction of
relevant information such as the referenced signals is done in Stage 3 and is presented in
detail in Section 4.4. Given the SRL output for the predicate "modified" in Figure 4.1b,
the resulting predicate frame is presented in Table 4.3 (empty fields are omitted).

Identification of Conditional Parts of a Requirement For the creation of logical
expressions and, in particular, implications in Stage 3, it is necessary to identify the
conditional part of a requirement. In natural language, conditional sections of a sentence
are not easily identifiable via only a rule-based approach. Table 4.4 illustrates this by
showing possible rephrasings of a conditional section.
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Frames forlEl:

If | the mode l a and the request timer is lower or equal to 30 then the mode should be modified to 3 and the request timer should be reset .
H v ﬁ

Frames f0r|E|:

If the mode is 1 and | the request timer l lower or equal to 30 | then the mode should be modified to 3 and the request timer should be reset .
A\

(a) SRL frames from the conditional part of the sentence.

Frames for :

If the mode is 1 and the request timer is lower or equal to 30 then the mode be modified to 3 and the request timer should be reset .
v

Frames for :

If the mode is 1 and the request timer is lower or equal to 30 then the mode should modified to 3 and the request timer should be reset .
v

Frames for - 3

If the mode is 1 and the request timer is lower or equal to 30 then | the mode | | should be |modified | |to3 and the request timer should be reset .
H ARGM-MOD H H

Frames for 3

If the mode is 1 and the request timer is lower or equal to 30 then the mode should be modified to 3 and the request timer
\

Frames for 3

If the mode is 1 and the request timer is lower or equal to 30 then the mode should be modified to 3 and | the request timer | | should reset | .
ﬁ ARGM-MDD v E

(b) SRL frames from the non-conditional part of the sentence.

Figure 4.1: Exemplary SRL tags created with the Allen NLP online demo [41].

43



4 Test Generation with Semantic Role Labeling

Predicate Frame: to modify

Predicate argument structures from SRL: "the mode" (Argl), "should" (ArgM-Mod),
"to 3" (Arg4)

Table 4.3: Exemplary predicate frame based on SRL output in Figure 4.1.

Rephrasings of "If condition ¢ holds true, then execute action a."

When condition ¢ holds true, |[...]

While condition ¢ holds true, [...]

As long as condition ¢ holds true, |...]
Execute action a if condition ¢ holds true.
Given condition ¢, |[...]

Under the assumption that condition ¢, |[...]

Table 4.4: Possible rephrasings for the given sentence.

Thus, a combination of NLP methods and a rule-based approach is employed to extract
the conditional parts of a requirement. TG-SRL applies the heuristic shown in Algorithm
1 to identify conditional sections within a requirement. The concept behind this algorithm
is as follows: in some natural language requirements, a comma separates the conditional
part of the sentence from the main clause which contains the actions. In these cases,
SRL for commas [42] tags the comma as "introductory" and the conditional part of
the sentence as the "introductionary part", as explained in Section 2.3.2. The following
example illustrates this.

"[Introductionary Part 1f condition ¢ holds true] [imtroductory,] then execute action
n
a.

As a plausibility check, the conditional part is examined for keywords such as "if"
or "when". In case SRL for commas cannot identify an introductionary part, or the
sentence simply does not contain a comma, a keyword search is applied. It is assumed
that the beginning of the conditional section is marked by keywords such as "if", "given",
or "when". Similarly, it is assumed that the main clause starts with keywords such as
"then" if no comma separates it from the conditional section. In case the keyword search
is unsuccessful, it is assumed that the statements made in the requirement hold true
unconditionally.

This approach to extract conditional parts of a requirement is limited for natural
language. A more sophisticated key word search or other NLP methods may improve the
identification of conditional parts of a sentence. For the scope of this thesis, for every
requirement where the heuristic does not yield the correct results, manual modifications
as part of the preprocessing activities are required. For instance, a comma may be added
to a requirement such that Algorithm 1 delivers plausible results.

44



4.3 Stage 2: Information Extraction via NLP

Algorithm 1 Algorithm to identify conditional sections within a requirement.

Input: requirement
Output: identified conditional parts
Method:
if requirement contains commas then
apply SRL for commas
extract conditional parts based on the identified tags
check results for plausibility
if results are plausible then
return identified conditional parts
end if
end if
apply a rule-based keyword search
if the keyword search was unsuccessful then
declare the requirement as a statement without conditional parts
end if
return identified conditional parts

Given the exemplary sentence "If signal a changes to true, then signal b is set to 1.",
the heuristic identifies "If signal a changes to true," as the conditional part via SRL for
commas. This information is saved in the requirement frame with the help of so-called
start spans. These are defined as follows:

Definition 4.3.1 (Start & End Span). The start/end span refers to the index of the
first /last character of the referenced segment or word in the original text. It marks the
start/end point of the segment or word.

In the given example, the start span of "if" is 0 while the start span of the comma is
28. The resulting predicate frame is shown in Table 4.5.

Requirement Frame: "If signal ¢ changes to true, then signal b is set to 1."

Condition spans: [0, 28]

Table 4.5: Exemplary requirement frame with identified conditional parts.

Verb Tense A test case consists of time-value pairs per signal. As requirements may
refer to signal changes that are in the past or in the future, it is necessary to determine
the tense of a predicate. For the identification of the verb tense, POS tagging is employed
as POS tags for verbs indicate their tense. For example, the tag "VBZ" indicates present
tense while the tag "VBD" indicates past tense. However, the verb tense is insufficient
to generate concrete test cases. As illustrated in the following example, the temporal
semantics of a requirement are potentially ambiguous:
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"If signal a was 10, then signal b is set to 20."

Assuming the current time is ¢t with ¢ € Ny, "signal a was 10" may refer to time
t — x with x € Nyg, x < t. The value of = depends on the interpretation. A concrete
interpretation of such cases is given by the implemented ruleset, which is explained in
Section 4.4.3.

Conjunction & Disjunction Start Spans For test generation, the logical connection
between entities within requirements needs to be considered. As preparation for Stage 3,
in which the logical connection is identified, the start spans for relevant keywords such
as "and" and "or" are stored in the requirement frame (see Table 4.1). Relevant keywords

are identified via POS tagging: conjunctions and disjunctions will be marked with the
POS tag "CC".

4.4 Stage 3: Processing and Aggregation of Extracted
Information into Logical Expressions

Stage 3 consists of the following steps:

o Processing & aggregation of information extracted in Stage 2. The results are stored
in the existing predicate and requirement frames.

e Formalization of information within predicate and requirement frames into logical
expressions that represent the conditions and actions contained in a requirement.

The first step entails extracting information about referenced signals, signal values,
mathematical and comparison operators (see Table 4.2). As this information is highly
predicate specific, processing and aggregation happens via a rule-based approach. After
a review of software requirements for embedded systems and related work (e.g., verbs
employed in the CNL of Nat2Test [8]), the decision was made to implement predicate-
specific rules for the following verbs as a proof of concept:

e "to be"

e "to change'
e "to add"

e "to subtract"
e "to reset’

e "to multiply"
e "to divide"

o "to switch from [...] to [...]"
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e "to set"

Future work could extend this predicate-specific ruleset to cover all predicates that
are part of ProbBank. Alternatively, a user extensible dictionary could be implemented,
similar to the approach chosen by Boddu et al. in their framework RETNA [61].

4.4.1 Enriching Predicate Frames

The employed ruleset for enriching the predicate frames is not exhaustive. A base ruleset
designed to extract generic information is applied to each predicate. For information that
is more specific to a predicate, predicate-specific rules are utilized. The necessity of such
an approach is illustrated based on the example from Figure 4.1:

"If the mode is 1 and the request timer is lower or equal to 30 then the mode
should be modified to 3 and the request timer should be reset."

It is assumed that we want to extract the signal value. For the text segment "the mode
is 1" and the corresponding predicate "to be", the semantic role "Arg2" refers to the
signal value (refer to Figure 4.1a). In contrast, for the text segment "the mode should
be modified to 3" and the corresponding predicate "to modify", "Arg4" refers to the
signal value (refer to Figure 4.1b). This example illustrates that SRL necessitates an
additional level of inference to determine the meaning of parts of sentence, in this case
where the value of a signal is contained (refer to Section 2.3.3). Consequently, given
a specific predicate, firstly the correct ProbBank frameset needs to be identified, and
secondly, the frameset needs to be inspected to infer which tag contains the required
information. The ProbBank frameset that is invoked by a predicate in a given context
is available as part of the SRL output. The ProbBank model only defines one role for
"to modify" and three roles for "to be" [74]. In the given example, for "to be", the role
"be.01 - copula" is invoked in which "Argl" is specified to contain the "topic" and "Arg2"
is specified to contain the "comment'. Based on these descriptions in ProbBank, a rule is
implemented to search the semantic role "Arg2" for the signal value, assuming that the
value is commonly located in the "comment" of the "be.01 - copula" ProbBank frame.

This approach is, however, not sufficient to produce robust results due to the current
accuracy and quality of SRL implementations. In practice, the expected information
is not always contained in the corresponding semantic role. Consequently, instead of
simply checking a single semantic role, a hierarchical approach is chosen. Based on
heuristics, several semantic roles are inspected for the required information. In the
following paragraphs, a detailed explanation is given on how information from Stage 2
is processed, aggregated, and used to enrich the predicate frames. Tables 4.7 and 4.8
provide examples for fully populated predicate frames.

Signal Extraction For the extraction of signals that are referenced within predicate
argument structures identified by SRL, tags are inspected according to a predicate-specific
priority list. As previously motivated, a hierarchical approach is employed to increase
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Category Priority list Exemplary regular ex-
pressions

Negation ArgM-Mnr > ArgM-Loc "* not *"

Comparison Operator (7 > ArgM-Mnr > ArgM-Adv > "* greater *", "* more *", "*

P >= 77 < 7” <= ArgM-Tmp > Argl > Arg2 higher *", "* > *'

77’ ” J—— 77)

Values ArgM-Mnr > Argl > Arg2 " [0-9]+ "

> ...

Temporal Attributes ArgM-Tmp > ArgM-Adv " after * seconds", " for *

seconds"

Table 4.6: Overview of inspected tags and examples for associated regular expressions.

robustness of the framework. The priority lists for each of the supported verbs start with
the semantic role "Argl", which generally exhibits features of a patient. As requirements
refer to changes of signals, the signals can often be seen as the patients of the sentence.

The remaining part of the priority list is predicate-specific and based on heuristics. In
the following, the priority list for the verb "to assign' is given. If no signal match is found
in a currently examined role, the search continues with the next role.

Signal extraction priority list for "to assign"

1. "Argl" (generic)

9. "Arg2"
3. "ArgM-Mnr'
4. "Arg0'

The extraction of other information such as negations, mathematical operators, and
target values is achieved with a similar approach: a set of semantic roles is inspected
according to a priority list and the content of a specific role is examined with the help of
regular expressions. Table 4.6 provides an overview of the priority lists and corresponding
regular expressions.

Mathematical Operator The following mathematical operators are supported in the
prototypical implementation: "+, —, *, :". The identification of the mathematical operator
happens based on the predicate itself. A mathematical operator is assigned in case the
predicate invokes the correct frameset according to the ProbBank model. For instance,
ProbBank defines five different framesets for the verb "to add" [75], with only one role
invoking the meaning of mathematically adding a value to another value. For the verbs "to
add", "to subtract", "to divide", "to multiply", the corresponding mathematical operator
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Expressions

Requirement:
When z is greater than 2, then the system shall add 10 to y.

Predicate Frame 1 Predicate Frame 2
Type condition action
Verb to be to add
Tense present present
Referenced signals x Y

Source values

Target values 2 10
Comparison op. > =
Delay - -
Duration - -
Negation false false
Math. op. - +

Table 4.7: Exemplary predicate frames.

is added to the predicate frame in case the respective frameset with a mathematical
meaning is invoked.

Value Extraction A requirement might refer to multiple value assignments for a single
signal within a condition or action:

"Signal a is greater than 10 or equal to 5. Signal b is 1 and 2."

In most cases, only a disjunction between signal values is meaningful. In the given
example, signal b can never be both 1 and 2 at the same time step. Thus, a disjunction
as a logical connection between multple signal values is assumed by default.

Temporal Attributes Sentences may also contain information about temporal attributes
such as the duration or delay of a signal change. The following sentence illustrates this:
"When signal a is 3 for 10 seconds, then change signal b to 5 after 5 seconds."

The interpretation of these temporal attributes is often ambiguous. The framework
assumes a specific interpretation for these cases, which is detailed in Section 4.4.3.
4.4.2 Formalization into Logical Expressions

After enrichment of the predicate and requirement frames, the next step is the formal-
ization into logical expressions. These expressions are created by analyzing the logical,
temporal, and value dependencies between predicate and requirement frames.

It is assumed that the complete set of requirements describes the functional behavior of
a single SuT. A logical expression containing all relevant information for test generation
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Requirement:
When «x is 0 or 1, switch  to 10 after 3 seconds.

Predicate Frame 1 Predicate Frame 2
Type condition action
Verb to be to switch
Tense present present
Referenced signals x x
Source values - -
Target values {0,1} 10
Comparison op. = =
Delay - 3
Duration - -
Negation false false
Math. op. - -

Table 4.8: Exemplary predicate frames.

from a requirement set is referred to as a system function within the scope of this thesis.
Such a system function consists of other logical expressions that represent the conditions
and actions of individual requirements. The structure of a system function is given in
Listing 4.1.

Function Entries A system function consists of multiple function entries. Simplified,
a function entry represents a requirement. All function entries are connected via a
conjunction as it is expected that all requirements hold true simultaneously. A requirement
can either contain only actions, or it specifies actions that are only applicable if certain
conditions are met. A function entry formalizes this information into an implication
consisting of an antecedent and consequent. In case of requirements with no conditional

<function> => <functionEntry> (and <functionEntry>)x*

<functionEntry> => (<antecedent> | true) => <consequent>

<antecedent> | <consequent> => <boolExpr> (and <boolExpr>)x

<boolExpr> => <orExpr> | <andExpr> | <notExpr> | <atomicExpr>

<orExpr> => <boolExpr> (or <boolExpr>)x

<andExpr> => <boolExpr> (and <boolExpr>)x

<notExpr> => not <boolExpr>

<atomicExpr> => <signalExpr> [comparison operator] (<signalExpr>
[mathOperator])? <valueExpr>

<signalExpr> => [signal](t+[timeOffset])

<valueExpr> => [value]

Listing 4.1: Structure of a system function.
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parts, this is modeled via setting the antecedent to "true". The following examples
illustrate this:

Requirement:

If < condA > or < condB >, then < actionC > and < actionD >.
Resulting expression:

(< condA > or < condB >) = (< actionC > and < actionD >)

Requirement:

< statementA >
Resulting expression:
true = < statementA >

However, function entries also serve to group requirements to a certain degree. In case
two or more requirements contain exactly the same conditions, only a single function
entry is created, and all actions from the respective requirements are connected via a
conjunction.

Boolean & Atomic Expressions Antecedents and consequents consist of one or multiple
boolean expressions. A boolean expression is a disjunction, conjunction, or negation
of a so-called atomic expression. Atomic expressions are used to represent individual
conditions and actions from a requirement, and they essentially contain the information
from the enriched predicate frames. In particular, they also contain any relevant temporal
information. In the following, a simplified example is provided.

Requirement:

If signal a is 2 for 3 seconds, then add 10 to signal b after 5 seconds.
Atomic expression (condition):

signal a = 2 for 3s

Atomic expression (action):

signal b = signal b 4+ 10 after 5s

In this example, a concrete interpretation of the temporal relation between the condition
and action is required. Figure 4.2 depicts possible semantic interpretations. The condition
"signal a is 2 for 3s" can refer to the signal being 2 in the past 3 seconds, or in the next 3
seconds. The semantic of the action "add 10 to signal b after 5 seconds" is also impacted
by the interpretation of the temporal behavior of the condition.

The concrete interpretation assumed in this framework is as follows. A detailed
explanation is given in Section 4.4.3.

Requirement:

If signal a is 2 for 3 seconds, then add 10 to signal b after 5 seconds.
Atomic expressions (condition):

signal a(t) = 2 N signal a(t-1) = 2 A signal a(t-2) = 2
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Condition @ ¢t —3 to t Action Q ¢t 4+ 5

Condition Q@ ¢t to t + 3 Action @ ¢t + 8§

t—3t—-2¢t-1 ¢t t+1t+2t+3¢t+4¢t+5t+61t+71+8¢+9

Figure 4.2: Possible interpretations of the temporal behavior for the requirement "If
signal a is 2 for 3 seconds, then add 10 to signal b after 5 seconds.".

Atomic expression (action):
signal b(t+5) = signal b(t) + 10

Logical Connections between Atomic Expressions Before explaining how atomic
expressions for the individual conditions and actions are derived, the approach to infer
the logical connection between atomic expressions is presented. However, establishing a
clear logical connection is difficult due to the ambiguity of natural language. Without
defined operator precedence, sentences can be interpreted in multiple ways as illustrated
by the following example.

"If [...], then signal a and signal b is true or signal c is true and signal d is
greater than 10 or equal to 5."

Two possible interpretations are as follows:

o "(signal a and signal b is true or signal c¢ is true) and (signal d is greater than 10
or equal to 5)"

o "(signal a and signal b is true) or (signal c is true and signal d is greater than 10
or equal to 5)"

To resolve this ambiguity, a ruleset is implemented in which "or" takes precedence
over "and". This constitutes a limitation as operator precedence in natural language
requirements do not follow a strict ruleset. Additionally, the implemented ruleset only
deals with a subset of logical connections within natural language sentences, namely "and",
"or", and commas. In case a connection cannot be inferred, a conjunction is assumed as
the default. Algorithm 2 provides an overview of the implemented ruleset and is explained
in detail in the following.

For each predicate and all semantic roles of the predicate, the start and end spans are
known from Stage 2. When trying to determine the connection between two conditions
or actions, so-called relation spans are first calculated. Given a set of semantic roles for a
predicate, the starting relation span denotes the lowest starting span across all semantic
roles. The ending relation span is defined accordingly. To infer the logical connection
between conditions or actions, the employed algorithm relies on the assumption that the
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When error counter is greater than 10 or equal to 5, then driver up and driver down is true or

ArgM-Tmp | Arg1: topic be: 1 | Arg2: comment | | ArgM-Tmp | Arg1: topic be: 1 | Arg2: comment
0 Relation span: to be 50 53 Relation span: to be 92
passenger up is true and  passenger down is true.
Arg1: topic be: 1 Arg2: comment | | Arg1: topic be: 1 | Arg2: comment
96 Relation span: to be 17y 121 Relation span: to be 143
< > <

Figure 4.3: SRL output from CogComp-NLP [76] showcasing valid relation spans.

<23 53y 59 99
Relation span: to be Relation span: to be
. Arg2: .

Arg1: topic |be: 1 Arg1: topic |be: 1| Arg2: comment

9 p comment | | 9 p 9 |
If a coin is inserted while the machine is instate1 and therequesttimer is lower orequalto 30, [...]
Arg1: entity | . . | |
insert: 1 ArgM-Tm
| inserted 9 P

.3 Relation span: to insert 99

|

Figure 4.4: SRL output from CogComp-NLP [76] showcasing overlapping and thus invalid
relation spans.

relation spans do not overlap. Figures 4.3 and 4.4 illustrate the relation spans and depict
a valid and an invalid case, respectively. The algorithm compares the relation spans and
tries to infer the logical connection by searching for keywords inbetween those spans. A
conjunction is assumed as the default, e.g. in cases where relation spans overlap.

The last case described in Algorithm 2 applies if two predicate frames are separated by
a comma. Such situations present a limitation due to potential discrepancies between the
framework interpretation and a natural language interpretation. Consider the following
example:

Requirement:

if < condl >, < cond2 > or < cond3 >, then < actionl >
TG-SRL interpretation:

(< condl > and (< cond2 > or < cond3 >)) = < actionl >
Natural interpretation:

(< condl > or < cond2 > or < cond3 >) = < actionl >

For the requirements evaluated in Chapter 5, it was verified and ensured manually that
the interpretation given by the implemented ruleset matches the expected interpretation.
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Algorithm 2 Algorithm to infer the logical connection between predicate frames.
Require: Ordered list of predicate frames, ordered according to starting relation span
Ensure: List of expressions expList connected via a conjunction
1: create empty list of expressions expList for storing expressions connected via a
conjunction
: for each element 7 in the list of predicate frames do
// default case for invalid frames: assume conjunction
if the lowest span of frame ¢ overlaps with the highest span of frame ¢ — 1 then
add frame ¢ to expList
continue
end if
if the keyword "and" is located between the lowest span of frame ¢ and the highest
span of frame 7 — 1 then

9: add frame ¢ to expList

10: continue

11: end if

12: if an "or" is located between the lowest span of frame i and the highest span of
frame ¢ — 1 then

13: remove frame i — 1 from expList

14: add frame ¢ — 1 to a disjunction together with frame %

15: add the disjunction to expList

16: continue

17 end if

18: // case for commas or other terms that are not supported: assume conjunction

19: add frame ¢ to expList

20: end for
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4.4 Stage 3: Processing and Aggregation of Extracted Information into Logical
Expressions

4.4.3 Atomic Expressions for Conditions and Actions

In this section, expression generation for conditions and actions is presented in detail.
Within Listing 4.1, the atomic expression has been specified as follows:

<atomicExpr> => <signalExpr> [comparison operator] (<signalExpr>
[mathOperator])? <valueExpr>

Listing 4.2: Structure of an atomic expression.

Algorithm 3 presents how such expressions are generated. It is to be noted that one
condition or action can result in multiple atomic expressions, for instance, if multiple
signals or values are referenced within one condition. One atomic expression refers to a
single signal and value assignment. Consequently, Algorithm 3 inspects each signal and
value individually for each predicate frame.

Algorithm 3 Algorithm to create atomic expressions based on a predicate frame.
1: for each signal referenced in a predicate frame do

2 for each value assignment in the predicate frame do

3 create an atomic expression with information from the predicate frame
4: determine temporal semantics
)
6
7

handle special predicates with implicit semantics
end for
create a disjunction between all atomic expressions resulting from multiple value
assignments
end for
9: determine connection between signal specific expressions

®

Consider the following example to illustrate Algorithm 3:
If signal a and signal b are 10 or 20 then <actionl>.

For each of the two signals, there are two value assignments. Thus, in total, four atomic
expressions are created:

1. (signal a(t) = 10)
2. (signal a(t) = 20)
3. (signal b(t) = 10)
4. (signal b(t) = 20)

Expressions 1 and 2, as well as 3 and 4, are connected via a disjunction as described in
line 7 of Algorithm 3. This rule is based on the reasoning provided in Section 4.4.1. The
resulting expressions are as follows:
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5. (signal a(t) = 10) V (signal a(t) = 20)
6. (signal b(t) = 10) V (signal b(t) = 20)

Next, expressions 5 and 6 are connected via a disjunction or conjunction according to
line 9. The logical connection in such cases is inferred in a process similar to Algorithm
2. However, instead of inspecting spans of relations, spans of individual semantic roles
containing the signals are inspected. The final resulting expression is as follows:

7. ((signal a(t) = 10) V (signal a(t) = 20)) A ((signal b(t) = 10) V (signal b(t) = 20))

Temporal Semantics In line 4 of Algorithm 3, a concrete interpretation of temporal
semantics for conditions and actions is imposed by the implemented ruleset. Consider
the following requirement:

If x is 1 and y was 2, then < actionl >.

When reading such a requirement, it is natural to assume that = 1 and y = 2
occur at different points in time. However, determining the exact time difference between
these events is subject to interpretation. For unspecified time differences, this framework
always assumes a difference of 1 step (in the context of the sample time of a system).
The interpretation assumed by the framework looks as follows:

(z(t) = 1) A (y(t — 1) =2) =< actionl > (4.1)

In addition to tenses, output variables which occur in conditions also pose a challenge
in interpreting natural language requirements. Consider the following example:

Given:

mode is an output signal

Requirement:

When mode is 1, mode should be set to 2.

Two possible interpretations are as follows:

mode(t — 1) = 1 = mode(t) = 2 (4.2)
mode(t) =1 = mode(t + 1) =2 (4.3)

It is unclear whether the condition refers to the current time stamp ¢ or ¢t — 1. To
resolve this and decide on an interpretation, it is necessary to take a look at how a
concrete test case is executed. Algorithm 4 illustrates the stimulation, execution, and
evaluation of a single time step ¢ for an SuT via a test engine.

As commented in Algorithm 4, the check of the output behavior happens during the
currently simulated time slot ¢, i.e. mode is expected to be 2 at time ¢. Thus, when
evaluating the outputs in the previous time slot ¢ — 1, mode must have been equal to 1.
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Expressions

Algorithm 4 Exemplary execution of an SuT with an output variable "mode".
// Set inputs for time t

setInputs(t)

// mode value before execution: 1

executeSUT(¢): if mode == 1 then mode = 2

// mode value after execution: 2

// Check outputs for time t

checkOutputs(t)

Subsequently, rules have been implemented to assume that a condition implicitly refers to
the past in case of output variables. This corresponds to the interpretation from Equation
4.2. If a condition contains an output variable and additionally refers to it in past tense
(e.g. "mode was 2"), t — 2 is assumed for the time slot of the condition:

Example:
When the mode is 1, and the mode was not 1, assign 2 to the mode.
mode(t — 1) =1 Amode(t — 2) # 1 = mode(t) =2

This interpretation differs from the interpretation for input variables in conditions.
For those, by default, it is assumed that the input condition takes place at time ¢ as
illustrated in Equation 4.1 for the signal x.

Duration & Delay Apart from the above-mentioned temporal semantics, the duration
and delay of a signal value change is relevant for test generation. A delay is handled by
adding the delay to the calculated time slot, as in the following example:

Requirement with a delay:
If < conditionl > then set x to 10 after 3 seconds.
< conditionl > = z(t + 3) = 10

The duration is handled by adding a conjunction over several time slots:

Requirement with a duration:
If < conditionl > then set z to 10 for 3 seconds.
< conditionl > = z(t) =10 z(t+1) =10 A z(t + 2) = 10

The interpretation imposed by the ruleset is that the value should be held for at least
3 seconds. No assumption is made about changes prior to this duration or thereafter. In
case that a duration is specified in a condition instead of an action, it is assumed that
the statement refers to time slots in the past.
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4 Test Generation with Semantic Role Labeling

Predicates with Special Rules Some predicates have implicit semantics and are thus
handled via special rules (refer to line 5 of Algorithm 3). In the following, this is illustrated
for "to change" and "to reset".

For the predicate "to change", such as in the sentence "If x changes, add 1 to y", the
following expression is created:

x(t) Zzx(t—1)=ylt)=yt—1)+1 (4.4)

In case the predicate "to reset" is processed, as in "If < conditionl > then reset x",
the following expression is created:

< conditionl > = x(t) = TinitValue (4.5)

It is thus assumed that a reset assigns the initial value of the variable, if not specified
otherwise (e.g. "reset = to 0").

4.5 Stage 4: Formalization into First-Order Logic

Based on the logical expressions inferred in Stage 3, First-Order Logic (FOL) formulae
are created to represent the requirement set. The resulting set of FOL formulae is referred
to as a Satisfiability Modulo Theory (SMT) instance. The SMT instance describes the
behavior of the SuT as specified in the natural language requirements. A satisfying
solution to the SMT instance, provided by an SMT solver, represents one test case. A
test suite is constructed by modifying the SMT instance. The applied modifications are
presented in detail in Section 4.6.

Challenges in Formalization There are several challenges in formalizing the logical
expressions into an SMT instance:

1. Time dependent behavior and timers need to be encoded symbolically with existen-
tial and universal quantifiers.

2. Before being able to exercise conditions that contain output variables, it is necessary
to bring the SuT into a specific state.

3. Requirements can be incomplete, ambiguous, and inconsistent. For incomplete
requirements, an underspecification of output behavior is particularly challenging.

4. The satisfiability problem for FOL is, in general, undecidable [77]. Performance
needs to be considered when modelling the SMT instance.

It is to be noted that some fragments of FOL are decidable. In addition, even for
undecidable fragments, a decision procedure might exist that can often yield a solution.
The properties of the SuT may impact in which fragment the SMT solver needs to
operate. For instance, if there are only integer signals in a system, the SMT solver can
apply other decision procedures or algorithms than with systems that contain both real
and integer signals.
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4.5 Stage 4: Formalization into First-Order Logic

4.5.1 Test Case Generation

A satisfying solution of an SMT instance represents a test case. In the context of this
framework, a test case starts at time step 0 and has a duration of d € Ny. A test case
contains time-value pairs for each signal. For input signals, the values within the test case
are treated as stimulus for the SuT, while for output signals, they represent acceptance
criteria. That is, the actual output of the SuT will be compared to the specified output
values in the test case.

Algorithm for creating SMT Constraints Given a logical expression representing a
system function, as defined in Listing 4.1, Algorithm 5 is employed to create a basic SMT
instance. For the test suite generation described in Section 4.6, some of these steps are
modified.

Algorithm 5 Algorithm to create an SMT instance for test generation.

Require: a system function fgystem as described in Listing 4.1 which represents the
requirement set.

generate constraints from fsystem

generate min-max constraints for signals

generate initial value constraints for signals

generate special constraints for timers

optionally: generate constraints for underspecified output signals

create SMT .. by concatenating constraints from line 1 to 5

enforce that one condition from a requirement is met at time ¢, ¢ > 0

create SMT ..+ by concatenating SMT ... with the constraint from line 7

The resulting conjunction of constraints from line 1 to 5 constitute the core of the
SMT instance. Line 7 is an example for an extension of the core so that a meaningful
test case is generated. By enforcing that one antecedent holds true at a certain point
in time, we avoid getting a satisfying solution that does not exercise any implications
formulated in the requirement set.

In line 1, the system function is traversed recursively. The resulting set of constraints
represents the implications specified by the requirements. Afterwards, constraints are
created to make sure signal values remain in their valid range. Line 3 serves to ensure
that a test case always starts with the initial values for each signal. Listing 4.3 illustrates
the constraints generated in lines 1 to 3. Due to the assumption that conditions and
actions formulated in requirements are valid for the complete duration of the test case,
universal quantification is utilized for these formulae. Time is encoded by specifying x(t)
as a function from the integer domain to either the real, boolean, or integer domain. The
latter depends on the data type of the signal. Reasons and resulting limitations for this
design are given in Section 4.5.1.

The constraints formulated in line 4 from Algorithm 5 restrict valid variable assignments
for timers. Without further restrictions, a satisfying solution to the SMT instance could
assign arbitrary values to a timer at time ¢1, given that no statements are made about
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Requirement: "If x is 1, then increase y by 1."
System function and signal attributes:

fsystem: x(t) =1 =>y(t) = y(t-1) +1

Tmin = 0, Tmae = 100, Tinitia = 2

SMT instance:
x(0) = 2

for all t:
x(t) =1 =>y(t) = y(t-1) +1
x(t) >= 0 and x(t) <= 100

Listing 4.3: Example of SMT constraints for a simple system function.

Given:

Let x be a timer variable.

Let C be the set of all conditions (antecedents) for which the respective
actions (consequents) contain the variable x.

for all t:
if no condition in C holds true at time t:
x(t) = x(t-1) + 1

Listing 4.4: Example of timer constraints.

the timer behavior in the requirement set for time ¢1. This poses a problem as timers are
assumed to implicitly increment by 1 time unit for each time step, given that no action
explicitly modifies the timer. Therefore, the constraints shown in Listing 4.4 are added
for each variable of type "timer".

The constraints in line 5 from Algorithm 5 are optional and only implemented to
tackle the challenge of underspecified output behavior. Figure 4.5 depicts an output
signal. The signal increases linearly initially and then remains constant. A requirement
set might only specify the intended behavior of such a signal for the linear section. In
this case an underspecification of the signal is present. Depending on the test engine,
underspecification can pose a challenge when generating test cases via an SMT solver as
the SMT solver will assign random feasible values for time stamps where no condition
holds true. If the test engine proceeds to compare the expected behavior of the output
signal from the test case to the actual value, the test case will fail. As the test engine
employed in this thesis exhibits this behavior, the constraints shown in Listing 4.5 were
implemented. Some systems evaluated in Chapter 5 assume that output variables hold
their value in case of underspecification, which is achieved by enabling the constraints in
the aforementioned listing.
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Given:

Let s be an output variable

Let C be the set of conditions for which the respective actions contain
the variable s.

for all t:
if no condition in C holds true at time t:
s(t) = s(t-1)

Listing 4.5: Constraints that ensure output values do not change if no condition causes a
change.
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Figure 4.5: Exemplary output signal with linear and constant behavior.

Addressing Challenges Challenge 1 from Section 4.5 is addressed through the use of
existential and universal quantifiers, as well as adding respective constraints to encode,
e.g., timer behavior. Time itself has been modelled within the integer domain. Signals
of data type dt € {Integer, Real, Boolean} are represented as a function f : Int — dt.
This is only feasible as embedded systems operate with discrete time, and thus it can
be assumed that requirements also solely refer to discrete time. In the following, two
scenarios are described to first illustrate the advantage of this approach, and afterwards
show limitations and necessary consequences.

Scenario 1: A system has a sample time of 0.1 seconds, but no requirements refer to
fractions of a second. E.g., there can be requirements that specify "after 3 seconds an
action happens', but there are no requirements specifying "after 0.5 seconds an action
happens". In this case, during test generation, it is sufficient to only consider time steps
t € Ng. This results in a significant decrease of the solution space, which becomes relevant
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Requirement: If window position is 50, then x shall be set to 1.
Internal system behavior: window position initially starts at 0 and can
only be incremented by 1 per time step

windowposition(0) = 0
exists t; with ¢; > 0: windowposition(t;) = 50
for all t: windowposition(t) = 50 => x(t)=1

Listing 4.6: Exemplary constraints to ensure that a certain system state is reached before
executing the conditions in the antecendet.

with the performance optimizations in context of Challenge 4. These optimizations are
described in detail in a subsequent paragraph.

Scenario 2: A system has a sample time of 0.1 seconds and several requirements refer
to fractions of a second. In this case, requirements cannot be properly represented with
time modelled in the integer domain without additional pre- or postprocessing steps. For
instance, a factor could be applied to all time references such that all conditions and
actions only refer to integers. During testing, the test engine would then need to revert
this multiplication before stimulating the SuT and evaluating the output signals. These
steps can theoretically be automated if the tester provides a multiplication factor as an
input to the test generation framework. However, this has not been addressed in the
context of this thesis as none of the evaluated system requirements in Chapter 5 referred
to fractional time values.

In order to address Challenge 2 from Section 4.5, several constraints are added to the
SMT instance. As explained previously, if a condition from a requirement contains output
variables, the condition can only be met after bringing the system into a specific state by
manipulating the input signals. However, depending on the system, reaching such a state
can be non-trivial. When executing test cases, an SuT is usually in its initial state. Thus,
the test case itself needs to drive the system to the state that enables the condition to
be tested. Via existential quantification, constraints can be added to the SMT instance
to ensure that the system state is reached at a certain point in time ¢ € Ny. Listing 4.6
illustrates this.

Challenge 3 from Section 4.5 about incomplete, inconsistent, and ambiguous require-
ments is addressed as follows: in case of inconsistent requirements, the SMT instance
will be unsatisfiable. An unsatisfiable core of the SMT instance can often be provided as
feedback to the engineer writing the requirements. Ambiguous requirements are resolved
through a concrete interpretation imposed by the rules implemented in the framework.
This interpretation from the framework can deviate from the interpretation of the re-
quirements author. In case of incomplete requirements, the SMT solver might assign
arbitrary values to respective variables. This can result in failing test cases, in which case
manual inspection of the test results might be necessary with the aim to add additional
requirements.
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Given:
fsystem: x(t) =1=>y(t) =2
Tmin = 0, Tmax = loo, Linitial= 2, dw =2

SMT instance:
x(0) =2

// for all t:

// x(t) = 1=>y(t) =2
x(0) =1 =>y(0) =2
x(1) = 1 => y(1) = 2
x(2) =1 =>y(2) =2

// for all t

// x(t) >= 0 and x(t) <= 100
Xx(0) >= 0 and x(0) <= 100
Xx(1) >= 0 and x(1) <= 100
x(2) >= 0 and x(2) <= 100

Listing 4.7: Universal quantifier elimination example.

Performance Optimizations Challenge 4 from Section 4.5 relates to the performance of
test case generation. For the applicability in real-world applications, the time it takes
to find a satisfying solution for a given SMT instance is critical. In order to generate
a complete test suite, a significant amount of SMT instances need to be solved. Initial
evaluations with a concrete SMT solver implementation from Microsoft [78, 79] have
shown that the performance for solving even a single SM'T instance drastically deteriorates
with the introduction of both existential and universal quantifiers.

As a consequence, measures were taken to eliminate the universal quantifiers to improve
performance. This is achieved by introducing a worst-case bound d,, for the test case
duration. Instead of specifying constraints over all possible time steps ¢t € Ny, the
constraints are simply enumerated for each time step ¢ with 0 =< t <= d,,. Listing
4.7 elucidates this. All universal quantifiers in the previously mentioned constraints are
replaced via this approach. The worst-case bound for the test case duration is an input
to the framework that is manually specified by the user, e.g. a tester. With system
knowledge, it is often possible to specify a worst-case bound. The tighter this bound,
the faster a given SMT instance can be solved to generate a test case. Nevertheless,
specifying a bound that is too tight can impede test generation as the bound might not
offer sufficient time to bring the SuT into the required states.

Another opportunity to improve the applicability in real-world scenarios is to tackle
the time it takes to execute individual test cases. This can be achieved by trying to
minimze the test case duration. Test cases for embedded software are either simulated
with discrete time or executed on real hardware, and thus a reduction in the test case
duration linearly scales with the time to execute a test case. Minimizing a certain variable
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in an SMT instance, such as the variable for the test duration, can be achieved via many
approaches. A naive approach is given in Algorithm 6. Many SMT solvers implement more
sophisticated approaches to minimize an SMT instance according to a given objective.
Details of such approaches are out of the scope of this thesis.

Algorithm 6 Simple approach to minimize the duration of a test case via SMT solving.

1: initialize SMT instance instancegsm:

2: solve instancegy,: and save resulting duration in ¢,

3: while true do

4: add the constraint "exists ¢ with 0 <t <t to instancegmn:"
5: if instancegy; is unsatisfiable then

6: return t,,;,

7: else

8: solve instanceg,: and save resulting duration in ¢,

9: end if

10: end while

4.6 Stage 5: Test Suite Generation

The previous section presented how to generate the core SMT instance for a given system
function. This section describes the modifications made to the SMT instance to generate
a test suite. It is to be noted that modification possibilities are very vast and thus, in
theory, exceedingly large test suites could be generated. However, test suite size does
not scale linearly with a test suite’s capability to detect behavior deviating from the
specification (i.e. test suite strength). There are diminishing returns for adding more test
cases, and the goal is to find a reasonable trade-off between test suite strength and test
suite size.

As shown in Listing 4.1, every function entry represents an implication. In order to
generate at least one test case that exercises the antecedent and consequently tests the
implication, one SMT instance is generated for every antecedent in a function. Listing
4.8, in particular line 21, illustrates this. This strategy corresponds to the extension
mentioned in line 7 in Algorithm 5. Given n function entries representing implications,
this approach results in n different SMT instances and thus test cases.

Another strategy to reinforce the test suite is to test whether the system precisely
implements a specified requirement. For instance, a system could implement "antecedent
=> true" instead of "antecedent => consequent'. To discover such cases, for each
implication one SMT instance with the constraint "antecedent => not(consequent)"
is created. Resulting test cases are then expected to fail. It is to be noted that this
modification of an implication needs to be applied to the SMT core as well, or else the
SMT instance will be unsatisfiable. Listing 4.9 illustrates this strategy when applied to
the previous example from Listing 4.8. This strategy also results in n additional test
cases for n function entries if, and only if, all of these resulting instances are satisfiable.
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Given:

fsystem: x(t) =1=>y(t) =2

Tmin = 0! Tmazx = 100! Linitial = 2: dw =2

SMT instance:

x(0) =2

// for all t:

// x(t) =1 =>y(t) =2
x(0) =1=>y(0) =2
x(1) =1=>y(1l) =2
X(2) =1 =>y(2) =2

// for all t

// x(t) >= 0 and x(t) <= 100

x(0) >=
x(1) >=
x(2) >=

0 and x(0) <= 100
0 and x(1) <= 100
0 and x(2) <= 100

// enforce antecedent

exits to with: z(tp) = 1 and 0 < tg < d,,

Listing 4.8: SMT instance that illustrates the enforcement of an antecedent in line 21.

Given:

fsystem: x(t) = 1= Y(t) =2

Tmin = 0, Tmaz = 100, Zinitial = 2, dy = 2

SMT instance:

x(0) =2

// for all t:

// x(t) =1 => not(y(t) = 2)
x(0) =1 => not(y(0) = 2)
X(1l) =1 => not(y(l) = 2)
x(2) =1 => not(y(2) = 2)

// for all t

// x(t) >= 0 and x(t) <= 100

x(0) >=
x(1) >=
x(2) >

0 and x(0) <= 100
0 and x(1) <= 100
0 and x(2) <= 100

// enforce antecedent

exits to with: z(tp) = 1 and 0 < ty < dy

Listing 4.9: SMT instance that illustrates constraints for a negative test case.
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"Or" Variation Tactics An additional strategy to strengthen the test suite is to generate
variations for clauses that are part of a disjunction. Consider the following example:

Given: <conditionA> or <conditionB> = <actionA>

Testcase 1: <conditionA> is true and <conditionB> is false = <actionA>
Testcase 2: <conditionA> is false and <conditionB> is true = <actionA>
Testcase 3: <conditionA> is true and <conditionB> is true = <actionA>

For n clauses within a disjunction, there are 2" — 1 possible variations. Tactics can
be defined to achieve certain coverage for the disjunction. Three tactics have been
implemented in this framework:

"Or" Variation Tactics
o None
o Extended (ext)
o All

For the tactic "none", no variations are generated. For the tactic "all", all 2" — 1 possible
variations are generated. The "extended" tactic creates expressions such that every clause
is tested in isolation, and in combination with other clauses. It offers a trade-off between
coverage and number of generated expressions. The "extended" tactic generates test cases
according to the following strategy:

e One test case where every clause is set to true

o For each clause 7, a test case where the clause i is true and the others are "don’t
n
cares

e For each clause 7, a test case where the clause ¢ is true and the other clauses are
false

For the disjunction  V y V z V u, Table 4.9 presents the generated expressions.

Comparison Operator Tactics To strengthen the test suite further, expressions contain-
ing comparison operators can be exploited. For each antecedent containing comparison
operators, the original expression can be replaced with a disjunction to explicitely cover
more cases. In combination with the "or" variation tactic from above, this subsequently
results in multiple test cases. For the constraint "z > 2 => y = 1" with x € [0, 30], it is
possible to infer the following disjuction:

(x>2Vez=2Vzr=30)=>y=1

Two comparison operator tactics have been implemented in this framework:
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Table 4.9: Expressions produced by the "extended" tactic for the disjunction xVyV z V u.

Comparison operator Expression

=Y r=y

r >y T >YVIT==Tmax
r>=y T>YVr=yVI==ITn
r<=y T<Yyver=yVIT==Tmn
T <y T <YVIT=Tmin

Table 4.10: Overview of disjunctions generated with the "normal" comparison operator
tactic.

Comparison Operator Tactics
o None
e Normal

The tactic "normal" produces a disjunction of clauses that depends on the comparison
operator. Table 4.10 provides an overview.

Both the "or" variation and comparison operator tactics can be configured individually
for test cases that are expected to fail, or those that are expected to pass. Concluding,
the algorithm implemented in TG-SRL to generate a test suite is depicted in Algorithm
7.

4.7 Implementation

This section presents frameworks and tools employed for the implementation of TG-SRL.
Additionally, it provides insights into the required preprocessing activities.
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Algorithm 7 Algorithm to generate a test suite with TG-SRL.

Require: system function f
1: initialize empty test suite ¢
2: generate SMT core ¢ as described in Algorithm 5
3: // generate test cases that should pass
4: for each antecedent a in f do
5 if comparison operator tactic is set to normal then
6 replace relevant constraints in a with a disjunction as shown in Table 4.10
7 end if
8 create an empty list of expressions [, add a to [
9 if "or" variation tactic is set to extended or all then

10: split all disjunctions in @ as described in Section 4.6
11: add all resulting expressions to [ and remove a from [
12: end if

13: for each expression ¢ in [ do

14: enforce that ¢ is true at a certain point in time #;

15: conjunct ¢ and 7 and solve the SMT instance

16: add the resulting satisfying solution as a test case to ¢
17: end for

18: end for

19: // generate test cases that should fail
20: for each implication a = c in f do
21: modify the SMT core ¢ such that a = not(c)

22: // continue as with the passing test cases, see line 5 - 17
23: [...]
24: end for
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4.7.1 Frameworks and Tools

For the implementation of the pipeline presented in Section 4.1, an NLP framework
and an SMT solver is required. For the latter, the Microsoft z3 SMT solver is used [78].
Several of the built-in features are utilized in Stage 4 and 5, for instance:

e Optimizing a given SMT instance with regards to the value of a term t¢. This is
used to minimize the test case duration when generating a test case.

o The tactic "split-clause" which, for a clause Or(f1, .., f) splits it into n subformulas
fi- This tactic is employed when generating the "or" variations.

e Support of quantifiers. Existential quantifiers are used in the SMT instances as
explained in Section 4.5.

e Extraction of an unsatisfiable core. The unsatisfiable core is useful to identify
which parts of the requirement set are inconsistent (e.g., for debugging or providing
feedback to a requirements engineer).

NLP Framework

As mentioned in Section 2.3.4, a range of frameworks exist to tackle the challenge of NLP,
and, in particular, Semantic Role Labeling (SRL) or Frame Semantic Parsing (FSP). A
choice for the NLP framework CogComp-NLP was made based on a brief evaluation of
available frameworks, which is presented in this section. Criteria that were considered for
the evaluation are as follows:

e Availability of an online demo
o Availability as a pre-compiled library or package for Windows
e Regularly updated: contributions have been made in the last 2 years

o Availability of NLP methods: SRL or FSP, POS Tagging
For the evaluation, the following exemplary sentence has been used.

"If a coin is inserted while the machine is in state 1 and the request timer is
lower or equal to 30, then the machine state should be modified to 3 and the
request timer should be reset."

The results presented in the following have been created on 31.03.2023.

CogComp-NLP The output of the semantic role labeler in the CogComp-NLP framework
[76] is given in Figure 4.6. Notably, the CogComp-NLP framework also implements an
extension of SRL for nouns (SRL-Nom) [80] and prepositions (SRL-Prep) [81]. CogComp-
NLP is distributed as a Java Maven package.
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4 Test Generation with Semantic Role Labeling

AllenNLP The output of SRL from AllenNLP [41] is shown in Figure 4.7. It is very
similar to the output given by CogComp-NLP, with one exception: for the predicate
"to modify", CogComp-NLP identifies two additional roles, namely "ArgM-Adv" and
"ArgM-Tmp". AllenNLP is distributed as a Python package.

Sling  Sling [46] is distributed as a Python package for Linux, and does not offer an online
demo. A brief evaluation on Ubuntu showed similar output to that of CogComp-NLP
and AllenNLP. The output can be found in the appendix in Table 7.6.

Open-Sesame  Open-Sesame [44], a framework utilizing FSP, does not have an online
demo and is not available for Windows. In addition, at the time of writing this thesis,
the last contributions were made 3 years ago. Thus, the framework was not considered
for the implementation of TG-SRL.

SEMAFOR SEMAFOR [47] also utilizes FSP. However, the framework is no longer
maintained, and the authors refer to Open-Sesame on their GitHub [82]. In addition, the
online demo is not functional at the time of writing this thesis. Thus, the framework was
not considered for the implementation of this thesis.

Concluding, only two frameworks met a majority of the evaluation criteria: Allen NLP
and CogComp-NLP. Sling produced comparable output, but is neither runnable on
Windows nor is an online demo available. Ultimately, the choice was made for CogComp-
NLP for the following reasons: it is distributed as a Java package, thus enabling easy
integration into the source code of TG-SRL. Furthermore, it offers extensions of SRL,
e.g. SRL for commas, nouns and prepositions. Additionally, Allen NLP is in maintenance
mode while CogComp-NLP is still actively maintained as of 30.03.2023.

4.7.2 Preprocessing of Requirements

The required manual preprocessing activities highly depend on the employed NLP
framework. During the creation of this thesis, CogComp-NLP modified its SRL pipeline
to utilize BERT. With this modification, a significant improvement in the accuracy and
quality of the SRL output has been observed, thus reducing the need of preprocessing.

Nevertheless, certain manual preprocessing steps are still obligatory, partly due to the
accuracy of SRL and partly due to limitations of the implementation of this framework.
With regards to the former, Figure 4.8 illustrates a case where placing a comma differently
severely impacts the roles identified by the SRL framework. In the following, several
categories are enumerated where preprocessing is required.

¢ Replacing enumerations with integer values
Reason: Enumeration to integer mapping has not been implemented as part of this
research framework, but is in theory possible, especially if enumerations are clearly
identifiable (e.g., via a priori knowledge from a data dictionary).
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4.7 Implementation

Ezxample: "If the machine is in idle state, do <action>."
Replacement: "If the machine is in state 1, do <action>."

¢« Replacement of signal names
Reason: Mismatches in SRL task.
Ezample: "If the flashing timer is greater than 200, then <action>."
Flashing is falsely recognized as a predicate.
Replacement: "If the timer is greater than 200, then <action>."

e Reordering or rewriting sentences such that conditions, actions, conjunc-
tions, and disjunctions are properly identified by the framework
Reason: Conditions, actions, conjunctions, and disjunctions are all evaluated based
on a ruleset. The ruleset is limited and also enforces a semantic interpretation that
might not match the expectation of a human reader. Operator precedence is one
example where manual preprocessing might become necessary.

Ezample: In general, (a and b) or (¢ and d) cannot be interpreted by the currently
implemented ruleset, and a remodeling to —[(—a or —b) and (—c or —d)| is necessary.

e Resolving inconsistent, incomplete, or ambiguous requirements
Reason: Inconsistent requirements impede test generation as the SMT solver will
always return unsatisfiable. Incomplete requirements might lead to meaningless
test cases because the system behavior is not specified precisely enough. In case
of ambiguous requirements, it needs to be ensured that the interpretation of the
framework matches the expectation.

e Replacement of verbs with verbs supported by TG-SRL
Reason: This prototypical framework only implements rules for a small set of verbs,
which are enumerated in Section 4.4.

The research framework TG-SRL is implemented in Java and made available as open
source [9]. The repository contains the complete source code and all files related to the
evaluation in Chapter 5, such as requirements, system implementations, test drivers, and
generated test cases.
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Figure 4.6: Exemplary output from CogComp-NLP [76].
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Frames forlE 3

If acoin inserted while the machine is in state 1 and the request timer is lower or equal to 30, then the machine state should be modified to 3 and the request timer should be reset .

lower or equal to 30 | | then the machine state should be modified to 3 and the request timer should be reset .

Frames forlE 3

If acoinis inserted while and the request timer is lower or equal to 30, then the machine state should be modified to 3 and the request timer should be reset .

Frames forlE 3

If a coin is inserted while the machine is in state 1 and | the request timer lower or equal to 30 | , then the machine state should be modified to 3 and the request timer should be reset .

Frames for 4

If acoinis inserted while the machine is in state 1 and the request timer is lower or equal to 30, then the machine state be modified to 3 and the request timer should be reset .

and the request timer should be reset .

If a coin is inserted while the machine is in state 1 and the request timer is lower or equal to 30, then |the machine state | |should be | modified

Frames for 5

If acoin is inserted while the machine is in state 1and the request timer is lower or equal to 30, then the machine state should be modified to 3 and the request timer

If a coin is inserted while the machine is in state 1 and the request timer is lower or equal to 30, then the machine state should be modified to 3 and | the request timer

ARG1 ARGM-MOD

Figure 4.7: Exemplary output from AllenNLP [41].
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Frames for:
If the system mode is 1 and the request timer is lower or equal to 30 then the system should be modified to 3 and | the request timer | should

ARG1 v

Frames for 3

If the system mode is 1 and the request timer is lower or equal to 30 then the system should be modified to 3, and the request timer should reset.
v

Figure 4.8: A comma placed before the "and" results in erroneous output. Example from
AllenNLP [41].
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5 Evaluation

For the evaluation of the presented approach "Test Generation with Semantic Role
Labeling (TG-SRL)", a mutant-based strength analysis is done. The subsequent three
systems specified by natural language requirements have been evaluated:

Window Control
A self-designed system which is implemented as a Matlab/Simulink [83] model.

Vending Machine
An example evaluated in the work from Carvalho et al. [8]. The system is imple-
mented in Java.

Turn Indicator System
An example evaluated in the work from Carvalho et al. [8]. The system is imple-
mented in Java.

Matlab/Simulink is a tool for functional behavior modeling in the automotive industry
and provides simulation and code generation capabilities. For the system implemented in
Matlab/Simulink, mutations have been created manually. For the systems implemented
in Java, mutations have been generated using MuJava [84]. MuJava is a mutation
system that can generate both method-level and class-level mutations by using mutation
operators [85]. Figure 5.1 illustrates how MuJava presents method-level mutations of a
program to the user. In the given figure, line 31 is mutated.

As mentioned in Section 2.2.2, tools such as MuJava can generate mutants that are
semantically equivalent to the original system. Thus, where practical, a manual analysis
has been done to ensure that any alive mutants are not equivalent. As a configuration for
MuJava, all method-level operators are used while no class-level mutations are generated.
It is to be noted that mutations generated via MuJava only contain a single introduced
deviation.

Where feasible, the achieved mutation score of TG-SRL is compared to the mutation
score of the test suite generated by Nat2Test from Carvalho et al. [8], which is available as
a download from [86]. The authors have implemented and published multiple formalization
methods as described in Section 3.3.2, however, test generation in the publicly available
tool is only supported via Communicating Sequential Processes (CSP). Thus, for the
remainder of this chapter, the CSP formalization is referred to when talking about test
generation in Nat2Test.

All relevant artifacts such as Matlab/Simulink models, test cases, and system imple-
mentations have been published in a public Git repository [9]. The system that was used
for the evaluation has the following specification:
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5.1

The

TestCase Runner | Traditional Mutants Viewer r Class Mutants Viewer
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* Summary * ROR_36 ]
op # ROR_38 (line 31) void_simulate(baolean boolean): the_system_mode == 1 == the_system_mode <=1
AD.. 10 ROR_39 Original
20_ |0 ROR_4 v LT B YUE SIS S U S 1T SYUESLUIIT 7= U 0SS [
A0IU [0 ROR_40 =2){ I
ADIS |42 — 27 the_coffee_machine_output =0,
AO... [0 ROR_41 28 the_system_mode =1,
AD. |0 ROR_42 29 isReset = false;
ROR [75 ROR_43 30 telse{
COR (32 ROR_44 3l if (the_coin_sensor == true && !(old_the_coin_sensor == true) &&
CoD |3 ROR_45 the_system_mode == 1){
col |41 RDR_46 32 the_request_timer=0, L
SOR [0 . 33 isReset=true;
LOR |0 ROR_47 34 the_system_mode = 0; (1
Lol |5 ROR_48 35 Jelse{
LOD [0 ROR_49 36 if (the_coffee_request_button == true && !(old_the_coffee_request_button ==
ASRS|D ROR_S0 true) && old_the_coin_sensor ==false &&the_coin_sensor ==false &&the_request_timer <=
SDL |26 ROR_51 30.0 && the_system_made == 0){ o
VDL |10 ROR_52 37 the_request_timer =0; =]
CDL |4 ROR_53 Mutant
ODL |46 ROR_54 =2 T T - - - - =]
ROR_55 27 the_coffee_machine_output = 0;
UTEIRZE ROR_56 28 the_system_mode =1;
ROR_57 [ | 29 isReset = false;
ROR_58 30 telse{
ROR_59 = 31 if(the_coin_sensor == true && !(old_the_coin_sensor == true) &&
| the_system_mode <= 1}{ —
ROR_60 4 32 the_request_timer=0,
ROR_61 33 isReset=true; S
ROR_62 34 the_system_mode =0,
ROR_63 35 lelse{
ROR_64 36 if (the_coffee_request_button == true && !(old_the_coffee_request_button ==
ROR_65 true) && old_the_coin_sensor == false && the_coin_sensor ==false && the_request_timer ==
ROR_66 30.0 && the_system_made == 0){
ROR_67 = 37 the_request_timer=10; E

Figure 5.1: MuJava method-level mutation example.

OS: Windows 10

CPU: i7-6700K @ 4GHz
GPU: NVidia GTX 1080
RAM: 32 GB

SSD: Samsung 950

Window Control System

Window Control system is a self-designed system for controlling a window in a car.

The natural language requirements specifying the system’s behavior are also self-written.
A black-box view can be seen in Figure 5.2, a more detailed view of the underlying
implementation is given in Figure 5.3.

The system has six input variables and five output variables, which are specified in
Table 5.1. The complete natural language requirement set specifying the system consists
of 32 requirements and is given in the appendix in Table 7.1.

A particularity of this system is the behavior of "current_ position": the output signal
"current_ position" indicates the window position and can only be incremented or decre-
mented by 1 each time step until it reaches either the minimum or maximum value of 0
or 100, respectively. This poses a challenge as illustrated with the following requirement:
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5.1 Window Control System

Jdnvar up move_up

W driver_down
move_down
W passenger_up

error_counter

W passenger_down

current_pasition
W cbstacle_detection

W'ﬂahida_spaad driver_information

window_control30

Figure 5.2: Black-box view on the Window Control system.

e 24: "When move__up is true and current_position is 100, then current_position is
100."

A test case needs to bring the system into a state where the "current_ position" is 100
in order to test requirement 24. As the initial value of the signal is 0, it takes at least 100
time steps to reach this state.

During the evaluation of the system, it became evident that the requirements need to
be formulated in a precise manner. Consider the following example:

"When passenger _up and passenger__down is true, then the system shall add
1 to error__counter."

With this specification, it is valid to increase the "error_counter" by 1 for each time
step at which both passenger signals are true. If instead "error__counter' shall only be
increased once when both signals become true, the requirement needs to be rephrased as
follows:

"When passenger up and passenger _down changes to true, then the system
shall add 1 to error_counter."

5.1.1 Mutant-Based Strength Analysis

30 mutations of the original Window Control system have been created manually and are
thus guaranteed to have different behavior. A complete list with the applied mutations
and expected deviation from the default behavior can be found in the appendix in Table
7.2. A Matlab/Simulink feature called variant subsystems [87] has been used to enable
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-------

Figure 5.3: Detailed view on the Window Control system.

the execution of all mutated variants for a single test case. Figure 5.4 shows the variant
subsystems of the Window Control system. Given a test suite of size n, n * 30 simulations
were necessary to calculate the mutation score. The generated test cases in the form of
".csv" files were imported into the testing tool Arttest [10, 11] and Arttest was used to
both execute and evaluate the test suite in Matlab/Simulink.

The mutation testing results from the test suite generated by TG-SRL are presented
in Table 5.2. Two configurations were used for the evaluation, which differ in the applied
"or" variation and comparison operator tactics (refer to Section 4.6). The configuration is
given as a tuple, with the first entry indicating the configuration for test cases that are
expected to pass, and the second entry indicating the configuration for test cases that
are expected to fail.

As a worst-case upper bound for the test duration d,,, a value of 150 was assumed. This
estimate is due to the fact that reaching the maximum value of the "window_ position"
can take 100 steps. 50% overhead was then added for potential changes after reaching a
certain system state. For instance, after reaching the window position, some additional
steps might be necessary to exercise another condition at time point ¢ with 100 < ¢ < 150.

Without applying any of the tactics, the mutation score is 93.33%. Mutation 29 is left
alive, which causes the following deviation from the default behavior: if the passenger
presses the buttons to close and open the window simultaneously, and the driver presses
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5.1 Window Control System

Signal Type Datatype [Initial Value,
Lower Bound,
Upper Bound]

driver__up input bool [0,0,1]

driver_down input bool [0,0,1]

passenger__up input bool [0,0,1]

passenger__down input bool [0,0,1]

obstacle__detection | input bool [0,0,1]

vehicle__speed input number [0,0,300]

move__up output bool [0,0,1]

move__down output bool [0,0,1]

error__counter output number [0,0,2]

current__position output number [0,0,100]

driver_information | output number [0,0,2]

Table 5.1: Input and output signals from the Window Control system.

either the button to close or to open the window, the system will not set the error counter
to 1 and the window will continue closing or opening. The intended behavior is that
the error counter is set to 1 and the window stops at its current position. The following
requirements should cover this behavior:

e 4: "When passenger__up and passenger__down is true and driver__up or driver__down
is false, then the system shall set error_counter to 1."

e 18: "When error_counter is greater than 0, then move_down is false and move_ up
is false."

When analyzing the test suite, it was evident that only a test case was generated where
all conditions are met (i.e., "passenger up" and "passenger down" are true, "driver_up"
and "driver__down" are false). In order to trigger the erroneous behavior, a test case is
required that sets "passenger_up" and "passenger down" to "true" while setting only one
of the signals "driver__up" or "driver__down" to "true', and the other to "false". This case
is addressed via the "or" variation tactic and thus the mutant has been successfully killed
with the respective configuration.

The execution and evaluation time in Simulink scales linearly with the test suite size. In
contrast, the more sophisticated variation tactics had an exponential impact on the test
generation time, although only approximately 50% more test cases have been generated.
This is because the number of SMT instances does not correlate directly to the number
of test cases. When generating both comparison operator and "or" variations, many SMT
instances are unsatisfiable and thus do not result in a test case.

Nat2Test Nat2Test requires input sentences that adhere to the SysReq-CNL. As
summarized in Section 3.3.2, the grammar allows sentences of the following structure:
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5 Evaluation

Figure 5.4: Variant subsystems for the Window Control system to facilitate mutation

testing.
TG-SRL TG-SRL
or tactic: (none, none) or tactic: (ext, ext)
comp. tactic: (none, none) comp. tactic: (normal, normal)
dy: 150 dy: 150
Requirements 32 32
Mutations 30 30
Test cases 62 (43 pass, 19 fail) 92 (69 pass, 23 fail)
Time to generate tests <10s 459s
Number of simulations 1922 2760
Test execution time in 5h 23m 8h 20m
Simulink
Mutants killed 29/30 30/30
Mutation score 93.33% 100%

Table 5.2: Mutation testing results for the Window Control system.

When conditiony, conditions, ..., conditiony, the system shall: action,
actions, ..., actiony.

Unfortunately, the CNL is too restrictive and some requirements from the Window
Control system cannot be modelled with Nat2Test. The two main limitations are as
follows:

e It is not possible to model a disjunction within the action part of a sentence. All
actions are put into a conjunction. The following requirement cannot be modelled
in SysReq-CNL.

"When error__counter is 0, then driver_up or driver _down is false and
passenger_up or passenger _down is false."
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5.2 Vending Machine System

e While the verb "to change" is supported, the implementation does not support
variables as values. The following requirement cannot be modelled in SysReq-CNL.
Multiple different formulations are provided, however, neither are supported.

"When current__position changes its value, then move up is true, or
move__down is true."

"When current__position changes from current_position to current_position
+ 1, then move__up is true. When current_position changes from cur-
rent__position to current_position - 1, then move__down is true."

"When current__position increments by 1, then move__up is true. When
current__position decrements by 1, then move_down is true."

Nevertheless, by omitting certain parts of the requirements, a successful CSP generation
was achieved. However, test generation was unsuccessful as it did not terminate after
running for more than 72 hours. A probable explanation is a state explosion as the
window position has a relatively big value range of 0 to 100. Due to the above reasons an
evaluation of the Nat2Test framework with the Window Control system was infeasible.

5.2 Vending Machine System

The Vending Machine system is an example with temporal properties taken from the
Nat2Test website [86].

The system is described by five requirements in SysReq-CNL, which are given in the
appendix in Table 7.4. It can also be characterized by a state machine as shown in Figure
5.5. Each requirement essentially encodes a transition between the system modes.

In Table 5.3 the input and output signals are specified. The enumerations of the signals
"system mode" and "coffee machine output" are mapped to integers as shown in Table 5.5.
The manually preprocessed requirements, that have been used as in input for TG-SRL,
are available in the appendix in Table 7.3. Notable changes include the replacement of
enumerations with integer values, and modifying the syntax of each requirement so that
the output of SRL is accurate.

The Vending Machine system has two particularities:

1. Requirements refer to a request timer. The request timer is expected to increment
by 1 in each time step if it is not reset in that same time step.

2. The requirements are incomplete. In particular, the output signal behavior is
underspecified. For instance, the requirement set does not specify the behavior
of the signal "coffee machine output" in case the system is in another state than
"preparing strong coffee" or "preparing weak coffee". Implicitly it is assumed that
the output does not change outside these two cases.

Due to the property specified in 2, the SMT instances were generated with the
aforementioned optional constraints (see Line 5 in Algorithm 5) for the evaluation of the
Vending Machine.
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start
request timer: [10, 30] | request timer: [30, 50]

coffee machine output = 1 Q coffee machine output = 0
Idle

coin sensor: on
request timer = 0

request sensor: on
coin sensor: off

request timer > 30

request timer = 0

request sensor: on
coin sensor: off

request timer < 30

request timer = 0

Figure 5.5: State machine for the Vending Machine system. Conditions are colored in
blue while actions are colored in red.

In Table 5.6, a test case generated via Nat2Test is shown. Table 5.7 illustrates an
excerpt of a test case generated via TG-SRL, the full test case is provided in Table 7.7
in the appendix. As a worst-case upper bound for the test duration a value of 150 is
assumed. This estimate is made because certain conditions refer to a timer value of 50.
After a reset of the timer, it takes at least 50 steps to reach this state. 100 steps have
been added as an overhead to provide the SMT solver with enough space to create more
complex test cases if required. There are three major differences between the test cases
of both frameworks. These stem from conceptual differences with regards to how time is
encoded and handled in both frameworks:

1. The test cases from T'G-SRL contain the request timer as an explicit signal.

2. Time in Nat2Test test cases is dense, while in the test cases from TG-SRL it is
discrete.

3. The average number of signal changes of a test case is significantly lower in the
Nat2Test test cases.

Difference 1 stems from the fact that Nat2Test treats timers as internal variables during
test generation. The expectation is that the SuT properly handles the request timer and
resets it. By excluding the timer from the generated test cases, it is not possible to check
the correct behavior of the timer, i.e. whether it is reset under correct conditions.
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Signal Type Datatype [Initial Value,
Lower Bound,
Upper Bound]

the coin sensor input bool [0,0,1]
the coffee request input bool [0,0,1]
sensor

the request timer output timer [0,0,60]
the system mode output number [1,0,3]
the coffee machine output number [0,0,1]
output

Table 5.3: Input and output signals from the Vending Machine system.

Signal Mapping

the system mode Idle: 1
Choice: 0
Strong: 2
Weak: 3

the coffee machine output Strong: 0
Weak: 1

Table 5.4: Enumeration to integer mapping for the Vending Machine system.

The property described in 2 results from how time is encoded in both approaches.
Nat2Test encodes time as reals and thus employs a dense time domain, while the framework
presented in this thesis encodes time as integers and thus employs a discrete time domain.
The reasoning behind modeling time as integers is given in Section 4.5.1.

Property 3 is a consequence of how time is handled during test generation. Nat2Test
only enumerates time steps in a test case at which a relevant change occurs, i.e. the
distance between two subsequent instructions in a test case is variable. In contrast, the
test cases generated via TG-SRL always enumerate all discrete time steps, even for cases
where no change happens. The distance between two subsequent instructions is always
one time step.

For Nat2Test, it is possible to specify how many test cases shall be generated per
requirement. However, with an increasing target, an exponential time to terminate the
test generation has been observed. Thus, it was decided to adhere to a timeout of 3
hours per requirement. Increments of 10 were tested, and the results are as follows: for
requirement 1 from Table 7.4, 40 test cases could be generated after approximately 130
seconds. With 50 test cases as a target, the tool ran into the specified timeout. For all
other requirements, a timeout was observed with 40 as a target. Subsequently, for the
other requirements 30 test cases have been generated for the evaluation.
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the system mode Idle: 1
Choice : 0
Strong: 2
Weak :3

the coffee machine output Strong: 0
Weak : 1

Table 5.5: Enumeration in integer mapping for the Vending Machine system.

Time the coffee re- the coin sen- the system the coffee ma-
quest button sor mode chine output
0.0 false false 1 0
0.5 true true 0 0
30.0 false false 0 0
30.5 false false 0 0
31.0 true false 2 0
61.0 true false 1 0

Table 5.6: Exemplary test case from Nat27Test for the Vending Machine system.

Java Implementation An implementation of the Vending Machine is available via [86].
However, due to the different approach to handling timers, this implementation does
not fit both frameworks. In order to avoid having two different system implementations,
which would negatively impact the comparability of the mutation testing results, an own
implementation is used for both frameworks. With this implementation, the difference in
handling timers is handled by the test engine instead. Listing 7.7 in the appendix shows
the Java implementation. Notably, the boolean flag "isReset" has been introduced so that
the test engine may know when to not increment the timer externally.

Test Engine A corresponding test engine, that executes and evaluates the test cases,
has been implemented in Java. The concept is illustrated in Algorithm 8.

The increment of the timer in line 7 happens differently for both frameworks: with
TG-SRL, the timer is incremented by 1 each time step as time is modeled discretely. In
Nat2Test, the timer needs to be incremented by the time that has passed since the last
reset. The concrete implementation is available in the appendix in Listings 7.1 and 7.2.

To validate that all generated test cases within a test suite adhere to the specification
of the Vending Machine, the test suite has been executed with the original program with
the expectation that all contained test cases pass. All generated test suites evaluated in
this section fulfilled this criterion when executed on the original Vending Machine.
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5.2 Vending Machine System

Time the coffee the coffee the coin the request the system

machine request sensor timer mode
output sensor
0 0 0 0 1 1
1 0 0 1 0
2 0 0 0 30 0
47 1 1 0 0 2
48 1 1 0 1 2
49 1 0 0 2 2
50 1 1 0 3 2
51 1 0 0 4 2
52 1 1 0 5 2
53 1 0 0 6 2

Table 5.7: Excerpt of an exemplary test case from TG-SRL for the Vending Machine

system.
TG-SRL
Nat2TeSt Z;rfxzc.ti:céfstéjo)(rtéal, normal)
du: 150
Requirements ) )
Mutations 313 313
Test cases 160 18 (11 fail)
Time to generate tests 512s 69s
Mutants killed 236/313 270/313
Mutation score 75.4% 86.3%

Table 5.8: Mutation testing results for the Vending Machine system.

5.2.1 Mutant-Based Strength Analysis

The Java implementation has been mutated with MuJava, which was configured to apply
all method-level operators. This resulted in 313 mutations. All mutations together with a
unique ID are available in the Git repository [9].

Results from the initial evaluation are presented in Table 5.8. The time to execute
and evaluate the tests via MuJava has been omitted as the time was always less than 3
minutes.

The set of alive mutants from this thesis’s framework is a subset of the alive mutants
from Nat2Test. A manual analysis of all alive mutants revealed that 29 out of the 313
mutants were semantically equivalent to the original program. All the examples can be
grouped into the following five categories.
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Algorithm 8 Test engine algorithm for the Vending Machine system.

10:

11:
12:
13:
14:
15:
16:

1
2
3
4
o:
6
7
8
9

: read in all test cases from the test suite
: for each test case do

determine whether the test case is expected to fail via the name of the test case
for every time step ¢ within the test case do
execute the SuT with the inputs specified at time ¢
if the timer has not been reset at time ¢ then
increment the timer
end if
update the variables "old coin sensor" and "old coffee request button'
compare the actual outputs to the specified behavior: return "Fail" if deviations
occur and the test case should pass
end for
if the test case passed for all time steps ¢ but was expected to fail then
return "Fail"
end if
return 'Pass"
end for

Category 1 List of mutants (2 in total): AOISy3, AOISy

1
2
3
4

5

if (a ==y) thena =1z
// modified to

if (a++ == y) then a = z
// or

if (a-- == y) then a = z

Category 2 List of mutants (12 in total): C DL, CDLy1,CD Ly,

-

CDLy7,CDL7,CDLg,ODLa1,0DLas, 0D L3y, ODLss, ODLss, OD Ly

if (a == true)
// modified to
if (a)

Category 3 List of mutants (8 in total): ODLig, ODLg, RO Ra4, RO Rag,
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RORy7, ROR3, ROR5, ROR

// Modification of upper bound for request timer in a condition.

// Given the following condition:

if (timer >= lowerbound && timer <= upperbound && ...)

// the upper bound condition timer <= upperbound is either
omitted, or modified to one of the following options:

timer == upperbound, timer < upperbound, timer != upperbound,
true




5.2 Vending Machine System

if ((the_request_timer <= 30.0) && (the_request_timer >= 10.0) &&
(the_system_mode == 3))

// modified to

if ((the_request_timer < 30.0) && (the_request_timer >= 10.0) &&
(the_system_mode == 3))

Listing 5.1: Mutant ROR3

Category 4 List of mutants (2 in total): ROR11, ROR3o

! // Modification of lower bound for request timer in a condition.
2 // Given the following condition:

3 if (timer >= lowerbound && timer <= upperbound && ...),

1

// the lower bound condition timer >= lowerbound is modified to:
5 timer == lowerbound

Category 5 List of mutants (5 in total): ROR74, ROR78, ROR79, 0D L7, ROR37

1 if (a) then (b) else if (not a) then (c)
2 // modified to
3 if (a) then (b) else if (true) then (c)

Both categories 1 and 2 are equivalent due to properties of the Java language. 1 is
semantically equivalent due to the sequence of operations in Java. The postfix operator
is applied after the if statement has been applied, i.e. the variable "a" is incremented
or decremented by 1. However, directly thereafter a fixed value is assigned to variable
"a", thus invalidating the modification from the postfix operator. The modification in
category 2 is equivalent because the statements "if (x)" and "if (x==true)" are semantically
equivalent in Java.

For categories 3, 4, and 5, the semantic equivalence arises due to properties of the
Vending Machine system. To illustrate category 3, consider the concrete mutant RO R3
in Listing 5.1.

To meet the condition, the request timer needs to be within the interval 10 to 30 and
the system mode needs to be equal to 3. Both signals mentioned in this condition are
output signals and cannot be modified by e.g. a user. Thus, it is necessary to investigate
in which scenarios the system mode can become 3. As the initial value of the system
mode is 1, it is necessary to look at all assignments to 3. This is only the case for a
single line, namely line 35 in Listing 7.7. If the corresponding condition becomes true,
the request timer is also simultaneously reset to 0 (line 33). Subsequently, it then takes
several time steps for the timer to fulfill the condition ">=10 and <=30". But notably,
this condition is always triggered as soon as the timer reaches the value 10, as no external
source can modify the system mode to a value other than 3 while the timer increments.
This is illustrated in Table 5.9. Concluding, the mutation is semantically equivalent to
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if (timer <= 30) then <actions>

else if (timer > 30) then <actions>

// can be simplified to:

if (a) then (b) else if (not a) then (c)
// which is equivalent to:

if (a) then (b) else if (true) then (c)

Listing 5.2: Illustration of semantic equivalence for the mutations in category 5 from
Section 5.2.1.

the original program. The same argumentation can be applied for all mutants in this

category.

Time Signal values Observation

t timer = 0, mode = 3

t+1 timer = 1, mode = 3

t+10 timer = 10, mode = 3 triggers condition, mode will
be set to 1

t+ 10 timer = 10, mode # 3 cannot happen because mode
cannot be modified externally

t+ 11 timer = 11, mode = 3 cannot happen because the

condition will always be trig-
gered in the previous step and
will modify mode to 1

Table 5.9: Mlustration why the condition "timer >= 10 && timer <= 30 && mode ==
3" will always be triggered with a timer value of 10.

Category 4 is very similar with the difference being that the lower bound is modified
from a ">=" to "==". Mutations in category 5 are semantically equivalent due to the
if else construct used in the implementation in lines 30-43 in Listing 7.7. Listing 5.2
illustrates this equivalence.

The resulting mutation scores when taking semantic equivalence into account are
presented in Table 5.10.

Analysis of alive Mutants In the following, all alive mutants are analyzed to understand
which cases are not covered by the generated test suite of TG-SRL. In SDL7, an
assignment of an output signal is completely removed. This is illustrated in Listing 5.3.

As explained in Section 4.5, for every condition, a test case is generated that enforces
this condition at a certain time point ¢ € Ny. The fact that such a test case did not catch
the removal of "b" implies that "b" had the same value in the previous iteration. This
can occur if a test case does not modify a signal at all, such that the signal retains its
initial value throughout the whole test case. Indeed, in SDL7 a statement is removed
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TG-SRL
NatZTeSt z(r)r:l?jti(;:céiec)ft;ne;trzlal, normal)

dy: 150

Requirements 5 )

Mutations 284 284

Test cases 160 18 (11 fail)

Time to generate tests 512s 69s

Mutants killed 236/284 270/284

Mutation score 83.1% 95.1%

Table 5.10: Mutation testing results for the Vending Machine system after accounting for
semantically equivalent mutants.

if (cond) then (a && b)
// modified to
if (cond) then (a)

Listing 5.3: Exemplary mutation that removes an action completely.

that would assign the "coffee machine output' the value 0, which corresponds to its initial
value.

To cover such cases, the algorithm to generate a test suite in Listing 7 has been extended
with the option to enforce a change of the initial value at a certain time point within
the test case. Assuming an initial value of 5 for a signal "x", and that the antecedent is
enforced to be true at time point ¢t € Ng, the following constraints are generated:

z(0) =5
Jt, with x(t;) #5and 0 < t, <t

With this change, four additional mutants are killed. This impacts the mutation score
as shown in Table 5.11. Newly killed mutants are as follows: SDL7, ODLys, OD Lgy,
ODLgs. In ODLy5, ODLgy, and OD Lgg a condition referring to the "coin sensor"' has
been removed completely. In all cases, it was checked whether the coin sensor is or was
"false". As "false" is the initial value for the "coin sensor", these mutants are also only
killed by enforcing an initial value change.

The remaining 10 mutants that are left alive can be put into three categories:

Category 1 Conditions modified so that out of bound values are referenced. List of
mutants (3 in total): RORs, RORgs, RORgy

Category 2 Condition "isReset = false" removed. List of mutants (2 in total): SDLy,
SDLg
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TG-SRL
or tactic: (ext, ext)
Nat2Test comp. tactic: (normal, normal)
initial value change: true
duy: 150
Requirements 5 5)
Mutations 284 284
Test cases 160 18 (11 fail)
Time to generate tests 512s 69s
Mutants killed 236/284 274/284
Mutation score 83.1% 96.5%

Table 5.11: Mutation testing results for the Vending Machine system after enforcing
changes of the initial value for a signal.

if (coin sensor = true && old coin sensor = false && system mode =1) then

// modified to
if (coin sensor = true && system mode =1) then ...

Listing 5.4: Exemplary mutation that omits a condition completely.

Category 3 Condition has been modified. Behavior unspecified for the modification. List
of mutants (5 in total): OD Leg, OD Lgy, OD L7g, RORg2, RORgg

In category 1, modifications are done that cannot be detected due to constraints that
enforce upper and lower boundaries for signals. For instance, the "system mode = 3" is
modified to "system mode >= 3" in line 15 of Listing 7.7. No test case generated via the
SMT solver will contain the value 4 for "system mode" as another upper bound constraint
enforces all "system mode" values to be lower or equal to 3.

In category 2, the "isReset = false" statement is removed. In the implementation of
the test driver shown in Listing 7.1, this flag is used to decide whether to increment
the request timer. However, only in very few cases "isReset" is "true". Thus, a test case
would need to enforce a state where "isReset" is "true", afterwards enforce the state where
the "isReset = false" statement has been removed, and lastly enforce a state where the
missing increment of the timer is causing erroneous behavior. The generated test cases
from both frameworks do not reach this complexity. For the SMT instances presented
in this thesis, test cases are generated with the constraint of enforcing one antecedent
to become true at a specific point in time. In contrast, in the scenario described above,
three antecedents need to be enforced in the proper sequence during one test cases.

In category 3, conditions are modified or omitted completely. Listing 5.4 illustrates
this.

Given this concrete example, it is evident that no test case sets the "coin sensor" to
"true", the "old coin sensor" to "true', and the "system mode" to 1. If such a test case
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would exist, the mutated program would trigger the corresponding actions, which is not
expected to happen according to the specification.

In order to address these cases, the test suite generation algorithm from Listing 7
has been extended to generate variants for antecedents. As specified in Listing 4.1, an-
tecedents are conjunctions of boolean expressions. Given a conjunction A(z1(t), ...,z (t)),
n additional test cases are added to the test suite with the following modified an-
tecedent: one term z; is negated while the other terms remain as is. For the conjunction
A(x1(t), z2(t), z3(t)), this strategy results in three additional expressions:

o Aoz (t), z2(t), 23(t))
o A1), ~za(t), 23(1))
o A@i(t), x2(t), ~as(t))

Similar to before, for each antecedent variation, one SMT instance is created where the
specific antecedent is enforced at a time point ¢t € Ng. With this extension, all mutants
from category 3 are killed. Table 5.12 summarizes the final mutation testing results for
the Vending Machine system.

1
1

TG-SRL

or tactic: (ext, ext)

comp. tactic: (normal,

normal)

TG-SRL

or tactic: (ext, ext)

comp. tactic: (normal,

normal)

TG-SRL

or tactic: (ext, ext)
comp. tactic: (normal,

Nat2Test }2;::1 value change: itl;l‘ilteial value change: ::)i:r;?l)value change:
efianlcsie combinations: ?anlge combinations: Z;:;ecombinations: true
duy: 150 dw: 150 dw: 150
Requirements 5 5 5 )
Mutations 284 284 284 284
Test cases 160 18 (11 fail) 18 (11 fail) 37 (11 fail)
Time to gener- 512s 69s 69s 161s
ate tests
Mutants killed  236/284 270/284 274/284 279/284
Mutation score 83.1% 95.1% 96.5% 98.2%

Table 5.12: Mutation testing results for the Vending Machine system.

5.3 Daimler Turn Indicator System

The third evaluated system is a Turn Indicator example from Daimler. Requirements
have been taken from the Nat2Test website [86].

The system is specified by 17 requirements in total. The requirements in SysReq-CNL
can be found either on the corresponding website [86] or in the Git repository for this
thesis [9]. The preprocessed requirements used as an input for TG-SRL are available in
Table 7.5 in the appendix. In Table 5.13 the input and output signals are specified.
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Signal Type Datatype [Initial Value,
Lower Bound,
Upper Bound]

the voltage input number [0,0,100]
the turn indicator input number [0,0,2]
lever

emergency mode input bool [0,0,1]
the indication lights output number [2,0,3]
the mode output number [2,0,3]
the timer output timer [0,0,100]

Table 5.13: Input and output signals from the Turn Indicator system.

One notable change to the requirements for TG-SRL is the modification of the timer
thresholds. In multiple requirements, a condition is specified that holds true if the "flashing
timer" is greater or equal to 340 or 220. In order to reduce the solution space for the
SMT solver, these values have been modified to 34 and 22, respectively. Without this
modification, every constraint that is valid for a time step ¢ would be enumerated 340
times due to universal quantifier elimination (see Section 4.5.1). This in turn would
negatively impact the time to generate the test suite.

Similar to the Vending Machine, the Turn Indicator system also refers to a timer.
Another particularity is that, given a time slot ¢, multiple conditions might hold true.
This results in the following issue:

Requirements:
s1:=1if a(t) then b(t) =5
sg :=1if b(t1) =5 then c(t1) =5

Given "a(t) = true" at time point ¢, it is subject to interpretation whether the con-
dition "b(t1) = 5" evaluates to true in the same time step ¢. Furthermore, during the
system’s implementation, the sequence of operations naturally establishes a priority. If
the statement so precedes s1, s will not take effect.

The framework presented in this thesis assumes that so can only occur at the next
time step because s; already modifies the signal "b(¢)" at time ¢. Conversely, Nat2Test
assumes that both conditions can become true at the same time. In both instances, this
behavior needs to be accounted for during the implementation. This is achieved via the
introduction of temporary variables that decouple a condition from an assignment, as
illustrated in Listing 5.5.

The difference in interpretation between both approaches necessitates slightly different
implementations of the Turn Indicator system. The implementations are available in
the appendix in Listings 7.3 and 7.4. The evaluation is not impacted significantly as
the structure of both programs is equivalent and thus, by applying mutation operators,
similar mutants are created.
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if (a) then biemp
if (b) then c
b = btemp

Listing 5.5: Ilustration of decoupling two conditions that can become true in the same

time step.
TG-SRL TG-SRL
or tactic: (ext, ext) or tactic: (ext, ext)
NatzTeSt (r:rc‘);nl)p. tactic: (normal, nor- (r:;);nl)p. tactic: (normal, nor-
initial value change: false initial value change: true
and combinations: false and combinations: true
duw: 150 dyw: 150
Requirements 17 17 17
Mutations 1101 1101 1101
Test cases 510 190 (100 fail) 237 (98 fail)
Time to generate 25bm 16m 21m
tests
Mutants killed 661,/1101 868,/1101 876/1101
Mutation score 60.0% 78.8% 79.6%

Table 5.14: Mutation testing results for the Turn Indicator system.

Similar to the Vending Machine system, the output values are expected to be held if
no condition triggers a modification of the values at a certain time point ¢. Thus, the
optional constraints described in Section 4.5.1 were also employed for this system.

All generated test cases for the Turn Indicator system for both approaches can be
found in the Git repository for this thesis [9]. For the worst-case upper bound d,, a value
of 150 is used. In the modified requirements, conditions only refer to timer values of 34,
thus 150 provides sufficient overhead.

For Nat2Test, the same approach to test generation has been chosen as with the
Vending Machine. In the case of the Turn Indicator system, timeouts occurred with 40
test cases. Thus, for each requirement, 30 test cases have been generated, which results
in 510 test cases in total.

The test engines implemented for both frameworks follow the same concept as described
in Section 5.2 and can be found in the appendix in Listings 7.5 and 7.6. As with previous
systems, all test suites have been run on the original program in order to validate them.

5.3.1 Mutant-Based Strength Analysis

MuJava was used with all method-level operators enabled and resulted in 1101 mutations.
The mutations are available in the Git repository [9]. The results are given in Table 5.14.
For the Turn Indicator system, no manual analysis of semantic equivalence has been
done on the alive mutants. Thus, Table 5.14 presents worst-case mutation scores.

93



5 Evaluation

5.4 Evaluation of Objectives

In the introduction of this thesis in Section 1.1, several objectives were formulated. In
this section, the objectives are evaluated briefly.

Objective: Provide a proof of concept for a test generation framework that operates

directly on natural language requirements. The input domain should be as uncon-
strained as possible, i.e., restrictions on the input language should be kept to a
minimum.

Evaluation: This objective is only partially fulfilled. The presented framework
succeeds in generating a test suite based on natural language requirements. However,
there are significant assumptions made about the input domain, e.g., with regards
to the level of detail in the requirement set. The use of a rule-based approach to
extract information and formalize the extracted information is limited conceptually,
as only cases can be covered which are covered by the implemented ruleset. These
limitations make preprocessing of the requirements a necessity, thus constraining
the input domain. Suggestions have been given on how to generalize the approach.
For instance, the implemented ruleset currently limits the allowed vocabulary in
requirements. This can be tackled by looking up synonyms prior to extracting
information in Stage 3, or extending the supported predicates to those available in
the ProbBank model.

Other limitations that restrict the input domain, such as the algorithms to infer
the logical connection between entities, are harder to solve. Such tasks are best
tackled via NLP methods that rely on machine learning, as a rule-based approach
has difficulties covering the complex cases that may occur in natural language. To
the best of the author’s knowledge, no NLP method exists currently that succeeds
in properly extracting logical relationships between entities in natural language.

Objective: Achieve the highest automation degree possible: avoid the manual creation
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of dictionaries or domain knowledge, and avoid manual steps within the automation
process. The generated test cases should be executable without manual refinement.

Evaluation: Assuming a priori knowledge of the signal specification is given, the
presented framework does not entail any manual steps apart from the preprocessing
of the natural language requirements, and the estimation of a worst-case upper
bound for the test duration. In particular, compared to existing approaches de-
scribed in Chapter 3, it is not necessary to solve ambiguity in a manual way, or
to manually translate abstract test cases into executable ones. Knowledge about
in- and output signals can theoretically be extracted automatically from a natural
language specification, or a data dictionary. The preprocessing of the requirements
will become less relevant with increasing quality and capabilities of NLP and SRL
frameworks, assuming the respective rules are also extended. Thus, the presented
concept achieves a significant automation degree.



5.5 Limitations & Future Work

Objective: Optimize the strength of the test suite while accounting for test suite size:

maximize the test suite’s capability to detect system behavior that deviates from
the specification, and keep its size within reasonable boundaries.

Evaluation: This objective is fulfilled. Several tactics have been implemented to
improve the test suite’s strength. During the design of these tactics, test suite
size was considered. Additionally, several measures such as quantifier elimination
and the minimization of the test duration have been implemented to improve
the performance of the test suite. In a comparison with the framework Nat2Test,
TG-SRL performs favorably in a mutation-based testing analysis while featuring
significantly smaller test suites.

5.5 Limitations & Future Work

In TG-SRL, the employed NLP methods such as SRL do not extract sufficient information
for test generation. Thus, these methods are supplemented with heuristiscs and a set of
rules, which inheritly limit the input domain. In the following, a subset of the resulting
limitations and respective opportunities for future work are enumerated.

1.

The currently employed SRL models have not been trained for the domain at hand.
Training on domain-specific requirements from embedded systems has the potential
to significantly improve the quality of the SRL output, and thus reduce the manual
preprocessing effort.

The current implementation looks at single requirements in isolation and does
not consider references or context from other requirements. NLP methods from
the area of discourse semantics or language modeling may be employed to extract
information from complete requirement sets instead of individual requirements.

The currently implemented rule-set only covers a specific set of verbs and language
constructs that are used to specify signal behavior. For instance, the requirement
"A signal ramps from <waluel> to <value2> within <time>." cannot be processed.
Future work could look into implementing rules for the complete list of verbs from
ProbBank.

. The currently implemented rule-set does not support variables or enumerations as

signal values.

The implemented heuristic to extract the logical connection between entities is
restrictive and cannot cover all cases that may be found in natural language
requirements. Instead of utilizing a heuristic, methods from the area of language
modeling may be employed.

The formalization of the requirements as an SMT instance limits the mathemical
complexity that requirements may contain. For example, with non-linear mathe-
matical constraints in requirements, an SMT solver is less likely to find a satisfying
solution and thus generate a test case.
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7. Ambiguity is in many cases resolved through the rule-set. There is a significant
risk that the chosen interpretation deviates from that of the requirements author.
Instead of using a rule-set, Large Language Models (LLMs) might be better suited
to determine the most probable interpretation.

Apart from leveraging other NLP methods, there is also potential to look at extensions
for SRL. SRL as presented in this framework identifies semantic roles for predicates. How-
ever, there is also research that extends the semantic analysis to nouns and prepositions
[80, 81]. This enables a more precises description of the roles relative to the sense of the
predicate as illustrated in Figure 5.6

Furthermore, when comparing TG-SRL to the approach from Schnelte et al. (refer to
Section 3.3.1), another possibility for future work is revealed. Assuming certain conditions
are met and a system reaction is expected, the approach from Schnelte et al. can deal with
a reaction occurring during a given time interval. In contrast, the currently implemented
proof of concept only supports reactions that happen at a deterministic point in time.
Even if left unspecified, the implemented ruleset assumes that the action happens in
the same time step ¢ in which the conditions were met. A possible extension could look
as follows: by implementing a rule to support the notion of "action a happens within z
seconds", one could support an unknown response time of a system. A formalization into
FOL could look as follows:

dt1 with action a = trueand t < t1 <t+zx

5.5.1 Large Language Models

Recent advancements in Large Language Models (LLM) offer a promising outlook to
improve test generation based on unconstrained natural language requirements. In the
context of this thesis, LLMs may be utilized in one of the following ways.

1. Utilization of LLMs for both information extraction and test generation

2. Utilization of LLMs for information extraction, i.e. replacing or improving the
information extraction via SRL and the rule-set

3. Utilization of LLMs to improve individual components of TG-SRL, e.g., by resolving
ambiguity or by improving the identification of conditional and non-conditional
parts of a sentence

An initial experiment with GPT-40 from OpenAl [88][89], carried out in January of
2025, is described in the following. The results are promising and suggest that LLMs
may be suited to achieve both information extraction and test generation at once. As an
input to the model, the following prompt was specified:

I have a natural language requirement and would like to generate executable
test cases out of it. A test case consists of time value pairs, e.q. at time step 0
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signal A has the value 1. At time step 1, signal A may have a value 2. Please
generate test cases for the following requirement: "If the flashing timer is
greater than 20, then increment the speed by 10 after 3 seconds and reset the
timer to 0."

GPT-40’s response is shown in Figure 5.7. It successfully generates three test cases,
one covering a scenario where the requirement is met, one where the requirement is not
met, and one that tests an edge case. It is noteworthy that the model’s interpretation of
"increment the speed by 10 after 3 seconds" differs from the interpretation of TG-SRL.
Assuming ¢ as the current time step, GPT-40 changes the signal value of the signal speed
at time t+4 while TG-SRL enacts this signal change at time ¢{+3. Depending on the
requirement author’s intention, prompt engineering and in particular system prompts
could be utilized to modify this interpretation for an LLM.

Figure 5.8 showcases how LLMs may be utilized to improve individual components of
TG-SRL. In the given example, GPT-40 resolves the ambiguity with regards to operator
precedence. Compared to the implemented rule-set in TG-SRL, an approach utilizing
LLMs may pick up nuances in the natural language sentences and select the most probable
interpretation accordingly. Nevertheless, the example also illustrates that the output of

an LLM is still error-prone: although the requirement specifies "signal d is [...] equal to
5", the logical representation from GPT-40 specifies "equal or greater to 5" and the given
explanation contains the condition "signal d is [...] at least equal to 5".

Apart from the above mentioned examples, the saved GPT-40 dialogue provided in
[89] also showcases that an LLM is capable of handling mathematical operations within
requirements and performing coreference resolution between multiple requirements.
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Figure 5.6: SRL-Verb, SRL-Nom and SRL-Prep output from [76].
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Requirement:

"If the flashing timer is greater than 20, then increment the speed by 10 after 3 seconds and reset the

timer to 0."

Test Case Generation:
Signals:
e Flashing Timer: Tracks the time since the timer was started.

e Speed: Tracks the speed of the system.

Test Case 1: Positive Scenario (Requirement met)

Initial Condition: Flashing timer > 20 at some time step.

Expected Behavior: After 3 seconds, the speed is incremented by 10, and the flashing timer resets to

0.
Time Step Flashing Timer Speed Comments
0 21 50 Flashing timer > 20; speed is 50
1 22 50 Timer continues incrementing
2 23 50 Timer continues incrementing
3 24 50 Timer continues incrementing
4 0 60 Speed incremented, timer reset

Test Case 2: Negative Scenario (Requirement not met)

Initial Condition: Flashing timer < 20 at all times.

Expected Behavior: No change to speed, and the timer does not reset.

Time Step Flashing Timer Speed Comments

0 10 50 Flashing timer < 20

1 1 50 Timer continues incrementing
2 12 50 Timer continues incrementing
3 13 50 Timer continues incrementing
4 14 50 No change

Test Case 3: Edge Case (Boundary Value)

Initial Condition: Flashing timer exactly 20.

Expected Behavior: No change to speed or timer since the requirement specifies "greater than 20."

Time Step Flashing Timer Speed Comments

0 20 50 Flashing timer = 20

1 21 50 Timer starts incrementing

2 22 50 Timer continues incrementing
3 23 50 Timer continues incrementing
4 24 50 No change

Figure 5.7: Generated test cases from GPT-40 [89] on the given input requirement.
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5 Evaluation

Please show me a logical representation of the following requirement:
“If signal d is true, then signal a and signal b is true or signal c is true,
and signal d is greater than 10 or equal to 5."

@  The logical representation of the requirement:

“If signal d is true, then signal a and signal b is true or signal c is true, and signal d is greater than
10 or equal to 5."

Can be expressed in first-order logic as follows:

Logical Representation

d = ((@aAb)V(cA(d>5Vd>10)))

Explanation:
« dis the condition that triggers the implication.
¢ (a A b) represents that both signal a and signal b must be true.

e (¢A(d = 5Vd>10)) represents that signal ¢ must be true, and signal d must be either

greater than 10 or at least equal to 5.

Figure 5.8: Example that illustrates how GPT-40 [89] can be utilized to resolve ambiguity
in a given requirement.
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6 Conclusion

In this thesis, the framework TG-SRL is introduced. TG-SRL tackles the challenge of
test generation based on natural language requirements by combining Natural Language
Processing (NLP) methods with a rule-based approach. In particular, Semantic Role
Labeling (SRL) is employed to identify predicate argument structures of a requirement,
and extract semantic information. The rule-based stage then aggregates the extracted
information into logical expressions with temporal properties. These in turn are formalized
into a First-Order Logic (FOL) representation, where time is encoded symbolically. With
the help of a Satisfiability Modulo Theory (SMT) solver, executable test cases are
generated. By modifying the SMT instance via several proposed tactics, a strong test
suite can be derived.

An evaluation of the approach has been conducted on three systems. In a mutation-
based strength analysis, TG-SRL has been compared to the framework Nat2Test [8, 70, 17]
and performed favorably. TG-SRL is highly automated, produces executable test cases
and can operate on almost unrestricted natural language requirements. Inter alia due to
the maturity of the employed NLP methods and the prototypical nature of the rule-based
stages, in practice manual preprocessing of the requirements is necessary.

Concluding, the presented approach provides valuable insights into employing NLP
methods, and in particular Semantic Role Labeling, in the field of test case generation,
showcasing their potential for future work in this area.
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7 Appendix

ID Requirement

1 When driver _up, driver__down, passenger__up and passenger__down is false, the
system shall set move_up to false, assign false to move down and assign 0 to
error__counter.

2 When driver _up and driver _down is true and passenger up and passenger _down
is true, then the system shall set error_counter to 2.

3 When driver _up and driver down is true and passenger up or passenger down
is false, then the system shall set error_counter to 1.

4 When passenger _up and passenger__down is true and driver_up or driver__down
is false, then the system shall set error_counter to 1.

) When driver_up or driver__down is false and passenger _up or passenger__down
is false, then the system shall set error__counter to 0.

6 When error__counter is 0, then driver _up or driver__down is false and passen-
ger_up or passenger__down is false.

7 When error__counter is greater than 0, then driver_up and driver__down is true
or passenger__up and passenger__down is true.

8 When driver_up is true and error__counter is 0 and obstacle_detection is false,
then the system shall assign true to move__up.

9 When passenger _up is true and driver__down is false and error__counter is 0
and obstacle detection is false, then the system shall assign true to move _up.

10 When move_up is true, then driver _up or passenger up is true and er-
ror__counter is 0 and obstacle detection is false.

11 When driver__down is true and error_counter is 0, then the system shall assign
true to move__down.

12 When passenger _down is true and driver _up is false and error_counter is 0,
then the system shall assign true to move__down.

13 When move__down is true, then driver _down or passenger _down is true and
driver_up is false and error__counter is 0.

14 When move__up is true, then move__down is false.

15 When move__down is true, then move _up is false.

16 When passenger__up is true and driver__down is true and error__counter is 0,
then move down is true.

17 When passenger__down is true and driver__up is true and error__counter is 0
and obstacle_detection is false, then move__up is true.

18 When error_counter is greater than 0, then move__down is false and move__up

is false.
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19
20

21

22
23

24
25

26
27

28

When driver_information is 2, then error__counter is greater or equal to 1.
When driver__information is 1, then the vehicle speed is greater than 30, and
current__position is less than 100, and the error_counter is 0.

When driver_information is 0, then error__counter is 0 and the vehicle speed is
less or equal to 30 or current_position is 100.

When obstacle detection is true, then the system shall set move_up to false.
When current__position is less than 100 and move_up is true, then the system
shall add 1 to current__position.

When mowve__up is true and current__position is 100, then current_position is
100.

When move__down is true and current_position is higher than 0, then the system
shall subtract 1 from current_position.

When move__down is true and current_position is 0, then current_position is 0.
When current_position changes its value, then move__up is true, or move__down
is true.

When current__position changes its value, then the system shall subtract 1 from
current__position or it shall add 1 to current_position.

Table 7.1: List of requirements for the Window Control system.

Subsystem: WindowControl/Variant Subsystem/window controll /signal creator/driver
signals/validate driver signals

ID | Description

1 "+4+" to "4-": no error is generated when both driver wup and driver down
signals are simultaneously 1.

2 "2 -> 1": an error is triggered if driver up or driver down are true on their own
or together, no error is triggered if both are false.

3 ">="to "<": an error is triggered if driver up or driver_ down are true alone or

both are false, no error is triggered if both are true.

Subsystem: WindowControl/Variant Subsystem/window control4/signal creator/driver
signals/check driver control

ID | Description

4 "1 -> 3": move__up is not activated when driver _up equals 1, move__down is not
activated when driver_down equals 1.

Subsystem: WindowControl/Variant Subsystem/window control5/check errors/pass
driver signals

ID | Description

~N O Ot
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"0->1": only when two errors occur move__up or move__down are prevented.
"0-> -
Switch for up signal removed: regardless of whether errors occur, if driver__up,
then move__up.

8 Switch for down signal removed: regardless of whether errors occur, if
driver__down, then move__down.

1": even when no error occurs, move__up or move__down are prevented.




in__up and in__down swapped: if driver__up then move__down and if driver__down
then mowve__up.

Subsystem: WindowControl/Variant Subsystem/window control9/active signal filter

ID

Description

10

11

12

13

"0 -> 1": even if an obstacle has been detected, move__up is true. If passenger _up
and driver__up are both false, move__up is still true. If passenger down and
driver_down are both false, move__up is true.

Obstacle check removed: even if obstacle detected is true (and driver_up or
passenger_up are true), move_up is true.

">0" check connected with passenger active: even if driver__down equals false
and driver_up equals true, passenger _down takes priority, i.e., passenger _down
equals true and up equals false leads to move _down and move__up simultaneously.
">0" check connected with passenger active instead of driver active: as in 12,
but reversed.

Subsystem: WindowControl/Variant Subsystem/window controll3/error sum

ID

Description

14

"++" to "+-": if driver_up and down equals true and passenger_up and down
equals true, then the error counter is 0 instead of 2 and thus driver__info is not 2.
If there is only a passenger error, the error sum is -1 and thus driver info is 0.

Subsystem: WindowControl/Variant Subsystem/window controll4/window position

ID | Description

15 | Up and down direction swapped: if move_up is true, then current position is
decremented and vice versa.

16 | Set the else case to direction = 1: if neither move__up nor move__down is true,
then current__position is decremented.

17 | "-1" to "-2" for down: if move_down is true, then current_position changes by 2
instead of 1.

18 | Inserted delay after the multiswitch: if move down or move__up is true, then
current__position only changes in the next time step.

19 | The upper bound of current_pos in the saturate block has been set to 150.

20 | The lower bound in the saturate block has been set to 50.

Subsystem: WindowControl/Variant Subsystem/window control20/driver information

System

ID | Description

21 | "error > 0" to "error > 1": if there is an error, driver_information is not 2

22 | "error > 0" to "error >= 0": even if there is no error, driver_info is 2.

23 | When there is an error, driver info is 1 instead of 2.

24 | "vehicle speed > upper vs" to ">=": when speed equals 30, then driver info is 1
if energy can be saved.

25 | "vehicle speed > upper vs" to "<": if speed is less than 30 (instead of >30),
driver__info is 1

26 | "position <100" to "<=": even when the window is already closed (position =

100), driver_info is 1.
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27 | Driver_info is 3 when energy can be saved (instead of 1).
28 | Driver info = 1 instead of 0 at the start: even if there is no error and no energy
can be saved, driver_info is 1.

Subsystem: WindowControl/Variant Subsystem/window control5/check errors

ID | Description

29 | "+4" block removed: if passenger up, down equals true and an error has been
caused, then for driver_up or down equals true, move__up or down is still true.

30 | "++'

move__up and down are set to true simultaneously.

to "+-": if passenger _up, down and driver_up, down are all true, then

Table 7.2: Mutations of the Window Control system

1D

Requirement

When the system mode is 1, and the coin sensor is on, and the coin sensor
was off, the coffee machine system shall set the system mode to 0 and reset the
request timer.

When the system mode is 0, and the coffee request sensor is on, and the coffee
request sensor was off, and the coin sensor is off, and the coin sensor was off,
and the request timer is lower or equal to 30, the coffee machine system shall
set the system mode to 3 and reset the request timer.

When the system mode is 0, and the coffee request sensor is on, and the coffee
request sensor was off, and the coin sensor is off, and the coin sensor was off,
and the request timer is greater than 30, the coffee machine system shall set the
system mode to 2 and reset the request timer.

When the system mode is 3, and the request timer is greater or equal to 10, and
the request timer is lower or equal to 30, the coffee machine system shall set the
system mode to 1 and it shall set the coffee machine output to 1.

When the system mode is 2, and the request timer is greater or equal to 30, and
the request timer is lower or equal to 50, the coffee machine system shall set the
system mode to 1 and it shall set the coffee machine output to 0.

Table 7.3: Preprocessed list of requirements for the Vending Machine system.

1D

Requirement
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When the system mode is idle, and the coin sensor changes to true, the coffee
machine system shall: reset the request timer, assign choice to the system mode.
When the system mode is choice , and the coin sensor is false, and the coin
sensor was false, and the coffee request button changes to pressed, and the request
timer is lower than or equal to 30.0, the coffee machine system shall: reset the
request timer, assign preparing weak coffee to the system mode.
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When the system mode is choice, and the coin sensor is false, and the coin sensor
was false, and the coffee request button changes to pressed, and the request timer
is greater than 30.0, the coffee machine system shall: reset the request timer,
assign preparing strong coffee to the system mode.

When the system mode is preparing weak coffee, and the request timer is greater
than or equal to 10.0, and the request timer is lower than or equal to 30.0, the
coffee machine system shall: assign idle to the system mode, assign weak to the
coffee machine output.

When the system mode is preparing strong coffee, and the request timer is
greater than or equal to 30.0, and the request timer is lower than or equal to
50.0, the coffee machine system shall : assign idle to the system mode , assign
strong to the coffee machine output..

Table 7.4: List of requirements for the Vending Machine system in the SysReq-CNL.

import static org.junit.Assert.fail;

import java.io.File;

import java.io.IOException;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.ArraylList;

import java.util.List;

import org.junit.Test;

public class TestManager_VM {

private
private
private
private
private
private

@Test

List<Integer> systemMode;
List<Integer> machineOutput;
List<Integer> requestTimer;
List<Integer> time;
List<Boolean> coinSensor;
List<Boolean> coffeRequest;

public void testAllFiles() throws IOException {
File folder = new File("D:\\Git\\gitws\\diss\\tests\\VendingMachine");
for (File file : folder.listFiles()) {
VendingMachine vm = new VendingMachine();
simulate(file, vm);

}
}

public void simulate(File csvFile, VendingMachine vm) throws IOException {
if (csvFile.getName().equals("mapping.csv"))
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return;

List<String> lines =
Files.readAllLines(Paths.get(csvFile.getAbsolutePath()),
StandardCharsets.UTF_8);

int duration = lines.size() - 1;

systemMode = new ArrayList<Integer>();

machineQutput = new ArrayList<Integer>();

requestTimer = new ArraylList<Integer>();

coinSensor = new ArraylList<Boolean>();

time = new ArraylList<Integer>();

coffeRequest = new ArraylList<Boolean>();

extractSignals(lines);

boolean shouldFail = csvFile.getName().contains("fail") ? true : false;

boolean result = true;

for (int i = 0; i < duration; i++) {

// for debugging purposes
if (time.get(i) !'= i) {
fail(i + ": Time was " + time.get(i));
}
vm.simulate(coffeRequest.get(i), coinSensor.get(i));
// if no reset has happened,
// increase the request timer by the time that passed during
simulation, in this case always 1
if (!vm.isReset) {
vm.the_request_timer = vm.the_request_timer + 1;
}
vm.old_the_coin_sensor = coinSensor.get(1i);
vm.old_the_coffee_request_button = coffeRequest.get(i);
boolean check = checkOutputs(i, shouldFail, csvFile.getName(), vm);
if (!'check) {
result = false;

}
}

if (shouldFail && result) {
fail(csvFile.getName() + " passed, but should have failed.");
}
}

private void extractSignals(List<String> lines) {
String header = lines.get(0);
String[] signals = header.split(";");
for (int i = 1; i < lines.size(); i++) {
String currentlLine = lines.get(i);
String[] currentLineArray = currentLine.split(";");
for (int j = 0; j < currentLineArray.length; j++) {
if (signals[j].equals("the coin sensor")) {
coinSensor.add(Integer.parseInt(currentLineArray[j]) == 1 ? true
: false);
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78 }

79 if (signals[j].equals("the coffee request sensor")) {

80 coffeRequest.add(Integer.parseInt(currentLineArray[j]) == 17
true : false);

81 }

82 if (signals[j].equals("the request timer")) {

83 requestTimer.add(Integer.parselnt(currentLineArray[j]));
84 }

85 if (signals[j].equals("the system mode")) {

86 systemMode.add(Integer.parseInt(currentLineArray[jl));
87 }

88 if (signals[j].equals("the coffee machine output")) {

89 machineOutput.add(Integer.parselnt(currentLineArray[jl));
90 }

91 if (signals[j].equals("Time")) {

92 time.add(Integer.parselnt(currentLineArray[j]));

93 }

94 }

95 }

96

97 }

98
99 private boolean checkOutputs(int i, boolean shouldFail, String string,
VendingMachine vm) {

100 boolean result = vm.the_system_mode == systemMode.get(i);

101 if (!result && !shouldFail) {

102 fail(i + ": Systemmode " + vm.the_system_mode + " but expected " +
systemMode.get (i) + " in " + string);

103 }

104 boolean resultl = vm.the_coffee_machine_output == machineOutput.get(i);

105 if (!resultl && !shouldFail) {

106 fail(i + ": MachineOutput " + vm.the_coffee_machine_output + " but
expected " + machineQutput.get(i)

107 + " in " + string);

108 }

109 boolean result2 = vm.the_request_timer == requestTimer.get(i);

110 if (!result2 && !shouldFail) {

111 fail(i + ": RequestTimer " + vm.the_request_timer + " but expected "
+ requestTimer.get(i) + " in "

112 + string);

113 }

114 return (result && resultl && result2);
115 }
116

117}

Listing 7.1: Vending Machine Driver for TG-SRL

1 import static org.junit.Assert.fail;
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3 import java.io.File;

4+ import java.io.IOException;

5 import java.nio.charset.StandardCharsets;
¢ dimport java.nio.file.Files;

7 import java.nio.file.Paths;

s 1mport java.util.ArraylList;

o import java.util.List;

11 import org.junit.Test;
13 public class TestManager_VM _Nat2Test {

15 private List<Integer> systemMode;

16 private List<Integer> machineOutput;

17 private List<Float> time;

18 private List<Boolean> coinSensor;

19 private List<Boolean> coffeRequest;

20

21 @Test

public void testAllFiles() throws IOException {

23 File folder = new
File("D:\\gitws\\diss\\eval\\VM\\Nat2Test\\TestCases");

A for (File file : folder.listFiles()) {

VendingMachine vm = new VendingMachine();

6 simulate(file, vm);

}

N
N

NN N

N
~

8 }

30 public void simulate(File csvFile, VendingMachine vm) throws IOException {

31 if (csvFile.getName().equals("mapping.csv"))

32 return;

33 List<String> lines =
Files.readAllLines(Paths.get(csvFile.getAbsolutePath()),
StandardCharsets.UTF_8);

34 systemMode = new ArrayList<Integer>();

35 machineQutput = new ArraylList<Integer>();

36 coinSensor = new ArrayList<Boolean>();

37 time = new ArraylList<Float>();

38 coffeRequest = new ArraylList<Boolean>();

39 extractSignals(lines);

10 boolean shouldFail = csvFile.getName().contains("fail") ? true : false;

1 boolean result = true;

12 double lastReset = 0;

13 for (int 1 = 0; 1 < time.size(); i++) {

44 vm.the_request_timer = time.get(i) - lastReset;

15 vm.simulate(coffeRequest.get(i), coinSensor.get(i));

16 if (vm.isReset) {

17 lastReset = time.get(i);
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91

92

93

94

}
vm.old_the_coin_sensor = coinSensor.get(i);
vm.old_the_coffee_request_button = coffeRequest.get(i);
boolean check = checkOutputs(i, shouldFail, csvFile.getName(), vm);
if (!check) {
result = false;
}
}

if (shouldFail && result) {
fail(csvFile.getName() + " passed, but should have failed.");
}
}

private void extractSignals(List<String> lines) {
String header = lines.get(0);
String[] signals = header.split(";");
for (int i = 1; i < lines.size(); i++) {
String currentlLine = lines.get(i);
if (currentLine.isEmpty())
continue;
String[] currentLineArray = currentlLine.split(";");
for (int j = 0; j < currentLineArray.length; j++) {
if (signals[j].equals("the_coin_sensor")) {
coinSensor.add(Boolean.parseBoolean(currentLineArray[jl));
}
if (signals[j].equals("the_coffee_request_button")) {
coffeRequest.add(Boolean.parseBoolean(currentLineArray[j]));
}
if (signals[j].equals("the_system_mode")) {
systemMode.add(Integer.parseInt(currentLineArray[jl));
}
if (signals[j].equals("the_coffee_machine_output")) {
machineOutput.add(Integer.parselnt(currentLineArray[j]));
}
if (signals[j].equals("TIME")) {
time.add(Float.parseFloat(currentLineArray[j]));
}
}
}

}

private boolean checkOutputs(int i, boolean shouldFail, String string,
VendingMachine vm) {

boolean result = vm.the_system_mode == systemMode.get(i);
if (!result && !shouldFail) {
fail(i + ": Systemmode " + vm.the_system_mode + " but expected " +

systemMode.get(i) + " in " + string);
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}
boolean resultl = vm.the_coffee_machine_output == machineOutput.get(i);
if (!resultl && !shouldFail) {
fail(i + ": MachineOutput " + vm.the_coffee_machine_output + " but
expected " + machineQutput.get(i)
+ " in " + string);
}
return (result && resultl);
}
}
Listing 7.2: Vending Machine Driver for Nat2Test
1D Requirement
1 When the voltage was greater than 80 and the wvoltage is lower than or equal to

80, the lights controller component shall assign 2 to the indication lights and
reset the timer.

2 When the voltage switches to greater than 80 or the mode switched to 1, and the
voltage is greater than 80, and the mode was 1, the lights controller component
shall assign 1 to the indication lights and reset the timer.

3 When the voltage switches to greater than 80 or the mode switched to 3, and the
voltage is greater than 80, and the mode was 3, the lights controller component
shall assign 3 to the indication lights and reset the timer.

4 When the voltage switches to greater than 80 or the mode switched to 0, and the
voltage is greater than 80, and the mode was 0, the lights controller component
shall assign 0 to the indication lights and reset the timer.

5 When the voltage is greater than 80, and the mode was 2, the lights controller
component shall assign 2 to the indication lights and reset the timer.
6 When the voltage is greater than 80, and the timer is greater or equal to 34,

and the indication lights are 1 or 3, the lights controller component shall assign
2 to the indication lights and reset the timer.

7 When the voltage is greater than 80, and the timer is greater or equal to 22, and
the indication lights are 2, and the mode was 1, the lights controller component
shall assign 1 to the indication lights and reset the timer.

8 When the voltage is greater than 80, and the timer is greater or equal to 22, and
the indication lights are 2, and the mode was 3, the lights controller component
shall assign 3 to the indication lights and reset the timer.

9 When the voltage is greater than 80, and the timer is greater or equal to 22, and
the indication lights are 2, and the mode was 0, the lights controller component
shall assign 0 to the indication lights and reset the timer.

10 When the turn indicator lever switches to 2, and the emergency mode is off, the
system shall assign 3 to the mode and reset the timer.
11 When the turn indicator lever switches to 1, and the emergency mode is off, the

system shall assign 1 to the mode and reset the timer.
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12 When emergency mode switches to true, the system shall set the mode to 0 and
reset the timer.

13 When emergency mode is on, and emergency mode was on, and the turn indicator
lever switches to 1, the system shall assign 1 to the mode and reset the timer.

14 When emergency mode is on, and emergency mode was on, and the turn indicator
lever switches to 2, the system shall assign 3 to the mode and reset the timer.

15 When emergency mode is on, and emergency mode was on, and the turn indicator

lever switches to 0, and the mode is not 0, the system shall assign 0 to the mode
and reset the timer.

16 When the emergency mode switches to off, and the turn indicator lever is 1, and
the turn indicator lever was 1, and the mode is not 1, the system shall assign 1
to the mode and reset the timer.

17 When the emergency mode switches to off, and the turn indicator lever is 2, and
the turn indicator lever was 2, and the mode is not 3, the system shall assign 3
to the mode and reset the timer.

Table 7.5: Preprocessed list of requirements for the Turn Indicator system.
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public class TIS_Nat2Test {

// 0: both

// 1: left

// 2: off

// 3: right

public int the_indication_lights = 2;
// 0: both

// 1: left

// 2: no flashing

// 3: right

public int the_flashing_mode = 2;
public double the_flashing_timer = 0;

// turn indicator lever:

// 0: both/idle

// 1: left

// 2: right

public int old_the_turn_indicator_lever =
public boolean old_the_emergency_flashing = false;
public int old_the_voltage = 0;

(o}

public int old_the_flashing_mode = 2;
public boolean isReset = false;

public void simulate(int the_voltage, int the_turn_indicator_lever,
boolean the_emergency_flashing) {
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int the_flashing_mode_temp = the_flashing_mode;
double the_flashing_timer_temp = the_flashing_timer;
int the_indication_lights_temp = the_indication_lights;
isReset = false;
if ((((!'((the_flashing_mode == 3)) && (old_the_turn_indicator_lever ==
2)) && (the_turn_indicator_lever == 2))
&& (!((old_the_emergency_flashing == false)) &&
(the_emergency_flashing == false)))) {
the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}
if (((the_emergency_flashing == false)
&& (!'((old_the_turn_indicator_lever == 2
(the_turn_indicator_lever == 2)))) {
the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;

)) &

}
if ((!((old_the_emergency_flashing)) && (the_emergency_flashing))) {

the_flashing_mode_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;
}
if (((the_emergency_flashing == false)
&& (! ((old_the_turn_indicator_lever == 1
(the_turn_indicator_lever == 1)))) {
the_flashing_mode_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;

)) &

}
if ((((!'((old_the_turn_indicator_lever == 2)) &&

(the_turn_indicator_lever == 2))
&& (old_the_emergency_flashing)) && (the_emergency_flashing))) {
the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((!((the_flashing_mode == 0))
& (!((old_the_turn_indicator_lever == 0)) &&
(the_turn_indicator_lever == 0)))
&& (old_the_emergency_flashing)) && (the_emergency_flashing))) {
the_flashing_mode_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((!'((old_the_turn_indicator_lever == 1)) &&
(the_turn_indicator_lever == 1))
&& (old_the_emergency_flashing)) && (the_emergency_flashing))) {



71 the_flashing_mode_temp = 1;

72 the_flashing_timer_temp = 0;

73 isReset = true;

74 }

75 if ((((!'((the_flashing_mode == 1)) && (old_the_turn_indicator_lever ==
1)) && (the_turn_indicator_lever == 1))

76 && (!((old_the_emergency_flashing == false)) &&

(the_emergency_flashing == false)))) {

77 the_flashing_mode_temp = 1;

78 the_flashing_timer_temp = 0;

79 isReset = true;

80 }

81 if ((!'((old_the_voltage <= 80)) && (the_voltage <= 80))) {

82 the_indication_lights_temp = 2;

83 the_flashing_timer_temp = 0;

84 isReset = true;

85 }

86 if ((((the_flashing_mode_temp == 1) && (the_voltage > 80))

87 && (('((old_the_flashing_mode == 1)) && (the_flashing_mode_temp ==

1))

88 || ('((old_the_voltage > 80)) && (the_voltage > 80))))) {

89 the_indication_lights_temp = 1;

90 the_flashing_timer_temp = 0;

91 isReset = true;

92 }

93 if ((((the_flashing_mode_temp == 0) && (the_indication_lights == 2)) &&
(the_voltage > 80))

94 && (the_flashing_timer >= 220)) {

95 the_indication_lights_temp = 0;

96 the_flashing_timer_temp = 0;

97 isReset = true;

98 }

99 if ((((the_flashing_mode_temp == 1) && (the_indication_lights == 2)) &&
(the_voltage > 80))

100 && (the_flashing_timer >= 220)) {

101 the_indication_lights_temp = 1;

102 the_flashing_timer_temp = 0;

103 isReset = true;

104 }

105 if ((((the_flashing_mode_temp == 0) && (the_voltage > 80))

106 && (('((old_the_flashing_mode == 0)) && (the_flashing_mode_temp ==

0))

107 |] (!'((old_the_voltage > 80)) && (the_voltage > 80))))) {

108 the_indication_lights_temp = 0;

109 the_flashing_timer_temp = 0;

110 isReset = true;

111 }

112 if (((the_flashing_mode_temp == 2) && (the_voltage > 80))) {
113 the_indication_lights_temp = 2;

115



o

~

NN N NN N
o o] =]

7 Appendix

the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_indication_lights == 3) || (the_indication_lights == 1)) &&
(the_voltage > 80))
&& (the_flashing_timer >= 340)) {
the_indication_lights_temp = 2;
the_flashing_timer_temp = 0;
isReset = true;

}
if ((((the_flashing_mode_temp == 3) && (the_indication_lights == 2)) &&
(the_voltage > 80))
&& (the_flashing_timer >= 220)) {
the_indication_lights_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_flashing _mode_temp == 3) && (the_voltage > 80))
&& (('((old_the_flashing_mode == 3)) && (the_flashing_mode_temp ==
3))
|| ('((old_the_voltage > 80)) && (the_voltage > 80))))) {
the_indication_lights_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}

the_flashing_mode = the_flashing_mode_temp;
the_flashing_timer = the_flashing_timer_temp;
the_indication_lights = the_indication_lights_temp;

Listing 7.3: Turn Indicator System Implementation for Nat2Test

public class TIS {

// 0: both

// 1: left

// 2: off

// 3: right

public int the_indication_lights

]
N

// 0: both

// 1: left

// 2: no flashing

// 3: right

public int the_flashing_mode = 2;
public double the_flashing_timer

[l
(<]
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// turn indicator lever:
// 0: both/idle

// 1: left

// 2: right

public int old_the_turn_indicator_lever = 0;
public boolean old_the_emergency_flashing = false;

public int old_the_voltage = 0;
public int old_the_flashing_mode = 2;
public boolean isReset = false;

public void simulate(int the_voltage, int the_turn_indicator_lever,
boolean the_emergency_flashing) {
int the_flashing_mode_temp = the_flashing_mode;
double the_flashing_timer_temp = the_flashing_timer;
int the_indication_lights_temp = the_indication_lights;
isReset = false;
if ((((!'((the_flashing_mode == 3)) && (old_the_turn_indicator_lever ==
2)) && (the_turn_indicator_lever == 2))
& (!'((old_the_emergency_flashing == false)) &&
(the_emergency_flashing == false)))) {
the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;

}
if (((the_emergency_flashing == false)
& (!((old_the_turn_indicator_lever == 2)) &&
(the_turn_indicator_lever == 2)))) {

the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;

}

if ((!((old_the_emergency_flashing)) && (the_emergency_flashing))) {
the_flashing_mode_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;

}
if (((the_emergency_flashing == false)
&& (!'((old_the_turn_indicator_lever == 1)) &&
(the_turn_indicator_lever == 1)))) {

the_flashing_mode_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;

}

if ((((!((old_the_turn_indicator_lever == 2)) &&

(the_turn_indicator_lever == 2))
&& (old_the_emergency_flashing)) && (the_emergency_flashing))) {
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the_flashing_mode_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((!'((the_flashing_mode == 0))
&& (!'((old_the_turn_indicator_lever == 0)) &&
(the_turn_indicator_lever == 0)))
& (old_the_emergency_flashing)) && (the_emergency_flashing))) {
the_flashing_mode_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((!'((old_the_turn_indicator_lever == 1)) &&
(the_turn_indicator_lever == 1))
&& (old_the_emergency_flashing)) && (the_emergency_flashing))) {
the_flashing_mode_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((!'((the_flashing_mode == 1)) && (old_the_turn_indicator_lever ==
1)) && (the_turn_indicator_lever == 1))
&& (!'((old_the_emergency_flashing == false)) &&
(the_emergency_flashing == false)))) {
the_flashing_mode_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((!'((old_the_voltage <= 80)) && (the_voltage <= 80))) {
the_indication_lights_temp = 2;
the_flashing_timer_temp = 0;
isReset = true;

}
if ((((the_flashing_mode == 1) && (the_voltage > 80))
& ((!((old_the_flashing_mode == 1)) && (the_flashing_mode == 1))
|| (!((old_the_voltage > 80)) && (the_voltage > 80))))) {
the_indication_lights_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_flashing_mode == 0) && (the_indication_lights == 2)) &&
(the_voltage > 80))
&& (the_flashing_timer >= 22)) {
the_indication_lights_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_flashing_mode == 1) && (the_indication_lights == 2)) &&

(the_voltage > 80))
&& (the_flashing_timer >= 22)) {
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the_indication_lights_temp = 1;
the_flashing_timer_temp = 0;
isReset = true;

}
if ((((the_flashing_mode == 0) && (the_voltage > 80))
& ((!'((old_the_flashing_mode == 0)) && (the_flashing_mode == 0))
|| ('((old_the_voltage > 80)) && (the_voltage > 80))))) {
the_indication_lights_temp = 0;
the_flashing_timer_temp = 0;
isReset = true;
}

if (((the_flashing_mode == 2) && (the_voltage > 80))) {
the_indication_lights_temp = 2;
the_flashing_timer_temp = 0;
isReset = true;

}
if ((((the_indication_lights == 3) || (the_indication_lights == 1)) &&
(the_voltage > 80))
&& (the_flashing_timer >= 34)) {
the_indication_lights_temp = 2;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_flashing_mode == 3) && (the_indication_lights == 2)) &&
(the_voltage > 80))
&& (the_flashing_timer >= 22)) {
the_indication_lights_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}
if ((((the_flashing_mode == 3) && (the_voltage > 80))
& ((!'((old_the_flashing_mode == 3)) && (the_flashing_mode == 3))
|] (!'((old_the_voltage > 80)) && (the_voltage > 80))))) {
the_indication_lights_temp = 3;
the_flashing_timer_temp = 0;
isReset = true;
}

the_flashing_mode = the_flashing_mode_temp;
the_flashing_timer = the_flashing_timer_temp;
the_indication_lights = the_indication_lights_temp;

Listing 7.4: Turn Indicator System Implementation for TG-SRL

import static org.junit.Assert.fail;
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import java.io.File;

import java.io.IOException;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.ArraylList;

import java.util.List;

import org.junit.Test;

public class TestManager_TIS {

120

private List<Integer> indicationLights;
private List<Integer> flashingMode;
private List<Integer> flashingTimer;
private List<Integer> time;

private List<Integer> voltage;

private List<Boolean> emergencyFlashing;
private List<Integer> turnlLever;

@Test
public void testAllFiles() throws IOException {
File folder = new File("D:\\Git\\gitws\\diss\\tests\\TIS");

for (File file : folder.listFiles()) {
TIS system = new TIS();
simulate(file, system);
}
}

public void simulate(File csvFile, TIS vm) throws IOException {
if (csvFile.getName().equals("mapping.csv"))
return;

List<String> lines =
Files.readAllLines(Paths.get(csvFile.getAbsolutePath()),
StandardCharsets.UTF_8);

int duration = lines.size() - 1;

indicationLights = new ArrayList<Integer>();

flashingMode = new ArrayList<Integer>();

flashingTimer = new ArraylList<Integer>();

voltage = new ArraylList<Integer>();

time = new ArraylList<Integer>();

emergencyFlashing = new ArraylList<Boolean>();

turnLever = new ArraylList<Integer>();

extractSignals(lines);

boolean shouldFail = csvFile.getName().contains("fail") ? true :
false;

boolean result = true;

for (int 1 = 0; i < duration; i++) {



50 if (time.get(i) !'= 1i) {

51 fail(i + ": Time was " + time.get(i));

52 }

53 vm.simulate(voltage.get(i), turnLever.get(i),
emergencyFlashing.get(i));

54 // if no reset has happened,

55 // increase the flashing timer by the time that passed during
simulation, in this case always 1

56 if (!'vm.isReset) {

57 vm.the_flashing_timer = vm.the_flashing_timer + 1;

59 vm.old_the_emergency_flashing = emergencyFlashing.get(i);

60 // because it is an output, the "old" variable refers to i-1

61 if (1 > 0)

62 vm.old_the_flashing_mode = flashingMode.get(i - 1);

63 else

64 vm.old_the_flashing_mode = 2;

65 vm.old_the_voltage = voltage.get(i);

66 vm.old_the_turn_indicator_lever = turnLever.get(i);

67 boolean check = checkOutputs(i, shouldFail, csvFile.getName(), vm);

68 if (!check) {

69 result = false;

1 }
. }

7 if (shouldFail && result) {
75 fail(csvFile.getName() + " passed, but should have failed.");

76 }

77 }

79 private void extractSignals(List<String> lines) {

80 String header = lines.get(0);

81 String[] signals = header.split(";");

82 for (int i = 1; i < lines.size(); i++) {

83 String currentLine = lines.get(1i);

84 String[] currentLineArray = currentLine.split(";");
85 for (int j = 0; j < currentLineArray.length; j++) {
86 if (signals[j].equals("the voltage")) {

87 voltage.add(Integer.parseInt(currentLineArray[jl));
88 }

89 if (signals[j].equals("emergency mode")) {

90 emergencyFlashing.add(Integer.parselnt(currentLineArray[j]) ==
1 ? true : false);

91 }

92 if (signals[j].equals("the timer")) {

93 flashingTimer.add(Integer.parseInt(currentLineArray[jl));

94 }

95 if (signals[j].equals("the indication lights")) {
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indicationLights.add(Integer.parseInt(currentLineArray[jl));

}

if (signals[j].equals("the mode")) {
flashingMode.add(Integer.parseInt(currentLineArray[j]));

}

if (signals[j].equals("the turn indicator lever")) {
turnLever.add(Integer.parseInt(currentLineArrayl[j]));

}

if (signals[j].equals("Time")) {
time.add(Integer.parselnt(currentLineArray[jl));

}

}
}

private boolean checkOutputs(int i, boolean shouldFail, String string,

TIS vm) {
boolean result = vm.the_indication_lights == indicationLights.get(i);
if (!result && !shouldFail) {

fail(i + ": IndicationLights " + vm.the_indication_lights + " but

expected " + indicationLights.get(1i)
+ " in " + string);

}
boolean resultl = vm.the_flashing_mode == flashingMode.get(i);
if (!resultl && !shouldFail) {
fail(i + ": FlashingMode " + vm.the_flashing_mode + " but expected
" + flashingMode.get(i) + " in "
+ string);
}
boolean result2 = vm.the_flashing_timer == flashingTimer.get(i);
if (!result2 && !shouldFail) {
fail(i + ": FlashingTimer " + vm.the_flashing_timer + " but
expected " + flashingTimer.get(i) + " in "
+ string);
}

return (result && resultl && result2);

Listing 7.5: Turn Indicator System Driver for TG-SRL

import static org.junit.Assert.fail;

import java.io.File;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
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7 import java.nio.file.Files;
s import java.nio.file.Paths;
o import java.util.ArraylList;
10 import java.util.List;

12 import org.junit.Test;
14 public class TestManager_TIS_Nat2Test {

16 private List<Integer> indicationLights;
private List<Integer> flashingMode;
private List<Float> time;

private List<Integer> voltage;

private List<Boolean> emergencyFlashing;
private List<Integer> turnLever;

]

®

@Test
public void testAllFiles() throws IOException {
File folder = new File("D:\\gitws\\diss\\files\\eval\\TI\\TestCases");

W N =

~

for (File file : folder.listFiles()) {
TIS_Nat2Test vm = new TIS_Nat2Test();
simulate(file, vm);
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30 }
32 }

34 public void simulate(File csvFile, TIS_Nat2Test vm) throws IOException {

35 if (csvFile.getName().equals("mapping.csv"))

36 return;

37 List<String> lines =
Files.readAllLines(Paths.get(csvFile.getAbsolutePath()),
StandardCharsets.UTF_8);

38 indicationLights = new ArraylList<Integer>();

39 flashingMode = new ArrayList<Integer>();

10 voltage = new ArraylList<Integer>();

1 time = new ArrayList<Float>();

12 emergencyFlashing = new ArraylList<Boolean>();

13 turnLever = new ArraylList<Integer>();

14 extractSignals(lines);

15 boolean shouldFail = csvFile.getName().contains("fail") ? true : false;

16 boolean result = true;

17 double lastReset = 0;

18 for (int i = 0; i < time.size(); i++) {

19 vm.the_flashing_timer = time.get(i) - lastReset;

50 vm.simulate(voltage.get(i), turnLever.get(i),

emergencyFlashing.get(i));

51 if (vm.isReset) {

52 lastReset = time.get(i);
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53 }
54 vm.old_the_emergency_flashing = emergencyFlashing.get(1i);
55 // because it is an output, the "old" variable refers to i-1

56 if (1 > 0)
57 vm.old_the_flashing_mode = flashingMode.get(i - 1);
58 else

59 vm.old_the_flashing_mode = 2;

60 vm.old_the_voltage = voltage.get(i);

61 vm.old_the_turn_indicator_lever = turnLever.get(i);

62 boolean check = checkOutputs(i, shouldFail, csvFile.getName(), vm);
63 if (!check) {

64 result = false;

65 }

66 }

68 if (shouldFail && result) {

69 fail(csvFile.getName() + " passed, but should have failed.");
70 }

1 }

private void extractSignals(List<String> lines) {
74 String header = lines.get(0);

75 String[] signals = header.split(";");

76 for (int i = 1; i < lines.size(); i++) {

77 String currentlLine = lines.get(i);

78 if (currentLine.isEmpty())

79 continue;

80 String[] currentLineArray = currentLine.split(";");

81 for (int j = 0; j < currentLineArray.length; j++) {

82 if (signals[j].equals("the_voltage")) {

83 voltage.add(Integer.parselnt(currentLineArray[j]));

84 }

85 if (signals[j].equals("the_emergency_flashing")) {

86 emergencyFlashing.add(Integer.parselnt(currentLineArray[j]) ==
? true : false);

87 }

88 if (signals[j].equals("the_indication_lights")) {

89 indicationLights.add(Integer.parseInt(currentLineArray[j]));

90 }

01 if (signals[j].equals("the_flashing_mode")) {

92 flashingMode.add(Integer.parseInt(currentLineArray[j]));
93 }

94 if (signals[j].equals("the_turn_indicator_lever")) {

95 turnLever.add(Integer.parseInt(currentLineArray[jl));

96 }

97 if (signals[j].equals("TIME")) {

98 time.add(Float.parseFloat(currentLineArray[j]));
99 }

100 }
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}

private boolean checkOutputs(int i, boolean shouldFail, String string,
TIS_Nat2Test vm) {

boolean result = vm.the_indication_lights == indicationLights.get(1i);
if (!result && !shouldFail) {
fail(i + ": IndicationLights " + vm.the_indication_lights + " but

expected " + indicationLights.get(1i)
+ " in " + string);

}
boolean resultl = vm.the_flashing _mode == flashingMode.get(1i);
if (!resultl && !shouldFail) {
fail(i + ": FlashingMode " + vm.the_flashing_mode + " but expected "
+ flashingMode.get(i) + " in "
+ string);
}
return (result && resultl);
}
Listing 7.6: Turn Indicator System Driver for Nat2Test
Time the coffee the coffee the coin the request the system
machine request sensor timer mode
output sensor
0 0 0 0 1 1
1 0 0 1 0 0
2 0 0 0 1 0
3 0 1 0 0 3
4 0 1 0 1 3
) 0 0 0 2 3
6 0 0 0 3 3
7 0 0 0 4 3
8 0 0 0 ) 3
9 0 0 0 6 3
10 0 0 0 7 3
11 0 0 0 8 3
12 0 0 0 9 3
13 0 0 0 10 3
14 1 0 0 11 1
15 1 0 1 0 0
16 1 0 1 1 0
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17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

10
11
12

13
14
15

16
17
18
19
20
21

32

33

34
35

36

22

37
38

23
24
25

39
40
41

26
27
28
29
30
31

42

43

44
45

46

47
48

49

50
51

52

53

Table 7.7: Exemplary test case from TG-SRL for the Vending Machine system.
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public class VendingMachine {

// mode
// 0: choice, 1: idle, 2: preparing strong coffee, 3: preparing weak
coffee
public int the_system_mode = 1;
public int the_coffee_machine_output = 0;
public double the_request_timer = 0;
public boolean isReset = false;

public
public

boolean old_the_coin_sensor
boolean old_the_coffee_request_button

NN N NN
© N o o w
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public void simulate(boolean the_coffee_request_button, boolean
the_coin_sensor ) {

// Reql
if ((the_request_timer <= 30.0) && (the_request_timer >= 10.0) &&
(the_system_mode == 3)) {

the_coffee_machine_output = 1;
the_system_mode = 1;
isReset = false;
// Req2
} else if ((the_request_timer <= 50.0) && (the_request_timer >= 30.0)
&& (the_system_mode == 2)) {
the_coffee_machine_output = 0;
the_system_mode = 1;
isReset = false;

// Req3
} else if ((the_coin_sensor == true && !(old_the_coin_sensor ==
true)) && (the_system_mode == 1)) {

the_request_timer = 0;
isReset = true;
the_system_mode = 0;
// Reqd
} else if ((the_coffee_request_button == true &&
I (old_the_coffee_request_button == true))

&& (old_the_coin_sensor == false) && (the_coin_sensor == false)
&& (the_request_timer <= 30.0)
&& (the_system_mode == 0)) {

the_request_timer = 0;
isReset = true;
the_system_mode = 3;
// Reqg5
} else if ((the_coffee_request_button == true &&
I (old_the_coffee_request_button == true))
&& (old_the_coin_sensor == false) && (the_coin_sensor == false)
&& (the_request_timer > 30.0)

39
10
11
12

43

44
15

16

&& (the_system_mode ==
the_request_timer
isReset = true;
the_system_mode

} else {
isReset

Listing 7.7: Vending Machine Implementation
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Frame Ele- Description

ment

#43 Thing (coin)

#45 Thing (is)

#47 Predicate (inserted), ARG1: #43 (coin), ARGM-TMP: #48 (while the
machine is in state 1 and the request timer is lower or equal to 30)

#49 Thing (machine)

#50 Thing (state 1)

#55 Cardinal (1)

#57 Predicate (request), ARG1: #58 (timer)

#58 Thing (timer)

#61 Predicate (is lower), ARG1: #58 (timer), ARG2: #62 (or equal to 30)

462 Thing (30)

#65 Cardinal (30)

#67 Thing (then)

#69 Thing (machine state)

#71 Thing (should)

#73 Predicate (be modified), ARGM-ADV: #67 (then), ARG1: #69 (machine
state), ARGM-MOD: #71 (should), ARG2: #74 (3)

#74 Cardinal (3)

#HTT Predicate (request)

#79 Thing (timer)

#81 Thing (should)

#83 Predicate (be reset), ARG1: #79 (timer), ARGM-MOD: #81 (should),
ARG2: #84 (reset)

#84 Thing (reset)

Table 7.6: Output from [46] on the sentence "If a coin is inserted while the machine is in
state 1 and the request timer is lower or equal to 30, then the machine state should be
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modified to 3 and the request timer should be reset."
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