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Abstract

Machine learning is increasingly used in systems and control, which is motivated
by increasingly challenging control, simulation and analysis problems, abundant
data and computing resources, as well as impressive theoretical and methodological
advances in machine learning. The established class of kernel methods is of particular
interest in this context, due to their rich theory, efficient and reliable algorithms,
and modularity, and indeed kernel methods are increasingly used in systems and
control. This thesis contributes to this flourishing field, focusing on two exemplary
and complementary topics.
First, many learning-based control approaches are based on combining uncertainty

bounds for Gaussian process (GP) regression with robust control methods. We
revisit the foundations of this domain by consolidating, improving, and carefully
evaluating the required uncertainty bounds. As an application, we demonstrate how
they can be combined with modern robust controller synthesis, leading to learning-
enhanced robust control with rigorous control-theoretic and statistical guarantees.
We furthermore discuss a severe practical limitation of these approaches, the a priori
knowledge of an upper bound on the reproducing kernel Hilbert space (RKHS) norm
of the target function, and propose to combine geometric assumptions together with
kernel machines as a promising alternative.
Second, we initiate a new research direction by combining kernels with mean field

limits as appearing in kinetic theory. Motivated by learning problems on large-
scale multiagent systems, we introduce mean field limits of kernels, and provide an
extensive theory for the resulting RKHSs. This is used in turn in the analysis of
kernel-based statistical learning in the mean field limit, which not only is a novel
form of large-scale limit in theoretical machine learning, but provides also a solid
foundation for applications in kinetic theory. Finally, using the theory of reproducing
kernels, we establish the first existence result for the mean field limit of very general
discrete-time multiagent systems, and use this in mean field optimal control.
In summary, in this thesis we improve and refine existing uses of kernel methods

in systems and control, helping to consolidate the area of learning-based control and
pushing it further towards practical applications, and we introduce novel uses of
kernels and their theory in systems and control, with many interesting directions for
future work.
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Kurzzusammenfassung

Maschinelles Lernen wird zunehmend in der System- und Regelungstechnik einge-
setzt, was durch herausfordernde Kontroll-, Simulations- und Analyseprobleme, große
Daten- und Rechenressourcen, sowie beeindruckende theoretische und methodis-
che Fortschritte des maschinellen Lernens motiviert ist. In diesem Kontext ist die
etablierte Klasse der Kernmethoden von besonderem Interesse, da diese über eine
reichhaltige Theorie, effiziente Algorithmen sowie hohe Modularität verfügen, und
in der Tat werden diese Methoden zunehmend in der System- und Regelungstechnik
eingesetzt. Die vorliegende Dissertation trägt zu diesem sehr aktiven Feld bei, wobei
der Fokus auf zwei exemplarischen und komplementären Themen liegt.
Viele lernbasierte Regelungsmethoden basieren auf der Kombination von Un-

sicherheitsschranken für Regression mit Gaußschen Prozessen (GP) mit Methoden
der robusten Regelung. Wir betrachten die Grundlagen dieser Methoden, indem wir
die benötigten Unsicherheitsschranken konsolideren, verbessern und ausführlich em-
pirisch untersuchen. Als eine Anwendung kombinieren wir diese mit modernen Syn-
thesemethoden der robusten Regelung, was zu lern-bereicherter robusten Regelung
mit rigorosen kontroll-theoretischen und statistischen Garantien führt. Des Weit-
eren diskutieren wir eine schwerwiegende praktische Einschränkung dieser Ansätze,
nämlich das Erfordernis einer a-priori Schranke für die Norm der Zielfunktion in
einem reproduzierenden Kern-Hilberraum (RKHS), und wir schlagen als Alterna-
tive die Verwendung von geometrischen Vorwissen zusammen mit Kernmaschinen
vor.
Zweitens starten wir eine neue Forschungsrichtung durch die Kombination von

Kernen und dem Mean Field Limit, wie sie in der kinetischen Theorie vorkom-
men. Motiviert durch Lernprobleme auf großen Multiagentensystem führen das
Mean Field Limit von Kernen ein, und studieren sehr ausführlich die entsprechen-
den RKHSs. Dies wiederum wird in der Analyse von kernbasierten Lernmethoden
im Mean Field Limit genutzt, was nicht nur ein neues Limit-Konzept in der Theorie
des maschinellen Lernens darstellt, sondern auch eine solide Grundlage für Anwen-
dungen in der kinetischen Theorie liefert. Schließlich verwenden wir die Theorie
reproduzierender Kerne, um das erste Existenzresult für das Mean Field Limit von
sehr allgemeinen zeitdiskreten Multiagentensystemen zu zeigen, was anschließend in
der Optimalsteuerung im Mean Field Limit angewandt wird.
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Zusammenfassend verbessern und verfeinern wir existierende Anwendungen von
Kernmethoden in der System- und Regelungstechnik, was zur Konsoliderung der
lernbasierten Regelung beiträgt und einen weiteren Schritt Richtung praktischer
Anwendungen erlaubt, und zudem führen wir eine neuartige Anwendungen von re-
produzierenden Kernen und ihrer Theorie in diesem Kontext ein, mit vielfältigen
Anknüpfungspunkten für weitergehende Arbeiten.
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1. Introduction

We start by providing background and context, in particular, motivating the focus
on kernel methods in the context of systems and control. We then describe on a
high level the two main topics of this thesis, before giving a detailed outline of this
work and its contributions.

1.1. Background and motivation

The field of systems and control – and related disciplines like dynamical systems
theory, control engineering, process engineering, operations research – has recently
experienced a surge in interaction with machine learning and related disciplines like
statistics and data science. While insights and methods from systems and control
have permeated into parts of machine learning, e.g., in the context of optimization
algorithms [178, 143, 84], or structured state space models [8], the influence of learn-
ing for and in systems and control is arguably far greater. Of course, learning (and
data) has played an important role in systems and control almost since the incep-
tion of this field, most notably in systems identification [121] and adaptive control
[97]. However, with increasing availability of data and compute, and considerable
progress in machine learning on both theoretical and methodological levels, learn-
ing and data have become a central focus of research in systems and control, often
subsumed under the term learning-based control. This term might also encompass
related activities, like data-driven control [132], distribution-free approaches like the
scenario approach [46], methods based on the Koopman approach [133], and even
reinforcement learning [193].
While the use of machine learning in systems and control appears to be very

promising, it is often highly non-trivial due to specific challenges arising from the
nature of dynamical systems and the requirements of control engineering. From
a theoretical perspective, data generated by dynamical systems have inherent de-
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1. Introduction

pendencies which can lead to statistical complications, and despite recent progress,
even the linear case still poses open problems [202]. Similarly, learning a dynamical
system might require targeted exploration [40, 129] in contrast to passive sampling.
Furthermore, in many applications stringent guarantees are required of a control
method, including stability, constraint satisfaction, or even performance guarantees
[15, 87], often under external disturbances and imprecise knowledge of the system
to be controlled. Finally, since systems and control is in many cases concerned
with physical systems, considerations of sample efficiency, safety, and use of prior
knowledge become relevant.
The present thesis contributes to the flourishing field of machine learning for sys-

tems and control. In light of the challenges outlined above, we focus on a particular
class of learning methods – kernel methods. Roughly speaking, this is a class of
learning algorithms that rely on a mathematical object known as a (reproducing)
kernel, which is associated with a specific function space, called a reproducing kernel
Hilbert space (RKHS). Kernel methods are a very established class of learning meth-
ods, with a very mature theory, efficient algorithms, and a large variety of models
and learning approaches available [181, 189]. Furthermore, they have strong con-
nections to other fields, including scattered data approximation [217] and statistical
methods for stochastic processes [32], which increases their applicability, and allows
for profiting from developments in these related fields. Kernel methods are particu-
larly attractive for use in systems and control due to the following characteristics:

1. They have a very well-developed theory that is often easy to use in down-
stream applications, which is in contrast to other popular approaches like
Deep Learning1.

2. There exist systematic ways to include prior knowledge, cf. also Chapter 4.

3. Kernel methods tend to be sample efficient and reliable, e.g., by avoiding
nonconvex optimization problems [166, 181].

Finally, kernel methods are already popular and successful in the context of systems
1There has been tremendous progress in the understanding of deep learning in recent years, but
the theory is still not comparable to what has been achieved for kernel methods. Ironically, a
lot of progress in the theory of deep learning has been achieved by reduction to kernel methods
and their theory, e.g., [98].
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and control, both on a theoretical (e.g, [129]) and practical level, e.g., in system
identification [159].

1.2. Goals of this thesis

The discussion in the preceding sections motivates the following question, which will
form the starting point for this thesis:

What can kernel methods do for systems and control?

While we start with this rather broad question, the present thesis focuses on two
representative and complementary topics, which demonstrate the power of kernel
methods and their theory in the context of systems and control. In the following,
we will give a high-level overview of those two topics and state our goals. For
conciseness, we will provide a discussion of the relevant literature in the respective
upcoming chapters.

Uncertainty sets and learning-based control Modern control methods often rely
on various types of models, usually of the system to be controlled, but also of ex-
ternal signals or even uncertainties in the system behaviour. In general, a better
model leads to better control performance. Since for many real-world systems first-
principles modelling becomes challenging, it is therefore tempting to use machine
learning to improve the models (or even generate them in the first place), and this is
indeed a strong focus of learning-based control. However, as already touched upon
above, the use of learning in the context of control comes with unique challenges,
and we would like to elaborate on two of these. First, since control is a very ma-
ture field, with a deep theory and considerable experience by its practitioners, it is
highly advisable to avoid ab initio learning, and instead try to include prior knowl-
edge. For many applications, rigorous control-theoretic guarantees are required, and
these can indeed be provided for many modern control methodologies. Retaining
such guarantees even when a learning component is involved is therefore a second
interesting challenge. As suggested by the preceding introductory remarks, this sug-
gests the use of kernel methods, and indeed they are very popular in the context
of learning-based control, especially Gaussian process (GP) regression, for which
uncertainty bounds are available. However, control applications put very specific

3



1. Introduction

and demanding requirements on these uncertainty sets. For this reason, we revisit
uncertainty bound for kernel methods in the context of control. We will investigate
rigorous, yet practical uncertainty bounds for kernel methods suitable for control
applications, with a particular emphasis on reasonable assumptions and their prac-
tical ramifications, and exemplary control applications. The overarching goal is to
achieve learning-enhanced control with rigorous guarantees that are meaningful in
practice.

Kernels and the mean field limit The field of kinetic theory is concerned with
the modelling, analysis, simulation, and control of large-scale system consisting of
interacting components, with gas dynamics as a prime example. A very important
tool in this area is the mean field limit, which is one way to go from a microscopic
perspecive (considering individual, discrete entities) to a mesoscopic level (working
with the distribution of entitites). Curiously, the use of kernel methods in this
area appears to be almost completely unexplored. We therefore start to pursue this
direction with two completely novel applications of kernels. First, we investigate
the mean field limit of kernels and their RKHSs, as well as associated statistical
learning problems. This is motivated by certain learning problems in the context
of interacting particle systems, but it is also interesting from a purely theoretical
perspective. Second, we use theoretical tools from kernel methods in the context of
discrete-time multiagent systems. More precisely, we use kernel mean embeddings
(KMEs) to established an existence result for the mean field limit of such systems,
and to the best of our knowledge this is also the first such result. We therefore
demonstrate that kernel methods and their theory are a promising avenue in the
context of kinetic theory.

Finally, we would like to stress that the nature of the two exemplary topics of this
thesis are complementary. While the first one is an established and active topic, and
our focus is on carefully revisiting its foundations and their practical ramifications,
our second topic forms a novel and innovative domain, with many interesting open
questions and promising avenues for future work.
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1.3. Contributions and outline

We now outline the remainder of this thesis, motivating our approaches and pointing
out our contributions. The thesis is structured in three parts. In Part I, we provide
technical background on kernels and reproducing kernel Hilbert spaces, since these
form the theoretical foundation for much of following developments. Parts II and III
correspond to the two concrete areas this thesis contributes to, kernel methods with
uncertainty sets and their use in learning-based control, and kernels in the context
of mean field limits. Since the present thesis touches upon several research fields
and requires tools from a range of disciplines, each part contains an introductory
chapter, and we have placed the discussion of related work and relevant background
literature in the corresponding chapters. This improves the reading flow, and makes
the thesis accessible to a broader audience.

1.3.1. Part I: Foundations

The primary technical tool for the remainder of the thesis are kernels and their
associated RKHSs. We therefore provide ample background on this topic after this
introductory chapter.
While there are many good introductions to RKHSs (see the next chapter for

some pointers to the literature), we identified an unfortunate gap in the literature:
most introductions choose a particular perspective, which leads to some concepts
and results appearing unnatural, unless viewed from a different, more appropriate
perspective. This hinders a quick comprehension by beginners of this field and
slows down a deeper understanding. In Chapter 2 we therefore present a gentle
introduction to kernels and RKHSs, choosing for each concept and result the most
natural perspective to present it, contributing a novel and complementary exposition
to the kernel literature.
In later chapters, geometric properties and regularity of RKHS functions will play

a role, in particular, Lipschitz continuity thereof. Unfortunately, to the best of
our knowledge, there is no systematic exposition and investigation of Lipschitz (or
more generally, Hölder) continuity of RKHS functions, so we devote Chapter 3 to
this topic. In this way, we provide the first comprehensive survey of Lipschitz and
Hölder continuity in RKHSs, which collects and refines many existing results, and
presents some new ones.
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1.3.2. Part II: Uncertainty bounds and learning-based control

In Part II, we commence with our first main objective of this thesis: investigating
and improving uncertainty bounds for kernel methods in the context of learning-
based control, and applications therein. Since for learning-based control regression
is most important learning setup, we restrict us to such problems in this part of the
thesis.
In the introductory Chapter 4, we start with an exposition of uncertainty sets

in learning-based control. This will be discussed in very general framework, which
appears to go beyond the existing literature on learning-based control. We provide
also background on GP regression and kernel ridge regression, as these are among
the most common kernel methods in learning-based control.
The investigation of uncertainty bounds for these kernel methods starts in Chap-

ter 5. We describe some simple uncertainty bounds based on concentration in-
equalities for quadratic forms, and we review the state-of-the-art bounds based on
self-normalization. By interpreting the kernel methods as instances of regularized
least-squares in Hilbert spaces, we can give a particularly transparent presentation.
In addition, we provide an elementary derivation of the self-normalization results
that actually explains how these results arise. We also describe our results provid-
ing uncertainty bounds that are robust to model misspecifications, which are the
first results of this kind.
In Chapter 6, we carefully evaluate the uncertainty bounds using numerical exper-

iments. Based on both the theoretical and practical insights, we then apply them to
a learning-based control application, for which we focus on learning-enhanced robust
controller synthesis with statistical and control-theoretic guarantees. To the best of
our knowledge, this is the first application of kernel methods with frequentist un-
certainty bounds in the context of modern robust controller synthesis that provides
rigorous statistical and control-theoretical guarantees.
Unfortunately, the uncertainty bounds have a subtle, but severe practical issue –

the need for an a priori bound on the RKHS norm of the target function. In Chapter
7 we argue that this forms a severe obstacle to their applicability in control, and
actually prohibits their use in many relevant safety-critical scenarios. To overcome
this issue, we propose to instead use geometric assumptions on the target function,
which can be connected to established prior knowledge. We implement and evaluate
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this strategy in the context of hard shape constraint kernel machines, and evaluate
it using numerical experiments.
Summarizing, uncertainty bounds for kernel methods in the context of learning-

based control is a rather active subject with considerable activity in the last decade.
On a high level, our contribution to this area lies in carefully and critically revisiting
its foundation, in particular, the assumptions used and the way the bounds are used,
and proposing ways to make the theory more practical.

1.3.3. Part III: Mean field limits and kernels

In Part III of the thesis, we turn to the subject of kernels and mean field limits.
We start with some background on the mean field limit in Chapter 8, and provide
motivation for the study of the mean field limit of kernels.
In Chapter 9, we then investigate in detail the mean field limit of kernels and

their RKHSs. This entails an existence result of the mean field limit of kernels as
well as large classes of kernels that allow such a limit. Furthermore, we provide an
essentially complete characterization of the involved RKHSs under the mean field
limit. This seems to be a completely new area of study, to which we contribute also
a rather complete theory.
In Chapter 10, we then turn to investigating statistical learning with kernels in the

mean field. We start with some results on the approximation capabilities of kernels in
this setting, and formulate an appropriate variant of the representer theorem, which
is the main ingredient that makes learning with kernels numerically feasible. After
providing a concise introduction of the standard framework of statistical learning
theory, we then present convergence results for learning problems involving kernels
in the mean field limit. To the best of our knowledge, the setting of this chapter
is also novel, and we contribute substantial theoretical results, relying also on novel
techniques like applying Γ-convergence arguments to kernels and RKHSs.
Finally, in Chapter 11 we turn to discrete-time multiagent systems. Using kernel

mean embeddings, we provide the first existence result for the mean field limit of
a very general class of such systems. As an application, we consider corresponding
optimal control problems, and prove that the relaxed dynamical programming prin-
ciple, as used in the analysis of nonlinear model predictive control without terminal
constraints, also holds in the mean field limit.
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We conclude the thesis in Chapter 12 with a summary and an outline of some
interesting directions for future work. In the appendix we have included a chapter
on statistical learning theory for kernel-based methods on distributional inputs, pre-
senting new oracle inequalities and stability-based generalization bounds. While not
directly related to learning for systems and control, many of the techniques appear-
ing throughout this thesis will be used there, and as in Chapters 9 and 10, kernels
on probability distributions will play an important role.

1.4. Publications

The present thesis is based on several publications, preprints and manuscripts. At
the beginning of every chapter, we will state from which publication or manuscript
material has been used for the respective chapter. Furthermore, we end each chapter
(apart from this introductory Chapter 1 and the concluding Chapter 12) with a
section describing the relation to existing work, and additional details on the present
author’s contributions.
For the reader’s convenience, we now provide an overview of works involving

the author that are part of this thesis, or are related in some way to it. Unless
mentioned otherwise, the present author’s position in the author list reflects his
contribution. In particular, the first author is usually the main author in terms of
scientific contributions and writing. If the ordering of the authors is alphabetical,
or the first authorship is shared, this will be explicitly pointed out in the remainder
of this section.
Regarding Part I, Chapter 2 is based on an earlier version of

Christian Fiedler and Sebastian Trimpe. A panoramic introduction to
reproducing kernel Hilbert spaces. Manuscript in preparation, 2024.

and Chapter 3 is taken mostly verbatim from the preprint

Christian Fiedler. Lipschitz and Hölder continuity in reproducing ker-
nel Hilbert spaces. arXiv preprint, 2023.

In Part II, Chapters 4, 5, and 6 build heavily on the following publications, with
some parts taken verbatim,
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Christian Fiedler, Carsten W. Scherer, and Sebastian Trimpe. Prac-
tical and rigorous uncertainty bounds for Gaussian process regression.
AAAI Conference on Artificial Intelligence (AAAI), 2021. Updated ver-
sion with corrections as preprint arXiv:2105.02796v2

Christian Fiedler, CarstenW. Scherer, and Sebastian Trimpe. Learning-
enhanced robust controller synthesis with rigorous statistical and control-
theoretic guarantees. 60th IEEE Conference on Decision and Control
(CDC), 2021.© 2021 IEEE.

Most of Chapter 7 is from the articles

Christian Fiedler, Carsten W. Scherer, and Sebastian Trimpe. Learn-
ing functions and uncertainty sets using geometrically constrained kernel
regression. 61st IEEE Conference on Decision and Control (CDC), 2022.
© 2022 IEEE.

Christian Fiedler2, Johanna Menn, Lukas Kreisköther, and Sebastian
Trimpe. On safety in safe Bayesian optimization. Transactions on Ma-
chine Learning Research (TMLR), 2024.

In addition, the findings from this last work have been disseminated in the follow-
ing extended abstract, which has been presented as a poster at the corresponding
symposium,

Christian Fiedler3, Johanna Menn, and Sebastian Trimpe. Safety in
safe Bayesian optimization and its ramifications for control. Extended
abstract, Symposium on Systems Theory in Data and Optimization,
2024. Available as preprint arXiv:2501.13697

Most of Part III has appeared in the following articles

Christian Fiedler4, Michael Herty, Michael Rom, Chiara Segala, and
Sebastian Trimpe. Reproducing kernel Hilbert spaces in the mean field
limit. Kinetic and Related Models, 2023. Published by American Insti-
tute of Mathematical Sciences.

2Joint first authorship with J. Menn. The two first authors are ordered alphabetically.
3Joint first authorship with J. Menn.
4First and main author, the remaining authors are ordered alphabetically.
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Christian Fiedler, Michael Herty, and Sebastian Trimpe. On kernel-
based statistical learning theory in the mean field limit. Thirty-seventh
Conference on Neural Information Processing Systems (NeurIPS), 2023.

Christian Fiedler5, Michael Herty, Chiara Segala, and Sebastian Trimpe.
Recent kernel methods for interacting particle systems: first numerical
results. European Journal of Applied Mathematics, 2024.

Christian Fiedler, Michael Herty, and Sebastian Trimpe. Mean field
limits for discrete-time dynamical systems via kernel mean embeddings.
IEEE Control Systems Letters, 2023. © 2023 IEEE.

The last article was also accepted at the American Control Conference (ACC) 2024
and presented there, and the author was also invited to present a poster on this
article at the 4th Symposium on Machine Learning and Dynamical Systems at the
Fields Institute, Toronto, Canada. Furthermore, the findings from [CF3, CF6, CF5]
were disseminated in the following extended abstract, which was selected for an oral
presentation at the corresponding workshop,

Christian Fiedler, Sebastian Trimpe, and Michael Herty. Reproducing
kernels in and for the mean field limit. International Workshop on Deep
Learning and Kernel Machines (DEEPK), 2024.

In an appendix, we have also included the following article,

Christian Fiedler, Pierre-François Massiani, Friedrich Solowjow, and
Sebastian Trimpe. Towards statistical learning theory with distributional
inputs. International Conference on Machine Learning (ICML), 2024.

The topic of this work is not related to the main goals of this thesis, but many of
the techniques used in the former play also an important role in the latter, so we
have decided to include it.

Finally, several works of the author appeared during the work on this thesis, but
are not included. In particular, the following two articles contribute to the field of
nonlinear discrete-time control,

5Alphabetical ordering, main authorship shared with C. Segala.
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Christian Fiedler and Sebastian Trimpe. Revisiting the derivation
of stage costs in infinite horizon discrete-time optimal control. 30th
Mediterranean Conference on Control and Automation (MED), 2022.

Christian Fiedler and Sebastian Trimpe. Analysis of EMPC schemes
without terminal constraints via local incremental stabilizability. Euro-
pean Control Conference (ECC), 2024.

The following article is based on work from the author’s master thesis, and the
article was finalized during the preparation of this thesis,

Christian Fiedler6, Massimo Fornasier, Timo Klock, and Michael Rauchen-
steiner. Stable recovery of entangled weights: Towards robust identifica-
tion of deep neural networks from minimal samples. Applied and Com-
putational Harmonic Analysis, 2023.

The author was co-supervisor of the master thesis of A. Tokmak, which resulted in
the following preprint, which has been accepted for publication in IEEE Transactions
on Automatic Control,

Abdullah Tokmak, Christian Fiedler, Melanie N. Zeilinger, Sebastian
Trimpe, and Johannes Köhler. Automatic nonlinear mpc approximation
with closed-loop guarantees. arXiv preprint, 2023.

Finally, the author participated in the research leading to the following preprint, a
revision of which is about to be submitted to the Transactions on Machine Learning
Research,

Friedrich Solowjow, Dominik Baumann, Christian Fiedler, Andreas
Jocham, Thomas Seel, and Sebastian Trimpe. A Kernel Two-sample
Test for Dynamical Systems. arXiv preprint, 2022.

6Alphabetical ordering.
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2. Introduction to reproducing kernel
Hilbert spaces

Reproducing Kernel Hilbert Spaces (RKHSs) play a central role in many areas of
mathematical sciences and engineering, from machine learning [181, 182, 189], statis-
tics and probability theory [32], numerical approximation methods [217] and numer-
ical methods for partial differential equations [71], to mathematical physics [7] and
pure mathematics [152]. In particular, RKHSs form the theoretical foundation for
most kernel methods, and therefore later parts of the thesis will heavily rely upon
these function spaces. In the following, we provide a self-contained introduction to
RKHSs and related concepts like reproducing kernels. This serves two purposes: On
the one hand, this provides necessary background for the remainder of this thesis.
On the other hand, we hope to close a gap in the literature. We observed that many
excellent introductions to RKHSs like [189, Chapter 4], [32], or [218], choose a partic-
ular perspective, usually motivated by the respective application domain. However,
a concept can appear unnatural or difficult to comprehend when introduced in one
context, but it can become very natural or intuitive when viewed from a different
perspective. For example, the definition of a kernel in terms of feature space-feature
map pairs might appear somewhat arbitrary in the context of RKHSs, but becomes
very natural in the context of the kernel trick as used in support vector machines
(SVMs), cf. Section 2.3. Similarly, the motivation of native spaces might be unclear
in the context of SVMs, but becomes obvious when viewed from the perspective
of scattered data approximation, as explained in Section 2.5. What appears to be
missing is a perspective-agnostic introduction to the RKHS framework that presents
each of the core concept in its most natural setting, and thereby allowing an easier
understanding as well as a comprehension of the bigger picture by the learner. With
the present introduction, we hope to close this gap in the literature.
Since specialization to the real case, which is the relevant setting for this thesis,
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leads to no significant simplification (apart from saving some conjugate signs in the
notation), we cover both the case K = R and C simultaneously. The contribution
of this chapter lies in the presentation of the material, while all technical results
and examples are well-known. In case no reference is provided, it is because the
corresponding result is folklore.
This chapter is based on, and in large parts taken verbatim from, an early version

of [CF14]. Detailed comments on the author’s contributions are provided in Section
2.7

2.1. Reproducing Kernel Hilbert Spaces: Continuous
function evaluation

We start by introducing the concept of a reproducing kernel Hilbert space. The idea
is based on [32, Section 1.1 (Introduction)], though our presentation is considerably
more detailed. Let X 6= ∅ be an arbitrary nonempty set. A common task in the
mathematical sciences is to add additional structure to such a set. Among the most
convenient and richest structures are K-Hilbert spaces, where K = R or C. We
would like to have a general recipe for adding such a K-Hilbert space structure to
an arbitrary set X . For this, we need the following.

1. A K-vectorspace H that is derived from X

2. Reasonable assumptions on an inner product 〈·, ·〉 on H

3. A way to embed elements of X into H

We will now give a general recipe that naturally motivates the definition of an RKHS,
as will be formalized in Definition 2.1.1.
First, we need a K-vectorspace. Since X is arbitrary, the most basic choice is

to use a subspace of V X , the space of functions from X into V , for an arbitrary
K-vectorspace V (with the usual pointwise addition and scalar multiplication). The
simplest choice of V is of course V = K, so we continue with a vector subspace
H ⊆ KX . We leave the concrete choice of H open for now.

Next, we turn H ⊆ KX into a K-Hilbert space by adding a scalar product 〈·, ·〉
such that the induced metric space is complete. What are reasonable requirements
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on 〈·, ·〉? Of course, (H, 〈·, ·〉) should be connected to X in some meaningful way,
otherwise the whole procedure is pointless. Since we want to work with arbitrary sets
X , the only connection we can make between H and X without imposing additional
assumptions on X is the evaluation of functions f ∈ H. Furthermore, it is very likely
that we want to do analysis in H, and the following situation frequently appears in
analytical constructions and proofs.
In order to construct a function with certain properties, one starts with a se-

quence of functions (fn)n ⊆ H having said properties (and maybe approximating
something). If (fn)n is a Cauchy sequence in H with respect to (w.r.t.) the metric
induced by 〈·, ·〉, then this sequence converges to a unique f ∈ H (since H is a
Hilbert space and hence complete), usually inheriting the properties of interest from
the Cauchy sequence. This is a very flexible approach to construct functions in H
with prescribed properties.
We would like to have this technique available in our Hilbert space (H, 〈·, ·〉).

Since the only connection from H back to X is via function evaluation, and since in
this technique we use a limit to construct a function f , we arrive at the following
requirement: For all x ∈ X , we need fn(x)→ f(x). Since we want a generic method,
we require this for all sequences (fn)n ⊆ H with fn

‖·‖H−→ f ∈ H (this is equivalent
to requiring it for all Cauchy sequences). But since in Hilbert spaces continuity is
equivalent to sequential continuity, this is equivalent to the following: For all x ∈ X ,
the evaluation functionals H 3 f 7→ f(x) ∈ K are continuous, i.e., they are in the
(topological) dual space of H. This leads to the following central definition.

Definition 2.1.1. Let X 6= ∅ be an arbitrary set and (H, 〈·, ·〉H) a function K-
Hilbert space, i.e., H ⊆ KX . We call H a reproducing kernel Hilbert space (RKHS)
if for all x ∈ X the corresponding evaluation functionals1 δx : H → K, δx(f) = f(x),
are continuous, i.e., for all x ∈ X we have δx ∈ L(H,K) = H ′.

This choice of terminology will be clarified in the next section. Finally, the ques-
tion arises how to actually embed X into H. In other words, for each x ∈ X , we
need an element fx ∈ H. Since we want a universal recipe, we should not impose
any additional assumptions. But it turns out that with the developments so far,
there is a universal solution to this task. Since we are in a Hilbert space setting,

1These are also called Dirac functionals.
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by the Riesz Representation Theorem, we have a bijective correspondence between
continuous linear functionals on H and elements from H,

L ∈ H ′ ←→ f = IL ∈ H,

where I : H ′ → H is the map assigning to each continuous functional on L ∈ H ′ its
unique Riesz representer IL ∈ H, so that Lh = 〈h, IL〉H for all h ∈ H. Since in an
RKHS, for all x ∈ X , we have δx ∈ H ′, we can embed X into H via

X 3 x 7→ fx = Iδx ∈ H

In Section 2.2, we will make this embedding more concrete, and in Section 2.3,
we will put it into the bigger context of the RKHS framework. Before presenting
concrete examples of RKHSs, the following (well-known) example demonstrates that
it is not trivial to fulfill the definition of an RKHS.

Example 2.1.2. Let (Ω,A, µ) be a measure space, and consider the Lebesgue space
L2(Ω,A, µ). Recall that this is the Hilbert space consisting of µ-almost everywhere
equivalence classes of measurable and square-integrable (w.r.t. µ)K-valued functions
on Ω. For example, if B([0, 1]) is the Borel σ-algebra on [0, 1] and λ the Lebesgue
measure on [0, 1], then L2([0, 1],B([0, 1]), λ) is the space of Borel-measurable func-
tions f : [0, 1] → K, that are square-integrable (so

∫
[0,1] |f(x)|2dλ(x) < ∞), with

inner product 〈f, g〉L2 =
∫

[0,1] f(x)g(x)dλ(x), and identifying functions that are al-
most everywhere equal.
These Lebesgue spaces L2(Ω,A, µ) are some of the most important examples of

Hilbert spaces, but they are not RKHSs. The reason is simple: By definition, an
RKHS is a Hilbert space of functions, but these Lebesgue spaces consist of equiva-
lence classes of functions. In particular, evaluation of elements of L2(Ω,A, µ) is not
defined at individual inputs x ∈ Ω (it is only defined µ-almost everywhere).

For more discussion of this classic non-example, we refer to [152, Section 1.2.2].

It is time for concrete examples of Hilbert spaces. Our first example is classical
and appears already in the seminal work [14], with our presentation loosely inspired
by [152, Section 1.2.1].

Example 2.1.3. Let X 6= ∅ be a set, let H ⊆ KX be a finite-dimensional Hilbert
space of functions on X , and choose some orthonormal basis (ONB) e1, . . . , eM of
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H. Let x ∈ X be arbitrary. Observe that for all g ∈ H we have

g(x) =
(

M∑
m=1
〈g, bM 〉Hbm

)
(x) =

M∑
m=1
〈g, bM 〉Hbm(x), (2.1)

where we first used that the e1, . . . , eM form an ONB, and then the definition of
addition and multiplication in function spaces. Now, consider f, fn ∈ H, n ∈ N+,
with limn→∞ fn = f . We then have

lim
n→∞

fn(x) = lim
n→∞

M∑
m=1
〈fn, bm〉Hbm(x) =

M∑
m=1

lim
n→∞

〈fn, bm〉Hbm(x)

=
M∑
m=1

〈
lim
n→∞

fn, bm
〉
H
bm(x) =

M∑
m=1
〈f, bm〉Hbm(x) = f(x),

where we used in the first equality our observation (2.1), then the finiteness of the
sum, in the third equality the continuity of the scalar product, and in the last equality
again our observation (2.1). Altogether, we found that all evaluation functionals are
continuous in H.

Since H was arbitrary, we arrive at the following result: All finite-dimensional
Hilbert spaces of functions are RKHSs.

The next class of RKHSs is an important example from complex analysis. Our
presentation follows roughly [152, Section 1.4.1].

Example 2.1.4. Denote by D = {z ∈ C | |z| < 1} the open unit disc of complex
numbers, and define `2(N0,C) = {(an)n∈N0 ∈ CN0 |

∑∞
n=0 |an|2 < ∞}, the set

of square-summable complex sequences. Recall that the latter becomes a Hilbert
space when introducing the inner product 〈(an)n, (bn)n〉`2 = ∑∞

n=0 anbn.
We consider functions on D that are represented by power series, i.e., f(z) =∑∞
n=0 anz

n, such that (an)n∈N0 ∈ `2(N0,C). Denote the set of all of these functions
by H2(D). It is a complex vector space, and

〈f, g〉H2 =
∞∑
n=0

anbn,

where f, g ∈ H2(D) with representations f(z) = ∑∞
n=0 anz

n, g(z) = ∑∞
n=0 bnz

n,
defines an inner product on H2(D). Observe that IH2 : H2(D) → `2(N0,C),

19



2. Introduction to reproducing kernel Hilbert spaces

∑∞
n=0 anz

n 7→ (an)n∈N0 is a well-defined isometric isomorphism, which implies that
H2(D) is a Hilbert space, which is called a Hardy space. In particular, for f ∈ H2(D)
with f(z) = ∑∞

n=0 anz
n, we have ‖f‖H2 = ‖(an)n‖`2 .

It turns out that H2(D) is even an RKHS on D. To verify this, we have to
show that all evaluation functionals are continuous. Let z ∈ D be arbitrary. For
f ∈ H2(D) with representation f(z) = ∑∞

n=0 anz
n, we have

|δz(f)| = |f(z)| =
∣∣∣∣∣
∞∑
n=0

anz
n

∣∣∣∣∣
≤
∞∑
n=0
|anzn| Triangle inequality

≤

√√√√ ∞∑
n=0
|an|2

√√√√ ∞∑
n=0
|z|n Cauchy-Schwarz inequality (in `2(N0,C))

= 1
1− |z|‖(an)n‖`2 Geometric series, |z| < 1

= 1
1− |z|‖f‖H2 ,

which shows that δz is continuous.

2.2. Reproducing Kernels: Evaluation by scalar products

Our next goal is to introduce the concept of a reproducing kernel. The presentation
in this section (and all the results) appears to be folklore, and similar expositions
can be found in [152, Chapter 2] and [189, Section 4.2]. Let X 6= ∅ be an arbitrary
nonempty set and H ⊆ KX a K-Hilbert function space. We have two fundamental
operations in this context: Evaluation of a function f ∈ H at an input x ∈ X , i.e.,
f 7→ f(x), and the inner product of two functions f1, f2 ∈ H, i.e., 〈f1, f2〉H . We
now want to connect these two concepts. One motivation is that working with inner
products can be very convenient, both in terms of theory as well as computation.
Here is one way to achieve this connection. Assume that there exists a family of

functions in H, (fx)x∈X , such that for all f ∈ H and x ∈ X we have f(x) = 〈f, fx〉H .
In other words, we can replace function evaluation by inner products. How does such
a family of functions look like? They always have the following symmetry property.
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2.2. Reproducing Kernels: Evaluation by scalar products

Lemma 2.2.1. Let (fx)x∈X , fx ∈ H, be such that such that for all f ∈ H and
x ∈ X , we have f(x) = 〈f, fx〉H . Then for all x, x′ ∈ X , we have fx(x′) = fx′(x).

Note that for K = R we even have fx(x′) = fx′(x) for all x, x′ ∈ X .

Proof. Let x, x′ ∈ X be arbitrary, then we have fx(x′) = 〈fx, fx′〉H = 〈fx′ , fx〉H =
fx′(x).

This result indicates that the index x of fx, and an input x′ on which fx is
evaluated, are somehow on equal footing. To make this notationally clear, we define
k : X × X → R by k(x, x′) = fx′(x). This leads us to the following concept.

Definition 2.2.2. Let X 6= ∅ be a set and H ⊆ KX a K-Hilbert space of functions.
A function k : X × X → R is called a reproducing kernel (RK) of H if

1. For all x ∈ X , k(·, x) ∈ H

2. For all f ∈ H and x ∈ X , f(x) = 〈f, k(·, x)〉H

The second property in the preceding definition is usually called the reproducing
property, since the scalar product with the reproducing kernel reproduces the value
of a function from H. Furthermore, note that the proof of Lemma 2.2.1 shows
that if k : X × X → K is a reproducing kernel, then for all x, x′ ∈ X we have
k(x, x′) = k(x′, x). Finally, Definition 2.2.2 is also meaningful if H is just a K-pre
Hilbert space of functions.

Example 2.2.3. Let X 6= ∅ be some set. We can interpret a function f : X → K as
a (scalar) signal. For example, if X = N0, f could be a discrete-time measurement
of some quantity, if X = R, f could be a physical quantity that changes over time,
and if X = {0, . . . , 255} × {0, . . . , 255}, f could be a (gray-scale) square image of
size 256x256.
An important task in signal processing is sampling of a signal. Essentially, this is

the task of reconstructing a signal from a certain set of measurements (the samples)
of the signal. Here is an idealized formalization of this task. Let H ⊆ KX be a space
of signals, then we would like to find a sequence of inputs xn ∈ X and functions
bn ∈ H, n ∈ N+, such that

f(x) =
∞∑
n=1

f(xn)bn(x)
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2. Introduction to reproducing kernel Hilbert spaces

for all f ∈ H and x ∈ X . Such a representation of f is called a sampling expansion.
If H is a Hilbert space with reproducing kernel k, we can rewrite this as

f(x) =
∞∑
n=1
〈f, k(·, xn)〉Hbn(x).

This means that the sampling problem becomes amenable to Hilbert space methods.
Since sampling methods do not play a role in the remainder of the thesis, we do not
present detailed results in this direction, but rather refer to the excellent introductory
article [77].

Let us now have a closer look at reproducing kernels. First, if a reproducing kernel
of a Hilbert space of functions exists, it is unique.

Lemma 2.2.4. A Hilbert space of functions H ⊆ KX can have at most one repro-
ducing kernel.

Proof. Let k, k̃ : X × X → K be two reproducing kernels for H. Let now x, x′ ∈ X
be arbitrary, then we have

k(x, x′) = 〈k(·, x′), k̃(·, x)〉H = 〈k̃(·, x), k(·, x′)〉H = k̃(x′, x) = k̃(x, x′),

where we applied the reproducing property of k̃(·, x) to k(·, x′) ∈ H in the first
equality, then we applied the reproducing property of k(·, x′) to k̃(·, x) in the third
inequality, and finally we used the symmetry of a reproducing kernel.

The next example is also classical, and our presentation is based on [152, Sec-
tion 1.3.2].

Example 2.2.5. Let T > 0 and consider L2([−T, T ]) = L2([−T, T ],B([−T, T ]), λ),
the space of (almost-everywhere equivalence classes of) square-integrable functions
on [−T, T ], which is a Hilbert space. For f ∈ L2([−T, T ]), we denote its Fourier
transform by

f̂(ω) =
∫ T

−T
f(t)e−2πiωtdt.

Define now
PWT = {f̂ | f ∈ L2([−T, T ])}
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and observe that PWT is a space of functions, and not just equivalence classes of
functions. For each F ∈ PWT , there exists a unique f ∈ L2([−T, T ]) with F = f̂ ,
so we can define ‖F‖PWT

= ‖f‖L2([−T,T ]). Since L2([−T, T ]) is a Hilbert space, this
turns also PWT into a Hilbert space, which is called a Paley-Wiener space. These
spaces play an important role in signal processing and complex analysis.
It turns out that PWT has a reproducing kernel k. To find it, let F ∈ PWT and

x ∈ R be arbitrary, and let us try to identify a function k(·, x) ∈ PWT such that
F (x) = 〈F, k(·, x)〉PWT

. By definition of PWT , there exists f ∈ L2([−T, T ]) with
F = f̂ . We therefore get

F (x) =
∫ T

−T
f(t)e−2πixtdt F = f̂

= 〈f, e2πix·〉L2([−T,T ]) Definition 〈·, ·〉L2([−T,T ])

= 〈f, g〉L2([−T,T ]) Definition g

= 〈F, ĝ〉PWT
Definition of PWT

where we defined g : [−T, T ]→ C, g(t) = e2πixt. Since F was arbitrary and there is
only one reproducing kernel, we find that k(·, x) = ĝ, hence

k(x, x′) =
∫ T

−T
e2πix′te2πixtdt =


1
π

sin(2πT (x−x′))
x−x′ if x 6= x′

2T otherwise

Next, a function f : X → K is completely described by its values f(x), x ∈ X ,
i.e., by function evaluations. If H has a reproducing kernel, all function evaluations
are described by this reproducing kernel. Intuitively, the reproducing kernel should
then completely describe H. The next result confirms this intuition.

Proposition 2.2.6. If H has a reproducing kernel k, then the set {k(·, x) | x ∈ X}
is total in H, i.e., span{k(·, x) | x ∈ X} is dense in H.

Proof. Define H0 = {k(·, x) | x ∈ X} and let f ∈ H⊥0 , i.e., for all x ∈ X we have
〈f, k(·, x)〉H = 0. For an arbitrary x ∈ X this then leads to

f(x) = 〈f, k(·, x)〉H = 0,

i.e., f = 0H , which implies that H0 is total in H.
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2. Introduction to reproducing kernel Hilbert spaces

Actually, a reproducing kernel completely determines the corresponding Hilbert
space of functions in the following sense.

Proposition 2.2.7. Let (Hi, 〈·, ·〉i), i = 1, 2, be two K-Hilbert spaces of functions
on KX , i.e., Hi ⊆ KX , having reproducing kernels ki : X × X → K. If k1 ≡ k2 (i.e.,
k1(x, x′) = k2(x, x′) for all x, x′ ∈ X , so they are equal as maps), then H1 = H2 as
sets and 〈·, ·〉1 ≡ 〈·, ·〉2.

In other words, a map k : X ×X → K can be a reproducing kernel of at most one
Hilbert function space. This result complements Lemma 2.2.4, which states that a
Hilbert function space can have at most one reproducing kernel.

Proof. We show H1 ⊆ H2, the reverse inclusion then follows by symmetry. By
definition of a reproducing kernel, k1(·, x) ∈ H1 for all x ∈ X , and since H1 is a
vector space, we also have H0 = span{k1(·, x) | x ∈ X}. But since k1 ≡ k2, we then
have for all x ∈ X that k1(·, x) = k2(·, x) ∈ H2, and since also H2 is a vector space,
we find that H0 = span{k2(·, x) | x ∈ X} ⊆ H2.

Next, let f = ∑N
i=1 αik1(·, xi) and g = ∑M

j=1 βjk1(·, yj) be two functions from H0,
hence f, g ∈ H1 and f, g ∈ H2, then

〈f, g〉1 =
〈

N∑
i=1

αik1(·, xi),
M∑
j=1

βjk1(·, yj)
〉

1

=
N∑
i=1

M∑
j=1

αiβ̄jk1(yj , xi)

=
N∑
i=1

M∑
j=1

αiβ̄jk2(yj , xi) =
〈

N∑
i=1

αik2(·, xi),
M∑
j=1

βjk2(·, yj)
〉

2

= 〈f, g〉2.

This shows that 〈·, ·〉1|H0≡ 〈·, ·〉2|H0 .

Let now f ∈ H1 be arbitrary. According to Proposition 2.2.6, H0 is dense in H1,
so there exists a sequence (fn)n ⊆ H0 such that fn

‖·‖1−→ f . Since (fn)n is convergent,
it is a Cauchy sequence w.r.t. ‖ · ‖1. Recall that H0 ⊆ H2, so we have fn ∈ H2

for all n ∈ N, and since 〈·, ·〉1|H0≡ 〈·, ·〉2|H0 , (fn)n is also a Cauchy sequence in H2.
Because H2 is complete, there exists g ∈ H2 such that fn

‖·‖2−→ g.
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2.2. Reproducing Kernels: Evaluation by scalar products

We now show that f = g. For this, let x ∈ X be arbitrary, then

f(x) = 〈f, k1(·, x)〉1 Reproducing property (in H1)

= 〈lim
n
fn, k1(·, x)〉1 fn → f in H1

= lim
n
〈fn, k1(·, x)〉1 Continuity of 〈·, ·〉1

= lim
n
fn(x) Reproducing property in H1

= lim
n
〈fn, k2(·, x)〉2 Reproducing property in H2

= 〈lim
n
fn, k2(·, x)〉2 Continuity of 〈·, ·〉2

= 〈g, k2(·, x)〉2 fn → g in H2

= g(x).

Altogether, we found that H1 ⊆ H2.
Finally, since ‖ · ‖1 = ‖ · ‖2 on the dense set H0, we get equality of the norms and

hence the scalar products.

Finally, the existence of a reproducing kernel implies continuity of evaluation.

Lemma 2.2.8. If H has a reproducing kernel, then each evaluation functional δx
is continuous.

Proof. Let f ∈ H and x ∈ X be arbitrary, then

|δx(f)| = |f(x)| = 〈f, k(·, x)〉H | ≤ ‖k(·, x)‖H‖f‖H ,

i.e., ‖δx‖H′ ≤ ‖k(·, x)‖H , hence δx is continuous.

Remark 2.2.9. Inspecting the proofs of Lemma 2.2.1, 2.2.4 and 2.2.8 reveals that
these results also hold if H is a pre Hilbert space.

We can now connect RKHSs with reproducing kernels: Let H be a K-Hilbert
space. If it has a reproducing kernel, then according to Lemma 2.2.8, it is an
RKHS as formalized in Definition 2.1.1. Recalling the developments in Section 2.1,
we even have a converse. Let H be an RKHS and let I be the Riesz representer
map. Define for x ∈ X the function k(·, x) = Iδx ∈ H, then by definition, k is a
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2. Introduction to reproducing kernel Hilbert spaces

reproducing kernel for H. Summarizing, we have the following result that explains
the terminology RKHS.

Theorem 2.2.10. Let X 6= ∅ be a nonempty set and let H ⊆ KX be a Hilbert
space of functions. H is an RKHS if and only if it has a reproducing kernel.

Example 2.2.11. Consider the situation of Example 2.1.4, where we introduced the
Hardy space H2(D). We know already that it is an RKHS, so it has a reproducing
kernel k : D × D → C according to Theorem 2.2.10, which is unique according to
Lemma 2.2.4. Let us try to find this reproducing kernel k.

Let f ∈ H2(D) with representation f(z) = ∑∞
n=0 anz

n, and z2 ∈ D. Since k(·, z2) ∈
H2(D), there exists (bn)n ∈ `2(N0,C) with k(z1, z2) = ∑∞

n=0 bnz
n
1 for all z1 ∈ D.

Furthermore, we have

f(z2) =
∞∑
n=0

anz
n
2 Series representation of f

= 〈f, k(·, z2)〉H2(D) Reproducing property of k

=
∞∑
n=0

anbn, Definition 〈·, ·〉H2(D)

so equating coefficients we find that bn = z2
n for all n ∈ N0. This means that for all

z1, z2 ∈ D we have

k(z1, z2) =
∞∑
n=0

zn1 z2
n = 1

1− z1z2
,

and it is the unique reproducing kernel k of H2(D). It is called the Szegö kernel.

The preceding example illustrates a typical technique for finding the reproducing
kernel of an RKHS: Solve the equation f(x) = 〈f, k(·, x)〉k for all f ∈ Hk and x ∈ X ,
to get k(·, x) ∈ Hk. The resulting function k is then the unique reproducing kernel.

2.3. Kernels: Feature spaces and the kernel trick

The perspective in this section is well-known in machine learning, see for example
[189] and [181] for classic textbook accounts. In computational sciences, especially in
machine learning, tasks can often be made easier by lifting them to some new spaces.
For example, in machine learning and statistics, X might be the space from which
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2.3. Kernels: Feature spaces and the kernel trick

the (input) samples of a data set come from. To such samples x ∈ X , we can then
assign features Φ(x) ∈ H in some new space H by using a given map Φ : X → H.
Quite frequently,H is a Hilbert space, so one can apply linear algorithms on the lifted
data points Φ(x). In this manner, one can easily "non-linearize" a linear method,
making it more powerful.

Example 2.3.1. One important task in machine learning is binary classification.
Given a description x ∈ X of an object (typically, X ⊆ Rd, where d ∈ N+ can be
very large), the goal is to assign the object to one of two classes c1 and c2. Formally,
we want a map c : X → {c1, c2}. For example, x could be an image of a part at
the end of a manufacturing process, and based on this image an algorithm should
decide whether the part is acceptable (say, class c1) or faulty (class c2).

A particularly simple situation is linear separability2, where X is a vector space,
and there exists some linear function f : X → R and some constant b ∈ R such that
for an object with description x ∈ X ,

c(x) =

c1 if f(x) ≥ b

c2 otherwise

is the correct class of this object. The subset {x ∈ X | f(x) = b} is then called the
decision boundary, and corresponds in this case to an affine-linear space. In most
practical scenarios, linear separation will not be possible. Put differently, a linear
decision boundary is not complex enough to separate the two classes.

However, while frequently linear separation in X is not possible, it is in another
space H. Here, X = R2, and the two classes cannot be separated by a straight line
(left panel). However, by transforming the input x = (x1, x2) into (x1, x2,

√
x2

1 + x2
2),

linear separation is easily possible, though now in R3 (middle panel). Formally, let
H = R3, define Φ : X → H by Φ(x) = (x1, x2,

√
x2

1 + x2
2), and let h : H → R,

b ∈ R such that h(Φ(x)) ≥ b if the object with description x belongs to class c1, and
h(Φ(x)) < b otherwise. Note that the resulting classifier

c(x) =

c1 if h(Φ(x)) ≥ b

c2 otherwise

2Affine-linear separation might be slightly more accurate.
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is now nonlinear in the orignal input space X , i.e., {x ∈ X | h(Φ(x)) = b} is not an
affine-linear subspace anymore.

In particular, if an algorithm interacts with its inputs only via scalar products,
then such an algorithm can be automatically "non-linearized" by replacing an input x
by Φ(x), and the original scalar product by the one in H. Actually, in this situation,
we do not even need to work with objects in H directly, only with their scalar
products. The next classic example illustrates this.

Example 2.3.2. In linear regression, one models a linear function f : Rd → R by
the ansatz h(·, w) : Rd → R, h(x,w) = x>w = 〈x,w〉Rd , where w ∈ Rd are the
weights parametrizing the modeling function h(·, w). Let ((x1, y1), . . . , (xN , yN )) be
a data set, where we interpret xn ∈ Rd as an input, and yn ∈ R as the corresponding
(usually noisy) output of the unknown function f . In ridge regression we determine
weights from this data set by solving the optimization problem

min
w∈Rd

N∑
n=1

(yn − h(xn, w))2 + λ‖w‖2, (2.2)

where λ ∈ R>0 is the regularization parameter. Including the term λ‖w‖2 in the
optimization problem encourages small weights, and the strength of this penalization
is controlled by λ. The optimization problem has a unique solution given explicitly
by

w∗λ = (X>X + λId)−1X>y, (2.3)

where we defined

X =
(
x1 · · · xN

)>
, y =

(
y1 · · · yN

)>
. (2.4)

We can use this linear method to model also nonlinear functions. Consider a map
Φ : Rd → RM , where M ∈ N+ might be rather large, and define h(·, w) : Rd → R by
h(x,w) = Φ(x)>w = 〈Φ(x), w〉RM . The optimization problem

min
w∈RM

N∑
n=1

(yn − h(xn, w))2 + λ‖w‖2, (2.5)
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has still a unique solution, now given by

w̃∗λ = (X̃>X̃ + λIM )−1X̃>y, (2.6)

where we defined

X̃ =


Φ(x1)>

...
Φ(xN )>

 . (2.7)

Let us have a look at the output of this linear method, the function

h(x, w̃∗λ) = 〈Φ(x), w̃∗λ〉RM = Φ(x)>(X̃>X̃ + λIM )−1X̃>y. (2.8)

Using the push-through identity, we have (X̃>X̃+λIM )−1X̃> = X̃>(X̃X̃>+λIN )−1,
so we get

h(x, w̃∗λ) = Φ(x)>X̃>(X̃X̃> + λIN )−1y. (2.9)

Inspecting the subexpressions Φ(x)>X̃> and X̃X̃>,

Φ(x)>X̃> = Φ(x)>
(

Φ(x1) · · · Φ(xN )
)

=
(

Φ(x)>Φ(x1) · · · Φ(x)>Φ(xN )
)

X̃X̃> =


Φ(x1)>

...
Φ(xN )>

(Φ(x1) · · · Φ(xN )
)

=


Φ(x1)>Φ(x1) · · · Φ(x1)>Φ(xN )

... · · ·
...

Φ(xN )>Φ(x1) · · · Φ(xN )>Φ(xN )


we see that h(x, w̃∗λ) does not contain any element from RM in isolation, but only
in scalar products. To make this more explicit, define k(x, x′) = 〈Φ(x′),Φ(x)〉RM ,
then we can rewrite the ridge regression solution as

h(x, w̃∗λ) = (k(x, xn))>n=1,...,N ((k(xi, xj))i,j=1,...,N + λIN )> y. (2.10)

In order to compute it, we only have to be able to evaluate k.

The technique described here, replacing all expression of the form 〈x, x′〉Rd by
〈Φ(x′),Φ(x)〉H for some Hilbert space H and some H-valued map Φ, is called the
kernel trick. Note that the new space H does not explicitly appear at all, so it
can be implicitly defined, or be even infinite-dimensional. All we need is a way to
evaluate for given x, x′ the expression 〈Φ(x′),Φ(x)〉H in some efficient manner. The
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next classic example (from [181, Chapter 2]) illustrates this.

Example 2.3.3. Let X = Rd, d ∈ N+, and consider Φ(x) =
(
xi1 · . . . · xim

)
1≤i1,··· ,im≤d

,
1 ≤ m ≤ d. This means that H is the set of all ordered mth monomials of vectors
x ∈ Rd, and we assign the usual scalar product to H. It is clear that the dimension
of H rapidly increases with d and m. As a consequence, computing 〈Φ(x′),Φ(x)〉H
by first computing Φ(x),Φ(x′), and subsequently computing the scalar product be-
comes infeasible even for moderate d and m. Let us have a closer look at this scalar
product,

〈Φ(x′),Φ(x)〉H =
∑

1≤i1,...,im≤d
(x′i1 · . . . · x

′
im) · (xi1 · . . . · xim)

=
d∑

i1=1
· · ·

d∑
im=1

(x′i1 · . . . · x
′
im) · (xi1 · . . . · xim)

=

 d∑
i1=1

x′i1 · xi1

 · . . . ·
 d∑
im=1

x′im · xim


=
(

d∑
i=1

xi · x′i

)m
.

We find that 〈Φ(x′),Φ(x)〉H = k(x, x′), where we defined k(x, x′) =
(∑d

i=1 xi · x′i
)m

.
Note that k(x, x′) can be very efficiently computed ((d−1) additions and (m−1) ·d
multiplications), and that neither H nor Φ appear explicitly in the definition of k.

The preceding considerations lead immediately to the next concept.

Definition 2.3.4. Let X 6= ∅ be a set and k : X × X → K some function. We
say that k is a (K-)kernel (on X ) if there exist a K-Hilbert space H and a map
Φ : X → H such that

∀x, x′ ∈ X : k(x, x′) = 〈Φ(x′),Φ(x)〉H. (2.11)

In the situation of Definition 2.3.4, H is called a feature space and Φ a feature
map of k. Note that in general H and Φ are not unique. Furthermore, in the case
K = R, we have that (2.11) is equivalent to k(x, x′) = 〈Φ(x),Φ(x′)〉H, which is the
form often found in the machine learning literature.
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The following result provides a first connection between Definition 2.3.4 and the
concepts from the previous section.

Proposition 2.3.5. Let H ⊆ KX be an RKHS with reproducing kernel k. Then
k is a kernel in the sense of Definition 2.3.4 with feature space H and feature map
Φk : X → H, Φk(x) = k(·, x), called the canonical feature map of k.

Proof. By the definition of a reproducing kernel, for all x ∈ X we have Φk(x) =
k(·, x) ∈ H, so Φk is well-defined, and by the reproducing property of k we get
k(x, x′) = 〈k(·, x′), k(·, x)〉H = 〈Φk(x′),Φk(x)〉H for all x, x′ ∈ X .

Ensuring that Proposition 2.3.5 holds is one reason why in Definition 2.3.4 we
have k(x, x′) = 〈Φ(x′),Φ(x)〉H (instead of k(x, x′) = 〈Φ(x),Φ(x′)〉H).

Example 2.3.6. Consider again Example 2.1.4. For all z1, z2 ∈ D, we have

k(z1, z2) = 1
1− z1z2

=
∞∑
n=0

zn1 z
n
2 =

∞∑
n=0

zn2 z
n
1 = 〈(zn2 )n∈N0 , (zn1 )n∈N0〉`2 ,

so `2(N0,C) is a feature space, and Φ : D→ `2(N0,C), Φ(z) = (zn)n∈N0 is a feature
map for the Szegö kernel k.

We saw that every reproducing kernel (for some Hilbert space of functions) is a
kernel. But what about the converse? Given a kernel k, does there exist a Hilbert
space of functions such that k is the reproducing kernel for it? This is indeed the
case, as described in Theorem 2.3.7. The approach originated probably with [173],
and our presentation is based on [189, Theorem 4.21].

Theorem 2.3.7. Let X 6= ∅ and k : X × X → K be a kernel with feature space H
and feature map Φ : X → H. Define

H = {x 7→ 〈h,Φ(x)〉H | h ∈ H} = imHΨ,

where Ψ : H → KX , Ψ(h) = 〈h,Φ(·)〉H, and for each f ∈ H define

‖f‖H = inf
h∈Ψ−1(f)

‖h‖H.
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2. Introduction to reproducing kernel Hilbert spaces

Then (H, ‖ · ‖H) is a K-Hilbert space of functions with reproducing kernel k. In
particular, H is an RKHS.

Proof. Step 1 Since Ψ is linear, H is a vector space of functions. Define H0 =
null(Ψ), then H0 is closed: Let (hn)n ⊆ H0 with hn → h ∈ H, then for all x ∈ X

(Ψ(h))(x) = 〈h,Φ(x)〉H = 〈lim
n
hn,Φ(x)〉H = lim

n
〈hn,Φ(x)〉H = lim

n
(Ψ(hn))(x) = 0,

where we used the continuity of the scalar product in the third equality and hn ∈
null(Ψ) in the last inequality. We therefore find Ψ(h) ≡ 0 and hence h ∈ H0,
establishing that H0 is closed. We can now decompose3 H = H0 ⊕⊥ H1 with H1 =
H⊥0 , and let us define Ψ̄ = Ψ|H1 . By construction, Ψ̄ is injective. It is also surjective.
To show this, let f ∈ H = imHΨ, then there exists h = h0 ⊕⊥ h1, where hi ∈ Hi
for i = 0, 1, such that f = Ψ(h) = Ψ(h0 + h1) = Ψ(h0) + Ψ(h1) = Ψ̄(h1), where we
used that Ψ(h0) = 0 (since h0 ∈ H0 = null(Ψ)), and Ψ(h1) = Ψ̄(h1). This shows
that f is indeed in the image of Ψ̄, and since f was an arbitrary element from H,
we established that Ψ̄ is surjective.

Step 2 We can now show that H is a Hilbert space. Let f ∈ H, then

‖f‖2H = inf
h∈Ψ−1(f)

‖h‖2H

= inf
h0∈H0,h1∈H1
f=Ψ(h0+h1)

‖h0 + h1‖2H

= inf
h1∈Ψ̄−1(f)
h0∈H0

‖h0‖2H + ‖h1‖2H

= ‖Ψ̄−1(f)‖2H

This implies that ‖ · ‖H is a Hilbert space norm and Ψ̄ is an isometric isomorphism
between H1 and H. In particular, for f, g ∈ H we have 〈f, g〉H = 〈Ψ̄−1f, Ψ̄−1g〉H.

Step 3 Finally, we can establish that H is an RKHS with reproducing kernel k.
Let x ∈ X , then

k(·, x) = 〈Φ(x),Φ(·)〉H = Ψ(Φ(x)) ∈ H.

3Here we need that H0 is closed.
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2.3. Kernels: Feature spaces and the kernel trick

Furthermore, for f ∈ H we have

f(x) = 〈Ψ̄−1f,Φ(x)〉H = 〈Ψ̄−1f, Ψ̄−1(k(·, x))〉H = 〈f, k(·, x)〉H ,

where we used in the second equality that Φ(x) = Ψ̄−1(k(·, x)). This follows since
k(·, x) = Ψ(Φ(x)) and for all h0 ∈ H0 we have 〈h0,Φ(x)〉H = Ψ(h0)(x) = 0, i.e.,
Φ(x) ⊥ H0, hence Φ(x) ∈ H1 and therefore k(·, x) = Ψ̄(Φ(x)). Altogether, k is a
reproducing kernel for H, implying that H is an RKHS.

Before moving on, we would like to point out two observations which are probably
well-known, but rarely explicitly stated in the literature.

Remark 2.3.8. Consider the situation and notations of Theorem 2.3.7 and its proof.

1. For all f ∈ H, there exists exactly one h ∈ H with f = Ψ(h) and ‖f‖H = ‖h‖H.
Intuitively, this means that the RKHS induced by a kernel can by identified
with the feature space. Put differently, any feature space of a kernel acts as a
representation of the RKHS induced by the kernel.

To prove this claim, it is enough to observe that Ψ̄ is an isometric isomorphism
between H1 and H, and to take the definition Ψ̄ into account.

2. The map Ψ is an isometry if and only if imX (Φ) = {Φ(x) | x ∈ X} is total in
H, i.e., if span{Φ(x) | x ∈ X}‖·‖H = H.

To show this, note that by definition Ψ is an isometry if and only if null(Ψ) =
{0}. Furthermore, for all h ∈ H we have h ∈ null(Ψ) if and only if Ψ(h0)(x) =
〈h0,Φ(x)〉H for all x ∈ X , i.e., if and only if h0 ∈ imXΦ⊥. But imX (Φ) is total
if and only if imX (Φ)⊥ = {0}.

If k is a kernel, then there exists by definition a corresponding feature space-feature
map pair (H,Φ), and Theorem 2.3.7 ensures the existence of an RKHS H such that
k is the reproducing kernel for this RKHS. According to Proposition 2.2.7, this is
then the unique RKHS with reproducing kernel k. Conversely, every reproducing
kernel of an RKHS is a kernel according to Proposition 2.3.5. Let us summarize all
of this.

Theorem 2.3.9. Let X 6= ∅ be a set and k : X × X → K a function. Then k is a
(K-)kernel if and only if it is the reproducing kernel of a (K-)RKHS, and the latter
is unique for a given kernel.
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2. Introduction to reproducing kernel Hilbert spaces

Let us build some additional intuition on the relation between kernels in the sense
of Definition 2.3.4 and RKHSs. If k is a kernel, then by definition it has a feature
space-feature map pair, and Theorem 2.3.7 constructs an RKHS from this. In other
words, for a kernel we can always use the associated RKHS as a feature space and
the canonical feature map Φk as a feature map. Moreover, the next result (which
appears as part of [189, Theorem 4.21]) shows that the RKHS is a rather special
feature space.

Lemma 2.3.10. Consider the situation of Theorem 2.3.7. For all h ∈ H we have
‖Ψ(h)‖H ≤ ‖h‖H4. Additionally, let BH1 and BH1 be the open unit ball of H and H,
respectively, then Ψ(BH1 ) = BH1 , i.e., Ψ is a metric surjection.

Proof. Decompose h ∈ H as h = h0 ⊕⊥ h1, hi ∈ Hi for i = 0, 1, then

‖Ψ(h)‖H = ‖Ψ(h0 + h1)‖H = ‖Ψ(h1)‖H = ‖Ψ̄(h1)‖H = ‖h1‖H ≤ ‖h‖H,

showing that Ψ(BH1 ) ⊆ BH1 . Let BH1
1 be the open unit ball in H1, then we have

BH1
1 ⊆ BH1 and since Ψ̄ is an isometric isomorphism between H1 and H we even get

Ψ(BH1 ) = BH1 .

Note that in Theorem 2.3.7 we can use any feature space-feature map pair of a
given kernel. Lemma 2.3.10 then says that the corresponding RKHS is the smallest
possible feature space for the kernel. Intuitively, the map Ψ marginalizes out any
superfluous parts of a given feature space for a kernel.

2.4. Positive semidefiniteness: From matrices to kernels

Let M ∈ Kn×n and recall that M is called positive semidefinite if for all v ∈ Cn we
have v∗Mv ≥ 0. Note that this implicitly includes the requirement that v∗Mv ∈ R.
A matrix M ∈ Kn×n can also be interpreted as a bivariate function: Let X =
{1, . . . , n} and define m : X × X → K by m(i, j) = Mij for all i, j ∈ X . We can
now characterize the positive semidefiniteness of the matrix M using the bivariate
function m. The following result is well-known, but curiously it is rarely stated
explicitly (and proved) in expositions of RKHSs and kernels.

4Since Ψ is linear, this is equivalent to 1-Lipschitz continuity, which is also called nonexpanding.
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2.4. Positive semidefiniteness: From matrices to kernels

Lemma 2.4.1. The matrix M ∈ Kn×n is positive semidefinite if and only if for all
N ∈ N, x1, . . . , xN ∈ X , and all α1, . . . , αN ∈ C we have

N∑
i,j=1

αiᾱjm(xj , xi) ≥ 0. (2.12)

Proof. Assume (2.12) holds and let v ∈ Cn be arbitrary. Set N = n and define
xi = i and αi = vi for i = 1, . . . , n, then we get from (2.12) that

v∗Mv =
N∑

i,j=1
αiᾱjm(xj , xi) ≥ 0,

showing that M is positive semidefinite.
Conversely, assume that M is positive semidefinite and let N ∈ N (we can w.l.o.g.

assume that N > 0), x1, . . . , xN ∈ X and α1, . . . , αN ∈ C be arbitrary. For j =
1, . . . , n defineNj = ]{k = 1, . . . , N | xk = j} and (ifNj > 0) for k = 1, . . . , Nj define
i
(j)
k ∈ X such that x

i
(j)
k

= j. Furthermore, for j = 1, . . . , n define vj = ∑Nj
k=1 αi(j)

k

if
Nj > 0 and vj = 0 otherwise. We then have

N∑
i,j=1

αiᾱjm(xj , xi) =
n∑

i,j=1

Ni∑
k=1

Nj∑
`=1

α
i
(i)
k

ᾱ
i
(j)
`

m(j, i)

=
n∑

i,j=1

 Ni∑
k=1

α
i
(i)
k

 Nj∑
k`=1

α
i
(j)
`

m(j, i)

=
n∑

i,j=1
viv̄jMji

= v∗Mv ≥ 0,

establishing (2.12).

Remark 2.4.2. LetM ∈ Rn×n, then it is well-known thatM is positive semidefinite
if and only if M is symmetric (so Mij = Mji for all i, j = 1, . . . , n), and that for all
v ∈ Rn we have v>Mv ≥ 0, cf. [32, Lemma 1.3.4]. We also have a real equivalent
to Lemma 2.4.1: M is positive semidefinite if and only if m is symmetric, (so for all
x, y ∈ X we have m(x, y) = m(y, x)), and for all N ∈ N, x1, . . . , xN ∈ X , and all
α1, . . . , αN ∈ R again (2.12) holds.
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2. Introduction to reproducing kernel Hilbert spaces

Lemma 2.4.1 motivates the following extension of positive semidefiniteness from
n× n matrices to arbitrary bivariate functions.

Definition 2.4.3. Let X 6= ∅ and k : X × X → K. We call k positive semidefinite
if for all N ∈ N, x1, . . . , xN ∈ X , and all α1, . . . , αN ∈ C we have

N∑
i,j=1

αiᾱjk(xj , xi) ≥ 0. (2.13)

We can rephrase Definition 2.4.3 as follows: A bivariate function k is positive
semidefinite if for all choices x1, . . . , xN ∈ X the matrix (k(xj , xi))i,j=1,...,N is positive
semidefinite.

Remark 2.4.4. 1. Let K = R, then an equivalent variant of Definition 2.4.3 is
as follows: We call k : X ×X → R positive semidefinite if k is symmetric, i.e.,
for all x, x′ ∈ X we have k(x, x′) = k(x′, x), and the condition in Definition
2.4.3 holds for all α1, . . . , αN ∈ R.

2. Recall that M ∈ Kn×n is called positive definite if for all v ∈ Cn \ {0} we have
v∗Mv > 0. We can formulate a corresponding variant of Lemma 2.4.1: Define
again X = {1, . . . , n} and m(i, j) = Mij , thenM is positive definite if and only
if for all N ∈ N, pairwise distinct x1, . . . , xN ∈ X (note that this implies that
N ≤ n) and α1, . . . , αN ∈ C not all zero we have ∑N

i,j=1 αiᾱjm(xj , xi) > 0.

3. The preceding item motivates the following definition: Let X 6= ∅ and k : X ×
X → K. We call k positive definite if for all N ∈ N, x1, . . . , xN ∈ X pairwise
distinct, and all α1, . . . , αN ∈ C not all zero we have∑N

i,j=1 αiᾱjm(xj , xi) > 0.
Similarly to Definition 2.4.3, this is equivalent to all matrices (k(xj , xi))i,j=1,...,N

being positive definite.

4. If K = R, we have again an equivalent definition of positive definiteness: The
function k : X × X → R is positive definite if and only if k is symmetric, and
for all N ∈ N, x1, . . . , xN ∈ X pairwise distinct, and all α1, . . . , αN ∈ R not
all zero we have ∑N

i,j=1 αiαjm(xj , xi) > 0.

5. The terminology in the literature is not uniform: Positive semidefiniteness
in the sense of Definition 2.4.3 is sometimes called positive definiteness (or
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2.5. Native spaces: RKHSs as natural approximation spaces

sometimes of positive type) and positive definiteness is called strict positive
definiteness.

In Section 2.5 we will see another motivation for the concept of a positive semidef-
inite (and positive definite) bivariate function.
Let us now build a connection to the developments of the preceding sections with

the following result, which is folklore.

Proposition 2.4.5. Let X 6= ∅ be a set and k : X ×X → K a kernel in the sense of
Definition 2.3.4. Then k is positive semidefinite in the sense of Definition 2.4.3. In
particular, if k is the reproducing kernel of an RKHS, then it is positive semidefinite.

Proof. Let H be a feature space and Φ : X → H a feature map for k. Let N ∈ N
(w.l.o.g. N > 0), x1, . . . , xN ∈ X and α1, . . . , αN ∈ C, then

N∑
i,j=1

αiᾱjk(xj , xi) =
N∑

i,j=1
αiᾱj〈Φ(xi),Φ(xj)〉H

=
〈

N∑
i=1

αiΦ(xi),
N∑
j=1

αjΦ(xj)
〉
H

=
∥∥∥∥∥
N∑
i=1

αiΦ(xi)
∥∥∥∥∥
H

≥ 0.

The last claim is clear since a reproducing kernel is a kernel according to Proposition
2.3.5.

The proof of Proposition 2.4.5 reveals that for x1, . . . , xN ∈ X , the matrix
(k(xj , xi))i,j can be interpreted as a Gram matrix. On the one hand, this provides an
intuitive explanation as to why a kernel is positive semidefinite. On the other hand,
it suggests that positive semidefinite functions should be kernels. This is indeed the
case and this result appears naturally in the next section in a different context.

2.5. Native spaces: RKHSs as natural approximation spaces

We now turn to another perspective on RKHSs, which is motivated by the scattered
data approximation literature [217]. Our presentation is inspired by [175, Chapter 3]
and [32, Chapter 1]. An important task in mathematics and numerics is function
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2. Introduction to reproducing kernel Hilbert spaces

interpolation. Let X 6= ∅ be some set, F ⊆ KX a set of functions, and x1, . . . , xN ∈
X , N ∈ N, as well as y1, . . . , yN ∈ K. The goal is to find some f ∈ F such that
f(xn) = yn for all n = 1, . . . , N . Note that ideally we want to use the same F for all
such problem instances and even get a unique solution f ∈ F . A simple approach is
to take F as a vector space of functions, fix a linearly independent family of functions
(φn)n spanning F , and for a concrete problem instance use the ansatz

N∑
n=1

αnφn(xm) = ym, m = 1, . . . , N. (2.14)

Note that the φn are independent of the problem data, i.e., they do not depend
on the inputs xn or interpolated values yn. Due to the Mairhuber-Curtis Theorem
(see [218, Chapter 2] for a thorough discussion), using such a data-independent
approach is in many cases not possible. As a simple remedy, we can make the
functions in the ansatz (2.14) data-dependent. For this, let us replace φ1, . . . , φN by
φ(·, x1), . . . , φ(·, xN ) for some function φ : X × X → K, leading to the new system
of linear equations

N∑
n=1

αnφ(xm, xn) = ym, m = 1, . . . , N, (2.15)

which can be conveniently written as Φα = y by setting

Φ =


φ(x1, x1) · · · φ(x1, xN )

...
...

φ(xN , x1) · · · φ(xN , xN )

 α =


α1
...
αN

 y =


y1
...
yN

 .
The interpolation problem has now been replaced by the problem of solving a simple
linear equation system. From a numerical perspective particularly benign are linear
equations with a positive semidefinite Φ. Since we want to use the same φ for all
possible interpolation problems (on input set X ), this leads to the requirement that
all resulting matrices Φ (in this context called interpolation matrices) are positive
semidefinite. But recalling the developments in Section 2.4, we see that this is
equivalent to the function φ being positive semidefinite in the sense of Definition
2.4.3. In other words, if we want to use the ansatz (2.15) and end up with a positive
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2.5. Native spaces: RKHSs as natural approximation spaces

semidefinite interpolation matrix Φ, we have to use a positive semidefinite function
φ. This provides another motivation for the concepts in Section 2.4.

Remark 2.5.1. Ideally, we want that Φ is also invertible so that ansatz (2.15) leads
to the existence of a unique solution. It is clear that for this we need that x1, . . . , xN

are pairwise distinct. Similarly to the arguments above, this means that we want
some φ such that for all pairwise distinct x1, . . . , xN ∈ X the interpolation matrix
is positive definite. But this is equivalent to φ being positive definite in the sense of
Section 2.4. However, since this will not play a role in the general theory of RKHS,
we do not elaborate on it and instead refer to [218], for example, for more details.

Let now k : X × X → K be a positive semidefinite function (in the sense of
Definition 2.4.3). Using the approach outlined so far in this section, we are working
with the vector space of functions

H0 =
{

N∑
n=1

αnk(·, xn) | N ∈ N, xn ∈ X , αn ∈ K
}

= span{k(·, x) | x ∈ X}. (2.16)

What happens if we want to use H0 to approximate some function by going to the
limit? To use an analogy, step functions on a compact set are dense w.r.t. the
supremum norm in the set of continuous functions, i.e., we can use step functions
to approximate continuous functions arbitrarily well. What is a natural space of
functions that can be approximated well by H0? In order to answer this, we need a
suitable topology (to allow limits), and since k is positive semidefinite, it is natural
to look for a scalar product (inducing a topology). What is a reasonable choice?
Since we want to approximate functions, norm convergence should imply pointwise
convergence. But this means that we look for an RKHS H with H0 ⊆ H, cf. our
discussion in Section 2.1. From Section 2.2 we know that this RKHS has a unique
reproducing kernel. A natural choice is then to use k as the reproducing kernel.
In particular, we need that for all x, x′ ∈ X we have 〈k(·, x′), k(·, x)〉H = k(x, x′).
Extending this relation sesquilinearly to all of H0 then essentially gives a scalar
product on H0. This is formalized in the next well-known result.

Proposition 2.5.2. Define

〈·, ·〉0 : H0 ×H0 → K, 〈f, g〉0 =
N∑
i=1

M∑
j=1

αiβ̄jk(yj , xi), (2.17)
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2. Introduction to reproducing kernel Hilbert spaces

where f = ∑N
i=1 αik(·, xi) and g = ∑M

j=1 βjk(·, yj) are two arbitrary representations
of f, g ∈ H0. Then 〈·, ·〉0 is a well-defined scalar product on H0.

Proof. Let f, g ∈ H0 and choose two representations f = ∑N
i=1 αik(·, xi) and g =∑M

j=1 βjk(·, yj). Then

〈f, g〉0 =
N∑
i=1

M∑
j=1

αiβ̄jk(yj , xi) =
N∑
i=1

αi

 M∑
j=1

β̄jk(xi, yy)

 =
N∑
i=1

αig(xi)

shows that 〈f, g〉0 is independent of the representation of g (since only its function
evaluations are used), and

〈f, g〉0 =
N∑
i=1

M∑
j=1

αiβ̄jk(yj , xi) =
M∑
i=j

β̄j

(
N∑
i=1

αik(yj , xi)
)

=
M∑
j=1

β̄jf(yj)

shows that it is also independent of the representation of f , hence 〈·, ·〉0 is well-
defined. Furthermore, it is clear that 〈·, ·〉0 is sequilinear (bilinear for K = R).
Next, let f = ∑N

i=1 αik(·, xi) ∈ H0 be arbitrary, then the positive semidefiniteness
of k shows 〈

N∑
i=1

αik(·, xi),
N∑
j=1

αjk(·, xj)
〉

0

=
N∑

i,j=1
αiᾱjk(xj , xi) ≥ 0,

establishing the positive semidefiniteness of 〈·, ·〉0. We now need to show that 〈·, ·〉0
is even positive definite. By the usual argument, 〈·, ·〉0 fulfills the Cauchy-Schwarz
inequality. Let f = ∑N

i=1 αik(·, xi) ∈ H0 such that 〈f, f〉0 = 0. For all x ∈ X we
then find that

|f(x)| =
∣∣∣∣∣
N∑
i=1

αik(x, xi)
∣∣∣∣∣ =

∣∣∣∣∣
〈

N∑
i=1

αik(·, xi), k(·, x)
〉

0

∣∣∣∣∣
≤
∥∥∥∥∥
N∑
i=1

αik(·, xi)
∥∥∥∥∥

0
‖k(·, x)‖0 = 0,

where we used Cauchy-Schwarz in the inequality and ‖f‖0 =
√
〈f, f〉0 = 0 in the

last equality. This shows that f ≡ 0 and hence the positive definiteness of 〈·, ·〉0.
Altogether, 〈·, ·〉0 is a well-defined scalar product on H0.
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Before turning to the question of limits in H0, we make the following obser-
vation: The definition of 〈·, ·〉0 implies that for all f ∈ H0 and x ∈ X we have
f(x) = 〈f, k(·, x)〉0 (this has been used in the proof of Proposition 2.5.2), i.e., k is
a reproducing kernel for the pre Hilbert space H0. In particular, we have for all
x, x′ ∈ X that k(x, x′) = 〈k(·, x′), k(·, x)〉0. This almost shows that k is a kernel,
but we need completeness of the feature space (and H0 is in general not complete,
hence it cannot be used as a feature space here). Let H be a completion of H0 and
let I : H0 → H be the corresponding isometric embedding. We can then define
Φ : X → H by Φ(x) = I[k(·, x)] and get

k(x, x′) = 〈k(·, x′), k(·, x)〉0 = 〈I[k(·, x′)], I[k(·, x)]〉H = 〈Φ(x′),Φ(x)〉H,

showing that every positive semidefinite function is a kernel. Combining this with
Proposition 2.4.5 we get the next important result, see e.g. [189, Theorem 4.16].

Theorem 2.5.3. Let X 6= ∅ be arbitrary and k : X ×X → K some function. Then
k is a kernel if and only if it is positive semidefinite.

We know from Theorem 2.3.7 that every kernel is the reproducing kernel of an
RKHS that can be built from any feature space-feature map pair. Applying this to
the completion (H, 〈·, ·〉H) just introduced establishes the following central result,
known as the Moore-Aronszajn Theorem.

Theorem 2.5.4. Let X 6= ∅ and k : X×X → K be some function. Then k is positive
semidefinite if and only if it is the reproducing kernel of a (uniquely determined)
RKHS H.

Since we applied Theorem 2.3.7 to the abstract completion (H, 〈·, ·〉H), it is not
quite clear at this point how the corresponding RKHS actually looks like. To build
more intuition and add another perspective, let us return to H0 and to the question
of limits of functions in this space. Let (fn)n be a Cauchy sequence in (H0, ‖ · ‖0).
For x ∈ X and arbitrary n,m ∈ N we have

|fn(x)− fm(x)| = |〈fn − fm, k(·, x)〉0| ≤ ‖fn − fm‖0‖k(·, x)‖0,

showing that (fn(x))n is a Cauchy sequence in K and hence convergent. For each
Cauchy sequence (fn)n in (H0, ‖ · ‖0) we can therefore define a function f : X → K
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2. Introduction to reproducing kernel Hilbert spaces

by f(x) = limn fn(x). Let H be the set of all such functions, then H is a K-vector
space that contains H0. Next, we need to extend 〈·, ·〉0 to this space. This is done
in the next result, which is from the proof of [32, Theorem 1.3.2].

Lemma 2.5.5. For f, g ∈ H let (fn)n, (gn)n be two Cauchy sequences such that
fn(x) → f(x) and gn(x) → g(x) for all x ∈ X . Then limn〈fn, gn〉0 exists and is
independent of the choice of (fn)n, (gn)n and

〈·, ·〉H : H ×H → K, 〈f, g〉H = lim
n
〈fn, gn〉0 (2.18)

defines a scalar product on H. Furthermore, 〈·, ·〉H |H0= 〈·, ·〉0.

Proof. Step 1 For n,m ∈ N we have

|〈fn, gn〉0 − 〈fm, gm〉0| = |〈fn − fm, gn〉0 + 〈fm, gn − gm〉0|

≤ ‖fn − fm‖0‖gn‖0 + ‖fm‖0‖gn − gm‖0,

where we used the triangle and Cauchy-Schwarz inqualities. Since Cauchy sequences
are bounded, this shows that (〈fn, gn〉0)n is a Cauchy sequence in K and hence
convergent.
Step 2 We need the following auxiliary result: Let (hn)n be a Cauchy sequence

in (H0, 〈·, ·〉0) s.t. hn(x) → 0 for all x ∈ X , then ‖hn‖0 → 0. To see this, let ε > 0
be arbitrary, let B > 0 be a bound on ‖hn‖0 (exists since Cauchy sequences are
bounded) and choose Nε ∈ N such that ‖hn − hNε‖0 ≤ ε

B for all n ≥ Nε. Let

hNε =
M∑
m=1

αmk(·, xm)

be some representation of hNε ∈ H0. We then get

‖hn‖20 = 〈hn, hn〉0 = 〈hn − hNε , hn〉+ 〈hNε , hn〉0

≤ ‖hn − hNε‖0‖hn‖0 +
M∑
m=1

αmhn(xm)

≤ ε+
M∑
m=1

αmhn(xm),
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where we used Cauchy-Schwarz and the reproducing property of k in the first in-
equality and the choice of Nε in the second inequality. Since Nε is constant and hn
converges pointwise to 0, we get lim supn ‖hn‖20 ≤ ε. Since ε > 0 was arbitrary, we
find ‖hn‖0 → 0.
Step 3 Let (f̃n)n, (g̃n)n be another two Cauchy sequences with f̃n(x)→ f(x) and

g̃n(x)→ g(x) for all x ∈ X . Then (fn − f̃n)n and (gn − g̃n)n are Cauchy sequences
that converge pointwise to 0, hence according to Step 2 also in norm, and

|〈fn, gn〉0 − 〈f̃n, g̃n〉0| = |〈fn − f̃n, gn〉0 − 〈f̃n, g̃n − gn〉0|

≤ ‖fn − f̃n‖0‖gn‖0 + ‖f̃n‖0‖gn − g̃n‖0

shows that limn〈fn, gn〉0 = limn〈f̃n, g̃n〉0. Summarizing, (2.18) is independent of the
chosen Cauchy sequences, hence well-defined.
Step 4 It is clear that 〈·, ·〉H is bilinear, Hermitian (symmetric for K = R) and

positive semidefinite (these properties are induced by 〈·, ·〉0 and the linearity of
the limit). To establish even positive definiteness of 〈·, ·〉H , let f ∈ H such that
〈f, f〉H = 0 and choose any Cauchy sequence (fn)n in (H0, 〈·, ·〉0) with fn(x)→ f(x)
for all x ∈ X . By definition of 〈·, ·〉 we then get limn ‖fn‖0 = ‖f‖H and

f(x) = lim
n
fn(x) = lim

n
〈fn, k(·, x)〉0 ≤ ‖k(·, x)‖0 · lim

n
‖fn‖0 = 0,

where we used the reproducing property of k in H0 in the second inequality. We
therefore find that f ≡ 0, showing that 〈·, ·〉H is positive definite.

Altogether, 〈·, ·〉H is a well-defined scalar product on H and by construction it is
equal to 〈·, ·〉0 on H0.

It turns out that we arrived at an RKHS with kernel k.

Theorem 2.5.6. (H, 〈·, ·〉H) is an RKHS with reproducing kernel k and H0 is dense
in H.

The following proof is based on the one of [32, Theorem 1.3.2].

Proof. Step 1 We first need the following result: Let f ∈ H, (fn)n a Cauchy
sequence in (H0, 〈·, ·〉0) that converges pointwise to f , then fn converges also w.r.t.
‖·‖H to f , i.e., ‖fn−f‖H → 0. To see this, let ε > 0 be arbitrary and choose Nε ∈ N

43



2. Introduction to reproducing kernel Hilbert spaces

such that for all n,m ≥ Nε we have ‖fn − fm‖0 ≤ ε. Observe that (fm − fNε)m is
a Cauchy sequence in H0 that converges pointwise to f − fNε , hence ‖f − fNε‖0 =
limm ‖fm − fNε‖0 ≤ ε. Since ε > 0 was arbitrary, this shows that ‖f − fn‖H → 0.

Note that this step shows also the density of H0 in H.

Step 2 Let f ∈ H and x ∈ X be arbitrary. Choose a Cauchy sequence (fn)n in
H0 that converges pointwise to f , then

f(x) = lim
n
fn(x) = lim

n
〈fn, k(·, x)〉0 = 〈f, k(·, x)〉H .

Step 3 H is complete: Let (fn)n be a Cauchy sequence in (H, 〈·, ·〉H). For each
x ∈ X and n,m ∈ N we have

|fn(x)− fm(x)| = |〈fn − fm, k(·, x)〉H | ≤ ‖fn − fm‖H‖k(·, x)‖H ,

where we have used Step 2 in the first equality. This shows that (fn(x))n is a
Cauchy sequence in K, hence convergent, so we can define the function f ∈ KX by
f(x) = limn fn(x). We have to show that f ∈ H and that fn → f in (H, ‖ · ‖H). For
this, we construct a Cauchy sequence in H0 that converges pointwise to f (showing
by definition of H that f ∈ H) and then use it also to show ‖f − fn‖H → 0.

Let (εn)n some sequence with εn > 0 and εn → 0. For each n ∈ N let (h(n)
m )m

be a Cauchy sequence in H0 that converges pointwise to fn. According to Step 1,
‖h(n)

m − fn‖H → 0, so we can choose Mn ∈ N such that ‖h(n)
Mn
− fn‖H ≤ εn and

then set gn = h
(n)
Mn

. We show that (gn)n is a Cauchy sequence in H0: Let ε > 0 be
arbitary. Choose N1 ∈ N such that for all n ≥ N1 we have εn ≤ ε

3 . Choose N2 ∈ N
such that for all n,m ≥ N2 we have ‖fn− fm‖H ≤ ε

3 (exists since (fn)n is a Cauchy
sequence in H). Then for all n,m ≥ max{N1, N2} we have

‖gn − gm‖0 ≤ ‖gn − fn‖H + ‖fn − fm‖H + ‖fm − gm‖H
≤ εn + ε

3 + εm ≤ ε,

establishing that (gn)n is a Cauchy sequence. Next, this sequence converges point-
wise to f : Let x ∈ X and ε > 0 be arbitrary. Choose N1 ∈ N such that |f(x) −
fn(x)| ≤ ε

2 for all n ≥ N1 (recall that fn converges pointwise to f) and chooseN2 ∈ N
such that for all n ≥ N2 we have εn‖k(·, x)‖H ≤ ε

2 . Then for all n ≥ max{N1, N2}
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2.5. Native spaces: RKHSs as natural approximation spaces

we have

|f(x)− gn(x)| ≤ |f(x)− fn(x)|+ |fn(x)− gn(x)|

≤ ε

2 + |〈fn − gn, k(·, x)〉H |

≤ ε

2 + ‖fn − gn‖H‖k(·, x)‖H ≤ ε.

Summarizing, (gn)n is a Cauchy sequence in H0 that converges pointwise to f ,
showing that f ∈ H. Finally, we use this to show that ‖f − fn‖H → 0. Let ε > 0
be arbitrary. From Step 1 we get that ‖f − gn‖H → 0, so we can choose N1 ∈ N
such that ‖f − gn‖H ≤ ε/2. Furthermore, choose N2 ∈ N such that for all n ≥ N2

we have εn ≤ ε/2. We then get for all n ≥ max{N1, N2} that

‖f − fn‖H ≤ ‖f − gn‖H + ‖gn − fn‖H ≤ ε.

Altogether, this establishes completeness of H.
Finally, since H is a Hilbert space with a reproducing kernel, it is an RKHS.

A very important aspect of the developments in this section is that we constructed
a completion of the pre Hilbert space (of functions) H0 that is again a space of
functions instead of just an abstract Hilbert space. One says that H is a functional
completion of H0.

Remark 2.5.7. It turns out that Theorem 2.5.6 is a special case of the following
more general result. Let X 6= ∅ be some set and (H0, 〈·, ·〉0) be a pre Hilbert space
of functions on X . Then the following two statements are equivalent.

1. There exists a Hilbert space (H, 〈·, ·〉H) with a reproducing kernel such that
H0 ⊆ H (as a sub pre Hilbert space)

2. For all x ∈ X the evaluation functionals δx : H0 3 f 7→ f(x) are continuous
in (H0, 〈·, ·〉0), and if a Cauchy sequence (fn)n in H0 converges pointwise to 0,
then it also converges to 0 in norm.

For a proof see for example [32, Theorem 2].
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2.6. Stochastic processes and RKHSs

We now turn to some connections between stochastic processes and RKHSs.

2.6.1. Kernels and covariance functions

In the following, let (Ω,A,P) be a probability space in the background. Given some
set X 6= ∅, a stochastic process with index set X (or on X ) is a collection of random
variables Y = (Yx)x∈X . We call Y a locally square-integrable or second-order process
if Yx is square-integrable for all x ∈ X , i.e., Yx ∈ L2(Ω,A,P). In this case, we can
define the mean function

mY : X → R, mY(x) = E[Yx]

and the (centered) covariance function

kY : X × X → R, kY(x, x′) = Cov(Yx′ , Yx) = E[(Yx −m(x))(Yx′ −m(x′))]

of the stochastic process Y.
Let x1, . . . , xN ∈ X , then the stochastic process Y induces a random vector

Y =
(
Yx1 · · · YxN

)>
with mean vector and covariance matrix (sometimes called

variance matrix) given by

E[Y ] =
(
mY(x1) · · · mY(xN )

)>

Var[Y ] =


Cov(Yx1 , Yx1) · · · Cov(Yx1 , YxN )

...
...

Cov(YxN , Yx1) · · · Cov(YxN , YxN )

 =


kY(x1, x1) · · · kY(xN , x1)

...
...

kY(x1, xN ) · · · kY(xN , xN )

 .
As is well-known, a covariance matrix of a random vector is always positive semidef-
inite. But this means that kY is positive semidefinite according to Definition 2.4.3,
so it is a kernel according to Theorem 2.5.3.
Let now m : X → K be any function and k : X × X → K a positive semidefinite

function according to Definition 2.4.3, so a kernel. It is well-known that one can
construct a stochastic process Y with index set X , mean function mY = m and
covariance function kY = k. We can summarize all of this as follows.
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2.6. Stochastic processes and RKHSs

Theorem 2.6.1. Let X 6= ∅ be some set and k : X × X → K a function. k is a
kernel if and only if it is the covariance function of a second-order stochastic process
with index set X .

This result also justifies why in the context of second-order stochastic processes
the terms covariance function and kernel are used interchangably, in particular, in
machine learning [166].

2.6.2. RKHSs generated by stochastic processes

Let Y = (Yx)x∈X be a second-order stochastic process. Instead of a collection
of random variables, we can also interpret it as a random function. Formally, the
random variables Yx are (measurable) mappings Yx : Ω→ R, and a realization ω ∈ Ω
of the underlying random experiment (described by (Ω,A,P)) induces a realization
x 7→ Yx(ω) of the random function modeled by the stochastic process Y. We can
interpret Y = {Yx | x ∈ X} as the set of all "measurement points" of this random
function. In signal processing, statistics and related fields, one often uses a linear
measurement model, in which different "measurement points" are combined in a linear
combination. The resulting linear measurements (or "linear measurement devices")
are given by H0 = spanY. To work conveniently with the linear measurements
(for example, for approximation arguments), it would be good if this set were closed
under limits (in an appropriate sense). Since Y is a second-order process, we have by
definition Y ⊆ L2(Ω,A,P), and a fortiori H0 ⊆ L2(Ω,A,P), so it seems reasonable
to turn H0 even into a Hilbert space. This is our next goal.

If G is a K-Hilbert space and ∅ 6= F0 ⊆ G a subset, we can turn the latter into
a Hilbert space by setting F = spanF0

‖·‖G . While we have H0 ⊆ L2(Ω,A,P),
the set of square-integrable random variables L2(Ω,A,P) is not a Hilbert space.
The reason is that in general if f ∈ L2(Ω,A,P), then ‖f‖L2 = 0 does not imply
f = 0, but only f = 0 P-a.s. As is well-known, this problem can be circumvented
by going to the quotient space, a procedure we now recall. Let N = {f : Ω →
K | f measurable, f = 0 P − a.s.}, and define L2(Ω,A,P) = L2(Ω,A,P)/N . Note
that the elements of L2(Ω,A,P) are not functions, but rather equivalence classes
of functions. For f ∈ L2(Ω,A,P), we write [f ] for the equivalence class of f , and
by setting ‖[f ]‖L2(Ω,A,P) = ‖f‖L2(Ω,A,P) we get a well-defined Hilbert space norm on
L2(Ω,A,P).
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We can now derive a Hilbert space from Y. DefineH0 = span{[Yx] | x ∈ X}, which
is a subspace of the Hilbert space L2(Ω,A,P), so the closure H = H0

‖·‖L2(Ω,A,P) is
again a Hilbert space. By identifying Yx with [Yx] for all x ∈ X , we can interpret
H as the set of all linear measurements and their limits (w.r.t. the topology of L2)
of the random function Y. For this reason, the space H is called the Hilbert space
generated by the stochastic process Y.

Let us have a closer look at this space, in particular, its inner product. For
simplicity, consider from now on a mean-zero stochastic process, i.e., mY ≡ 0, and
in order to reduce notational overhead, denote the covariance function of Y by k.
Observe now that we have for all x, x′ ∈ X that

〈[Yx], [Yx′ ]〉H = 〈Yx, Yx′〉L2 = E[YxYx′ ] = Cov(Yx, Yx′) = k(x, x′) = k(x′, x)

so H is almost a feature space, and x 7→ [Yx] is almost a feature map for k, we
only need to get rid of the complex conjugation. Tracing back our construction
shows that we need to introduce a complex conjugation early on, so let us redefine
Y = {Yx | x ∈ X} and H0 = spanY, as well as H0 = span{[Yx] | x ∈ X} and
H = H0

‖·‖L2(Ω,A,P) . With this modification, we now have for all x, x′ ∈ X that

〈[Yx], [Yx′ ]〉H = 〈Yx, Yx′〉L2 = E
[
YxYx′

]
= E[Yx′Yx] = Cov(Yx′ , Yx) = k(x′, x),

so H is indeed a feature space of the kernel k, and Φ : X → H, Φ(x) = [Yx] is
a corresponding feature map. Recall from Theorem 2.3.7 that this implies Hk =
imHΨ, where Ψ : H → Hk, Ψ([Y ]) = 〈[Y ],Φ(·)〉H . This means that f ∈ Hk if and
only if there exists [Y ] ∈ H such that for all x ∈ X

f(x) = 〈[Y ],Φ(x)〉H = 〈[Y ], [Y x]〉L2 = E
[
Y Yx

]
= E[YxY ].

The Hilbert space generated by Y therefore allows a rather concrete description of
the RKHS Hk. However, the connection between these two spaces is even stronger.

The canonical feature map Φk represents an input element x ∈ X by the RKHS
function k(·, x). Similarly, the feature map Φ represents an input element x by [Yx].
We can therefore embed Y into Hpre

k by defining IY : Y → Hpre
k , IY(Yx) = k(·, x).

In turn, this map can be extended to all of H0.
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Lemma 2.6.2. Setting

IH0

(
N∑
n=1

αnYxn

)
=

N∑
n=1

αnk(·, xn)

for all α1, . . . , αN ∈ K, x1, . . . , xN ∈ X , leads to a well-defined linear and surjective
map IH0 : H0 → Hpre

k . Furthermore, for all Y ∈ H0 we have ‖IH0(Y )‖k = ‖Y ‖L2 .

Proof. Let α1, . . . , αN ∈ K, x1, . . . , xN ∈ X be arbitrary and observe that

∥∥∥∥∥
N∑
n=1

αnYxn

∥∥∥∥∥
2

L2

= E

( N∑
n=1

αnYxn

)(
N∑
n=1

αnYxn

)
=

N∑
i,j=1

αiᾱjE[YxiYxj ]

=
N∑

i,j=1
αiᾱjCov(Yxj , Yxi) =

N∑
i,j=1

αiᾱjk(xj , xi)

=
N∑

i,j=1
αiᾱj〈k(·, xi), k(·, xj)〉k

=
〈

N∑
i=1

αik(·, xi),
N∑
j=1

αjk(·, xj)
〉
k

=
∥∥∥∥∥
N∑
n=1

αnk(·, xn)
∥∥∥∥∥

2

k

.

Given Y ∈ H0 and two representations

Y =
N∑
n=1

αnYxn =
M∑
m=1

βmYx′m ,

we therefore get∥∥∥∥∥
N∑
n=1

αnk(·, xn)−
M∑
m=1

βmk(·, x′m)
∥∥∥∥∥
k

=
∥∥∥∥∥
N∑
n=1

αnYxn −
M∑
m=1

βmYx′m

∥∥∥∥∥
L2

= ‖Y − Y ‖L2 = 0,

which shows that IH0 is well-defined, linear and ‖IH0(Y )‖k = ‖Y ‖L2 for all Y ∈
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H0. To show that IH0 is surjective, let f ∈ Hpre
k be arbitrary, and choose any

representation f = ∑N
n=1 αnk(·, xn). Defining Y = ∑N

n=1 αnYxn ∈ H0, we then find
IH0(Y ) = f .

We now have a correspondence between H0 and Hpre
k . We can turn this into a

map between H0 and Hpre
k by defining IH0([Y ]) = IH0(Y ), where Y ∈ H0 is an

element from the corresponding equivalence class.

Lemma 2.6.3. IH0 : H0 → Hpre
k is a well-defined, linear and bijective map. Fur-

thermore, ‖IH0([Y ])‖k = ‖[Y ]‖H0 for all Y ∈ H0, i.e., IH0 is an isometry.

Proof. Let Y1, Y2 ∈ H0 with [Y1] = [Y2], i.e., Y1 = Y2 P-a.s., which implies ‖Y1 −
Y2‖L2 = 0. We therefore get

‖IH0([Y1])− IH0([Y2])‖k = ‖IH0(Y1)− IH0(Y1)‖k = ‖Y1 − Y2‖L2 = 0,

which shows that IH0 is well-defined and ‖IH0([Y ])‖k = ‖Y ‖L2 = ‖[Y ]‖L2 for all
Y ∈ H0. The linearity and surjectivity is inherited from IH0 , and since IH0 is
isometric and L2 is a Hilbert space, the former is also injective.

Since IH0 is a linear isometry, it is continuous, and since H0 is by definition dense
in H, we can extend IH0 uniquely to a linear isometry IH : H → Hk. In particular,
IH is injective and for all [Y1], [Y2] ∈ H we have 〈IH([Y1]), IH([Y2])〉k = 〈[Y1], [Y2]〉H .
Furthermore, for all f ∈ Hk there exists [Y ] ∈ H with f = 〈[Y ],Φ(·)〉H , which
implies that for all x ∈ X

IH([Y ])(x) = 〈IH([Y ]), k(·, x)〉k = 〈IH([Y ]), IH([Yx])〉k
= 〈[Y ], [Yx]〉H = 〈[Y ],Φ(x)〉H = f(x),

i.e., IH([Y ]) = f . This shows that IH is also surjective. Altogether, we arrived at
the following result, which is known as Loeve’s representation theorem, and the map
IH is sometimes called the canonical isomorphism.

Theorem 2.6.4. The Hilbert spaces H generated by the stochastic process Y is
isometrically isomorphic to the RKHS Hk. In particular, for all f ∈ Hk there exists
[Y ] ∈ H such that f(x) = E[Y Yx] for all x ∈ X .
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We can therefore identify the Hilbert generated by a zero-mean second-order
stochastic process with the RKHS corresponding to the covariance function of this
stochastic process. This also means that by considering the space of all linear mea-
surements (and their limits) of such a stochastic process, we arrived again at the
concept of an RKHS.

2.7. Comments

As stated in the beginning of this chapter, no new results or examples are contained
in our presentation, and we heavily relied on existing expositions of RKHSs and
related concepts, in particular, [32], [152], and [189, Chapter 4]. However, we are
not aware of a similar perspective-agnostic introduction to RKHSs. This chapter,
which is based on an early version of the manuscript [CF14], has been conceived and
written by the author of the present thesis, with some editorial input by the first
supervisor S. Trimpe.
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3. Lipschitz and Hölder continuity in
RKHSs

RKHSs are functions spaces that are generated by a special bivariate function, their
reproducing kernel, cf. Section 2.2. As is well-known, properties of the functions in
an RKHS and properties of the reproducing kernel of an RKHS are closely connected,
and these connections have been thoroughly investigated, with a good overview pro-
vided in [189, Chapter 4]. This connection is important since an RKHS is generated
by its reproducing kernel, and the latter is user-defined in most applications of
RKHSs. By choosing or constructing an appropriate reproducing kernel, tailored
function spaces can be created, which can then be used in interpolation, approxi-
mation, optimization and related problems.
Particularily relevant for many applications are regularity properties of function

spaces. In the case of RKHSs, continuity and differentiability of functions is fully
determined by the corresponding reproducing kernel, cf. [189, Lemma 4.29, Corol-
lary 4.36]. Furthermore, there is a close connection between certain Sobolev spaces
and RKHSs, cf. [217, 71]. Another important regularity notion, which is in between
mere continuity and differentiability, is Lipschitz continuity, or more generally Hölder
continuity. Recall that if (X , dX ) and (Y, dY) are two metric spaces, and f : X → Y
a function, we call f Lipschitz continuous if there exists L ∈ R≥0 such that for
all x, x′ ∈ X we have dY(f(x), f(x′)) ≤ LdX (x, x′). Each such L ∈ R≥0 is called
a Lipschitz constant for f , we sometimes we say that f is L-Lipschitz continuous.
Similarly, if there exists α ∈ R>0 and Lα ∈ R≥0 such that for all x, x′ ∈ X we have
dY(f(x), f(x′)) ≤ LαdX (x, x′)α, then f is called α-Hölder continuous, and each such
Lα is called a Hölder constant for f . In particular, 1-Hölder continuity is Lipschitz
continuity.
Lipschitz and Hölder continuity are classic notions that appear prominently for

example in the theory of ordinary differential equations [11] and partial differential
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equations [69], respectively. Hölder continuity is also frequently used in the theory
of nonparametric statistics [203, 80]. Moreover, there is now a considerable and well-
developed theory of spaces of Lipschitz continuous functions, cf. [56]. In addition,
Lipschitz continuity (and to a lesser extent also Hölder continuity) is used as the
foundation of practical algorithms. For example, Lipschitz continuity (and a known
Lipschitz constant) is a core assumption in many global optimization approaches
[161]. Lipschitz continuity also forms the basis for many non-stochastic learning
algorithms, especially in the context of systems identification [139, 44]. Finally,
Lipschitz continuity (and related properties) will also play a role in the latter parts
of the present thesis, in the context of safe learning and reasonable practical prior
knowledge.
All of this forms a strong motivation to investigate Lipschitz and Hölder conti-

nuity in RKHSs. In particular, a central question is how (if at all) the Lipschitz or
Hölder continuity of the reproducing kernel of an RKHS influences the correspond-
ing continuity properties of RKHS functions. To the best of our knowledge, there is
no systematic investigation into these questions, despite the importance of RKHSs
and Lipschitz and Hölder continuity, respectively, and the considerable effort that
went into investigating the connection between kernel properties and RKHS function
properties. That RKHS functions are always Lipschitz continuous w.r.t. the kernel
metric, as reviewed in Section 3.2, is well-known. The more interesting question of
Lipschitz and Hölder continuity w.r.t. an arbitrary metric seems to have been barely
covered in the literature, and the only previous work we are aware of that explicitly
addresses this question, is [72]. In this chapter, close this gap in the literature, and
also provide context and background for the Lipschitz-based methods presented in
later chapters.
Apart from minor modifications, this chapter corresponds to the preprint [CF1].

Detailed comments on the author’s contribution are provided in Section 3.6.

3.1. Preliminaries and background

We cover the real and complex case simultaneously, using the symbol K for R or
C. Unless noted otherwise, X will be a non-empty set. We call κ : X × X → K
Hermitian if for all x, x′ ∈ X , we have κ(x, x′) = κ(x′, x). Note that if κ is Hermitian,
then κ(x, x) ∈ R for all x ∈ X . If K = R, then κ is Hermitian if and only if it is
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3.1. Preliminaries and background

symmetric in its two arguments.
Since we state several results for bounded kernels or bounded RKHS functions,

we recall the following characterization of boundedness in RKHSs.

Lemma 3.1.1. Let X 6= ∅ be some set and k : X × X → K a kernel on X . The
following statements are equivalent.

1. k is bounded

2. ‖k‖∞ := supx∈X
√
k(x, x) <∞

3. There exists a feature space-feature map pair (H,Φ) such that Φ is bounded

4. For all feature space-feature map pairs (H,Φ), Φ is bounded

5. All f ∈ Hk are bounded

If any of the statements is true, then for all feature space-feature map pairs (H,Φ),
we have ‖k‖∞ = supx∈X ‖Φ(x)‖H, and |f(x)| ≤ ‖f‖k‖k‖∞, for all f ∈ Hk and
x ∈ X .

Proof. Let (H,Φ) be any feature space-feature map. For x, x′ ∈ X we have

|k(x, x′)| = |〈Φ(x′),Φ(x)〉H| ≤ ‖Φ(x′)‖H‖Φ(x)‖H =
√
k(x′, x′)

√
k(x, x),

and the equivalence of the first four items is now clear. The equivalence between
the first and last item is provided by [189, Lemma 4.23].
Finally, since for any feature space-feature map pair (H,Φ), and all x ∈ X , we

have
√
k(x, x) = ‖Φ(x)‖H, and for all f ∈ Hk we have |f(x)| = |〈f, k(·, x)〉k| ≤

‖f‖k
√
k(x, x), the last assertion follows.

Finally, we recall the following result on Parseval frames in an RKHS, which
corresponds to [152, Theorem 2.10, Exercise 3.7], and is called Papadakis Theorem
there.

Theorem 3.1.2. Let X 6= ∅ be a set and k : X × X → K a kernel on X .

1. If (fi)i∈I is a Parseval frame in Hk, then for all x, x′ ∈ X

k(x, x′) =
∑
i∈I

fi(x)fi(x′), (3.1)
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3. Lipschitz and Hölder continuity in RKHSs

where the convergence is pointwise.

2. Consider a family of functions (fi)i∈I , where fi ∈ KX for all i ∈ I, such that

k(x, x′) =
∑
i∈I

fi(x)fi(x′) (3.2)

for all x, x′ ∈ X , where the convergence is pointwise. Then fi ∈ Hk for all
i ∈ I, and (fi)i∈I is a Parseval frame in Hk.

3.2. Lipschitz continuity and the kernel metric

Let k be a kernel on X , and (H,Φ) a corresponding feature space-feature map pair,
then

dΦ : X × X → R≥0, dΦ(x, x′) = ‖Φ(x)− Φ(x′)‖H (3.3)

is a semimetric on X . If (H,Φ) = (Hk,Φk), we set dk = dΦk and call this the
kernel (semi)metric. Note that this holds for any set X , no matter whether it has
additional structure on it or not.
The next result is well-known, but rarely explicitly stated.

Lemma 3.2.1. Let k : X × X → K be a kernel on X 6= ∅. Then for all feature
space-feature map pairs (H,Φ), we have dΦ = dk.

When working with dk, this result allows us to work with dΦ instead, where Φ is
any feature map, and vice versa.

Proof. Let (H,Φ) be a feature space-feature map pair, and x, x′ ∈ X be arbitrary.
We then have

dΦ(x, x′) = ‖Φ(x)− Φ(x′)‖H =
√
〈Φ(x)− Φ(x′),Φ(x)− Φ(x′)〉H

=
√
〈Φ(x),Φ(x)〉H + 〈Φ(x),Φ(x′)〉H + 〈Φ(x′),Φ(x)〉H + 〈Φ(x′),Φ(x′)〉H

=
√
k(x, x) + k(x, x′) + k(x′, x) + k(x′, x′)

=
√
〈k(·, x)− k(·, x′), k(·, x)− k(·, x′)〉k = ‖Φk(x)− Φk(x′)‖k = dk(x, x′),

establishing the claim.
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3.2. Lipschitz continuity and the kernel metric

It is therefore natural to investigate Lipschitz continuity of RKHS functions w.r.t.
the kernel metric. We start with the following classic result, which seems to be
folklore.

Proposition 3.2.2. Let X 6= ∅ be some set, k : X ×X → K a kernel on X , and dk
the corresponding kernel (semi)metric. For all f ∈ Hk, we have that f is Lipschitz
continuous w.r.t. dk with Lipschitz constant ‖f‖k.

In other words, RKHS functions are always Lipschitz continuous w.r.t. the kernel
(semi)metric, and their RKHS norm is a Lipschitz constant. This reinforces the
intuition that the RKHS norm is a measure of complexity or smoothness of an
RKHS function w.r.t. a kernel: The smaller the RKHS norm, the smaller the
Lipschitz bound of an RKHS function w.r.t. to the kernel (semi)metric.

Proof. Let f ∈ Hk, then we have

|f(x)− f(x′)| = |〈f, k(·, x)− k(·, x′)〉k| ≤ ‖f‖k‖k(·, x)− k(·, x′)‖k = ‖f‖kdk(x, x′)

for all x, x′ ∈ X .

The next result seems to be less well-known. Parts of it can be found for example
in [9, Proposition 2.4].

Proposition 3.2.3. Let X 6= ∅ be some set, and k : X × X → K a kernel on X .

1. The function k(·, x) ∈ Hk is Lipschitz continuous w.r.t. dk with Lipschitz
constant

√
k(x, x), for all x ∈ X .

2. For all x1, x
′
1, x2, x

′
2 ∈ X , |k(x1, x2) − k(x′1, x′2)| ≤ B(dk(x1, x

′
1) + dk(x2, x

′
2))

with

B = min
{

max
{√

k(x2, x2),
√
k(x′1, x′1)

}
,max

{√
k(x1, x1),

√
k(x′2, x′2)

}}
If k is bounded, then it is Lipschitz continuous w.r.t. the product metric on
X × X with Lipschitz constant ‖k‖∞.

3. For all x, x′ ∈ X ,

|k(x, x)− k(x′, x′)| ≤ 2 max{
√
k(x, x),

√
k(x′, x′)}dk(x, x′). (3.4)
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3. Lipschitz and Hölder continuity in RKHSs

If k is bounded, then x 7→ k(x, x) is Lipschitz continuous w.r.t. dk with
Lipschitz constant 2‖k‖∞.

4. The function x 7→
√
k(x, x) is Lipschitz continuous w.r.t. dk and 1 is a Lips-

chitz constant.

5. If (H,Φ) is any feature space-feature map-pair, then Φ is Lipschitz continuous
w.r.t. dk with Lipschitz constant 1.

Proof. The first item follows immediately from Proposition 3.2.2 clear since ‖k(·, x)‖k =√
k(x, x).
To show the second item, let x1, x

′
1, x2, x

′
2 ∈ X , then

|k(x1, x2)− k(x′1, x′2)| ≤ ||k(x1, x2)− k(x′1, x2)|+ |k(x′1, x2)− k(x′1, x′2)|

= |k(x1, x2)− k(x′1, x2)|+ |k(x2, x
′
1)− k(x′2, x′1)|

≤
√
k(x2, x2)dk(x1, x

′
1) +

√
k(x′1, x′1)dk(x2, x

′
2)

≤ max
{√

k(x2, x2),
√
k(x′1, x′1)

}
(dk(x1, x

′
1) + dk(x2, x

′
2)).

Repeating this computation with x1, x
′
2 instead of x2, x

′
1 establishes the claim.

The next item is now an immediate consequence.
For the second to last item, let x, x′ ∈ X , then the converse triangle inequality (in

Hk) leads to

|
√
k(x, x)−

√
k(x′, x′)| = |‖k(·, x)‖k − ‖k(·, x′)‖k| ≤ ‖k(·, x)− k(·, x′)‖ = dk(x, x′),

so x 7→
√
k(x, x) is indeed 1-Lipschitz w.r.t. dk.

The last item is clear.

3.3. Lipschitz and Hölder continuity on metric spaces

As we recalled in the preceding section, RKHS functions are always Lipschitz contin-
uous w.r.t. the kernel (semi)metric. However, this metric is in general independent
of any additional structure on the input set. In particular, if the input set is already
a metric space, then this structure is essentially ignored by the kernel (semi)metric.
In many applications, we are given a metric space as input set, and we would like to
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3.3. Lipschitz and Hölder continuity on metric spaces

have Lipschitz or Hölder continuity of RKHS functions w.r.t. to the existing metric
on the input space. We will now investigate this question in depth.

3.3.1. Preliminaries

Since kernels are special bivariate functions, we present some preliminary material
on Hölder and Lipschitz continuity of general functions of two variables. Everything
in this subsection is elementary and probably known, but we could not locate explicit
references, hence we provide all the details.
Let (X , dX ) be a metric space and κ : X × X → K some function.

Lemma 3.3.1. Assume that there exist a constant α ∈ R>0, some function Lα :
X → R≥0, and for all x ∈ X a set Ux ⊆ X with x ∈ Ux, such that for all
x1, x

′
1, x2, x

′
2 ∈ X we have

|κ(x1, x2)− κ(x′1, x′2)| ≤ Lα(x)(dX (x1, x
′
1)α + dX (x2, x

′
2)α). (3.5)

1. For all x2 ∈ X and all x1, x
′
1 ∈ Ux2 , we have that

|κ(x1, x2)− κ(x′1, x2)| ≤ Lα(x)dX (x1, x
′
1)α. (3.6)

2. Assume furthermore that κ is Hermitian. We then have for all x ∈ X and
x′ ∈ Ux with x ∈ Ux′ that

|κ(x)− κ(x′)| ≤ (Lα(x) + Lα(x′))dX (x, x′)α, (3.7)

where we defined κ(x) := κ(x, x).

Proof. The first claim is trivial. For the second, let x ∈ X and x′ ∈ Ux be arbitrary,
then we have

|κ(x)− κ(x′)| = |κ(x, x)− κ(x′, x′)|

≤ |κ(x, x)− κ(x′, x)|+ |κ(x′, x)− κ(x′, x′)|

= |κ(x, x)− κ(x′, x)|+ |κ(x, x′)− κ(x′, x′)|

≤ (Lα(x) + Lα(x′))dX (x, x′)α,
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3. Lipschitz and Hölder continuity in RKHSs

where we used |κ(x′, x) − κ(x′, x′)| = |κ(x, x′) − κ(x′, x′)| = |κ(x, x′) − κ(x′, x′)| in
the second equality.

Lemma 3.3.2. Assume that there exist a constant α ∈ R>0, some function Lα :
X → R≥0, and for all x ∈ X a set Ux ⊆ X with x ∈ Ux, such that for all x1, x

′
1 ∈ X

we have
|κ(x1, x)− κ(x′1, x)| ≤ Lα(x)dX (x1, x

′
1)α. (3.8)

If κ is Hermitian, then we have for all x1, x
′
1, x2, x

′
2 ∈ X with x1, x

′
1 ∈ Ux2 and

x2, x
′
2 ∈ Ux′1 that

|κ(x1, x2)− κ(x′1, x′2)| ≤ Lα(x2)dX (x1, x
′
1)α + Lα(x′1)dX (x2, x

′
2)α. (3.9)

Proof. Let x1, x
′
1, x2, x

′
2 ∈ X such that x1, x

′
1 ∈ Ux2 and x2, x

′
2 ∈ Ux′1 , then we get

|κ(x1, x2)− κ(x′1, x′2)| ≤ |κ(x1, x2)− κ(x′1, x2)|+ |κ(x′1, x2)− κ(x′1, x′2)|

= |κ(x1, x2)− κ(x′1, x2)|+ |κ(x2, x′1)− κ(x′2, x′1)|

= |κ(x1, x2)− κ(x′1, x2)|+ |κ(x2, x
′
1)− κ(x′2, x′1)|

≤ Lα(x2)dX (x1, x
′
1)α + Lα(x′1)dX (x2, x

′
2)α.

We now consider the special case of Lipschitz continuity, corresponding to α = 1
in the preceding results.

Definition 3.3.3. We call κ Lipschitz continuous in the first argument with Lips-
chitz constant L ∈ R≥0, or L-Lipschitz continuous in the first argument, if for all
x1, x

′
1, x2 ∈ X we have

|κ(x1, x2)− κ(x′1, x2)| ≤ LdX (x1, x
′
1). (3.10)

Similarly, we define L-Lipschitz-continuity in the second argument. Finally, we call
κ separately L-Lipschitz continuous if it is L-Lipschitz continuous in the first and
the second coordinate.

Proposition 3.3.4. Let κ be Hermitian, then the following statements are equiva-
lent.
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3.3. Lipschitz and Hölder continuity on metric spaces

1. κ is L-Lipschitz continuous (w.r.t. the product metric on X × X )

2. κ is L-Lipschitz continuous in the first argument

3. κ is L-Lipschitz continuous in the second argument

4. κ is separately L-Lipschitz continuous

Proof. By definition, if κ is separately L-Lipschitz continuous, it is L-Lipschitz con-
tinuous in the first and second argument. Since κ is Hermitian, the equivalence
of items 2 and 3 are clear, so any one these two items implies the fourth item.
Lemma 3.3.1 shows that item 1 implies item 4. Finally, Lemma 3.3.2 shows that
item 2 implies item 1.

Since kernels are always Hermitian, Proposition 3.3.4 immediately leads to the
following result.

Corollary 3.3.5. Let k : X × X → K be a kernel, and L ∈ R≥0. k is L-Lipschitz
continuous if and only if it is separately L-Lipschitz continuous.

Why is Corollary 3.3.5 interesting? Let X be a topological space and k a kernel
on X . It is well-known that k is continuous if and only if it is separately continuous,
i.e., k(·, x) is continuous for all x ∈ X , and x 7→ k(x, x) is continuous, cf. [189,
Lemma 4.29]. In particular, separate continuity of k is not enough for k to be
continuous. For example, there exists a kernel on X = [−1, 1] that is bounded and
separately continuous, but not continuous, cf. [118]. Corollary 3.3.5 asserts that
in contrast to continuity, Lipschitz continuity is equivalent to separate Lipschitz
continuity for kernels.

3.3.2. RKHS functions of Hölder-continuous kernels

We now investigate how Hölder continuity of the kernel induces Hölder continuity
of RKHS functions. We start with the following very general result, which covers
essentially all potentially relevant forms of Lipschitz and Hölder continuity. It is a
generalization of [72, Proposition 5.2].

Theorem 3.3.6. Let (X , dX ) be a metric space and k : X × X → K a kernel. Let
α ∈ R>0 and assume that there exist a function Lα : X → R≥0 and for each x ∈ X
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3. Lipschitz and Hölder continuity in RKHSs

a set Ux ⊆ X with x ∈ Ux, such that for all x1, x
′
1 ∈ Ux we have

|k(x1, x)− k(x′1, x)| ≤ Lα(x)dX (x1, x
′
1)α. (3.11)

1. Let (H,Φ) be an arbitrary feature space-feature map-pair for k. For all x, x′ ∈
X with x′ ∈ Ux we have

‖Φ(x)− Φ(x′)‖H ≤
√

2Lα(x)dX (x, x′)
α
2 . (3.12)

2. For all f ∈ Hk and x, x′ ∈ X with x′ ∈ Ux we have

|f(x)− f(x′)| ≤
√

2Lα(x)‖f‖kdX (x, x′)
α
2 . (3.13)

Proof. Let x, x′ ∈ X with x′ ∈ Ux be arbitrary. If (H,Φ) is a feature space-feature
map-pair for k, then we get

‖Φ(x)− Φ(x′)‖H = dΦ(x, x′) = dk(x, x′)

=
√
k(x, x) + k(x′, x′)− k(x, x′)− k(x′, x)

≤
√
|k(x, x)− k(x′, x)|+ |k(x, x′)− k(x′, x′)|

≤
√

2Lα(x)dX (x, x′)α,

where we used in the last inequality that x′ ∈ Ux.
Let now f ∈ Hk, then we have

|f(x)− f(x′)| ≤ ‖f‖k‖k(·, x)− k(·, x′)‖k

≤
√

2Lα(x)‖f‖kdX (x, x′)
α
2 ,

where we used that (Hk,Φk) is a feature space-feature map-pair for k.

For convenience, we record the following special case.

Corollary 3.3.7. Let (X , dX ) be a metric space and k : X × X → K a kernel that
is separately L-Lipschitz continuous, then for every f ∈ Hk and x, x′ ∈ X we have

|f(x)− f(x′)| ≤
√

2L
√
dX (x, x′). (3.14)
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Remark 3.3.8. Consider the situation of Theorem 3.3.6.

1. If α ∈ (0, 1), δ ∈ R>0, Ux = Bδ(x) and Lα ≡ Lk for some Lk ∈ R≥0, then we
recover [72, Proposition 5.2].

2. If α ∈ (0, 1), Ux = X for all x ∈ X , Lα ≡ Lk for some Lk ∈ R≥0, then we get
that for f ∈ Hk and x, x′ ∈ X that

|f(x)− f(x′)| ≤
√

2Lk‖f‖kdX (x, x′)
α
2

We can describe this as "A separately α-Hölder continuous kernel leads to
RKHS functions that are α/2-Hölder continuous".

3.3.3. Converse results

In Section 3.2 we saw that every RKHS function f ∈ Hk is Lipschitz continuous
w.r.t. dk with Lipschitz constant ‖f‖k. Furthermore, in Section 3.3 results were
presented that ensure that RKHS functions are Hölder continuous w.r.t. a given
metric on the input set, if the kernel fulfills a certain continuity condition. But
what about the converse? Assume we have a Hilbert function space H such that
all f ∈ H are Lipschitz continuous (or Hölder continous) w.r.t. a given metric and
Lipschitz (or Hölder) constant ‖f‖H . What can we say about H? And if H is an
RKHS, what can we say about the kernel? To the best of our knowledge, these
questions have not been addressed so far.
In this subsection, let (X , dX ) be a metric space and H ⊆ KX a Hilbert space of

functions.

Assumption 3.3.9. There exists α ∈ R>0 such that all f ∈ H are α-Hölder con-
tinuous with Hölder constant ‖f‖H .

Proposition 3.3.10. Suppose Assumption 3.3.9 holds, and that H is an RKHS.
Furthermore, let k be the uniquely determined kernel with Hk = H.

1. For all x ∈ X , k(·, x) ∈ H is α-Hölder continuous with Hölder constant√
k(x, x). If k is bounded, then k(·, x) is α-Hölder continuous with Hölder

constant ‖k‖∞, for all x ∈ X .
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2. For all x1, x
′
1, x2, x

′
2 ∈ X , |k(x1, x2)−k(x′1, x′2)| ≤ B(dX (x1, x

′
1)α+dX (x2, x

′
2)α)

with

B = min
{

max{
√
k(x2, x2),

√
k(x′1, x′1)},max{

√
k(x1, x1),

√
k(x′2, x′2)},

}
If k is bounded, then

|k(x1, x2)− k(x′1, x′2)| ≤ ‖k‖∞(dX (x1, x
′
1)α + dX (x2, x

′
2)α) (3.15)

for all x1, x
′
1, x2, x

′
2 ∈ X .

3. For all x, x′ ∈ X ,

dk(x, x′) ≤
√√

k(x, x) +
√
k(x′, x′)d(x, x′)

α
2 . (3.16)

If k is bounded, then

dk(x, x′) ≤
√

2‖k‖∞d(x, x′)
α
2 . (3.17)

4. If (H,Φ) is any feature space-feature map-pair, and k is bounded, then Φ is
α
2 -Hölder continuous with Hölder constant

√
2‖k‖∞.

Proof. The first claim follows immediately from Assumption 3.3.9 and the fact that
‖k(·, x)‖k =

√
k(x, x) for all x ∈ X , and the definition of ‖k‖∞.

Let x1, x
′
1, x2, x

′
2 ∈ X be arbitrary. Using Lemma 3.3.2 leads to

|k(x1, x2)− k(x′1, x′2)| ≤
√
k(x2, x2)dX (x1, x

′
1) +

√
k(x′1, x′1)dX (x2, x

′
2)

≤ max
{√

k(x2, x2),
√
k(x′1, x′1)

}
,

and repeating this computing with x1, x
′
2 instead of x2, x

′
1 establishes the second
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assertion. Additionally,

dk(x, x′) =
√
k(x, x)− k(x, x′)− k(x′, x) + k(x′, x′)

≤
√
|k(x, x)− k(x′, x)|+ |k(x, x′)− k(x′, x′)|

≤
√√

k(x, x) +
√
k(x′, x′)dX (x, x′)α,

showing the third claim. This also establishes the last assertion, since for any feature
space-feature map pair (H,Φ) and all x, x′ ∈ X we have ‖Φ(x)−Φ(x′)‖H = dk(x, x′).

Corollary 3.3.11. Assume that all f ∈ H are Lipschitz continuous with Lipschitz
constant ‖f‖H , that H is an RKHS, and that the uniquely determined kernel k with
Hk = H is bounded. Then k is Lipschitz continuous with Lipschitz constant ‖k‖∞.

The following result provides a simple condition for H to be an RKHS, if H fulfills
Assumption 3.3.9.

Proposition 3.3.12. Suppose Assumption 3.3.9 holds, and that there exists x0 ∈ X
such that f(x0) = 0 for all f ∈ H. In this case, H is an RKHS. Furthermore,√
k(x, x) ≤ dX (x, x0) for all x ∈ X , where k is the uniquely determined reproducing

kernel of H.

Proof. Let x ∈ X and consider the corresponding evaluation functional δx : H → K,
δxf = f(x). We then have for all f ∈ X that

|δxf | = |f(x)| = |f(x)− f(x0)| ≤ ‖f‖HdX (x, x0),

which shows that δx is continuous, and ‖δx‖ ≤ dX (x, x0). Therefore, H is an RKHS.
Let k be its uniquely determined reproducing kernel, then√

k(x, x) = ‖k(·, x)‖H = ‖δx‖ ≤ d(x, x0),

since k(·, x) is the uniquely determined Riesz representer of δx in H.

Combining Proposition 3.3.12 with Lemma 3.1.1 leads to the following result.
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Corollary 3.3.13. Assume that all f ∈ H are bounded and Lipschitz continuous
with Lispchitz constant ‖f‖H . Then H is an RKHS with a bounded and Lipschitz
continuous kernel k having Lipschitz constant ‖k‖∞.

In RKHSs, Assumption 3.3.9 can be relaxed.

Lemma 3.3.14. Let k : X × X → K be a kernel and Hk its RKHS. Let D ⊆ Hk

be dense, and assume that there exists α ∈ R>0 such that all f ∈ D are α-Hölder
continuous w.r.t. dX with Hölder bound ‖f‖k. Then all f ∈ Hk are α-Hölder
continuous with Hölder bound ‖f‖k.

Proof. Let f ∈ Hk and x, x′ ∈ X be arbitrary. Since D is dense in Hk, there exists
(fn)n∈N+ ⊆ D such that fn → f (in Hk). We then have

|f(x)− f(x′)| = |〈f, k(·, x)− k(·, x′)〉k| = |〈 lim
n→∞

fn, k(·, x)− k(·, x′)〉k|

= lim
n→∞

|〈fn, k(·, x)− k(·, x′)〉k| = lim
n→∞

|fn(x)− fn(x′)|

≤ lim
n→∞

‖fn‖kd(x, x′)α = ‖f‖kd(x, x′)α.

Finally, under an additional assumption on dX , Assumption 3.3.9 implies the
existence of an RKHS on H. The construction is classical, cf. [17, Chapter I], but
has not been used in this context before.
Suppose that Assumption 3.3.9 holds and that dX is a Hilbertian metric, i.e.,

there exists a K-Hilbert space H and a map Φ : X → H, such that dX (x, x′) =
‖Φ(x)− Φ(x′)‖H.
Define H0 = {Φ(x) | x ∈ X} ⊆ H, and for f ∈ H set `f : H0 → K by `f (Φ(x)) =

f(x).

Lemma 3.3.15. For all f ∈ H, `f as above is a well-defined, linear and continuous
map.

Proof. Let f ∈ H be arbitrary. In order to show that `f is well-defined, let x, x′X
such that Φ(x) = Φ(x′). We then have

|`f (Φ(x))−`f (Φ(x′))| = |f(x)−f(x′)| ≤ ‖f‖HdX (x, x′)α = ‖f‖H‖Φ(x)−Φ(x′)‖αH = 0,

66



3.4. Lipschitz and Hölder continuity inducing kernels

so `f (Φ(x)) = `f (Φ(x′)), and `f is indeed well-defined. Linearity and continuity are
now clear.

Given f ∈ H, we can now extend `f linearly to ˜̀
f : spanH0 → K, and the resulting

map is still well-defined, linear and continuous. Define now HX = spanH0
‖·‖H , then

by construction H0 is dense in HX . This means that for all f ∈ H, there exists a
unique linear and continuous extension `f : HX → K of ˜̀

f . Note that this means
that for all f ∈ H, `f ∈ H′X (the topological dual of HX ). Since HX is itself a
Hilbert space (because it is a closed subset of a Hilbert space), for each f ∈ H, there
exists a unique Riesz representer R(`f ) ∈ HX . Define for all f1, f2 ∈ H

k(f1, f2) = 〈R(`f2), R(`f1)〉HX , (3.18)

then k is a kernel on H with feature space HX and feature map H 3 f 7→ R(`f ) ∈
HX . The corresponding RKHS of k is given by

Hk = {f 7→ `fh | h ∈ HX }, (3.19)

cf. [189, Theorem 6.21].

3.4. Lipschitz and Hölder continuity inducing kernels

Essentially, the results in Section 3.3 ensure that RKHS functions of α-Hölder contin-
uous kernels are α/2-Hölder continuous. In particular, these results do not guarantee
that RKHS functions of Lipschitz continuous kernels are themselves Lipschitz con-
tinuous. However, for many applications the regularity properties (here Lipschitz
and Hölder continuity) of RKHS functions matter most, and a kernel should be cho-
sen that enforces the desired regularity properties for the induced RKHS functions.
This motivates the investigation of kernels that induce prescribed Hölder continuity
of its RKHS functions.

3.4.1. Series expansions

We start by characterizing all kernels on a given metric space that have RKHS
functions with prescribed Hölder continuity. To the best of our knowledge, this
result is new.
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3. Lipschitz and Hölder continuity in RKHSs

Theorem 3.4.1. Let (X , dX ) be a metric space, k a kernel on X , and α ∈ R>0.
The following statements are equivalent.

1. There exists C ∈ R>0 such that all f ∈ Hk are α-Hölder continuous with
Hölder constant C‖f‖k.

2. There exists a Parseval frame (fi)i∈I in Hk, such that for all i ∈ I, fi is
α-Hölder continuous with Hölder constant Li ∈ R≥0, and supi∈I Li <∞.

3. There exists a family of functions (fi)i∈I , fi : X → K, such that for all i ∈ I,
fi is α-Hölder continuous with Hölder constant Li ∈ R≥0, and supi∈I Li <∞,
and for all x, x′ ∈ X

k(x, x′) =
∑
i∈I

fi(x)fi(x′), (3.20)

where the convergence is pointwise.

Proof. 2 ⇒ 1 Let (fi)i∈I be a Parseval frame in Hk, such that for all i ∈ I, fi
is α-Hölder continuous with Hölder constant Li ∈ R≥0, and supi∈I Li < ∞. Let
f ∈ Hk and x, x′ ∈ X be arbitrary, then we have

|f(x)− f(x′)| =
∣∣∣∣∣∑
i∈I
〈f, fi〉kfi(x)−

∑
i∈I
〈f, fi〉kfi(x′)

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈I
〈f, fi〉k(fi(x)− fi(x′))

∣∣∣∣∣
≤
∑
i∈I
|〈f, fi〉k||fi(x)− fi(x′)|

≤
∑
i∈I
|〈f, fi〉k|LidX (x, x′)α

≤
(∑
i∈I
|〈f, fi〉k|

)(
sup
i∈I

Li

)
dX (x, x′)α

≤
√∑
i∈I
|〈f, fi〉k|2

(
sup
i∈I

Li

)
dX (x, x′)α = ‖f‖k

(
sup
i∈I

Li

)
dX (x, x′)α.

In the first equality we used that (fi)i∈I is a Parseval frame, and that norm conver-
gence (in Hk) implies pointwise convergence. For the first inequality, we used the
triangle inequality, and for the second inequality we used the assumption that fi is
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α-Hölder continuous with Hölder constant Li. In the last inequality, we used

∑
i∈I
|〈f, fi〉k| = ‖(〈f, fi〉k)i∈I‖`1(I) ≤ ‖(〈f, fi〉k)i∈I‖`2(I) =

√∑
i∈I
|〈f, fi〉k|2.

2 ⇒ 1 Let (ei)i∈I be an ONB of Hk, so ‖ei‖k = 1 for all i ∈ I. By assumption, all
ei are α-Hölder continuous with Hölder constant 1, and since an ONB is a Parseval
frame, the claim follows.
2 ⇒ 3 This implication follows immediately from Theorem 3.1.2.
3 ⇒ 2 Let (fi)i∈I be a family of function as given in the third item. By Theo-

rem 3.1.2, fi ∈ Hk for all i ∈ I, and (fi)i∈I forms a Parseval frame, so this family of
functions fulfills the conditions in the second item.

Since orthonormal bases (ONBs) are Parseval frames, we get immediately the
following result.

Corollary 3.4.2. Let (X , dX ) be a metric space, k a kernel on X , and α ∈ R>0.
The following statements are equivalent.

1. All f ∈ Hk are α-Hölder continuous with Hölder constant ‖f‖k.

2. There exists an ONB (ei)i∈I in Hk such that for all i ∈ I, ei is α-Hölder
continuous with Hölder constant 1.

3. For all ONB (ei)i∈I in Hk, and all i ∈ I, ei is α-Hölder continuous with Hölder
constant 1.

4. For all x, x′ ∈ X ,
k(x, x′) =

∑
i∈I

ei(x)ei(x′), (3.21)

where the convergence is pointwise, and (ei)i∈I is an ONB (ei)i∈I in Hk such
that for all i ∈ I, ei is α-Hölder-continuous with Hölder constant 1.

3.4.2. Ranges of integral operators

It is well-known that there is a close connection between the theory of RKHSs and
integral operators. For example, for RKHSs defined on measure spaces and under
suitable technical assumptions, Mercer’s theorem allows a spectral decomposition of

69



3. Lipschitz and Hölder continuity in RKHSs

the reproducing kernel, and an explicit description of the RKHS in terms of eigen-
functions of a related integral operator. For details, we refer to [189, Section 4.5].
Moreover, integral operators defined using the reproducing kernel of an RKHS can
have ranges contained in the RKHS under suitable assumptions, cf. [189, Theo-
rem 6.26]. This motivates the study of Hölder continuity properties for functions in
the image set of integral operators.

A general result Before embarking on this task, we present a result for rather
general integral maps. It is essentially a direct generalization of [72, Theorem 5.1].

Proposition 3.4.3. Let (Y,A, µ) be a measure space, (X , dX ) a metric space,
1 < p, q < ∞ with 1/p + 1/q = 1, and k : X × Y → K a function such that
the following holds.

1. For all x ∈ X , the function k(x, ·) is measurable.

2. For all g ∈ Lq(Y,A, µ,K) and all x ∈ X , k(x, ·) · g ∈ L1(Y,A, µ,K).

3. There exists α ∈ R>0, Lα ∈ Lp(Y,A, µ,R≥0), such that for µ-almost all y ∈ Y,
the function k(·, y) is α-Hölder continuous with Hölder constant Lα(y).

In this case,

Sk : Lq(Y,A, µ,K)→ KX , (Skg)(x) =
∫
Y
k(x, y)g(y)dµ(y) (3.22)

is a well-defined linear mapping, and for all g ∈ Lq(Y,A, µ,K), the function f = Skg

is α-Hölder continuous with Hölder constant ‖Lα‖Lp‖g‖Lq .

Proof. Since for all g ∈ Lq(Y,A, µ,K) and all x ∈ X the function k(x, ·)g ∈
L1(Y,A, µ,K), the mapping Sk is well-defined. The linearity is now clear.

Let g ∈ Lq(Y,A, µ,K), define f = Skg, and let x, x′ ∈ X be arbitrary, then

|f(x)− f(x′)| =
∣∣∣∣∫
Y

(k(x, y)− k(x′, y))g(y)dµ(y)
∣∣∣∣ ≤ ∫

Y
|k(x, y)− k(x′, y)||g(y)|dµ(y)

≤
∫
Y
Lα(y)|g(y)|dµ(y)dX (x, x′) ≤ ‖Lα‖Lp‖g‖LqdX (x, x′),

so f is indeed α-Hölder continuous with Hölder constant ‖Lα‖Lp‖g‖Lq .
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Example To illustrate Proposition 3.4.3, we consider the rather general class of
integral operators described in [216, Abschnitt 6.3]. Let (X ,AX , µ) and (Y,AY , ν)
be measure spaces, 1 < p, q < ∞ with 1/p + 1/q = 1, and k : X × Y → K
be measurable. Assume that for all g ∈ Lq(Y,AY , ν) and µ-almost all x ∈ X ,
k(x, ·)g ∈ L1(Y,AY , ν), and that by defining (µ-almost all) x ∈ X

(Tkg)(x) =
∫
Y
k(x, y)g(y)dν(y) (3.23)

we get Tkg ∈ Lp(X ,AX , µ). Under these conditions, Tk : Lq(Y,AY , ν)→ Lp(X ,AX , µ)
is a well-defined, linear and bounded operator.
Assume furthermore that (X , dX ) is a metric space, and that there exists α ∈ R>0

and Lα ∈ Lp(Y,A, µ,R≥0), such that for µ-almost all y ∈ Y, the function k(·, y) is
α-Hölder continuous with Hölder constant Lα(y). Let g ∈ Lq(Y,AY , ν), then there
exists a µ-nullset Ng such that (setting for brevity Xg = X \ Ng) f : Xg → K,
f(x) = (Tkg)(x) is well-defined. Proposition 3.4.3 now ensures that f is α-Hölder
continuous with Hölder constant ‖Lα‖Lp‖g‖Lq , though f is only defined on the
restricted metric space (Xg, dX |Xg×Xg).

In particular, each element1 of the image set of Tk contains a µ-almost everywhere
defined function that is α-Hölder continuous.
We can strengthen this result. Let AX be the Borel σ-algebra on X , and assume

that µ(U) > 0 for all open nonempty U ⊆ X . In this case, Xg is dense in X ,
since otherwise Ng contains a nonempty open set U , and hence µ(Ng) ≥ µ(U) > 0,
a contradiction to the fact that Ng is a µ-nullset. Since f is defined on a dense
subsetset of X , and it is continuous (since it is α-Hölder continuous on Xg), there
exists a unique extension f̄ : X → K that is also α-Hölder continuous. Defining
T̄kg := f̄ , we thus arrived at a linear operator from Lq(Y,AY , ν) into L(X ,AX , µ)
with its range space consisting of α-Hölder continuous functions.

Integral operators into RKHSs Let us return to the setting of RKHSs. If an RKHS
is defined on a measure space, and the kernel fulfills an integrability condition, then
the RKHS consists of integrable functions, and the kernel allows the definition of a
related integral operator with range contained in the RKHS. The next result provides
a sufficient condition for Hölder continuity of RKHS functions in the range of this

1Recall that this is an equivalence class of functions on X .
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integral operator.

Proposition 3.4.4. Let (X , dX ) be a metric space, (X ,A, µ) a σ-finite measure
space,2 1 < p, q < ∞ with 1/p + 1/q = 1, and k : X × X → K a measurable kernel
such that Hk is separable and

‖k‖Lp =
(∫

(k(x, x))
p
2 dµ(x)

) 1
p

<∞. (3.24)

Assume that there exist α ∈ R>0, Lα ∈ Lp(X ,A, µ,R≥0) such that for µ-almost all
x ∈ X the function k(·, x) is α-Hölder continuous with Hölder constant Lα(x).

Under these conditions,

Sk : Lq(X ,A, µ,K)→ Hk, (Skg)(x) =
∫
X
k(x, x′)g(x′)dµ(x′) (3.25)

is a well-defined, bounded linear operator, and for all g ∈ Lq(X ,A, µ,K), the function
f = Skg ∈ Hk is α-Hölder continuous with Hölder constant ‖Lα‖Lp‖g‖Lq .

Finally, all functions in Hk are p-integrable,3 and if the inclusion id : Hk →
Lp(X ,A, µ,K) is injective, then the image of Sk is dense in Hk.

Proof. That Sk is well-defined, linear and bounded, follows from [189, Theorem 6.26].
The statement on the Hölder continuity of the functions in the images of Sk is a
direct consequence of Proposition 3.4.3. The last claim follows again from [189,
Theorem 6.26].

3.4.3. Feature mixture kernels

Theorem 3.4.1 characterizes Hölder continuity inducing kernels via series expansion.
However, these might be difficult to work with, so an alternative description of such
kernels can be useful. The next result presents a very general construction which
is based on a mixture of feature maps. It vastly generalizes a method apparently
introduced in [220].

Theorem 3.4.5. Let (Ω,A) be a measurable space, µ a finite nonnegative measure
on (Ω,A), (X , dX ) a metric space, and H a K-Hilbert space. Furthermore, let

2A can, but does not have to be the Borel σ-algebra on the metric space X .
3This means that for all f ∈ Hk,

∫
X |f(x)|pdµ(x) <∞.
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Φ(x, ·) ∈ L2(Ω,A, µ,H) for all x ∈ X . Finally, assume that there exist α, LΦ ∈ R>0

such that for µ-almost all ω ∈ Ω, Φ(·, ω) is α-Hölder continuous with Hölder constant
LΦ. Then

k(x, x′) =
∫

Ω
〈Φ(x′, ω),Φ(x, ω)〉Hdµ(ω) (3.26)

is a well-defined kernel on X , and all f ∈ Hk are α-Hölder continuous with Hölder
constant LΦ

√
µ(Ω)‖f‖k.

Proof. First, we show that k is well-defined. Let x, x′ ∈ X , then ‖Φ(x, ·)‖H, ‖Φ(x′, ·)‖H
are square-integrable, so we get∫

Ω
|〈Φ(x′, ω),Φ(x, ω)〉H|dµ(ω) ≤

∫
Ω
‖Φ(x, ω)‖H‖Φ(x′, ω)‖Hdµ(ω)

≤
(∫

Ω
‖Φ(x, ω)‖2Hdµ(ω)

) 1
2
(∫

Ω
‖Φ(x′, ω)‖2Hdµ(ω)

) 1
2
<∞,

where we used Cauchy-Schwarz first in H, then in L2. Next, we show that k is kernel
by verifying that it is positive semidefinite. Let x1, . . . , xN ∈ X and c1, . . . , cN ∈ C
be arbitrary, then

N∑
i,j=1

cicjk(xj , xi) =
∫

Ω

N∑
i,j=1

cicj〈Φ(xj , ω),Φ(xi, ω)〉Hdµ(ω)

=
∫

Ω

〈
N∑
i=1

ciΦ(xi, ω),
N∑
j=1

cjΦ(xj , )
〉
H

dµ(ω)

=
∫

Ω

∥∥∥∥∥
N∑
i=1

ciΦ(xi, ω)
∥∥∥∥∥

2

H

dµ(ω) ≥ 0,

so k is indeed positive semidefinite. Finally, let f ∈ Hk and x, x′ ∈ X be arbitrary,
then |f(x)− f(x′)| ≤ ‖f‖kdk(x, x′). Observe now that

dk(x, x′)2 = k(x, x) + k(x, x′) + k(x′, x) + k(x′, x′)

=
∫

Ω
〈Φ(x, ω),Φ(x, ω)〉H + 〈Φ(x, ω),Φ(x′, ω)〉H

+ 〈Φ(x′, ω),Φ(x, ω)〉H + 〈Φ(x′, ω),Φ(x′, ω)〉Hdµ(ω)

=
∫

Ω
〈Φ(x, ω)− Φ(x′, ω),Φ(x, ω)− Φ(x′, ω)〉Hdµ(ω),
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hence

dk(x, x′)2 =
∫

Ω
‖Φ(x, ω)− Φ(x′, ω)‖Hdµ(ω)

≤
∫

Ω
L2

ΦdX (x, x′)2αdµ(ω) = L2
Φµ(Ω)dX (x, x′)2α,

so we get

|f(x)− f(x′)| ≤ ‖f‖kdk(x, x′) ≤ LΦ

√
µ(Ω)‖f‖kdX (x, x′)α.

If the nonnegative measure in the preceding result is a probability measure, we
get the following result as a special case.

Corollary 3.4.6. Let (X , dX ) be a metric space,H aK-Hilbert space, and (Φ(x))x∈X
a family of square-integrable Φ-valued random variables. Assume that there exist
α,LΦ ∈ R>0 such that Φ is almost surely α-Hölder continuous with Hölder constant
LΦ. Then

k(x, x′) = E[〈Φ(x′),Φ(x)〉H] (3.27)

is a well-defined kernel on X , and all f ∈ Hk are α-Hölder continuous with Hölder
constant LΦ‖f‖k.

The importance of this result is the fact that the kernel k described there is a
random feature kernel in the sense of [164]. In particular, in practice k(x, x′) can be
approximated by sampling from the random variables Φ(x),Φ(x′).
Finally, we can formulate another special case, which recovers the approach from

[220].

Proposition 3.4.7. Let (X , dX ) be a metric space, P a Borel probability measure
on X , ϕ : R≥0 → K an α-Hölder-continuous function with Hölder-constant Lϕ, and
define φ : X × X → K by φ(x, z) = ϕ(dX (x, z)). If φ(x, ·) ∈ L2(X , P ) for all x ∈ X ,
then

k(x, x′) =
∫
X
φ(x′, z)φ(x, z)dP (z) (3.28)

is a well-defined kernel on X , and all f ∈ Hk are α-Hölder continuous with Hölder
constant Lϕ‖f‖k.
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Proof. We show that for all z ∈ X , the function φ(·, z) is α-Hölder continuous with
Hölder constant Lϕ. For this, let x, x′ ∈ X be arbitrary, then

|φ(x, z)− φ(x′, z)| = |ϕ(dX (x, z))− ϕ(dX (x′, z))|

≤ Lϕ|dX (x, z)α − dX (x′, z)α| ≤ LϕdX (x, x′)α,

where we used the inverse triangle inequality for the metric (x, x′) 7→ dX (x, x′)α

in the last step. The result follows now from Theorem 3.4.5 by choosing Ω = X ,
µ = P , H = K, and Φ = φ, and the fact that P (X ) = 1.

3.5. Discussion

We presented a comprehensive discussion of Lipschitz and Hölder continuity of
RKHS functions. Starting with the well-known Lipschitz continuity w.r.t. the kernel
(semi)metric, we then investigated Hölder-continuity w.r.t. a given metric, including
converse results, i.e., consequences of Hölder continuity in function spaces related
to RKHSs. Finally, we provided characterizations as well as sufficient conditions for
kernels inducing prescribed Lipschitz and Hölder continuity of their RKHS functions
w.r.t. a given metric, an important aspect for applications.
The results presented here can be used to construct tailored kernels ensuring

Lipschitz or Hölder continuous RKHS functions, or to check that existing kernels
have such RKHS functions. Furthermore, because the results are quantitative, they
can be used in numerical methods.
Finally, we would like to point out three interesting questions for future work.
First, the Lipschitz and Hölder continuity in RKHS that we have been concerned

with here, are of a strong uniform nature, since the corresponding Lipschitz or Hölder
constants are proportional to the RKHS function of the respective function, cf. the
developments in Section 3.3. It would be interesting to investigate whether there
exist kernels that enforce weaker, nonuniform Lipschitz or continuity properties.
Second, we investigated sufficient conditions for Lipschitz and Hölder continuity

of RKHS functions via integral operators. However, all statements are restricted to
the range space of the involved integral operators. Under some conditions, these
range spaces are dense in RKHSs, so it would be interesting to investigate whether
the Lipschitz and Hölder continuity properties transfers to the whole RKHS. Note
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3. Lipschitz and Hölder continuity in RKHSs

that this is not trivial since in the Hölder constant in Proposition 3.4.3 involves the
Lq-norm of the preimage function, not the RKHS norm of the image function.
Finally, the results in Section 3.3.2 provide Lipschitz or Hölder constants involving

the RKHS norm. However, it is unclear how conservative these results are, i.e., how
much larger the Lipschitz or Hölder constants are compared to the best possible
constants. Intuitively, it is clear that for generic RKHS functions there will be some
conservatism. It would be interesting to investigate how big this conservatism is,
and how it depends on properties of the kernel.

3.6. Comments

Apart from very minor changes, this chapter corresponds verbatim to the manuscript
[CF1]. The author of this thesis is the sole author of the aforementioned manuscript.
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Part II.

Uncertainty bounds and
learning-based control
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4. Uncertainty in learning-based control

In the present chapter, we set the stage for our work on uncertainty bounds in the
context of learning-based control. First, we provide some background and context,
which will motivate our specific approaches later on. We then give a concise in-
troduction to Gaussian process regression and kernel ridge ression, which are the
primary tools in this part of the thesis. Finally, we conclude with a discussion of
uncertainty bounds for these methods.

4.1. Introduction

We start with some considerations on the role of uncertainty in learning-based con-
trol. First, we outline on an abstract level how uncertainty and robust control
interact in the context of learning based control. We choose a very general perspec-
tive to emphasize the fundamental character of these issues, which are independent
of any particular learning or control method. This is particularly relevant given the
vast amount of literature on learning-based control and related fields. Based on this
exposition, we will then describe our focus for the remainder of this part, and argue
why it is attractive from a conceptual perspective.
The considerations here are well-known, but rarely described precisely in the

learning-based control literature. Our exposition is similar to the literature on be-
havioural systems theory [131] and non-falsified control [172], but we are not aware
of a suitable presentation in the context of learning-based control.

4.1.1. Uncertainty, learning and robust control

Let M be the set of all models of interest, and assume that a particular model
θ∗ ∈M fully describes the true system (or process or phenomenon) of interest. On
an abstract level, in control θ∗ describes the system that needs to be controlled, in
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this context often called plant. Let C be the set of possible controllers, and let us
formalize the control goal by a predicate P, so we say that P(θ, c) holds or is true,
if a controller c ∈ C achieves the control goal for system θ ∈ M. For example, the
goal might be stabilization of an equilibrium with a static state feedback controller.
If the control goal is non-trivial, the controller needs to be suitable for the given
system, but the latter is in general not fully known. In other words, we want to
achieve a control goal for θ∗ with some c ∈ C without knowing θ∗ exactly.

In robust control, the following strategy is used to deal with this problem [65].
A set U ⊆ M, often called an uncertainty set, is determined with θ∗ ∈ U , and a
controller cR ∈ C is built such that P(θ, cR) holds for all θ ∈ U , i.e., the controller
achieves the control goal for all possible systems. Since this includes the actual
system θ∗, the controller actually achieves the goal. Defining

PP(c) = {θ ∈M | P(θ, c) holds}, (4.1)

this means U ⊆ PP(cR), though the latter set will be usually larger than U . It is
clear that the larger U is, the more difficult it will be to ensure U ⊆ PP(c) for a
single controller c ∈ C. The worst case is of course {c ∈ C | U ⊆ PP(c)} = ∅, so
no controller can fulfill the goal for all θ ∈ U . In many control tasks, one is also
interested in a quantitative performance measure of the controller, and insisting on
U ⊆ PP(c) makes the optimization (or tuning) of c ∈ C w.r.t. a performance measure
more difficult. Intuitively, a larger U requires a more conservative controller, leading
to worse performance in general.

The preceding discussion motivates the search for a small U . Using prior knowl-
edge, one might get some U0 ⊆ M with θ∗ ∈ U0, but this uncertainty set might be
quite large. In learning-based control, the situation can be improved with data from
the actual system. Let Y be the set of all possible measurement results, N the set
of all possible external noise realizations, and F :M×N → Y the map describing
the measurement process. Given a measurement y ∈ Y, define

V(y) = {θ ∈M | ∃η ∈ N : y = F(θ, η)}. (4.2)

In words, V(y) is the set of all systems that could have led to the observation y.
This is essentially an abstract, simplified version of spaces appearing in the unfalsified
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control approach [172], and can be interpreted as a noisy variant of the version space
appearing in (classic) artificial intelligence and machine learning [171]. Importantly,
by definition we have for all θ ∈M that

θ ∈ V(F(θ, η)) ∀η ∈ N . (4.3)

In words, an arbitrary, but fixed target θ ∈ M will always be contained in the
induced uncertainty set V(F(θ, η)), no matter which noise realization appears in the
data generating process. Consider now y = F(θ∗, η) for some in general unknown
η ∈ N , and define U = V(y)∩U0. By construction, θ∗ ∈ U , and for any cR ∈ C with
U ⊆ PP(cR), P(θ∗, cR) holds, so the control goal is achieved by cR, without knowing
the exact θ∗ and regardless of which unknown noise realization η corrupted the data.
In other words, data has been used to reduce the set of possible systems, and the
remaining uncertainty is dealt with a robust control strategy. On an abstract level,
this is how most (if not all) learning-based control approaches with guarantees work.
Sometimes U is already small enough so that a satisfying cR ∈ C with U ⊆ PP(cR)

can be identified. However, in general V(y) will be rather large, and we might even
have V(y) = M (so we did not gain anything from data). In order to improve on
this situation, we can essentially reduce the confidence1 in our inference about θ∗.

Worst-case approach In some situations, it might be reasonable to assume a re-
duced set of noise values N̄ ⊆ N , leading to

V̄(y) = {θ ∈M | ∃η ∈ N̄ : y = F(θ, η)} ⊆ V(y), (4.4)

and Ū = V̄(y) ∩ U0 might be sufficiently small for the downstream tasks, in our
case finding an appropriate cR ∈ C with Ū ⊆ PP(cR). Specific instantiations of
this approach are ubiquitous in systems and control, from nonlinear set membership
estimation [139] to recent data-driven robust control approaches [25].
Note that we can interpret this as a worst case approach: No matter which noise

realization η ∈ N̄ interfered with the data generating process, θ∗ ∈ Ū will hold. In
particular, no additional modelling assumptions are necessary, and also adversarial
disturbance models are covered.

1Here it is meant in an intuitive, colloquial way, not in a formal sense as e.g. in statistics.
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In order to achieve a reasonably small Ū , the reduced noise set N̄ needs to be
small enough. While this can be reasonable in some situation, on the one hand it
excludes certain noise models. For example, if one has an additive noise model, then
in general it requires the assumption of bounded noise, excluding for example the
common Gaussian noise assumption. On the other hand, it is not possible to include
additional prior knowledge in the form of stochastic assumptions.

Frequentist uncertainty sets The preceding drawbacks motivate the following ap-
proach. Let P̄ be a set of probability distributions2 over N and construct a family
of maps Uδ : Y → 2U0 , δ ∈ (0, 1), such that for all θ ∈ U0, P ∈ P̄ and δ ∈ (0, 1) we
have

Pη∼P [θ ∈ Uδ(F(θ, η))] ≥ 1− δ. (4.5)

If y = F(θ∗, η) with η ∼ P for some P ∈ P̄, then for a user-defined δ ∈ (0, 1) we
have

P[θ∗ ∈ Uδ(y)] ≥ 1− δ. (4.6)

This is the setting of frequentist statistics. We have a fixed, i.e., deterministic or
constant ground truth θ∗, and randomness only enters through the data generating
process (in the present formalism, through the now random η). In particular, Uδ(y)
is a (frequentist) confidence set of level 1− δ, which is a random set.
If we construct now cR ∈ C such that Uδ(y) ⊆ PP(cR) for a user-defined δ ∈ (0, 1),

then P[P(θ∗, cR) holds] ≥ 1 − δ. In words, the (robust) controller cR achieves the
control task (on the actual, unknown system θ∗) with probability at least 1 − δ.
This also shows why it is important to have a user-defined δ ∈ (0, 1), since the
final probability of success is determined by the user of the controller. For example,
for a safety-critical application, an extremely small δ might be desirable, whereas
for a non-safety-critical scenario a moderate δ can be enough. Since a smaller δ
leads to a potentially larger uncertainty set Uδ(y), we have in a general a reliability-
performance (or safety-performance) tradeoff.
Finally, note that the frequentist approach fits very nicely together with the stan-

dard robust control approach. In particular, no modifications to the latter have to
be done. Furthermore, if a probabilistic controller synthesis procedure is used, this

2We ignore measurability issues here. In the concrete settings considered later on, they do not
pose any problem.
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can be taken into account with a simple union bound: if δ ∈ (0, 1) is the final desired
probability of control success, then we can use Uδ/2(y) as the uncertainty set and
require a confidence of δ/2 in the probabilistic controller synthesis algorithm. The
union bound then assures that the final controller achieves the control task on θ∗

with probability at least 1− δ.
This approach, or rather concrete instantiations thereof, is very popular in modern

learning-based control, cf. e.g. [29, 31, 111] for typical examples, as well as Chapter
6.

Bayesian or probabilistic approach Let now Q be a distribution on U0, let P̄ be a
set of probability distributions over N and construct a family of maps Uδ : Y → 2U0

such that for all P ∈ P̄ and δ ∈ (0, 1) we have

P(θ,η)∼Q⊗P [θ ∈ Uδ(F(θ, η))] ≥ 1− δ. (4.7)

Assume now that θ∗ ∼ Q, η ∼ P for some P ∈ P̄, and that θ∗ and η are independent.
Defining y = F(θ∗, η), we then have for all δ ∈ (0, 1) that

P[θ∗ ∈ Uδ(y)] ≥ 1− δ.

Furthermore, if we construct cR ∈ C such that Uδ(y) ⊆ PP(cR) for a user-defined
δ ∈ (0, 1), then P[P(θ∗, cR) holds] ≥ 1− δ.
We can interpret this in two ways. In the Bayesian approach, Q corresponds to

a prior over all possible models U0 ⊆ M (including the prior knowledge that we
can restrict us to U0). The idea is that Q encodes all of our prior knowledge about
the unknown θ∗, and for both practical as well as formal (and even philosophical)
reasons it is advisable to express this in the form of a probability distribution, cf.
[99]. Furthermore, P ∈ P̄ together with the map F can be interpreted as a likelihood
model. In this context, Uδ becomes a Bayesian confidence set or belief set at level
1− δ.
We can also interpret it from a more stochastic (or probabilistic) perspective.

Assume that we are actually not interested in one specific θ∗, but rather many
instances that are distributed according to some Q. Consequently, we care about
the overall success over many instances. In particular, the probability of success,
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i.e., P[θ∗ ∈ Uδ(y)], is w.r.t. to the distribution over θ∗ and the noise influencing
the data generating process. But this is again exactly the formal setting in the
Bayesian approach just outlined, though with a different practical interpretation of
the probabilistic nature. For a concrete example of this setting in the context of
learning-based control, we refer to [168], which contains additional discussions of
probabilistic notions in robust control.
Before moving on, let us briefly summarize our discussion of frequentist and prob-

abilistic uncertainty sets. In both cases we have a stochastic noise model, and the
resulting uncertainty bounds are formulated in a stochastic sense. In particular, for-
mally both types of bounds look similar. However, from a practical perspective, the
interpretation of these bounds is rather different. Whereas a frequentist uncertainty
bound holds for an unknown, but fixed ground truth, and the stochasticity enters
only through noise, a probabilistic or Bayesian uncertainty bound holds w.r.t. a prior
distribution over the object of interest, instead of a fixed, unknown ground truth.
In the next section, we will discuss these differences in the context of learning-based
control.

4.1.2. Discussion

It is clear that it depends on the context which of the aforementioned three ap-
proaches is most appropriate for a given application in learning-based control. Rel-
evant aspects include inter alia the type of prior knowledge (e.g., qualitative or
quantitative, stochastic or not), formal requirements of the downstream control
methodology (e.g., parametric or nonparametric uncertainty sets), and the level
of reliability or safety of the overall control scheme (e.g., deterministic or stochastic
guarantees, asymptotic or non-asympotic setting). In practical scenarios, these fac-
tors might still leave some room for choice. In this part of the thesis, we will focus
primarily on the second approach, and in Chapter 7 we will also consider the third
approach. We will now briefly discuss these choices, and how all of this will be made
concrete.
Our starting point is the overall strategy outlined above. We would like to stress

that this is in no way original, but rather the standard approach in learning-based
control, at least in the context of works providing theoretical guarantees. How-
ever, we put special emphasis on achieving rigorous (statistical and control-theoretic)
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guarantees on the overall methods and ensuring that only reasonable, practical as-
sumptions are made. We would like to argue that this strongly suggests to rely
on the second approach from above (frequentist uncertainty sets), and if necessary
switching to the first approach (worst-case uncertainty sets).
Ideally, we achieve guarantees at the end that are meaningful for practitioners,

which in the present context means giving guarantees in a form that are useful
or accepted in control engineering. In particular, any uncertainty should be of a
form that is acceptable in practice or has an accepted interpretation. Worst-case
guarantees (so that success is guaranteed for any possible noise realization from
a predefined set) are certainly acceptable in robust control, and appear to be the
standard form of guarantees, cf. e.g. [167]. Furthermore, frequentist guarantees
(i.e., statistical guarantees from stochastic assumptions about the noise, but not
the underlying system) are conceptually also well-suited in the context of robust
control. In addition, a frequentist setup allows more practical noise models, cf. the
discussion above, and in general the uncertainty will reduce (in a stochastic sense)
with increasing data, as is investigated in-depth in the theory of machine learning
[189].
However, a Bayesian or probabilistic approach appears to be problematic in this

context. In general, we are interested in giving guarantees for a specific, but un-
known instance θ∗, and even more importantly, it is unclear what the probabilistic
guarantees mean in the context of robust control. Note that this is also related to
deep foundational issues in probabilistic robust control, which are beyond the scope
of the present thesis, cf. e.g. [199].
Finally, our focus on rigorous statistical and control-theoretic guarantees, under

practically meaningful assumptions, also entails the following consequences.

1. The learning method has to be able to provide reasonably small uncertainty
sets that are suitable for downstream control tasks.

2. We need to be able to include prior knowledge, e.g., from first-principles mod-
elling or engineering experience, ideally in a systematic fashion.

3. All components used (learning and control algorithms) have to come with
appropriate theoretical guarantees.

The second and third item are a strong motivation to focus on kernel methods, cf.
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also Chapter 1, and the first item suggests to start with GP regression, since it
comes with a natural measure of uncertainty, cf. the following section.

4.2. Kernel and Gaussian process regression

We now provide a concise introduction to Gaussian process regression, and the
closely related kernel ridge regression. Furthermore, we discuss some practical as-
pects of these methods. Our exposition is based on standard machine learning
references on these topics, in particular, [166] and [102].

4.2.1. Gaussian Process regression

In this section, we fix a probability space (Ω,A,P) in the background. Furthermore,
we use a slightly different notation compared to Section 2.6 for consistency with the
machine learning literature.
Gaussian process regression is a nonparametric regression method based on Bayesian

principles. As such, we need a prior, a likelihood or measurement model, and a way
to work with resulting posterior (which is formally given by Bayes theorem, but
might be intractable). Furthermore, it is nonparametric since it works directly with
functions instead of finite-dimensional representations thereof3. In particular, the
prior will be a distribution over functions, which formally can be interpreted as a
stochastic process. We will now introduce the specific class of stochastic processes
that will be used as priors in the following.
Let X 6= ∅ be some set and (fx)x a real-valued stochastic process with index

set X . In the following, we will also use the notation f(x) = fx, x ∈ X , as well
as f = (f(x))x∈X . We call f a Gaussian process (GP) if for all pairwise distinct
x1, . . . , xN ∈ X the N -dimensional random variable

(
f(x1) · · · f(xN )

)>
has a

Gaussian distribution. In this case, we call

µ : X → R, µ(x) = E[f(x)] (4.8)

k : X × X → R, k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (4.9)

3Of course, if the input space is a finite set, then one can interpret Gaussian process again as a
parametric method.
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themean and covariance function of f , and we write f ∼ GPX (µ, k), or f ∼ GP(µ, k)
if the index set X is clear from the context. Since a Gaussian distribution is fully
described by its mean and covariance matrix, and the finite-dimensional marginal
distributions uniquely determine the law of a stochastic process, a Gaussian process
is fully characterized by its mean function and its covariance function. Recall from
Section 2.6 that k is a positive semidefinite function, hence k is often called the
kernel (function)4 of f . Conversely, for any function µ : X → R and any symmetric
and positive semidefinite function k : X × X → R there exists a Gaussian process
with mean function µ and covariance function k.

Remark 4.2.1. As is well-known, in order to have a density w.r.t. the Lebesgue
measure, a multivariate Gaussian distribution needs to have a positive definite co-
variance matrix. However, by requiring that the covariance function is only positive
semidefinite (which is enough to ensure that it is a kernel, cf. Chapter 2), it might
happen that some of the induced covariance matrices are only positive semidefinite.
This is not a problem, since in general a multivariate Gaussian distribution is defined
in a weak form, cf. [116, Chapter 1], and indeed, this issue is usually not explicitly
dealt with in the machine learning literature. Furthermore, when the covariance
function is positive definite and all inputs are pairwise distinct, then this situation
does not occur in the first place.

If f ∼ GP(µ, k), then g ∼ GP(0, k), where we defined g(x) = f(x) − µ(x). Con-
versely, if f ∼ GP(0, k) and µ : X → R is any function, then g ∼ GP(µ, k), where
g(x) = f(x)+µ(x). This suggests that we can work with a zero mean function, which
is what is done usually in the stochastic process and machine learning literature. So,
consider a prior f ∼ GPX (0, k).

Remark 4.2.2. Technically, a stochastic process cannot be a prior, since the latter
has to be a distribution (over the objects of interest), and the former is a random
object, which has a distribution (its law). However, from a practical perspective,
and for the following theoretical developments, this does not cause any problems
since we work only with the stochastic process and its finite-dimensional marginals
instead of the induced probability measures. For more technical background on this
issue, we refer to the literature on nonparametric statistics, e.g., [80].

4This terminology is problematic, since there exists a related, but formally different object called
kernel of a second-order stochastic process.
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Next, we need a likelihood model. Given a data set D = ((x1, y1), . . . , (xN , yN )) ∈
(X × R)N , assume that yn = f(xn) + ηn, n = 1, . . . , N , with noise η1, . . . , ηN

i.i.d.∼
N (0, λ), and we also assume independence of the noise from f .

If we now condition on the data, then the posterior process f |D is still a Gaussian
process, and the (characterizing) mean and covariance functions are given in closed
form. In short, we have f |D∼ GPX (µD, kD) with

µD(x) = kD(x)> (KD + λI)−1 y (4.10)

kD(x) = k(x, x′)− kD(x)> (KD + λI)−1 kD(x′) (4.11)

where we defined

kD(x) =


k(x, x1)

...
k(x, xN )

 , KD =


k(x1, x1) · · · k(x1, xN )

...
...

k(xN , x1) · · · k(xN , xN )

 , y =


y1
...
yN

 .
The matrix KD is usually called kernel matrix or Gram matrix. An explanation
for the latter terminology can be found in Section 5.2. Finally, we also define the
posterior variance (function)

σ2
D(x) = kD(x, x) = k(x, x)− kD(x)> (KD + λI)−1 kD(x). (4.12)

The posterior mean µD is usually interpreted as a nominal prediction of the unknown
target function generating the data, and the posterior standard deviation σD is
interpreted as a measure of uncertainty.

4.2.2. Kernel ridge regression

We still consider the problem of nonparametric regression, but now from a very
different perspective. Instead of following a Bayesian paradigm, we fix a hypothesis
space, and then search for a candidate hypothesis (here a function) by using an
optimization problem depending on the given data.

Let X be some input set and D = ((x1, y1), . . . , (xN , yN )) ∈ (X ×R)N a data set.
As the hypothesis space we use an RKHS Hk, where k is a kernel on X , and we
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search for a suitable hypothesis with the following optimization problem

min
f∈Hk

N∑
n=1

(yn − f(xn))2 + λ‖f‖2k, (4.13)

where λ ∈ R>0 is a regularization parameter. This approach is called kernel ridge
regression, since it is a kernelized version of ridge regression [89, Section 3.4]. It
is a form of regularized empirical risk minimization, using the square loss and
the (squared) RKHS norm as regularizer [189]. Note that Hk is often infinite-
dimensional, and hence the preceding minimization problem is an infinite-dimensional
optimization problem. However, it turns out that it is equivalent to a finite-dimensional
optimization problem, and the unique solution has the closed form5

fλ(x) = kD(x)> (KD + λI)−1 y, (4.14)

with kD,KD, and y as defined before. But we immediately recognize that fλ =
µD, the posterior mean of GP regression, if we choose a zero mean GP prior with
covariance function k, and assume additive i.i.d. N (0, λ) noise. For more details
on kernel ridge regression and the connection to GP regression, we refer to [102,
Section 3.3]. Furthermore, we will revisit kernel ridge regression in Section 5.2 from
a different perspective, that will be particularly helpful for the connection with GP
regression.

4.2.3. Further aspects and extensions

In the following, we elaborate on some practical aspects of GP regression and kernel
ridge regression, as well as generalizations and the connection to related methods.

Prior knowledge and choice of kernel A key advantage of kernel methods, includ-
ing Gaussian process regression and kernel ridge regression, is the systematic inclu-
sion of prior knowledge. More precisely, if certain prior knowledge about the target
function is known, then in many cases there exists systematic ways to include this
in the kernel-based learning method by enforcing corresponding properties. This
becomes particularly transparent for kernel ridge regression, which searches for a

5This follows from the representer theorem for kernel machines [180, 102].
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suitable hypothesis (and estimate of the target function) in an RKHS, which in turn
is generated from its reproducing kernel, cf. Chapter 2. In particular, properties
of the RKHS functions are to a large extent determined by the chosen kernel. For
example, regularity properties of the kernel, like continuity, Lipschitz continuity or
differentiability, are inherited by the RKHS functions, cf. [189, Section 4.3], Chap-
ter 3, and [217, Chapter 10]. Put differently, by choosing an appropriately regular
kernel, the outcome of kernel ridge regression will fulfill the corresponding regularity
constraint.
In principle, the same connection holds between the covariance function and sam-

ple paths of a GP, cf. [3, Chapter 1], but since a GP is a stochastic process, this
situation is more delicate, cf. also [102, Section 4].
The previously mentioned properties are mostly qualitative, but inclusion of more

quantitative properties is also possible. For example, invariances can be enforced
by the kernel. In multioutput setting, cf. also the remarks below, linear differential
constraints can be easily included [101], and using computer algebra this can be even
automated [115].
Since all of this pertains to the kernels (for kernel ridge regression) and covariance

functions (for GP regression), but not the learning method itself, we work in the
following with generic kernels as much as possible, since this makes all of the afore-
mentioned approaches immediately applicable. Furthermore, another advantage of
kernel methods is given by the separation of the input set and the learning method
– any structure (or lack thereof) of the input set enters the learning method only
through the kernel, which makes kernel methods also applicable to graphs, texts or
sets as inputs, as long as appropriate kernel are available, cf. [182] for many such
examples.
Finally, in GP regression there is an additional way to introduce prior knowl-

edge – by choice of the prior mean function. This is commonly used in two ways
[166, Chapter 2]. On the one hand, appropriate prior knowledge can be model by
a nominal function, which is then used as the GP prior mean, or equivalently, sub-
stracted from the data, so that the GP models only the difference. On the other
hand, the prior mean can also be modelled in a parametric manner, which turns
GP regression into a semiparametric method. As common in the literature, we do
not consider these extensions, and work with a zero mean prior in the following.
With a view towards the developments in Chapter 5, we would like to mention that

90



4.2. Kernel and Gaussian process regression

frequentist uncertainty bounds would be an interesting extension and to the best of
our knowledge no results in this direction exist so far.

Hyperparameters Even if a specific class of covariance functions has been selected
(from prior knowledge, via a model selection procedure, or even just convenience),
in general this still leaves open the choice of a certain set of parameters of the
covariance function or kernel, which in this context are called hyperparameters. For
example, many translation invariant covariance functions k : X ×X → R (assuming
that X has a vector space structure) are of the form

k(x, x′) = ψ
(
γ−1(x− x′)

)
, (4.15)

where γ ∈ R>0 is called the length scale.

Remark 4.2.3. Note that the literature is not uniform w.r.t. the parameterization.
For example, in the GP regression literature, e.g. [166, Section 2.3], the well-known
SE kernel (with X ⊆ Rd) is often written as

k(x, x′) = exp
(
−‖x− x

′‖2

2`2

)
(4.16)

and ` ∈ R>0 is called its length scale, whereas in the kernel methods literature, e.g.
[189, Proposition 4.10], one often finds

k(x, x′) = exp
(
−‖x− x

′‖2

γ2

)
(4.17)

and γ ∈ R>0 is called its width.

Similarly, it is often assumed that ψ(0) = 1 and one considers the form

k(x, x′) = σ2
fψ
(
γ−1(x− x′)

)
, (4.18)

where σ2
f is called the signal variance in the GP regression literature [166, Sec-

tion 2.3]. This terminology is explained by the fact that if f ∼ GPX (µ, k), then for
all x ∈ X , Var[f(x)] = Var[Z] for Z ∼ N (µ(x), k(x, x)), so Var[f(x)] = k(x, x) =
σ2
fψ(0) = σ2

f .
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In practice, two systematic approaches for selecting hyperparameters are common
[166, Section 2.3]. The most principled way is to apply a Bayesian approach and
put a prior on the hyperparameters, in this context called a hyperprior. This prior
has its own hyperparameter, however, it is argued that the influence of the latter is
reduced due to the hierarchical structure. However, inference in this setting is much
more challenging and in general one looses the advantage of explicit expressions
for the posterior. Therefore, most often one an empirial Bayes, also called type-II
likelihood, approach. The idea is to maximize the likelihood of the observed data by
varying the hyperparameters.
While these methods work well in practice, they considerably complicate the the-

oretical treatment, and in particular, the development of uncertainty bounds. For
example, in many works on kernelized bandits which rely on GP regression, the
question of hyperparameter choice or misspecification thereof is not dealt with in
the theoretical developments, cf. [186, 54, 219]. In fact, the theoretical properties
of hyperparameter choice in GP regression are still under active investigation, with
first results in [197, 103].
In the remainder of this chapter, we follow the common approach in the literature

and do not consider any hyperparameter selection method per se. If the choice of
hyperparameter does play a role, e.g. when considering a target function from the
RKHS generated by the covariance function, we either assume that all hyperparam-
eters are known, or we derive results that are robust to certain misspecifications, cf.
Section 5.5.

Scalability to large data sets Inspecting the explicit expressions for the posterior
in GP regression, and the closed form solution of kernel ridge regression, shows that
a symmetric and positive definite N ×N matrix, where N are the number of data
points, needs to be inverted, or equivalently a corresponding equation system needs
to be solved. This means that using GP regression or kernel ridge regression needs
O(N2) space and (roughly) O(N3) time. At least in an offline-learning setting, the
typical data set sizes in control do not pose a problem here. However, in modern
machine learning, N will be so large that the naive approach of matrix inversion (or
solving the equation system) becomes infeasible, and hence approximation methods
are necessary. For an overview of classic methods, we refer to [166, Chapter 8] and
[144, Section 18.5]. In the context of kernel ridge regression, the Nystrom method
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has been successfully applied to scale to billions of data points, e.g., [169, 170, 135].
Another approach is to use random (Fourier) features, and we refer to [120] for
an extensive survey. In the context of GP regression, sparse GPs can be used in a
large-scale setting, cf. e.g. [184, 163]. However, using these techniques in the context
of uncertainty bounds for GPs (and kernel ridge regression) is problematic due to
variance starvation, which leads to an underestimate of the uncertainty, and the
approximation has to be taken into account for the uncertainty bounds, cf. e.g. [43].
Since we are anyway interested in control-applications with moderate N , and to keep
the following developments to a reasonable length, we do not consider uncertainty
bounds in the context of approximation methods for large-scale applications.

Multiple outputs and more general problems So far, we only considered learning
a scalar function f∗ : X → R. However, it is clear that in practical scenarios, target
functions with multiple outputs appear, or even more general output spaces. At
least in the case of multiple scalar outputs, three common approaches can be used.

1. If the target function is of the form f∗ : X → Rm, then one can apply any
method for learning a scalar function to the m scalar functions f1, . . . , fm :
X → R, defined by fi(x) = f∗(x)i, i = 1, . . . ,m. While this is straightforward,
it is clear that the learning method cannot profit from any known connection
between the m scalar functions.

2. Consider the same situation as above. We cannot interpret f∗ as a scalar func-
tion on an extended input set, f̃ : {1, . . . ,m} × X → R, defined by g∗(i, x) =
f∗(x)i for i ∈ {1, . . . ,m} and x ∈ X . Any data set generated by f∗ can be trans-
formed into a data set generated by g∗, to which a learning method for scalar
functions can be applied. A learned function ĝ can then be transformed into
an estimate of f∗ by setting f̂ : X → Rm, f̂(x) =

(
ĝ(1, x) · · · ĝ(m,x)

)>
.

3. There exist a generalization of GP regression to multiple outputs, cf. [10], and
by considering a vector-RKHS [153, 138], also kernel ridge regression can be
directly generalized to multiple output (actually arbitrary Hilbert-space valued
outputs).

Note that 1. can be interpreted as a special case of 2., which in turn can be inter-
preted as a special case of 3.
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In light of item 1. above, and to keep the following developments to a reasonable
length, we will only consider learning scalar-valued functions. The (mostly imme-
diate) generalization to multiple outputs and general vector-valued functions is left
for future work.

Measurement functionals and connection to inverse problems So far, we have
considered the measurement model y = f∗(x) + η, where f∗ is the unknown target
function, x some input, η unknown noise, and y the actual measurement value. This
means that we access the target f∗ through evaluation functions. In many appli-
cation scenarios different measurement functionals appears. For example, suppose
that f∗ : (0, 1)→ R is differentiable, then we might receive derivative measurements,
corresponding to the measurement model y = f ′(x)+η. Similarly, one could consider
integral functionals (say, a convolution with a test function). As is well-known, GP
regression supports a variety of such generalized measurement functionals, cf. e.g.
[166, Section 9.4], although making this setup precise requires some care. The situ-
ation is easier for kernel ridge regression. As is clear from the exposition in Section
5.2, kernel ridge regression is a special case of regularized least-squares in Hilbert
spaces with bounded linear measurement functionals. In the case of standard ker-
nel ridge regression, these measurement functionals are just evaluations, which are
continuous due to the RKHS assumption. As long as the measurement functional
has a Riesz representer which can be easily evaluated, one can adapt kernel ridge
regression and its associated theory. For example, if a kernel on Rd is sufficiently
regular, then it has a derivative reproducing property, cf. [189, Lemma 4.34., Corol-
lary 4.36], and hence linear partial differential measurement operators can be used
with kernel ridge regression, similar to hard shape constrained kernel machines [20].
In particular, most of the developments in the next chapter generalize immediately
to this setting.
Furthermore, this also indicates a close relation to inverse problems [213]. In in-

verse problems, one has a forward map A : X → Y , an unknown element x ∈ X,
and potentially noisy measurements from the forward map, y = Ax+ η. The goal is
then to recover x from the measured data, i.e., invert the data generating process.
In general, this is challenging since information is often lost in the forward map or it
cannot be inverted in a stable manner. For example, x might be a parameter set for
a system of ordinary or partial differential equations, and A corresponds to the solu-

94



4.3. Uncertainty bounds for GP regression

tion operator of a corresponding initial value or boundary value problem, potentially
combined with an additional measurement or sampling operator. The inverse prob-
lem is therefore to recover the parameters from measurements of the evolved system.
From this perspective, we can interpret our setting as a specific setup of an inverse
problem, and indeed kernel ridge regression corresponds to Tikhonov regularization
from the inverse problem literature. As a consequence, the following developments
can be interesting for applications in uncertainty quantification in inverse problems,
but due to our focus on applications to systems and control, we do not follow this
direction in the present thesis.

Related methods In statistics, GP regression is often called kriging. More pre-
cisely, GP regression with a zero mean prior is known as simple kriging, GP regres-
sion with a constant, but unknown mean (which is jointly inferred, so we are in a
semiparametric situation) is called ordinary kriging, and GP regression with a mean
modelled by a linear (in the weights) model is called universal kriging, cf. e.g. [215].

Furthermore, GP regression also works under the assumption of no measurements
noise (requiring in general a positive definite kernel), cf. [102, Section 3.1]. This
situation appears when GPs are used as surrogate models [83], which happens in
particular in the context of computer experiments [174]. In this case, the posterior
mean coincides with the minimum norm interpolator over the RKHS induced by the
covariance function [102, Section 3], as considered in scattered data approximation
[217]. Furthermore, in the latter field the basic error bounds involve the power
function, which (potentially up to some normalization) corresponds to the square of
the posterior covariance function, cf. [217, Chapter 11].

4.3. Uncertainty bounds for GP regression

We are now ready to introduce the type of uncertainty bounds we need. Our primary
motivation from the application side is learning-enhanced robust controller synthesis.
As opposed to adaptive control or online controller tuning, the learning part happens
here in an offline setting.6 Furthermore, we consider the challenging setting were the
unknown target is a function, as oppposed to a mere finite collection of parameters.

6Curiously, many of the bounds considered later on are anytime valid and can hence be even used
in an online context.
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As discussed in Section 4.2.3, we restrict us to scalar-valued functions. In addition,
we assume access to noise-free inputs and noise-corrupted outputs. While the case
of noisy inputs, or even non-observable input-output relations (requiring e.g. state
estimation techniques), is very interesting, it is beyond the scope of the present
thesis and left for future work. Finally, motivated by the discussion in Section 4.1,
we aim at frequentist uncertainty bounds, and with a view towards applications in
robust controller synthesis, they should be uniform in the inputs.

Let us formalize all of this. The unknown ground truth is a function f∗ : X → R,
where X is some input set (usually Rd), for which we might have additional prior
knowledge, e.g. in the form of regularity properties, or membership in a certain
function space. We assume access to a data set D = ((x1, y1), . . . , (xN , yN )) with
yn = f∗(xn) + ηn, where η1, . . . , ηN is stochastic noise with some independence
assumption. We make no assumptions on the inputs x1, . . . , xN ∈ X , in particular,
they might not be stochastic at all. This is important since in the context of learning
based control, the inputs might have been generated by the underlying dynamical
system, or an active exploration algorithm. We apply GP regression to this data
set, assuming in general a zero mean prior with covariance function k and noise
variance λ ∈ R>0 (or the corresponding kernel ridge regression formulation), leading
as outlined in Section 4.2 to the posterior mean and variance functions µD and
σ2
D. Consider now a function ηD : (0, 1) × X → R≥0, which can only depend on
D (possible through σ2

D) and reasonable assumptions about f∗, but not on noise
realizations or even the target function f∗. The overall goal is the construction of a
suitable ηD such that for all δ ∈ (0, 1) we have

P[|f∗(x)− µD(x)| ≤ ηD(δ, x) ∀x ∈ X ] ≥ 1− δ. (4.19)

In words, we want a frequentist uncertainty bound (since the ground truth f∗ is
deterministic, and the randomness only enters through the noisy data generating
process) that is uniform in the inputs. Slightly imprecisely, we call ηD itself a
frequentist uncertainty bound.
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4.4. Comments

The present chapter has been written from scratch by the author of this thesis. The
overview in Section 4.1 has profited from discussions of the author with S. Trimpe
and C.W. Scherer, though the present formalization has not appeared before. Section
4.2 is a standard introduction to GP and kernel ridge regression, and it has been
specifically written for this thesis for the reader’s convenience. The setup in Section
4.3 is standard, cf. the kernelized bandit literature [186, 54], and very frequently
used in learning-based control, cf. e.g. [31].
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5. Frequentist uncertainty bounds for
kernel and GP regression: Theory

In this chapter, we consider theoretical aspects of frequentist uncertainty bounds
for GP regression as outlined in Section 4.3. We start in Section 5.1 with simple
uncertainty bounds that follow immediately from the closed form solution of the
GP posterior mean (corresponding to the kernel ridge regression estimate) by sepa-
rating terms involving the target function and terms involving only the noise, and
applying standard concentration inequalities to the latter. To prepare the discussion
of more advanced bounds, in Section 5.2 we interpret kernel ridge regression as a
special case of regularized least-squares in Hilbert spaces. Furthermore, state-of-
the-art uncertainty bounds are based on self-normalized concentration inequalities,
which is by now an established technique in the theoretical machine learning commu-
nity. However, while the application of this technique to regularized least-squares is
straightforward, from the existing literature it is unclear how one can come up with
these arguments. To remedy this problem, in Section 5.3 we present an elementary
and self-contained derivation of uncertainty bounds based on self-normalization. The
results are formulated in the context of regularized least-squares in Hilbert spaces,
and in Section 5.4 we translate them into the GP regression setting. Finally, in
Section 5.5 we consider uncertainty bounds under model misspecification. Relation
to prior work, and the contributions of the author, are discussed in Section 5.6.

This chapter is based on, with some parts taken verbatim from, the work [CF12].
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5. Frequentist uncertainty bounds for kernel and GP regression: Theory

5.1. Simple frequentist uncertainty bounds

Consider the setting outlined in Section 4.2. Observe that for all x ∈ X

|f(x)− µD(x)| ≤
∣∣∣f(x)− kD(x)> (KD + λI)−1 f

∣∣∣+ ∣∣∣kD(x)> (KD + λI)−1 η
∣∣∣ ,
(5.1)

so we can separate in the error term the influence of f and the noise. For the first
term, one can use the following well-known result. It appears for example in the
first part of the proof of [54, Theorem 2].

Lemma 5.1.1. Let k be a kernel on X , f ∈ Hk, x1, . . . , xN ∈ X , and λ ∈ R>0. For
all x ∈ X we have

|f(x)−kD(x)> (KD + λI)−1 f | ≤ ‖f‖k
√
k(x, x)− kD(x)>(KD + λI)−1kD(x), (5.2)

where

kD(x) =


k(x, x1)

...
k(x, xN )

 , KD =


k(x1, x1) · · · k(x1, xN )

...
...

k(xN , x1) · · · k(xN , xN )

 , f =


f(x1)

...
f(xN )

 .
If KD is invertible, the result also holds for λ = 0.

The case of a positive definite kernel and λ = 0 forms the foundation for most
error bounds in the scattered data approximation literature, cf. [71]. In this setting,
with the Golub-Weinberger bound an even stronger result is available. Since a proof
of Lemma 5.1.1 is less easily found in the literature, we provide one here.

Proof. Using the reproducing property of k, we have f(x) = 〈f, k(·, x)〉k and, defin-
ing for brevity α(x) = (KD + λI)−1 kD(x),

kD(x)> (KD + λI)−1 f =
N∑
n=1

αn(x)f(xn) =
N∑
n=1

αn(x)〈f, k(·, xn)〉k

=
〈
f,

N∑
n=1

αn(x)k(·, xn)
〉
k

,
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so we get by Cauchy-Schwarz

|f(x)− kD(x)> (KD + λI)−1 f | =
∣∣∣∣∣〈f, k(·, x)−

N∑
n=1

αn(x)k(·, xn)〉
∣∣∣∣∣

≤ ‖f‖k

∥∥∥∥∥k(·, x)−
N∑
n=1

αn(x)k(·, xn)
∥∥∥∥∥
k

.

The claim now follows from∥∥∥∥∥k(·, x)−
N∑
n=1

αn(x)k(·, xn)
∥∥∥∥∥

2

k

= 〈k(·, x), k(·, x)〉k − 2
〈
k(·, x),

N∑
n=1

αn(x)k(·, xn)
〉
k

+
〈

N∑
i=1

αi(x)k(·, xi),
N∑
j=1

αj(x)k(·, xj)
〉
k

= k(x, x)− 2
N∑
n=1

αn(x)k(x, xn) +
N∑

i,j=1
αi(x)αj(x)k(xj , xi)

= k(x, x)− 2kD(x)> (KD + λI)−1 kD(x)

+ kD(x)> (KD + λI)−1KD (KD + λI)−1 kD(x)

≤ k(x, x)− 2kD(x)> (KD + λI)−1 kD(x)

+ kD(x)> (KD + λI)−1 (KD + λI) (KD + λI)−1 kD(x)

= k(x, x)− 2kD(x)> (KD + λI)−1 kD(x) + kD(x)> (KD + λI)−1 kD(x),

where we used in the inequality that KD � KD + λI (here, � refers as usual to the
semidefinite ordering of symmetric matrices).

As a simple consequence, if we know a bound B ∈ R≥0 on the RKHS norm of f ,
i.e., ‖f‖k ≤ B, then we have a uniform (in the inputs) uncertainty bound (dealing
with the error arising from sampling f at only finitely many points). In the context
of GP regression, the bound then takes the form BσD(x) ∀x ∈ X .
If we are interested in a pointwise uncertainty bound, and the noise terms η1, . . . , ηN

are independent of the inputs, then it is easy to derive such an uncertainty bound if
appropriate concentration results are available for the noise terms. As an example,
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5. Frequentist uncertainty bounds for kernel and GP regression: Theory

here is a pointwise uncertainty bound for independent subgaussian noise terms. We
are not aware of this particular result and its elementary proof, but it would not be
suprising if it already appeared in the vast literature on kernel ridge regression and
GP regression.

Proposition 5.1.2. Let f ∈ Hk and B ∈ R≥0 with ‖f‖k ≤ B, and consider data
D = ((x1, y1), . . . , (xN , yN )) with yn = f(xn) + ηn, n = 1, . . . , N , where η1, . . . , ηN

are independent R-subgaussian random variables. For all δ ∈ (0, 1) and all x ∈ X ,
we have

P
[
|f(x)− µD(x)| ≤ BσD(x) + 2R‖(KD + λI)−1kD(x)‖

√
ln(1/δ)

]
≥ 1− δ.

Proof. We start by using (5.1), and bound the first term with Lemma 5.1.1. For the
second term, define α(x) = (KD + λI)−1 kD(x), then we have

∣∣∣kD(x)> (KD + λI)−1 η
∣∣∣ =

∣∣∣∣∣
N∑
n=1

αn(x)ηn
∣∣∣∣∣ ,

and the Hoeffding inequality for subgaussian random variables (e.g, [76, Theo-
rem 7.27]) shows that for all t ≥ 0 we have

P
[∣∣∣∣∣

N∑
n=1

αn(x)ηn
∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2R2‖α‖2

)
.

Solving 2 exp
(
− t2

2R2‖α‖2
)

= δ for t establishes the claim.

As is clear from the proof, a corresponding result holds mutatis mutandis for
subexponential noise, or more generally zero-mean noise variables with an appropri-
ate bound on the moment generating function (MGF). This remark applies also to
the remaining uncertainty bounds in this section.

For many applications, in particular in learning-based control, it is important to
have uncertainty bounds that are uniform in the inputs. The most straightforward
approach is to separate any input-dependent term from the noise terms in (5.1). For
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example, we could use Cauchy-Schwarz to get∣∣∣kD(x)> (KD + λI)−1 η
∣∣∣ =

∣∣∣kD(x)> (KD + λI)−
1
2 (KD + λI)−

1
2 η
∣∣∣

≤ ‖ (KD + λI)−
1
2 kD(x)‖‖ (KD + λI)−

1
2 η‖

=
√
kD(x)> (KD + λI)−1 kD(x)

√
η> (KD + λI)−1 η

=
√
k(x, x)− σ2

D(x)
√
η> (KD + λI)−1 η.

If we have a concentration result for the random quadratic form appearing on the
right, then this leads immediately to an input-uniform uncertainty bound. The next
result implements this approach. It appeared in slightly different form as [CF12,
Proposition 2].

Proposition 5.1.3. In the situation of Theorem 5.1.2, for all δ ∈ (0, 1) we have

P[∀x ∈ X : |f(x)− µD(x)| ≤ BσD(x) +R
√
k(x, x)− σ2

D(x)b(δ)] ≥ 1− δ (5.3)

with

b(δ) =
√

tr (Q) + 2
√

tr (Q) ln(1/δ) + 2‖Q‖ ln(1/δ) (5.4)

Q = (KD + λI)−1 (5.5)

Proof. Combining (5.1), Lemma 5.1.1, and the bound we just derived leads to

|f(x)− µD(x)| ≤ BσD(x) +
√
k(x, x)− σ2

D(x)
√
η> (KD + λI)−1 η.

Since by assumption η1, . . . , ηN are independent R-subgaussian, we have for all ν ∈
RN

E
[
exp

(
N∑
n=1

νnηn

)]
=

N∏
n=1

E [exp (νnηn)] ≤
N∏
n=1

exp
(
ν2
nR

2

2

)
= exp

(
‖ν‖2R2

2

)
,

so [96, Theorem 2.1] is applicable, which states that for all t ∈ R>0 we have

P
[
η>Qη ≥ R2

(
tr (Q) + 2

√
tr (Q) t+ 2t‖Q‖

)]
≤ e−t,
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where we defined Q = (KD + λI)−1 for brevity. Setting e−t = δ and applying the
square root to both sides establishes the result.

Note that the form of the uncertainty bound is not satisfying. The part involving
the noise arises from √

k(x, x)− σ2
D(x)

√
η> (KD + λI)−1 η,

and intuitively, with more data σ2
D(x) should get smaller, so

√
k(x, x)− σ2

D(x) gets
larger. This effect might not be counteracted by the second factor. Assume that
KD = I (this happens for example if X is an inner product space, k(x, x′) = 〈x, x′〉
is the linear kernel, and the covariates form an orthonormal system), then

√
η> (KD + λI)−1 η =

√
η> ((1 + λ)I)−1 η =

√√√√ N∑
n=1

1
1 + λ

η2
n,

so in this case (roughly speaking) the second factor is even growing with more data.

5.2. Interlude: Regularized least-squares in Hilbert spaces
and kernel ridge regression

First, we show that the `2-regularized least-squares approach for linear regression
works in arbitrary Hilbert spaces, using an elementary derivation. We then rewrite
the results in a particularly insightful form, which is again well-known, but un-
fortunately rarely utilized in the exposition of regularized least-squares in Hilbert
spaces, and derive kernel ridge regression as a special case. Finally, we connect these
developments back to uncertainty bounds.

Regularized least-squares in Hilbert spaces Let H be a real Hilbert space1 and
consider a data set DN = ((h1, y1), . . . , (hN , yN )) ∈ (H×R)N . Given a regularization
parameter λ ∈ R>0, consider the optimization problem

min
h∈H

N∑
n=1

(yn − 〈h, hn〉)2 + λ‖h‖2, (5.6)

1Everything would also work for complex Hilbert spaces.
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which is obviously convex. Observe now that for all h ∈ H

N∑
n=1

(yn − 〈h, hn〉)2 + λ‖h‖2 =
N∑
n=1
〈h, hn〉〈h, hn〉+ λ〈h, h〉 − 2

N∑
n=1

yn〈h, hn〉+
N∑
n=1

y2
n

=
〈
h,

N∑
n=1
〈h, hn〉hn

〉
+ 〈h, (λid)h〉 − 2

〈
h,

N∑
n=1

ynhn

〉
+

N∑
n=1

y2
n

=
〈
h,

(
N∑
n=1

hn ⊗ hn + λid
)
h

〉
− 2

〈
h,

N∑
n=1

ynhn

〉
+

N∑
n=1

y2
n,

where we used the common notation u⊗ v := h 7→ 〈h, u〉v in the last step.
Furthermore, if Q is a self-adjoint, invertible operator on H, and R some element

of H, then we have for all h ∈ H that

〈h−R,Q(h−R)〉 = 〈h,Qh〉 − 2〈h,QR〉+ 〈R,QR〉,

so by identifying

Q =
N∑
n=1

hn ⊗ hn + λid, hλ =
(

N∑
n=1

hn ⊗ hn + λid
)−1 N∑

n=1
ynhn

(note that this Q is indeed self-adjoint and invertible), we can complete the square
and find that〈

h,

(
N∑
n=1

hn ⊗ hn + λid
)
h

〉
− 2

〈
h,

N∑
n=1

ynhn

〉
+

N∑
n=1

y2
n

=
〈
h− hλ,

(
N∑
n=1

hn ⊗ hn + λid
)

(h− hλ)
〉

+ Terms without h.

This shows that hλ is the unique solution of the optimization problem (5.6).

A different perspective We now provide a different perspective on the regularized
least-squares solution hλ by rewriting it. The developments in this section are prob-
ably well-known, and the following computations are similar to the first part of the
proof of [54, Theorem 2], but we could not locate a reference that presents this in
the context of regularized least-squares in Hilbert spaces.
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Define two linear maps

S : RN → H, Sα =
N∑
n=1

αnhn (5.7)

A : H → RN , Ah =


〈h, h1〉

...
〈h, hN 〉

 . (5.8)

In the context of signal processing and harmonic analsyis, these maps are known as
the synthesis and analysis operators, respectively [211]. As is well-known, S∗ = A,
which can be seen from

〈Sα, h〉H =
〈

N∑
n=1

αnhn, h

〉
H

=
N∑
n=1

αn〈hn, h〉H = α>


〈h, h1〉H

...
〈h, hN 〉H

 = 〈α,Ah〉RN .

Furthermore,

(
N∑
n=1

hn ⊗ hn

)
h =

N∑
n=1
〈h, hn〉hn = S



〈h, h1〉

...
〈h, hN 〉


 = (SA)(h)

N∑
n=1

ynhn = Sy,

where we defined =
(
y1 · · · yN

)>
. Finally, since for the RN -standard ONB

vectors ei, ej

〈ei, (AS)ej〉RN = 〈ei, A(Sej)〉RN = 〈ei, A(hj)〉RN = 〈hj , hi〉H ,

we can identify the linear map AS : RN → RN with the Gram matrix H =
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(
〈hj , hi〉H

)
i,j=1,...,N

. With these preparations, we have

hλ =
(

N∑
n=1

hn ⊗ hn + λid
)−1 N∑

n=1
ynhn = (SA+ λidH)−1 Sy

= S(AS + λidRN )−1y =
(
h1 · · · hN

)
(H + λI)−1y,

where we used the well-known pull-through identity in the third equality.
Defining α = (H + λI)−1y, we can rewrite this as

hλ =
N∑
n=1

αnhn, (5.9)

which says that the regularized least-squares solution is a linear combination of the
inputs (or covariates) in the data set. In the context of linear regression in Rd, this is
discussed in standard textbooks, for example [89, Chapter 3]. In our setting, it has
the additional consequence that even if H is infinite-dimensional, hλ is contained in
the finite-dimensional span of the inputs from the data set.

Recovering kernel ridge regression Suppose now that we are not interested in
hλ per se, but rather in one or more linear functionals of it. Restricting us to
bounded linear functionals and using the Riesz representation theorem, we can fo-
cus on 〈h, hλ〉, where h is the Riesz representer of the functional of interest. The
developments in the preceding section now lead to

〈h, hλ〉 = 〈h, S(AS + λI)−1y〉 =
〈
h,

N∑
n=1

αnhn

〉
=

N∑
n=1

αn〈h, hn〉

=
(
〈h, h1〉 · · · 〈h, hN 〉

)
(AS + λI)−1y = (Ah)>(AS + λidRN )−1y.

Observe that in this expression of 〈h, hλ〉 no element from H appears on its own
anymore, but only in inner products. This is reminiscent of the kernel perspective
from Section 2.3.
Let now k be a kernel on some set X , and consider the situation H = Hk, hn =

k(·, xn), and h = k(·, x). This means that the linear functionals of interest are
evaluations of elements from Hk, and since Hk is an RKHSs, these are continuous
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and can hence be represented by scalar products with elements from Hk, cf. Sections
2.1 and 2.2. The regularized least-squares problem now becomes

min
h∈H

N∑
n=1

(yn − 〈h, hn〉)2 + λ‖h‖2H = min
f∈Hk

N∑
n=1

(yn − f(x))2 + λ‖f‖2k,

and we get

H =
(
〈hj , hi〉

)
i,j=1,...,N

=
(
〈k(·, xj), k(·, xi)〉k

)
i,j=1,...,N

=
(
k(xi, xj)

)
i,j=1,...,N

and

hλ(x) = 〈k(·, x), hλ〉k =
(
〈k(·, x), k(·, x1)〉 · · · 〈k(·, x), k(·, xN )〉

)
(H + λI)−1y

= kD(x)(KD + λI)−1y,

so we recovered kernel ridge regression as a special case of regularized least-squares
in Hilbert spaces.

Note that in contrast to more conventional expositions of kernel ridge regression,
like [102, Section 3], we did not use the general representer theorem, nor any exis-
tence or uniqueness results for solutions of kernel machines.

Back to uncertainty bounds As a simple application of the preceding develop-
ments, let us go back to Proposition 5.1.3. Recall that we were not satisfied with
the form of the uncertainty bound, mostly due to the factor

√
k(x, x)− σ2

D(x), which
in turn arises from the usage of Cauchy-Schwarz. Using the interpretation of kernel
ridge regression as regularized least-squares in a Hilbert space, we can try to apply
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Cauchy-Schwarz to a different inner product,∣∣∣kD(x)> (KD + λI)−1 η
∣∣∣ =

∣∣∣A(k(·, x))>(AS + λidRN )−1η
∣∣∣

=
∣∣∣〈Ak(·, x), (AS + λidRN )−1η〉RN

∣∣∣
=
∣∣∣〈k(·, x), S(AS + λidRN )−1η〉k

∣∣∣
=
∣∣∣〈k(·, x), (SA+ λidH)−1Sη〉k

∣∣∣
=
∣∣∣〈(SA+ λidH)−

1
2k(·, x), (SA+ λidH)−

1
2Sη〉k

∣∣∣
≤ ‖(SA+ λidH)−

1
2k(·, x)‖k‖(SA+ λidH)−

1
2Sη‖k.

Since

‖(SA+ λidH)−
1
2Sη‖k =

√
〈(SA+ λidH)− 1

2Sη, (SA+ λidH)− 1
2Sη〉k

=
√
〈η,A(SA+ λidH)−1Sη〉RN

=
√
〈η,AS(AS + λidH)−1η〉k

=
√
〈η,KD(KD + λI)−1η〉RN

and A(AS + λidH)−1S : RN → RN is a self-adjoint, positive semidefinite map
that can be identified with a positive definite matrix, the second term ‖(SA +
λidH)− 1

2Sη‖k can be expressed with (finite) linear algebra expressions, and it is the
square root of a random quadratic form, so the strategy from the proof of Proposition
5.1.3 is still applicable.

To deal with the first factor ‖(SA+λidH)− 1
2k(·, x)‖k, we recognize that our current

bounding strategy is the same as in the proof of [54, Theorem 2], so we can use a
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calculation which appears there,

〈(SA+ λidH)−
1
2k(·, x), (SA+ λidH)−

1
2k(·, x)〉k

= 〈k(·, x), (SA+ λidH)−1k(·, x)〉k

= 1
λ
〈k(·, x), (SA+ λidH)−1(λidH)k(·, x)〉k

= 1
λ
〈k(·, x), (SA+ λidH)−1(SA+ λidH)k(·, x)− (SA+ λidH)−1SAk(·, x)〉k

= 1
λ

(
〈k(·, x), k(·, x)〉k − 〈k(·, x), (SA+ λidH)−1SAk(·, x)〉k

)
= 1
λ

(
k(x, x)− 〈k(·, x), S(AS + λI)−1Ak(·, x)〉k

)
= 1
λ

(
k(x, x)− 〈Ak(·, x), (AS + λI)−1Ak(·, x)〉RN

)
= 1
λ

(
k(x, x)− kD(x)>(KD + λI)−1kD(x)

)
= 1
λ
σ2
D(x).

Altogether we get

∣∣∣kD(x)> (KD + λI)−1 η
∣∣∣ ≤ √η>KD(KD + λI)−1η

σD(x)√
λ
.

A variant of Proposition 5.1.3 for this bounding strategy then becomes the following.

Proposition 5.2.1. In the situation of Theorem 5.1.2, for all δ ∈ (0, 1) we have

P
[
∀x ∈ X : |f(x)− µD(x)| ≤

(
B + R√

λ
b(δ)

)
σD(x)

]
≥ 1− δ (5.10)

with
b(δ) =

√
tr (Q) + 2

√
tr (Q) ln(1/δ) + 2‖Q‖ ln(1/δ) (5.11)

and
Q = KD(KD + λI)−1. (5.12)

The proof is completely analogous to the one of Proposition 5.1.3. Before moving
on, we would like to record some remarks on this result.

Remark 5.2.2. 1. This result follows by changing the choice of concentration in-
equality in the proof of [54, Theorem 2], and keeping the data dependent terms
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(instead of trying to bound them further with theoretically more amenable
terms), and as such is in the same spirit as [CF12, Theorem 1].

2. The form of the uncertainty bound is β · σD for some appropriate (input-
independent) β, and as such is already of the standard form for uncertainty
bounds for GP regression.

3. Furthermore, a very similar result, based on a completely different proof strat-
egy is [205, Theorem 1]. Under essentially the same assumptions the righthand
side in the bound becomes(

B + R√
λ

√
2 ln(1/δ)

)
σD(x). (5.13)

5.3. An elementary derivation of frequentist uncertainty
bounds based on self-normalization

The frequentist uncertainty bounds for GP regression (or equivalently, kernel ridge
regression) most frequently used in learning-based control are [186, Theorem 6] and
[54, Theorem 2] (as well as the results in [CF12] based on the latter reference) have
been developed in the context of kernelized bandits. The current state-of-the-art
for such uncertainty bounds has been achieved via self-normalization, first in [1,
Chapter 3] as a direct generalization of the finite-dimensional case from [2], and
then recently rediscovered by [219]2. Self-normalized random variables and stochas-
tic processes, and corresponding tail and concentration inequalities, form a very rich
subject, with roots going back to the Student t-statistic [157]. The results in [2,
1, 219] are based on a particular technique known as pseudomaximization or the
method of mixtures, sometimes also called Laplace’s method [128]. In the context
of self-normalization this technique goes back to [156], with the generalization to
the multivariate case in [155]. Using this technique it is relatively straightforward to
derive the relevant concentration inequalities in [2] and the corresponding generaliza-
tions. While pseudomaximization is motivated by a somewhat transparent intuition

2Similar to the results in [1, Chapter 3], in [128] frequentist bounds for GP regression have been
derived as a generalization of the results in [2]. However, the latter reference relied on a Mercer
expansion, and the resulting bound is slightly less general than the results in [1, Chapter 3] and
[219].
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[154], it appears to be very unclear how it leads relatively directly to the state-of-
the-art uncertainty bounds. To the best of our knowledge, there is no exposition or
derivation available that explains why or how this particular instance of pseudomax-
imization appears in the analysis of regularized least-squares (and eventually kernel
ridge regression and GP regression).
To close this gap, in the following we provide a self-contained, elementary deriva-

tion. Every step will be intuitive and clear to anyone who has a basic background
knowledge of probability theory and exponential concentration inequalities via Cher-
noff’s method, at the level of [63, Chapter 1]. In particular, the particular method
of mixtures will be “rediscovered” or derived along the way. In other words, our
derivation shows one way how one can come up with the relevant arguments.
Before we start with our derivation, a final comment on the context of these

results. The main motivation of works like [2] (and the predecessor [186]) is to
provide time-uniform frequentist uncertainty bounds. This means that the data is
generated sequentially, so the data set grows in discrete time steps, and the uncer-
tainty bounds should hold in all time-steps (uniform in time)3. Interestingly, the
following derivation does not aim at time uniformity, but the resulting bounds are
easily transformed into time-uniform bounds in the end. In particular, this shows
that the self-normalization structure arises naturally in the context of regularized
least-squares, and the time uniformity appears to be secondary.

Setup Consider the following situation. Let X 6= ∅ be some input set and f∗ :
X → R an unknown target function, which is accessible through noisy evaluations.
Let DN = ((x1, y1), . . . , (xN , yN )) be a data set, assuming the noise model yn =
f(xn) + ηn. Furthermore, DN might have been generated interactively, i.e., input
xn ∈ X might depend on (x1, y1), . . . , (xn−1, yn−1). Let f̂N be the outcome of some
learning algorithm. We are interested in a probabilistic uncertainty bound uniform
in the input, i.e., we want some BN : (0, 1)×X → R≥0 such that

P
[
|f̂N (x)− f∗(x)| ≤ BN (δ, x) ∀x ∈ X

]
≥ 1− δ (5.14)

3The original literature on modern self-normalization and pseudomaximization also considered the
continuous-time case in the context of sufficiently regular continuous-time martingales, cf. [157]
for an overview and many pointers to the relevant literature.
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holds for all δ ∈ (0, 1). Importantly, BN must only depend on DN and known reason-
able properties of f∗ and the noise, but not directly on f∗ or ηN =

(
η1 · · · ηN

)
,

both of which are unknown.

We restrict us now to the model class fθ : H → R, fθ(h) = 〈h, θ〉, parametrized by
θ ∈ H, whereH is a Hilbert space (so for now we assume that X = H). Furthermore,
we use regularized least-squares, so f̂ = f̂N,ρ with f̂N,ρ(h) = 〈h, θ̂N,ρ〉, where θ̂N,ρ is
the unique solution to the optimization problem

min
θ∈H

N∑
n=1

(yn − fθ(xn))2 + ρ‖θ‖2. (5.15)

Note that in contrast to Section 5.2, we use ρ instead of λ for the regulariza-
tion parameter to conform with the literature on sequential least-squares and self-
normalized concentration inequalities.

Since working with Hilbert spaces can be technically demanding, we start with
H = Rd. In this case, the solution to the regularized least-squares problem is given
by

θ̂N,ρ = (X>NXN + ρI)−1X>NyN , (5.16)

where we defined

XN =


x>1
...
x>N

 , yN =


y1
...
yN

 . (5.17)

Recall that our goal for now is an uncertainty bound uniform in the inputs. Probably
the most simple strategy to achieve this is to remove any input-dependent term4 from
the terms involving the noise, just as we did in Proposition 5.1.3. For all x ∈ Rd we
have

|f̂N,ρ(x)− f∗(x)| = |〈x, θ̂N,ρ〉 − 〈x, θ∗〉| = |〈x, θN,ρ − θ∗〉| ≤ ‖x‖‖θN,ρ − θ∗‖,

4Here we mean the test input after learning, not the inputs in the data set.
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which suggests that we should look for a bound on ‖θN,ρ − θ∗‖. Using

‖θN,ρ − θ∗‖ = ‖(X>NXN + ρI)−1X>NyN − θ∗‖

= ‖(X>NXN + ρI)−1X>N (XNθ∗ + ηN )− θ∗‖

= ‖(X>NXN + ρI)−1X>NXNθ∗ + (X>NXN + ρI)−1X>NηN − θ∗‖

≤ ‖(X>NXN + ρI)−1X>NηN‖+
∥∥∥((X>NXN + ρI)−1X>NXN − I

)
θ∗
∥∥∥

we can separate the noise term from the ground truth θ∗.

Probabilistic bound for d = 1 Our first goal is a probabilistic bound on the first
term above. To simplify things, we start with the case d = 1, so we want to upper
bound

P
[
‖(X>NXN + ρI)−1X>NηN‖ ≥ β

]
= P

[∣∣∣∣ A

B + ρ

∣∣∣∣ ≥ β] ,
where we defined for brevity A = X>NηN and B = X>NXN . Here, β ∈ R≥0

is an appropriate uncertainty bound, i.e., a scalar which can only depend on DN
(which is known), but not ηN (which is never known in this setup). Ideally, we
have an exponential bound, so we will try the well-known Chernoff technique [210,
Chapter 2].
First, we should get rid of the absolute value inside the event, which can complicate

things. To do so, we square both sides,

P
[∣∣∣∣ A

B + ρ

∣∣∣∣ ≥ β] = P
[

A2

(B + ρ)2 ≥ β
2
]
.

Next, in order to apply the (generalized) Markov inequality, we have to ensure that
on the righthand side nothing random is left anymore. It is reasonable to assume that
our uncertainty bound has the form β2 = RD, where R contains all randomness5,
and D is a purely deterministic term (containing e.g. the confidence level δ). We
can interpret the term R as a modulator, that adjusts a fixed bound D based on
random, but known information. Using the usual Chernoff technique leads to

P
[

A2

(B + ρ)2 ≥ RD
]

= P
[
exp

(
A2

R(B + ρ)2

)
≥ exp(D)

]
≤ exp(−D)E

[
exp

(
A2

R(B + ρ)2

)]
.

5However, this term needs to be computable without knowledge of η.
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However, in the following derivation a second random term will appear, inside the
expectation, but outside the exponential in the expectation, and this second term
needs to be removed in the end. This means that we should use the ansatz β2 =
R1(R2 + D) instead, with R1, R2 containing all randomness, and D deterministic.
This leads to

P
[

A2

(B + ρ)2 ≥ β
2
]

= P
[

A2

(B + ρ)2 ≥ R1(R2 +D)
]

= P
[
exp

(
A2

R1(B + ρ)2

)
≥ exp(D +R2)

]

= P
[
exp

(
A2

R1(B + ρ)2

)
1

exp(R2) ≥ exp(D)
]

≤ exp(−D)E
[
exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]
.

We now need to upper bound the expectation, using properties of the random vari-
ables A and B. However, these are not independent, and they even appear in a
fraction. To make progress, we have to get rid of the latter. As a first step, we need
additional freedom inside the expectation. A classic technique is to put a 1 inside
it,

E
[
exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]
= E

[
1 · exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]
,

and then expand the 1. One classic option is 1 = C/C with a constant C. Another
option is 1 =

∫
1dµ with a freely chosen probability measure µ. Since we are anyway

inside an expectation, we choose this latter option,

E
[
1 · exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]
= E

[∫
1dµ · exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]
,

and since we need to access the exponential, we use a Borel measure of the form
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µ(A) = Cµ
∫
A exp(H(λ))dλ, where Cµ is a normalization constant, so we are at

E
[
1 · exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]

= E
[
Cµ

∫
exp(H(λ))dλ exp

(
A2

R1(B + ρ)2

)
1

exp(R2)

]

= E
[
Cµ

∫
exp

(
H(λ) + A2

R1(B + ρ)2

)
dλ 1

exp(R2)

]
.

We can now use the term H(λ) inside the exponential to get rid of the problematic
fraction. A classic way to do so is to use completing the square. If γ, δ ∈ R are
constants, then we have for all λ ∈ R that

−γλ2 + δλ = −γ
(
λ2 − 2λ δ

2γ +
(
δ

2γ

)2)
− (−γ)

(
δ

2γ

)2

= −γ
(
λ− δ

2γ

)2
+ δ2

4γ

as long as γ 6= 0. To ensure
δ2

4γ = A2

R1(B + ρ)2

we can set
δ = A, 4γ = R1(B + ρ)2

as long as R1 > 0, and by choosing

H(λ) = −γ
(
λ− δ

2γ

)2
= −1

4(4γ)
(
λ− 2 δ

4γ

)2
= −1

4R1(B+ρ)2
(
λ− 2 A

R1(B + ρ)2

)2

we get

H(λ) + A2

R1(B + ρ)2 = −γλ2 + δλ = −1
4(4γ)λ2 + δλ = −1

4R1(B + ρ)2λ2 +Aλ.
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Furthermore, we immediately recognize that µ is a Gaussian measure6, and

H(λ) = −1
4R1(B + ρ)2

(
λ− 2 A

R1(B + ρ)2

)2

= −1
2

1(
R1
2 (B + ρ)2

)−1

(
λ− 2 A

R1(B + ρ)2

)2

shows that
µ = N

(
2 A

R1(B + ρ)2 ,

(
R1
2 (B + ρ)2

)−1
)
,

so

Cµ = 1√
2π

((
R1
2 (B + ρ)2

)−1
)− 1

2

= 1√
2π

(
R1
2 (B + ρ)2

) 1
2
.

By setting R1 = 2R′1, we can simplify the terms (by getting rid of the various 2s),
and end up with

E
[
Cµ

∫
exp

(
H(λ) + A2

R1(B + ρ)2

)
dλ 1

exp(R2)

]
= E

[
1√
2π

√
R′1(B + ρ)2

∫
exp

(
−1

2R
′
1(B + ρ)2λ2 +Aλ

)
dλ 1

exp(R2)

]
.

Unfortunately, at this stage B and ρ are entangled in the term (B + ρ)2, and
a condition on A,B that involves the regularization parameter ρ appears to be
unnatural. The problem stems from the squaring of B + ρ, but we can get rid of
this by setting R′1 = (B + ρ)−1, which leads to

E
[ 1√

2π
√
B + ρ

∫
exp

(
−1

2(B + ρ)λ2 +Aλ

)
dλ 1

exp(R2)

]
To make the integral more tractable, let us try to turn it into a Gaussian integral

6Note that µ is random since it depends on A and B, but since overall we are inside an expectation,
this is not a problem.
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again,

E
[

1√
2π
√
B + ρ

∫
exp

(
−1

2(B + ρ)λ2 +Aλ

)
dλ 1

exp(R2)

]
= E

[
1√
2π
√
B + ρ

∫
exp

(
−1

2ρλ
2
)

exp
(
−1

2Bλ
2 +Aλ

)
dλ 1

exp(R2)

]
= E

[√
B + ρ

√
ρ−1 1√

2π
1√
ρ−1

∫
exp

(
− 1

2ρ−1λ
2
)

exp
(
−1

2Bλ
2 +Aλ

)
dλ 1

exp(R2)

]

= E

[√
B + ρ

ρ

1
exp(R2)

∫
N (λ | 0, ρ−1) exp

(
−1

2Bλ
2 +Aλ

)
dλ
]
.

Observe now that if nothing random outside the integral is left, then we could
interchange the integral with the expectation, and we end up with an MGF-type7

bound. But we can achieve this easily by setting

R2 = ln
(√

B + ρ

ρ

)
,

so we get

E
[∫
N (λ | 0, ρ−1) exp

(
−1

2Bλ
2 +Aλ

)
dλ
]

=
∫

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
N (λ | 0, ρ−1)dλ.

Assuming now an MGF-type bound

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
≤ b(λ), (5.18)

we end up with∫
E
[
exp

(
−1

2Bλ
2 +Aλ

)]
N (λ | 0, ρ−1)dλ ≤

∫
b(λ)N (λ | 0, ρ−1)dλ =: Cλ.

Summing up, we have

β =
√
R1(R2 +D) =

√√√√ 2
B + ρ

ln
(√

B + ρ

ρ

)
,

7Moment generating function (MGF)
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and we find that for all D ≥ 0 we have

P

∣∣∣∣ A

B + ρ

∣∣∣∣ ≥
√√√√ 2
B + ρ

ln
(√

B + ρ

ρ
+D

) ≤ Cλ exp(−D).

Assuming Cλ > 0, we can rewrite this in confidence form. Let δ ∈ (0, 1), then

δ = Cλ exp(−D) ⇔ D = − ln
(
δ

Cλ

)
= ln

(
Cλ
δ

)
,

which results in

P

∣∣∣∣ A

B + ρ

∣∣∣∣ ≥
√√√√ 2
B + ρ

ln
(√

B + ρ

ρ
+D

)
= P

∣∣∣∣ A

B + ρ

∣∣∣∣ ≥
√√√√ 2
B + ρ

ln
(√

B + ρ

ρ
+ ln

(
Cλ
δ

))
= P

∣∣∣∣ A

B + ρ

∣∣∣∣ ≥
√√√√ 2
B + ρ

ln
(√

Cλ
δ

B + ρ

ρ

)
≤ δ.

Observe that we did not use the particular forms A = XNηN and B = ∑N
n=1 x

2
n,

but only that B is nonnegative. For convenience, let us summarize this result.

Lemma 5.3.1. Let A be a scalar random variable and B a nonnegative random
variable. Assume that there exists a measurable b : R→ R≥0 with

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
≤ b(λ) ∀λ ∈ R, (5.19)

then for all ρ ∈ R>0 such that 0 < Cλ <∞, where

Cλ =
∫
b(λ)N (λ | 0, 1/ρ)dλ, (5.20)
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we have for all δ ∈ (0, 1) that

P

∣∣∣∣ A

B + ρ

∣∣∣∣ ≥
√√√√ 2
B + ρ

ln
(√

Cλ
δ

B + ρ

ρ

) ≤ δ. (5.21)

An MGF-type bound for d = 1 Next, let us try to find appropriate conditions
ensuring (5.18). To make things easy, let us start with N = 1, so we need to bound

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
= E

[
exp

(
−1

2x
2
1λ

2 + η1x1λ

)]
= E

[
exp

(
−1

2x
2
1λ

2
)

exp (η1x1λ)
]
.

Observe that the first factor looks like the classic MGF-bound of a subgaussian
random variable (just with a minus), and the second term looks like the MGF of η1

(at x1λ). If x1 were not random, then we could impose a subgaussianity assumption
on η1 and get a simple bound. In the present setup, x1 might be random, but we
can make it practically non-random by conditioning on it inside the expectation,
using the tower property of the conditional expectation,

E
[
exp

(
−1

2x
2
1λ

2
)

exp (η1x1λ)
]

= E
[
E
[
exp

(
−1

2x
2
1λ

2
)

exp (η1x1λ) | x1

]]
= E

[
exp

(
−1

2x
2
1λ

2
)
E [exp (η1x1λ) | x1]

]
≤ E

[
exp

(
−1

2x
2
1λ

2
)

exp
(
R2x2

1λ
2

2

)]

= E
[
exp

(
−x

2
1λ

2

2 (1−R2)
)]

,

where in the inequality we imposed the assumption that η1 is conditionally (on x1)
R-subgaussian for some R ∈ R≥0, i.e.,

E[exp(νη1) | x1] ≤ exp
(
R2ν2

2

)
∀ν ∈ R.

The preceding statement holds only almost surely w.r.t. the underlying probability
measure, but since this does not pose a problem in the present context, here and in
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the following we will omit this qualification. Since we need a bound that holds for
all λ ∈ R, we should ensure 1−R2 ≥ 0 (i.e., R ≤ 1), so that

E
[
exp

(
−x

2
1λ

2

2 (1−R2)
)]
≤ E

[
exp

(
−x

2
1λ

2

2 · 0
)]

= 1.

In other words, for the case N = 1, if η1 is conditionally (on x1) 1-subgaussian, then
we can use the bound b(λ) = 1 in (5.18).

Let us consider the case of general N . Since we mastered the case N = 1, it is
sensible to proceed inductively, for which we should turn matrix-vector and matrix-
matrix products into sums. As is well-known, we have

A = XNηN =
N∑
n=1

ηnxn, B = X>NXN =
N∑
n=1

x2
n.

Therefore, our goal is to bound

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
= E

[
exp

(
−1

2λ
2
N∑
n=1

x2
n + λ

N∑
n=1

ηnxn

)]
.

Let us apply the strategy from above to ηN ,

E
[
exp

(
−1

2λ
2
N∑
n=1

x2
n + λ

N∑
n=1

ηnxn

)]

= E
[
exp

(
N∑
n=1
−1

2λ
2x2
n + ληnxn

)]

= E
[
N∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]

= E
[
exp

(
−1

2λ
2x2
N + ληNxN

)N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]

= E
[
E
[
exp

(
−1

2λ
2x2
N

)
exp (ληNxN )

N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)
| FN

]]

= E
[
exp

(
−1

2λ
2x2
N

)
E [exp (ληNxN ) | FN ]

N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]
,
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where we defined the filtration Fn = σ(x1, η1, x2, η2, . . . , ηn−1, xn). Assume now that
ηN is conditionally (on FN ) 1-subgaussian, i.e.,

E[exp(νηN ) | FN ] ≤ exp
(
R2ν2

2

)
∀ν ∈ R

holds for R = 1. We then get

E
[
exp

(
−1

2λ
2x2
N

)
E [exp (ληNxN ) | FN ]

N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]

≤ E
[
exp

(
−1

2λ
2x2
N

)
exp

(
λ2x2

N

2

)
N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]

= E
[
exp

(
−1

2λ
2x2
N + λ2x2

N

2

)
N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]

= E
[
N−1∏
n=1

exp
(
−1

2λ
2x2
n + ληnxn

)]
,

and we can proceed inductively. To summarize: If for n = 1, . . . , N the noise variable
ηn is 1-subgaussian conditional on Fn, then

E
[
exp

(
−1

2Bλ
2 +Aλ

)]
= E

[
exp

(
−1

2λ
2
N∑
n=1

x2
n + λ

N∑
n=1

ηnxn

)]
≤ 1.

Probabilistic bound for general d Let us generalize our probabilistic bound to the
case of general d, so we want to upper bound

P
[
‖(X>NXN + ρI)−1X>NηN‖ ≥ β

]
.

Inspecting our derivation for the case d = 1 shows that almost all steps can in prin-
ciple be done also for general d (e.g., by using a multivariate Gaussian distribution
instead of a scalar one), only our choice of R1 = 2(B + ρ)−1 is not permissible
anymore. The reason is that R1 has to be scalar, but (B+ρ)−1 becomes the matrix-
valued term (X>NXN +ρI)−1 for general d. The previous choice of R1 was necessary
to avoid the term (B + ρ)2 (instead of B + ρ). However, the problematic choice of
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R1 is not necessary if we start with

P
[
‖(X>NXN + ρI)−

1
2X>NηN‖ ≥ β

]
= P

[∣∣∣∣ A√
B + ρ

∣∣∣∣ ≥ β] ,
instead of

P
[
‖(X>NXN + ρI)−1X>NηN‖ ≥ β

]
= P

[∣∣∣∣ A

B + ρ

∣∣∣∣ ≥ β] .
Translating to the case of general d, this means we should try to upper bound

P
[
‖(X>NXN + ρI)−

1
2X>NηN‖ ≥ β

]
= P

[
‖(B + ρI)−

1
2A‖ ≥ β

]
,

where we defined A = X>NηN and B = X>NXN for general d. We will now adapt
our derivation from above to this case and deal with the missing (X>NXN + ρI)− 1

2

later on.

Using again the ansatz β2 = R1(R2 +D) (with R1, R2 potentially random and D
deterministic) for the desired uncertainty bound β, we get

P
[
‖(B + ρI)−

1
2A‖ ≥ β

]
= P

[
‖(B + ρI)−

1
2A‖2 ≥ R1(R2 +D)

]
= P

[
exp

( 1
R1
‖(B + ρI)−

1
2A‖2

) 1
exp(R2) ≥ D

]
≤ exp(−D)E

[
exp

( 1
R1
‖(B + ρI)−

1
2A‖2

) 1
exp(R2)

]

Using a probability distribution µ(A) = Cµ
∫
A exp(H(λ))dλ, now on Rd, we get

E
[
exp

( 1
R1
‖(B + ρI)−

1
2A‖2

) 1
exp(R2)

]
= E

[
Cµ

∫
exp(H(λ))dλ exp

( 1
R1
‖(B + ρI)−

1
2A‖2

) 1
exp(R2)

]
= E

[
Cµ

∫
exp

(
H(λ) + 1

R1
‖(B + ρI)−

1
2A‖2

)
dλ 1

exp(R2)

]
.
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We have

1
R1
‖(B + ρI)−

1
2A‖2 = 1

R1
〈(B + ρI)−

1
2A, (B + ρI)−

1
2A〉

= 1
R1
A>(B + ρI)−1A = A>(R1(B + ρI))−1A

which suggests using again completing the square, this time in Rd. For a symmetric
matrix Γ ∈ Rd×d and a vector ∆ ∈ Rd, we find for all λ ∈ Rd that

−λ>Γλ+ ∆>λ = −
(
λ>Γλ− 2

(1
2Γ−1∆

)>
Γλ+

(1
2Γ−1∆

)>
Γ
(1

2Γ−1∆
))

+
(1

2∆Γ−1
)>

Γ
(1

2∆Γ−1
)

= −
(
λ−

(1
2Γ−1∆

))>
Γ
(
λ−

(1
2Γ−1∆

))
+ 1

4∆>Γ−1∆

= −
(
λ− 2 (4Γ)−1 ∆

)>
Γ
(
λ− 2 (4Γ)−1 ∆

)
+ ∆> (4Γ)−1 ∆,

as long as Γ is invertible. We can therefore choose

4Γ = R1(B + ρI), ∆ = A,

and

H(λ) = −
(
λ− 2 (4Γ)−1 ∆

)>
Γ
(
λ− 2 (4Γ)−1 ∆

)
= −1

4
(
λ− 2 (R1(B + ρI))−1 ∆

)>
(R1(B + ρI))

(
λ− 2 (R1(B + ρI))−1 ∆

)
,

which leads to

H(λ) +A> (R1(B + ρI))−1A = H(λ) + ∆> (4Γ)−1 ∆

= −λ>Γλ+ ∆λ

= −1
4λ
>(4Γ)λ+ ∆λ

= −1
4λ
>(R1(B + ρI))λ+Aλ
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As in the scalar case, this turns µ into a Gaussian measure with quadratic term

H(λ) = −1
4

(
λ− 2 (R1(B + ρI))−1 ∆

)>
(R1(B + ρI))

(
λ− 2 (R1(B + ρI))−1 ∆

)
= −1

2

(
λ−

(
R1

2 (B + ρI)
)−1

A

)>(
2
R1

(B + ρI)−1
)−1

(
λ−

(
R1

2 (B + ρI)
)−1

A

)
,

and in contrast to our previous derivation, we can simplify it by directly setting
R1 = 2, leading to

H(λ) = −1
2
(
λ− (B + ρI)−1A

)> (
(B + ρI)−1

)−1 (
λ− (B + ρI)−1A

)
.

This shows that

µ = N
(
(B + ρI)−1A, (B + ρI)−1

)
,

so

Cµ = (2π)−
d
2 det

(
(B + ρI)−1

)− 1
2 = (2π)−

d
2 det (B + ρI)

1
2 .

Furthermore, with this choice of R1 we get

H(λ) +A> (R1(B + ρI))−1A = −1
2λ
>(B + ρI)λ+Aλ.

Altogether, we are at

E
[
Cµ

∫
exp

(
H(λ) + 1

R1
‖(B + ρI)−

1
2A‖2

)
dλ 1

exp(R2)

]
= E

[
(2π)−

d
2 det (B + ρI)

1
2

∫
exp

(
−1

2λ
>(B + ρI)λ+Aλ

)
dλ 1

exp(R2)

]
.
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As in the scalar case, we can turn this into a Gaussian integral again,

E
[
(2π)−

d
2 det (B + ρI)

1
2

∫
exp

(
−1

2λ
>(B + ρI)λ+Aλ

)
dλ 1

exp(R2)

]
= E

[ 1
exp(R2)(2π)−

d
2 det (B + ρI)

1
2

∫
exp

(
−1

2λ
>(ρI)λ

)
exp

(
−1

2λ
>Bλ+Aλ

)
dλ
]

= E
[ 1

exp(R2) det (B + ρI)
1
2 det((ρI)−1)

1
2 (2π)−

d
2 det((ρI)−1)−

1
2

×
∫

exp
(
−1

2λ
>
(
(ρI)−1

)−1
λ

)
exp

(
−1

2λ
>Bλ+Aλ

)
dλ
]

= E
[ 1

exp(R2)

√
det (B + ρI) /det(ρI)

∫
exp

(
−1

2λ
>Bλ+Aλ

)
N (λ | 0, (ρI)−1)dλ

]
.

To remove the random term outside the integral (which is necessary for interchanging
integration and expectation), we choose

R2 = ln
(√

det (B + ρI)
det(ρI)

)
,

and we get

E
[ 1

exp(R2)

√
det (B + ρI) / det(ρI)

∫
exp

(
−1

2λ
>Bλ+Aλ

)
N (λ | 0, (ρI)−1)dλ

]
= E

[∫
exp

(
−1

2λ
>Bλ+Aλ

)
N (λ | 0, (ρI)−1)dλ

]
=
∫

E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
N (λ | 0, (ρI)−1)dλ.

Assuming again a bound of the form

E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
≤ b(λ) ∀λ ∈ Rd,

we get∫
E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
N (λ | 0, (ρI)−1)dλ ≤

∫
b(λ)N (λ | 0, (ρI)−1)dλ =: Cλ.
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Altogether (since β =
√
R1(R2 +D)) we find that for all D ∈ R≥0 we have

P
[
‖(B + ρI)−

1
2A‖ ≥ β

]
= P

‖(B + ρI)−
1
2A‖ ≥

√√√√2
(

ln
(√

det (B + ρI)
det(ρI)

)
+D

)
≤ Cλ exp(−D).

Just as in the scalar case, we can turn this into confidence form. Finally, note that
we did not use the particular structure of A = X>NηN and B = X>NXN , but just
the fact that B is positive semidefinite. Let us summarize this result.

Lemma 5.3.2. Let A be an Rd-valued and B a symmetric and positive semidefinite
random variable of dimension d × d. Assume that there exists some measurable
b : R→ R≥0 with

E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
≤ b(λ) ∀λ ∈ Rd, (5.22)

then for all ρ ∈ R>0 such that 0 < Cλ <∞, where

Cλ =
∫
b(λ)N (λ | 0, (ρI)−1)dλ, (5.23)

we have for all δ ∈ (0, 1) that

P

‖(B + ρI)−
1
2A‖ ≥

√√√√2 ln
(
Cλ
δ

√
det (B + ρI)

det(ρI)

) ≤ δ. (5.24)

The MGF-type bound for general d Let us check whether we can find a suitable
bound (5.22) for our case of A = X>NηN and B = X>NXN . Motivated by our
derivation in the scalar case, we rewrite A and B as

A = X>NηN =
N∑
n=1

ηnxn

B = X>NXN =
N∑
n=1

xnx
>
n .
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For an arbitrary λ ∈ Rd we find that

E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
= E

[
exp

(
−1

2λ
>
(

N∑
n=1

xnx
>
n

)
λ+ λ>

N∑
n=1

ηnxn

)]

= E
[
exp

(
N∑
n=1
−1

2λ
>xnx

>
n + λ>(ηnxn)

)]

= E
[
exp

(
N∑
n=1
−1

2(λ>xn)2 + (λ>xn)ηn
)]

= E
[
N∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

,

which shows that our argument for the scalar case applies also for Rd. So, de-
fine again the filtration Fn = σ(x1, η1, x2, η2, . . . , ηn−1, xn), and assume that ηn is
conditionally (on Fn) 1-subgaussian, i.e.,

E[exp(νηn) | Fn] ≤ exp
(
R2ν2

2

)
∀ν ∈ R

holds for R = 1. Let λ ∈ Rd be arbitrary, then we get

E
[
exp

(
−1

2λ
>Bλ+Aλ

)]
= E

[
N∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

= E

[
exp

(
−1

2(λ>xN )2
)

exp
(
(λ>xN )ηN

)N−1∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

= E

[
E

[
exp

(
−1

2(λ>xN )2
)

exp
(
(λ>xN )ηN

)N−1∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)
| FN

]]

= E

[
exp

(
−1

2(λ>xN )2
)
E
[
exp

(
(λ>xN )ηN

)
| FN

]N−1∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

≤ E

[
exp

(
−1

2(λ>xN )2
)

exp
(

(λ>xN )2

2

)N−1∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

= E

[
N−1∏
n=1

exp
(
−1

2(λ>xn)2 + (λ>xn)ηn
)]

≤ . . . ≤ 1.
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To summarize, we have established a bound like (5.22) for arbitrary N ∈ N+.

An uncertainty bound for regularized least-squares in Rd It is time to put ev-
erything together. Assuming that ηn is conditionally (on Fn) 1-subgaussian for all
n = 1, . . . , N , we find that for all δ ∈ (0, 1)

P

‖(X>NXN + ρI)−
1
2X>NηN‖ ≥

√√√√√√2 ln

1
δ

√√√√det
(
X>NXN + ρI

)
det(ρI)


 ≤ δ.

If the noise terms ηn are conditionally R-subgaussian (for R ∈ R>0), then ηn/R is
conditionally 1-subgaussian, so in this case we get

P

‖(X>NXN + ρI)−
1
2X>N (ηN/R)‖ ≥

√√√√√√2 ln

1
δ

√√√√det
(
X>NXN + ρI

)
det(ρI)




= P

‖(X>NXN + ρI)−
1
2X>NηN‖ ≥ R

√√√√√√2 ln

1
δ

√√√√det
(
X>NXN + ρI

)
det(ρI)


 ≤ δ.

Going back to our starting point

|f̂N,ρ(x)− f∗(x)| = |〈x, θN,ρ − θ∗〉| ≤ ‖x‖‖θN,ρ − θ∗‖

≤ ‖x‖‖(X>NXN + ρI)−1X>NηN‖+ ‖x‖
∥∥∥((X>NXN + ρI)−1X>NXN − I

)
θ∗
∥∥∥ ,

we notice that we cannot use our probabilistic bound yet, since the latter works for
‖(X>NXN + ρI)− 1

2X>NηN‖ and not ‖(X>NXN + ρI)−1X>NηN‖. However, this can
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be easily repaired in the application of Cauchy-Schwarz,

|f̂N,ρ(x)− f∗(x)| = |〈x, θN,ρ − θ∗〉| =
∣∣∣〈x, (X>NXN + ρI)−1X>NyN − θ∗

〉∣∣∣
=
∣∣∣〈(X>NXN + ρI)−

1
2x, (X>NXN + ρI)−

1
2X>NyN − (X>NXN + ρI)

1
2 θ∗
〉∣∣∣

≤ ‖(X>NXN + ρI)−
1
2x‖‖(X>NXN + ρI)−

1
2X>NyN − (X>NXN + ρI)

1
2 θ∗‖

≤ ‖(X>NXN + ρI)−
1
2x‖

(
‖(X>NXN + ρI)−

1
2X>NηN‖

+‖(X>NXN + ρI)−
1
2X>NXNθ∗ − (X>NXN + ρI)

1
2 θ∗‖

)

The last term can be simplified,

‖(X>NXN + ρI)−
1
2X>NXNθ∗ − (X>NXN + ρI)

1
2 θ∗‖

= ‖
(
(X>NXN + ρI)−

1
2X>NXN − (X>NXN + ρI)

1
2
)
θ∗‖

= ‖
(
(X>NXN + ρI)−

1
2 (X>NXN + ρI)− ρ(X>NXN + ρI)−

1
2 − (X>NXN + ρI)

1
2
)
θ∗‖

= ‖ρ(X>NXN + ρI)−
1
2 θ∗‖ = ρ

√
θ>∗ (X>NXN + ρI)−1θ∗.

Since θ∗ is unknown, the last term might still be somewhat problematic. However,
sinceX>NXN is positive semidefinite, the spectrum ofX>NXN+ρI of lower-bounded
by ρ, and hence the spectrum of (X>NXN + ρI)−1 is upper bounded by ρ−1, so we
get

ρ
√
θ>∗ (X>NXN + ρI)−1θ∗ ≤ ρ

√
ρ−1‖θ∗‖2 = √ρ‖θ∗‖,

and the norm of θ∗ is probably the most reasonable bound in this context. To
summarize,

|f̂N,ρ(x)− f∗(x)| ≤
√
x>(X>NXN + ρI)−1x

(
‖(X>NXN + ρI)−

1
2X>NηN‖+√ρ‖θ∗‖

)
.

Since (X>NXN + ρI)−1 is positive definite, (h, h′) 7→ h>(X>NXN + ρI)−1h′ defines
an inner product, whose induced norm we denote by ‖ · ‖N,ρ. With this notation,
we have

|f̂N,ρ(x)− f∗(x)| ≤ ‖x‖N,ρ
(
‖(X>NXN + ρI)−

1
2X>NηN‖+√ρ‖θ∗‖

)
.
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Finally, since the input x does not appear in the probabilistic bound we derived
above, altogether we find that for all δ ∈ (0, 1), with probability at least 1 − δ we
have for all x ∈ X that

|f̂N,ρ(x)− f∗(x)| ≤ ‖x‖N,ρ

R
√√√√√√2 ln

1
δ

√√√√det
(
X>NXN + ρI

)
det(ρI)

+√ρ‖θ∗‖

 .
Back to Hilbert spaces Since ultimately we want uncertainty bounds for ker-
nel ridge regression (and GP regression), we need to generalize the results so far
to infinite-dimensional Hilbert spaces. As a first step, let us consider a finite-
dimensional Hilbert space. Essentially, we have to make sure that everything we
did so far works also in a coordinate free manner.
Let H be a finite-dimensional (real) Hilbert space, say of dimension D. The

covariates are now h1, . . . , hN ∈ H, but as outlined in Section 5.2, the overall setup
goes through with only minor changes, in particular, we now have to set

T =
N∑
n=1

hn ⊗ hn (replacing B = X>NXN )

S =
N∑
n=1

ηnhn (replacing A = X>NηN ),

with S ∈ H and T a self-adjoint operator on H. Let now b1, . . . , bD be an orthonor-
mal basis of H, and define Φ : RD → H, Φ(v) = ∑D

i=1 vibi. This map is invertible
and Φ> = Φ−1. Finally, define A = Φ>S ∈ RD and B = Φ>TΦ ∈ RD×D. Going
through our previous derivation, we notice that the first location which needs an
adjustment is inside the expectation after the Markov inequality,

‖(T + ρidH)−
1
2S‖2H = 〈S, (T + ρidH)−1S〉H

= 〈ΦA, (ΦBΦ> + Φ(ρI)Φ>)−1ΦA〉H
= 〈A,Φ>(Φ>)−1(B + ρI)−1Φ−1ΦA〉RD
= 〈A, (B + ρI)−1A〉Rd .

Furthermore, the determinant of a linear map on a finite-dimensional vector space
is defined as the determinant of any matrix representation, which in turn is in-
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dependent of the chosen basis, so we also find det(T + ρidH) = det(B + ρI) and
det(ρidH) = det(ρI). Finally, we also need to translate the condition (5.22). Since
for all λ ∈ RD,

E
[
exp

(
−1

2λ
>Bλ+A>λ

)]
= E

[
exp

(
−1

2〈λ,Φ
>TΦλ〉RD + 〈λ,Φ>S〉RD

)]
= E

[
exp

(
−1

2〈(Φλ), T (Φλ)〉H + 〈Φλ, S〉H
)]

,

a bound for T and S induces a corresponding bound for B and A. Furthermore,
in our derivation of the particular bound b(λ) ≡ 1 we did not use the structure of
Rd. The rest of the derivation now goes through without change and we get the
following uncertainty bound.

Proposition 5.3.3. Let H be a finite-dimensional Hilbert space and θ∗ ∈ H, let
h1, . . . , hN be H-valued random variables and η1, . . . , ηN real-valued random vari-
ables, and define yn = 〈hn, θ∗〉H + ηn and Fn = σ(x1, η1, x2, η2, . . . , ηn−1, xn) for
n = 1, . . . , N . Assume that there exists R ∈ R>0 such that for all n = 1, . . . , N we
have

E[exp(νηn) | Fn] ≤ exp
(
R2ν2

2

)
∀ν ∈ R. (5.25)

Finally, let ρ ∈ R>0 and denote by θρ,N the regularized least-squares estimate of θ∗
from data (h1, y1), . . . , (hN , yN ) with regularization parameter ρ. For all δ ∈ (0, 1),
it then holds that with probability at least 1− δ we have for all h ∈ H that

|〈h, θρ,N 〉 − 〈h, θ∗〉| ≤ ‖h‖N,ρ

R
√√√√√2 ln

1
δ

√√√√det
(
ρ−1

N∑
n=1

hn ⊗ hn + idH

)+√ρ‖θ∗‖

 ,

(5.26)
where we defined

‖h‖N,ρ =

√√√√√〈h,( N∑
n=1

hn ⊗ hn + ρidH
)−1

h

〉
H

. (5.27)
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In preparation of the next developments, we have used the simplification

det
(∑N

n=1 hn ⊗ hn + ρidH
)

det(ρid) = det
(
ρ−1

N∑
n=1

hn ⊗ hn + idH
)
.

The final bound for separable Hilbert spaces In order to get back to an uncer-
tainty bound for kernel ridge regression (or a frequentist uncertainty bound for GP
regression), we have to generalize the preceding developments to Hilbert spaces, with
Lemma 5.3.2 as the most important component. If we consider a separable Hilbert
space H, then we have a countable orthonormal basis (bn)n at our disposal, and via
an orthogonal projections onto the finite dimensional subspace span{b1, . . . , bN}, the
result from the previous section applies. Finally, a convergence argument then lifts
the uncertainty bound to all of H. This is the strategy suggested by [219]. The only
conceptual difficulty is handling the determinant of a self-adjoint operator of the
form Q+idH . The following intuitive derivation is folklore, but for completeness we
include it here.

Let A be a symmetric positive semidefinite matrix with eigenvalue decomposition
A = Udiag(λ1, . . . , λD)U>. In this case, we have

det(A+ I) = det
(
Udiag(λ1, . . . , λD)U> + UU>

)
= det(U) det(diag(λ1, . . . , λD) + I) det(U>) =

D∏
i=1

(λd + 1).

This suggests that if T is a self-adjoint, positive semidefinite operator on H with a
countable eigenvalue decomposition, then we should define

det(T + idH) = lim
D→∞

D∏
i=1

(λi + 1), (5.28)

where (λn)n is the sequence of eigenvalues. If T is a trace-class operator, then the
latter limit exists and is finite. First, note that 1 + λi ≥ 1 for all i, so

1 ≤
D∏
i=1

(λi + 1) ≤
D′∏
i=1

(λi + 1)
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for all 1 ≤ D ≤ D′. Furthermore, for all D ∈ N+

D∏
i=1

(λi + 1) =

( D∏
i=1

(λi + 1)
) 1
D


D

≤
(

1
D

D∑
i=1

1 + λ

)D

≤ exp
(

1
D

D∑
i=1

λi

)D
= exp

(
D∑
i=1

λi

)

≤ exp
( ∞∑
i=1

λi

)
<∞,

where we used the arithmetic mean-geometric mean inequality in the first step, the
elementary inequality 1+x ≤ ex in the second inequality, and the fact that T is trace-
class (with nonnegative eigenvalues) in the last step. This variant of the determinant
of an operator is nothing else than a special case of the Fredholm determinant, and
a standard concept in the context of Gaussian measures on separable Hilbert spaces
[59, Chapter 1].
We now have all ingredients to generalize Proposition 5.3.3 to separable Hilbert

spaces. Since the argument is routine and no conceptual difficulties arise, we do
not provide the details here, but instead refere to [219]. The corresponding result
reads exactly as Proposition 5.3.3 (just with H a separable Hilbert space, and the
Fredholm determinant instead of the usual determinant of endomorphisms of finite-
dimensional Hilbert spaces).
Before returning to kernel ridge regression and GP regression, it is time for an

observation and a surprising consequence. Everything we did works for an arbi-
trary, but fixed N ∈ N+. The central ingredient to get a concrete bound is the
condition (5.18) (and the corresponding generalizations). However, the righthand
side in the present setup is just the constant 1, independent of N . A closer look at
the derivation via the noise assumption reveals that actually we have constructed a
supermartingale. All of this makes applicable a classic technique, often attributed
to Freedman [2], that boosts the result for an arbitrary, but fixed N to a result
uniform in N . It proceeds by three simple steps.

1. Replace the constant N by a stopping time τ . This is done by using the
supermartingale structure and a standard convergence argument.
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2. Choose as a specific stopping time the infimum over all N for which the desired
bound does not hold.

3. Bound the probability for the uniform bound by the probability for the bound
with the stopping time.

In the present context, this technique has been implemented first by [2] for H = Rd

and then in [1, Chapter 3] for separable Hilbert spaces. Another example of this
technique can be found in [54], and we refer to any of these references for the technical
details. Recently, this approach has been put into a broader context in [94], where
the explicit stopping-time construction has been replaced by Ville’s inequality, which
is also the perspective chosen in [219].
As a very surprising outcome, the resulting uniform (in N) bound looks exactly

like the bound for fixed N . Here is the final result. It first appeared in [1, Section 3.4],
and was recently rediscovered in [219]. For consistency with the literature, we phrase
it using a given filtration, to which the various objects are adapted (instead of using
the filtration generated by the underlying processes).

Proposition 5.3.4. Let H be a separable Hilbert space and F = (Fn)n∈N a filtra-
tion. Let (hn)n be an H-valued stochastic process that is predictable w.r.t. Fn, and
(ηn)n a real-valued stochastic process adapted to Fn+1. Assume that there exists
R ∈ R>0 such that for all n ∈ N+

E[exp(νηn) | Fn] ≤ exp
(
R2ν2

2

)
∀ν ∈ R. (5.29)

Furthermore, let θ∗ ∈ H and define yn = 〈hn, θ∗〉H + ηn for n ∈ N+. Finally, let
ρ ∈ R>0 and denote by θρ,N the regularized least-squares estimate of θ∗ from data
(h1, y1), . . . , (hN , yN ) with regularization parameter ρ. For all δ ∈ (0, 1), it then
holds that with probability at least 1− δ that for all n ∈ N+ and all h ∈ H

|〈h, θρ,N 〉−〈h, θ∗〉| ≤ ‖h‖N,ρ

R
√√√√√2 ln

1
δ

√√√√det
(
ρ−1

N∑
n=1

hn ⊗ hn + idH
)+√ρ‖θ∗‖

 ,
(5.30)
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where we defined

‖h‖N,ρ =

√√√√√〈h,( N∑
n=1

hn ⊗ hn + ρidH
)−1

h

〉
H

. (5.31)

5.4. Uncertainty bounds based on self-normalization

In this section, we present frequentist uncertainty bounds for kernel ridge and GP
regression that arise from self-normalization techniques. As explained in Section
5.2, they form a special case of regularized least-squares in Hilbert spaces, and can
hence be derived from the results in the preceding section. Indeed, this derivation is
suggested and sketched in [1, Remark 3.13], and it has also been used (in a slightly
different setup) in [54] for the proof of Theorem 2 in this reference, cf. also Lemma
1 there. For the reader’s convenience, we provide in the following all the details
of the relevant derivation, cf. also [219], which rediscovered (a variant of) the self-
normalized concentration inequalities from [1, Section 3.2].

From Fredholm to matrix determinants We start with the determinant in the
uncertainty bound. Recall that∑N

n=1 hn⊗hn = SA, where S and A are the synthesis
and analysis operators introduced in Section 5.2, and define HN = AS. We now
show8 that if HN is invertible, then

det
(
ρ−1

N∑
n=1

hn ⊗ hn + idH
)

= det
(
ρ−1HN + I

)
. (5.32)

If λ ∈ R is an eigenvalue of ∑N
n=1 hn ⊗ hn with eigenvector h ∈ H, then defining

v = Ah ∈ RN , we have HNv = (AS)Ah = A(SAh) = λAh = λv. Conversely, if
λ ∈ R is an eigenvalue ofHN with eigenvector v ∈ RN , then defining h = Sv ∈ H we
have

(∑N
n=1 hn ⊗ hn

)
h = (SA)Sv = S(AS)v = λSv = λh. Assume now thatHN is

invertible, then this shows that ∑N
n=1 hn⊗hn has the same eigenvalues as HN (and

is hence also invertible). Let λ1, . . . , λN ∈ R>0 be the eigenvalues ofHN , and hence
all the non-zero eigenvalues of ∑N

n=1 hn ⊗ hn, then λ1/ρ + 1, . . . , λN/ρ + 1 are the
8Curiously, we could not locate the following argument in the literature, where usually the matrix-
determinant lemma is invoked, e.g., [1, Remark 3.13]. However, technically this latter result is
only applicable to matrices, and not operators on Hilbert spaces.
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eigenvalues of ρ−1HN + I and the non-zero eigenvalues of ρ−1∑N
n=1 hn ⊗ hn + idH .

We now have

det
(
ρ−1

N∑
n=1

hn ⊗ hn + idH
)

=
N∏
i=1

(
λi
ρ

+ 1
)

= det
(
ρ−1HN + I

)
,

where the first equality follows from the definition of the determinant for operators
(of the specific type considered here), and the second equality follows from the fact
that ρ−1HN + I is orthogonally diagonizable, and hence the usual determinant is
just the product of the eigenvalues.

Back to kernel ridge and GP regression Let X 6= ∅ be some set, and let k be a ker-
nel on X such that Hk is separable. For a sufficient condition, cf. [189, Lemma 4.33],
and for in-depth discussion we refer to [32, Section 1.5] and [150]. In the following,
we consider the case H = Hk, so the fixed target is an RKHS function f∗ = θ∗ ∈ Hk.
The covariates become hn = k(·, xn), where xn ∈ X , and we consider test inputs
h = k(·, x), for x ∈ X . As shown in Section 5.2, this leads to

fN,ρ(x) := θN,ρ(x) = kN (x)> (KN + ρI)−1 yN , (5.33)

where as usual

kN (x) =


k(x, x1)

...
k(x, xN )

 KN =


k(x1, x1) · · · k(x1, xN )

...
...

k(xN , x1) · · · k(xN , xN )

 .

Furthermore, we getHN = KN . Finally, as shown in Section 5.2, for any h = k(·, x)
we get

‖k(·, x)‖2N,ρ =
〈
k(·, x),

(
N∑
n=1

k(·, xn)⊗ k(·, xn) + ρidHk

)−1

k(·, x)
〉
k

= 1
ρ

(
k(x, x)− kN (x)> (KN + ρI)−1 kN (x)

)
= 1
ρ
σ2
N (x),
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where σ2
N is the posterior variance from GP regression with a zero mean prior with

covariance function k, nominal additive i.i.d. Gaussian noise with variance ρ, and
data (x1, y1), . . . , (xN , yN ). For convenience, we summarize this result. It can be
reconstructed from Remark 3.13 in [1], and has recently been rediscovered as [219,
Theorem 2].

Proposition 5.4.1. Let X be a measurable space, k a kernel on X such that Hk is
separable, and let f∗ ∈ Hk. Let F = (Fn)n∈N be a filtration, (xn)n∈N+ an X -valued
stochastic process that is predictable w.r.t. Fn, (ηn)n a real-valued stochastic process
adapted to Fn+1, and define yn = f∗(xn) + ηn for n ∈ N+. Assume that there exists
R ∈ R>0 such that for all n ∈ N+

E[exp(νηn) | Fn] ≤ exp
(
R2ν2

2

)
∀ν ∈ R. (5.34)

Finally, let ρ ∈ R>0 and denote by µN and σ2
N the posterior mean variance of GP

regression with a zero mean prior with covariance function k, additive i.i.d. N (0, ρ)
noise in the likelihood, and data (x1, y1), . . . , (xN , yN ), and corresponding kernel
matrix KN , for N ∈ N+.
For all δ ∈ (0, 1), it then holds that with probability at least 1 − δ that for all

N ∈ N+ and all x ∈ X

|f∗(x)− µN (x)| ≤ σN (x)
(
R
√
ρ

√
2 ln

(1
δ

√
det (ρ−1KN + IN )

)
+ ‖f∗‖k

)
. (5.35)

For N time steps, or equivalently the case of a data set of N data points, the
uncertainty bound from the preceding result has the form

|f∗(x)− µN (x)| ≤ βN (δ,B,R, λ)σN (x) (5.36)

with

βN (δ,B,R, λ) = ‖f∗‖k + R
√
ρ

√
2 ln

(1
δ

√
det (ρ−1KN + IN )

)
, (5.37)

Of course, the RKHS norm ‖f∗‖k in the bound above can be replaced by any constant
B ∈ R≥0 with ‖f∗‖k ≤ B. This uncertainty bound has the form of a tube around
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the posterior mean function (equivalently, the solution of kernel ridge regression
with an equivalent regularization parameter), of (half-)width βN (δ,B,R, λ)σN (x) =
βNσN (x). From the perspective of GP regression (which is a Bayesian method),
we can interpret βN as a correction scaling, that translates the pointwise (in input
and time) Bayesian uncertainty measure σN into a frequentist uncertainty bound,
uniform in input and time.

5.5. Robustness to model misspecification

As usual in the literature, the results so far use the same kernel k for generating the
RKHS containing the ground truth and as a covariance function in GPR. Obviously,
in practice it is unlikely that one gets the kernel of the ground truth exactly right.
Therefore, we now investigate what happens if we have a misspecified model or
misspecification of the kernel.

5.5.1. A case of benign misspecification

In some cases, model misspecification of the kernel is not a problem. The follow-
ing simple result describes one such situation. To the best of our knowledge, in
the context of frequentist uncertainty bounds it first appeared explicitly as [CF12,
Proposition 3]. Note that we have slightly reformulated this result to make clearer
the conditions under which it holds.

Proposition 5.5.1. Consider the situation of Proposition 5.4.1, but this time as-
sume that the ground truth f∗ is from another RKHS Hk̃. If Hk̃ ⊆ Hk, and the
inclusion id : Hk̃ → Hk is continuous with operator norm at most 1, then the result
holds true without any modification. Similarly, if Hk̃ ⊆ Hk, then the result still
holds if the RKHS norm term in the bound is replaced by a constant B such that
‖f∗‖k ≤ B.

This simple result can easily be used to verify that for many common situations
misspecification of the kernel is not a problem. As an example, we consider the case
of the popular isotropic SE kernel. The following result appeared first as [CF12,
Proposition 4].
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Proposition 5.5.2. Consider the situation of Proposition 5.4.1, but now assume
that f∗ ∈ Hk̃, where H̃ is the RKHS corresponding to the SE kernel k̃ (on ∅ 6= X ⊆
Rd) with length scale 0 < γ̃. Use for the Gaussian Process Regression the SE kernel
k with length-scale 0 < γ ≤ γ̃. Finally let B be an upper bound on ‖f∗‖k ≤ B.
Then Proposition 5.4.1 holds true with B instead of the RKHS norm in the bound.

Proof. Follows immediately from Proposition 5.5.1 and [189, Proposition 4.46].

These results tell us that it is not a problem if we do not get the hyperparameter
of the isotropic SE kernel right, as long as we underestimate the length-scale of the
actual kernel. This is intuitively clear since a smaller length-scale corresponds to
more complex functions, and indeed similar results are known in related contexts,
for example [194]. Note that Proposition 5.5.2 does not imply that one should
choose a very small length-scale. The result makes a statement on the validity of
the frequentist uncertainty bound from Proposition 5.4.1, but not on the size of the
uncertainty set. For a similar discussion in a slightly different setting see [215].
Finally, for Proposition 5.5.1, we need an upper bound on the RKHS norm of

the target function w.r.t. the nominal kernel, i.e., the kernel used for GP or kernel
ridge regression. In the situation of Proposition 5.5.2, this can easily be achieved by
using [189, Equ (4.44)] if we know an upper bound on the RKHS norm w.r.t. the
misspecified kernel. Using the notation of Proposition 5.5.2, if ‖f‖k̃ ≤ B̃, then we
can choose B = B̃ · (γ̃/γ)d/2.

5.5.2. Robustness to unstructured, but bounded kernel misspecification

We now turn to the situation where misspecification of the kernel might be problem-
atic, and adjustments to the uncertainty bounds itself are necessary. For conciseness,
we will only consider the case of arbitrary, but bounded misspecification of the kernel.
This is similar to common disturbance models in robust control, where no structure
is imposed on the disturbance, but a bound in magnitude. The following result is
essentially an updated variant of [CF12, Theorem 5].

Theorem 5.5.3. Let X be a measurable space, k, k̃ two kernels on X such that Hk̃

is separable, and assume there exists ε̃ ∈ R≥0 such that |k(x, x′)− k̃(x, x′)| ≤ ε̃ for all
x, x′ ∈ X , Let f ∈ Hk̃ and B ∈ R≥0 a constant with ‖f‖k̃ ≤ B. Let F = (Fn)n∈N be
a filtration, (xn)n∈N+ an X -valued stochastic process that is predictable w.r.t. Fn,
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(ηn)n a real-valued stochastic process adapted to Fn+1, and define yn = f(xn) + ηn

for n ∈ N+, and yN =
(
y1 · · · yN

)>
, for N ∈ N+. Assume that there exists

R ∈ R>0 such that for all n ∈ N+

E[exp(νηn) | Fn] ≤ exp
(
R2ν2

2

)
∀ν ∈ R. (5.38)

Finally, let λ ∈ R>0 and denote by µN and σ2
N the posterior mean variance of GP

regression with a zero mean prior with covariance function k, additive i.i.d. N (0, ρ)
noise in the likelihood, and data (x1, y1), . . . , (xN , yN ), and corresponding kernel
matrix KN and kernel vector function kN (x) =

(
k(x, xn)

)
n=1,...,N

, for N ∈ N+.
Similarly, denote by µ̃N and σ̃2

N the posterior mean variance of GP regression with
a zero mean prior with covariance function k̃, additive i.i.d. N (0, λ) noise in the
likelihood, and data (x1, y1), . . . , (xN , yN ), and corresponding kernel matrix K̃N and
kernel vector function k̃N , for N ∈ N+.

For all δ ∈ (0, 1), it then holds that with probability at least 1 − δ that for all
N ∈ N+ and all x ∈ X

P[|f∗(x)− µN (x)| ≤ BN (x) ∀x ∈ X , N ∈ N+] ≥ 1− δ (5.39)

where

BN (x) = CN (x)‖yN‖+ β̄N

√
σ2
N (x) + SN (x)2

β̄N = B + R√
λ

√
2 ln

(1
δ

√
det (λ−1KN + (1 + λ−1Nε̃)IN )

)
CN (x) =

( 1
λ

+ ‖(KN + λIN )−1‖
)

(‖kN (x)‖+
√
Nε̃) + ‖(KN + λIN )−1‖

√
Nε̃

SN (x)2 = ε̃+
√
Nε̃‖(KN + λIN )−1kN (x)‖+ (

√
Nε̃+ ‖kN (x)‖)CN (x)

Before proceeding to the proof of this result, we would like to briefly discuss the
form of the bound.

In Proposition 5.4.1, we have a tube around µN (x) of width

βN (δ,B,R, λ)σN (x) = R
√
ρ

√
2 ln

(1
δ

√
det (ρ−1KN + IN )

)
+ ‖f∗‖k, (5.40)
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whereas in Theorem 5.5.3, we have a tube around µN (x) of width

β̄N

√
σ2
N (x) + S2

N (x) + CN (x)‖yN‖.

Because of the uncertainty or disturbance in the kernel we have to increase the
nominal noise variance (used in the nominal noise model in GPR), increase the
nominal posterior standard deviation from σN (x) to

√
σ2
N (x) + S2

N (x) and add an
offset to the width of the tube of CN (x)‖yN‖. In particular, the uncertainty set now
depends on the measured values yN . Note that CN (x) and SN (x) depend on the
input, but if necessary this dependence can be easily removed by finding an upper
bound on ‖kN (x)‖. An interesting observation is that even if σN (x) = 0, the tube
around µN (x) has nonzero width. Intuitively this is clear since in general it can
happen that f 6∈ H, but µN ∈ H by construction.

Proof of Theorem 5.5.3. Denote by µ̃N , σ̃2
N , K̃N the posterior mean, posterior vari-

ance and Gram matrix of the GP, but with k̃ as covariance function, and analogously
k̃N . Let x ∈ X be arbitrary, then we have

|f(x)− µN (x)| ≤ |f(x)− µ̃N (x)|+ |µ̃N (x)− µN (x)|.

Our strategy will be to bound the first term on the right-hand-side with Proposition
5.4.1, and then upper bound all resulting or remaining quantities by expressions
involving only k instead of k̃. As a preparation we first derive some elementary
bounds that are frequently used later on. By assumption,

‖k̃N (x)− kN (x)‖ =

√√√√ N∑
i=1

(k̃(x, xi)− k(x, xi))2 ≤
√
Nε̃, (5.41)

and hence (using the triangle inequality)

‖k̃N (x)‖ ≤ ‖kN (x)‖+ ‖k̃N (x)− kN (x)‖ ≤ ‖kN (x)‖+
√
Nε̃. (5.42)

Furthermore, since K̃N is positive semidefinite

‖(K̃N + λIN )−1‖ = λmax((K̃N + λIN )−1) = 1
λmin(K̃N + λIN )

≤ 1
λ
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and hence together with the triangle inequality

‖(K̃N + λIN )−1 − (KN + λIN )−1‖ ≤ 1
λ

+ ‖(KN + λIN )−1‖. (5.43)

Finally, using first the triangle inequality and then the submultiplicativity of the
spectral norm we get

‖(K̃N + λIN )−1k̃N (x)− (KN + λIN )−1kN (x)‖

≤ ‖
(
(K̃N + λIN )−1 − (KN + λIN )−1

)
k̃N (x)‖+ ‖(KN + λIN )−1(k̃N (x)− kN (x))‖

≤ ‖(K̃N + λIN )−1 − (KN + λIN )−1‖‖k̃N (x)‖+ ‖(KN + λIN )−1‖‖k̃N (x)− kN (x)‖,

and hence from (5.41), (5.42), (5.43)

‖(K̃N + λIN )−1k̃N (x)− (KN + λIN )−1kN (x)‖ ≤ CN (x) (5.44)

with

CN (x) =
( 1
λ

+ ‖(KN + λIN )−1‖
)

(‖kN (x)‖+
√
Nε̃) + ‖(KN + λIN )−1‖

√
Nε̃.

Now,

|µ̃N (x)− µN (x)| = |k̃N (x)(K̃N + λIN )−1yN − kN (x)(KN + λIN )−1yN |

≤ ‖(K̃N + λIN )−1k̃N (x) + (KN + λIN )−1kN (x)‖‖yN‖

≤ CN (x)‖yN‖,

where we used Cauchy-Schwarz in the first inequality and (5.44) in the second. Using
Proposition 5.4.1 we get that

P[|µ̃N (x)− f(x)| ≤ β̃N σ̃N (x) ∀N ∈ N, x ∈ D] ≥ 1− δ
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where

β̃N = B + R√
λ

√
2 ln

(1
δ

√
det(λ−1K̃ + IN )

)
= B + R√

λ

√
ln
(
det(λ−1K̃ + IN

)
+ 2 ln(1/δ)

Let λi(K̃N ) be the i-th largest eigenvalue of K̃N , then we have

λi(K̃N ) ≤ λi(KN ) + ‖K̃N −KN‖

≤ λi(KN ) + ‖K̃N −KN‖F
≤ λi(KN ) +Nε̃,

where we first used Weyl’s inequality, then the fact that the operator norm ‖ · ‖
is always less or equal the Frobenius norm ‖ · ‖F , and finally the definition of the
Frobenius norm together with the assumption on k and k̃. We now get

ln det
(
λ−1K̃N + IN

)
= ln

(
N∏
i=1

λi
(
λ−1K̃N + IN

))
= ln

(
N∏
i=1

(
λ−1λi(K̃N ) + 1

))

=
N∑
i=1

ln
(
λ−1λi(K̃N ) + 1

)

≤
N∑
i=1

ln
(
λ−1λi(KN ) + λ−1Nε̃+ 1

)

=
N∑
i=1

ln
(
λi
(
λ−1KN + (1 + λ−1Nε̃)IN

))

= ln
(
N∏
i=1

λi
(
λ−1KN + (1 + λ−1Nε̃)IN

))
= ln det

(
λ−1KN + (1 + λ−1Nε̃)IN

)
,
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which we can use for

β̃N = B + R√
λ

√
ln det

(
λ−1K̃ + IN

)
+ 2 ln(1/δ)

≤ B + R√
λ

√
ln det (λ−1KN + (1 + λ−1Nε̃)IN ) + 2 ln(1/δ)

= B + R√
λ

√
2 ln

(1
δ

√
det (λ−1KN + (1 + λ−1Nε̃)IN )

)
=: β̄N .

Turning to the posterior variance, we get from the triangle inequality

σ̃2
N (x) ≤ σ2

N (x) + |σ2
N (x)− σ̃2

N (x)|.

We continue with

|σ2
N (x)− σ̃2

N (x)| = |k(x, x)− kN (x)T (KN + λIN )−1kN (x)

− k̃(x, x) + k̃N (x)T (K̃N + λIN )−1k̃N (x)|

≤ |k(x, x)− k̃(x, x)|+ |(k̃N (x)− kN (x))T (K̃N + λIN )−1k̃N (x)|

+ |kN (x)T ((K̃N + λIN )−1k̃N (x)− (KN + λIN )−1kN (x))|

≤ |k(x, x)− k̃(x, x)|+ ‖k̃N (x)− kN (x)‖‖(K̃N + λIN )−1k̃N (x)‖

+ ‖kN (x)‖‖(K̃N + λIN )−1k̃N (x)− (KN + λIN )−1kN (x)‖

≤ ε̃+
√
Nε̃‖(KN + λIN )−1kN (x)‖+ (

√
Nε̃+ ‖kN (x)‖)CN (x)

=: S2
N (x),

where we used the triangle inequality again in the first inequality, Cauchy-Schwarz
in the second inequality and finally (5.41), (5.42), (5.43) together with

‖(K̃N + λIN )−1k̃N (x)‖

≤ ‖(KN + λIN )−1kN (x)‖+ ‖(K̃N + λIN )−1k̃N (x)− (KN + λIN )−1kN (x)‖

≤ ‖(KN + λIN )−1kN (x)‖+ CN (x)

145



5. Frequentist uncertainty bounds for kernel and GP regression: Theory

Putting everything together, we find that with probability at least 1− δ

|µN (x)− f(x)| ≤ CN (x)‖yN‖+ β̃N σ̃N (x)

and therefore, using the upper bounds on β̃N and σ̃N (x) derived above, that with
probability at least 1− δ

|µN (x)− f(x)| ≤ BN (x)

where
BN (x) = CN (x)‖yN‖+ β̄N

√
σ2
N (x) + SN (x)2

5.6. Comments

The general approach in Section 5.1 (separating terms with noise from terms with
the target object) is folklore, and has been used in the context of uncertainty bounds
for GP regression for example in [54]. In turn, this work has been the starting point
of [CF12]. The elementary results Proposition 5.1.2 and 5.1.3 are motivated by
results in this latter work, but have been rederived for this thesis, and similarly for
Proposition 5.2.1. While we could not locate these specific results in the literature,
they might be known (probably as technical auxiliary results), especially given their
connection to linear inverse problems, see [142] for a recent reference. As already
mentioned in the main text, the approach from Section 5.2 is well-known, but we
could not find a reference for this particular exposition. All of the results (or minor
variations thereof) in Section 5.3 are known, but to the best of our knowledge, our
particular derivation, and our explanation how one can discover these techniques, is
new. Section 5.5 is based on and partially taken verbatimly from [CF12]. This latter
work arose through discussions of the author with S. Trimpe and C.W. Scherer,
with all theoretical results derived by the present author. Note that the overall
presentation of the theoretical results in this chapter is significantly different from
[CF12]. In Section 6.4, we provide a detailed discussion of the contributions of this
latter work, and how it is connected to related and existing work in the literature.
Finally, the present chapter has been written from scratch by the present author of
this thesis, with the above mentioned exceptions.
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6. Frequentist uncertainty bounds for
kernel and GP regression: Experiments
and applications

In the preceding Chapter 5, we have presented a variety of frequentist uncertainty
bounds for GP regression and kernel ridge regression, and we will now investi-
gate some of them empirically through numerical experiments, and apply them for
learning-based control approaches. Recalling our discussion from Chapter 4, in the
context of learning-based control it is important that these uncertainty bounds can
be numerically evaluated, and are not too conservative. Our first goal in this chap-
ter is therefore to carefully investigate how the bounds behave empirically, which
we do in Section 6.1. Key issues will be conservatism as well as robustness to model
misspecification. Our experiments indicate that the uncertainty bounds are tight
enough for use in learning-based control, which we will validate here with two use
cases. In particular, in Section 6.2 the uncertainty bounds will be used together
with modern robust controller synthesis.

This chapter is based on, with some parts taken verbatim from, [CF12, CF13] and
[CF10]1. Detailed comments on the author’s contribution and relation to existing
work are provided in Section 6.4.

1© IEEE 2021. Reprinted, with permission, from Christian Fiedler, Carsten W. Scherer, and
Sebastian Trimpe. Learning-enhanced robust controller synthesis with rigorous statistical and
control-theoretic guarantees. 60th IEEE Conference on Decision and Control (CDC), 2021.
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6. Frequentist uncertainty bounds: Experiments and applications

6.1. Experimental evaluation of frequentist uncertainty
bounds

We now turn to a numerical investigation of the uncertainty bounds. First, we pro-
vide some background and detailed explanation of the experimental setup. This
is followed by the results of the experiments on both the nominal and robust un-
certainty bounds. Finally, we apply the bounds to an illustrative example from
control.

6.1.1. Background and setup

As explained in detail in Chapter 4, we are interested in frequentist uncertainty
bounds. In particular, this suggests a frequentist evaluation of the bounds. This
means that for a given ground truth, many data sets are generated by sampling
multiple noise realizations, the uncertainty bounds are computed, and for each re-
alization it is checked whether the uncertainty set contains the ground truth.
Let us make this more precise using the abstract setup from Chapter 4. Consider

the frequentist setting as formalized there, and for simplicity assume that P̄ = {P}.
Suppose we want to evaluate an uncertainty set (estimator) (Uδ)δ∈(0,1) from a fre-
quentist perspective. For this, can fix a ground truth θ∗ ∈ Θ, a desired confidence
level δ ∈ (0, 1), and a finite number of samples N ∈ N+. We then generate indepen-
dent noise realizations η1, . . . , ηN ∼ P , compute yn = F(θ∗, ηn) and Un = Uδ(yn)
for n = 1, . . . , N , as well as F = ∑N

n=1 Iθ∗∈Un (where Ip is 1 if p holds, otherwise 0)
and δ̂ = F/N . If (Uδ)δ∈(0,1) really leads to frequentist uncertainty sets, then δ̂ ≤ δ

for large N . Furthermore, δ̂ as well as the average “size” of U1, . . . , UN can be used
as indicators of the conservatism of the uncertainty sets. Finally, since frequentist
uncertainty sets should hold for a given, but arbitrary ground truth, this should be
checked for all θ∗ ∈ Θ. In general, this is not feasible, so the preceding experiment
should be repeated for a variety of elements from Θ. It is clear that such an ex-
perimental setup can be realized only in numerical experiments with known ground
truths, since many repetitions (large N) are required, and ideally this is repeated
with different ground truths. In particular, this requires the generation of many
elements from Θ.

Before turning to the concrete setting that is considered for the remainder of
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6.1. Experimental evaluation of frequentist uncertainty bounds

this chapter, we would like to discuss some delicate points of this setup. First, the
approach outlined above can give only empirical indications about the behaviour
of the uncertainty sets, since only finitely many samples and ground truths can be
considered in experiments. The latter fact can be particularly problematic when the
ground truths are synthetically generated with a method that has a certain bias,
e.g., a tendency to produce only elements from some (potentially very small subset)
Θ̃ ⊆ Θ. In this case, experiments following the method from above can result in
potentially misleading results, and in our setting, this is indeed a risk, as described
in the next section. Second, the behaviour of uncertainty sets in practice can be very
different from what is observed in such synthetic experiments. For example, the set
of possible ground truths Θ might be much larger than what is actually possible in
a concrete application class, which in turn could lead to very conservative behaviour
of the uncertainty sets in the synthetic experiments.

Generating functions from an RKHS For the numerical experiments we need to
generate ground truths, i.e., we need to randomly generate functions belonging to
the RKHS of a given kernel. A generic approach is to use the pre-RKHS of the
kernel which is contained (even densely w.r.t. the kernel norm) in the actual RKHS,
cf. Chapter 2. Let X be a set and k a kernel on X. For any N ∈ N, x1, . . . , xN ∈ X
and α ∈ RN , the function ∑N

n=1 αnk(·, xn) is contained in the (unique) RKHS
corresponding to k and has RKHS norm

√
αTKα, where K = (k(xi, xj))i,j=1,...,N

is the corresponding Gram matrix. It is hence possible to generate an RKHS function
f of prescribed RKHS norm B by randomly sampling inputs x1, . . . , xN ∈ X and
coefficients α̃ ∈ RN and setting

f(x) =
N∑
n=1

αnk(xn, x) (6.1)

where α = B√
αTKα

α̃. Of course, in practice f can only be evaluated at finitely
many points X̃ ⊆ X. More concretely, we fix a finite evaluation grid X̃ ⊆ X, choose
uniformely a number N ∈ [Nmin, Nmax] ∩N, choose uniformely N pairwise different
points x1, . . . , xN ∈ X̃, sample α̃i ∼ N (0, σ2

f ) and apply the construction (6.1). For
precise choices of the parameters are given below.
As explained above, we are concerned with a frequentist setting, so there is a
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6. Frequentist uncertainty bounds: Experiments and applications

Figure 6.1.: Illustrating sampling from the Gaussian kernel with the pre-RKHS
method (left) and with an explicit ONB (right). Details are provided
in the text.

ground truth from a collection of possible ground truths and the results have to
hold for each of these possible ground truths. In particular, even if a ground truth
might be considered pathological, the results have to hold if they are to be considered
rigorous. This aspect is important for numerical experiments, especially when trying
to assess the conservatism of a result. In our setting it might happen that the results
seem very conservative for functions that are randomly generated in a certain fashion,
but there are RKHS functions (which might be difficult to generate) for which the
results might be sharp. Let us illustrate this point with the Gaussian kernel. We use
a uniform grid of 1000 points from [−1, 1] together with the Gaussian kernel with
length scale 0.2. For the pre-RKHS approach we use Nmin = 5 and Nmax = 200
and σ2

f = 1. As an alternative, we use the ONB described in [189, Section 4.4] and
consider only the first 50 basis functions from [189, Equation (4.35)] for numerical
reasons. We first select the number of basis functions N to use uniformely between
5 and 50 and then choose N such functions uniformely. As coefficients we sample
αi ∼ N (0, 1) i.i.d. for i = 1, . . . , N and normalize (w.r.t. to `2-norm) and multiply
by the targeted RKHS norm. For both the pre-RKHS approach and the ONB
approach we use ‖ · ‖k = 2 and sample 4 functions each. The result is shown in
Figure 6.1. Clearly, the resulting functions have a different shape, despite having
the same RKHS norm with respect to the same kernel. In particular, the functions
generated using the ONB approach seem to make sharper turns. We like to stress
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6.1. Experimental evaluation of frequentist uncertainty bounds

that this strongly suggests that in a frequentist setting one has to be careful with
statements about the conservatism of a proposed bound or method that are based
purely on empirical observations. It might be that the method for generating ground
truths has a certain bias, i.e., has a tendency to produce only ground truths from a
certain region of the space of all ground truths. To the best of our knowledge, this
issue was discussed for the first time in [CF12].

Basic experimental setup Unless otherwise stated, we use [−1, 1] as the input
set and consider a uniform grid of 1000 points for function evaluations, and in
each experiment we sample 50 RKHS functions as ground truth. In general, we
use the pre-RKHS approach to generate functions from the corresponding RKHS,
and additionally for the SE kernel we use the orthonormal basis (ONB) from [189,
Section 4.4] with random, normally distributed coefficients. For each function we
repeat the following learning instance 10000 times: We sample uniformly 50 inputs,
evaluate the ground truth on these inputs and adding normal zero-mean i.i.d. noise
with standard deviation (SD) 0.5. We then run GP regression on each of the training
sets, compute the uncertainty sets and check on the equidistant grid of the input
set whether the resulting uncertainty set contains the ground truth. We consider a
learning instance a failure if the uncertainty set does not fully cover the ground truth
at all 1000 evaluation points. Finally, instead of βN (δ,B,R, λ) from Proposition
5.4.1, we use the slightly different

βN = B + R√
λ

√
ln
(
det(λ̄/λKn + λ̄In)

)
− 2 ln(δ) (6.2)

with λ̄ = max{1, λ} (using λ instead of ρ for consistency with the GP literature).
Similarly, for the robustness experiments, instead of BN from Theorem 5.5.3, we use
the slightly different

BN = B + R√
λ

√√√√ln det
(
λ̄

λ
KN +

(
λ̄

λ
Nε̃+ λ̄

)
IN

)
− 2 ln(δ) (6.3)
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with

S2
N (x) = ε̃+

√
Nε̃‖(KN + λIN )−1kN (x)‖

+ (
√
Nε̃+ ‖kN (x)‖)CN (x)

CN (x) =
( 1
λ

+ ‖(KN + λIN )−1‖
)

(‖kN (x)‖+
√
Nε̃)

+ ‖(KN − λIN )−1‖
√
Nε̃

In Section 6.4, we discuss these differences. Finally, while frequentist uncertainty
bounds for GP regression have been known since the seminal work [186], the first
systematic empirical investigation from a frequentist perspective has been conducted
in [CF12], to the best of our knowledge.

6.1.2. Experiments

We are now ready for the numerical experiments. For ease of reference, we label
each experiment using the prefix exp_.

Nominal setting

Consider the case that the covariance function used in GP regression and the kernel
corresponding to the RKHS of the target function coincide. First, we test the nom-
inal bound (6.2) with SE and Matern kernels, respectively, for different values of δ.
Here we use the SE kernel with length scale 0.2 (exp_1_1_a) and the Matern kernel
with length scale 0.2 and ν = 1.5 (exp_1_1_b). We generate RKHS functions of
RKHS norm 2 using the pre-RKHS approach and use the same kernel for generat-
ing the ground truth and running GP regression. The nominal noise level of GP
regression is set to λ = 0.5. The uncertainty set is generated using (6.2) with B = 2,
R = 0.5 and δ = 0.1, 0.01, 0.001, 0.0001. The mean of the scalings β50 (together with
1 SD, average is over all 50 RKHS functions and all learning instances) is shown in
Table 6.1. As can be seen there, the scalings are reasonably small, roughly in the
range of heuristics used in the literature. In particular, a violation of the uncertainty
set was found in no instance (i.e. for all 50 RKHS functions and each of the 10000
learning instances). Furthermore, the graph of the target function is fully included
in the uncertainty set in all repetitions. This is illustrated in Figure 6.2 (left), where
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6.1. Experimental evaluation of frequentist uncertainty bounds

Figure 6.2.: Left (Nominal setting): Example function (green) from SE kernel with
length-scale 0.5 and RKHS norm 2, learned from 50 samples (red).
Shown is the posterior mean (blue) and the uncertainty set from (6.2)
for δ = 0.01. Right (Misspecified setting): Example function from SE
kernel with length-scale 0.2, learned with GPR using SE covariance
function with length-scale 0.5. The violation of the uncertainty set is
clearly visible.

an example instance of this experiment is shown. As can be clearly seen there, the
posterior mean (blue solid line) is well within the uncertainty set (with δ = 0.01),
which is not overly conservative.

Exploring conservatism

In order to explore the potential conservatism of the bound (6.2) we repeated the
previous experiments with δ = 0.01 and replaced β50 by 20 equidistant scalings
between 2 and β50. We used this changed setup for the SE kernel (exp_1_2_a),
Matern kernel (exp_1_2_b) and SE kernel together with the ONB sampling ap-
proach (exp_1_2_c). Whereas for the Matern kernel also the heuristic β = 2 works
for this example (still no uncertainty set violations), the situation is rather different
for the SE kernel. As shown in Figure 6.3 for β close to 2 the frequency of uncer-
tainty violations is much higher than 0.01, in particular for the case of sampling
from the ONB.
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Figure 6.3.: Exploring conservatism of nominal bound (6.2). For each target
function and learning instance 20 different uncertainty sets are tested.
Each such uncertainty is generated from (6.2) by replacing β50 by
β = 2, . . . , β50 (equidistant). Worst function means the fucntion with
the highest failure frequency among all 50 target functions for the
particular scaling. Ground truths sampled with pre-RKHS approach
(left) and ONB approach (right).

Table 6.1.: β50 in nominal setting (mean ± standard deviation over all repetitions)
δ 0.1 0.01 0.001 0.0001
SE 6.95± 0.04 7.39± 0.04 7.80± 0.03 8.19± 0.03
Matern 7.36± 0.04 7.78± 0.04 8.16± 0.04 8.53± 0.04
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Misspecified kernel, benign setting

We now consider misspecification of the kernel, i.e., different kernels are used for
generating the ground truth and as prior covariance function in GP regression. As
an example, we use the SE kernel with different length-scales and use the ONB from
[189, Section 4.4] to generate the RKHS functions. We start with the benign setting
from Proposition 5.5.2, where the RKHS corresponding to the covariance function
used in GPR contains the RKHS of the target function. For this, identical settings
as in our first experiment above are used, but now we generate functions from the
SE kernel with length-scale 0.5 and use the SE kernel with length-scale 0.2 in GP
regression (exp_1_3_a). As expected, we find the same results as above, i.e., the
uncertainty set fully contains the ground truth in all repetitions. Furthermore, the
scalings β50 are roughly of the same size as in the nominal case, cf. Table 6.2 (upper
row). Note that we only report results for the ONB sampling approach, since no
significant difference compared to the pre-RKHS approach arises.

Misspecified kernel, problematic setting

Next, we investigate the problematic setting where the RKHS corresponding to the
covariance function used in GPR does not contain the RKHS of the target func-
tion anymore. As an example we use again the SE kernel, but now with length-
scale 0.2 for generating RKHS functions and the SE kernel with length-scale 0.5 for
GPR. We use both the pre-RKHS approach (exp_1_4_a) and the ONB approach
(exp_1_4_b). The resulting scalings are reported in Table 6.2 (lower row), again
only for the ONB sampling approach. For the ONB sampling we found that for 2, 6,
12 and 13 out of the 50 target functions the frequency of the uncertainty violation
was higher than δ = 0.1, 0.01, 0.001, 0.0001. Interestingly, when performing this ex-
periment with the pre-RKHS approach, we did not find functions that violated the
uncertainty bounds more often than prescribed. This reaffirmes our introductory
remark that the method generating the test targets can lead to wrong conclusion
from empirical evaluations of the theoretical results.
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Table 6.2.: β50 in the misspecified setting (mean ± standard deviation over all
repetitions)

δ 0.1 0.01 0.001 0.0001
Benign 6.53± 0.038 6.97± 0.035 7.39± 0.033 7.77± 0.031
Problematic 6.11± 0.03 6.64± 0.03 7.11± 0.02 7.54± 0.02

Table 6.3.: Width of robust uncertainty set (mean ± SD of average width)
δ 0.1 0.01 0.001 0.0001
Mean 71.68± 5.36 73.79± 5.36 75.64± 5.37 77.33± 5.37
SD 6.54± 1.73 6.73± 1.78 6.91± 1.82 7.06± 1.86

Robust result for misspecified setting

The results of the previous two experiments indicate that a model misspecification of
the kernel can be a problem and a robust result like Theorem 5.5.3 is necessary. To
investigate this, we repeat Experiment exp_1_4_b from the previous paragraph,
but now using (6.3) instead of (6.2). We find no violation of the uncertainty set
(over all 50 functions tested, all 10000 learning instances for each function and all δ
tested). Since now the width of the uncertainty set is not a constant rescaling of the
posterior standard deviation anymore, we report the mean (over all 50 functions and
each of the 10000 learning instances) of the average width (over the input space) of
the uncertainty sets (± SD w.r.t. averaging over all 50 functions and each of the
10000 learning instances) and the SD (w.r.t. to averaging over the input space), ±
SD w.r.t. averaging over all 50 functions and each of the 10000 learning instances, in
Table 6.3. An inspection of the average uncertainty set widths in Table 6.3 indicates
some conservatism.

6.1.3. A first learning-based control example

We now illustrate the uncertainty bounds with a concrete, existing learning-based
control method. As an example, we choose the algorithm from [185] which is a
learning-based Robust Model Predictive Control (RMPC) approach that comes with
rigorous control-theoretic guarantees.
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Background

For convenience we now provide a cursory overview of background material. We can
only provide a sketch and refer to standard textbooks for more details, e.g. [167] for
a comprehensive introduction to MPC.
A common goal in control is feedback stabilization under state and input con-

straints. Consider a discrete-time dynamical system (or control system) described
by

x+ = f(x, u)

with state space X, input space U and transition function f : X × U → X. For
simplicity assume that X = Rn, U = Rm and that f(0, 0) = 0, i.e., (0, 0) is an
equilibrium. Furthermore, consider state constraints X ⊆ X and input constraints
U ⊆ U . In this setting, feedback stabilization amounts to finding a map µ : X → U

such that x∗ = 0 is an asymptotically stable equilibrium for the resulting closed loop
system described by

x+ = f(x, µ(x)),

and all resulting state-input trajectories are contained in the constraint set X × U.
Note that this requires restriction of the set of possible initial values.
In many applications not only stability, but also a form of optimality is required

from the control system. For example, assume that being in state x and applying
input u incurs a cost of `(x, u). If the control system is run for a long time, then we
would like a feedback µ that not only stabilizes the system, but also incurs a small
infinite horizon cost ∞∑

n=0
`(x(n), µ(x(n))),

where x(n) is the resulting state trajectory. One common methodology for dealing
with state constraints and optimal control tasks is MPC. If the system is in state
x, MPC solves a finite horizon open loop problem, i.e., it determines a sequence
u(0), . . . , u(N − 1) of admissible input values that minimize some cost criterion.
Only the first input u(0) is applied to the system and this process is repeated at
the next time instance. There is a comprehensive theory available on how to design
the open loop optimal control problem solved in each instance in order to achieve
desired closed loop properties. For details we refer to Chapters 1 and 2 in [167].
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In many applications a control system has to deal with disturbances. Frequently
the disturbances can be modelled in an additive manner, i.e., we have a control
system of the form

x+ = f(x, u) + w,

where w ∈W ⊆ Rn is an external disturbance. The feedback stabilization problem
under constraints can now be adapted to this setting, resulting in robust feedback
stabilization under constraints. The goal is now to find a feedback that ensures
constraint satisfaction and stabilizes the origin in a relaxed sense (which depends
on the size of the disturbance set W). Furthermore, even in this more challenging
situation one might have to deal with additional cost criterions.
MPC can be adapted to the setting with disturbances. The key idea of most

approaches is to solve a constrained open loop optimal control problem where the
constraints are tightened. The intuition is that even the worst case disturbance
cannot throw the system out of the allowed state-input set. It is clear that this
requires sufficiently small bounds on the size of the disturbances. For more details
we refer to Chapter 3 in [167].

A concrete example

We follow [185] and consider the discrete-time system[
x+

1
x+

2

]
=
[

0.995 0.095
−0.095 0.900

][
x1

x2

]
+
[

0.048
0.95

]
u+

[
0

−r(x2)

]
(6.4)

modelling a mass-spring-damper system with some nonlinearity r (this could be
interpreted as a friction term). The goal is the stabilization of the origin subject to
the state and control constraints X = [−10, 10] × [−10, 10] and U = [−3, 3], as well
as minimizing a quadratic cost.
The approach from [185] performs this task by interpreting (6.4) as a linear system

with disturbance, given by the nonlinearity r, whose graph is a-priori known to lie
in the set W0 = [−10, 10] × [−7, 7]. The nonlinearity is assumed to be unknown
and has to be learned from data. The RMPC algorithm requires as a disturbance
sets W(x) such that

(
0 −r(x2)

)>
∈ W(x) for all x ∈ X, which are in turn used

to generate tightened nominal constraints ensuring robust constraint satisfaction.
Furthermore, the tighter the sets W(x) are, the better is the performance of the
algorithm, cf. Chapter 3 in [167] for an in-depth discussion.
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Figure 6.4.: Example nonlinearity. From the target function (blue solid line) 100
samples with noise (red dots) are sampled, which are used to get the
uncertainty sets (dashed black lines).

For this experiment, we replaced the Stribeck friction curve used by [185] with a
synthetic nonlinearity generated from a known RKHS. Furthermore, the nonlinearity
is assumed to be unknown and has to be learned from data. More precisely, the
nonlinearity r (which will be our ground truth) is sampled from the pre-RKHS of
the scaled SE kernel

k(x, x′) = 4 exp
(
−(x− x′)2

2× 0.82

)

with RKHS norm 2. Following [185], we uniformly sample 100 partial states x2 ∈
[−10, 10], evaluate r at these and add i.i.d. Gaussian noise with a standard deviation
of 0.01 to it. The unknown function is then learned using GPR (using the nominal
setting, i.e., with known k) from this data set. Using (6.2) then leads to an un-
certainty set of the form W(x) = [µ100(x2)− β100σ100(x2), µ100(x2) + β100σ100(x2)],
where we use δ = 0.001. In particular, with probability at least 1− δ we can guar-
antee that r(x2) ∈ W(x) holds for all x ∈ X. The situation is displayed in Figure
6.4. In order to follow [185] as closely as possible, we exported the learning results
and used the original Matlab script to compute Zk (provided by R. Soloperto). In
order to reduce computation time, we decided to use a 50× 50 state space grid and
an MPC horizon of 9.
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6. Frequentist uncertainty bounds: Experiments and applications

Figure 6.5.: Tightened state constraint sets Zk for k = 0, . . . , 9. Computed from
a-priori uncertainty set W0 (LEFT) and learned uncertainty sets W(x)
(RIGHT).

Result

Figure 6.5 shows the resulting tightened state constraints for an MPC horizon of 9.
Clearly, the state constraint sets from the learned uncertainty sets are much larger.
Furthermore, in contrast to previous work, we can guarantee that the RMPC con-
troller using these tightened state constraints retains all control-theoretic guarantees
with probability at least 1− δ. In the present case we can ensure state and control
constraint satisfaction, input-to-state stability and convergence to a neighborhood
of the origin, with probability at least 1 − δ. This follows immediately from [185,
Theorem 1], since the ground truth r is covered by the uncertainty sets W(x) with
this probability, and the control-theoretic guarantees are deterministic, so they also
hold with the same probability. Note that this is essentially a concrete instantiation
of the abstract strategy discussed in Chapter 4.

6.2. Uncertainty bounds in learning-enhanced robust
controller synthesis

We will now present an application of frequentist uncertainty bounds for GP re-
gression in the context of robust controller synthesis. First, some background and
context will be provided, then we describe our overall methodology, which we then
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6.2. Uncertainty bounds in learning-enhanced robust controller synthesis

illustrate with a concrete example from robust control. To the best of our knowledge,
this is the first combinatino of actual frequentist uncertainty bounds with modern
robust controller synthesis.

6.2.1. Introduction and background

Many methods of modern control rely on accurate plant models [66]. Traditionally,
models are obtained from first-principles modeling [16], harnessing extensive expert
domain knowledge, or are derived experimentally using system identification [122].
In most cases, a combination of these strategies is used: First-principles models
are enhanced with components derived from data. Therefore, recent advances in
machine learning offer tremendous opportunities for control. By using advanced
learning approaches, it is possible to improve models from real-world data sets, even
in established areas of control engineering, cf. e.g. [160]. Furthermore, modern
control systems are increasingly complex and learning-based approaches offer the
chance to tackle this complexity.
As already eluded to in Chapter 4, control applications pose significant challenges

for learning approaches. Beyond statistical and computational issues like such as
potential non-independence of data-samples, unmeasured states and real-time feasi-
bility issues, rigorous guarantees on the behavior of closed-loop control systems are
of paramount importance in many applications, in particular, in safety-critical areas
like aerospace control systems and human-robot interaction scenarios. Using model-
based approaches, rigorous and practically relevant guarantees can often be given,
mostly in the form of stability and constraint satisfaction guarantees. However, in-
cluding learning-based components in control systems significantly complicates the
situation, and giving theoretical guarantees on the overall system can be challeng-
ing. Additionally, for practical applicability of learning-based control it is important
to leverage existing prior knowledge in a systematic manner. In many real-world
scenarios, extensive domain and expert knowledge is available, often in the form
of first-principles modeling utilizing disciplines like physics, chemistry or biology,
as well as vast amounts of engineering experience and intuition. In order to make
learning-based control approaches real-world feasible, reliable and data efficient, it
is important to harness this prior knowledge.
Motivated by this, in this section we present a very general methodology for
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learning-enhanced robust controller synthesis. Similarly to the example from Section
6.1.3, it will be an instance of the established strategy described on an abstract level
in Chapter 4: We apply a machine learning method to unknown parts of the system,
derive frequentist uncertainty bounds, and deal with the remaining uncertainty using
robust control. However, we will put a particular emphasis on using prior knowledge,
hence we prefer to call the methodology learning-enhanced instead of learning-based.
In particular, we demonstrate how to use prior knowledge in a systematic manner in
the learning process. We advocate for the use of the Linear Fractional Representation
(LFR) [223, 177] and Integral Quadratic Constraint (IQC) [136, 209] framework
to integrate the learning components with modern robust control approaches, in
particular, robust controller synthesis with control-theoretic guarantees like robust
stability and performance. In this way, we can give rigorous guarantees and can
harness established engineering prior knowledge, cf. Figure 6.6 for an illustration.

Related work Combining uncertainty quantification for machine learning with ro-
bust control approaches is a common strategy in learning based control, in particular,
in learning-based Model Predictive Control [92], cf. also our discussion in Chapter
4. Using frequentist uncertainty results for GPR in a robust control setting has been
used for example in [112, 204, 90, 61], and the concept of δ-safety from [112] is con-
ceptually very similar to our control-theoretic guarantees, cf. Theorem 6.2.8 below.
However, due to the difficult applicability of earlier uncertainty bounds for GPR,
only heuristics for the uncertainty sets are employed and, hence, all guarantees are
lost in the end. Furthermore, often considerable prior knowledge about the system
is not used, in particular, the fine structure of the uncertainties is not utilized in the
control schemes. The LFR framework has been sporadically used in the context of
learning-based control, cf. e.g. [28, 30]. However, its versatility and modularity has
not been taken advantage of before. In particular, to the best of our knowledge it
has not been used in the context of control-theoretic guarantees for learning-based
control schemes. The recent works [26, 27] explore the usage of the LFR framework
and modern robust controller synthesis in a learning context, however, they rely on
a data-driven approach [93] and do not consider nonlinearities. As such these works
can be seen as complementary to the present work.
Another alternative approach to learning-based controller synthesis uses a Bayesian

framework, cf. e.g. [214], and can also be seen as complementary to the frequen-

162



6.2. Uncertainty bounds in learning-enhanced robust controller synthesis
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Figure 6.6.: Illustration of the LFR framework in the context of learning-enhanced
robust controller synthesis. All uncertain and trouble-making parts are
”pulled out” into the �-block. We use the framework to combine prior
knowledge with components learned from data (in the �-block) in a
systematic manner. © 2021 IEEE

heuristics for the uncertainty sets are employed and, hence, all guarantees are lost
in the end. Furthermore, often considerable prior knowledge about the system is
not used, in particular, the fine structure of the uncertainties is not utilized in the
control schemes. The LFR framework has been sporadically used in the context of
learning-based control, cf. e.g. [0, 0]. However, its versatility and modularity has
not been taken advantage of before. In particular, to the best of our knowledge it
has not been used in the context of control-theoretic guarantees for learning-based
control schemes. The recent works [0, 0] explore the usage of the LFR framework
and modern robust controller synthesis in a learning context, however, they rely on
a data-driven approach [0] and do not consider nonlinearities. As such these works
can be seen as complementary to this paper.

Another alternative approach to learning-based controller synthesis uses a Bayesian
framework, cf. e.g. [0], and can also be seen as complementary to the frequentist
perspective taken in this work. Furthermore, since our learning approach leads to
uncertainty sets that can be interpreted as estimates of certain system-theoretic
properties, our work is also related to recent methods for inferring such properties
directly from data, cf. e.g. [0].

Notation We also need some additional notation. We indicate that a symmetric
matrix A 2 Sn⇥n is positive (semi)-definite by A(⌫) � 0. I is the identity matrix.
We define [N ] := {1, . . . , N}. Real-rational proper matrix functions without poles
on the extended imaginary axis are denoted by RLn⇥n

1 , L2 is the usual Lebesgue
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Figure 6.6.: Illustration of the LFR framework in the context of learning-enhanced
robust controller synthesis. All uncertain and trouble-making parts are
"pulled out" into the ∆-block. We use the framework to combine prior
knowledge with components learned from data (in the ∆-block) in a
systematic manner. © 2021 IEEE

tist perspective taken in this work. Furthermore, since our learning approach leads
to uncertainty sets that can be interpreted as estimates of certain system-theoretic
properties, our work is also related to recent methods for inferring such properties
directly from data, cf. e.g. [110].

Notation We also need some additional notation. We indicate that a symmetric
matrix A ∈ Sn×n is positive (semi)-definite by A(�) � 0. I is the identity matrix.
We define [N ] := {1, . . . , N}. Real-rational proper matrix functions without poles
on the extended imaginary axis are denoted by RLn×n∞ , L2 is the usual Lebesgue
space and 〈·, ·〉 the corresponding inner product. The dimension of a signal x is

denoted by nx. We write

 A B

C D

 for the transfer matrix of an LTI system and
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A ? B for the usual (lower) LFT of two compatible systems.

Modeling uncertainty using IQCs and LFR In real-world applications, only parts
of the plant are unknown and even the remaining uncertainties often carry a lot of
structure. It is therefore important to be able to systematically combine known and
unknown components of dynamical systems and to leverage sophisticated descrip-
tions of the fine properties of uncertainties. An established framework in modern
robust control, that is ideally suited for this task are Linear Fractional Representa-
tions (LFR). Consider the partially known system (using operator notation)

(
z

y

)
= P∗

(
w

u

)
, (6.5)

with control input u, measured output y, generalized disturbance w and controlled
output z. In the LFR framework we model the known parts by a nominal LTI
system 

q

z

y

 =


Gqp Gqw Gqu

Gzp Gzw Gzu

Gyp Gyw Gzu



p

w

u

 (6.6)

in feedback connection with an uncertain system

p = ∆(q), (6.7)

where ∆ ∈ ∆, with the latter being the class of given uncertainties. In many
cases substantial additional information about ∆ is known, in particular, if ma-
chine learning methods are employed to reduce the epistemic uncertainty about the
system. Here we propose to use the versatile and powerful framework of Integral
Quadratic Constraints (IQCs) for this task. We say that an uncertainty ∆ fulfills
the IQC defined by the multiplier Π ∈ RL(nq+np)×(nq+np)

∞ if〈(
q

∆(q)

)
,Π
(

q

∆(q)

)〉
≥ 0 ∀q ∈ L2. (6.8)

For more details and a very comprehensive collection of multipliers we refer to [209].
Furthermore, IQCs can be used for robust stability and performance analysis: Con-
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sider the system (
q

z

)
=
(
Gqp Gqw
Gzp Gzw

)(
p

w

)
(6.9)

resulting from connecting system (6.6) with a given LTI controller K. If an IQC
description of the uncertainty is available, the well-known IQC stability theorem
from [136] allows to conclude robust stability and even robust performance, cf. [209]
for details. Using the KYP Lemma, cf. e.g. [165], leads to an LMI problem and
makes the robust stability and performance analysis with IQCs computationally
tractable, see again [209] for details.

6.2.2. Methodology

We are now ready to describe our proposed methodology for learning-enhanced
robust controller synthesis. First, we precisely describe our problem setting. For
concreteness, we will then focus on static nonlinearities, for which the uncertainty
bounds described earlier are immediately applicable. Finally, we describe how the
resulting uncertainty sets can be used for robust controller synthesis.

Problem setting

We propose to utilize the LFR framework described in Section 6.2.1 since it is an
established and flexible framework for uncertain system modeling [223, 177]. In
particular, it is well suited to integrate machine learning components into modern
robust control: extensive prior system knowledge can be included into the nominal
plant and all learning components are "pulled out" into the uncertain part. By
using machine learning methods incorporating prior knowledge, it is possible to
arrive at very data-efficient learning-enhanced control schemes. Furthermore, as we
will demonstrate in the following, the LFR framework allows us to easily transfer
statistical bounds into control-theoretic guarantees in a structured fashion.
For the rest of this section, we are concerned with an unknown plant (6.5) given

in the LFR form (6.6), (6.7). The overall goal is to perform robust controller syn-
thesis and to give robust stability and performance guarantees for the synthesized
controller. For sake of concreteness, we assume a single objective optimization where
possible performance weighting filters have been already included in the generalized

165



6. Frequentist uncertainty bounds: Experiments and applications

plant P and we are left with a standard robust (against the uncertainty in (6.7))
H∞ synthesis problem.

Assume now that we are not satisfied with the achievable performance of the
controller due to the uncertainty being too large. For this purpose, we will employ
machine learning in order to reduce the epistemic uncertainty contained in (6.7),
using a data set D. Since the LFR framework is very modular, it causes no limita-
tion to focus our attention to a single uncertain component that is to be learned.
We would like to stress that it is easily possible to deal with multiple uncertainties
containing learned components, even using different learning methods, and to com-
bine these with uncertainties that classically emerge if capturing parametric model
variations or unmodeled dynamics as resulting from a complexity reduction step, cf.
[66].
Instead of describing an abstract general procedure, we opt to present the concrete

case of a static (partially) unknown diagonal nonlinearity,

p = φ(q), (6.10)

with np = nq and pi(t) = φi(qi(t)) for i ∈ [np], t ≥ 0. We will comment on possible
generalizations and resulting complications during the description of our approach.

Learning static nonlinearities

Since the described procedure can be applied to all φi, i ∈ [np] separately, we
focus on a single scalar nonlinearity φ : R → R in this and the next section. The
corresponding data set D = ((xn, yn))n∈[N ] is of the form

yn = φ(xn) + εn, (6.11)

where ε1, . . . , εN is additive measurement noise. This means that the unknown part
can be isolated and input-output samples can be collected. For concreteness, we
make the following assumption on the noise.

Assumption 6.2.1. ε1, . . . , εN are independent, R-subgaussian random variables
with R ≥ 0 the subgaussianity constant.

Note that this assumption not only entails that the noise is subgaussian, which
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is a mild assumption in many engineering applications and covers many noise dis-
tributions encountered in practice, but also that we know a concrete subgaussian
constant. Whether this is latter assumption is reasonable depends on the concrete
application.
If we want to use GP regression and the frequentist uncertainty bounds from

Chapter 5, we also need the following assumption.

Assumption 6.2.2. k is a kernel on R and φ ∈ Hk with ‖φ‖k ≤ B.

Note that this assumption is standard in the learning-based control literature,
[112]. However, it turns out to be very problematic, as we will discuss in detail in
the next chapter. For now, we follow learning-based control literature and accept
this assumption. We can now use the uncertainty bounds from 5, and for consistency
with the preceding sections, we use (6.2). Note that we use the notation βD instead
of βN to stress that we are not in a sequential setup. For ease of reference, we record
the resulting uncertainty bound here.

Lemma 6.2.3. If applying GP regression with covariance function k and nominal
noise level λ > 0 to data set D, we get with the notation introduced above, for any
δ ∈ (0, 1) under Assumption 6.2.1 and 6.2.2 that

P[|φ(x)− µD(x)| ≤ βDσD(x) ∀x ∈ R] ≥ 1− δ.

This is illustrated in Figure 6.7 with the example from Section 6.2.4.
Additional prior knowledge on the static nonlinearity can be systematically in-

cluded in GPR via the covariance function. As a concrete example, suppose we
know that φ(0) = 0, which is a requirement for a sector bounded nonlinearity.
Given any kernel k with k(0, 0) 6= 0, following the procedure described in [100] leads
to the new kernel

k0(x, x′) = k(x, x′)− 1
k(0, 0)k(x, 0)k(x′, 0). (6.12)

Note that in this particular example, the same effect can be achieved conditioning a
GP prior on the noise free virtual data point (0, 0). All functions contained in Hk0

as well as all samples from GP(0, k0) are guaranteed to be zero in zero. Many other
properties of functions can be encoded in this way, cf. e.g. [100, 79].
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Remark 6.2.4. We would like to provide some remarks on the setup just described.

1. We would like to stress that the LFR framework is very general and supports
a broad range of uncertainties. In particular, many other uncertainties and
even other learning methods can be included in (6.7). For ease of presentation,
we restrict ourselves to static nonlinearities and only one learning component,
the indicated generalizations are then straightforward.

2. It is possible to deal with multivariate static nonlinearities with multi-output
GPs, cf. the corresponding remarks in Chapter 4.

3. The independence assumption on the noise is reasonable in the setting used
here, since we directly collect input-output samples, but of course the time-
uniform uncertainty bounds from Chapter 5 allow for much more general noise
assumptions.

4. Other machine learning methods can be used for this step, as long as numerical
uncertainty bounds can be derived. For example, if we have magnitude bounds
on the additive noise in (6.11) and no distributional assumptions, then the
kernel methods and accompanying uncertainty bounds in [127] or the Nonlinear
Set Membership framework [140] could as well be employed. We will come back
to this point in Chapter 7.

Connection to robust control: High probability sector bounds

As common in modern robust control, the uncertainty set has to be transformed
into a form that is amenable to controller synthesis [66]. As a concrete example,
we illustrate this by deriving the tightest sector bounds compatible with the high
probability uncertainty set from Section 6.2.2. Recall that ϕ : R → R belongs to a
sector [κ1, κ2] if

κ1x
2 ≤ xϕ(x) ≤ κ2x

2 ∀x ∈ R. (6.13)

Generalizations to the multivariate settings are straightforward, cf. e.g. [106].
Lemma 6.2.3 leads immediately to the next result.
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Figure 6.7.: The unknown nonlinearity is learned with GPR from samples,
resulting in a high probability uncertainty set. This is used to derive
sector bound estimates for the nonlinearity. © 2021 IEEE

Lemma 6.2.5. Consider the situation of Lemma 6.2.3 and assume that φ belongs
to the sector [κ1, κ2] with κ1 ≤ κ2. If defining

κ̂1 := min
x∈[a,b]\{0}

min{x · (µD(x)− βDσD(x)), x · (µD(x) + βDσD(x))}
x2

κ̂2 := max
x∈[a,b]\{0}

max{x · (µD(x)− βDσD(x)), x · (µD(x) + βDσD(x))}
x2 ,

then [κ̂1, κ̂2] is an overapproximation of [κ1, κ2], i.e. κ̂1 ≤ κ1 and κ̂2 ≥ κ2, with
probability at least 1− δ.

This approach can be made rigorously computational for Lipschitz continuous
functions by evaluating the uncertainty set from Lemma 6.2.3 on a fine grid and
adapting Lemma 6.2.5 correspondingly.

Robust controller synthesis

We now tackle the robust controller synthesis problem with the learned uncertainty
component using the versatile approach from [207] for the case of static IQC multi-
pliers. Consider without loss of generality the following minimal realization of (6.6)
(with possible performance weights already included in the generalized plant)

ẋ

q

z

y

 =


A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0




x

p

w

u

 . (6.14)
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Canceling the uncertainty channel p→ q results in the system G0. A standard H∞
controller synthesis leads to an intial LTI controller K0 with nominal performance
level γ0. Connecting K0 to G on the control channel u→ y results in

G0 = G ?K0 =


A Bp Bw
Cq Dqp Dqw
Cz Dzp Dzw

 . (6.15)

The corresponding realization can be derived by elementary manipulations and is
omitted due to space constraints. Assume now that ∆ fulfills an IQC with multipliers
Π = P ∈ P, where P has an LMI description. This leads to an initial analysis LMI
(6.16) with decision variables γ > 0, X = X> and the LMI variable arising from P.

XA+A>X XBp XBw C>z
B>p X 0 0 D>zp
B>wX 0 −γI D>zw
Cz Dzp Dzw −γI

+
(
∗
)>

P

(
Cq Dqp Dqw 0
0 I 0 0

)
≺ 0 (6.16)

 XA+A>X XBpΨ−1
2 XBw C>z

(Ψ−1
2 )>B>p X 0 0 (Ψ−1

2 )>D>zp
B>wX 0 −γI D>zw
Cz DzpΨ−1

2 Dzw −γI

+
(
∗
)>

P̂

(
Ψ1Cq (Ψ1Dqp + Ψ3)Ψ−1

2 Ψ1Dqw 0
0 I 0 0

)
≺ 0

(6.17)

Minimizing γ leads to robust performance level γ̃0 and corresponding multiplier P .
Then consider the following factorization of the IQC multiplier,

P =
(
∗
)>

P̂

(
Ψ1 Ψ3

0q×p Ψ2

)
(6.18)

with Ψ1 ∈ Rnq×nq , Ψ3 ∈ Rnq×np , Ψ2 ∈ Rnp×np , Ψ2 invertible and where P̂ has the
form (

0 I

I 0

)
or
(
I 0
0 −I

)
. (6.19)

Note that this factorization is possible for all static multiplier classes of interest.
Applying the factorization in (6.16), together with elementary manipulations and
a congruence transformation with diag(I,Ψ−1

2 , I, I), results in (6.17). We recognize
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that (6.17) is the initial analysis LMI (6.16) for the plant G1 ? K0, where

G1 =


A BpΨ−1

2 Bw Bu

Ψ1Cq Ψ1DqpΨ−1
2 + Ψ3Ψ−1

2 Ψ1Dqw Ψ1Dqu

Cz DzpΨ−1
2 Dzw Dzu

Cy DypΨ−1
2 Dyw Dyu

 (6.20)

with new performance channels w1 → z1 and w → z. We can now run a standard
controller synthesis on the generalized plant G1 with the quadratic performance
criterion 〈(

z1

w1

)
, P̂

(
z1

w1

)〉
+ 1
γ
‖w‖2 − γ‖z‖2 ≤ −ε(‖w1‖2 + ‖w‖2), (6.21)

e.g. along the lines described in [179]. Minimization of γ leads to the robustified
controller K1 and performance level γ1. These steps can now be iterated until no
substantial improvement in γ is obtained.

Returning to the concrete setting of sector bounded nonlinearities, suppose that
the method from Section 6.2.2 and 6.2.2 resulted in sector bound estimates [κ̂(i)

1 , κ̂
(i)
2 ],

i ∈ [np]. To proceed with the synthesis, we need another assumption.

Assumption 6.2.6. For all i ∈ [np] we have κ̂(i)
1 ≤ 0 ≤ κ̂(i)

2 .

We can now express the estimated sector bounds with full block multipliers.

Lemma 6.2.7. Let δ ∈ (0, 1) and run the learning method in Section 6.2.2 and
6.2.2 on each nonlinearity using independent data sets and replacing δ with δ/np.
Define

Pfb =
{
P | (·)>P

(
I

Θ(θ)

)
� 0, (·)>P

(
0
I

)
� 0, θ ∈ K̂

}
, (6.22)

where K̂ =
{

(θ1, . . . , θnp) | θi ∈ {κ̂
(i)
1 , κ̂

(i)
2 }, i ∈ [np]

}
and for brevity Θ(θ) = diag(θ).

Then under Assumption 6.2.1, 6.2.2, 6.2.6, with probability at least 1−δ, (6.8) holds
for all Π ∈ Pfb.

Proof. Follows immediately from [207, Lemma 4.1], Lemma 6.2.5 and the union
bound.
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Since the multipliers from (6.22) can be factorized according to (6.18), the synthesis-
analysis procedure described above can be directly used.
Remarks. We would like to stress that the approach in [207] is much more gen-
eral than the simplified setting used here for illustrative purposes. In particular,
dynamic IQC multipliers can be used (involving non-trivial factorization results)
which allow significantly more precise uncertainty descriptions leading to reduced
conservatism. This is especially relevant for learning-based approaches, since the
later might provide considerable additional information on the uncertainty. Further-
more, warm-start strategies are proposed in [207] in order to speed up the robust
controller synthesis procedure. Finally, an approach for IQC-based robust synthesis
in the context of gain scheduling is proposed in [206]. The extension of our approach
to this setting is left for future work.

6.2.3. From statistical to control-theoretic guarantees

We can now give overall guarantees on the resulting controller.

Theorem 6.2.8. Let δ ∈ (0, 1) and suppose that the learning procedure as outlined
above is run with δ replaced by δ/np and Pfb is built according to (6.22). Under
Assumption 6.2.1 to 6.2.6, if the controller synthesis algorithm described in Section
6.2.2 returns a controller K after M ≥ 1 iterations with robust performance level
γ̃M+1, then with probability at least 1 − δ, K will stabilize the true system and
achieve robust performance level γ̃M+1.

Proof. Follows immediate from Lemma 6.2.7 and the results in [207].

Let us discuss this result. For the learning component, we assume that there
exists a fixed (but unknown) ground truth, here the diagonal nonlinearity (6.10).
We derive from the learning component an uncertainty set, here described by the
full block IQC multipliers (6.22), that contains the ground truth with given (high)
probability 1− δ. This is combined with a robust method that comes with control-
theoretic guarantees for this uncertainty set. Since the ground truth is contained
in the uncertainty set with probability at least 1 − δ, the guarantees hold with the
same high probability.
Before turning to a concrete example, we would like to recall some of our argu-

ments from Chapter 4. It is important to contrast this approach with randomized
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methods in robust control [198], like the scenario approach [42]. In these methods,
high-probability guarantees are given with respect to the randomization in the algo-
rithms, while in our problem the randomness comes only from the data. Moreover,
the results here are also different in nature if compared to work done in a Bayesian
framework. In particular, we do not rely on a prior distribution which might be
misspecified. We argue that in the modern robust control setting, the frequentist
perspective is the most natural statistical setting since we assume a fixed ground
truth, described by an uncertainty class.

6.2.4. A concrete example

To demonstrate the advantage of the learning component in robust control, we now
compare the controller synthesis using a-priori sector bounds and the bounds learned
using GPR. As a concrete example, we use the distillation column system from [207,
Section 8.2], where we replace the original dead-zone nonlinearity with the unknown
target function to be learned.

Setup

The situation is depicted as a blockdiagram in Figure 6.8. The plant model is given
by

G(s) = 1
75s+ 1

(
87.8 −86.4
108.2 −109.6

)
(6.23)

and we use the performance weights

We(s) = s+ 0.1
2s+ 10−5 I2 Wu(s) = s+ 10

s+ 100I2. (6.24)

The synthesis objective is therefore to track the reference signal r at low frequencies
and penalizing control action at high frequencies. For illustrative purposes we use the
same unknown nonlinearity in both uncertainty channels, i.e., pi = φ(qi), i = 1, 2.
For the experimental validation we need access to the ground truth, hence we use
a function φ ∈ Hk0 , where k0 is given by (6.12) and for k we choose the popular
Squared Exponential (SE) kernel k(x, x′) = σ2

k exp
(
− (x−x′)2

2`2
)
with lengthscale ` =

0.5 and variance σ2
k = 0.5. The particular function φ is shown in Figure 6.7 and has

RKHS norm 2.6053. Since we are interested in stabilization, we restrict attention to
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Figure 6.8.: Block diagram of the example. Here ∆ is a repeated static
nonlinearity. © 2021 IEEE

inputs to φ from [−1, 1] and φ fulfills the sector condition [−0.0572, 0.3575] on this
interval. Note that it is possible to ensure containment of the relevant signals in
such an interval with techniques from robust control, but due to space constraints
we omit the details.
Using standard manipulations, the robust synthesis problem with performance

weights from (6.24) and diagonal static nonlinearities can be framed as an LFR.
Furthermore, we use the full block multipliers from Lemma 6.2.7. In the follow-
ing experiments, we run the synthesis procedure outlined in Section 6.2.2 for 20
iterations.
Finally, to test the learning method we generate data sets D = ((xn, yn))n∈[N ] by

sampling N = 50 inputs xn uniformely from [−1, 1], evaluate φ at these inputs and
add independent N (0, 0.05) noise to get yn.

Improving performance with learning

Assume we know a priori that φ belongs to the (rather wide) sector [−0.9, 0.9].
Running the robust controller synthesis leads to a controller with robust performance
level 10.5575. This is now compared with the methodology described above. We
use GP regression with a zero prior mean function and the kernel k0 as covariance
function as well as the true noise level 0.05. We follow previous works, e.g. [127],
and assume an increased RKHS norm bound B = 2‖φ‖k0 in the uncertainty bound.
Setting δ = 0.001 and following the procedure outlined in Section 6.2.2 leads to the
sector bounds [−0.2460, 0.5480]. The situation is illustrated in Figure 6.7. Applying
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Figure 6.9.: Effect of increased data sets. In the upper two plots the estimated
sector bounds for different data sizes are shown (averaged over 50 runs
with corresponding empirical standard deviation), the lower plot shows
the robust performance level of the resulting controllers. © 2022 IEEE

the controller synthesis method with this sector bound leads to a controller that has
robust performance level 3.1581 at least with probability 1− 0.001.

Data-performance tradeoff

We now investigate the potential performance improvements with increasing size of
the data set. For this we generate data sets with 100, 150, 200, 250, 300 data points
and applied the learning method to these data sets, using the same procedures as
in the last experiment. We repeated this 50 times. The resulting estimates of the
sector bounds are shown in Figure 6.9 (upper two plots). It is clearly visible that
more data is helpful for the learning method, since the sector bounds become tighter.
Furthermore, running the robust controller synthesis on the estimated sector bounds
(averaged over all 50 trials) leads to the results shown in Figure 6.9 (lower plot).
Clearly, increased data helps to improve the robust performance. Note that the
robust stability and performance of the controller is guaranteed with user-specified
probability, while profiting from the additional information contained in the data
set.

6.3. Conclusion

In Section 6.1, we conducted a thorough investigation of frequentist uncertainty
bounds for GP regression from a frequentist perspective. To the best of our knowl-
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edge, this was the first such systematic evaluation, cf. also the comments in the
next section. We found that in a well-specified setting, variants of established un-
certainty bounds are on the same order of magnitude as common heuristics. Fur-
thermore, our empirical results strongly indicate that in some misspecified settings
robust uncertainty bounds are required, and our results from Chapter 5 are suitable
for some classes of misspecification. However, we also found some conservatism,
and improved robust uncertainty bounds are an interesting subject for future work.
Finally, as discussed above, numerical evidence in a frequentist setup has to be cau-
tiously interpreted, and we tried to carefully describe and circumvent pitfalls, for
example by using different generation methods for RKHS functions.
Motivated by the practically of the considered uncertainty bounds, in Section 6.2

we present a very general framework for learning-enhanced robust controller syn-
thesis. By leveraging the establish LFR structure together with IQCs for describing
uncertainties, we can easily include prior knowledge in the overall approach, and by
relying on GP regression, we can include further prior knowledge in learning process
and ensure rigorous statistical and control-theoretic guarantees. Tot he best of our
knowledge, this is the first usage of actual frequentist uncertainty bounds together
with modern robust controller synthesis.
Finally, assuming a well-specified modelling setup, all of the above relies on the

knowledge of a subgaussianity constant for the noise and an upper bound on the
RKHS norm of the target function. While the former is usually a rather mild
assumption, the latter is very problematic in practice, as we will discuss in detail in
the next chapter, where we will also propose some solutions to this problem.

6.4. Comments

Section 6.1 is based on and to a large extent taken verbatim from [CF12]. This latter
work arose from discussions of the author with the S. Trimpe and C.W. Scherer.
The author of this thesis designed and performed all experiments in that work, and
wrote the manuscript, with editorial comments from C.W. Scherer and S. Trimpe.
Section 6.2 is based on and to a large extent taken verbatim from [CF10]. The
overall methodology has been suggested by C.W. Scherer and S. Trimpe, and the
realization, including the formalization and all experiments, as well as the majority
of the writing, has been done by the author of this thesis. The robust controller
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synthesis in Section 6.2 has been performed with Matlab code from J. Veenman, cf.
also [208].

Some comments on [CF12] The work on [CF12] was conducted in 2019 and 2020,
and at that point, the two most popular results on frequentist uncertainty bounds
for GP regression, especially in the context of learning-based control, were [186,
Theorem 6] and [54, Theorem 2]. The former involves very large constants and
requires bounded noise, and hence the latter result, involving smaller constants and
requiring only conditionally subgaussian noise, should be preferred. The author of
this thesis noticed that in the learning-based control literature, essentially all works
using [186, Theorem 6] or [54, Theorem 2] replaced the scaling factors βN from
these results by some heuristic value, usually βN ≡ 2 or 3, which breaks in general
all guarantees of the overall algorithm. One reason for this could be that both of
these results are formulated in terms of the maximum information gain, cf. [186] for
background on this quantity, and in general, working numerically with this quantity
is not convenient2 and might lead to some conservatism. The main motivation of
[CF12] was to provide bounds that can be computed and actually used in learning-
based control algorithms. The author of this thesis noticed that the derivation of
[54, Theorem 2] can be “stopped early”, leading to an uncertainty bound that can
be computed easily (if an RKHS norm bound and a subgaussian constant for the
noise is known), and to the best of our knowledge, this fact was not used before in
learning-based control, and hence seemed at that point to be a new contribution.
However, the PhD thesis [1] contains essentially an uncertainty bound superior to
[54, Theorem 2], but unfortunately this bound is not explicitly stated in [1] (though
it is explained how to derive it in [1, Remark 3.4]), and it seems that these results
from [1] have not been published apart from this thesis. During the preparation
of this thesis, we also realized that similar results are contained in [128] and [67].
However, curiously these results have not been taken up in the learning-based control
literature.

Since the corresponding result in [CF12] is based on [54, Theorem 2], it inherits
the limitation of the latter to λ ≥ 1 (and λ > 1 if the kernel is not positive definite).

2If a constant factor of conservatism and using a numerical approximation are deemed acceptable,
then one can compute an upper bound on this quantity algorithmically, cf. [186] for details. We
thank A. Krause for pointing this out.
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To circumvent this limitation, a new scaling factor λ̄ was introduced3, which leads
to (6.2) and (6.3). Proposition 5.4.1, essentially contained in [1] and rediscovered
by [219], does not have this limitation, i.e., any λ > 0 is permitted. During the
preparation of [CF8], the author noticed that in the setting of this latter result, for
0 < λ < 1 and k positive definite, we have λ̄ = max{1, λ} = 1 and hence

R√
λ

√
2 ln

(1
δ

det
(
IN + 1

λ
KN

))
= R√

λ

√
ln (det(1/λKt + IN ))− 2 ln(δ)

= R√
λ

√
ln
(
det(λ̄/λKN + λ̄IN )

)
− 2 ln(δ),

so in this case [CF12, Theorem 1] (corresponding to (6.2)) reproduces the result
Proposition 5.4.1, and similarly for (6.3). Additionally, since the only difference
happens inside

√
ln(·), any noticable difference between the two bounds will happen

for λ >> 1, so any difference will be neglegible in practice. For this reason we
decided to report the original experiments from [CF12] using (6.2) and (6.3).
Given this convoluted history of [CF12], we would like to explicitly summarize

the contributions of this work from our current perspective.

• We pointed out the lack of convenient, computable frequentist uncertainty
bounds for GP regression, at least in the context of learning-based control, and
provided such bounds. This should be seen more as a conceptual contribution
and not a significant technical contribution.4

• To the best of our knowledge, we provided the first frequentist uncertainty
bounds for GP regression (in the form as usual used in learning-based control,
cf. also our discussion on this point in Chapter 5) under model misspecification.

• We conducted the first systematic frequentist evaluation of such uncertainty
bounds for GP regression, and pointing out some of the problems (like a bias
in the randomly generated RKHS functions).

3Unfortunately, in [CF12] this was done incorrectly, and subsequently corrected [CF13]. We would
like to thank L. Kreisköther and D. Baumann, who discovered this error. Note that the mistake
leads to only minor quantitative changes in the results of [CF12], but not qualitative differences
and no change in the conclusions and arguments of this work.

4In fact, even in the original work [CF12] we explicitly stated that our bounds are based directly
on [54, Theorem 2].
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• To the best of our knowledge, we applied computable frequentist uncertainty
bounds to a (simple and existing) learning-based control application for the
first time. This is not a technical innovation, since uncertainty bounds like
[186, Theorem 6] and [54, Theorem 2] have been very popular in the context
of learning-based control. However, to the best of our knowledge, using the
actual bounds in the algorithm instead of a heuristic seems to have not been
done before in learning-based control.

The simple bounds like [CF12, Proposition 2] could be interpreted as an additional
minor contribution, however, the concrete form used in [CF12] is probably too con-
servative for applications, and the updated variants from Chapter 5 should be pre-
ferred. As a sidenote, an in-depth investigation and numerical evaluation of the
latter could be an interesting avenue for future work.
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control

In Chapter 6, we demonstrated through numerical experiments that frequentist un-
certainty bounds as presented in Chapter 5 fulfill some of the desiderata arising
from learning-based control applications, cf. also our discussion in Chapter 4. In
particular, the uncertainty bounds can be evaluated numerically, and the empirical
results indicate that the resulting uncertainty sets are tight enough for applica-
tion in learning-based control scenarios. However, naturally these results need some
assumptions, and in order to be useful in practice, these assumptions need to be rea-
sonable from practicioner’s perspective. In Section 7.1, we therefore carefully discuss
the prior knowledge required for the uncertainty bounds presented and investigated
in Chapters 5 and 6. In turns out that the requirement of a known bound on the
RKHS norm of the target function is very problematic in the context of learning-
based control, and we propose to use assumptions that are more geometric in nature
as a replacement. In Section 7.2, we present several examples of such assumptions,
and outline an approach that allows combining them with kernel methods.

This chapter is based on, with some parts taken verbatim from, [CF11]1 as well
as [CF8]. Detailed comments on the author’s contribution and the relation of this
chapter to existing work are provided in Section 7.4.

1© IEEE 2022. Reprinted, with permission, from Christian Fiedler, Carsten W. Scherer, and Se-
bastian Trimpe. Learning functions and uncertainty sets using geometrically constrained kernel
regression. 61st IEEE Conference on Decision and Control (CDC), 2022.
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7.1. The delicate question of quantitative prior knowledge

Let us go back to the high level picture outlined in Chapter 4, and recall the following
popular strategy in learning-based control that we also use. A machine learning
method is utilized to learn more about the underlying system, and the remaining
uncertainty is quantified using frequentist uncertainty sets. Subsequently, these are
transformed into a format suitable for a robust control method, which is finally used
to control the system, and the control-theoretic guarantees then hold with the high
confidence from the frequentist uncertainty sets. However, to get these end-to-end
guarantees, we need concrete and valid frequentist uncertainty sets. The former
means that the existence of such uncertainty sets is not enough, we need to actually
compute them in a format suitable for the downstream robust control method, and
the latter says that these uncertainty sets have to contain the ground truth with
a prescribed high confidence. If no additional post-hoc verification of the resulting
controller is performed, then we have to rely on the validity of the uncertainty sets.
Since without some assumptions, it is impossible to get non-vacuous uncertainty
sets in non-trivial situations, this means that all the guarantees ultimately rely on
the prior knowledge used to derive the uncertainty sets. In particular, this strongly
suggests that only established prior knowledge that is deemed reasonable by the users
should be used to get these uncertainty sets.

To further illustrate the importance of this point, let us briefly introduce a partic-
ular variant of safe Bayesian optimization. The overall goal of Bayesian optimization
(BO) is to optimize an unknown target function f∗ : X → R. The function is only ac-
cessible through noisy evaluations, i.e., the optimization algorithm can choose some
input x ∈ X , query f∗ at this input, and receives a noise evaluation y = f∗(x) + η.
Most BO algorithms maintain an internal model of the target function, usually via
GP regression, which is used to decide which input to query next. Usually in BO it is
expensive to query the target function, for example, because it corresponds to some
physical experiment like running and evaluating a controller, and hence the goal is to
be query-efficient. In safe BO, some inputs are unsafe and hence have to be avoided
as queries during the optimization process. For example, in controller tuning with
BO, these can correspond to controller parameters leading to instabilities or crashes
of the plant or robot that is controlled. For the class of SafeOpt-type algorithms, as
introduced by [192], the set of safe inputs is modelled by S = {s ∈ X | g∗(x) ≥ 0},
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where g∗ : X → R is an unknown function that is also accessible through noisy
queries. Starting from a known set S0 ⊆ S, SafeOpt-type algorithm try to optimize
f∗ while only querying at inputs from S. This is achieved by maintaining an internal
model of g∗ and computing high probability uncertainty sets, which can be used to
determine inputs that are safe with high probability. However, SafeOpt type algo-
rithms are supposed to never query unsafe inputs with very high probability. This
means that the uncertainty sets have to hold from the start and no tuning phase is
allowed, so once again, the uncertainty sets must be derived from reasonable prior
knowledge. For a more detailed discussion of these aspects, we refer to [CF8] and
[CF9].
Of course, when using GP or kernel regression, frequentist uncertainty sets are

available that can actually be computed, cf. Chapters 5 and 6. Similar bounds
are also available for bounded noise without distributional assumptions, leading to
worst-case uncertainty sets, cf. [127, 176]. However, all of these bounds assume that
the target function is contained in an RKHS and need an upper bound on the RKHS
norm of the target function. In the next section, we will critically investigate this
assumptions.

7.1.1. The problem with the RKHS norm bound

As mentioned above, all frequentist-type uncertainty bounds for GP or kernel re-
gression rely on the knowledge of an upper bound on the RKHS norm of the target
function. More precisely, if we want to compute the uncertainty bounds, say in a
learning-based control scheme, then we need to know a concrete bound on the RKHS
norm of the target function. Note that this is a much stronger assumption than just
membership of the target function in a known RKHS. As discussed above, for many
applications in learning-based control it is important to get quantitative uncertainty
bounds from reasonable prior knowledge, which in this context means that we need
to get (among other ingredients) the aforementioned upper bound on the RKHS
norm. Unfortunately, to the best of our knowledge, at present it is not possible to
derive such a quantitative bound from established prior engineering knowledge in
non-trivial situations. This is somewhat surprising given the extensive and user-
friendly theory of kernel methods [189, 217], especially since the RKHS norm is in
general a very well-understood object. In fact, many characterizations and explicit
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representations for it are known, but they all appear to be not suited to connect it
to quantitative prior engineering knowledge.

For an arbitrary kernel, one can use discretization-based variational characteri-
zations of the RKHS norm (and RKHS functions), for example, by maximization
over a family of lower bounds on the RKHS norm [CF6, Section B], [17, Chapter I],
by minimization over certain bounds on function values at finitely many inputs
[149, Theorem A.2.6], by minimization over finite interpolation problems [152, The-
orem 3.11], or by minimization over certain matrix inequalities [152, Theorem 3.11].
For separable RKHSs, the RKHS norm can be expressed using a sampling expan-
sion [113], or as the limit of norms of RKHSs over finite inputs [125, Lemma 4.6].
On the one hand, all of these variational problems have an explicit form and they
work for any kernel (any kernel with separable RKHS, respectively). However, it is
not at all clear how to relate these representations to common properties of func-
tions that might be used as reliable prior knowledge to derive upper bounds on the
RKHS norm. Furthermore, these variational problems generally cannot be used in
numerical methods to estimate upper bounds on the RKHS norm, but only lower
bounds, though they may be used for estimating bounds in heuristics [CF19]. Since
these characterizations are based on discretizations of a given RKHS function, in
particular, using the exact function values, they are not suitable in typical learning
scenarios where the unknown target function is only accessible through noisy eval-
uations. If one considers more specific classes of kernels, other characterizations of
the RKHS norm become available. For example, continuous kernels on a compact
metric space equipped with a measure having full support (often called a Mercer
kernel in this context) allow a description of the RKHS norm as a weighted `2-norm
[189, Section 4.5], based on Mercer’s theorem. This has a clear interpretation in
the context of kernel methods, in particular, giving insight into the regularization
behavior of the RKHS norm in optimization problems in kernel machines [89, Sec-
tion 5.8], which in turn can be used to derive learning rates for various statistical
learning problems [190]. More general forms of Mercer’s theorem are available [191],
which in turn lead to improved learning theory results [73]. While the RKHS norm
representation for Mercer kernels is an important tool for statistical learning theory
and provides intuition about the regularization behavior, it is again unclear how
it can be used to derive quantitative RKHS norm bounds. Expressing the RKHS
norm for Mercer kernels as a weighted `2-norm provides valuable qualitative intu-
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ition about the corresponding RKHS norm, but we are not aware of any practically
relevant example where this has been used to translate realistic prior knowledge
into a concrete upper bound on the RKHS norm. Similarly, for sufficiently regu-
lar translation-invariant kernels, the RKHS norm can be expressed as a weighted
integral over the Fourier transform of RKHS functions [217, Theorem 10.12]. This
formulation allows an intuitive interpretation of the RKHS norm as a generalized
energy, penalizing high-frequency behavior of RKHS functions (as determined by
the Fourier transforms of the kernel). Several important function spaces are related
to RKHSs, for example certain Sobolev spaces [217, Chapter 10] or Fock spaces
[189, Section 4.4], which again have their own representations of the RKHS norm
(potentially after some embedding). Again, all of these representations offer insights
into the RKHS norm, and are important theoretical tools, but how this can be used
to derive practically useful quantitative upper bounds on the RKHS norm remains
unclear.
To summarize, while an extensive body of work on characterization and represen-

tation results for the RKHS norm is available, these results appear to be unsuited
to derive numerical upper bounds on this norm using practically meaningful prior
knowledge. Note that for many kernel methods and their theory this is not a prob-
lem, since most of them rely just on RKHS membership, but not the knowledge of
an upper bound on the RKHS of the target function. A classic example are support
vector machines (SVMs) and their theory. The algorithm itself needs no quantitative
knowledge about the target function2 to work, and the RKHS norm might appear
in learning guarantees, but it just determines how good or fast the learning process
goes, not whether it succeeds at all, cf. [189] for this theory.
Let us connect this back to the application in learning-based control. As dis-

cussed above, in general the uncertainty sets should be based only on reasonble and
established prior knowledge. However, as the extensive discussion in this section
shows, at present it appears to be not possible to derive a concrete RKHS upper
norm bound from such knowledge, expressed as easily interpretable propreties of
the target function. This means that at present there is an insurmountable gap
between theoretically grounded kernel-based learning methods for control and their

2Note that this formulation is slightly imprecise. In statistical learning theory the notion of a target
function does not appear implicitly, but functions attaining the Bayes risk (or the minimal risk
in the corresponding hypothesis class) take on the role of the target function.
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practical applicability. Note that the difficulties with the RKHS norm are occasion-
ally acknowledge in the literature, cf. e.g. [117], but the severity of this problem
is usually not discussed. Furthermore, this issue can actually lead to problems. As
shown with numerical experiments in [CF8], underestimation of the RKHS norm
can invalidate frequentist uncertainty sets (as is expected), and in turn this can lead
to algorithmic failures, for example, safety violations in safe BO. Note that simply
trying to use a conservative upper bound on the RKHS norm is in general not a vi-
able strategy, since it is very difficult to decide in a concrete, non-trivial application
what a “conservative” overstimate would be.
How to go forward from here? Trying to derive quantitative upper bounds on

RKHS functions from established prior knowledge is one option and a very important
research question. However, this appears to be an extremely hard problem3 and an
alternative approach seems necessary. In the next section, we propose one such
direction.

7.1.2. An alternative approach: Geometric prior knowledge

Recall that in the setting relevant in this part of the thesis, we are concerned with
prior knowledge about functions f : X → R, cf. also the discussion on more general
output sets in Chapter 4. One class of prior knowledge that is very broad, easily
interpretable for practioners, and connected to many forms of established engineering
prior knowledge, are geometric properties of functions. For example, if X ⊆ R, then
one such property could be monotonicity of the target function, i.e., it is known that
the function is nondecreasing or nonincreasing. It is clear that in many applications,
this is a natural prior assumption on the target function. Similarly, we might know
that the function belongs to a sector, cf. Section 6.2. If X is at least a metric space,
then another such assumption is Lipschitz continuity with a known bound on the
Lipschitz constant. This assumption has a very clear interpretation – a known bound
on the rate of change of a function – and since it can be interpreted as knowledge
about the sensitivity of the underlying problem, it is closely connection to established
engineering notions. In particular, practitioners have a chance to judge whether
a certain Lipschitz bound is reasonable in a given application, which is in stark

3For certain technical reasons, we suspect that it might be feasible in the context of kernel-
based linear system identification [159], by connecting RKHS properties with frequency domain
assumptions on the plant. However, pursuing this direction is beyond the scope of this thesis.
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contrast to an RKHS norm bound. Furthermore, a considerable amount of system-
theoretic knowledge, like invariance or stability properties, can be interpreted as
geometric constraints, as used for example in learning dynamical systems under side
information [5]. Importantly, when combined with a suitable measurement model,
for example assuming bounded additive noise, then it is often easily possible to
derive quantitative uncertainty bounds. One prominent example is the assumption
of a Lipschitz bound combined with bounded measurement noise, for which explicit
and tight uncertainty sets can be derived, which are often employed in systems and
control [140], [45].
Summarizing, using geometric assumptions together with a suitable measurement

model leads to explicit uncertainty sets, and the assumptions having a clear interpre-
tation and can often be derived from prior domain knowledge. On the other hand,
these approaches are often ad-hoc and they are rather disconnected from more estab-
lished machine learning approaches like kernel methods. Furthermore the estimators
and uncertainty sets have sometimes undesirable properties like non-differentiability,
which can lead to problems for gradient-based methods [126].
This motivates us to combine the best of both worlds by using kernel methods

together with geometric constraints. Results like those in Chapter 3 suggest that
RKHSs with sufficiently regular kernels can be compatible with such constraints, but
including such constraints in a kernel method can be nontrivial. In the following,
we will present and evaluate one possible approach. In addition, in the recent work
[CF8] we used a similar strategy in the context of safe Bayesian optimization, cf.
Section 7.3.

7.2. Kernel regression and uncertainty bounds

In this section, we will use kernel methods on uncertainty sets derived from geometric
constraints. This allows us to obtain nominal predictors with prescribed properties
in a systematic manner, together with explicit uncertainty sets. Furthermore, we
provide guaranteed overapproximations of the uncertainty set that have favorable
properties like differentiability. We implement this strategy using the recently in-
troduced Hard Shape Constrained Kernel Machines (HSKM) [19], which reduce the
learning problems to standard convex optimization problems. To the best of our
knowledge, this is the first work using kernel machines with guaranteed geometric
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constraints in the context of uncertainty sets relevant for learning-based control.
Furthermore, we retain the advantages of kernel methods coming with uncertainty
sets, but do not need an upper bound on the RKHS norm. We illustrate the prac-
tical feasibility of the approach by means of numerical examples, including a simple
control example.

7.2.1. Learning setting and goals

At the core, we consider the following regression problem. Let f∗ : X → Y be
a fixed, unknown static map, which is our target function or ground truth, where
∅ 6= X ⊆ Rd is open. Only for notational simplicity, we choose Y = R. Furthermore,
let D = ((x1, y1), . . . , (xN , yN )) for N ∈ N+ be some data set satisfying xn ∈ X
and yn = f∗(xn) + εn for n ∈ [N ], with bounded additive noise |εn| ≤ Bε for a
known bound Bε ∈ R. The goal is to find a nominal prediction or approximation
f̂ = f̂D of f∗ from the data set D, together with an appropriate uncertainty set
∆D = ∆(`D, uD) = {f ∈ YX | `D(x) ≤ f(x) ≤ uD(x)∀x ∈ X} with bounding
functions `D, uD ∈ RX . We take a worst-case perspective and require f∗ ∈ ∆D for
all noise realizations. Note that this learning scenario is yet another instantiation of
the abstract approach outlined in Chapter 4, and it is very common in learning-based
control. It appears for example when learning the dynamics for learning-based model
predictive control [92] (where f∗ corresponds to the unknown transition function
or vector field), when approximating static nonlinearities for learning-based robust
controller synthesis (where f∗ is the unknown static map acting on the nominal
plant) as in Section 6.2, or in safe learning-based controller tuning [31, 22] (where f∗
corresponds to the unknown performance measure for given controller parameters).
Additionally, for some applications, bounding functions with certain prescribed

properties like differentiability are desirable. For example, in the case of bounded
Lipschitz constant, the tightest uncertainty sets are piecewise affine-linear [140],
which can lead to problems for gradient based methods [126]. This leads to the
problem of finding additional ˆ̀D, ûD ∈ RX with such desirable properties and still
fulfilling f∗ ∈ ∆̂D = ∆(ˆ̀D, ûD). Note that simply applying a standard smoothing
procedure to `D, uD can be problematic since it might result in an invalid uncertainty
set.
It is clear that some assumptions need to be imposed on the target function f∗
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in order to be able to compute nontrivial uncertainty sets from the finite data set
D. Here, we use geometric constraints on f∗ for this purpose, and we follow [19]
and focus on constraints that can be formulated using inequalities involving linear
differential operators with homogenous coefficients. To faciliate a concise exposition,
we introduce some additional notation. Denote by N the nonnegative integers and
by N+ the positive integers. Define for N ∈ N+ the set [N ] = {1, . . . , N}. For
α ∈ Nn, define |α| = ∑n

i=1 αi and for a sufficiently regular function f ∈ RX on some
open X ⊆ Rd, define ∂αf = ∂α1

∂x
α1
1
· · · ∂αd

∂x
αd
d

f . Similarly, for k : X ×X → R sufficiently
regular, define ∂α,αk = ∂α1

∂x
α1
1

∂α1

∂x
α1
1+d
· · · ∂αd

∂x
αd
d

∂αd

∂x
αd
2d
k as well as ∂α1 k = ∂α1

∂x
α1
1
· · · ∂αd

∂x
αd
d

k and

∂α2 k = ∂α1

∂x
α1
1+d
· · · ∂αd

∂x
αd
2d
k. Finally, Cm(X ,R) denotes the set of m-times continuously

differentiable functions.
Let us formalize now the geometric constraints we consider in the following. For

n ∈ [NC ] with some NC ∈ N+, let

Cn = {f ∈ Cm(X ,R) | Ln[f ](x) ≥ bn ∀x ∈ Kn} (7.1)

where Kn ⊆ X is a non-empty compact set, bn ∈ R and Ln = ∑NLn
`=1 a

(n)
` ∂α

(n)
` , with

α
(n)
` ∈ Nn, |α(n)

` | ≤ m, and a(n)
` ∈ R. Note that this class includes many common

geometric constraints, like slope-restrictions or convexity, cf. [19] for more examples.
We continue with a simple, but instructive instance from this class.

Example 7.2.1 (Monotonicity). Let X = (a, b), [c, d] ⊆ (a, b), and f∗ ∈ RX be a
nondecreasing function that is bounded by ` ≤ f∗(x) ≤ u for all x ∈ (a, b), where
`, u ∈ R. We can encode this in the form of (7.1) by setting NC = 3, L1 = ∂

∂x , b1 = 0
and L2 = id, b2 = ` and L3 = −id, b3 = −u, and Kn = [c, d], n = 1, 2, 3.

Let us now summarize the learning problem we tackle: Given a data set D and
prior knowledge about f∗ including the constraints (7.1), find

1. a nominal prediction f̂ that is reasonably close to f∗, fulfills all the constraints
from prior knowledge and is guaranteed to be contained in a suitable uncer-
tainty set;

2. an explicit uncertainty set ∆D that contains the ground truth f∗;

3. optionall an uncertainty set ∆̂D that contains the ground truth and has desir-
able properties, e.g., being described by smooth bounding functions.
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7.2.2. Related work

Before moving on to the proposed method, let us briefly discuss related work. In
[117], the problematic nature of the RKHS norm bound assumption has been pointed
out, and a GP based approach using Lipschitz continuity has been proposed to
circumvent this problem. However, this approach is difficult to reconcile with robust
control methods, because it relies on a probabilistic setting, cf. our discussion in
Chapter 4. Uncertainty sets from geometric assumptions have been used for a while
in the special case of Lipschitz bounds, for example in Nonlinear Set Membership
estimation [140] and Kinky Inference [45], but these methods are very disconnected
from established kernel-based approaches. Furthermore, while a variety of geometric
and shape constraints are considered in statistics [86], explicit uncertainty sets based
on finite data sets are usually not derived there [19]. A main aspect of the present
section is the usage of realistic prior knowledge, in particular from the domain of
systems and control. This leads to a natural connection to learning methods using
side information, e.g. [5, 107] and the references therein. In fact, these works
can be seen as complementary to our approach since the focus there is on good
nominal prediction while here we focus on the containment in uncertainty sets.
Closely related to our work is [126], where a scenario approach is proposed to get
sufficiently regular predictors under bounded noise and a known Lipschitz constant.
While this seems to be the first work making an explicit connection between kernel
methods and geometric constraints in the context of uncertainty sets, only high-
probability guarantees can be given owing to the scenario approach. Furthermore,
the approach is tailored to the case of hard Lipschitz bounds. While enforcing
constraints at finitely many inputs in kernel regression is easily possible with the
Representer Theorem [180], enforcing geometric constraints is considerably harder
since such constraints usually involve infinitely many inputs. Finally, a variety of
constrained kernel methods are available, see [4] for a typical example, but these
methods usually rely on relaxing the constraints, which invalidates any uncertainty
sets and subsequent guarantees building on them. The latter aspects motivates us
to use hard shape constrained kernel machines.
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7.2.3. Hard shape constrained kernel machines

Consider a kernel k : X × X → R. It is well-known (cf. e.g. [189, Corollary 4.36])
that if k has continuous partial derivatives ∂α,αk for all |α| ≤ m for some m ∈ N+,
then for all f ∈ Hk, we have f ∈ Cm(X ,R) and for all x ∈ X and |α| ≤ m, we have
∂αf(x) = 〈f, ∂αΦk(x)〉, where the right-hand side is well-defined. From now on,
we assume that k is sufficiently regular, which is only a mild assumption for many
popular kernels.

We opt for optimization-based kernel methods and want to enforce the geometric
constraints in the optimization problem, leading to the generic problem

min
f∈Hk

L(f(x1), . . . , f(xM )) + λ‖f‖2k (7.2)

s.t. f ∈ Cn ∀n ∈ [NC ]

where x1, . . . , xM ∈ X for some M ∈ N and L : RM → R is strictly convex and
λ ∈ R>0 is a regularization parameter For example, in Section 7.2.4 we haveM = N

and L will be a data-fit term. In general, this is an infinite-dimensional optimiza-
tion problem, and in order to solve it without discarding or relaxing the geomet-
ric constraints, we use the tightening approach from [19]: For each n ∈ [NC ], let
δn ∈ R>0 be given and choose x(n)

m ∈ Kn for m ∈ [Mn] with some Mn ∈ N, such that
(x(n)

1 , . . . , x
(n)
Mn

) forms a δn-cover of Kn, and choose ηn ∈ R>0 such that

ηn ≥ max
m∈[Mn]

sup
x+x(n)

m ∈Kn
‖x‖≤δn

‖Ln[Φk(x(n)
m )]− Ln[Φk(x(n)

m + x)]‖k. (7.3)

We can then formulate the new problem

min
f∈Hk

L(f(x1), . . . , f(xM )) + λ‖f‖2k (7.4)

s.t. Ln[f ](x(n)
m ) ≥ bn + ηn‖Ln[f ]‖k ∀n ∈ [NC ], m ∈ [Mn]

and summarize its main properties in the next result, essentially a simplified variant
of [19, Theorem 1].

Theorem 7.2.2. Every feasible f for problem (7.4) is also feasible for (7.2), i.e.,
the former is a tightening of the latter. Furthermore, every solution f̂ of problem
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(7.4) can be written in the form

f̂(x) =
M∑
m=1

cmk(x, xm) +
∑

(α,x̄)∈G
c(α,x̄)∂

α
2 k(x, x̄), (7.5)

where

G ⊆{α(n)
` | n ∈ [NC ], ` ∈ [NLn ]} (7.6)

× {x(n)
m | n ∈ [NC ], m ∈ [Mn]}

and cm, c(α,x̄) ∈ R for m ∈ [M ], (α, x̄) ∈ G.

For the proof and an explicit description of (7.5) and (7.6), see the supplementary
material of [19]. The representation (7.5) is a variant of the Representer Theorem
[180] and implies that problem (7.4) is equivalent to a finite-dimensional convex
second order cone (SOC) optimization problem. The latter optimization problem
can be explicitly formulated via standard arguments, cf. [19] for details. Note that
if f̂ ∈ Hk is feasible for (7.4), then f̂ ∈ Cn for all n ∈ [NC ], i.e., all geometric
constraints are fulfilled.

Remark 7.2.3. The method from [19] supports the simultanous approximation of
multiple functions which are are coupled by convex constraints. Furthermore, using
a generalization, cf. [18], it is also possible to work with vector RKHS functions
and semidefinite constraints. For conciseness, we do not use these more advanced
capabilities in the present work, but we would like to stress that all of the following
developments and results apply to these more sophisticated variants. Furthermore,
using standard arguments, cf. [180, 222], additional constraints on the RKHS func-
tion values or derivatives at finitely many inputs can be enforced, which we will
make use in the next section.

7.2.4. Geometrically constrained kernel regression with uncertainty sets

We now develop a geometrically constrained kernel regression approach to tackle the
learning problem outlined in Section 7.2.1, considering each of the three subproblems
in turn.

192



7.2. Kernel regression and uncertainty bounds

Nominal prediction

In order to find a nominal prediction f̂ fulfilling all constraints from prior knowledge
(in particular, the constraints (7.1)), while being contained in a suitable uncertainty
set, we use a kernel optimization approach and enforce the geometric constraints
from prior knowledge and the noise model in a HSKM. Note that this includes
the implicit assumption that the RKHS used in the kernel machine includes a good
approximation of the target function, which is a common and reasonable assumption
[189]. First, we encode the prior knowledge as constraints of the form (7.1). This
is demonstrated for a few illustrative examples below, with many more examples
in [19, 18]. Next, in order to achieve a good nominal approximation of the target
function, we use L(t1, . . . , tN ) = ∑N

n=1(tn−yn)2, i.e., the sum of squares criterion as
a data fit term. If the empirical mean of the noise terms is close to zero, we expect
a good approximation of the target function for sufficiently large data sets.

Remark 7.2.4. Many different objectives are possible. For example, one can use
sum of absolute values, which could add additional robustness to outliers. Fur-
thermore, one can remove the data term completely, resulting in a Support Vector
Regression-type problem, cf. e.g. [126]. Finally, adding an `1-penalty on the coeffi-
cients leads to sparsity, which becomes relevant when the resulting function has to
be evaluated efficiently.

Finally, we apply the tightening procedure and the Representer Theorem described
in Theorem 7.2.2. For convenience, we summarize this in the following result.

Theorem 7.2.5. Let f∗ ∈ C1 ∩ . . . ∩ CNC , x1, . . . , xN ∈ X and, for n ∈ [N ], assume
that yn = f∗(xn) + εn, where |εn| ≤ Bε for some known Bε ∈ R≥0. Consider the
optimization problem

min
f∈Hk

N∑
n=1

(f(xn)− yn)2 + λ‖f‖2k (7.7)

s.t.|f(xn)− yn| ≤ Bε ∀n ∈ [N ]

Ln[f ](x(n)
m ) ≥ bn + ηn‖Ln[f ]‖k ∀n ∈ [NC ], m ∈ [Mn]

Any feasible function for (7.7) fulfills all geometric constraints (7.1) and is contained
in every valid uncertainty set that can be derived from the geometric constraints and
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the noise assumption. Furthermore, every solution f̂ of problem (7.4) can be written
in the form (7.5).

Proof. The first and third claim are direct consequences of Theorem 7.2.2 and Re-
mark 7.2.3. The second claim follows since such an uncertainty includes any func-
tion fulfilling all geometric constraints and is compatible with the data set and noise
model, which is the case for any feasible function.

The second claim implies that (7.7) is equivalent to a finite-dimensional convex
SOC problem and, compared to the situation in Theorem 7.2.2, we only added 2N
linear inequality constraints.

Uncertainty sets

In order to obtain explicit uncertainty sets, we combine the geometric constraints
and bounded noise assumptions. In general, nontrivial uncertainty sets require a
manual construction, taking the specific geometric constraints into account. We
demonstrate this now with a straightforward, but instructive example.

Example 7.2.6 (continued). Given a data set D = ((xn, yn))n∈[N ] as described in
Section 7.2.1, elementary calculations show that the tightest uncertainty set in this
situation is given by

`D(x) =


` x ∈ [c, x1)

max{`, y1 −Bε, . . . , yn −Bε} x ∈ [xn, xn+1)

max{`, y1 −Bε, . . . , yN −Bε} x ∈ [xN , d]

uD(x) =


min{u, y1 +Bε, . . . , yN +Bε} x ∈ [c, x1)

min{u, yn+1 +Bε, . . . , yN +Bε} x ∈ [xn, xn+1)

u x ∈ [xN , d]

where we assumed without loss of generality that c < x1 < . . . < xN < d and
` < y1 −Bε, yN +Bε < u.

Example 7.2.7 (Slope restriction). Let a ≤ c < 0 < d ≤ b, s < 0 < s̄ and
f∗ : (a, b) → R with f∗(0) = 0 and f ′∗(x) ≥ s, f ′∗(x) ≤ s̄ for all x ∈ [c, d]. Such
functions appear frequently in control as slope-restricted nonlinearities. Given a data
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set D = ((xn, yn))n∈[N ] as described in Section 7.2.1, this leads to an uncertainty
set described by uD(x) = min{bn(x) | n = 0, . . . , N}, where we defined for n ∈ [N ]
bn(x) = yn + Bε + s̄(x − xn) if x ≥ xn, bn(x) = yn + Bε + s(x − xn) otherwise,
and b0(x) = s̄x if x ≥ 0 and b0(x) = sx otherwise. Furthermore, `D is given by
an analogous construction. For an illustration on a concrete example, see Figure
7.2. These uncertainty sets are direct generalizations of the well-known tightest
uncertainty sets from Lipschitz approaches like [140].

Remark 7.2.8. Note that, in general, bounding functions of an uncertainty set can-
not be directly computed using geometrically constrained kernel regression. The lat-
ter searches over an RKHS which contains functions that are usually much smoother
(in terms of regularity as well as complexity) than the class of all functions fulfilling
the geometric constraints. While this is a desirable feature for nominal prediction
[130, 126], it poses an obstacle for uncertainty sets that have to contain all possible
function candidates fulfilling the geometric constraints and being compatible with
the data.

Uncertainty sets with prescribed properties

Recall that for some applications an uncertainty set ∆̂D described by bounding func-
tions ˆ̀D, ûD with prescribed properties, like differentiability, is desirable. To solve
this task, we propose to start with a valid uncertainty ∆D and find an overapproxi-
mation ∆̂D ⊇ ∆D by using a HSKM to compute suitable bounding functions ˆ̀D, ûD.
In particular, this leads to a valid uncertainty set since ∆̂D ⊇ ∆D 3 f∗. The strategy
is to minimize a suitable measure of overapproximation, subject to the constraint
that the resulting functions still lead to an overapproximation of the given uncer-
tainty set, as well as any additional constraints. For concreteness, consider the case
of finding a smooth upper bounding function ûD, the case of ˆ̀D being analogous.
One option to implement this strategy is by solving

min
u∈Hk

M∑
m=1

(u(x̂m)− uD(x̂m))2 + λ‖u‖2k (7.8)

s.t.u(x) ≥ uD(x) ∀x ∈ K
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where x̂1, . . . , x̂M ∈ K is a sufficiently fine grid and K ⊆ X a compact subset of
the input set, on which we want an overapproximation of the uncertainty set. One
can now use the procedure outlined in Theorem 7.2.2. In particular, if the kernel k
is sufficiently smooth, then the solutions ˆ̀D, ûD of the resulting finite-dimensional
convex problem are smooth bounding functions that are guaranteed to lead to a
valid uncertainty set ∆̂D.

7.2.5. Examples

Illustrative examples

We now illustrate the methodology using Examples 7.2.1 and 7.2.7. For simplicity,
we use the popular Squared Exponential kernel with length scale ` = 0.5 and unit
variance, albeit other kernel choices can readily be applied. For the tightening and
determination of the relevant constants, we use the gridding approach from [19].
The resulting optimization problems are solved using MOSEK [13] and cvxpy [62].
Computation times were less than 2 min on a standard laptop.

Example 7.2.9 (continued). As a concrete ground truth, choose f∗ : [0, 2] → R,
f∗(x) = x + 0.3 sin(2πx). We sample N = 30 inputs xn uniformly from [0, 2] and
set yn = f∗(xn) + εn, where εn are sampled independently and uniformly from
[−0.2, 0.2]. The tightening in Theorem 7.2.2 is performed using an equidistant grid
of 100 points from [0, 2], following the procedure described in [19]. As an illustration
of Remark 7.2.4, we removed the data fitting term from the objective. Furthermore,
the uncertainty set described in Example 7.2.6 is computed and overapproximated
using the approach outlined in Section 7.2.4. The result is shown in Figure 7.1. It
can be seen that the uncertainty set is rather tight and, as indicated by Theorem
7.2.5, the nominal prediction is contained in this uncertainty set (as well as the
ground truth). Furthermore, by the choice of the kernel, the overapproximation is
smooth, but at the expense of conservatism.

Example 7.2.10 (continued). Consider as a concrete example the piecewise affine-
linear function f∗ : [−1.5, 1.5]→ R defined as f∗(x) = −Ix<0 ·0.5x+Ix≥0.5 ·(x−0.5),
where I is the usual indicator function. Using s = −1, s̄ = 2, as well as N = 20 and
Bε = 0.1, leads to the results shown in Figure 7.2. Despite the nonsmoothness of
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Figure 7.1.: Illustrating geometrically constrained regression on the example of a
nondecreasing function. © 2022 IEEE

f∗, the nominal prediction is mostly close to it and the smoothed uncertainty sets
are rather tight.

Control example

We now apply the methodology to an illustrative control example adapted from
[117]. In particular, we use the nominal prediction from the proposed learning
method for feedback linearization control for tracking a reference trajectory, while
the uncertainty estimates are used for computing ultimate bounds for the tracking
error.

Consider the 2d system ẋ1 = x2, ẋ2 = f(x) + u, a reference input xref and
define xd =

(
xref ẋref

)
and e = x − xd. Given a model f̂ , use the controller u =

−f̂(x)+ẍref−kcr−λe2 with parameters kc, λ and filtered state ṙ = f(x)−f̂(x)−kcr.
For concreteness [117, Section 5.1], let f(x) = 1 − sin(x1) + 1/(1 + exp(−x2)) =
1 + f1(x1) + f2(x2) and kc = 5, λ = 1. We take advantage of the additive structure
of f and learn f1, f2 separately, using two data sets of the form yi,n = fi(xi,n) + εi,n,
i = 1, 2, with n = 1, . . . , 50, uniform additive noise with |εi,n| ≤ Bε = 0.05 and
assume as prior knowledge a Lipschitz bound of 2 for both f1 and f2. We use the
method from Section 7.2.4 to get f̂1 and f̂2, leading to the prediction model f̂(x) =
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Figure 7.2.: Geometrically constrained kernel regression in the case of a Lipschitz
continuous function. © 2022 IEEE

1 + f̂1(x1) + f̂2(x2). Similar to Example 7.2.7, we also get an uncertainty set with
bounding functions `D, uD and smoothed bounding functions ˆ̀D, ûD as described
in Section 7.2.4. Figure 7.3 (top) shows the resulting closed loop trajectory for
xref(t) = 2 sin(t), using f̂ in the controller, as well as the local size of the uncertainty
set wD(x) = uD(x)− `D(x).

It has been shown in [117, Section 4] that e converges to a (time-varying) ball
with radius rD(x) = wD(x(t))/kc

√
λ2 + 1, in particular, rD is an ultimate bound

for ‖e‖. This bound can in turn be used for safety guarantees, cf. the discussion
in [117]. Figure 7.3 (bottom) shows the norm of e, the radius rD as well as the
smooth overapproximation r̂D(x) = ŵD(x)/kc

√
λ2 + 1 with ŵD(x) = ûD(x)− ˆ̀D(x).

As expected, r̂D changes more smoothly than rD at the expense of conservatism,
due to the smoother but more conservative uncertainty set.

Note that we did not need any RKHS norm estimate in this example. Further-
more, in contrast to [117], all guarantees hold in a worst-case sense and not only
probabilistically.
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Figure 7.3.: Top: Reference and closed-loop trajectory using controller with
nominal prediction model. Background color indicates local size of
uncertainty set. Bottom: Tracking error norm ‖e‖ and asymptotic
bounds rD, r̂D over time. Note that after a short transient phase, the
tracking error stays well below the asymptotic bound from [117,
Section 4]. © 2021 IEEE

7.2.6. Discussion

We presented a versatile kernel based approach for the problem of learning func-
tions together with uncertainty sets from noisy data. Relying only on geometric
constraints and a bounded noise model, this leads to learned functions with guaran-
teed properties and explicit uncertainty sets. Since a multitude of prior engineering
knowledge can be expressed as geometric constraints, this paves the way to practical
and reliable uncertainty sets for learning-based control.

At the moment, three relevant limitations of our approach can be identified: First,
HSKM rely on a gridding approach and hence suffer from the curse of dimensionality
in the input space dimension, which is a limitation inherited by our methods. Sec-
ond, the feasibility of the convex optimization problems is not guaranteed, though
in practice this does not seem to pose a problem. In particular, if the problems
are feasible, the geometric constraints are guaranteed to be fulfilled. Finally, the
derivation of uncertainty sets from geometric assumptions currently has to be done
manually on a case-by-case basis.
The methodology outlined here can be easily generalized and extended in many

directions: Target functions with multiple outputs can be handled by approximating
all coordinate functions separately, potentially coupled by convex SOC constraints
[19] or, alternatively, approximated using a function from a vector RKHS [18]. Since
the approach in Theorem 7.2.5 is also compatible with the generalizations developed
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in [18], semidefinite constraints can be handled analogously. This is particularly
relevant for learning-based control, since many relevant properties of dynamical
systems can be expressed using Linear Matrix Inequalities, cf. e.g. [179]. Finally,
the methodology outlined here is compatible with any constrained kernel regression
method that supports geometric constraints, and Theorem 7.2.5 applies mutatis
mutandis to any such method. As already hinted at in [19], linear integral functional
constraints can also be used.
Ongoing work is concerned with more complex application scenarios, stochastic

noise models, learning vector-valued functions, and combining the presented method-
ology with other modeling approaches.

7.3. Conclusion

In Section 7.1, we argued that uncertainty bounds in learning-based control should
be only based on assumptions that can be clearly linked to reasonable prior knowl-
edge accepted by practitioners. Furthermore, we argued that at present a concrete
numerical upper bound on the RKHS norm does not fulfill this requirement, and we
proposed to switch towards geometric properties of the ground truth as alternative
assumptions, and combine this with kernel methods. In Section 7.2, we proposed
one concrete framework for this approach, which showed promising initial results
and many interesting avenues for future research in this area remain. However, as
already pointed out there, automating the derivation of uncertainty sets from ge-
ometric assumptions, and broading the class of suitable measurement models, in
particular, including also stochastic noise, is an important open problem. Further-
more, in the recent work [CF8] we used a similar approach in the context of safe BO,
and by relying only on a Lipschitz bound for ensuring safety, we achieved excellent
performance while guaranteeing safety using only reasonable and easily interpretable
quantitative prior knowledge. Since this work is beyond the scope of this thesis, we
refer to [CF8] for more details, and [CF9] for a concise overview. In summary, while
interesting open problems and plenty of opportunities for extensions remain open,
combining geometric assumptions for uncertainty sets with kernel methods appears
as a very promising approach for learning-based control with rigorous guarantees,
that can translate into practice.
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7.4. Comments

Section 7.1 is based on [CF11] and [CF8], with some parts taken verbatim from
these references. Section 7.2 is based on and to a large extent taken verbatim from
the work [CF11]. The corresponding methods were developed, implemented and
evaluated by the author of this thesis, who also wrote the article with editorial
input from C.W. Scherer and S. Trimpe. The line of work in [CF8] was initiated
by S. Trimpe, the main approach (LoSBO) was developed by the author of this
thesis together with L. Kreisköther, who also performed all the initial experiments.
The additional algorithm LoS-GP-UCB reported in [CF8] arose through discussions
with J. Menn, P. Brunzema and A. von Rohr. All the experiments in [CF8] were
conducted by J. Menn with support by the author of this thesis, who also wrote
most of the manuscript, with editorial input from J. Menn and S. Trimpe., and
some of the plots were prepared by the student assistant S. Azirar. The extended
abstract [CF9] was written mostly by the author of this thesis, with editorial input
by J. Menn.
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Kernels and the mean field limit
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8. Introduction

We now turn to our second main contribution, investigating kernels in the context
of mean field limits. The main concept in the next chapters are mean field limits
of functions, which we motivate and formalize in detail in Section 8.2. To provide
some context, in Section 8.3 we give a self-contained introduction to (formal) mean
field limits as commonly used in kinetic theory, and link this to mean field limits of
functions. Finally, in Section 8.4 we explain how all of this is connected to kernel
methods, and motivate the developments in the upcoming chapters. For the reader’s
convenience, we also include some technical background on kernel mean embeddings
in Section 8.5, since this will be used frequently later on.

This chapter is partially based on, and some parts have been taken verbatim from,
[CF6] and [CF5]. Detailed comments on the author’s contribution and relation to
existing work are provided in Section 8.6.

8.1. Multiagent systems, kinetic theory and mean field
limits

Models with many variables play an important role in many fields of mathematical
and physical sciences. In this context, going to the limit of infinitely many variables
is an important analysis and modeling approach. Multiagent systems (MAS), or
synonymously, interacting particle systems (IPS) is a rich and thriving field at the
intersection of systems and control, applied mathematics, computer science, and
physics. This area has started in the statistical mechanics of many-particle systems,
in particular, gas dynamics [52, 151]. In past decades, the field has expanded its
investigation to many complex systems, both natural and engineered. Applications
include animal movement (inter alia swarms of birds, schools of fish, colonies of
microorganisms) [21, 104], social and political dynamics [200, 51], crowd modeling
and control (pedestrian movement, gathering at large events like football games or
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concerts) [68, 57, 6], swarms of robots [158, 148, 53] or vehicular traffic (in particular,
traffic jams) [201]. There is now a vast literature on such applications, and we refer
to the surveys [146, 212, 23, 24, 82] as starting points. Typical questions concern
the long-term behavior of such systems, in particular, emergent phenomena like
consensus or alignment [146].

Recently, machine learning has played an increasing role also in this area. While
first-principles modeling has been very successful for interacting particle systems
in physical domains, using this approach to model the interaction rules in complex
domains like social and opinion dynamics, pedestrian and animal movement or ve-
hicular traffic, can be problematic. Therefore, learning interaction rules from data
has been recently intensively investigated, for example, in the pioneering works [35,
124]. The data consists typically of (sampled) trajectories of the particle states,
potentially with measurement noise, and the goal is to learn a good approximation
of the interaction rule φ.

In many relevant applications, the number of agents or particles is very large.
For example, even small volumes of gases typically contain an enormous number
of molecules, a microscopic modeling approach quickly becomes infeasible. In par-
ticular, simulation and control on the microscopic level, modelling every individual
particle or agent, is not possible anymore in such applications. One way to deal
with this difficult is to go from the microscopic level to the mesoscopic level, and
considering only the distribution of the agents or particles, instead of every individ-
ual one. This forms one of the major subjects of kinetic theory. Several approaches
for this transition are available, both formal and rigorous. For example, from a
continuous-time microsopic model, one can derive a Boltzmann-type equation, and
in an appropriate scaling-limit, one ends up on the mesoscopic level [151]. Alter-
natively, one can go directly to the mesoscopic level with the mean field limit. In
Section 8.3, we provide a gentle introduction to the (formal) mean field limit in a
typical setting of kinetic theory. However, our starting points are mean field limits
of functions (or rather of a sequence of functions), which we motivate and formalize
in detail in Section 8.2. It turns out that this has a direct connection to kernel
methods, cf. Section 8.4.
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8.2. Mean field limit of functions

Some notation and terminology ForM ∈ N+, we denote by SM the set of permu-
tations of {1, . . . ,M}. For some set X , we will frequently use the notation ~x ∈ XM ,
M ∈ N+, for tuples of elements of X , and the notation xm to refer to the m-th
element of ~x, 1 ≤ m ≤ M . Furthermore, given ~x ∈ XM and σ ∈ SM , we write for
brevity

σ~x =
(
xσ(1) · · · xσ(M)

)
. (8.1)

For x ∈ X , we denote by δx the Dirac probability measure with atom on x. Note
that technically a measure is only defined on a measurable space, but since

δx(A) =

1 if x ∈ A

0 otherwise

holds for any A ⊆ X , not specifying the underlying σ-algebra does not cause any
problems. Furthermore, note that in earlier chapters of this thesis, δx has been
used to denote the evaluation fucntional over a given function space, but since this
notation is so established, and no confusion can arise, we deemed this ambiguity
acceptable. For ~x ∈ XM , we write

µ̂[~x] = 1
M

M∑
i=1

δxi (8.2)

for the empirical measure with atoms x1, . . . , xM . Note that the order of the atoms
does not matter, so µ̂[σ~x] = µ̂[~x] for all σ ∈ SM . Furthermore, we write EM (X ) for
the set of empirical measures with M atoms (potentially with repetitions), and

E =
⋃

M∈N+

EM (X ) (8.3)

for the set of all empirical measure with a finite number of atoms.

Let Y 6= ∅ be some additional set. We call a function f : XM → Y permutation-
invariant if for all x1, . . . , xM ∈ X and σ ∈ SM we have

f(xσ(1), . . . , xσ(M)) = f(x1, . . . , xM ),
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or more short f(σ~x) = f(~x). A permutation invariant function is sometimes also
called symmetric.

Finally, there is a close connection between permutation invariant functions, and
functions on empirical measures. More precisely, a function FM : EM (X ) → Y on
empirical measures with M atoms is in a unique correspondence with a function
fM : XM → Y that is permutation invariant. Given FM , we can define fM by
setting

fM (x1, . . . , xM ) = FM (µ̂[(x1, . . . , xM )]),

and we find for all ~x ∈ XM and σ ∈ SM that

fM (σ~x) = FM (µ̂[σ~x]) = FM (µ̂[~x]) = fM (~x),

so fM is indeed permutation invariant. Given fM , we can define FM by

FM

(
1
M

M∑
i=1

δxi

)
= fM (x1, . . . , xM ),

and this is well-defined since if ~x, ~x′ ∈ XM with µ̂[~x] = µ̂[~x′], we have ~x = σ~x′ for
some σ ∈ SM , so we get

fM (~x) = fM (σ~x′) = fM (~x′).

We can therefore work interchangably with functions on empirical measures and
permutation invariant functions.

Functions of empirical measures Consider now the following situation. We have
collections of entities of the same type, and we are interested in a property of such
collectives. Furthermore, we assume that the entities are indistinguishable, so if we
have a collection of M entities, it is best modelled as an empirical measure with the
M entities as atoms. At least for finitely many entities, the property of interest can
then be modelled as scalar functions on empirical measures. Arbitrary collections
of entities can be modelled by probability distributions, though the intuition is not
as transparent anymore. In the context of multiagent systems, this situation occurs
when we are interested in a certain state-dependent functional or feature of the
system.
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Formally, we have a set X 6= ∅, which could be for example the state space of an
individual agent of a multiagent system. Furthermore, we have maps FM : EM (X )→
R, M ∈ N+, and given ~x ∈ XM , we interpret FM (µ̂[~x]) as the value of the property
of interest for the collection of entities modelled by µ̂[~x]. Roughly speaking, this
means that we can compute the property of interest for a finite number of entities.
But what if we want to compute the property for arbitrary collective of entities?
Ideally, we “extend” the family of maps (FM )M from empirical measures to a map
on all (or at least sufficiently regular) probability distributions over X .
One way to do this is themean field limit of a sequence of functions. Before moving

on to this concept, we need some more background on probability distributions.

Technical background on probability measures Unless noted otherwise, from now
on (X, dX) denotes a compact metric space. Let P(X) be the set of Borel probability
measures on X. We consider the usual weak convergence1 of probability distribu-
tions, cf. e.g. [109, Chapter 13], so (µn)n ⊆ P(X) converges to µ ∈ P(X) iff for all
bounded and continuous φ : X → R we have

lim
n→∞

∫
X
φ(x)dµn(x) =

∫
X
φ(x)dµ(x).

Of course, since X is compact, this is equivalent to requiring the convergence for all
continuous φ. It is well-known, cf. [64, Section 11.8], that this convergence in P(X)
can be metrized by the Kantorowich-Rubinstein distance dKR, defined by

dKR(µ1, µ2) = sup
{∫

X
φ(x)d(µ1 − µ2)(x) | φ : X → R is 1-Lipschitz

}
,

and P(X) is compact under this metric. Furthermore, the empirical measures are
dense in P(X) under the given metric.

Defining the mean field limit of functions Let us return to the problem from
above and restrict us to a setting with convenient analytical tools available. Instead
of an arbitrary set X , we consider the compact metric space (X, dX), and suppose
that for all M ∈ N+, we have FM : EM (X) → R given, and the goal is to find

1Note that in the literature, in particular in the context of optimal transport, it is also called
narrow convergence, cf. e.g. [12, Chapter 6].
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some F : P(X) → R that in an appropriate sense extends the FM . Recalling our
interpretation from above, using the FM we can compute some property of interest
for all empirical measures with a finite number of atoms, and F will allow us to
compute this property for all Borel probability measures µ ∈ P(X).

How should such a F look like? Since EM (X) ⊆ P(X), a natural requirement of
an extension would be F |EM (X)= FM for all M ∈ N+, however, we do not require
this, since the FM might not be consistent with each other. Instead, we start from
the denseness of E(X) in P(X) w.r.t. dKR. This means that for all µ ∈ P(X) and
ε > 0, there exists some ~xε ∈ XMε for some Mε ∈ N+, such that dKR(µ̂[~xε], µ) ≤ ε.
In general, a smaller ε requires a larger Mε, and conversely, empirical measures
in EM (X) should become increasingly better approximators with larger M . But
this means intuitively that for a large M , FM is almost capable of computing the
property of interest for any Borel probability measure, since EM (X) can approximate
arbitrary measures already quite well, and hence FM and F should be somewhat
close, i.e. FM (µ̂[~x]) ≈ F (µ̂[~x]). We can formalize this by requiring that

sup
µ̂[~x]∈EM (X)

|FM (µ̂[~x])− F (µ̂[~x])| → 0 M →∞. (8.4)

This is almost the definition of the mean field limit of a sequence of functions, as
found in the literature. The only difference is that it is customarily defined for
permutation invariant functions.
To make this connection, recall that we can identify the functions FM : EM (X)→

R with permutation invariant functions fM : XM → R, so (8.4) becomes

sup
~x∈XM

|fM (~x)− F (µ̂[~x])| → 0 M →∞.

If the preceding holds, we call F the mean field limit of (fM )M . This notion has
been introduced by P.-L. Lions in the context of mean field games [49], and it is
by now a very established notion in kinetic theory, where it appears for example in
mean field (optimal) control [91, 74]. For convenience, we record this concept in the
following formal definition.

Definition 8.2.1. Let X be a measurable space, and let P be a set of probability
distributions on X that contains all empirical probability measures with finitely
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many atoms. Consider a sequence of functions fM : XM → R, M ∈ N+, and a
function f : P → R. If

lim
M→∞

sup
~x∈XM

|fM (~x)− f(µ̂[~x])| = 0, (8.5)

then we say that (fM )M converges to f in mean field, or that f is the mean field
limit of the fM , and we write fM

P1−→ F .

A classic existence result In most situations, we have the functions fM , M ∈ N+,
and would like to get the corresponding mean field limit, so that we can deal with
arbitrary (Borel) probability measures. In other words, what about the existence of
mean field limits of functions?
For convenience, we recall a by now classic result, cf. [49, Theorem 2.1]. To

formulate it, we define a modulus of continuity as a function ω : R≥0 → R≥0 that is
continuous, non decreasing and with ω(0) = 0. Later we use that for every R ∈ R>0

and every modulus of continuity ω, we can find a concave modulus of continuity
ω̃ : [0, R]→ R≥0 such that ω(r) ≤ ω̃(r) for all r ∈ [0, R].

Proposition 8.2.2. Assume the following about the (fM )M .

1. (Symmetry in ~x) For allM ∈ N+, ~x ∈ XM and permutations σ ∈ SM , we have

fM (σ~x) := f(xσ(1), . . . , xσ(M)) = f(~x)

2. (Uniform boundedness) There exists Cf ∈ R≥0 such that

∀M ∈ N+, ~x ∈ XM : |fM (~x)| ≤ Cf

3. (Uniform continuity) There exists a modulus of continuity ωf : R≥0 → R≥0

such that for all M ∈ N+, ~x1, ~x2 ∈ XM

|fM (~x1)− fM (~x2)| ≤ ωf (dKR(µ̂[~x1], µ̂[~x2]))

Then there exists a subsequence (fM`
)` and some f : P(X)→ R, such that

lim
`→∞

sup
~x∈XM`

|fM`
(~x)− f(µ̂[~x])| = 0.
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Furthermore, f is continuous as function on P(X) and (uniformly) bounded by Cf .

Note that in the assumptions of this result, the symmetry in ~x for fM is actually
implied by the uniform continuity, cf. [50, Remark 1.3]. Furthermore, this latter
property also implies continuity with respect to the product metric on XM .

8.3. Interlude: But where is the mean field?

While standard in the literature, the terminology mean field limit might appear
unclear at this point. To provide intuition and more context, we include in the
following a gentle and high level outline of a typical mean field limit argument in the
context of multiagent systems. Our presentation is folklore, and follows expositions
like [34, Chapter 4] and [81].
To make things more concrete, we consider first-order dynamics in continuous

time, which includes alignment dynamics. A system with M ∈ N+ agents, where
agent i = 1, . . . ,M has state xi(t) ∈ Rd at time t ≥ 0, can be described by

ẋi = 1
M

M∑
j=1

Ψ(xi, xj)(xj − xi) (8.6)

xi(0) = x0
i i = 1, . . . ,M (8.7)

where Ψ : Rd ×Rd → R≥0 models the interaction strength between two agents, and
is often of the form Ψ(x, x′) = ψ(‖x−x′‖). We would like to lift the dynamics to the
mesoscopic level, so if f(t, x) is the density of agents at time t ≥ 0 at state x ∈ Rd,
we want to describe the evolution of f over time. Here is the basic idea. Instead of
describing the evolution of the density f directly, we describe the evolution of the
average of some feature φ : Rd → R of the agents, i.e.,

t 7→
∫
φ(x)f(t, x)dx.

For technical reasons, we now work with measures (the density f induces a measure
A 7→

∫
A f(t, x)dx for A ⊆ Rd measurable). Our goal is now as follows. Let µ(t) be the

distribution (“density”) of agents at time t, then we want a model for the evolution
t 7→ µ(t) starting with initial distribution (“density”) µ(0) = µ0. But as already
remarked earlier, a (microscopic) state ~x = (x1, . . . , xM ) ∈ (Rd)M corresponds to
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the empirical measure µ̂[~x]. The average of some feature φ : Rd → R of the agents
in microscopic state ~x can hence be expressed as the integral

∫
φ(x)dµ̂[~x](x) = 1

M

M∑
m=1

φ(xm).

Consider now φ ∈ C∞c (Rd,R) (smooth functions with compact support, our “fea-
tures” of interest) and let us derive an ODE for

∫
φ(x)dµ̂[~x](x),

d
dt

∫
φ(x)dµ̂[~x(t)](x) = d

dt
1
M

M∑
i=1

φ(xi(t))

= 1
M

M∑
i=1

d
dtφ(xi(t))

= 1
M

M∑
i=1
∇xφ(xi(t))>ẋi(t)

= 1
M

M∑
i=1

1
M

M∑
j=1

Ψ(xi, xj)∇xφ(xi(t))>(xj(t)− xi(t))

= 1
M

M∑
i=1
∇xφ(xi(t))>

 1
M

M∑
j=1

Ψ(xi, xj)(xj(t)− xi(t))


=
∫
∇xφ(x)>

(∫
Ψ(x, y)(y − x)dµ̂[~x(t)](y)

)
︸ ︷︷ ︸

=F (x,µ̂[~x(t)])

dµ̂[~x(t)](x).

We have at the moment

d
dt

∫
φ(x)dµ̂[~x(t)](x) =

∫
∇xφ(xi(t))>F (x, µ̂[~x(t)])dµ̂[~x(t)](x).

Now formally apply partial integration (recall that φ has compact support) to get∫
∇xφ(xi(t))>F (x, µ̂[~x(t)])dµ̂[~x(t)](x)

= [φ(xi(t))>F (x, µ̂[~x(t)])]︸ ︷︷ ︸
=0

+(−1)d
∫
φ(xi(t))>∇xF (x, µ̂[~x(t)])dµ̂[~x(t)](x),
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so we arrive at

d
dt

∫
φ(x)dµ̂[~x(t)](x) = (−1)d

∫
φ(xi(t))>∇xF (x, µ̂[~x(t)])dµ̂[~x(t)](x).

This holds for all M ∈ N+, so we can formally consider M → ∞, the formal mean
field limit. Our previous derivations suggest the following. Let µ0 be the initial
distribution of agents, then µ(t) is the distribution of agents at time t ≥ 0 according
to the alignment dynamics if

1. µ(0) = µ0

2. For all φ ∈ C∞c (Rd,R) we have

d
dt

∫
φ(x)dµ(t)(x) =

∫
∇xφ(x)>F (x, µ(t))dµ(t)(x). (8.8)

where
F (x, µ) =

∫
Ψ(x, y)(y − x)dµ(y) (8.9)

Equation (8.9) explains the termmean field: F (x, µ) is the average “force” exerted by
agents distributed according to µ and felt by an agent at state x. In other words, it is
the mean of the field acting on a representative agent at a given state. Furthermore,
if the interaction function is translation-invariant, i.e., Ψ(x, y) = ψ(x− y) for some
function ψ : Rd → R, then

F (x, µ) =
∫
ψ(x− y)(x− y)dµ(y) =

∫
K(x− y)dµ(y) = (K ∗ µ)(x),

i.e., F (x, µ) is the convolution of the function K(z) = ψ(z)z with the measure µ.
In many works on mean field dynamics, one can find this formulation, cf. e.g. [34,
Chapter 4].

For additional insight, consider now the case d = 1. Applying formally partial
integration to

d
dt

∫
φ(x)dµ(t)(x) =

∫
∇xφ(x) ·F (x, µ(t))dµ(t)(x) =

∫
∂

∂x
φ(x) ·F (x, µ(t))dµ(t)(x)
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leads to (recall that φ has compact support)

d
dt

∫
φ(x)dµ(t)(x) = [φ(x)F (x, µ(t))]∞−∞︸ ︷︷ ︸

=0

−
∫
φ(x) ∂

∂x
F (x, µ(t))dµ(t)(x).

Assume now that there exists a suitable f with µ(t)(A) =
∫
A f(t, x)dx, so µ(t) has

the density f(t, ·). We then get

d
dt

∫
φ(x)f(t, x)dx+

∫
φ(x) ∂

∂x
F (x, f(t, ·))f(t, x)dx = 0

with
F (x, f) =

∫
Ψ(x, y)(x− y)f(x)dy,

motivating the notation

∂tf(t, x) + ∂x

∫
Ψ(x, y)(x− y)f(t, y)dy = 0,

a kinetic PDE in strong form.

To summarize, we have lifted microscopic dynamics to mesoscopic dynamics by
interpreting a finite collection of agents as an empirical measure, and then formally
replaced the empirical measure by an arbitrary measure. The latter can be inter-
preted as approximating an arbitrary probability measure by empirical measures
with an increasining number of atoms, so that the given probability measure is the
limit of the empirical measures. Furthermore, in the dynamics on measures themean
of the field acting on the agents appears, which suggests the terminology mean field
limit. Finally, the preceding arguments can be made rigorous, cf. e.g. [81].

Let us connect all of this back to Section 8.2. From a physical perspective, Def-
inition 8.2.1 is not a traditional mean field limit, however, it shares the motivation
arising from approximating arbitrary probability measures by empirical measures.
A more fitting terminology for Definition 8.2.1 might distributional extension or
asymptotic distributional extension (as discussed in Section 8.2, the mean field limit
does not have to be a proper extension), but the former terminology is standard in
the literature. Furthermore, even in the context of traditional mean field limits of
ODE dynamics, the need for the mean field limit of functions arises, for example, in
mean field optimal control [74]. In the next section, another such application will
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appear.

8.4. Kernels enter the picture

In the present part of the thesis, we will explore two applications of kernels and
kernel methods to kinetic theory.

Kernels in the mean field limit Frequently, the state of such a complex multiagent
system can be easily measured or estimated, e.g., by video recordings or image snap-
shots for bird swarms or schools of fish, and microscopy recordings for microorganism
colonies; aerial imaging for human crowds (e.g., via quadcopters); and polling and
social media analysis for opinion dynamics. However, some interesting features of
the whole system might be more difficult to measure. For example, how a swarm
of birds or a school of fish will react to an external stimulus (like an approach-
ing predator), given the current state of the population. Such a reaction could be a
change of density or spread of the population, or a change in mean velocity. Another
example is given by features of a society in opinion dynamics (average happiness,
aggression potential, susceptibility to adversarial interventions), given the current
"opinion state". Measuring such features can be difficult, for example, due to a re-
quired intervention. Formally, if X is the state space of an individual agent (say, a
metric space or just Rd), such a feature is a functional FM : XM → R of the current
state of the system, and since the state is often easy to measure, it would be useful
to have an explicit mapping from state to feature of interest. However, since first
principles modeling is unlikely to be successful in the domains considered here, it is
promising to learn such a mapping from data. We can formalize this as a standard
supervised learning task: The data set consists of D[M ]

N = ((~x1, y1), . . . , (~xN , yN )),
where ~xn ∈ XM are snapshot measurements of the particle states (corresponding to
the input of the functional) and yn ∈ R is the value of the functional of interest,
potentially with measurement noise, at snapshot state ~xn. Let us assume an addi-
tive noise model, i.e., yn = FM (~xn) + εn for n = 1, . . . , N , where ε1, . . . , εN ∈ R are
noise variables. This is a regression problem that could be solved for example using
a Support Vector Machine (SVM) [189]: Let kM : XM × XM → R be a kernel on
XM with associated RKHS HM , and `M : XM × R × R → R≥0 be a loss function,
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then the resulting approximation of the functional FM is given by

F
`M ,D

[M ]
N ,λ

= argminf∈HM
1
N

N∑
n=1

`M (~xn, yn, f(~xn)) + λ‖f‖2M , (8.10)

where λ ∈ R>0 is the regularization parameter and ‖ · ‖M the RKHS norm.
Suppose now we are interested in systems with a very large number of agents

or interacting particles. As outlined above, in this context it is reasonable to go
to the mesoscopic level, so instead of trajectories of particle states of the form
[0, T ] 3 t 7→ ~x(t) ∈ XM , we then have trajectories of probability measures [0, T ] 3
t 7→ µ(t) ∈ P(X ). This immediately raises the question of whether the learning
setup outlined above also allows a corresponding kinetic limit. More precisely, let
K ⊆ X be compact and assume that all particles remain confined to this com-
pactum, i.e., xi(t) ∈ K for all i = 1, . . . ,M and all t ∈ [0, T ] under the microscopic
dynamics. If the underlying dynamics have a mean field limit, then it is reasonable
to assume that the finite-input functionals FM : KM → R converge also in mean
field to some F : P(K) → R for M → ∞. In turn, we can now formulate a cor-
responding learning problem on the mean field level: A data set is then given by
DN = ((µ1, y1), . . . , (µN , yN )), where µn ∈ P(K) are snapshots of the particle state
distribution over time and yn ∈ R are again potentially noisy measurements of the
functional. Assuming an additive noise model, this corresponds to yn = F (µn) + εn,
n = 1, . . . , N . If we want to use an SVM on the kinetic level, we need a kernel
k : P(K)×P(K)→ R on probability distributions. There are several options avail-
able for this, see e.g. [55]. However, assuming that all ingredients of the learning
problem arise as a mean field limit, this naturally leads to the question of whether a
mean field limit of kernels exists, and what this means for the relation of the learn-
ing problems on the finite-input and kinetic level. This motivates us to investigate
kernels and their RKHSs in the mean field in Chapter 9, and their application in
the context of statistical learning theory in a mean field limit setup in Chapter 10.

Discrete-time mean field limits In Chapter 11, we consider discrete-time multia-
gent systems and their mean field limit. As explained in detail in the introduction
there, trying to adapt existing tools from mean field theory to this task leads to
technical problems. Surprisingly, kernels offer an elegant solution, leading to an ex-
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istence result for the mean field limit of discrete-time multiagent systems, the first
such results to the best of our knowledge.

8.5. Technical background: Kernel mean embeddings

In Chapter 9 and 11 we will need kernel mean embeddings, so we collect some
background on this concept here. Let k : X ×X → R be a Borel-measurable kernel.
Furthermore, assume that it is bounded, i.e., supx,x′∈X |k(x, x′)| <∞. In this case,
X 3 x 7→ k(·, x) ∈ Hk is Bochner-integrable w.r.t. every µ ∈ P(X), and we define

Πk : P(X)→ Hk, µ 7→
∫
X
k(·, x)dµ. (8.11)

For µ ∈ P(X), we call Πk(µ) the kernel mean embedding (KME) of µ in Hk. This
terminology is explained by the fact that in the present setting, for all µ ∈ P(X),
any f ∈ HK is µ-integrable, and

∫
X f(x)dµ = 〈f,Πk(µ)〉k. If the map Πk is injective,

then we call k characteristic, cf. [187] for many examples and conditions for this
property. To simplify notation, define additionally Π̂k(~x) = Πk(µ̂[~x]) for ~x ∈ XM .
For convenience, we record the following simple fact.

Lemma 8.5.1. The set Πk (P(X)) is convex.

Proof. Let g, h ∈ Πk (P(X)) and λ ∈ (0, 1) be arbitrary. By definition there exist
µ, ν ∈ P(X) with g = Πk(µ) and h = Πk(ν). We then have

λg + (1− λ)h = λΠk(µ) + (1− λ)Πk(ν)

= λ

∫
X
k(·, x)dµ(x) + (1− λ)

∫
X
k(·, x)dν(x)

=
∫
X
k(·, x)d(λµ+ (1− λ)ν)

= Πk(λµ+ (1− λ)ν) ∈ Πk (P(X)) ,

where we used the fact that λµ+ (1− λ)ν ∈ P(X).

Finally, define the maximum mean discrepancy (MMD) w.r.t. k by

γk : P(X)× P(X)→ R≥0, γk(µ, ν) = ‖Πk(µ)−Πk(ν)‖k.
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γk is a semimetric on P(X), and if k is characteristic, γk is a metric.

Lemma 8.5.2. If (X, dk) is a compact metric space, then Πk (P(X)) is compact.

Proof. Recall that (P(X), dKR) is compact, where dKR is defined with dX = dk.
Next, since (X, dk) is compact, it is separable, and hence [188, Theorem 21] implies
that for all µ, ν ∈ P(X)

γk(µ, ν) = ‖Πk(µ)−Πk(ν)‖k ≤ dKR(µ, ν),

which shows that Πk : (P, dKR)→ (Hk, ‖ · ‖k) is 1-Lipschitz continuous. Altogether,
Πk(P(X)) is the image of a compact set under a continuous map, so it is compact.

For additional background on KMEs and MMD, see [188].

8.6. Comments

Section 8.1 is based on and partially taken verbatim from [CF6]. Section 8.2 has
been written from scratch for this thesis, and the author is not aware of a similar
exposition carefully describing the intuition behind the definition of the mean field
limit of functions, though the ideas are of course implicit in existing presentations
like [50]. Section 8.3 is based on a talk given by the author of this thesis at RWTH
Aachen University in 2023. Section 8.4 is based on and partially has been taken
verbatim from [CF6], and Section 8.5 has been taken from [CF5].
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9. Kernels and their RKHSs in the mean
field limit

In the preceding chapter, we presented the notion of a mean field limit of a sequence
of functions, and motivated that this concept can appear also in the context of
kernels and kernel methods. In this chapter, we now start the investigation of kernels
and their RKHSs in the mean field limit. First, we define the appropriate notion
of convergence and prove an existence result of the mean field limit of kernels in
Section 9.1. Large classes of examples of appropriate kernels are provided in Section
9.2, where we also discuss an interesting connection to kernel mean embeddings.
Finally, in Section 9.3 we investigate the RKHSs of kernels in the mean field limit.
Unless noted otherwise, in this chapter we use the setting that was introduced in
the preceding chapter.
This chapter is based on, and in parts taken verbatim, from the articles [CF3,

CF6, CF4]. Detailed comments on the author’s contribution and the relation of this
chapter to existing work are provided in Section 9.5.

9.1. The mean field limit of kernels

The definition of mean field convergence of a sequence of functions can be easily
generalized to bivariate functions, or more precisely, functions with two blocks of
arguments that are growing in size.

Definition 9.1.1. Let X be a measurable space, and let P be a set of probability
distributions on X that contains all empirical probability measures with finitely
many atoms. Consider bivariate functions κM : XM × XM → R, M ∈ N+, and
κ : P × P → R. We say that κ is the mean field limit of (κM )M , or that (κM )M
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9. Kernels and their RKHSs in the mean field limit

converges in mean field to κ, if

lim
M→∞

sup
~x,~x′∈XM

|κM (~x, ~x′)− κ(µ̂[~x], µ̂[~x′])| = 0.

Since a kernel on XM is just a bivariate function, the preceding definition im-
mediately applies to sequence of kernels with an increasing number of inputs. This
immediately raises several questions. Does a mean field limit exist in this case? If
κM are kernels and they converge in mean field to κ, is the limit also a kernel? And
if they are all kernels, what happens to their RKHSs? In this section, we start with
the first two questions.
Recall that X is a compact metric space and dKR is the Kantorowich-Rubinstein

metric on P(X), the set of Borel probability measures on X. Define d2
KR : P(X)×

P(X)→ R≥0 by

d2
KR((µ1, µ

′
1), (µ2, µ

′
2)) = dKR(µ1, µ2) + dKR(µ′1, µ′2),

and note that (P(X) × P(X), d2
KR) is a compact metric space. Consider now a

sequence
k[M ] : XM ×XM → R, M ∈ N+,

of kernels on input space XM .

Assumption 9.1.2. 1. (Symmetry in ~x) For all M ∈ N+, ~x, ~x′ ∈ XM and per-
mutations σ ∈ SM we have

k[M ](σ~x, ~x′) := k[M ]((xσ(1), . . . , xσ(M)), ~x′) = k[M ](~x, ~x′)

2. (Uniform boundedness) There exists Ck ∈ R≥0 such that

∀M ∈ N+, ~x, ~x
′ ∈ XM : |k[M ](~x, ~x′)| ≤ Ck

3. (Uniform continuity) There exists a modulus of continuity ωk : R≥0 → R≥0

such that for all M ∈ N+, ~x1, ~x
′
1, ~x2, ~x

′
2 ∈ XM

|k[M ](~x1, ~x
′
1)− k[M ](~x2, ~x

′
2)| ≤ ωk

(
d2

KR
[
(µ̂[~x1], µ̂[~x′1]), (µ̂[~x2], µ̂[~x′2])

])
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For later reference, we record two immediate consequences of the preceding as-
sumption.

Proposition 9.1.3. Consider the situation of Assumption 9.1.2. For M ∈ N+, let
(HM ,ΦM ) be any feature space-feature map pair for k[M ].

1. For all M ∈ N+, ΦM is invariant under permutations, i.e., for all ~x ∈ XM and
σ ∈ SM we have ΦM (σ~x) = ΦM (~x).

2. For all M ∈ N+ and ~x ∈ XM we have ‖ΦM (~x)‖HM ≤
√
Ck.

3.
√

2ωk is a modulus of continuity for ΦM for all M ∈ N+, i.e., for all ~x1, ~x2 ∈
XM we have

‖ΦM (~x1)− ΦM (~x2)‖HM ≤
√

2ωk (dKR [µ̂[~x1], µ̂[~x2]])

Proof. 1. Let M ∈ N+, ~x ∈ XM and σ ∈ SM be arbitrary. From

‖ΦM (σ~x)− ΦM (~x)‖2HM = 〈ΦM (σ~x,ΦM (σ~x)〉HM − 2〈ΦM (σ~x),ΦM (~x)〉HM
+ 〈ΦM (~x),ΦM (~x)〉HM

= k[M ](σ~x, σ~x)− 2k[M ](σ~x, ~x) + k[M ](~x, ~x)

= k[M ](~x, ~x)− 2k[M ](~x, ~x) + k[M ](~x, ~x)

= 0

(where we used the symmetry and permutation invariance of k[M ]) we find
that ΦM (σ~x) = ΦM (~x), hence the permutation invariance of all ΦM .

2. Let M ∈ N+ and ~x ∈ XM be arbitrary, then

‖ΦM (~x)‖HM =
√
〈ΦM (~x),ΦM (~x)〉HM =

√
k[M ](~x, ~x) ≤

√
Ck.
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9. Kernels and their RKHSs in the mean field limit

3. Let M ∈ N+ and ~x1, ~x2 ∈ XM be arbitrary, then

‖ΦM (~x1)− ΦM (~x2)‖2HM = 〈ΦM (~x1),ΦM (~x1)〉HM − 〈ΦM (~x2),ΦM (~x1)〉HM
− 〈ΦM (~x1),ΦM (~x2)〉HM + 〈ΦM (~x2),ΦM (~x2)〉HM

= k[M ](~x1, ~x1)− k[M ](~x2, ~x1)− k[M ](~x1, ~x2) + k[M ](~x2, ~x2)

≤ |k[M ](~x1, ~x1)− k[M ](~x2, ~x1)|+ |k[M ](~x1, ~x2)− k[M ](~x2, ~x2)|

≤ 2ωk(dKR(µ̂[~x1], µ̂[~x2])),

hence ‖ΦM (~x1)− ΦM (~x2)‖HM ≤
√

2ωk(dKR(µ̂[~x1], µ̂[~x2])).

Next, we turn to properties of functions f from the RKHSs of k[M ].

Proposition 9.1.4. Consider the situation of Assumption 9.1.2. Let M ∈ N+,
denote for simplicity HM = Hk[M ] , and let f ∈ HM be arbitrary.

1. For all ~x ∈ XM and σ ∈ SM we have

f(σ~x) = f(~x).

2. For all ~x ∈ XM we get
|f(~x)| ≤ ‖f‖HM

√
Ck.

3. Let ~x1, ~x2 ∈ XM be arbitrary, then

|f(~x1)− f(~x2)| ≤
√

2ωk(dKR(µ̂[~x1], µ̂[~x2])).

The arguments used in the proof are standard, but for completeness we provide
all details.

Proof. Using the reproducing property and symmetry of k[M ], we find for ~x ∈ XM

and σ ∈ SM

f(σ~x) = 〈f, k[M ](σ~x, ·)〉HM = 〈f, k[M ](~x, ·)〉HM = f(~x),
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9.1. The mean field limit of kernels

establishing the first claim. Next, using again the reproducing property of k[M ],
Cauchy-Schwarz and the boundedness of k[M ] we get

|f(~x)| = |〈f, k[M ](~x, ·)〉HM |

≤ ‖f‖HM ‖k
[M ](~x, ·)‖HM

= ‖f‖HM
√
k[M ](~x, ~x)

≤ ‖f‖HM
√
Ck,

showing the second statement. Similarly, for ~x1, ~x2 ∈ XM we get

|f(~x1)− f(~x2)| = |〈f, k[M ](~x1, ·)− k[M ](~x2, ·)〉HM | ≤ ‖f‖HM ‖k[M ](~x1, ·)− k[M ](~x2, ·)‖HM

= ‖f‖HM
√
k[M ](~x1, ~x1)− k[M ](~x1, ~x2) + k[M ](~x2, ~x2)− k[M ](~x2, ~x1)

≤ ‖f‖HM
√
|k[M ](~x1, ~x1)− k[M ](~x1, ~x2)|+ |k[M ](~x2, ~x2)− k[M ](~x2, ~x1)|

≤ ‖f‖HM
√

2ωk(dKR(µ̂[~x1], µ̂[~x2])).

We now turn to the central existence result of the mean field limit of kernels. The
next theorem extends the proof in [49, Theorem 2.1] and shows that, if a sequence
of kernels fulfills Assumption 9.1.2, then a mean field limit exists, which is again a
kernel.

Theorem 9.1.5. Under Assumption 9.1.2, there exists a subsequence (k[M`])` and
a continuous, bounded kernel k : P(X)× P(X)→ R such that

lim
`→∞

sup
~x,~x′∈XM`

|k[M`](~x, ~x′)− k(µ̂[~x], µ̂[~x′])| = 0. (9.1)

The first part of the proof is based on the same arguments as in [49, Theorem 2.1]
and repeated only for convenience.

Proof. We construct a sequence of uniformly bounded and equi–continuous kernels
k

[M ]
McK for M ∈ N+. Its limit will be the desired kernel k.
Step 1. In the first step we define k[M ]

McK and show that it is bounded on
P(X) × P(X) and coincides with the kernel k[M ] on XM × XM . Since P(X) is
compact, it has a finite diameter DP(X) ∈ R≥0. Let ω̃k : [0, 2DP(X)] → R≥0 be a
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9. Kernels and their RKHSs in the mean field limit

modulus of continuity, that is a pointwise upper bound to ωk. For all M ∈ N+,
define now the McKean extension k[M ]

McK : P(X)× P(X)→ R by

k
[M ]
McK(µ, µ′) := inf

~x,~x′∈XM
k[M ](~x, ~x′) + ω̃k

(
d2

KR
[
(µ̂[~x], µ̂[~x′]), (µ, µ′)

])
.

Note that for all M ∈ N+, k[M ]
McK is well-defined. For this, we show that

d2
KR [(µ̂[~x], µ̂[~x′]), (µ, µ′)] belongs to the domain of ω̃k. This holds true, since

d2
KR
[
(µ̂[~x], µ̂[~x′]), (µ, µ′)

]
≤ dKR(µ̂[~x], µ) + dKR(µ̂[~x′], µ′) ≤ 2DP(X).

Second, we show that k[M ]
McK(µ, µ′) is bounded. Since X and hence P(X) are non-

empty, we have k[M ]
McK(µ, µ′) < ∞. The uniform continuity assumption on k[M ]

implies that all kernels are continuous as functions on X2M and therefore (recall
that ω̃k ≥ 0)

k
[M ]
McK(µ, µ′) ≥ inf

~x,~x′∈XM
k[M ](~x, ~x′) > −∞

by compactness of XM ×XM .

Furthermore, observe that for all M ∈ N+ and ~x, ~x′ ∈ XM , we have

k
[M ]
McK(µ̂[~x], µ̂[~x′]) = k[M ](~x, ~x′). (9.2)

For arbitrary ~x, ~x′ ∈ XM it holds by construction

k
[M ]
McK(µ̂[~x], µ̂[~x′]) ≤ k[M ](~x, ~x′) + ω̃k

(
d2

KR
[
(µ̂[~x], µ̂[~x′]), (µ̂[~x], µ̂[~x′])

])
= k[M ](~x, ~x′).

Let additionally ~x1, ~x
′
1 ∈ XM be arbitrary, then we obtain

k[M ](~x1, ~x
′
1) + ω̃k

(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

≥ k[M ](~x, ~x′)− |k[M ](~x1, ~x
′
1)− k[M ](~x, ~x′)|+ ω̃k

(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

≥ k[M ](~x, ~x′)− ωk
(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

+ ω̃k
(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

≥ k[M ](~x, ~x′)− ω̃k
(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

+ ω̃k
(
d2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])]
)

= k[M ](~x, ~x′),

where we used the uniform continuity of k[M ] in the second inequality and the
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definition of ω̃k (together with d2
KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x], µ̂[~x′])] ≤ 2DPX) in the third

inequality. This implies that k[M ]
McK(µ̂[~x], µ̂[~x′]) ≥ k[M ](~x, ~x′).

Step 2 We now show equi-boundedness of (k[M ]
McK)M . Let M ∈ N+ and µ, µ′ ∈

P(X) be arbitrary, then

|k[M ]
McK(µ, µ′)| =

∣∣∣∣∣ inf
~x,~x′∈XM

k[M ](~x, ~x′) + ω̃k
(
d2

KR
[
(µ̂[~x], µ̂[~x′]), (µ, µ′)

])∣∣∣∣∣
≤ inf

~x,~x′∈XM
|k[M ](~x, ~x′)|+

∣∣∣ω̃k (d2
KR
[
(µ̂[~x], µ̂[~x′]), (µ, µ′)

])∣∣∣
≤ Ck + ω̃k(2DP(X)) =: C̃k,

where we used the uniform boundedness of k[M ] and the compactness of P(X).

Step 3 Next, we show that ω̃k is a modulus of continuity, i.e., for all M ∈ N+,
µ1, µ

′
1, µ2, µ

′
2 ∈ P(X) we have

|k[M ]
McK(µ1, µ

′
1)− k[M ]

McK(µ2, µ
′
2)| ≤ ω̃k(d2

KR[(µ1, µ
′
1), (µ2, µ

′
2)]).

To establish this, let M ∈ N+, µ1, µ
′
1, µ2, µ

′
2 ∈ P(X) and ε > 0 be arbitrary. Now,

let (~x2, ~x
′
2) ∈ X2M be ε-close, i.e.,

k[M ](~x2, ~x
′
2) + ω̃k

(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
])
≤ k[M ]

McK(µ2, µ
′
2) + ε.

Then, it holds

k
[M ]
McK(µ1, µ

′
1) ≤ k[M ](~x2, ~x

′
2) + ω̃k

(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ1, µ

′
1)
])

= k[M ](~x2, ~x
′
2) + ω̃k

(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
])

− ω̃k
(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
])

+ ω̃k
(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ1, µ

′
1)
])

≤ k[M ]
McK(µ2, µ

′
2) + ε− ω̃k

(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
])

+ ω̃k
(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ1, µ

′
1)
])

≤ k[M ]
McK(µ2, µ

′
2) + ε− ω̃k

(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
])

+ ω̃k
(
d2

KR
[
(µ̂[~x2], µ̂[~x′2]), (µ2, µ

′
2)
]

+ d2
KR
[
(µ2, µ

′
2), (µ1, µ

′
1)
])

≤ k[M ]
McK(µ2, µ

′
2) + ε+ ω̃k

(
d2

KR
[
(µ2, µ

′
2), (µ1, µ

′
1)
])
,
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where we used the definition of k[M ]
McK(µ1, µ

′
1) in the first inequality, the choice of

(~x2, ~x
′
2) in the second inequality, the triangle inequality for dKR together with the

monotonicity of ω̃k in the third inequality and finally the subadditivity. Repeating
these steps with the roles interchanged shows that

|k[M ]
McK(µ1, µ

′
1) + k

[M ]
McK(µ2, µ

′
2)| ≤ ω̃k(d2

KR
[
(µ1, µ

′
1), (µ2, µ

′
2)
]
) + ε

and since ε > 0 was arbitrary and ω̃k does not depend on M , the claim follows.

Step 4 Summarizing, (k[M ]
McK)M∈N+ ⊆ C0(P(X)×P(X),R) is a uniformly bounded,

equi-continuous sequence. The Arzela-Ascoli theorem guarantees existence of k ∈
C0(P(X)× P(X),R) and an unbounded sequence (M`)`∈N+ such that

lim
`→∞

sup
µ,µ′∈P(X)

|k[M`]
McK(µ, µ′)− k(µ, µ′)| = 0.

This implies also (9.1). To prove this, note that for all ` ∈ N+ and ~x ∈ XM` we have
µ̂[~x] ∈ P(X), and hence

lim
`→∞

sup
~x,~x′∈XM`

|k[M`](~x, ~x′)− k(µ̂[~x], µ̂[~x′])| = lim
`→∞

sup
~x,~x′∈XM`

|k[M`]
McK(µ̂[~x], µ̂[~x′])− k(µ̂[~x], µ̂[~x′])|

≤ lim
`→∞

sup
µ,µ′∈P(X)

|k[M`](µ, µ′)− k(µ, µ′)|

= 0,

where we used (9.2) in the first equality.

Step 5 Next, we show that for all µ1, µ2 ∈ P(X), |k(µ1, µ2)| ≤ Ck, i.e., the
function k is bounded. For this, let µ1, µ2 ∈ P(X) and ε > 0 be arbitary. Choose
n ∈ N+ such that

‖k[Mn]
McK − k‖∞ = sup

µ,µ′∈P(X)
|k[Mn]

McK(µ, µ′)− k(µ, µ′)| ≤ ε.

We then have

|k(µ1, µ2)| ≤ |k(µ1, µ2)− k[Mn]
McK(µ1, µ2)|+ |k[Mn]

McK(µ1, µ2)| ≤ ε+ Ck,

due to the uniform boundedness of k[Mn]. Since ε > 0 was arbitrary, the claim
follows.
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Step 6 Finally, we show that k is a kernel, i.e., k is a symmetric and positive
definite function on P(X).

Symmetry Let µ, µ′ ∈ P(X) and ~xM , ~x
′
M ∈ XM such that dKR(µ̂[~xM ], µ) and

dKR(µ̂[~x′M ], µ′) converge to zero. For convenience, define µ̂` = µ̂[~xM`
] and µ̂′` =

µ̂[~x′M`
]. We then have

|k(µ, µ′)− k(µ′, µ)| ≤ |k(µ, µ′)− k(µ̂`, µ̂′`)|+ |k(µ̂`, µ̂′`)− k[M`](~xM`
, ~x′M`

)|

+ |k[M`](~x′M`
, ~xM`

)− k(µ̂′k, µ̂k)|+ |k(µ̂′`, µ̂`)− k(µ′, µ)|

→ 0,

where we used the symmetry of k[M`] in the inequality and then the continuity of k
(w.r.t. d2

KR) as well as (9.1).

Positive definiteness Let N ∈ N+, α ∈ RN and µ1, . . . , µN ∈ P(X) as well as
~x

[M ]
n ∈ XM such that for all n = 1, . . . , N , dKR(µ̂[~x[M ]

n ], µn) → 0. For convenience,
define µ̂[M ]

n = µ̂[~x[M ]
n ]. Let ε > 0 be arbitrary. For all i, j = 1, . . . , N and M we have

k(µi, µj) ≥ k(µ̂[M ]
i , µ̂

[M ]
j )− |k(µi, µj)− k(µ̂[M ]

i , µ̂
[M ]
j )|

≥ k[M ](~x[M ]
i , ~x

[M ]
j )− |k(µ̂[M ]

i , µ̂
[M ]
j )− k[M ](~x[M ]

i , ~x
[M ]
j )| − |k(µi, µj)− k(µ̂[M ]

i , µ̂
[M ]
j )|

Choosing ` large enough and setting M = M` ensures

k(µi, µj) ≥ k[Mk](~x[Mk]
i , ~x

[M`]
j )− 2ε

due to the continuity of the k and (9.1). Repeating this for all pairs (i, j) and taking
the maximum over all resulting k then leads to

N∑
i,j=1

αiαjk(µi, µj) ≥
N∑

i,j=1
αiαjk

[M`](~x[M`]
i , ~x

[M`]
j )− 2N2ε ≥ −2N2ε,

where we used that k[M`] is a kernel. Since ε > 0 was arbitrary, we find that

N∑
i,j=1

αiαjk(µi, µj) ≥ 0.
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9. Kernels and their RKHSs in the mean field limit

Remark 9.1.6. The function ω̃k from the proof of Theorem 9.1.5 is also a modulus
of continuity for k, i.e., for all µi ∈ P(X), i = 1, . . . , 4,

|k(µ1, µ2)− k(µ3, µ4)| ≤ ω̃k(d2
KR[(µ1, µ2), (µ3, µ4)]).

Proof. Let µi ∈ P(X), i = 1, . . . , 4, and ε > 0 be arbitrary. Choose n ∈ N+ such
that

‖k[Mn]
McK − k‖∞ = sup

µ,µ′∈P(X)
|k[Mn]

McK(µ, µ′)− k(µ, µ′)| ≤ ε

2

(exists due to the Arzela-Ascoli Theorem). We then have

|k(µ1, µ2)− k(µ3, µ4)| ≤ |k(µ1, µ2)− k[Mn]
McK(µ1, µ2)|

+ |k[Mn]
McK(µ1, µ2)− k[Mn]

McK(µ3, µ4)|+ |k[Mn]
McK(µ3, µ4)− k(µ3, µ4)|

≤ ε

2 + ω̃k(d2
KR[(µ1, µ2), (µ3, µ4)]) + ε

2

Since ε > 0 was arbitrary, we find that

|k(µ1, µ2)− k(µ3, µ4)| ≤ ω̃k(d2
KR[(µ1, µ2), (µ3, µ4)]).

This finishes the proof.

Remark 9.1.7. It is also possible to generalize Assumption 9.1.2 and Theorem 9.1.5
to kernel sequences of the form k[M ] : (Y ×XM )× (Y ×XM )→ R for some compact
metric space Y , leading to a mean field kernel k : (Y × P(X)) × (Y × P(X)) → R
using techniques presented for example in [33].

9.2. Examples of kernel mean field limits

We now turn to examples of kernels and their mean field. We will consider two large
classes of suitable kernels, pull-back kernels and double-sum kernels. To close, we
will discuss and intriguing connection between double-sum kernels in the mean field
and kernel mean embeddings.
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9.2. Examples of kernel mean field limits

9.2.1. Pullback kernels

Our first example are sequences of kernels that arise as the pull-backs [152, Sec-
tion 5.4] of a sufficiently regular kernel along mean field compatible functions.

Proposition 9.2.1. Let Y be a Banach space, k0 : Y × Y → R be a kernel on Y
and φ[M ] : XM → Y a sequence of functions. Furthermore, assume that

1. (Boundedness of k0) There exists a Ck0 ∈ R≥0 with |k0(y, y′)| ≤ Ck0 for all
y, y′ ∈ Y .

2. (Continuity of k0) The kernel k0 has a modulus of continuity ωk0 , i.e.,

|k0(y1, y
′
1)− k0(y2, y

′
2)| ≤ ωk0(‖y1 − y2‖Y + ‖y′1 − y′2‖Y )

for all y1, y
′
1, y2, y

′
2 ∈ Y .

3. (Symmetry of φ[M ]) For allM ∈ N, the function φ[M ] is permutation invariant,
i.e., for all ~x ∈ XM and σ ∈ SM we have φ[M ](σ~x) = φ[M ](~x).

4. (Uniform continuity of φ[M ]) There exists a modulus of continuity ωφ : R≥0 →
R≥0 such that for all M ∈ N+, ~x, ~x′ ∈ XM

‖φ[M ](~x)− φ[M ](~x′)‖Y ≤ ωφ
(
dKR(µ̂[~x], µ̂[~x′])

)
.

Then k[M ] : XM × XM → R with k[M ](~x, ~x′) = k0(φ[M ](~x), φ[M ](~x′)) is a sequence
of kernels on XM fulfilling Assumption 9.1.2.

Proof. Since k[M ] is the pull-back of k0 along φ[M ], it is a kernel on XM . Symmetry
is clear,

k[M ](σ~x, ~x′) = k0(φ[M ](σ~x), φ[M ](~x′)) = k0(φ[M ](~x), φ[M ](~x′)) = k[M ](~x, ~x′).

Uniform boundedness follows from boundedness of k0, hence Ck = Ck0 . For the
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9. Kernels and their RKHSs in the mean field limit

uniform continuity, let M ∈ N+, ~x1, ~x
′
1, ~x2, ~x

′
2 ∈ XM , then

|k[M ](~x1, ~x
′
1)− k[M ](~x2, ~x

′
2)| = |k0(φ[M ](~x1), φ[M ](~x′1))− k0(φ[M ](~x2), φ[M ](~x′2))|

≤ ωk0

(
‖φ[M ](~x1)− φ[M ](~x2)‖Y + ‖φ[M ](~x′1)− φ[M ](~x′2)‖Y

)
≤ ωk0

(
ωφ(dKR(µ̂[~x1], µ̂[~x2])) + ωφ(dKR(µ̂[~x1], µ̂[~x′2]))

)
≤ ωk

(
d2

KR
[
(µ̂[~x1], µ̂[~x′1), (µ̂[~x2], µ̂[~x′2)

])
for an appropriate modulus of continuity ωk.

9.2.2. Double-sum kernels: Abstract perspective

The next class of examples has been introduced by [108] and extended by [39],
though similar constructions have been used earlier [78]. However, the connection
to mean field limits and kernel mean embeddings has not yet been investigated.

Proposition 9.2.2. Let k0 : X ×X → R be a kernel bounded by |k0(x, x′)| ≤ Ck0

for some Ck0 ∈ R≥0. Define for M ∈ N+ the map k[M ] : XM ×XM → R by

k[M ](~x, ~x′) = 1
M2

M∑
m,m′=1

k0(xm, x′m′). (9.3)

Then k[M ] are kernels that are permutation invariant in their first argument, and
that are uniformly bounded.

Proof. Let M ∈ N+ be arbitrary. First, we establish that k[M ] is indeed a kernel by
showing that it is a symmetric, positive definite function. Note that this fact has
been established earlier, cf. e.g. [39], but for convenience we provide a full proof.
For all ~x, ~x′ ∈ XM we have (using the symmetry of k)

k[M ](~x, ~x′) = 1
M2

M∑
m,m′=1

k0(xm, x′m′) = 1
M2

M∑
m,m′=1

k0(x′m′ , xm) = k[M ](~x′, ~x),

i.e., k[M ] is symmetric. Let N ∈ N+ and ~x1, . . . , ~xN ∈ XM , α ∈ RN be arbitrary,
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then

N∑
i,j=1

αiαjk
[M ](~xi, ~xj) =

N∑
i,j=1

αiαj
1
M2

M∑
m,m′=1

k0(xim, x
j
m′)

=
N∑

i,j=1

M∑
m,m′=1

αiαj
1
M2k0(xim, x

j
m′)

=
∑

(i,m),(j,m′)∈I

αi
M

αj
M
k0(xim, x

j
m′) ≥ 0,

where we defined I = {1, . . . , N}× {1, . . . ,M} and used that k0 is positive definite.
For the uniform boundedness, let ~x, ~x′ ∈ XM , then

|k[M ](~x, ~x′)| ≤ 1
M2

M∑
m,m′=1

|k0(xm, x′m′)| ≤
1
M2M

2Ck0 = Ck0 .

In addition to permutation-invariance and boundedness, we also have a form of
uniform continuity of double sum kernels.

Proposition 9.2.3. Let k0 : X ×X → R be a kernel bounded by |k0(x, x′)| ≤ Ck0

for some Ck0 ∈ R≥0, and assume that (X, dk0) is a separable metric space, where

dk0 : X ×X → R≥0, dk0(x, x′) = ‖Φk0(x)− Φk0(x′)‖k0

is the usual kernel metric. Then the double sum kernels k[M ] defined in (9.3) are
uniformly continuous with respect to the Kantorowich-Rubinstein distance induced
by dk0 .

Proof. Observe that for ~x, ~x′ ∈ XM we have

k[M ](~x, ~x′) = 1
M2

M∑
m,m′=1

k0(xm, x′m′) = 1
M2

M∑
m,m′=1

〈k0(·, x′m′), k0(·, xm)〉k0

=
〈

1
M

M∑
m′=1

k0(·, x′m′),
1
M

M∑
m=1

k0(·, xm)
〉
k0

= 〈fµ̂[~x′], fµ̂[~x]〉k0 .
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9. Kernels and their RKHSs in the mean field limit

Furthermore, we also have for any ~x ∈ XM

‖fk0
µ̂[~x]‖k0 =

√
〈
∫
k0(·, x)dµ̂[~x](x),

∫
k0(·, x′)dµ̂[~x](x′)〉k0

=
√∫ ∫

〈k0(·, x), k0(·, x′)〉k0dµ̂[~x](x)dµ̂[~x](x′)

≤
√∫ ∫

|k0(x′, x)|dµ̂[~x](x)dµ̂[~x](x′)

≤
√
Ck0 .

Let ~x1, ~x2, ~x
′
1, ~x
′
2 ∈ XM , then

|k[M ](~x1, ~x
′
1)− k[M ](~x2, ~x

′
2)| = |〈fk0

µ̂[~x′1], f
k0
µ̂[~x1]〉k0 − 〈f

k0
µ̂[~x′2], f

k0
µ̂[~x2]〉k0 |

= |〈fk0
µ̂[~x′1] − f

k0
µ̂[~x′2], f

k0
µ̂[~x1]〉k0 + 〈fk0

µ̂[~x′2], f
k0
µ̂[~x1] − f

k0
µ̂[~x2]〉k0 |

≤ ‖fk0
µ̂[~x′1] − f

k0
µ̂[~x′2]‖k0‖f

k0
µ̂[~x1]‖k0 + ‖fk0

µ̂[~x′2]‖k0‖f
k0
µ̂[~x1] − f

k0
µ̂[~x2]‖k0

≤
√
Ck(‖fk0

µ̂[~x′1] − f
k0
µ̂[~x′2]‖k0 + ‖fk0

µ̂[~x1] − f
k0
µ̂[~x2]‖k0)

Next, since (X, dk0) is separable, [188, Theorem 21] shows that ‖fk0
µ̂[~x1] − f

k0
µ̂[~x2]‖k0 ≤

d̃KR(µ̂[~x1], µ̂[~x2]) and ‖fk0
µ̂[~x′1] − f

k0
µ̂[~x′2]‖k0 ≤ d̃KR(µ̂[~x′1], µ̂[~x′2]), where

d̃KR(µ1, µ2) = sup
{∫

X
φ(x)d(µ1 − µ2)(x) | φ : X → R is 1-Lipschitz w.r.t. dk0

}
,

the Kantorowich-Rubinstein distance induced by dk0 . Altogether, we find that

|k[M ](~x1, ~x
′
1)− k[M ](~x2, ~x

′
2)| ≤

√
Ck0(d̃KR(µ̂[~x1], µ̂[~x2]) + d̃KR(µ̂[~x′1], µ̂[~x′2])),

but since
√
Ck0 does not depend on M , this establishes uniform continuity of k[M ]

w.r.t. d̃KR.

In Proposition 9.2.3, we have not established uniform continuity of the double sum
kernels (9.3) with respect to the Kantorowich-Rubinstein distance induced by the
metric dX . In particular, combining Propositions 9.2.2 and 9.2.3 is not enough to
ensure that the double sum kernels fulfill Assumption 9.1.2. However, if (X, dk0) is
a compact, separable metric space, then Proposition 9.2.3 implies that Assumption

234



9.2. Examples of kernel mean field limits

9.1.2, now with dk0 instead of dX , applies to the kernel sequence (9.3). In this case,
Theorem 9.1.5 shows the existence of the mean field limit kernel and its associated
RKHS, again with dk0 instead of dX . These observations motivate the developments
in the next section.

9.2.3. Double sum kernels: Elementary approach

In the preceding section, we dealt with double sums kernels within the general theory
for mean field limits of kernels. We will now revisit this class of kernels from a more
elementary perspective. Let k0 be a bounded kernel on X, so there exists B0 ∈ R≥0

such that |k0(x, x′)| ≤ B0 for all x, x′ ∈ X. Define now k : P(X)× P(X)→ R by

k(µ, ν) =
∫
X

∫
X
k0(x, x′)dµ(x)dν(x′). (9.4)

Since µ, ν ∈ P(X) are finite measures and k0 is bounded, the double integral above
is well-defined. Furthermore, we have

k(µ, ν) =
∫
X

∫
X
k0(x, x′)dµ(x)dν(x′)

=
∫
X

∫
X
〈k0(·, x′), k0(·, x)〉k0dµ(x)dν(x′)

=
〈 ∫

X
k0(·, x′)dν(x),

∫
X
k0(·, x)dµ(x)

〉
k0
,

where the integrals in the last line are in the sense of Bochner, cf. [188, Theorem 1],
and we used in the last step that the scalar product as a continuous linear functional
commutes with the Bochner integral. The above equality shows that k is indeed a
kernel on P(X).

For M ∈ N+, define k[M ] : XM ×XM → R by

k[M ](~x, ~x′) = 1
M2

M∑
i,j=1

k0(xi, x′j). (9.5)

These bivariate maps are called double sum kernels, and it is well-known that they
are indeed kernels, and permutation-invariant. Furthermore, since for M ∈ N+ and
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9. Kernels and their RKHSs in the mean field limit

~x, ~x′ ∈ XM we have

|k[M ](~x, ~x′)| =

∣∣∣∣∣∣ 1
M2

M∑
i,j=1

k0(xi, x′j)

∣∣∣∣∣∣ ≤ 1
M2

M∑
i,j=1
|k0(xi, x′j)| ≤ B0,

the kernels k[M ] are uniformly bounded.
Observe now that for all M ∈ N+ and ~x, ~x′ ∈ XM we have

k(µ̂[~x], µ̂[~x′]) =
∫
X

∫
X
k0(x, x′)dµ̂[~x](x)dµ̂[~x′](x′)

= 1
M

M∑
i=1

1
M

M∑
j=1

k(xi, x′j)

= k[M ](~x, ~x′),

which implies that

lim
M→∞

sup
~x,~x′∈XM

|k[M ](~x, ~x′)− k(µ̂[~x], µ̂[~x′])| = 0,

so the kernels k[M ] converge to k in mean field in the sense of Definition 9.1.1.

Remark 9.2.4. The preceding developments work for any measurable space (X,AX),
where P(X) is now the set of probability measures defined on this measurable
space, and any A ⊗ A-B(R)-measurable (here B(R) is the Borel σ-algebra on R)
and bounded kernel k0 : X ×X → R.

For some applications, we might need additional properties of the involved kernels.
For a particular and broad class of base kernels, the following result provides a
sufficient condition for uniform Lipschitz continuity. To the best of our knowledge,
this result appeared for the first time in [CF4].

Proposition 9.2.5. Let X be a normed vectorspace, X ⊆ X a non-empty Borel-
measurable subset, φ : X → R a L-Lipschitz continuous function, define κ0 :
X × X → R by κ0(x, x′) = φ(‖x − x′‖), and for M ∈ N+ define κM (~x, ~x′) =

1
M2

∑M
i,j=1 κ0(~xi, ~x′j). We then have for all M ∈ N+, ~x, ~x′, ~y, ~y′ ∈ XM that

|κM (~x, ~x′)− κM (~y, ~y′)| ≤ Ld2
KR
(
(µ̂[~x], µ̂[~x′]), (µ̂[~y], µ̂[~y′])

)
.
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Proof. Without loss of generality we can assume that L ∈ R>0. Define for x ∈ X
the function ϕx : X → R by ϕx(x′) = L−1φ(‖x′ − x‖), and observe that since that
for all x′, y′ ∈ X

|ϕx(x′)− ϕx(y′)| = L−1|φ(‖x′ − x‖)− φ(‖y′ − x‖)|

≤ L−1L|‖x′ − x‖ − ‖y′ − x‖|

≤ ‖(x′ − x)− (y′ − x)‖

= ‖x′ − y′‖

the function ϕx is 1-Lipschitz continuous.

Let now M ∈ N+, ~x, ~x′, ~y, ~y′ ∈ XM , then we get

|κM (~x, ~x′)− κM (~y, ~y′)| =

∣∣∣∣∣∣ 1
M2

M∑
i,j=1

κ0(xi, x′j)−
1
M2

M∑
i,j=1

κ0(yi, y′j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
M

M∑
i=1

 1
M

M∑
j=1

φ(‖xi − x′j‖)−
1
M

M∑
j=1

φ(‖yi − y′j‖)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
M

M∑
i=1

 1
M

M∑
j=1

φ(‖xi − x′j‖)−
1
M

M∑
j=1

φ(‖xi − y′j‖)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
M

M∑
i=1

 1
M

M∑
j=1

φ(‖xi − y′j‖)−
1
M

M∑
j=1

φ(‖yi − y′j‖)

∣∣∣∣∣∣
= L

∣∣∣∣∣∣ 1
M

M∑
i=1

 1
M

M∑
j=1

ϕxi(x′j)−
1
M

M∑
j=1

ϕxi(y′j)

∣∣∣∣∣∣
+ L

∣∣∣∣∣∣ 1
M

M∑
j=1

(
1
M

M∑
i=1

ϕy′j (xi)−
1
M

M∑
i=1

ϕy′j (yi)
)∣∣∣∣∣∣

≤ L 1
M

M∑
i=1

∣∣∣∣∣∣ 1
M

M∑
j=1

ϕxi(x′j)−
1
M

M∑
j=1

ϕxi(y′j)

∣∣∣∣∣∣
+ L

1
M

M∑
j=1

∣∣∣∣∣ 1
M

M∑
i=1

ϕy′j (xi)−
1
M

M∑
i=1

ϕy′j (yi)
∣∣∣∣∣ .
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Observe now that for all Borel-measurable f : X → R we have

1
M

M∑
i=1

f(xi) =
∫
X
f(x)dµ̂[~x](x),

so we can continue with

|κM (~x, ~x′)− κM (~y, ~y′)| ≤ L 1
M

M∑
i=1

∣∣∣∣∫
X
ϕxi(x′)dµ̂[~x′](x′)−

∫
X
ϕxi(y′)dµ̂[~y′](y′)

∣∣∣∣
+ L

1
M

M∑
j=1

∣∣∣∣∫
X
ϕy′j (x)dµ̂[~x](x)−

∫
X
ϕy′j (y)dµ̂[~y](y)

∣∣∣∣
≤ L 1

M

M∑
i=1

sup
f :X→R

f 1-Lipschitz

∣∣∣∣∫
X
f(x′)dµ̂[~x′](x′)−

∫
X
f(y′)dµ̂[~y′](y′)

∣∣∣∣
+ L

1
M

M∑
j=1

sup
f :X→R

f 1-Lipschitz

∣∣∣∣∫
X
f(x)dµ̂[~x](x)−

∫
X
f(y)dµ̂[~y](y)

∣∣∣∣
= L

1
M

M∑
i=1

dKR(µ̂[~x′], µ̂[~y′]) + L
1
M

M∑
j=1

dKR(µ̂[~x], µ̂[~y])

= L(dKR(µ̂[~x′], µ̂[~y′]) + dKR(µ̂[~x], µ̂[~y]))

= Ld2
KR
(
(µ̂[~x], µ̂[~x′]), (µ̂[~y], µ̂[~y′])

)
,

establishing the claim.

We illustrate the results with a concrete example.

Example 9.2.6. Let consider now X ⊆ H a nonempty subset of a Hilbert space.
A kernel k0 on X of the form k0(x, x′) = φ(‖x − x′‖) is called a radial kernel, or a
radial basis function (kernel). In the following, we consider H = Rd, X ⊆ Rd a non-
empty compact subset, and choose k0 as the Gaussian kernel, so in this case φ(s) =
exp(− s2

2γ2 ). Observe that this φ is bounded, and (globally) Lipschitz-continuous
with Lipschitz bound given by maxs∈R |φ′(s)|, so the resulting sequence of double
sum kernel fulfills all conditions from Theorem 9.1.5.

Finally, we would like to point out the following delicate aspect of the preceding
developments. By direct calculation, we have established the mean field convergence
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of the double sum kernels kM , as defined in (9.5), to k given by (9.4). Furthermore,
the sequence of double sum kernels based on the Gaussian kernel fulfills all the
conditions of Theorem 9.1.5, so there exists a mean field limit kernel that is bounded
and Lipschitz continuous, and a subsequence of the double sum kernel sequence, that
converges in mean field to this latter kernel. However, we did not prove that this
kernel is (9.4). If we had uniqueness of the mean field limit kernel in Theorem 9.1.5,
then this would trivially follow. Investigation of this uniqueness question is beyond
the scope of the present work. However, it is clear that (9.4) is bounded, and by
using mutatis mutandis the arguments from the proof of Proposition 9.2.5, one can
verify that (9.4) is Lipschitz continuous. This means that (9.4) fulfills the properties
from the limit kernel in Theorem 9.1.5.

9.2.4. Double sum kernels, mean field limits, and kernel mean
embeddings

Recall from the proof of Proposition 9.2.3 that for all M ∈ N+ and ~x, ~x′ ∈ XM we
have

k[M ](~x, ~x′) = 1
M2

M∑
m,m′=1

k0(xm, x′m′) = 1
M2

M∑
m,m′=1

〈k0(·, x′m′), k0(·, xm)〉k0

=
〈

1
M

M∑
m′=1

k0(·, x′m′),
1
M

M∑
m=1

k0(·, xm)
〉
k0

= 〈fk0
µ̂[~x′], f

k0
µ̂[~x]〉k0 .

This equality implies that for all M ∈ N+ the RKHS H0 is a feature space and
ΦM : XM → H0, ΦM (~x) = fk0

µ̂[~x] is a feature map for k[M ]. Furthermore, defining
e[M ](x) = (x · · ·x) ∈ XM for x ∈ X and M ∈ N+, we obtain that for all M ∈ N+,
~x ∈ XM and x̄ ∈ X

Φ[M ](~x)(e[M ](x̄)) = k[M ](e[M ](x̄), ~x) = fk0
µ̂[~x](x̄)

Note that e[M ](x̄) can be interpreted as a representation of δx̄ inXM since µ̂[e[M ](x̄)] =
δx̄. Altogether, we have now two different kernel-based embeddings of empirical
probability distributions: We can embed µ̂[~x] into H0 via the kernel mean embed-
ding fk0

µ̂[~x] or we can identify µ̂[~x] with ~x and embed into HM with the canonical
feature map Φ[M ](~x) = k[M ](·, ~x). Those two embeddings are connected by evalua-
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XM3~x ' µ̂[~x]2P(~x) fk0

µ̂[~x]2 H0

HM3 k[M ](·, ~x)

KME

�[M ]

Evaluated at e[M ](~x) 2 XM
fµ̂[~x](~x)

Evaluated at ~x 2 XM

Figure 9.1.: Commutative diagram on the relation of canonical feature map of k[M ]

and KMEs.

µ2P(~x) fk0
µ 2 H0
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dKR

fk0
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H0

KME
HM3 k[M ](·, ~x)

�[M ]

Hk3 k(·, µ)
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dKR
MFL M ! 1

µ2P(~x)

Figure 9.2.: Diagram illustration of the relations of double sum kernel, KME and
MFL.

get that fk0

µ̂[~xM ]

H0�! fk0
µ . Since k is the MFL of k[M ] and the former is continuous

w.r.t. dKR, we also get up to a subsequence k[M ](·, ~xM ) ! k(·, µ) as a mean field
limit. Note that the kernel mean embeddings that appear here are all well-defined,
cf. [0, Theorem 1].

The preceding discussion is summarized as a diagram in Figure 9.2.

9.3. The reproducing kernel Hilbert space of the mean field
limit kernel

The mean field limit k established above is a kernel and therefore it is associated
with a unique RKHS. We will now investigate the relation of this RKHS with the
RKHSs of the finite-input kernels. We slightly simplify the setting and notation to
ease the exposition of the following results. Consider a sequence of kernels kM :

212

Figure 9.1.: Commutative diagram on the relation of canonical feature map of k[M ]

and KMEs.

tions on a Dirac distribution, represented by x̄ ∈ X and e[M ](x̄) ∈ XM , respectively.
This leads to the commutative diagram in Figure 9.1.

An interesting situation arises if we consider the weak∗ convergence of empirical
probability measures, metrized by dKR, and the convergence of their embeddings.
Consider the setting of Propositions 9.2.2 and 9.2.3 and assume additionally that the
double sum kernels (9.3) are uniformly continuous, so that Theorem 9.1.5 applies
and we have the mean field limit kernel k and its associated RKHS Hk, as well as
convergence (of a subsequence) of k[M ] to k. Let ~xM ∈ XM with µ̂[~xM ] dKR−→ µ for
some µ ∈ P(X). Each empirical measure µ̂[~xM ] can be embedded into H0 via the
kernel mean embeddings fk0

µ̂[~xM ] and into HM by first identifying it with ~xM and
then using the canonical feature map Φ[M ]. Assume now that k0 is characteristic,
i.e., the map P(X)→ Hk, µ 7→ fkµ is injective. Under this assumption, convergence
of the kernel mean embeddings metrizes the weak∗ topology [183, Theorem 12], so
we get that fk0

µ̂[~xM ]
H0−→ fk0

µ . Since k is the MFL of k[M ] and the former is continuous
w.r.t. dKR, we also get up to a subsequence k[M ](·, ~xM ) → k(·, µ) as a mean field
limit. Note that the kernel mean embeddings that appear here are all well-defined,
cf. [188, Theorem 1].

The preceding discussion is summarized as a diagram in Figure 9.2.
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9.3. The reproducing kernel Hilbert space of the mean field
limit kernel

The mean field limit k established above is a kernel and therefore it is associated
with a unique RKHS. We will now investigate the relation of this RKHS with the
RKHSs of the finite-input kernels. We slightly simplify the setting and notation to
ease the exposition of the following results. Consider a sequence of kernels kM :
XM ×XM → R, M ∈ N+, with the following properties1.

1. For all M ∈ N+, ~x, ~x′ ∈ XM and permutations σ ∈ SM we have kM (σ~x, ~x′) =
kM (~x, ~x′).

2. There exists Ck ∈ R≥0 such that ∀M ∈ N+, ~x, ~x
′ ∈ XM : |kM (~x, ~x′)| ≤ Ck.

3. There exists some Lk ∈ R>0 such that for all M ∈ N+, ~x1, ~x
′
1, ~x2, ~x

′
2 ∈ XM we

have |kM (~x1, ~x
′
1)− kM (~x2, ~x

′
2)| ≤ Lkd2

KR [(µ̂[~x1], µ̂[~x′1]), (µ̂[~x2], µ̂[~x′2])].

Theorem 9.1.5 then ensures the existence of a mean field limit kernel k : P(X) ×
P(X)→ R which is also bounded Ck and is Lk-Lipschitz continuous. By potentially

1The only different to Theorem 9.1.5 is the restriction of uniform Lipschitz continuity instead of
an arbitrary modulus of continuity. This simplification is common in the related literature, e.g.
[50, Lemma 1.2], and the following developments could be generalized to an arbitrary modulus
of continuity.
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re-indexing, we have kM
P1−→ k. Finally, denote by HM := HkM the (unique) RKHS

corresponding to kernel kM and denote by Hk the unique RKHS of k.
We clarify the relation between HMand Hk in the next result.

Theorem 9.3.1. 1. For every f ∈ Hk, there exists a sequence fM ∈ HM , M ∈
N+, such that fM

P1−→ f .

2. Let fM ∈ HM be sequence such that there exists B ∈ R≥0 with ‖fM‖M ≤ B

for all M ∈ N+. Then there exists a subsequence (fM`
)` and f ∈ Hk with

fM`

P1−→ f and ‖f‖k ≤ B.

In other words, on the one hand, every RKHS function from Hkarises as a mean
field limit of RKHS functions from HM .On the other hand, every uniformly norm-
bounded sequence of RKHS functions (fM )M has a mean field limit in Hk.

The relation between the kernels kM and their RKHSs HM , and the mean field
limit kernel k and its RKHS Hk is illustrated as a commutative diagram in Figure
9.3. In order to arrive at the mean field RKHS Hk, on the one hand, we consider
the mean field limit k of the kM , and then form the corresponding RKHS Hk. This
is essentially the content of Theorem 9.1.5. On the other hand, we can first go from
the kernel kM to the associated unique RKHS HM (for each M ∈ N+). Theorem
9.3.1 then says that Hk can be interpreted as a mean field limit of the RKHSs HM ,
since every function in Hk arises as a mean field limit of a sequence of functions
from the HM , and every uniformly norm-bounded sequence of such functions has a
mean field limit that is in Hk. Next, we state two technical results that will play an
important role in the following developments, and which might be of independent
interest. They describe lim inf and lim sup inequalities required for Γ-convergence
arguments used later on.

Lemma 9.3.2. Let fM ∈ HM , M ∈ N+, and f ∈ Hk such that fM
P1−→ f , then

‖f‖k ≤ lim inf
M→∞

‖fM‖M . (9.6)

Proof. Assume the statement is not true, i.e., ‖f‖k > lim infM→∞ ‖fM‖M . This
means that there exists a subsequenceM` and C ∈ R≥0 such that ‖f‖k > lim` ‖fM`

‖M`
=

C. Note that this implies that ‖f‖k > 0.
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kM k

HM Hk

MFL of kM

M!1

MFL of fM2HM

M!1

Figure 9.3.: The kernel k arises as the mean field limit (MFL) of the kernels kM .
Every uniformly norm-bounded sequence fM 2 HM , M 2 N+, has an
MFL in Hk, and every function f 2 Hk arises as such an MFL (Theorem
9.3.1).

Lemma 9.3.2. Let fM 2 HM , M 2 N+, and f 2 Hk such that fM
P1�! f , then

kfkk  lim inf
M!1

kfMkM . (9.6)

Proof. Assume the statement is not true, i.e., kfkk > lim infM!1 kfMkM . This
means that there exists a subsequence M` and C 2 R�0 such that kfkk > lim` kfM`

kM`
=

C. Note that this implies that kfkk > 0.
Let ✏1, ✏2 > 0 and ↵ > 1, � 2 (0, 1) be arbitrary. From Theorem 9.4.1, there exists

(~µ, ~↵) 2 P(X)N ⇥ RN such that

D(~µ, ~↵, f, k) + ✏1 � kfkk,

and w.l.o.g. we can assume that ✏1 > 0 is small enough so that D(~µ, ~↵, f, k) > 0.
The latter implies that E(~µ, ~↵, f), W(~µ, ~↵, k) > 0, so defining

✏↵ =
↵� 1

↵
E(~µ, ~↵, f)

✏� = (1/� � 1)W(~µ, ~↵, k)

we get ✏↵, ✏� > 0. For each n = 1, . . . , N , choose ~x
[M ]
n 2 XM such that ~x

[M ]
n

dKR�! µn

for M !1. Choose now L1 2 N such that for all ` � L1 we get

|E( ~X [M`], ~↵, fM`
)� E(~µ, ~↵, f)|  ✏↵

|W( ~X [M`], ~↵, kM`
)�W(~µ, ~↵, k)|  ✏� .

(cf. also the proof of Theorem 9.3.1) and W( ~X [M`], ~↵, k[M`]) > 0. We then get

E(~µ, ~↵, f)  ↵E( ~X [M`], ~↵, fM`
)

W(~µ, ~↵, k) � �W( ~X [M`], ~↵, k[M`]),

so altogether

E(~µ, ~↵, f)

W(~µ, ~↵, k)
 ↵E( ~X [M`], ~↵, fM`

)

�W( ~X [M`], ~↵, kM`
)
.
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Figure 9.3.: The kernel k arises as the mean field limit (MFL) of the kernels kM .
Every uniformly norm-bounded sequence fM ∈ HM , M ∈ N+, has an
MFL in Hk, and every function f ∈ Hk arises as such an MFL
(Theorem 9.3.1).

Let ε1, ε2 > 0 and α > 1, β ∈ (0, 1) be arbitrary. From Theorem 9.4.1, there exists
(~µ, ~α) ∈ P(X)N × RN such that

D(~µ, ~α, f, k) + ε1 ≥ ‖f‖k,

and w.l.o.g. we can assume that ε1 > 0 is small enough so that D(~µ, ~α, f, k) > 0.
The latter implies that E(~µ, ~α, f), W(~µ, ~α, k) > 0, so defining

εα = α− 1
α
E(~µ, ~α, f)

εβ = (1/β − 1)W(~µ, ~α, k)

we get εα, εβ > 0. For each n = 1, . . . , N , choose ~x[M ]
n ∈ XM such that ~x[M ]

n
dKR−→ µn

for M →∞. Choose now L1 ∈ N such that for all ` ≥ L1 we get

|E( ~X [M`], ~α, fM`
)− E(~µ, ~α, f)| ≤ εα

|W( ~X [M`], ~α, kM`
)−W(~µ, ~α, k)| ≤ εβ.

(cf. also the proof of Theorem 9.3.1) and W( ~X [M`], ~α, k[M`]) > 0. We then get

E(~µ, ~α, f) ≤ αE( ~X [M`], ~α, fM`
)

W(~µ, ~α, k) ≥ βW( ~X [M`], ~α, k[M`]),
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so altogether
E(~µ, ~α, f)
W(~µ, ~α, k) ≤

αE( ~X [M`], ~α, fM`
)

βW( ~X [M`], ~α, kM`
)
.

Using Theorem 9.4.1 again leads to

αE( ~X [M`], ~α, fM )
βW( ~X [M`], ~α, kM`

)
= D( ~X [M`], ~α, fM`

, kM`
) ≤ ‖fM`

‖M`
.

Finally, let L2 such that for all ` ≥ L2 we have ‖fM`
‖M`
≤ C + ε2. For ` ≥ L1, L2

we then get

C < ‖f‖k ≤ D(~µ, ~α, f, k) + ε1

= E(~µ, ~α, f)
W(~µ, ~α, k) + ε1

≤ αE( ~X [M`], ~α, fM`
)

βW( ~X [M`], ~α, kM`
)

+ ε1

≤ α

β
‖fM`

‖M`
+ ε1

≤ α

β
C + α

β
ε2 + ε1.

Since ε1, ε2 > 0 and α > 1, β ∈ (0, 1) were arbitrary, this implies that

C < ‖f‖k ≤ C,

a contradiction.

Lemma 9.3.3. Let f ∈ Hk. Then there exist fM ∈ HM , M ∈ N+, such that
limM→∞ sup~x∈XM |fM (~x)− f(µ̂[~x])| = 0, and

lim sup
M→∞

‖fM‖M ≤ ‖f‖k. (9.7)

Proof. Let f ∈ Hk be arbitrary and choose (εn)n ⊆ R>0 with εn ↘ 0.
Step 1 For each n ∈ N choose

fpre
n =

Ln∑
`=1

α
(n)
` k(·, µ(n)

` ) ∈ Hpre
k ,
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where α(n)
1 , . . . , α

(n)
Ln
∈ R and µ(n)

1 , . . . , µ
(n)
Ln
∈ P(X), with

‖f − fpre
n ‖k ≤

εn
3
√
Ck

and ‖fpre
n ‖k ≤ ‖f‖k. To see that such a sequence of functions exists, choose some

sequence (f̄n)n ∈ Hpre
k with f̄n = ∑L̄n

`=1 ᾱ
(n)
` k(·, µ̄(n)

` ), where ᾱ(n)
` ∈ R, µ̄(n)

` ∈ P(X),
with f̄n

‖·‖k−→ f (exists since Hpre
k is dense in Hk). Define now for n ∈ N

H̄n = span{k(·, µ̄(m)
` ) | m = 1, . . . , n, ` = 1, . . . , L̄m}

and f̂n = PH̄nf , where PH̄n is the orthogonal projection onto H̄n. Then H̄n ⊆ Hpre
k ,

‖f̂n‖k = ‖PH̄nf‖k ≤ ‖f‖k and ‖f − f̂n‖k ≤ ‖f − f̄n‖k → 0 (since f̂n = PH̄nf is the
orthogonal projection of f onto H̄n and f̄n ∈ H̄n), hence f̂n

‖·‖k−→ f . We can now
choose (fpre

n )n as a subsequence of (f̂n)n.
Next, for all n ∈ N and ` = 1, . . . , Ln choose ~x(n,`)

M ∈ XM with µ̂[~x(n,`)
M ] dKR−→ µ

(n)
`

for M → ∞. Furthermore, for all n ∈ N choose Mn ∈ N such that for all M ≥ Mn

and ` = 1, . . . , Ln we have

dKR(µ̂[~x(n,`)
M ], µ(n)

` ) ≤ min

 εn

3
(
1 + Lk

∑Ln
`′=1 |α

(n)
`′ |
) , ε2n

2
(
1 + 2Lk

∑Ln
i,j=1 |α

(n)
i ||α

(n)
j |
)


and

sup
~x,~x′∈XM

|kM (~x, ~x′)− k(µ̂[~x], µ̂[~x′])| ≤ min

 εn

3
(

1 +
∑Ln
`′=1 |α

(n)
`′ |
) , ε2n

2
(

1 +
∑Ln
i,j=1 |α

(n)
i ||α

(n)
j |
)
 .

W.l.o.g. we can assume that (Mn)n is strictly increasing. For M ∈ N, let n(M) be
the largest integer such that Mn(M) ≤M and define

f̂pre
M =

Ln(M)∑
`=1

α
(n(M))
` k(·, µ̂[~x(n(M),`)

M ]) ∈ Hpre
k

fM =
Ln(M)∑
`=1

α
(n(M))
` kM (·, ~x(n(M),`)

M ) ∈ Hpre
M .

Step 2 We now show that fM
P1−→ f . For this, let ε > 0 be arbitrary and nε ∈ N
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such that εn ≤ ε. Let now M ≥ Mnε (note that this implies that n(M) ≥ nε and
hence εn(M) ≤ εn) and ~x ∈ XM , then we have

|f(µ̂[~x])− fM (~x)| ≤ |f(µ̂[~x])− fn(M)(µ̂[~x])|︸ ︷︷ ︸
=I

+ |fn(M)(µ̂[~x])− f̂pre
M (µ̂[~x])|︸ ︷︷ ︸

=II

+ |f̂pre
M (µ̂[~x])− fM (~x)|︸ ︷︷ ︸

=III

We continue with

I = |f(µ̂[~x])− fn(M)(µ̂[~x])|

= |〈f − fn(M), k(·, µ̂[~x])〉k|

≤ ‖f − fn(M)‖k‖k(·, µ̂[~x])‖k

= ‖f − fn(M)‖k
√
k(µ̂[~x], µ̂[~x])

≤
εn(M)

3
√
Ck

√
Ck

where we first used the reproducing property of k, then Cauchy-Schwarz, again the
reproducing property of k, and finally the choice fn(M) and the boundedness of k.

Next,

II = |fn(M)(µ̂[~x])− f̂pre
M (µ̂[~x])|

=

∣∣∣∣∣∣
Ln(M)∑
`=1

α
(n(M))
` k(µ̂[~x], µ(n(M))

` )−
Ln(M)∑
`=1

α
(n(M))
` k(µ̂[~x], µ̂[~x(n(M),`)

M ])

∣∣∣∣∣∣
≤

Ln(M)∑
`=1

∣∣∣α(n(M))
`

∣∣∣ |k(µ̂[~x], µ(n(M))
` )− k(µ̂[~x], µ̂[~x(n(M),`)

M ])|

≤ Lk
Ln(M)∑
`=1

∣∣∣α(n(M))
`

∣∣∣ dKR(µ̂[~x(n(M),`)
M ], µ(n(M))

` )

≤
εn(M)

3 ,

where we used the triangle inequality, the Lipschitz continuity of k, and then the
choice of the sequence (Mn)n.

246



9.3. The reproducing kernel Hilbert space of the mean field limit kernel

Finally,

III = |f̂pre
M (µ̂[~x])− fM (~x)|

=

∣∣∣∣∣∣
Ln(M)∑
`=1

α
(n(M))
` k(µ̂[~x], µ̂[~x(n(M),`)

M ])−
Ln(M)∑
`=1

α
(n(M))
` kM (~x, ~x(n(M),`)

M )

∣∣∣∣∣∣
≤

Ln(M)∑
`=1

∣∣∣α(n(M))
`

∣∣∣ |k(µ̂[~x], µ̂[~x(n(M),`)
M ])− kM (~x, ~x(n(M),`)

M )|

≤
εn(M)

3 ,

where the triangle inequality has been used in the first step and then again the
choice of the sequence (Mn)n.

Altogether,

|f(µ̂[~x])− fM (~x)| ≤ I + II + III

≤
εn(M)

3 +
εn(M)

3 +
εn(M)

3
≤ ε,

establishing fM
P1−→ f .

Step 3 We now show lim supM→∞ ‖fM‖M ≤ ‖f‖k. Let ε > 0 be arbitrary and
nε ∈ N such that εn ≤ ε and let M ≥Mnε . We have

‖fM‖2M =
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ kM (~x(n(M),`′)

M , ~x
(n(M),`′)
M )

≤
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ(n(M))

`′ , µ
(n(M))
` ) + |R1|+ |R2|

= ‖fpre
n(M)‖

2
k +R1 +R2

≤ ‖f‖2k +R1 +R2.
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with remainder terms

R1 =
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ kM (~x(n(M),`′)

M , ~x
(n(M),`′)
M )−

Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ̂[~x(n(M),`′)

M ], µ̂[~x(n(M),`′)
M ])

R2 =
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ̂[~x(n(M),`′)

M ], µ̂[~x(n(M),`′)
M ])−

Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ(n(M))

`′ , µ
(n(M))
` )

We now bound these terms, so that

R1 =

∣∣∣∣∣∣
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ kM (~x(n(M),`′)

M , ~x
(n(M),`′)
M )−

Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ̂[~x(n(M),`′)

M ], µ̂[~x(n(M),`′)
M ])

∣∣∣∣∣∣
≤
Ln(M)∑
`,`′=1

|α(n(M))
` ||α(n(M))

`′ ||kM (~x(n(M),`′)
M , ~x

(n(M),`′)
M )− k(µ̂[~x(n(M),`′)

M ], µ̂[~x(n(M),`′)
M ])|

≤
ε2n(M)

2 ,

and

R2 =

∣∣∣∣∣∣
Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ̂[~x(n(M),`′)

M ], µ̂[~x(n(M),`′)
M ])−

Ln(M)∑
`,`′=1

α
(n(M))
` α

(n(M))
`′ k(µ(n(M))

`′ , µ
(n(M))
` )

∣∣∣∣∣∣
≤
Ln(M)∑
`,`′=1

|α(n(M))
` ||α(n(M))

`′ ||k(µ̂[~x(n(M),`′)
M ], µ̂[~x(n(M),`′)

M ])− k(µ(n(M))
`′ , µ

(n(M))
` )|

≤ Lk
Ln(M)∑
`,`′=1

|α(n(M))
` ||α(n(M))

`′ |
(
dKR(µ̂[~x(n(M),`)

M ], µ(n(M))
` ) + dKR(µ̂[~x(n(M),`′)

M ], µ(n(M))
`′ )

)
≤
ε2n(M)

2 .

Altogether,

‖fM‖2M ≤ ‖f‖2k + |R1|+ |R2|

≤ ‖f‖2k +
ε2n(M)

2 +
ε2n(M)

2
≤ ‖f‖2k + ε2,

so ‖fM‖M ≤ ‖f‖k + ε for all M ≥Mnε , and since ε > 0 was arbitrary, we finally get
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9.3. The reproducing kernel Hilbert space of the mean field limit kernel

lim supM→∞ ‖fM‖M ≤ ‖f‖k.

Finally, we can now provide the proof for the central Theorem 9.3.1.

Proof of Theorem 9.3.1. The first statement is part of Lemma 9.3.3. Let us turn to
the second statement. Proposition 9.1.4 ensures that (fM )M is a bounded, equicon-
tinuous sequence, so Proposition 8.2.2 ensures the existence of a subsequence (fM`

)`
and a continuous function f : P(X) → R with fM`

P1−→ f , so we only have to en-
sure that f ∈ Hk with ‖f‖k ≤ B. For this, we use the characterization of RKHS
functions from Theorem 9.4.1. In particular, we will utilize the notation introduced
there.
Step 1 Let (~µ, ~α) ∈ P(X)N × RN . We show that if W(~µ, ~α, k) = 0, then
E(~µ, ~α, f) = 0.
Assume that W(~µ, ~α, k) = 0. If B = 0, then fM ≡ 0 and fM`

P1−→ f implies that
f ≡ 0, so the claim is clear in this case. Assume now B > 0, let ε > 0 be arbitary and
for n = 1, . . . , N , choose sequences ~x[M ]

n ∈ XM such that ~x[M ]
n

dKR−→ µn for M → ∞.
For convenience, define ~X [M ] =

(
~x

[M ]
1 · · · ~x

[M ]
N

)
. Choose now `ε ∈ N such that

for all M ≥ M`ε we get W( ~X [M ], ~α, kM ) ≤ ε/B. This is possible since kM
P1−→ k

together with the continuity of kM and k as well as ~x[M ]
n

dKR−→ µn for M → ∞ and
all n = 1, . . . , N implies that W( ~X [M ], ~α, kM )→W(~µ, ~α, k) = 0. Let now ` ≥ `ε be
arbitrary and observe that fM ∈ HM impliesN (fM , kM ) <∞ according to Theorem
9.4.1, so in particular D( ~X [M`], ~α, fM`

, kM`
) <∞.

If W( ~X [M`], ~α, kM`
) = 0, then we get that E( ~X [M`], ~α, fM`

) = 0 ≤ ε since
D( ~X [M`], ~α, fM`

, kM`
) <∞, which implies by definition that E( ~X [M`], ~α, fM`

) = 0.
If W( ~X [M`], ~α, kM`

) > 0, then we have

E( ~X [M`], ~α, fM`
)

W( ~X [M`], ~α, kM`
)

= D( ~X [M`], ~α, fM`
, kM`

) ≤ N (fM`
, kM`

) = ‖fM`
‖M`
≤ B,

which implies
E( ~X [M`], ~α, fM`

) ≤ BW( ~X [M`], ~α, kM`
) ≤ ε.

Since fM`

P1−→ f together with the continuity of fM and f as well as ~x[M ]
n

dKR−→ µn

implies that E( ~X [M`], ~α, fM`
) → E(~µ, ~α, f), we get that E(~µ, ~α, f) ≤ ε, and since

ε > 0 was arbitrary we arrive at E(~µ, ~α, f) ≤ 0.
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9. Kernels and their RKHSs in the mean field limit

Assume now that E(~µ, ~α, f) < 0. This implies that there exist δ > 0 and `δ ∈ N
such that for all ` ≥ `δ we have E( ~X [M`], ~α, fM`

) ≤ −δ < 0, since E( ~X [M`], ~α, fM`
)→

E(~µ, ~α, f). Let ` ≥ `δ, then we get that E( ~X [M`],−~α, fM`
) ≥ δ > 0 and we have

W( ~X [M`],−~α, kM`
) =W( ~X [M`], ~α, kM`

) > 0. We can then continue with

δ

W( ~X [M`], ~α, kM`
)
≤ E( ~X [M`],−~α, fM`

)
W( ~X [M`],−~α, kM`

)
≤ D( ~X [M`],−~α, fM`

, kM`
)

≤ N (fM`
, kM`

)

= ‖fM`
‖M`
≤ B,

which implies that W( ~X [M`],−~α, kM`
) =W( ~X [M`], ~α, kM`

) ≥ δ/B. But since
W( ~X [M`], ~α, kM`

) → W(~µ, ~α, k), this implies that W(~µ, ~α, k) ≥ δ/B > 0, a contra-
diction. Altogether, E(~µ, ~α, f) = 0.

Step 2 Let (~µ, ~α) ∈ P(X)N × RN . If W(~µ, ~α, k) > 0 and E(~µ, ~α, f) > 0, then

E(~µ, ~α, f)
W(~µ, ~α, k) ≤ B.

To show this, let α > 1 and β ∈ (0, 1) be arbitrary. Define

εα = α− 1
α
E(~µ, ~α, f)

εβ = (1/β − 1)W(~µ, ~α, k)

and observe that εα, εβ > 0. Furthermore, for all n = 1, . . . , N choose a se-
quence ~x

[M ]
n ∈ XM such that ~x[M ]

n
dKR−→ µn for M → ∞, and define ~X [M ] =(

~x
[M ]
1 · · · ~x

[M ]
N

)
. Choose `ε ∈ N+ such that for all ` ≥ `ε we have

|E( ~X [M`], ~α, fM`
)− E(~µ, ~α, f)| ≤ εα

|W( ~X [M`], ~α, kM`
)−W(~µ, ~α, k)| ≤ εβ

and W( ~X [M`], ~α, kM`
) > 0. Such an `ε exists because kM

P1−→ k together with
the continuity of kM and k as well as the convergence of ~x[M ]

n to µn imply that
W( ~X [M`], ~α, kM`

) → W(~µ, ~α, k), and fM`

P1−→ f together with the continuity of fM
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9.3. The reproducing kernel Hilbert space of the mean field limit kernel

and f imply that E( ~X [M`], ~α, fM`
)→ E(~µ, ~α, f).

Let now ` ≥ `ε be arbitrary. By definition of εα we get αεα ≤ (α − 1)E(~µ, ~α, f),
which in turn leads to

εα ≤ εα − αεα + (α− 1)E(~µ, ~α, f)

= −(α− 1)εα + (α− 1)E(~µ, ~α, f)

= (α− 1)(E(~µ, ~α, f)− εα)

≤ (α− 1)E( ~X [M`], ~α, fM`
),

where we used in the last inequality that α − 1 > 0 and by choice of `ε we have
E(~µ, ~α, f) ≤ E( ~X [M`], ~α, fM`

) + εα. We can then continue with

E(~µ, ~α, f) ≤ E( ~X [M`], ~α, fM`
) + εα

≤ E( ~X [M`], ~α, fM`
) + (α− 1)E( ~X [M`], ~α, fM`

)

= αE( ~X [M`], ~α, fM`
).

Next, by definition of εβ and choice of `ε we find that

W( ~X [M`], ~α, kM`
) ≤ W(~µ, ~α, k) + εβ

=W(~µ, ~α, k) + (1/β − 1)W(~µ, ~α, k)

= (1/β)W(~µ, ~α, k),

hence
1

W(~µ, ~α, k) ≤
1

βW( ~X [M`], ~α, kM`
)
.

Combining these results, we get that for all ` ≥ `ε

E(~µ, ~α, f)
W(~µ, ~α, k) ≤

α

β

E( ~X [M`], ~α, fM`
)

W( ~X [M`], ~α, kM`
)
≤ α

β
N (fM`

, kM`
) = α

β
‖fM`

‖M`
≤ α

β
B.

Since α > 1 and β ∈ (0, 1) were arbitrary, this shows that

E(~µ, ~α, f)
W(~µ, ~α, k) ≤ B.
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9. Kernels and their RKHSs in the mean field limit

Step 3 Let (~µ, ~α) ∈ P(X)N × RN be arbitrary. If W(~µ, ~α, k) = 0, then we get
from Step 1 that E(~µ, ~α, f) = 0 ≤ B. Assume now W(~µ, ~α, k) > 0. If E(~µ, ~α, f) = 0,
then again E(~µ, ~α, f) = 0 ≤ B. If E(~µ, ~α, f) > 0, then Step 2 ensures that

E(~µ, ~α, f)
W(~µ, ~α, k) = D(~µ, ~α, f, k) ≤ B.

Finally, if E(~µ, ~α, f) < 0, then again

E(~µ, ~α, f)
W(~µ, ~α, k) = D(~µ, ~α, f, k) < 0 ≤ B.

Altogether, we get that D(~µ, ~α, f, k) ≤ B. Since (~µ, ~α) was arbitrary, maximization
leads to N (f, k) ≤ B <∞, hence f ∈ Hk and ‖f‖k = N (f, k) ≤ B.

9.4. Technical background: A characterization of RKHS
functions

Here we recall the following characterization of RKHS functions from [17, Sec-
tion I.4]. Let X 6= ∅ be arbitrary. For k : X × X → R symmetric and positive
semidefinite and some f ∈ RX as well as N ∈ N+, ~x ∈ XN , ~α ∈ RN define

E(~x, ~α, f) =
N∑
n=1

αnf(xn)

W(~x, ~α, k) =

√√√√ N∑
i,j=1

αiαjk(xj , xi),

where we might omit some arguments if they are clear. Furthermore, define

D(~x, ~α, f, k) =


E(~x,~α,f)
W(~x,~α,k) if E(~x, ~α, f) 6= 0,W(~x, ~α, k) 6= 0

0 if E(~x, ~α, f) =W(~x, ~α, k) = 0

∞ if E(~x, ~α, f) 6= 0,W(~x, ~α, k) = 0

and
N (f, k) = sup

(~x,~α)∈XN×RN
N∈N+

D(~x, ~α, f, k).
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We collect now some simple facts that will be used repeatedly.
Let ~x ∈ XN , ~α ∈ RN , N ∈ N+, be arbitrary, and define

f =
N∑
n=1

αnk(·, xn) ∈ Hpre
k .

1. By construction, W(~x, ~α, k) ∈ R≥0 (recall that k is positive semidefinite).

2. Since f ∈ Hpre
k , its RKHS norm has an explicit form and we find

‖f‖k =

√√√√ N∑
i,j=1

αiαjk(xj , xi) =W(~x, ~α, k).

This also implies that f ≡ 0 if and only if W(~x, ~α, k) = 0.

3. If W(~x, ~α, k) > 0, then

D(~x, ~α, f, k) = E(~x, ~α, f)
W(~x, ~α, k)

=
∑N
i=1 αif(xi)√∑N

i,j=1 αiαjk(xj , xi)

=
∑N
i,j=1 αiαjk(xj , xi)√∑N
i,j=1 αiαjk(xj , xi)

= W(~x, ~α, k)2

W(~x, ~α, k) =W(~x, ~α, k).

We can now state the characterization result.

Theorem 9.4.1. Let k : X × X → R be a kernel and f ∈ RX . Then f ∈ Hk if and
only if N (f, k) <∞. If f ∈ Hk, then ‖f‖k = N (f, k).

For convenience, we provide a full self-contained proof of this result.

Proof. Step 1 First, we show that for f ∈ Hk, we have ‖f‖k = N (f, k).
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9. Kernels and their RKHSs in the mean field limit

N (f, k) ≤ ‖f‖k: Let N ∈ N+ and (~x, ~α) ∈ XN × RN be arbitrary. Observe that

E(~x, ~α, f) =
N∑
n=1

αnf(xn)

=
N∑
n=1

αn〈f, k(·, xn)〉k

= 〈f,
N∑
n=1

αnk(·, xn)〉k

≤ ‖f‖k

∥∥∥∥∥
N∑
n=1

αnk(·, xn)
∥∥∥∥∥
k

= ‖f‖kW(~x, ~α, k).

IfW(~x, ~α, k) = ‖∑N
n=1 αnk(·, xn)‖k = 0, then∑N

n=1 αnk(·, xn) = 0Hk , hence E(~x, ~α, f) =
〈f, 0Hk〉k = 0 and by definition D(~x, ~α, f, k) = 0 ≤ ‖f‖k.

If W(~x, ~α, k) > 0, we can rearrange to get

E(~x, ~α, f)
W(~x, ~α, k) = D(~x, ~α, f, k) ≤ ‖f‖k.

Since (~x, ~α) was arbitrary, we find that N (~x, ~α, f, k) ≤ ‖f‖k.

N (f, k) ≥ ‖f‖k: Let ε > 0 and choose fε = ∑N
n=1 αnk(·, xn) ∈ Hpre

k such that
‖f − fε‖k < ε. If W(~x, ~α, k) = ‖fε‖k = 0, then fε = 0Hk and hence E(~x, ~α, f) =
〈f, fε〉k = 〈f, 0Hk〉k = 0. By definition, this then shows

D(~x, ~α, f) = 0 = ‖fε‖k ≥ ‖f‖k − ε.

Before we continue, note that for all f1, f2 ∈ Hk we have

|E(~x, ~α, f1)− E(~x, ~α, f2)| =
∣∣∣∣∣
N∑
n=1

αn(f1(xn)− f2(xn))
∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

αn〈f1 − f2, k(·, xn)〉k

∣∣∣∣∣
=
∣∣∣∣∣〈f1 − f2,

N∑
n=1

αnk(·, xn)〉k

∣∣∣∣∣
≤ ‖f1 − f2‖k‖fε‖k.
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Assume now that W(~x, ~α, k) > 0, then we get

D(~x, ~α, f, k) = E(~x, ~α, f)
W(~x, ~α, k)

≥ E(~x, ~α, fε)
W(~x, ~α, k) −

‖f − fε‖k‖fε‖k
W(~x, ~α, k)

≥ E(~x, ~α, fε)
W(~x, ~α, k) −

ε‖fε‖k
W(~x, ~α, k)

=W(~x, ~α, k)− ε

= ‖fε‖k − ε

≥ ‖f‖k − 2ε

Altogether, by definition of N (f, k), we get that

N (f, k) ≥ D(~x, ~α, f, k) ≥ ‖f‖k − 2ε.

Since ε > 0 was arbitrary, we find that N (f, k) ≥ ‖f‖k.

Step 2 Let f ∈ RX be arbitrary. We show that if N (f, k) <∞, then

`f : Hpre
k → R

N∑
n=1

αnk(·, xn) 7→
N∑
n=1

αnf(xn)

is a well-defined, linear and continuous (w.r.t. ‖ · ‖k) map.

To establish the well-posedness, let (~x, ~α) ∈ XN ×RN and (~y, ~β) ∈ XM ×RM such
that

N∑
n=1

αnk(·, xn) =
M∑
m=1

βmk(·, ym) ∈ Hpre
k .

This implies that

N∑
n=1

αnk(·, xn) +
M∑
m=1

(−βm)k(·, ym) = 0Hk

and hence W((~x, ~y), (~α,−~β), k) = ‖∑N
n=1 αnk(·, xn) + ∑M

m=1(−βm)k(·, ym)‖k = 0.
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9. Kernels and their RKHSs in the mean field limit

Assume now that
N∑
n=1

αnf(xn) 6=
m∑
m=1

βmf(xm),

then we get that

N∑
n=1

αnf(xn) +
m∑
m=1

(−βm)f(xm) = E((~x, ~y), (~α,−~β), f) 6= 0

which by definition implies that D((~x, ~y), (~α,−~β), f, k) =∞ and therefore N (f, k) =
∞, a contradiction.

The linearity is then clear. Finally, to show the continuity, let Hpre
k 3 f0 =∑N

n=1 αnk(·, xn) be arbitrary and set ~x =
(
x1 · · · xN

)
, ~α =

(
α1 · · · αN

)
, then

|`f (f0)| =
∣∣∣∣∣
N∑
n=1

αnf(xn)
∣∣∣∣∣

= |E(~x, ~α, f)|

≤ N (f, k)W(~x, ~α, k)

= N (f, k)‖f0‖k.

Since N (f, k) is finite and independent of f0, and `f is a linear map, this shows the
continuity of `f .

Step 3 Let f ∈ RX such that N (f, k) < ∞. Since according to Step 2 `f is
a linear and continuous map on Hpre

k and the latter is dense in Hk, there exists a
unique linear and continuous extension ¯̀

f : Hk → R of `f . Furthermore, from the
Riesz Representation Theorem there exists a unique f̂ ∈ Hk with ¯̀

f = 〈·, f̂〉k. For
all x ∈ X we then get

f̂(x) = 〈f̂ , k(·, x)〉k = 〈k(·, x), f̂〉k = ¯̀
f (k(·, x)) = `f (k(·, x)) = f(x),

hence f = f̂ ∈ Hk.
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9.5. Comments

Section 9.1 and 9.2 are based on, and to a large extent taken verbatim, from [CF3],
with the exception of Section 9.2.3, which is from [CF4]. Section 9.3 is based on, and
to a large extent taken verbatim, from [CF3, CF6]. The idea to investigate kernels
and their RKHSs in the mean field limit is due to the author of the present thesis,
who also established all of the theoretical results above. The elementary approach to
the double sum kernel in Section 9.2.3 has been started by M. Herty and C. Segala
on a formal level, the fully rigorous treatment here is due to the author of the thesis.
The idea to describe the relation between the RKHSs as a commutative diagram is
due to M. Herty. The article [CF3] was written mostly by the present author and
M. Herty, with editorial input from all remaining authors. The parts of the article
[CF4] that appear in this thesis have been written by the present author. The article
[CF6] was written mostly by the author of this thesis, with editorial input by M.
Herty and S. Trimpe.
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10. Kernel-based statistical learning in
the mean field limit

One motivation for the study of kernels in the mean field limit is given by statistical
learning problems arising in the context of kinetic theory, cf. our discussion in
Chapter 8. In the preceding Chapter 9, we introduced the mean field limit of kernels,
and we achieved a fairly complete description of the resulting RKHSs, so we are ready
to turn to the to the investigation of kernel-based statistical learning in the mean
field limit, the goal of this chapter. In Section 10.1, we start with results on the
approximation capabilities of RKHSs in a mean field context. We briefly review
the standard setup of statistical learning theory in 10.2, before investigating kernel-
based learning in the mean field limit in Section 10.3. For the reader’s convience,
we provide some background on Γ-convergence in Section 10.4.
This chapter is based on, and in large parts taken verbatim from, the article [CF6].

Detailed comments on the author’s contribution and the relation of this chapter to
existing work are provided in Section 10.5.

10.1. Approximation with kernels in the mean field limit

Kernel-based machine learning methods use in general an RKHS as the hypothesis
space, and learning often reduces to a search or optimization problem over this
function space. For this reason, it is important to investigate the approximation
properties of a given kernel and its associated RKHS as well as to ensure that the
learning problem over an RKHS (which is in general an infinite-dimensional object)
can be tackled with finite computations.
The next result asserts that, under a uniformity condition, the approximation

power of the finite-input kernels kM is inherited by the mean field limit kernel.
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Proposition 10.1.1. For M ∈ N+, let FM be the set of symmetric functions that
are continuous w.r.t. (~x, ~x′) 7→ dKR(µ̂[~x], µ̂[~x′]). Let F ⊆ C0(P(X),R) such that
for all f ∈ F and ε > 0 there exist B ∈ R≥0 and sequences fM ∈ FM , f̂M ∈ HM ,
M ∈ N+, such that

1. fM
P1−→ f

2. ‖fM − f̂M‖∞ ≤ ε for all M ∈ N+

3. ‖f̂M‖M ≤ B for all M ∈ N+

Then for all f ∈ F and ε > 0, there exists f̂ ∈ Hk with ‖f − f̂‖∞ ≤ ε.

Proof. Let f ∈ F and ε > 0 be arbitrary. Let B ∈ R≥0 and fM ∈ FM , f̂M ∈ HM ,
M ∈ N+, such that fM

P1−→ f , ‖fM − f̂M‖ ≤ ε
5 and ‖f̂M‖M ≤ B for all M ∈ N+

(exist by definition of F). Theorem 9.3.1 ensures that there exists a subsequence
(fM`

)` and f̂ ∈ Hk with ‖f̂‖k ≤ B such that f̂M`

P1−→ f̂ for ` → ∞. Choose now
L1 ∈ N+ such that for all ` ≥ L1 we have

sup
~x∈XM`

|f̂M`
(~x)− f̂(µ̂[~x])| ≤ ε

5

sup
~x∈XM`

|fM`
(~x)− f(µ̂[~x])| ≤ ε

5 .

Let now µ ∈ P(X) be arbitrary and choose a sequence ~xM ∈ XM with µ̂[~xM ] dKR−→ µ.
Finally, let L2 ∈ N+ such that for all ` ≥ L2 we have

|f(µ)− f(µ̂[~xM`
])| ≤ ε

5
|f̂(µ)− f̂(µ̂[~xM`

])| ≤ ε

5

(such an L2 exists due to the continuity of f and f̂).
We now have for ` ≥ max{L1, L2} that

|f(µ)− f̂(µ)| ≤ |f(µ)− f(µ̂[~xM`
])|+ |f(µ̂[~xM`

])− fM`
(~xM`

)|+ |fM`
(~xM`

)− f̂M`
(~xM`

)|
+ |f̂M`

(~xM`
)− f̂(µ̂[~xM`

])|+ |f̂(µ̂[~xM`
])− f̂(µ)|

≤ ε

5 + ε

5 + ε

5 + ε

5 + ε

5 = ε.
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10.1. Approximation with kernels in the mean field limit

Since µ was arbitrary, the result follows.

Intuitively, the set F consists of all continuous functions on P(X) that arise as
a mean field limit of functions which can be uniformly approximated by uniformly
norm-bounded RKHS functions. The result then states (to use a somewhat impre-
cise terminology) that the RKHS Hk is dense in F . We can interpret this as an
appropriate mean field variant of the universality property of kernels: a kernel on a
compact metric space is called universal if its associated RKHS is dense w.r.t. the
supremum norm in the space of continuous functions, and many common kernels
are universal, cf. e.g. [189, Section 4.6]. In our setting, ideally universality of the
finite-input kernels kM is inherited by the mean field limit kernel k. However, since
the mean field limit can be interpreted as a form of smoothing limit, some unifor-
mity requirements should be expected. Proposition 10.1.1 provides exactly such a
condition.

Remark 10.1.2. In Proposition 10.1.1, the set F is a subvectorspace of C0(P(X),R).
Furthermore, if the P1-convergence in the definition of F is uniform, then F is closed.

Proof. We first show that F is a subvectorspace. Let f, g ∈ F and λ ∈ R, ε > 0
be arbitrary. W.l.o.g. we can assume λ 6= 0. Choose sequences fM , gM ∈ FM ,
f̂M , ĝM ∈ HM , M ∈ N+, and constants Bf , Bg ∈ R≥0 from the definition of F for
f , ε

2|λ| , and g,
ε
2 , respectively. Let M ∈ N+, ~x ∈ XM be arbitrary, then

|λfM (~x) + g(~x)− (λf(µ̂[~x])− g(µ̂[~x]))| ≤ |λ||fM (~x)− f(µ̂[~x])|+ |gM (~x)− g(µ̂[~x])|

together with fM
P1−→ f , gM

P1−→ g shows that λfM + gM
P1−→ λf + g.

Next, we have for all M ∈ N+ that

‖(λfM + gM )− (λf̂M + ĝM )‖∞ ≤ |λ|‖fM − f̂M‖∞ + ‖gM − ĝM‖∞ ≤ |λ|
ε

2|λ| + ε

2 = ε.

Finally,
‖λf̂M + ĝM‖M ≤ |λ|‖f̂M‖M + ‖ĝM‖M ≤ |λ|Bf +Bg,

establishing that (λf̂M + ĝM )M is uniformly norm-bounded. Altogether, we have
that λf + g ∈ F .

We now turn to the second claim. Let (f (n))n ⊆ F such that f (n) → f for some
f ∈ C0(P(X),R) and for all ε̄ > 0 there exist f (n)

M ∈ FM , f̂ (n)
M ∈ HM , (ρM )M ⊆ R≥0

261



10. Kernel-based statistical learning in the mean field limit

and B(n) ∈ R≥0 with ρM ↘ 0, ‖f (n)
M − f̂

(n)
M ‖∞ ≤ ε̄ and ‖f̂ (n)

M ‖M ≤ B(n) for all
n,M ∈ N+, and

sup
~x∈XM

|f (n)
M (~x)− f (n)(µ̂[~x])| ≤ ρM

for all n,M ∈ N+. We now show that f ∈ F . For this, let ε > 0 be arbitrary
and choose f (n)

M ∈ FM , f̂ (n)
M ∈ HM , (ρM )M ⊆ R≥0 and B(n) ∈ R≥0 as above with

ε̄ = ε
4 . Let N ∈ N+ be such that ‖f (m) − f (n)‖∞ ≤ ε

4 for all m,n ≥ N (such an
N exists since (f (n))n converges in C0(P(X),R) and hence is a Cauchy sequence).
Furthermore, letMρ ∈ N+ be such that for allM ≥Mρ we have ρM ≤ ε

4 . Define now
fM = f

(M)
M and f̂M = f̂

(M)
M for M = 1, . . . ,Mρ − 1, and fM = f

(M+N)
M , f̂M = f̂

(N)
M

for M ≥Mρ.

Step 1 Let M ≥Mρ and ~x ∈ XM be arbitrary. We have

|fM (~x)− f(µ̂[~x])| = |f (N+M)
M (~x)− f(µ̂[~x])|

≤ |f (N+M)
M (~x)− f (N+M)(µ̂[~x])|+ |f (N+M)(µ̂[~x])− f(µ̂[~x])|

≤ ρM + ‖f (N+M) − f‖∞,

and since the right hand side (which is independent of ~x) converges to 0 forM →∞,
we get fM

P1−→ f .

Step 2 For M = 1, . . . ,Mρ we get

‖fM − f̂M‖∞ = ‖f (M)
M − f̂ (M)

M ‖∞ ≤ ε̄ ≤ ε.
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10.1. Approximation with kernels in the mean field limit

Let now M ≥Mρ and ~x ∈ XM be arbitrary. We have

|fM (~x)− f̂M (~x)| = |f (M+N)
M (~x)− f̂ (N)

M (~x)|

≤ |f (M+N)
M (~x)− f (N+M)(µ̂[~x])|+ |f (N+M)(µ̂[~x])− f (N)(µ̂[~x])|

+ |f (N)(µ̂[~x])− f (N)
M (~x)|+ |f (N)

M (~x)− f̂ (N)
M (~x)|

≤ sup
~x′∈XM

|f (M+N)
M (~x′)− f (M+N)(µ̂[~x′])|+ ‖f (M+N) − f (N)‖∞

+ sup
~x′∈XM

|f (N)(µ̂[~x′])− f (N)
M (~x′)|+ ‖f (N)

M − f̂ (N)
M ‖∞

≤ ρM + ε

4 + ρM + ε̄

≤ 4 ε4 = ε,

and since ~x ∈ XM was arbitrary, we get ‖fM − f̂M‖∞ ≤ ε.
Step 3 For M = 1, . . . ,Mρ−1 we get by construction that ‖f̂M‖M = ‖f̂ (M)

M ‖M ≤
B(M), and for M ≥ Mρ we find ‖f̂M‖M = ‖f̂ (N)

M ‖M ≤ B(N). Altogether, we get for
M ∈ N+ that

‖f̂M‖M ≤ max{B(1), . . . , B(Mρ−1), B(N)}.

Combining the three steps establishes that f ∈ F .

Since kM and k are kernels, we have the usual representer theorem for their
corresponding RKHSs, cf. e.g. [180]. A natural question is then whether we have
mean field convergence of the minimizers and their representation. This is clarified
by the next result.

Theorem 10.1.3. Let N ∈ N+, µ1, . . . , µN ∈ P(X) and for n = 1, . . . , N let
~x

[M ]
n ∈ XM , M ∈ N+, such that µ̂[~x[M ]

n ] dKR−→ µn for M →∞. Let L : RN → R≥0 be
continuous and strictly convex and λ > 0. For each M ∈ N+ consider the problem

min
f∈HM

L(f(~x[M ]
1 ), . . . , f(~x[M ]

N )) + λ‖f‖M , (10.1)

as well as the problem

min
f∈Hk

L(f(µ1), . . . , f(µN )) + λ‖f‖k. (10.2)
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10. Kernel-based statistical learning in the mean field limit

Then for each M ∈ N+ problem (10.1) has a unique solution f∗M , which is of the
form f∗M = ∑N

n=1 α
[M ]
n kM (·, ~x[M ]

n ) ∈ HM , with α
[M ]
1 , . . . , α

[M ]
N ∈ R, and problem

(10.2) has a unique solution f∗, which is of the form f∗ = ∑N
n=1 αnk(·, µn) ∈ Hk,

with α1, . . . , αN ∈ R. Furthermore, there exists a subsequence (f∗M`
)` such that

f∗M`

P1−→ f∗ and

L(f∗M`
(~x[M`]

1 ), . . . , f∗M`
(~x[M`]
N )) + λ‖f∗M`

‖M`
→ L(f∗(µ1), . . . , f∗(µN )) + λ‖f∗‖k.

(10.3)
for `→∞.

The main point of this result is the convergence of the minimizers, which we
will establish using a Γ-convergence argument. This approach seems to have been
introduced by [75, 35, 74] originally in the context of multi-agent systems. For the
reader’s convenience, we briefly recall in Section 10.4.

Proof. The existence and uniqueness of fM and f follows from the well-known rep-
resenter theorem (applied to all kM and k).

We now turn to the convergence of the minimizers. For all M ∈ N+ we have

λ‖f∗M‖M ≤ L(f∗M (~x[M ]
1 ), . . . , f∗M (~x[M ]

N )) + λ‖f‖M ≤ L(0, . . . , 0),

i.e., ‖f∗M‖M ≤ L(0, . . . , 0)/λ. Define

LM : HM → R≥0, f 7→ L(f(~x[M ]
1 ), . . . , f(~x[M ]

N )) + λ‖f‖M
L : Hk → R≥0, f 7→ L(f(µ1), . . . , f(µN )) + λ‖f‖k,

and let fM ∈ HM with fM
P1−→ f for some f ∈ Hk. The continuity of fM , f

and L as well as ~x[M ]
n

dKR−→ µn for M → ∞ and all n = 1, . . . , N , imply then that
limM→∞ L(fM (~x[M ]

1 ), . . . , fM (~x[M ]
N )) = L(f(µ1), . . . , f(µN )). Combining this with

Lemma 9.3.2 leads to
L(f) ≤ lim inf

M→∞
LM (f).

Let now f ∈ Hk be arbitrary and let fM ∈ HM be the sequence from Lemma 9.3.3.
Using the same arguments as above we find that

lim sup
M→∞

LM (fM ) ≤ ‖f‖k.
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10.2. The setup of statistical learning theory

We have shown that LM Γ−→ L and hence Proposition 10.4.1 ensures that there
exists a subsequence (f∗M`

)` such that f∗M`

P1−→ f∗ and LM`
(f∗M`

)→ L(f∗).

Remark 10.1.4. An inspection of the proof reveals that in Theorem 10.1.3 we can
replace the term λ‖ ·‖M and λ‖ ·‖k by Ω(‖ ·‖M ) and Ω(‖ ·‖k), where Ω : R≥0 → R≥0

is a nonnegative, strictly increasing and continuous function.

10.2. The setup of statistical learning theory

We now introduce the standard setup of statistical learning theory, following mostly
[189, Chapters 2 and 5]. Let X 6= ∅ (associated with some σ-algebra) and ∅ 6= Y ⊆ R
closed (associated with the corresponding Borel σ-algebra). A loss function is in
this setting a measurable function ` : X × Y × R → R≥0. Let P be a probability
distribution on X × Y and f : X → R a measurable function, then the risk of f
w.r.t. P and loss function ` is defined by

R`,P (f) =
∫
X×Y

`(x, y, f(x))dP.

Note that this is always well-defined since (x, y) 7→ `(x, y, f(x)) is a measurable and
nonnegative function. For a set H ⊆ RX of measurable functions we also define the
minimal risk over H by

RH∗`,P = inf
f∈H
R`,P (f).

If H is a normed vector space, we additionally define the regularized risk of f ∈ H
and the minimal regularized risk over H by

R`,P,λ(f) = R`,P (f) + λ‖f‖2H , RH∗`,P,λ = inf
f∈H
R`,P,λ(f),

where λ ∈ R>0 is the regularization parameter. A data set of size N ∈ N+ is a tuple
DN = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y )N and for a function f : X → R we define
its empirical risk by

R`,DN (f) = 1
N

N∑
n=1

`(xn, yn, f(xn)).
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10. Kernel-based statistical learning in the mean field limit

If H is a normed vector space and f ∈ H, we define additionally the regularized
empirical risk and the minimal regularized empirical risk over H by

R`,DN ,λ(f) = R`,DN (f) + λ‖f‖2H , RH∗`,DN ,λ = inf
f∈H
R`,DN ,λ(f),

where λ ∈ R>0 is again the regularization parameter. Note that the notation for the
empirical risks is consistent with the risk w.r.t. a probability distribution P , if we
identify a data set DN by the corresponding empirical distribution 1

N

∑N
n=1 δ(xn,yn).

In the following, H will be a RKHS and a minimizer (assuming existence and
uniqueness) ofRH∗`,P,λ will be called an infinite-sample support vector machine (SVM).
Similarly, RH∗`,DN ,λ will be called the empirical solution of the SVM w.r.t. the data
set DN . Note that this is the common terminology in statistical learning theory, cf.
[189], and corresponds to (empirical) risk minization with Tikhonov regularization.

10.3. Statistical learning theory in the mean field limit

We now turn to kernel-based statistical learning in the mean field limit.

10.3.1. Setup

We start by translating the setup of statistical learning theory to a mean field setting.
This will require the mean field limit of loss functions. However, to the best of our
knowledge, existing mean field limit existence result are not applicable to general
loss functions. We therefore first state and prove the following existence result for
mean field limits of functions, which might be of independent interest.

Proposition 10.3.1. Let (X, dX) be a compact metric space and (Z, dZ) a metric
space that has a countable basis (Un)n such that Ūn is compact for all n ∈ N. Let
fM : XM × Z → R, M ∈ N+, be a sequence of functions fulfilling the following
conditions.

1. (Symmetry in ~x)1 For all M ∈ N+, ~x ∈ XM , z ∈ Z and permutations σ ∈ SM ,
we have fM (σ~x, z) = fM (~x, z).

1As mentioned before, this condition is actually implied by the next condition. However, as usual
in the kinetic theory literature, we kept this condition for emphasis.
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10.3. Statistical learning theory in the mean field limit

2. (Uniform boundedness) There exists Bf ∈ R≥0 and a function b : Z → R≥0

such that ∀M ∈ N+, ~x ∈ XM , z ∈ z : |fM (~x, z)| ≤ Bf + b(z).

3. (Uniform Lipschitz continuity) There exists some Lf ∈ R>0 such that for
all M ∈ N+, ~x1, ~x2 ∈ XM , z1, z2 ∈ Z we have |fM (~x1, z1) − fM (~x2, z2)| ≤
Lf (dKR(µ̂[~x1], µ̂[~x2]) + dZ(z1, z2)).

Then there exists a subsequence (fM`
)` and a continuous function f : P(X)×Z → R

such that fM`

P1−→ f for `→∞. Furthermore, f is Lf -Lipschitz continuous and there
exists BF ∈ R≥0 such that for all µ ∈ P(X), z ∈ Z we have |f(µ, z)| ≤ BF + b(z).

Proof. For M ∈ N+ define the McShane extension FM : P(X)× Z → R by

FM (µ, z) = inf
~x∈XM

fM (~x, z) + LfdKR(µ̂[~x], µ).

Observe that FM is well-defined (i.e., R-valued) since fM (·, z) and LfdKR(µ̂[·], µ)
are bounded for every z ∈ Z (since fM and dKR(µ̂[·], µ) are continuous and P(X) is
compact, hence bounded).
Step 1 FM extends fM , i.e., for all M ∈ N+, ~x ∈ XM and z ∈ Z we have

FM (µ̂[~x], z) = fM (~x, z). To show this, let ~x ∈ XM and z ∈ Z be arbitrary and
observe that by definition

FM (µ̂[~x], z) = inf
~x′∈XM

fM (~x′, z) + LfdKR(µ̂[~x′], µ̂[~x])

≤ fM (~x, z) + LfdKR(µ̂[~x], µ̂[~x]) = fM (~x, z).

If FM (µ̂[~x], z) < fM (~x, z), then there exists some ~x′ ∈ XM such that

fM (~x′, z) + LfdKR(µ̂[~x′], µ̂[~x]) < fM (~x, z),

but this means that

LfdKR(µ̂[~x′], µ̂[~x]) < fM (~x, z)− fM (~x′, z) ≤ |fM (~x, z)− fM (~x′, z)|,

contradicting the Lf -Lipschitz continuity of fM .
Step 2 All FM are Lf -continuous: Let M ∈ N+, µi ∈ P(X) and zi ∈ Z, i = 1, 2,

be arbitrary. Since XM is compact and fM (·, z) and LfdKR(µ̂[·], µi), i = 1, 2, are
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continuous, the infimum in the definition of FM is actually attained. Let ~x2 ∈ XM

such that FM (µ2, z2) = fM (~x2, z2) + LfdKR(µ̂[~x2], µ2), then we have

FM (µ1, z1) ≤ fM (~x2, z1) + LfdKR(µ̂[~x2], µ1)

= fM (~x2, z1) + LfdKR(µ̂[~x2], µ2)− LfdKR(µ̂[~x2], µ2) + LfdKR(µ̂[~x2], µ1)

≤ fM (~x2, z2) + LfdKR(µ̂[~x2], µ2) + LfdZ(z1, z2)− LfdKR(µ̂[~x2], µ2)

+ LfdKR(µ̂[~x2], µ1)

≤ FM (µ2, z2) + LfdZ(z1, z2)− LfdKR(µ̂[~x2], µ2) + LfdKR(µ1, µ2)

+ LfdKR(µ̂[~x2], µ2)

= FM (µ2, z2) + Lf (dKR(µ1, µ2) + dZ(z1, z2)),

where we used the definition of FM in the first inequality, the Lipschitz continuity
of fM (w.r.t. the second argument) for the second inequality, and then the fact that
~x2 attains the infimum in the definition of FM (µ2, z2) and the triangle inequality for
dKR. Interchanging the roles of µ1, z1 and µ2, z2 then establishes the claim.

Step 3 There exists BF ∈ R≥0 such that for allM ∈ N+, µ ∈ P(X) and z ∈ Z we
have |FM (µ, z)| ≤ BF + h(z): Let DP(X) be the diameter of P(X) (which is finite
since P(X) is compact), then for all M ∈ N+ and ~x ∈ XM , z ∈ Z, µ ∈ P(X) we
have

−(Bf + LfDP(X) + b(z)) ≤ fM (~x, z) + LfdKR(µ̂[~x], µ) ≤ Bf + LfDP(X) + b(z),

therefore |FM (µ, z)| ≤ Bf + LfDP(X) + b(z), showing the claim with BF = Bf +
LfDP(X).

Step 4 Summarizing, (FM )M is a sequence of Lf -Lipschitz continuous and hence
equicontinuous functions such that for all µ ∈ P(X) and z ∈ Z, the set {FM (µ, z) |
M ∈ N+} is relatively compact (since it is a bounded subset of R). We can now
use a variant of the Arzela-Ascoli theorem, cf. [114, Corollary III.3.3]. From the
assumption on Z, we can find a sequence (Vn)n of open subsets of Z such that all V̄n
are compact, V̄n ⊆ Vn+1 and we have ⋃n Vn = Z. Then (FM |V̄n)M is a sequence of
functions that fulfills the conditions of the Arzela-Ascoli theorem (since P(X)×Kn

is compact), so there exists a subsequence (F
M

(n)
`

|V̄n)` that converges uniformly to
a continuous function on P(X)× V̄n. Denote the diagonal subsequence of all these
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subsequences by (FM`
)`, then there exists a continuous f : P(X)×Z → R such that

(FM`
)` converges uniformly on compact subsets to f . Since P(X) is compact, this

means that for all compact K ⊆ Z

lim̀ sup
µ∈P(X)
z∈K

|FM`
(µ, z)− f(µ, z)| = 0.

This also implies that for all µ ∈ P(X) and z ∈ Z we have |f(µ, z)| ≤ BF + b(z).
Furthermore, f is also Lf -Lipschitz continuous: Let µi ∈ P(X), zi ∈ Z, i = 1, 2,

and ε > 0 be arbitrary. Let K ⊆ Z be compact with z1, z2 ∈ K and choose ` ∈ N+

such that
sup

µ∈P(X)
z∈K

|FM`
(µ, z)− f(µ, z)| ≤ ε

2 .

We then have

|f(µ1, z1)− f(µ2, z2)| ≤ |f(µ1, z1)− FM`
(µ1, z1)|+ |FM`

(µ1, z1)− FM`
(µ2, z2)|

+ |FM`
(µ2, z2)− f(µ2, z2)|

≤ Lf (dKR(µ1, µ2) + dZ(z1, z2)) + ε,

and since ε > 0 was arbitrary, the claim follows.
Step 5 For ` ∈ N+ and ~x ∈ XM` , z ∈ Z we have

|fM`
(~x, z)− f(µ̂[~x], z)| = |FM`

(µ̂[~x], z)− f(µ̂[~x], z)|

since FM`
extends fM`

, and hence

sup
~x∈XM`

z∈K

|fM`
(~x, z)− f(µ̂[~x], z)| → 0.

Let now ∅ 6= Y ⊆ R be compact and `M : XM × Y ×R→ R≥0, M ∈ N, such that
the following holds.

1. `M (σ~x, y, t) = `M (~x, y, t) for all ~x ∈ XM , σ ∈ SM , y ∈ Y , t ∈ R.

2. There exists C` ∈ R≥0 and a nondecreasing function b : R≥0 → R≥0 with
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|`M (~x, y, t)| ≤ C` + b(|t|) for all M ∈ N and ~x ∈ XM , y ∈ Y, t ∈ R.

3. There exists L` ∈ R≥0 with

|`M (~x1, y1, t1)− `M (~x2, y2, t2)| ≤ L`(dKR(µ̂[~x1], µ̂[~x2]) + |y1 − y2|+ |t1 − t2|)

for all ~x1, x2 ∈ XM , y1, y
′
1 ∈ Y, t1, t2 ∈ R.

In particular, all `M are measurable (assuming the Borel σ-algebra on XM ) and
hence are loss functions on XM × Y . Proposition 10.3.1 ensures the existence of a
subsequence (`Mm)m and an L`-Lipschitz continuous function ` : P(X)×Y ×R→ R
with

lim
M→∞

sup
~x∈XMm

y∈Y,t∈K

|`Mm(~x, y, t)− `(µ̂[~x], y, t)| = 0 (10.4)

for all compact K ⊆ R, and we write again `Mm

P1−→ `. For readability, from
now on we switch to this subsequence. Furthermore, we also get from Proposition
10.3.1 that there exists some CL ∈ R≥0 such that |`(µ, y, t)| ≤ CL + b(|t|) for all
µ ∈ P(X), y ∈ Y, t ∈ R.

Remark 10.3.2. Note that, for Proposition 10.3.1 to apply, it is enough to assume in
item 2) above the existence of a function b : R→ R≥0 with |`M (~x, y, t)| ≤ C`+b(|t|).
However, we chose the slightly stronger condition that b is nondecreasing, since
then `M is a Nemitskii loss according to [189, Definition 2.16]. Since the function
with constant value C` is actually PM -integrable, this means that `M is even a
PM -integrable Nemitskii loss according to [189]. A similar remark then applies to `.

Lemma 10.3.3. The function ` is nonnegative. Furthermore, if all `M are convex
loss functions [189, Definition 2.12], i.e., if for all M ∈ N+, ~x ∈ XM , y ∈ Y, t1, t2 ∈ R
and λ ∈ (0, 1) we have

`M (~x, y, λt1 + (1− λ)t2) ≤ λ`M (~x, y, t1) + (1− λ)`M (~x, y, t2), (10.5)

then so is `.

Proof. That ` is nonnegative is clear from the proof of Proposition 10.3.1. Let now
all `M be convex and let µ ∈ P(X), y ∈ Y, t1, t2 ∈ R and λ ∈ (0, 1) be arbitrary, and
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define I = [min{t1, t2},max{t1, t2}]. Furthermore, let ~xM ∈ XM with ~xM
dKR−→ µ for

M →∞ and ε > 0 be arbitrary. Choose now M so large that

|`(µ, y, λt1 + (1− λ)t2)− `(µ̂[~xM ], y, λt1 + (1− λ)t2)|

≤ ε

6 sup
~x∈XM

y′∈Y,t∈I

|`M (~x, y′, t′)− `(µ̂[~x], y′, t′)|

≤ ε

6 .

This is possible due to the continuity of `, as well as `M
P1−→ `. We then have

`(µ, y, λt1 + (1− λ)t2) ≤ `(µ̂[~x], y, λt1 + (1− λ)t2) + ε

6
≤ `M (~xM , y, λt1 + (1− λ)t2) + ε

3
≤ λ`M (~xM , y, t1) + (1− λ)`M (~xM , y, t2) + ε

3
≤ λ`(µ̂[~xM ], y, t1) + (1− λ)`(µ̂[~xM ], y, t2) + ε

3 + (λ+ 1− λ) ε6
≤ λ`(µ, y, t1) + (1− λ)`(µ, y, t2) + ε,

and since ε > 0 was arbitrary, this establishes

`(µ, y, λt1 + (1− λ)t2) ≤ λ`(µ, y, t1) + (1− λ)`(µ, y, t2),

i.e., convexity of `.

10.3.2. Empirical SVM solutions

Given data sets D[M ]
N =

(
(~x[M ]

1 , y
[M ]
1 ), . . . , (~x[M ]

N , y
[M ]
N )

)
for all M ∈ N+ with ~x[M ]

n ∈

XM , y[M ]
n ∈ Y , and DN = ((µ1, y1), . . . , (µN , yN )) with µn ∈ P(X) and yn ∈ Y ,

we write D[M ]
N

P1−→ DN if µ̂[~x[M ]
n ] dKR−→ µn and y

[M ]
n → yn (where M → ∞) for all

n = 1, . . . , N . We can interpret this as mean field convergence of the data sets.

Furthermore, consider the empirical risk of hypothesis fM ∈ HM (and f ∈ Hk)
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on data set D[M ]
N (and DN )

R
`M ,D

[M ]
N

(fM ) = 1
N

N∑
n=1

`M (~x[M ]
n , y[M ]

n , fM (~x[M ]
n ))

R`,DN (f) = 1
N

N∑
n=1

`(µn, yn, f(µn)),

and the corresponding regularized risk

R
`M ,D

[M ]
N ,λ

(fM ) = 1
N

N∑
n=1

`M (~x[M ]
n , y[M ]

n , fM (~x[M ]
n )) + λ‖fM‖2M

R`,DN ,λ(f) = 1
N

N∑
n=1

`(µn, yn, f(µn)) + λ‖f‖2k,

where λ ∈ R>0 is the regularization parameter.

Proposition 10.3.4. Let λ > 0, assume that all `M are convex and let D[M ]
N ,

DN be finite data sets with D
[M ]
N

P1−→ DN . Then for all M ∈ N+, HM 3 fM 7→
R
`M ,D

[M ]
N ,λ

(fM ) has a unique minimizer f∗M,λ ∈ HM and Hk 3 f 7→ R`,DN ,λ(f) has a

unique minimizer f∗λ ∈ Hk. Furthermore, for all M ∈ N+ there exist α[M ]
n ∈ R, n =

1, . . . , N , such that f∗M,λ = ∑N
n=1 α

[M ]
n kM (·, ~x[M ]

n ), and there exist α1, . . . , αN ∈ R
such that f∗λ = ∑N

n=1 αnk(·, µn). Finally, there exists a subsequence (f∗Mm,λ
)m such

that f∗Mm,λ
P1−→ f∗λ and R

`Mm ,D
[Mm]
N ,λ

(f∗Mm,λ
)→ R`,DN ,λ(f∗λ) for m→∞.

Proof. From Lemma 10.3.3 we get that ` is nonnegative and convex. The exis-
tence, uniqueness and the representation formulas follow then from the standard
representer theorem, cf. e.g., [189, Theorem 5.5].
Furthermore, for all M ∈ N+ we have

λ‖f∗M,λ‖2M ≤
1
N

N∑
n=1

`M (~x[M ]
n , y[M ]

n , f∗M,λ(~x[M ]
n )) + λ‖f∗M,λ‖2M

≤ R
`M ,D

[M ]
N ,λ

(0)

≤ NC`,

hence ‖f∗M,λ‖M ≤
√

NC`
λ .
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Let f ∈ Hk and (fM )M , fM ∈ HM , such that fM
P1−→ f . From D

[M ]
N

P1−→ DN and
the continuity of `M , `, together with `M

P1−→ ` and the boundedness of {y[M ]
n |M ∈

N+, n = 1, . . . , N} ⊆ Y and {fM (~x[M ]
n ) |M ∈ N+, N = 1, . . . , N} we find that

lim
M

1
N

N∑
n=1

`M (~x[M ]
n , y[M ]

n , fM (~x[M ]
n )) = 1

N

N∑
n=1

`(µn, yn, f(µn)).

Combining this with Lemma 9.3.2 and Lemma 9.3.3 then establishes thatR
`M ,D

[M ]
N ,λ

Γ−→
R`,DN ,λ and the remaining claims follow from Proposition 10.4.1 and the uniqueness
of the minimizers.

10.3.3. Convergence of distributions and infinite-sample SVMs in the
mean field limit

We now turn to the question of mean field limits of distributions and the associated
learning problems and SVM solutions. Let (P [M ])M be a sequence of distributions,
where P [M ] is a probability distribution on XM × Y , and let P be a probability
distribution on P(X)×Y . We say that P [M ] converges in mean field to P and write
P [M ] P1−→ P , if for all continuous (w.r.t. the product topology on P(X) × Y ) and
bounded 2 f we have∫

XM×Y
f(µ̂[~x], y)dP [M ](~x, y)→

∫
P(X)×Y

f(µ, y)dP (µ, y). (10.6)

This convergence notion of probability distributions (on different input spaces) ap-
pears to be not standard, but it is a natural concept in the present context. Es-
sentially, it is weak (also called narrow) convergence of probability distributions
adapated to our setting.

Consider now data sets D[M ]
N , DN , with D

[M ]
N

P1−→ DN , then we also have con-
vergence in mean field of the datasets, interpreted as empirical distributions: let

2Of course, since Y is compact, all continuous f are bounded in our present setting.
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f ∈ C0(P(X)× Y,R) be bounded, then

∫
XM×Y

f(µ̂[~x], y)dD[M ]
N (~x, y) = 1

N

N∑
n=1

f(µ̂[~x[M ]
n ], y[M ]

n )

M→∞−−−−→ 1
N

N∑
n=1

f(µn, yn) =
∫
P(X)×Y

f(µ, y)dDN (µ, y).

This shows that the mean field convergence of probability distributions as defined
here is a direct generalization of the natural notion of mean field convergence of data
sets.

Finally, consider the risk of hypothesis fM ∈ HM and f ∈ Hk w.r.t. the distribu-
tion P [M ] and P , respectively,

R`M ,P [M ](fM ) =
∫
XM×Y

`M (~x, y, fM (~x))dP [M ](~x, y)

R`,P (f) =
∫
P(X)×Y

`(µ, y, f(µ))dP (µ, y),

as well as the minimal risks

RHM∗
`M ,P [M ] = inf

fM∈HM
R`M ,P [M ](fM ) RHk∗`,P = inf

f∈Hk
R`,P (f).

Our first result ensures that mean field convergence of distributions P [M ], loss
functions `M and data sets D[M ]

N ensures the convergence of the corresponding risks
of the empirical SVM solutions.

Lemma 10.3.5. Consider the situation and notation of Proposition 10.3.4 and
assume that P [M ] P1−→ P . We then haveR`Mm ,P [Mm](f∗Mm,λ

)→ R`,P (f∗λ) form→∞.

Proof. Let ε > 0 be arbitrary. Recall from the proof of Proposition 10.3.4 that for
all M ∈ N+ we have ‖f∗M,λ‖M ≤

√
NC`
λ , and hence for all ~x ∈ XM we have

|f∗M,λ(~x)| ≤ ‖f∗M,λ‖k‖kM (·, ~x)‖k

≤

√
NC`
λ

√
Ck.
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A similar argument applies to f∗λ ∈ Hk, so we can find a compact set K ⊆ R with

{f∗M,λ(~x[M ]
n ) |M ∈ N+, n = 1, . . . , N} ∪ {f∗λ(µn) | n = 1, . . . , N} ⊆ K.

Choose now mε ∈ N+ such that for all m ≥ mε we have

sup
~x∈XMm

y∈Y

|`Mm(~x, y, f∗Mm,λ(~x))− `Mm(~x, y, f∗λ(µ̂[~x]))| ≤ ε

3

sup
~x∈XMm

y∈Y,t∈K

|`Mm(~x, y, t)− `(µ̂[~x], y, t)| ≤ ε

3∣∣∣∣∣
∫
XMm×Y

`(µ̂[~x], y, f∗λ(µ̂[~x]))dP [Mm](~x, y)−
∫
P(X)×Y

`(µ, y, f∗λ(µ))d(µ, y)
∣∣∣∣∣ ≤ ε

3 .

Such a mε exists since f∗Mm,λ
P1−→ f∗λ and all `Mm are uniformly Lipschitz continuous

(first inequality), `Mm

P1−→ ` and Y and K are compact (second inequality), and
P [M ] P1−→ P as well as that (µ, y) 7→ `(µ, y, f∗λ(µ)) is continuous and bounded (third
inequality). We now have∣∣∣R`Mm ,P [Mm](f∗Mm,λ)−R`,P (f∗λ)

∣∣∣
≤
∣∣∣∣∫
XMm×Y

`Mm(~x, y, f∗Mm,λ(~x))− `Mm(~x, y, f∗λ(µ̂[~x]))dP [Mm](~x, y)
∣∣∣∣

+
∣∣∣∣∫
XMm×Y

`Mm(~x, y, f∗λ(µ̂[~x]))− `(µ̂[~x], y, f∗λ(µ̂[~x]))dP [Mm](~x, y)
∣∣∣∣

+
∣∣∣∣∣
∫
XMm×Y

`(µ̂[~x], y, f∗λ(µ̂[~x]))dP [Mm](~x, y)−
∫
P(X)×Y

`(µ, y, f∗λ(µ))d(µ, y)
∣∣∣∣∣

≤
∫
XMm×Y

|`Mm(~x, y, f∗Mm,λ(~x))− `Mm(~x, y, f∗λ(µ̂[~x]))|dP [Mm](~x, y)

+
∫
XMm×Y

|`Mm(~x, y, f∗λ(µ̂[~x]))− `(µ̂[~x], y, f∗λ(µ̂[~x]))|dP [Mm](~x, y)

+ ε

3
≤ ε,

and since ε > 0 was arbitrary, the claim follows.

Next, we investigate the mean field convergence of infinite-sample SVM solutions
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10. Kernel-based statistical learning in the mean field limit

and their associated risks. Define for λ ∈ R≥0 (and all M ∈ N+) the regularized risk
of fM ∈ HM and f ∈ Hk, respectively, by

R`M ,P [M ],λ(fM ) = R`M ,P [M ](fM ) + λ‖fM‖2M , R`,P,λ(f) = R`,P (f) + λ‖f‖2k,

and the corresponding minimal risks by

RHM∗
`M ,P [M ],λ

= inf
fM∈HM

R`M ,P [M ],λ(fM ), RHk∗`,P,λ = inf
f∈Hk

R`,P,λ(f).

Proposition 10.3.6.3 Let λ > 0, assume that all `M are convex loss functions and
let P [M ] and P be probability distributions on XM ×Y and P(X)×Y , respectively,
with P [M ] P1−→ P . Then for all M ∈ N+, HM 3 fM 7→ R`M ,P [M ],λ(fM ) has a
unique minimizer f∗M,λ ∈ HM and Hk 3 f 7→ R`,P,λ(f) has a unique minimizer
f∗λ ∈ Hk. Furthermore, there exists a subsequence (f∗Mm,λ

)m such that f∗Mm,λ
P1−→ f∗λ

and R`Mm ,P [Mm],λ(f∗Mm,λ
)→ R`,P,λ(f∗λ) for m→∞. In particular, RHMm∗

`Mm ,P
[Mm],λ

→
RHk∗`,P,λ.

Proof. Observe that all kM are bounded measurable kernels, R`M ,P [M ](fM ) <∞ for
all f ∈ HM , `M is a convex, P [M ]-integrable Nemitskii loss (cf. Remark 10.3.2) and
hence [189, Lemma 5.1, Theorem 5.2] guarantee the existence and uniqueness of
f∗M,λ. A completely analogous argument shows the existence and uniqueness of f∗λ .

We now show that R`M ,P [M ],λ
Γ−→ R`,P,λ. For the Γ-lim inf-inequality, let fM ∈

HM , f ∈ Hk be arbitrary with fM
P1−→ f , and let ε > 0. Choose Mε ∈ N+ so large

that for all M ≥Mε∣∣∣∣∫ `(µ̂[~x], y, f(µ̂[~x])dP [M ](~x, y))−
∫
`(µ, y, f(µ))dP (µ, y)

∣∣∣∣ ≤ ε

2

(this is possible since (µ, y) 7→ `(µ, y, f(µ)) is bounded and continuous and P [M ] P1−→
P ) and

|`M (~x, y, fM (~x))− `(µ̂[~x], y, f(µ̂[~x]))| ≤ ε

2
for all ~x ∈ XM , y ∈ Y (this is possible due to the same argument used in the proof

3Note that Proposition 10.3.4 is actually a corollary of this result. However, since the former result
is independent of the notion of mean field convergence of probability distributions, we stated
and proved it separately.
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of Lemma 10.3.5). For M ≥Mε we then find

R`,P,λ(f) =
∫
`(µ, y, f(µ))dP (µ, y) + λ‖f‖2k

≤
∫
`M (~x, y, fM (~x))dP [M ](~x, y)

+
∣∣∣∣∫ `(µ̂[~x], y, f(µ̂[~x])dP [M ](~x, y))−

∫
`(µ, y, f(µ))dP (µ, y)

∣∣∣∣
+
∣∣∣∣∫ `M (~x, y, fM (~x))− `(µ̂[~x], y, f(µ̂[~x]))dP [M ](~x, y)

∣∣∣∣+ λ‖f‖2k

≤
∫
`M (~x, y, fM (~x))dP [M ](~x, y) + λ lim inf

M
‖fM‖2M + ε,

where we used Lemma 9.3.2 in the last inequality.
For the Γ-lim sup-inequality, let f ∈ Hk be arbitrary and let (fM )M be the recovery

sequence from Lemma 9.3.3. The desired inequality then follows by repeating the
arguments from above.
Finally, using exactly the same argument as in the proof of Proposition 10.3.4

shows that ‖f∗M,λ‖M ≤
√

NC`
λ , so we can apply Proposition 10.4.1 and the result

follows.

Finally, we would like to show that RHM∗
`M ,P [M ] → R

Hk∗
`,P for P [M ] P1−→ P . Up to a

subsequence, this is established under Assumption 10.3.7. Define the approximation
error functions, cf. [189, Definition 5.14], by

A
[M ]
2 (λ) = inf

f∈HM
R`M ,P [M ],λ(f)−RHM∗

`M ,P [M ] A2(λ) = inf
f∈Hk

R`,P,λ(f)−RHk∗`,P ,

where M ∈ N+ and λ ∈ R≥0. Note that (for all M ∈ N+) A[M ]
2 , A2 : R≥0 → R≥0 are

increasing, concave and continuous, and A[M ]
2 , A2(0) = 0, cf. [189, Lemma 5.15]. We

need essentially equicontinuity of (A[M ]
2 )M in 0, which is formalized in the following

assumption.

Assumption 10.3.7. For all ε > 0 there exists λε > 0 such that for all 0 < λ ≤ λε
and M ∈ N+ we have A[M ]

2 (λ) ≤ ε.

Proposition 10.3.8. Assume that all `M are convex loss functions, let P [M ] and P
be probability distributions onXM×Y and P(X)×Y , respectively, with P [M ] P1−→ P .
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If Assumption 10.3.7 holds, there exists a strictly increasing sequence (Mm)m with
RHMm∗
`Mm ,P

[Mm] → R
Hk∗
`,P for m→∞.

Proof. Let (εn)n ⊆ R>0 with εm ↘ 0. We construct a strictly increasing sequence
(Mn)n such that ∣∣∣RHMn∗

`Mn ,P
[Mn] −R

Hk∗
`,P

∣∣∣ ≤ εn
for all n ∈ N+.

We start with n = 1: Since A2(0) = 0 and A2 is continuous in 0, cf. [189,
Lemma 5.15], there exists λ′1 ∈ R>0 such that A2(λ) ≤ ε1

3 for all 0 < λ ≤ λ′1.
From Assumption 10.3.7 we get λ′′1 ∈ R>0 such that for all M ∈ N+ we have
A

[M ]
2 (λ) ≤ ε1

3 for all 0 < λ ≤ λ′′1. Define now λ1 = min{λ′1, λ′′1}, and observe that
λ1 > 0. Proposition 10.3.6 ensures the existence of a strictly increasing sequence
(M (1)

m )m ⊆ N+ with

R
H
M

(1)
m
∗

`
M

(1)
m
,P [M(1)

m ],λ1
→ RHk∗`,P,λ1

for m→∞. Choose m1 ∈ N+ such that for all m ≥ m1 we have∣∣∣∣∣∣R
H
M

(1)
m
∗

`
M

(1)
m
,P [M(1)

m ],λ1
−RHk∗`,P,λ1

∣∣∣∣∣∣ ≤ ε1
3 .

We now set M1 = M
(1)
m1 and get that

∣∣∣∣RHM1∗
`M1 ,P

[M1] −R
Hk∗
`,P

∣∣∣∣ ≤
∣∣∣∣∣∣∣R

H
M

(1)
m1
∗

`
M

(1)
m1

,P
[M(1)
m1 ]
−R

H
M

(1)
m1
∗

`
M

(1)
m1

,P
[M(1)
m1 ]

,λ1

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣R

H
M

(1)
m1
∗

`
M

(1)
m1

,P
[M(1)
m1 ]

,λ1

−RHk∗`,P,λ1

∣∣∣∣∣∣∣
+
∣∣∣RHk∗`,P,λ1

−RHk∗`,P

∣∣∣
≤ A[M(1)

m ]
2 (λ1) + ε1

3 +A2(λ1)

≤ ε1.

We can now repeat the argument from above inductively: Suppose we have con-
structed our subsequence up to n ∈ N+, i.e., M1, . . . ,Mn. Choose λ′ ∈ R>0 such
that A2(λ) ≤ εn+1

3 for all 0 < λ ≤ λ′ (exists due to continuity), and λ′′ ∈ R>0 such
that for all M ∈ N+ we have A[M ]

2 (λ) ≤ εn+1
3 for all 0 < λ ≤ λ′′ (using Assumption
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10.3.7). Define now λn+1 = min{λ′, λ′′}, and observe that λn+1 > 0. Proposition
10.3.6 ensures the existence of a strictly increasing sequence

(
M

(n+1)
m

)
m

such that

R
H
M

(n+1)
m

∗

`
M

(n+1)
m

,P [M(n+1)
m ],λn+1

→ RHk∗`,P,λn+1

for m→∞. Choose mn+1 such that for all m ≥ mn+1 we have∣∣∣∣∣∣R
H
M

(n+1)
m

∗

`
M

(n+1)
m

,P [M(n+1)
m ],λn+1

−RHk∗`,P,λn+1

∣∣∣∣∣∣ ≤ εn+1
3 .

Define now Mn+1 = max{Mn + 1,M (n+1)
mn+1 }, then we get

∣∣∣∣RHMn+1∗
`Mn+1 ,P

[Mn+1] −R
Hk∗
`,P

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣R

H
M

(n+1)
mn+1

∗

`
M

(n+1)
mn+1

,P
[M(n+1)
mn+1]

−R
H
M

(n+1)
mn+1

∗

`
M

(n+1)
mn+1

,P
[M(n+1)
mn+1]

,λn+1

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣R
H
M

(n+1)
mn+1

∗

`
M

(n+1)
mn+1

,P
[M(n+1)
mn+1]

,λn+1

−RHk∗`,P,λn+1

∣∣∣∣∣∣∣∣
+
∣∣∣RHk∗`,P,λn+1

−RHk∗`,P

∣∣∣
≤ A

M
(n+1)
mn+1

2 (λn+1) + εn+1
3 +A2(λn+1)

≤ εn+1.

The resulting sequence (Mn)n fulfills then

RHMn∗
`Mn ,P

[Mn] → R
Hk∗
`,P

for n→∞.

10.4. Technical background: A Γ-convergence argument

We use repeatedly the concept of Γ-convergence, see for example [60]. For conve-
nience, in this section we summarize the well-known and standard main argument,
roughly following [34, Chapter 5]. Let FM : HM → R∪{∞} and F : Hk → R∪{∞}.
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We say that FM Γ-converges to F and write FM Γ−→ F , if

1. For all sequences (fM )M , fM ∈ HM , with fM
P1−→ f for some f ∈ Hk, we have

F (f) ≤ lim inf
M

FM (fM ).

2. For all f ∈ Hk there exists a sequence (fM )M with fM ∈ HM such that
fM

P1−→ f and
F (f) ≥ lim sup

M
FM (fM ).

The sequence in the second item is commonly called a recovery sequence (for f).

Proposition 10.4.1. Let FM Γ−→ F and f∗M ∈ argminf∈HMFM (f) for all M ∈ N
(in particular, all the minima are attained). If there exists B ∈ R≥0 such that
‖f∗M‖M ≤ B for all M ∈ N, then there exists a subsequence (f∗M`

)` and f∗ ∈ Hk

such that f∗M`

P1−→ f∗. Furthermore, FM`
(f∗M`

)→ F (f∗).

Proof. From Theorem 9.3.1 we get the existence of (f∗M`
)` and f∗ ∈ Hk, and that

f∗M`

P1−→ f∗. Let f ∈ Hk be arbitrary and let (fM )M be a recovery sequence for f .
We then have

F (f) ≥ lim sup
M

FM (fM )

≥ lim sup
M`

FM`
(fM`

)

≥ lim inf
M`

FM`
(fM`

)

≥ lim inf
M`

FM`
(f∗M`

)

≥ F (f∗),

where we used the lim sup-inequality of Γ-convergence in the first step, standard
properties of lim sup and lim inf in the second and third step, the fact that f∗M`

is a minimizer of FM`
in the fourth step, and finally the lim inf-inequality of Γ-

convergence. Since f ∈ Hk was arbitrary, this shows that f∗ is a minimizer of
F .
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Furthermore, let (fM )M be a recovery sequence for f∗, then

F (f∗) ≥ lim sup
M

FM (fM )

≥ lim sup
`

FM`
(fM`

)

≥ lim sup
`

FM`
(f∗M`

),

where we used the lim sup-inequality in the first step, an elementary property of
lim sup in the second step, and finally that f∗M`

is a minimizer of FM`
. Since f∗M`

P1−→
f∗, the lim inf-inequality of Γ-convergence implies that

F (f∗) ≤ lim inf
`

FM`
(f∗M`

),

so we find that

lim sup
`

FM`
(f∗M`

) ≤ F (f∗) ≤ lim inf
`

FM`
(f∗M`

),

establishing that FM`
(f∗M`

)→ F (f∗).

10.5. Comments

This chapter is based on, and to a large extent taken verbatim from [CF6]. All
theoretical results presented above have been established by the author of the present
thesis.
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11. Mean field limits of discrete-time
multiagent systems via kernel mean
embeddings

In the present part of this thesis, we are concerned with kernels in the context of
mean field limits as arising in kinetic theory. Motivated by learning problems on
large scale interacting particle systems, cf. Chapter 8, we investigated in Chapters 9
and 10 kernels, RKHSs, and kernel-based learning methods in the mean field limit,
which led to a rich and fairly complete theory. This means that problems from
kinetic theory motivated interesting questions and theoretical results for kernels and
associated learning methods. In this chapter, we will find that conversely kernels
and their theory are also helpful in kinetic theory itself. The starting point is the
investigation of the mean field limit of discrete-time multiagent systems (MAS). In
Section 11.1, we provide some background and explain why new results are needed
in this context, and why kernels and their theory will be helpful. In Section 11.2, we
state and prove two existence results for sequence of functions that are immediately
applicable to discrete-time MAS. Finally, in Section 11.3 we apply the results to
the standard optimal control setup, and establish a relaxed dynamic programming
principle in the mean field.

This chapter is based on and taken to a large extent verbatim from the article
[CF5].1 Detailed comments on the author’s contribution are provided in Section
11.5.

1© IEEE 2023. Reprinted, with permission, from Christian Fiedler, Michael Herty, and Sebastian
Trimpe. Mean field limits for discrete-time dynamical systems via kernel mean embeddings.
IEEE Control Systems Letters, 2023.
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11. Mean field limits of discrete-time multiagent systems via kernel mean embeddings

11.1. Introduction

In continuous time, MAS can be described on the microscopic level by ordinary
differential equations (ODEs). As an example, let us consider first-order dynamics,
as appearing for example when considering alignment. Let xi(t) ∈ Rd be the state
of agent i = 1, . . . ,M at time t ≥ 0, and let u(t) ∈ Rm be some control input. A
very general class of such dynamics is given by the ODE system

ẋi = 1
M

M∑
j=1

Ψ(xi, xj)(xj − xi) +Bu

xi(0) = x0
i i = 1, . . . ,M (11.1)

with interaction function Ψ : Rd × Rd → R, control matrix B ∈ Rd×m and initial
states x0

1, . . . , x
0
M ∈ Rd. If the number of agents or particle M is very large, then it

can be benefitial to go to the mesoscopic level, and model only the evolution of the
distribution of the agents over time. One way to do this transition is the mean field
limit, cf. Section 8, leading to a partial differential equation (PDE) describing the
evolution of the particle distribution.
But what about discrete-time MAS? Typical examples include [58, 221], and they

are particularly relevant for engineering applications [41]. On the microscopic level,
the direct analogon of the ODE system (11.1) is given by

x+
i = xi + 1

M

M∑
j=1

Ψ(xi, xj)(xj − xi) +Bu

xi(0) = x0
i i = 1, . . . ,M. (11.2)

Formally, we have discrete-time control system of the form

~x+ = fM (~x, u), (11.3)

where the transition function is of the form fM : XM × U → XM , where the state
space of the individual agents X and the space of control inputs U does not have to
have any special structure a priori. Note that not any function f : XM × U → XM

can be interpreted as the transition function of a discrete-time MAS. Inspecting the
structure of systems like (11.2) shows that they should be permutation equivariant
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in the state space, i.e., for all ~x ∈ XM , u ∈ U , and σ ∈ SM , we need

f(σ~x, u) = σf(~x, u). (11.4)

Suppose now that we have a large M , and just as in the continuous time case, we
would like to go to the mesoscopic level via the mean field limit. Since discrete-time
dynamical systems are completely described by their transition functions, the mean
field limit should be formalized on the level of transition functions. Adapting the
reasoning from Section 8.2, this can be done as follows. Let X be a measurable
space, U some set, and P a space of probability distributions over X that contains
all empirical measures with finitely many atoms, and let dP be a metric on P.
Consider a sequence of functions fM : XM×U → XM ,M ∈ N+, that is permutation
equivariant in the first argument, and a function F : P × U → P. We say that F is
the mean field limit of (fM )M , or that the latter converges to F in mean field, if

lim
M→∞

sup
~x∈XM

u∈U

dP(µ̂[fM (~x, u)], F (µ̂[~x], u)) = 0. (11.5)

It is now tempting to adapt the proof strategy from Proposition 8.2.2, or the simpler
variant [50, Lemma 1.2], to the present situation. However, one quickly finds a se-
vere difficulty. The functions fM have an increasing number of inputs and outputs.
An important step in the proof of [50, Lemma 1.2] is the extension of these func-
tions from EM (X) to all Borel probability measures while preserving the uniform
Lipschitz bound, which is done with the McShane extension [134]. But this explicit
construction works only for functions with a scalar output space, whereas in our
case, we have an increasing number of outputs, even growing unboundedly.
We now present a way to circumvent this difficulty. The overall proof strategy

remains roughly the same, however, we need to adapt the extension step. Instead of
the explicit McShane extension, we use a non-constructive extension result. Since
we need to preserve the uniform Lipschitz bound, we choose Kirszbraun’s Theorem.
As is well-known, in general this only works for functions between Hilbert spaces,
and apart from a slight weaking, this cannot be overcome [56]. So we need to trans-
late our setting, which involves empirical measures and Borel probability measures,
into a Hilbert space setting. But we have already a very convenient tool at hand
for this – kernel mean embeddings. Here is now our approach. Instead of more tra-
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ditional probability metrics like Kantorowich-Rubinstein, we work with the MMD,
which is compatible with the RKHS framework. We embed the empirical measures
into an RKHS via kernel mean embeddings, perform the Lipschitz extension via
Kirszbraun’s theorem, and then project onto the subspace of all kernel mean em-
beddings in the RKHS, since the Lipschitz extension will in general result in RKHS
elements that are not necessarily embeddings of probability distributions. From now
on, the rest of the proof works as before, leading to a mean field limit on KMEs.
Essentially, we have lifted the microscopic dynamics into an RKHS, where a mean
field limit exists. Finally, if we use a characteristic kernel, we can translate this back
into the original state space.

11.2. New Mean Field Limit Existence Results

We now present and prove new mean field limit existence results that are tailored
to discrete-time control systems.

Systems with control input Our first main result concerns functions of the form of
transition functions of discrete-time dynamics with input. We will apply this result
to such systems in Section 11.3.

Theorem 11.2.1. Let (X, dX) be a metric space, H a Hilbert space and U ⊆ H

compact, k a measurable, bounded and characteristic kernel such that Πk(P(X)) is
compact. Consider a sequence of functions fM : XM × U → XM , M ∈ N+, such
that

1. ∀M ∈ N+ ∀~x ∈ XM , σ ∈ SM , u ∈ U : µ̂[fM (σ~x, u)] = µ̂[fM (~x, u)]

2. ∃L ∈ R≥0 ∀M ∈ N+∀~x, x′ ∈ XM , u, u′ ∈ U :

γk(µ̂[fM (~x, u)], µ̂[fM (~x′, u′)]) ≤ L
∥∥(Πk(µ̂[~x]), u)− (Πk(µ̂[~x′]), u′)

∥∥
Hk×H ,

(11.6)

where ‖ · ‖Hk×H is the norm for the product of the Hilbert spaces Hk and H.

Then there exist a subsequence (fM`
)` and an L-Lipschitz continuous function F :
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Πk (P(X))× U → Πk (P(X)) such that

lim
`→∞

sup
~x∈XM` ,u∈U

‖Π̂k (fM`
(~x, u))− F (Π̂k(~x), u)‖k = 0 (11.7)

and
lim
`→∞

sup
~x∈XM` ,u∈U

γk(µ̂[fM`
(~x, u)], f(µ̂[~x], u)) = 0, (11.8)

where we defined f(µ, u) = Π−1
k (F (Πk(µ), u)).

Proof. Due to property 1) of the fM , the mappings f̃M : EM (X) × U → EM (X)
given by

f̃M

(
1
M

M∑
m=1

δxm , u

)
= µ̂[fM (x1, . . . , xM , u)]

are well-defined for allM ∈ N+. Furthermore, since k is characteristic, the mappings

F̃M = Πk ◦ f̃M ◦Πk|−1
Πk(EM (X))

are well-defined. Let now M ∈ N+, g, g′ ∈ Πk(EM (X)), u, u′ ∈ U be arbitrary, and
choose ~x, ~x′ ∈ XM such that

g = Πk

(
1
M

M∑
m=1

δxm

)
, g′ = Πk

(
1
M

M∑
m=1

δx′m

)
.

We then have

‖F̃M (g, u)− F̃M (g′, u′)‖k =
∥∥∥Π̂k (fM (~x, u))− Π̂k

(
fM (~x′, u′)

)∥∥∥
k

= γk(µ̂[fM (~x, u)], µ̂[fM (~x′, u′)])

≤ L
∥∥(Πk(µ̂[~x]), u)− (Πk(µ̂[~x′]), u′)

∥∥
Hk×H

= L
∥∥(g, u)− (g′, u′)

∥∥
Hk×H ,

which shows that all F̃M are L-Lipschitz continuous. SinceHk×H is a Hilbert space,
Kirszbraun’s theorem ensures that there exist L-Lipschitz continuous mappings F̄M :
Hk ×H → Hk with F̄M |Πk(P(X))×U= F̃M , for all M ∈ N+. Recall that Πk(P(X)) is
convex and by assumption also compact, so there exists the orthogonal projection
PΠk(P(X)) from Hk onto Πk(P(X)). Define now for all M ∈ N+ the mappings
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FM : Πk(P(X))→ Πk(P(X)) by

FM = PΠk(P(X)) ◦ F̄M |Πk(P(X))×U .

We have for all M ∈ N+, g, g′ ∈ Πk(EM (X)), u, u′ ∈ U that

‖FM (g, u)− FM (g′, u′)‖k = ‖PΠk(P(X))
(
F̄M (g, u)− F̄M (g′, u′)

)
‖k

≤ ‖PΠk(P(X))‖L(Hk)‖F̄M (g, u)− F̄M (g′, u′)‖k
≤ L

∥∥(g, u)− (g′, u′)
∥∥
Hk×H ,

where we used that ‖PΠk(P(X))‖L(Hk) ≤ 1 (since PΠk(P(X)) is a projection). This
shows that all FM are L-Lipschitz continuous. Since Πk(P(X))× U and Πk(P(X))
are compact, we now have a sequence (FM )M∈N+ of equicontinuous functions defined
on a compact input set, with their range contained in a compact set, so the Arzela-
Ascoli theorem asserts that there exist a subsequence (FM`

)` and an L-Lipschitz
continuous function F : Πk(P(X))→ Πk(P(X)) with

lim
`→∞

sup
g∈Πk(P(X)),u∈U

‖FM`
(g, u)− F (g, u)‖k= 0,

which implies that

lim
`→∞

sup
~x∈XM` ,u∈U

‖FM`
(Π̂k(~x), u)− F (Π̂k(~x), u)‖k= 0.

Observe that for all M ∈ N+, ~x ∈ XM and u ∈ U we have

FM (Πk(µ̂[~x]), u) = PΠk(P(X))
(
F̄M (Πk(µ̂[~x]), u)

)
= PΠk(P(X))

(
F̃M (Πk(µ̂[~x]), u)

)
= PΠk(P(X)) (Πk(µ̂[fM (~x, u)]))

= Πk(µ̂[fM (~x, u)]),

which implies

lim
`→∞

sup
~x∈XM` ,u∈U

‖Π̂k(fM`
(~x, u))− F (Π̂k(~x), u)‖k = 0,
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and since Πk is injective, we can set f(µ, u) = Π−1
k (F (Πk(µ), u)) and get (11.8).

Feedback maps Our second main result is concerned with functions that can be
used as feedback maps for discrete-time control systems, cf. Theorem 11.3.6 for an
example of such a situation.

Theorem 11.2.2. Let (X, dX) be a metric space, k : X × X → R a bounded,
Borel-measurable and characteristic kernel on X such that Πk(P(X)) is compact,
H a Hilbert space and C ⊆ H a compact and convex subset. Consider maps gM :
XM → C, M ∈ N+, such that

1. ∀M ∈ N+, ~x ∈ XM , σ ∈ SM , u ∈ U : gM (σ~x) = gM (~x)

2. ∃L ∈ R≥0 ∀M ∈ N+, ~x, x
′ ∈ XM :

‖gM (~x)− gM (~x′)‖H ≤ Lγk(µ̂[~x], µ̂[~x′]). (11.9)

Then there exist a subsequence (gM`
)` and an L-Lipschitz continuous map G :

Πk(P(X))→ C such that

lim
`→∞

sup
~x∈XM`

‖gM`
(~x)−G(Πk(µ̂[~x]))‖H= 0 (11.10)

and
lim
`→∞

sup
~x∈XM`

‖gM`
(~x)− g(µ̂[~x])‖H= 0, (11.11)

where we defined g = G ◦Πk.

Remark 11.2.3. Observe that g is also L-Lipschitz continuous as a map on (P(X), γk),
since for all µ, µ′ ∈ P(X) we have

‖g(µ)− g(µ′)‖H = ‖G(Πk(µ))−G(Πk(µ′))‖H
≤ L‖Πk(µ)−Π(µ′)‖k = Lγk(µ, µ′).

Proof of Theore 11.2.2. The proof follows a similar strategy as used in the proof of
Theorem 11.2.1. Since all gM are permutation invariant, we can define the maps
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g̃M : EM (X)→ C by

g̃M

(
1
M

M∑
m=1

δxm

)
= gM (x1, . . . , xM ),

and since k is characteristic, we can further define G̃M = g̃M ◦ Π−1
k |Πk(EM (X)). Ob-

serve that for all M ∈ N+ and ~x ∈ XM we have by construction G̃M (Πk(µ̂[~x])) =
gM (~x). Furthermore, for all M ∈ N+ and ~x, ~x′ ∈ XM we have

‖G̃M (Π̂k(~x))− G̃M (Π̂k(~x′))‖H = ‖gM (~x)− gM (~x′)‖H ≤ Lγk(µ̂[~x], µ̂[~x′]),

so Kirszbraun’s theorem ensures the existence of L-Lipschitz continuous maps ḠM :
Hk → H with ḠM |Πk(EM (X))= gM for all M ∈ N+. Since C is compact and convex
by assumption, the orthogonal projection PC exists, and we can define GM = PC ◦
ḠM |Πk(P(X)). Since ‖PC‖L(H) ≤ 1, we have for all M ∈ N+, f1, f2 ∈ Πk(P(X)) that

‖GM (f1)−GM (f2)‖H = ‖PC(ḠM (f1)− ḠM (f2))‖H
≤ ‖PC‖L(H)‖ḠM (f1)− ḠM (f2)‖H
≤ L‖f1 − f2‖k.

The sequence (GM )M is therefore equicontinuous, defined on a compact set (since
by assumption Πk(P(X)) is compact) with a compact codomain, so by the Arzela-
Ascoli theorem there exist a subsequence (GM`

)` and an L-Lipschitz continuous map
G : Πk(P(X))→ C such that

lim
`→∞

sup
f∈Πk(P(X))

‖GM`
(f)−G(f)‖H = 0,

which implies
lim
`→∞

sup
~x∈XM`

‖gM`
(~x)−G(Πk(µ̂[~x]))‖H = 0.

Finally, since k is characteristic, we can set g = G ◦ Πk, and by definition we then
have (11.11).
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11.3. Application to Discrete-Time Systems

We now apply our existence results to discrete-time control systems, in particular,
large-scale MAS. First, we specify an appropriate setup that ensures the existence
of the mean field dynamics and mean field stage cost. Next, we show that in our
setting also the corresponding total cost functional has a mean field limit. Finally,
we prove a result on relaxed dynamic programming in the mean field limit.

11.3.1. Setup

Let X 6= ∅ be some set, k : X × X → R a kernel on X and denote by dk the
corresponding kernel metric. From now on, we make the following assumption.

Assumption 11.3.1. The (semi)metric space (X, dk) is compact, and the kernel k
is bounded, Borel-measurable (w.r.t. the Borel σ-algebra on (X, dk)) and character-
istic.

Recall that under these assumptions Πk(P(X)) is compact. Consider now a se-
quence of discrete-time dynamical systems

~x
[M ]
+ = f [M ](~x[M ], u), M ∈ N+ (11.12)

with transition functions f [M ] : XM × U → XM , where XM is the state space and
U the input space. Given an initial state ~x[M ]

0 ∈ XM and a control input sequence
u ∈ UN , a state-trajectory ~x[M ](·; ~x[M ]

0 , u) is induced by

~x[M ](0; ~x[M ]
0 , u) = ~x

[M ]
0

~x[M ](n+ 1; ~x[M ]
0 , u) = f [M ](~x[M ](n; ~x[M ]

0 , u), u(n)),

where n = 0, . . . , N − 1. We make the following assumption on these systems.

Assumption 11.3.2. 1. U ⊆ H is compact, where H is a Hilbert space.

2. All fM are permutation equivariant in the state, i.e., ∀M ∈ N+, ~x ∈ XM , σ ∈
SM , u ∈ U : f [M ](σ~x, u) = σf [M ](~x, u).

3. The f [M ] are uniformly Lipschitz-continuous, i.e., ∃Lf ∈ R≥0∀M ∈ N+, ~x, x
′ ∈
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XM , u, u′ ∈ U :

γk(µ̂[f [M ](~x, u)], µ̂[f [M ](~x′, u′)]) ≤ Lf
∥∥∥(Π̂k(~x), u)− (Π̂k(~x′), u′)

∥∥∥
Hk×H

.

Assumptions 11.3.1 and 11.3.2 together allow to apply Theorem 11.2.1, so there
exist a subsequence (f [Mm])m and a map F : Πk(P(X))→ Πk(P(X)) such that

lim
`→∞

sup
~x∈XMm

u∈U

‖Π̂k

(
f [Mm](~x, u)

)
− F (Π̂k(~x), u)‖k = 0.

This map is also Lf -Lipschitz continuous. Since k is characteristic, we can define
the function f = Π−1

k ◦ F ◦Πk : P(X)× U → P(X), so

lim
m→∞

sup
~x∈XMm ,u∈U

γk(µ̂[f [M`](~x, u)], f(µ̂[~x], u)) = 0.

The map f induces another discrete-time dynamical system

µ+ = f(µ, u), (11.13)

where P(X) is the state space and U the input space. A given initial state µ0 ∈ P(X)
and control sequence u ∈ UN induce a state trajectory µ(·;µ0, u) by

µ(0;µ0, u) = µ0

µ(n+ 1;µ0, u) = f(µ(n;µ0, u), u(n)) ∀n = 0, . . . , N − 1.

Motivated by optimal control applications, consider a sequence of stage cost func-
tions `[M ] : XM × U → R, and the associated finite-horizon total cost functionals
J

[M ]
N : XM × UN → R, N ∈ N+, defined by

J
[M ]
N (~x0, u) =

N−1∑
n=0

`[M ](~x[M ](n; ~x0, u), u(n)). (11.14)

We make the following assumption on the stage cost functions `[M ].

Assumption 11.3.3. 1. All `[M ] are permutation-invariant in the state variable,
i.e., ∀M ∈ N+, ~x ∈ XM , σ ∈ SM , u ∈ U : `[M ](σ~x, u) = `[M ](~x, u).

292



11.3. Application to Discrete-Time Systems

2. The `[M ] are uniformly bounded, i.e., ∃B` ∈ R≥0 ∀M ∈ N+, ~x ∈ XM , u ∈ U :
|`[M ](~x, u)| ≤ B`.

3. The stage cost functions are uniformly Lipschitz-continuous, ∃L` ∈ R≥0∀M ∈
N+, ~x, x

′ ∈ XM , u, u′ ∈ U

|`[M ](~x, u)− `[M ](~x′, u′)| ≤ L`(γk(µ̂[~x], µ̂[~x′]) + ‖u− u′‖H).

An inspection of the proof of Theorem 8.2.2 shows that under Assumptions 11.3.1
and 11.3.3 there exist a subsequence (`[Mmp ])p and a function ` : P(X) × U → R
such that

lim
p→∞

sup
~x∈XMmp ,u∈U

|`[Mmp ](~x, u)− `(µ̂[~x], u)| = 0. (11.15)

This can be used to define a corresponding total cost functional JN : P(X)×U → R,
N ∈ N+, by

JN (µ0, u) =
N−1∑
n=0

`(µ(n;µ0, u), u(n)). (11.16)

We now switch to the subsequence (Mmp)p and reindex by M for readability, so
that we can write

lim
M→∞

sup
~x∈XM ,u∈U

γk(µ̂[f [M ](~x, u)], f(µ̂[~x], u)) = 0 (11.17)

lim
M→∞

sup
~x∈XM ,u∈U

|`[M ](~x, u)− `(µ̂[~x], u)| = 0. (11.18)

11.3.2. Mean field limit of J
[M ]
N

Next, we show that JN is indeed the MFL of J [M ]
N .

Proposition 11.3.4. For all N ∈ N+ we have

lim
M→∞

sup
~x0∈XM

u∈UN

|J [M ]
N (~x0, u)− JN (µ̂[~x0], u)| = 0. (11.19)

For the proof we need a technical lemma.
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Lemma 11.3.5. For all M ∈ N+, ~x0 ∈ XM , N ∈ N+ and u ∈ UN we have

γk(µ̂(N), µ(N) ≤
N∑
n=1

Ln−1
f ‖Πk(µ̂(N − n+ 1))

− F (µ̂(N − n), u(N − n))‖k,

where we defined for brevity µ̂(n) = µ̂[~x[M ](n; ~x0, u)] and µ(n) = µ(n; µ̂[~x], u).

This result can be shown using a standard induction argument, and hence the
proof is omitted.

Proof (of Proposition 11.3.4). Let N ∈ N+, M ∈ N+, ~x0 ∈ XM and u ∈ UN be
arbitrary, and define ~x(n) = ~x[M ](n; ~x0, u) and µ̂(n) = µ̂[~x(n)], then we have

|J [M ]
N (~x0, u)− JN (µ̂[~x0], u)| ≤

N−1∑
n=0
|`[M ](~x(n), u(n))− `(µ(n; µ̂[~x0], u), u(n))|

≤
N−1∑
n=0
|`[M ](~x(n), u(n))− `(µ̂(n), u(n))|

+ |`(µ̂(n), u(n))− `(µ(n; µ̂[~x0], u), u(n))|.

Since ` is L`-Lipschitz continuous, we have for all n = 0, . . . , N − 1 that

|`(µ̂(n), u(n))− `(µ(n; µ̂[~x0], u), u(n))| ≤ L`γk(µ̂[~x[M ](n; ~x0, u)], µ(n; µ̂[~x0], u))

≤ L`
n∑
i=1

Li−1
f ‖Π̂k(~x(n− i+ 1))− F (µ̂(n− i), u(n− i))‖k,

where we used Lemma 11.3.5 in the second inequality.
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Combining these bounds results in

sup
~x0∈XM

u∈UN

|J [M ]
N (~x0, u)− JN (µ̂[~x0], u)|

≤ sup
~x0∈XM

u∈UN

N−1∑
n=0
|`[M ](~x(n), u(n))− `(µ̂(n), u(n))|

+ sup
~x0∈XM

u∈UN

N−1∑
n=0

L`

n∑
i=1

Li−1
f ‖Πk(µ̂(n− i+ 1))− F (µ̂(n− i), u(n− i))‖k,

≤
N−1∑
n=0

sup
~x0∈XM

u∈UN

|`[M ](~x(n), u(n))− `(µ̂(n), u(n))|

+
N−1∑
n=0

n−1∑
i=1

L`L
i−1
f sup

~x0∈XM

u∈UN

‖Πk(µ̂(n− i+ 1))− F (µ̂(n− i), u(n− i))‖k

−→ 0 for M →∞.

This concludes the proof.

11.3.3. Relaxed dynamic programming

Relaxed dynamic programming has been frequently used in the analysis of NMPC.
We now present a mean field limit variant thereof, which can be used to derive
performance bounds for mean field NMPC. This result generalizes [91, Proposition 1]
to a wide class of systems and feedback maps.

Theorem 11.3.6. Assume that U is convex. Consider ṼM : XM → R≥0, M ∈ N+,
such that

1. ∀M ∈ N+, ~x ∈ XM , σ ∈ SM : ṼM (σ~x) = ṼM (~x)

2. ∃LṼ ∈ R≥0 ∀M ∈ N+, ~x, x
′ ∈ XM :

|ṼM (~x)− ṼM (~x′)| ≤ LṼ γk(µ̂[~x], µ̂[~x′]). (11.20)

Let κM : XM → U , M ∈ N+, such that
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1. ∀M ∈ N+, ∀~x ∈ XM , σ ∈ SM , u ∈ U : κM (σ~x) = κM (~x)

2. ∃Lκ ∈ R≥0 ∀M ∈ N+, ~x, x
′ ∈ XM :

‖κM (~x)− κM (~x′)‖H ≤ Lκγk(µ̂[~x], µ̂[~x′]). (11.21)

Assume that there exists α ∈ (0, 1] such that for all M ∈ N+ and ~x ∈ XM we have

ṼM (~x) ≥ ṼM (f [M ](~x, κM (~x))) + α`[M ](~x, κM (~x)). (11.22)

Then there exists a strictly increasing sequence (Mm)m, an LṼ -Lipschitz continuous
function Ṽ : (P(X), γk)→ R≥0 and a map κ : P(X)→ H such that for all µ ∈ P(X)
we have

Ṽ (µ) ≥ Ṽ (f(µ, κ(µ))) + α`(µ, κ(µ)). (11.23)

Proof. Under the given assumptions, Theorem 11.2.2 is applicable to (κM )M , so
there exist a subsequence (κMp)p and an Lκ-Lipschitz continuous map κ : P(X)→ U

such that sup~x∈XMp ‖κMp(~x)− κ(µ̂[~x])‖H → 0 for p→∞. Since k is characteristic,
we can define κ = K ◦ Π−1

k |Πk(P(X)). An inspection of the proof of Theorem 8.2.2
reveals that it applies to (ṼMp)p, so there exists a subsequence (Mpm)m and a function
Ṽ : P(X)→ R≥0 such that Ṽpm

P1−→ Ṽ for m→∞, and for all µ, µ′ ∈ P(X) we also
have |Ṽ (µ)− Ṽ (µ′)| ≤ LṼ γk(µ, µ′). To simplify the notation, we denote (Mpm)m by
(Mm)m from now on. Let now µ ∈ P(X) and ε > 0 be arbitrary. There exists ~xM ∈
XM such that γk(µ̂[~xM ], µ)→ 0. Define ε̂ = ε/5(LṼ (1 +Lf (1 +Lκ)) +αL`(1 +Lκ))
and choose m ∈ N+ such that

γk(µ̂[~x], µ) ≤ ε̂

sup
~x∈XMm

|ṼMm(~x)− Ṽ (µ̂[~x])| ≤ ε

10 =: εṼ

sup
~x∈XMm

‖κMm(~x)− κ(µ̂[~x])‖H ≤ ε/5(LṼ Lf + αL`) =: εκ

sup
~x∈XMm

u∈U

|`[Mm](~x, u)− `(µ̂[~x], u)| ≤ ε/5α =: ε`
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and
sup

~x∈XMm

u∈U

‖Π̂k(f [Mm](~x, u))− F (Π̂k(~x), u)‖k ≤ ε/5LṼ =: εf .

We now have

‖κ(µ)− κMm(~xMm)‖H = ‖κ(µ)− κ(µ̂[~xMm ])‖H + ‖κ(µ̂[~xMm ])− κMm(~xMm)‖H
≤ Lκγk(µ̂[~xMm ], µ) + εκ

≤ Lκε̂+ εκ

and

γk
(
µ̂
[
f [Mm](~xMm , κMm(~xMm))

]
, f(µ, κ(µ))

)
≤ ‖F (µ, κ(µ))− F (µ̂[~xMm ], κMm(~xMm))‖k + ‖F (µ̂[~xMm ], κMm(~xMm))

−Πk

(
f [Mm](~xMm , κMm(~xMm))

)
‖k

≤ Lf ‖(Πk(µ), κ(µ))− (Πk(µ̂[~xMm ], κMm(~xMm))‖Hk×H
+ sup
~x∈XMm

u∈U

‖Πk(f [Mm](~x, u))− F (Πk(µ̂[~x]), u)‖k

≤ Lf (γk(µ̂[~xMm ], µ) + ‖κMm(~xMm)− κ(µ)‖H) + εf

≤ Lf ε̂+ Lf (Lκε̂+ εκ) + εf

as well as Ṽ (µ) ≥ ṼMm(~xMm)− εṼ − LṼ ε̂. Finally,

Ṽ (µ) ≥ ṼMm(~xMm)− εṼ − LṼ ε̂

≥ ṼMm(f [Mm](~xMm , κMm(~xMm))) + α`[Mm](~xMm , κMm(~xMm))− εṼ − LṼ ε̂

≥ Ṽ (µ̂[f [Mm](~xMm , κMm(~xMm))]) + α`(µ̂[~xMm ], κMm(~xMm))− 2εṼ − αε` − LṼ ε̂

≥ V (f(µ, κ(µ))) + α`(µ, κ(µ))− LṼ γk
(
µ̂
[
f [Mm](~xMm , κMm(~xMm))

]
, f(µ, κ(µ))

)
− αL` (γk(µ̂[~x], µ) + ‖κ(µ)− κMm(~xMm)‖k)− 2εṼ − αε` − LṼ ε̂

≥ Ṽ (f(µ, κ(µ))) + α`(µ, κ(µ))− LṼ (Lf ε̂+ Lf (Lκε̂+ εκ) + εf )

− αL` (ε̂+ Lκε̂+ εκ)− 2εṼ − αε` − LṼ ε̂

= Ṽ (f(µ, κ(µ))) + α`(µ, κ(µ))− ε.
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Since ε > 0 was arbitrary, we get (11.23).

11.4. Conclusion

We would like to close with some concluding remarks. First, to the best of our
knowledge, the mean field limit existence results in Section 11.2 are the first result
that generalize the well-known [50, Lemma 1.2] to functions with essentially non-
scalar output spaces. Second, in this way we have also achieved, to the best of
our knowledge, the first existence results for the mean field limit of discrete-time
multiagent systems. In contrast to the continuous-time situation, we do not arrive
at an explicit description of the mean field dynamics, so at present, we have a pure
existence result.
The developments in this chapter can be the starting point of many promising

additional investigations. As already mentioned in the introduction, to establish the
existence of the mean field limit, we have lifted the dynamics into an RKHS, where
also the mean field limit dynamics act. It seems therefore very promising to use
kernel methods to solve numerical problems associated with the mean field dynamics,
like simulation or control. Furthermore, the proof strategy from Section 11.2 works
actually with any suitable Hilbertian embedding of probability distributions. It
would be interesting to investigate other embeddings which might offer advantages
over KMEs. Since so far we worked with a very general class of systems, it would
also be interesting to specialize our results to more concrete system classes. Finally,
since we now have a rigorous mean field limit existence result for discrete-time MAS
available, the investigation of further control and system-theoretic questions in this
context are interesting.

11.5. Comments

This chapter is based on, and to a large extent taken verbatim from, the article
[CF5], which was published in the IEEE Control Systems Letters, and presented at
the American Control Conference 2024. All results are due to the author of this
thesis, who would like to thank P.-F. Massiani for pointing out a problem with the
original formulation of Theorem 11.2.1.
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12. Conclusions

This thesis presented a broad range of contributions to kernel methods and their the-
ory in the context of systems and control. In this concluding chapter, we will briefly
summarize and discuss this work, and provide some pointers to future directions.

Summary To provide a solid foundation, in Part I of this thesis we present some
background on kernels and RKHSs. Our introduction to these topics in Chapter 2
does not only serve as background material for this thesis, but also aims at closing
a gap in the literature by providing a perspective-agnostic exposition. Furthermore,
Chapter 3 contains a comprehensive treatment of Lipschitz and Hölder continuity
in RKHSs, which collects and improves many known results, and presents some new
ones.

In Part II, the focus is on uncertainty bounds for kernel methods and their use
in learning-based control, which is the first major topic of this thesis. The general
discussion in Chapter 4 suggests that in the context of learning-based control, espe-
cially when using establish robust control methods, frequentist uncertainty bounds
or alternatively worst-case uncertainty bounds should be used. Furthermore, as
is well-known but often not clearly articulated in the literature, for their use in
learning-based control these bounds need to be numerically computable, not too
conservative, and based on reasonable prior knowledge. This leads us to frequentist
uncertainty bounds for GP regression and kernel ridge regression, as outlined in
Chapter 5. We collect and refine several such bounds, and provide an elementary
derivation of the well-known uncertainty bound based on self-normalization. Fur-
thermore, we state and prove new bounds that are robust to certain classes of model
misspecifications. In turn, in Chapter 6 the uncertainty bounds are then empirically
evaluated and actually used in learning-based control applications. We conduct
thorough numerical experiments to evaluate the uncertainty bounds which indicate
that they are tight enough to be useful in practice, which is also confirmed by a
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first, simple learning-based control application based on MPC. In addition, we also
use them together with modern robust controller synthesis. The resulting modular
approach allows the seamless integration of prior knowledge and machine learning
components in an established framework of modern control, while retaining rigorous
statistical and control-theoretic guarantees. However, in order to be useful in prac-
tice, uncertainty bounds should only rely on reasonable prior knowledge, ideally in
the form of assumptions that are meaningful and clearly interpretable by users. This
prompts us to revisit in Chapter 7 the foundations of uncertainty bounds for kernels
methods. Essentially all frequentist uncertainty bounds rely on the knowledge of a
concrete upper bound on the RKHS norm of the target function, and we argue that
this forms a severe obstacle to the practical applicability of these approaches, since
at the moment it is appears very difficult, if not impossible to derive such a bound
from established prior knowledge in non-trivial situations. While this problem is
known to some extent in the learning-based control literature, the severity appears
to be underappreciated, and we provide the most thourough discussion of this issue
so far. To overcome this issue, we propose to rely on geometric assumptions for the
uncertainty sets, since many relevant forms of prior knowledge can be encoded in
this way, and some special cases like Lipschitz bounds are already very established in
systems and control. As a first step in this direction, we show how the resulting un-
certainty sets can be combined with kernel methods by using hard shape constrained
kernel machines. Our results and insights from Part II demonstrate the power of
kernel methods in the context of learning-based control with rigorous guarantees,
highlight practically relevant limitations, and point to novel approaches to overcome
the latter.
Uncertainty bounds for kernel methods and their use in learning-based control is

an established and active topic, and our contributions in Part II of this thesis are
about revisiting and consolidating the foundations of this area. In contrast, in Part
III of this thesis we turn to a novel and underexplored topic: kernels and kernel
methods in the mean field limit. We start in Chapter 8 with a gentle introduction
to mean field limits and the relevance of this concept, and motivate the connection
to kernels and kernel methods. In Chapter 9, we introduce the notion of a mean
field limit of kernels, prove an existence result, and present and investigate a large
class of suitable kernels. Furthermore, we provide an essentially complete theoreti-
cal description of the interaction between the mean field limit of kernels and their
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RKHSs. These results allow us to investigate in Chapter 10 kernel-based statistical
learning methods in the mean field limit. We establish a representer theorem in the
mean field limit, and show that the risks and learning outcomes of regularized em-
pirical risk minimization schemes converge in the mean field limit. From a practical
perspective, this justifies switching between the microscopic and mesoscopic levels
in kernel-based learning methods on large-scale multiagent systems, analogously to
the situation of numerical methods in kinetic theory. From a theoretical perspective,
we introduce and investigate a new large-scale limit in theoretical machine learning,
complementing many existing approaches for such limits. The results in Chapters 9
and 10 show that kinetic theory motivates interesting problems in kernel-based sta-
tistical learning with a rich theory. Chapter 11 demonstrates that conversely kernels
and their theory can be useful in kinetic theory. Using kernel mean embeddings, we
are able to prove an existence result for the mean field limit of very general discrete-
time multiagent systems, the first such result to the best of our knowledge. As a first
application, we formulate in a rigorous manner the standard optimal control setup
in the mean field limit, and prove a relaxed dynamic programming principle in this
setting. In summary, in Part III we uncover very fruitful connections between ker-
nels and kinetic theory, with many new theoretical results and lots of opportunities
for further investigations and new applications of kernel methods.

Future work To close, we would like to point out some open questions and interest-
ing directions for future work, starting with uncertainty bounds for kernel methods
as outlined in Chapters 4 and 5. In Section 5.5 we stated and proved uncertainty
bounds that are robust to some model misspecifications, focusing on lengthscale
and unstructured, but bounded kernel misspecifications. Using the techniques from
[47], these results should be easy to extend to more general classes of hyperparameter
misspecficiations. Similarly, analogous robust uncertainty bounds should be possible
in a worst-case setting with bounded additive noise, by combining the results from
[127, 176] with our techniques and the ones from [47]. Another avenue for future
work are uncertainty bounds for more general measurement models, like derivatives
or linear integral functionals. The latter should lead in a straightforward manner
to frequentist (and possibly worst-case) uncertainty bounds for kernel-based linear
system identification. Furthermore, it should be possible to establish all results in
Chapter 5 and the generalizations outlined here also for vector RKHSs, cf. [152,
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Chapter 6]. For example, using the results in [142], the simple uncertainty bounds
from Sections 5.1 and 5.2 can be immediately generalized to this setting with essen-
tially the same arguments. Finally, the question of tightness of the bounds should be
further investigated. For example, when not the target function itself is of interest,
but rather a finite dimensional projection thereof, using techniques from optimal
design of experiments can result in tighter uncertainty sets [145]. Furthermore, it
would be interesting to investigate how much tighter the uncertainty bounds can be
made. In the case of bounded noise, it is possible to derive such bounds at the ex-
pense of relying on an optimization problem instead of a closed-form solution [176],
and it is a very interesting problem whether this could be achieved for stochastic
noise. A similar question appears for time-uniform bounds, and in some situations
a tight bound can be provided [95].
Regarding the empirical evaluation of uncertainty bounds as started in Chapter 6,

further experiments with synthetic target functions are another interesting direction.
This includes more kernels, more RKHS function sampling methods (e.g., using other
orthonormal bases if available), and additional noise distributions. Furthermore,
our refined versions of the simple uncertainty bounds from Sections 5.1 and 5.2
should be now competitive with the standard time-uniform bounds, and should be
included in such an empirical evaluation. Similarly, the additional theoretical results
outlined above should be also systematically evaluated with numerical experiments.
All of these generalizations and improvements can be immediately transferred to
applications in learning-based control.
In addition, the methodology for learning-enhanced robust controller synthesis in

Section 6.2 points to many directions for future work. For example, it can be ap-
plied to a more complex control scenario, where its advantages – seamless integration
of prior knowledge and learning components, state-of-the-art robust controller syn-
thesis methods, providing rigorous control-theoretical and statistical guarantees –
become even more apparent. Furthermore, the integration of the learning compo-
nent for static nonlinearities can be improved, by tailoring the uncertainty sets to
the form of the IQC multipliers, which is a challenging but very promising direction.
Moreover, frequentist uncertainty bounds for kernel-based linear system identifi-
cation, as described above, would allow the generalization of the methodology to
dynamic uncertainties.
Finally, Chapter 7 provides also many interesting open questions and directions

302



for future work. First, as discussed there, at present it appears that deriving quanti-
tative RKHS norm bounds from common engineering prior knowledge is not possible
with existing methods in non-trivial situations. Nonetheless, given the importance
of this problem and the fact that a large amount of work in learning-based control
is affected by this issue, it should be further investigated. We suspect that at least
in the context kernel-based linear system identification it might be possible to re-
late the RKHS norm of suitable kernels to frequency domain properties, which are
well-established in control theory [65]. Second, more complex examples of geometric
constraints and their relation to practical prior knowledge should be investigated
and used in kernel machines. Third, and perhaps the most important aspect, the
initial uncertainty bounds derived from geometric assumptions should be improved.
This includes the development of algorithms that can automatically compute such
uncertainty bounds, replacing manual derivation on a case-by-case basis, as well as
the the generalization to stochastic and potentially unbounded noise.
Turning to Part III of this thesis, despite our extensive theoretical investigations,

many interesting open questions remain for kernels and kernel methods in the context
mean field limits. In the following, we point out just some of them. In Chapter
9 we present a rather complete theory for kernels and their RKHSs in the mean
field limit. Ongoing work is concerned with the generalization to vRKHSs, and
initial results indicate that indeed most of the theory generalizes immediately to
this setting. In terms of concrete kernels in the mean field limit, only the case of
double sum kernels has been investigated in detail, and it would be interesting to
extend this to other classes of suitable kernels. In the context of statistical learning
with kernels in the mean field limit, cf. Chapter 10, two questions are of particular
interest. First, one motivation for the mean field limit in kinetic theory is given by
the availability of suitable numerical methods for kinetic PDEs [151]. This poses
the question whether such methods can be adapted to the case of kernels in the
mean field limit and associated learning problems. Second, the convergence results
for regularized empirical risk minimization in Chapter 10 are all in the setting of
finite data sets, but in statistical learning theory, a major aspect is the investigation
of the limit of infinitely many i.i.d. data points, leading to questions of consistency
and learning rates [189, Chapter 6]. It is therefore very interesting to investigate
the case of a double limit, with an increasing number of particles and an increasing
number of data points in the data set, and ideally provide consistency and learning
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rate results in the mean field limit.
Finally, also Chapter 11 leads to many interesting directions for further inves-

tigations. Ongoing work is concerned with generalizing the results to other types
of Hilbertian embeddings, cf. also Chapter A, and various classes of multiagent
systems, as well as using these to establish control-theoretic results, for example
related to controllability and dissipativity. Furthermore, while we have used kernel
mean embeddings in Chapter 11 for theoretical reasons, it turns out that our proof
strategy actually amounts to lifting the microscopic dynamic to mesoscopic dynam-
ics in RKHSs. This immediately suggests to use establish kernel methods to solve
numerical tasks like simulation or control. Investigating this approach appears to
be a very promising direction for future work.
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A. Towards statistical learning theory
with distributional inputs

This thesis is focused on kernel methods in the context of systems and control.
However, during the work leading to this thesis, we could also achieve new theoretical
results in the area of kernel-based statistical learning with distributional inputs.
While not directly related to systems and control, the techniques we are utilizing
are closely related to the work reported in this thesis, so we include this additional
work here.
Apart from minor modifications, this chapter is taken verbatim from the work

[CF7].

A.1. Introduction

Supervised statistical learning with distributional inputs has received significant at-
tention lately, cf. [196, 70, 137], both from practical and theoretical perspectives.
The goal is to learn a relation between inputs and outputs from data, where the
inputs are probability distributions on some measurable space. Furthermore, the
inputs (probability distributions) are not directly accessible, but the data contains
only samples thereof. A classic example is the prediction of some health indicator
of a patient from several clinical measurements [195], which we recall now. Let S be
the set of outcomes of some diagnosis tools (e.g., electrocardiogram characteristics,
or the blood serum concentration of some substance). Since these measurements will
vary even when coming from the same patient, it is reasonable to assume that an
individual patient with a specific health status has a certain distribution Q on S that
generates the measurements and that can be a predictor for some health indicator
y ∈ Y (e.g., healthy or not). However, during training, Q is not directly acces-
sible, but rather through independent and identically distributed (i.i.d.) samples
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S1, . . . , SM
i.i.d.∼ Q. For example, this could correspond to daily blood measurements

of a patient during a week-long hospital stay, assuming the patient’s distribution Q
has not changed during the week (e.g., when the health status has not changed).
The training data consists of such data from N different patients, so the data set is
not of the form D̄ = ((Qn, yn))n=1,...,N , but rather D = ((S(n), yn))n=1,...,N , where
S

(n)
1 , . . . , S

(n)
Mn

i.i.d.∼ Qn. The goal is to learn a map fD from distributions Q over
S to outcomes Y (e.g., from distributions over diagnostic measurements to health
status).

Among such learning problems, the focus of previous theoretical investigations
has been on distributional regression. In this setting, one is interested in predict-
ing a real-valued quantity from a distributional input, so Y = R. While the early
work [162] relied on density estimation, starting with [195], kernel mean embed-
dings (KMEs) together with kernel ridge regression (KRR) have been used. For
concreteness, let us review this latter approach. Consider a data set D as intro-
duced above. A single input item S(n) is first interpreted as an empirical measure
µ̂[S(n)] = 1

Mn

∑Mn
m=1 δS(n)

m
, where δs is the Dirac measure with atom on s, which is

then embedded into a reproducing kernel Hilbert space (RKHS) Hκ using the KME,
µ̂[S(n)] 7→ Πkµ̂[S(n)]. Assuming access to a (second) kernel k on the RKHS Hκ, one
then performs KRR on the transformed data set DΠ̂k = ((Πkµ̂[S(n)], yn))n=1,...,N .
The resulting learned function fDΠ̂k

can then be used for prediction by composing
it with the KME map. A distribution Q on S would therefore lead to prediction
fDΠ̂k

(ΠkQ). This approach has been thoroughly analyzed [195, 196, 70]. All of
these investigations rely on the seminal analysis [48] of the regularized least-squares
algorithm for regression.

Recently, [137] developed a much more general perspective on this problem. In-
stead of KMEs, they consider suitable embeddings Π of probability distributions
into some Hilbert space H, and then utilize distance substitution kernels [88] with
the induced Hilbertian (semi)metric (P,Q) 7→ ‖ΠP − ΠQ‖H on probability dis-
tributions. In particular, they apply this construction to sliced Wasserstein (SW)
distances [36] and construct corresponding SW kernels. The resulting method has
been theoretically analyzed, building again on [48].

Despite this multitude of activity, many interesting and practically relevant prob-
lems in this area are still open. In this work, we focus on two theoretical aspects.
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First, most theoretically grounded works in the context of distributional learning
methods have focused almost exclusively on the distributional regression problem.
However, other learning scenarios are also highly relevant, in particular, distribu-
tional classification. For example, in the medical example outlined above, a natural
task is to predict a binary health status of a patient (e.g., having a certain disease
or not), corresponding to (distributional) binary classification. As another example,
in [123], distributional classification is applied to the problem of predicting causal
directions and causal graphs from data. KMEs are also used there, though empir-
ical risk minization (ERM) is then applied on the transformed data set. To the
best of our knowledge, this reference is also the only one investigating distributional
classification with KMEs from a theoretical perspective. While they establish some
generalization bounds based on margin theory, no consistency results or oracle in-
equalities in the sense of [189] are provided. Recall that an oracle inequality in this
context is a high probability bound on the excess risk of the learned hypothesis over
what an oracle, that has access to the true data-generating distribution, can achieve.
In turn, these inequalities allow derivation of consistency results, and under suitable
distributional assumptions also of learning rates, and it is hence highly desirable
that such inequalities are also available in the distributional learning setting. Sec-
ond, the theoretical analyses of distributional learning have been restricted to rather
specific settings. Even in the context of distributional regression, the learning se-
tups considered have been fairly specific. In particular, in the context of KME-based
distributional regression, to the best of our knowledge only KRR has been consid-
ered so far, and analyzed exclusively using [48]. This technique is inherently limited
to KRR, and hence cannot be used to analyze inter alia support vector regression
(SVR) with the ε-insensitive loss. It is furthermore also not suitable to analyze
classification using support vector machines (SVMs), or more general regularized
empirical risk approaches.
We therefore tackle these open issues. First, for the distributional learning setting

outlined above, we provide two oracle inequalities for the risk of SVMs (in the sense
of regularized risk minimization over RKHSs) that cover a multitude of learning
scenarios. To the best of our knowledge, both of these results are completely new in
the context of learning on distributional inputs. Second, we establish a generalization
bound for distributional learning based on algorithmic stability, and apply it to
SVMs. Third, inspired by [137], we formulate all of this for kernel-based methods

309



A. Towards statistical learning theory with distributional inputs

that rely on a general Hilbertian embedding of probability distributions. In this
manner, our results apply to the case of KMEs and SW kernels, and any future
method that provides Hilbertian embeddings. Fourth, we specialize our results to
KMEs and SW distances for the Hilbertian embedding.

A.2. Distributional Learning Setup

In this section, we introduce necessary technical background, and formalize the
learning setup that we consider in the following.
Preliminaries For a measurable space (Z,AZ), we denote the set of all proba-

bility distributions on it by M1(Z), suppressing the σ-algebra if no confusion can
arise, and the set of measurable real-valued functions is denoted by L0(Z). If
(X ,AX ), (Y,AY) are measurable spaces, f : X → Y is a measurable map, and
µ ∈ M1(X ) is a probability measure, then the pushforward of µ along f is defined
as f]µ(A′) = µ(f−1(A′)) for all A′ ∈ AY . For a topological space (X , τX ), we denote
the associated Borel σ-algebra by B(τX ). Given µn, µ ∈ M1(X ), n ∈ N+, we say
that (µn)n converges weakly1 to µ, if for all bounded and continuous f : X → R, we
have

∫
X f(x)dµn(x)→

∫
X f(x)dµ(x). This induces a topology τw onM1(X ), called

the topology of weak convergence. If (X , ‖ · ‖X ) is a normed space, we define B(X )
as the Borel σ-algebra generated by the open sets w.r.t. to the topology induced by
the norm.
We use the notation and terminology on kernels as used in the rest of this thesis.

In addition, we also define ‖k‖∞ = supx∈X
√
k(x, x), and call k bounded if it is

bounded as a map on X × X , which is the case if and only if ‖k‖∞ <∞.
Furthermore, in order to balance generality and simplicity of notation, we use

comparison functions, a very successful formalism in control theory [105]. Define
K as the set of continuous functions α : R≥0 → R≥0 such that α(0) = 0 and α

is strictly increasing. Operations and relations are declared pointwise on K, so for
α1, α2 ∈ K, α1 ≤ α2 means that α1(s) ≤ α2(s) for all s ∈ R≥0. Note that K is
closed under addition and scalar multiplication with positive real numbers. Finally,
we call (αB)B∈R>0 ⊆ K a nondecreasing family, if αa ≤ αb for all 0 < a ≤ b <∞.
Furthermore, we use the basic setup of statistical learning theory, as presented in

1In the sense of probability theory, not functional analysis.
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Section 10.2. For the reader’s convience, we recall this here, and add some additional
material that is necessary for the following developments. Let X be a measurable
space, and let ∅ 6= Y ⊆ R be closed. A loss function ` : X × Y × R → R≥0 is a
measurable function. We call ` convex, differentiable, etc., if for all x ∈ X , y ∈ Y the
function `(x, y, ·) has the corresponding property. If ` is locally Lipschitz continuous,
we define for all B ∈ R>0

|`|1,B = sup
t1,t2∈[−B,B]

t1 6=t2
x∈X ,y∈Y

|`(x, y, t1)− `(x, y, t2)|
|t1 − t2|

. (A.1)

Given P ∈ M1(X × Y) and f : X → R measurable, we define the risk R`,P (f) =∫
`(x, y, f(x))dP (x, y) and the Bayes risk R∗`,P = inff∈L0(X )R`,P (f). Let k be

a kernel on X such that all functions in Hk are measurable. For f ∈ Hk and
a regularization parameter λ ∈ R>0, we define the regularized risk R`,P,λ(f) =
R`,P (f)+λ‖f‖2k, as well as R

Hk∗
`,P,λ = inff∈Hk R`,P,λ(f) and RHk∗`,P = inff∈Hk R`,P (f).

Additionally, if RHk∗`,P <∞, define the approximation error function A(2)
`,P : R≥0 → R

by
A

(2)
`,P (λ) = RHk∗`,P,λ −R

Hk∗
`,P . (A.2)

Furthermore, define the empirical risk of a function f ∈ Hk w.r.t. data D =
((xn, yn))n=1,...,N ∈ (X × Y)N by R`,D(f) = 1

N

∑N
n=1 `(xn, yn, f(xn)), and the reg-

ularized empirical risk R`,D,λ(f) = R`,D(f) + λ‖f‖2k. If it exists, a solution to the
optimization problem

min
f∈Hk

R`,D,λ(f) (A.3)

is called an (empirical) SVM solution and we denote it by fD,λ. Similarly, if a
solution to the optimization problem

min
f∈Hk

R`,P,λ(f) (A.4)

exists, we called it an infinite-sample SVM solution or just SVM solution, and denote
it by fP,λ.

Two-stage sampling setup We now introduce the concrete distributional learn-
ing setup that we consider, roughly following [195] and [137]. Unless noted otherwise,
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this will be the setup that we use in the remainder of this work. Let (S, τS) be a
topological space and consider the set of Borel probability measuresM1(S) on S .
Let τw be the topology induced by weak convergence in M1(S), and consider the
measurable space (M1(S),B(τw)).
Let H be a Hilbert space, which we endow with the Borel σ-algebra B(H), let

Π : M1(S) → H be some map, and define the Hilbertian semimetric dH(P,Q) =
‖Π(P ) − Π(Q)‖H, and the set X = Π(M1(S)). Additionally, we assume access to
a family of maps (Π̂M )M∈N+ with Π̂M : SM → X , and we define S∗ = ⋃

M∈N+ S
M

and Π̂ : S∗ → X by Π̂(S) = Π̂M (S) for all S ∈ SM and M ∈ N+. The usual
example is Π̂(S) = Π

(
1
M

∑M
m=1 δSm

)
for S ∈ SM and all M ∈ N+. However, our

setup allows also different choices. For the analysis of this setting, measurability of
various components needs to be ensured, for which the following assumption can be
invoked.

Assumption A.2.1. H is separable, Π is B(τw)-B(H)-measurable, and X ∈ B(H).
Furthermore, for all M ∈ N+, Π̂M is B(τS)⊗M -B(X )-measurable.

The following technical result now ensures that we can apply the usual statistical
learning theory setup.

Lemma A.2.2. Under Assumption A.2.1, the map Π is B(τw)-B(τH|X )-measurable,
where τH|X is the subspace topology on X induced by the topology on H. Fur-
thermore, every P ∈ M1(M1(S) × Y) induces a distribution PΠ on X × Y as the
pushforward of P along (Q, y) 7→ (ΠQ, y).

A proof of this result is provided in Section A.1.1 in [195] and the supplementary
to [123]. For the remainder of this subsection, we work under Assumption A.2.1.
Let P be a probability distribution onM1(S)× Y (often called meta-distribution),
and to ease the notational load, in the following we will use P also for the push-
forward2 PΠ, if no confusion can arise. Furthermore, we assume the following
data-generating model. We sample (Q1, y1), . . . , (QN , yN ) i.i.d. from P , and for
each n = 1, . . . , N , we assume that S(n) ∼ Q⊗Mn

n for some Mn ∈ N+, and that
S(1), . . . , S(N) are also independent. The data sets used for training are then of the

2Formally, PΠ = g]P , where the measurable map g :M1(S)×Y → X ×Y is defined by g(Q, y) =
(ΠQ, y).
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form D = ((S(n), yn))n=1,...,N ∈ (S∗ × Y)N . Furthermore, we define

DΠ̂ = ((Π̂(S(n)), yn))n=1,...,N

and for D̄ = ((Qn, yn))n=1,...,N ∈ (M1(S)× Y)N , define

D̄ = ((Qn, yn))n=1,...,N ∈ (M1(S)× Y)N

D̄Π = ((ΠQn, yn))n=1,...,N ∈ (X × Y)N .

To summarize, we have to deal with two sampling stages. First, sampling input-
output pairs (Q, y) ∼ P , and then sampling from the distributions Q. Let now
` : X × Y × R → R≥0 be a loss function and k a kernel on X . Given a data set D
as above, consider the regularized empirical risk minimization problem

min
f∈Hk

R`,DΠ̂,λ
(f) (A.5)

where λ ∈ R>0 is the regularization parameter. If a solution fDΠ̂,λ
to (A.5) exists,

it can be used for a prediction task with distributional inputs by composing it
with the map Π, so given input Q ∈ M1(S), it leads to prediction fDΠ̂,λ

(ΠQ).
Using Assumption A.2.1 and Lemma A.2.2, we can now consider various risks3 like
R`,P,λ(fDΠ̂,λ

).

Remark A.2.3. Note that X is a subset of a Hilbert space H, so in order to imple-
ment the approach just described, we need kernels k on (subsets of) Hilbert spaces.
On the one hand, any such kernel can in principle be used for this task, cf. [55]
for some examples. On the other hand, constructing kernels on (potentially infinite-
dimensional) Hilbert spaces can be challenging. To tackle this, [137] suggested a
general framework based on distance substitution kernels [88]. The Hilbertian em-
bedding (H,Π) is used to construct a kernel on probability distributions by defining
k(P,Q) = φ(‖ΠP −ΠQ‖H), where φ is a function that induces a radial kernel. Note
that all of our general results immediately apply to this framework, covering for
example sliced 1- and 2-Wasserstein distances and the induced distance substitution
kernels. For details and concrete examples, we refer to [137].

3Note that we tacitly assume that the learning methods induced by the regularized (empirical)
risk minimization problems are measurable learning methods. In the setting we consider, this
does not pose a problem, cf. the thorough discussion in Chapter 6 in [189].
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Special case: Kernel mean embeddings The first works on distributional
learning using Hilbertian embeddings relied on kernel mean embeddings (KMEs),
cf. Section 8.5. For convenience, we summarize the necessary background in the
following result.

Proposition A.2.4. Let (S,AS) be a measurable space, and κ a measurable and
bounded kernel on S.

1. The map
Πk :M1(S)→ Hκ, ΠkQ =

∫
κ(·, s)dQ(s) (A.6)

is well-defined, and we call ΠkQ the kernel mean embedding (KME) of Q ∈
M1(S) w.r.t. κ.

2. Define Π̂k : S∗ → Hκ by

Π̂k((s1, . . . , sM )) = 1
M

M∑
m=1

κ(·, sm). (A.7)

For all Q ∈M1(S) and S ∼ Q⊗M , M ∈ N+, and δ ∈ (0, 1), we have that

‖Π̂kS −ΠkQ‖κ ≤ 2

√
‖κ‖2∞
M

+

√
2‖κ‖∞ ln(1/δ)

M
(A.8)

holds with probability at least 1− δ.

3. Let (S, τS) be a separable topological space, choose AS = B(τS), and assume
that κ is continuous. Then Πk is (M1(S),B(τw))-(Hκ,B(Hκ))-measurable,
where τw is the topology induced by weak convergence inM1(S).

A proof can be found in Appendix A.5. This result allows to use KMEs as the
Hilbertian embedding, i.e., setting H = Hκ, Π = Πk and Π̂ = Π̂k.

A.3. Oracle Inequalities

Oracle inequalities are important tools in modern statistical learning theory [189].
Roughly speaking, they are concentration inequalities for the excess risk of the
learning outcome over the risk that is achieved by an oracle which has access to the
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true underlying distribution. In particular, oracle inequalities provide finite-sample
guarantees, and can be used to derive consistency of a learning method, as well as
(under additional assumptions on the data-generating distribution) learning rates.
We now present our two oracle inequalities for the risk of SVMs in the distributional
learning setting. The first one is based on a form of Lipschitz-continuity of SVMs,
and can be interpreted as a distributional analogon of Theorem 6.24 in [189].

Theorem A.3.1. Let Assumption A.2.1 hold. Assume that ` is convex, differ-
entiable, and that there exists B` ∈ R≥0 such that `(x, y, 0) ≤ B`. Furthermore,
assume that there exists B′` ∈ R≥0 such that |`′(x, y, 0)| ≤ B′` for all x ∈ X , y ∈ Y,
and that there exist γ1 ∈ K and a nondecreasing family (γ3,B)B∈R>0 ⊆ K such
that |`′(x1, y, t1) − `′(x2, y, t2)| ≤ γ1(‖x1 − x2‖) + γ3,B(|t1 − t2|) for all B ∈ R>0,
x1, x2 ∈ X , y ∈ Y and t1, t2 ∈ R with |t1|, |t2| ≤ B. Let k be a kernel on H that
is measurable, bounded, has a separable RKHS Hk, and assume that there exists4

αk ∈ K such that ‖Φk(x1) − Φk(x2)‖k ≤ αk(‖x1 − x2‖H) for all x1, x2 ∈ X . Fi-
nally, assume that for all n = 1, . . . , N , there exists Bn : (0, 1) → R≥0 such that
P[‖Π̂(S(n))−Π(Qn)‖H > Bn(δ)] < δ for all δ ∈ (0, 1). We then have for all λ ∈ R>0

and δ ∈ (0, 1) that with probability at least 1− δ

R`,P,λ(fDΠ̂,λ
)−RHk∗`,P ≤ A

(2)
`,P (λ) +

2
√
B`/λ+ |`|1,Bf ‖k‖∞/λ

N

N∑
n=1

αλ(Bn(δ/(2N)))

+ 2
|`|1,Bf ‖k‖2∞

λ

(
B′` + γ3,Bf

(
‖k‖∞

√
B`/λ

))

×

√2 ln(2/δ) + 1
N

+ 4 ln(2/δ)
3N

 ,
where we defined Bf = ‖k‖∞

√
B`/λ and αλ = ‖k‖∞(γ1 + γ3,Bf ◦

(√
B`/λαk

)
) +(

B′` + γ3,Bf (Bf )
)
αk.

The functions Bn in the statement of the result are used to provide estimation
bounds of the Hilbertian embeddings of the input distributions, i.e., how close Π̂S(n)

(which can be computed from data) is to ΠQn (which cannot be computed from
4The latter condition implies that Φk is continuous, which implies that k is continuous, which
in turn implies that k is measurable and has a separable RKHS. However, we kept these two
conditions for emphasis.
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data). In particular, the functions Bn depend on Mn, but we suppressed this de-
pendency to ease the notation. Similarly, αλ ∈ K describes (up to a multiplicative
factor) how the estimation error of the Hilbertian embedding that arises from a sin-
gle data set item, influences the risk. Using this abstraction allows us to formulate
our results for any Hilbertian embedding approach. Specializing to a concrete em-
bedding approach then boils down to checking the well-posedness assumptions (cf.
Assumption A.2.1), and replacing the Bn by concrete estimation bounds. While
this approach makes Theorem A.3.1 (and similarly Theorem A.3.4 presented below)
broadly applicable to various Hilbertian embedding methods, as a result the bounds
do not directly help in choosing an appropriate embedding.

Proof sketch for Theorem A.3.1. The basic idea is to apply the proof strategy of
Theorem 6.24 in [189] to the ideal, but inaccessible data set D̄Π, and then use esti-
mation error bounds for the Hilbertian embeddings (encoded by the functions Bn)
to translate this to the accessible data set DΠ̂. To do so, we use a known generalized
Representer Theorem (recalled as Proposition A.6.4 later on) together with the con-
tinuity property of the canonical feature map and the regularity and boundedness
properties of the loss function, which allows us to propagate the estimation error
through the bounds. A detailed proof is provided in Section A.6.2.

Example A.3.2. Let us provide some concrete examples for the ingredients of the
preceding result. For instance, consider loss functions of the form `(x, y, t) = ψ(y−t)
(which are called distance-based supervised losses in [189]), and assume that ψ is
continuously differentiable and that Y ⊆ [−M,M ] for some M ∈ R>0. In this case,
suitable constants B` and B′` exist, and we can choose an arbitrary γ1 ∈ K (since
` does not depend on the first argument) and γ3,B(s) = CBs for suitable constants
CB ∈ R>0. An example of the condition on Φk is given by Hölder-continuity of
the canonical feature map Φk, which has been used in previous works like [195].
This means that there exist Ck ∈ R>0, α ∈ (0, 1], such that ‖Φk(x1)− Φk(x2)‖H ≤
Ck‖x1 − x2‖α for all x1, x2 ∈ X , and we can set αk(s) = Cks

α.

When using KMEs for the Hilbertian embedding, we get the following oracle
inequality as a special case.

Corollary A.3.3. Let S be a compact metric space, κ be a measurable, bounded,
continuous and universal kernel on S, and set H = Hκ, Π = Πk, and Π̂ = Π̂k.
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Assume that ` is convex, differentiable, `′ is locally Lipschitz continuous, and that
there exists B`, B′` ∈ R≥0 such that `(x, y, 0) ≤ B` and |`′(x, y, 0)| ≤ B′` for all
x ∈ X , y ∈ Y. Let k be a universal kernel on H that is measurable and bounded,
and that there exists αk ∈ K such that ‖Φk(x1) − Φk(x2)‖k ≤ αk(‖x1 − x2‖H) for
all x1, x2 ∈ X . We then have for all λ ∈ R>0 and δ ∈ (0, 1) that with probability at
least 1− δ

R`,P,λ(fDΠ̂,λ
)−R∗`,P

≤ A(2)
`,P (λ) +

2
√
λB` + |`|1,Bf ‖k‖∞

N
×

N∑
n=1

αλ

2
√
‖κ‖2∞
Mn

+
√

2‖κ‖∞ ln(2N/δ)
Mn


+ 2|`|1,Bf ‖k‖∞

(
B′` + γ3,Bf (Bf )

)√2 ln(2N/δ)
N

+
√

1/N + 4 ln(2N/δ)
3N

 ,
with Bf and αλ as in Theorem A.3.1.

Theorem A.3.1 puts strong regularity requirements on the loss function, but needs
only mild assumptions for the kernel used in the empirical risk minimization. The
following oracle inequality, a distributional analogon of Theorem 6.25 from [189],
is complementary, putting only mild requirements on the loss function, but strong
structural results on the RKHS are used.

Theorem A.3.4. Assume that ` is convex, that there exist γ1 ∈ K and a non-
decreasing family (γ3,B)B∈R>0 ⊆ K such that for all x1, x2 ∈ X , y ∈ Y, and all
B ∈ R>0 and t1, t2 ∈ R with |t1|, |t2| ≤ B, it holds that |`(x1, y, t1) − `(x2, y, t2)| ≤
γ1(‖x1−x2‖H)+γ3,B(|t1− t2|), and that there exists B` ∈ R≥0 such that `(x, y, 0) ≤
B` for all x ∈ X , y ∈ Y. Let k be a kernel on X that is measurable, bounded,
and has a separable RKHS Hk. Assume that there exists an nondecreasing family
(αf,B)B∈R>0 ⊆ K such that for B ∈ R>0 and f ∈ Hk with ‖f‖k ≤ B, we have
|f(x1)− f(x2)| ≤ αf,B(‖x1 − x2‖H) for all x1, x2 ∈ X . Furthermore, let ε, λ ∈ R>0,
and let F ⊆ Hk be a finite set such that for all f ∈ Hk with ‖f‖k ≤

√
B`/λ there

exists f̃ ∈ F with ‖f − f̃‖∞ ≤ ε. Finally, assume that for all n = 1, . . . , N , there
exists Bn : (0, 1) → R≥0 such that P[‖Π̂(S(n)) − Π(Qn)‖H > Bn(δ)] < δ for all
δ ∈ (0, 1). We then have for all δ ∈ (0, 1) that with probability at least 1− δ it holds
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that

R`,P,λ(fD,λ)−RHk∗`,P ≤ A
(2)
`,P (λ) + 4γ3,B̃f (ε) + 2

N

N∑
n=1

αλ

(
Bn

(
δ

N + |F|

))

+ 2
(
B` + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

,

where we defined B̃f = ‖k‖∞
√

B`
λ + ε and αλ = γ1 + γ

3,‖k‖∞
√

B`
λ

◦ α
f,

√
B`
λ

.

The central assumption of Theorem A.3.4 is the existence of a suitable discretiza-
tion F of B̄Hk√

B`/λ
, the closed centered ball with radius

√
B`/λ in the RKHS Hk.

Under suitable assumptions, a finite F exists, and one can set |F| = N (B̄Hk√
B`/λ

, ‖ ·
‖∞, ε), where N (T, d, ε) is the ε-covering number of a metric space (T, d). For more
details and pointers to the literature, we refer to Chapters 6, 7 in [189].

Proof sketch for Theorem A.3.4. Similarly to the proof of Theorem A.3.1, we apply
the proof strategy of Theorem 6.25 in [189] to the ideal, but inaccessible data set
D̄Π, and translate the result to the accessible data set DΠ̂ by the estimation bounds
described by the functions Bn, using the continuity and boundedness properties of
the loss function (which can be milder now, since we do not use Proposition A.6.4
anymore) and the canonical feature map. A detailed proof is provided in Section
A.6.2 later on.

Example A.3.5. A sufficient condition for the existence of the nondecreasing family
(γ3,B)B∈R>0 ⊆ K is Hölder-continuity. If dH(µ, ν) = ‖(Φk ◦ Π)(µ) − (Φk ◦ Π)(ν)‖k,
then it is well-known that one can choose αf,B(s) = Bs. If there exists Ck, αk ∈ R>0

such that |k(x1, x)−k(x2, x)| ≤ Ck‖x1−x2‖αkH for all x1, x2 ∈ X , then one can choose
αf,B(s) =

√
2Cksαk/2. For proofs of these facts and more general conditions, we refer

to [CF1].

We can immediately specialize Theorem A.3.4 to the case of KMEs for the Hilber-
tian embedding.

Corollary A.3.6. Consider the situation of Theorem A.3.4. Additionally, let S
be a compact metric space, κ be a measurable, bounded, continuous and universal
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kernel on S, and set H = Hκ, Π = Πk, and Π̂ = Π̂k. We then have for all δ ∈ (0, 1),
that

R`,P,λ(fD,λ)−RHk∗`,P ≤ A
(2)
`,P (λ) + 4γ3,B̃f (ε) + 2

(
B` + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

+ 2
N

N∑
n=1

αλ

2

√
‖k‖2∞
M

+

√
2‖κ‖∞ ln(N+|F|

δ )
M

 ,
holds with probability at least 1− δ, with B̃f and αλ as in Theorem A.3.4.

The proof is completely analogous to the one of Corollary A.3.3.

A.4. Stability-based Generalization Bound

The oracle inequalities from the previous section allow us to compare the risk of
the learned hypothesis (i.e., of the empirical SVM solution) to the minimum risk
that could be achieved by an oracle (having access to the true underlying meta-
distribution). We now consider a slightly different question: How accurate is the
empirical risk of the learned hypothesis (which can be computed from data) as an
estimate of the true risk of the learned hypothesis (which cannot be computed,
since we do not know the true underlying data-generating distribution)? In other
words, how well does the learned hypothesis generalize from the training data to the
population, as measured by its risk?
We investigate this using a variation of our basic setup. Let (Q, y) ∼ P as before,

but now assume that the number of samples from Q (collected in S) is also random.
Denote the joint distribution of (Q,S, y) by P̄ , the marginal distribution of (S, y)
by P̃ , and the number of samples in S by M , an N+-valued random variables. A
special case covered by this setup is a constantM , a setting which is often considered
in related works like [195] or [137]. The data set D is therefore now generated
by sampling (Q1, S

(1), y), . . . , (QN , S(N), yN ) i.i.d. from P̄ , and then setting D =
((S(n), yn))n=1,...,N , hence D ∼ P̃⊗N .
The generalization bounds that follow are based on the concept of algorithmic

stability [38], which applies to very general learning methods. A learning method is
a map5 ⋃

N∈N+(X × Y)N 3 D 7→ LD, where LD : X → R is measurable. We call L
5In the present setting, it is safe to ignore measurability issues, cf. the discussion in Chapter 6 in
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β-stable (w.r.t. the loss function `) if there exists (βN )N∈N+ , βN ∈ R≥0, such that
for all N ∈ N+, x ∈ X , y ∈ Y we have

|`(x, y,LD(x))− `(x, y,LD̃(x))| ≤ βN , (A.9)

for all D, D̃ ∈ (X × Y)N such that there exists 1 ≤ i ≤ N with Dn = D̃n, n ∈
{1, . . . , N} \ {i}. In other words, a learning method is β-stable, if changing just one
sample in a data set of size N ∈ N+, changes the loss of the resulting hypothesis by
at most βN . We are now ready to present the announced generalization result. It is
a distributional-input analogon of Theorem 14.2 in [141].

Theorem A.4.1. Consider a β-stable learning method L. Assume that there exists
a concave α ∈ K such that for all x1, x2 ∈ X , y ∈ Y and all D ∈ (S∗ ×Y)N we have
|`(x1, y,LD(x1)) − `(x2, y,LD(x2))| ≤ α(‖x1 − x2‖H). For all δ ∈ (0, 1), it holdst
with probability at least 1− δ that

R`,P (LDΠ̂
) ≤ R`,DΠ(LDΠ̂

) + (2NβN +B)
√

ln(1/δ)
2N + α

(
E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

])
+ βN .

The proof of this result can be found in Appendix A.7.2. We now present and
prove a generalization bound for SVMs in the two-stage sampling setup, which is
based on Theorem A.4.1.

Theorem A.4.2. Let ` be convex, locally Lipschitz continuous, and assume that
there exists γ1 ∈ K such that |`(x1, y, t) − `(x2, y, t)| ≤ γ1(‖x1 − x2‖H) for all
x1, x2 ∈ X , y ∈ Y and t ∈ R. Furthermore, assume that there exists B` ∈ R>0 such
that `(x, y, 0) ≤ B` for all x ∈ X , y ∈ Y. Let k be measurable and bounded, and
assume that there exists a nondecreasing family (αf,B)B∈R>0 ⊆ K such that for all
x1, x2 ∈ X , B ∈ R>0, and all f ∈ Hk with ‖f‖k ≤ B we have |f(x1) − f(x2)| ≤
αf,B(‖x1 − x2‖H). Assume that for λ ∈ R>0, there exists a concave αλ ∈ K with
γ1 + |`|1,Bfαf,√B`/λ ≤ αλ, where we defined Bf = ‖k‖∞

√
B`/λ. We then have for

all δ ∈ (0, 1), with probability at least 1− δ, that

R`,P (fDΠ̂,λ
) ≤ R`,DΠ̂

(fDΠ̂,λ
) +
|`|21,Bf ‖k‖

2
∞

λN
+ α

(
E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

])
+
(

2|`|21,Bf ‖k‖
2
∞

λ
+B` + |`|1,BfBf

)√
ln(1/δ)

2N .

[189].
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Before turning to the proof of Theorem A.4.2, we describe two example classes of
suitable ` and αλ.

Example A.4.3. Assume that there exist (Cf,B)B∈R>0 ⊆ R>0, (αf,B)B∈R>0 ⊆ (0, 1]
such that |f(x1) − f(x2)| ≤ Cf,B‖x1 − x2‖

αf,B
Π for all B ∈ R>0, x1, x2 ∈ X , and

f ∈ Hk with ‖f‖k ≤ B. Let us call a function φ : R→ R locally Hölder-continuous,
if there exist (Cφ,B)B∈R>0 ⊆ R>0, (αφ,B)B∈R>0 ⊆ (0, 1], such that for all B ∈ R>0,
|φ(s1) − φ(s2)| ≤ Cφ,B|s1 − s2|αφ,B for all s1, s2 ∈ [−B,B]. We refer to [CF1] for
a discussion of these properties, including characterizations of suitable k. (i) As-
sume that `(x, y, t) = ψ(y − t), where ψ is a nonnegative, locally Hölder-continuous
function. Given λ ∈ R>0, we can then choose αλ(s) = C

ψ,‖k‖∞
√
B`/λ

C
αψ

f,
√
B`/λ

sαψαf

with αψ = α
ψ,‖k‖∞

√
B`/λ

and αf = α
f,
√
B`/λ

. (ii) Assume that `(x, y, t) = ϕ(yt)
(called a margin-based loss function in [189]) for a nonnegative, locally Hölder-
continuous function, and that Y ⊆ [−M,M ] for some M ∈ R>0. Given λ ∈ R>0,
we can then choose αλ(s) = CϕM

αϕC
αϕ

f,
√
ϕ(0)/λ

sαϕαf with Cϕ = C
ϕ,M‖k‖∞

√
ϕ(0)/λ,

αϕ = α
ϕ,M‖k‖∞

√
ϕ(0)/λ, and αf = α

f,
√
ϕ(0)/λ.

Proof of Theorem A.4.2. Let Q be a distribution onM1(S)×Y. From Lemma A.5.4
we have |fQ,λ(x)| ≤ ‖k‖∞‖fQ,λ‖k ≤ ‖k‖∞

√
B`
λ = Bf , so

|`(x1, y, fQ,λ(x1))− `(x2, y, fQ,λ(x2))| ≤ γ1(‖x1 − x2‖H) + |`|1,Bf |fQ,λ(x1)− fQ,λ(x2)|

≤

γ1 + |`|1,Bfα
f,

√
B`
λ

 (‖x1 − x2‖H)

≤ αλ(‖x1 − x2‖H),

hence αλ fulfills the requirements of Theorem A.4.1. Furthermore, as before we have
`(x, y, fQ,λ(x)) ≤ B` + |`|1,BfBf = B.

Next6, for all f, g ∈ Hk with ‖f‖k, ‖g‖k ≤
√

B`
λ and all x ∈ X , y ∈ Y, we have

|`(x, y, f(x)) − `(x, y, g(x))| ≤ |`|1,Bf |f(x) − g(x)|. An inspection of the proof of
Proposition 14.4 in [141] then shows that the learning method (X × Y)N 3 D 7→

f`,Dλ ∈ Hk is βN =
|`|21,Bf ‖k‖

2
∞

λN stable.
The result now follows from Theorem A.4.1.

6The following is a generalization of the property from Definition 14.3 in [141].
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Remark A.4.4. An inspection of the proof of Theorem A.4.2 and how Propo-
sition 14.4 in [141] is used there, reveals that instead of local Lipschitz conti-
nuity of ` the following continuity property is sufficient: There exists a family
(CB, pB)B∈R>0 with CB ∈ R>0, 0 < pB < 2 for all B ∈ R>0, such that for all
x ∈ X , y ∈ Y, B ∈ R>0 and all t1, t2 ∈ R with |t1|, |t2| ≤ B we have that
|`(x, y, t1)−`(x, y, t2)| ≤ CB|t1− t2|pB . Furthermore, we now need a concave αλ ∈ K
such that γ1 + CBα

f,

√
B`
λ

(·)pB ≤ αλ with B = ‖k‖∞
√

B`
λ . In this case, we have

βN = C
1+ 1

2−pB
B ‖k‖

pB+ pB
2−pB∞

(
1
Nλ

) 1
2−pB .

Once again, we can immediately specialize to the case of using KMEs for the
Hilbertian embedding.

Corollary A.4.5. Consider the situation of Theorem A.4.2. Additionally, let S
be a compact metric space, κ be a measurable, bounded, continuous and universal
kernel on S, and set H = Hκ, Π = Πk, and Π̂ = Π̂k. We then have for all δ ∈ (0, 1),
with probability at least 1− δ, that

R`,P (f`,DΠ̂
λ) ≤ R`,DΠ̂

(f`,DΠ̂
λ) + αλ

(√
2‖κ‖∞

E[
√
M ]

)

+
(2|`|21,Bf ‖k‖

2
∞

λ
+B` + |`|1,BfBf

)√
ln(1/δ)

2N +
|`|21,Bf ‖k‖

2
∞

λN
,

where we defined Bf = ‖k‖∞
√

B`
λ .

Proof. First, as in the proof of Corollary A.3.3, the KME setup fulfills Assump-
tion A.2.1. Let Q ∈ M1(S), M ∈ N+, and S ∼ Q⊗M . According to Lemma 4 in
[85], ‖ΠkQ−Π̂kS‖κ is the maximum mean discrepancy between Q and the empirical
measure 1

M

∑M
m=1 δSm , so we get from Equation (19) in the same reference that

ES∼Q⊗M
[
‖ΠkQ− Π̂kS‖κ

]
≤

√
2‖κ‖∞
M

,

which implies that

E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

]
≤ E

√2‖κ‖∞
M

 =
√

2‖κ‖∞
E[
√
M ]

.
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Combining this with Theorem A.4.2 and using that αλ is increasing, establishes the
result.

A.5. Additional Technical Background

Comparison functions In addition to K, we define

L = {ρ : R≥0 → R≥0 | ρ continuous, strictly decreasing, lim
s→∞

ρ(s) = 0}.

Observe that if ρ ∈ L, then ρ(s) > 0 for all s ∈ R≥0, and its inverse is defined on
its range, i.e., ρ−1 : (0, ρ(0)] → R≥0. We define addition and scalar multiplication
in K and L pointwise, i.e., if α1, α2 ∈ K (respectively, L), then α1 +α2 is defined by
(α1 +α2)(s) = α1(s)+α2(s) for all s ∈ R≥0, and if c1 ∈ R>0, then c1α1 is defined by
(c1α1)(s) = c1α1(s). Note that c1α1 + α2 ∈ K (respectively, in L), so K and L form
a cone. Furthermore, α1 ◦ α2 ∈ K. We also define comparison relations pointwise,
e.g., if α1, α1 ∈ K, then α1 ≤ α2 means that α1(s) ≤ α2(s) for all s ∈ R≥0. For more
background on comparison functions, including historical remarks and application
examples, we refer to [105].
More on loss functions For technical reasons, we need some additional concepts

from [189]. A loss function ` : X × Y × R → R≥0 is called a Nemitskii loss, if
there exists a measurable function b : X × Y → R≥0 and an increasing function
h : R≥0 → R≥0 such that for all x ∈ X , y ∈ Y and all t ∈ R we have

`(x, y, t) ≤ b(x, y) + h(|t|).

Let P be a probability distribution on X × Y. We call ` a P -integrable Nemitskii
loss, if it is a Nemitskii loss, and the function b from the definition of this concept
is P -integrable.
Boundedness in RKHSs For convenience, we summarize some well-known re-

sults on boundedness of kernels and RKHS functions.

Lemma A.5.1 (Boundedness in RKHSs). Let X be an arbitrary nonempty set and
k a kernel on it, and define

‖k‖∞ = sup
x∈X

√
k(x, x). (A.10)
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1. k is bounded if and only if ‖k‖∞ <∞.

2. All f ∈ Hk are bounded if and only if k is bounded.

3. For all f ∈ Hk and x ∈ X , |f(x)| ≤ ‖f‖k‖k‖∞.

Proof. For the first item, assume that k is bounded, then obviously ‖k‖∞ < ∞.
Conversely, if ‖k‖∞ <∞, then we have for all x, x′ ∈ X

|k(x, x′)| = |〈k(·, x′), k(·, x)〉k| ≤ ‖k(·, x′)‖k‖k(·, x)‖k =
√
k(x′, x′)

√
k(x, x) ≤ ‖k‖2∞ <∞

so k is indeed bounded.
The second statement is given by Lemma 4.23 in [189].
For the last statement, let f ∈ Hk and x ∈ X be arbitrary, then

|f(x)| = |〈f, k(·, x)〉k| ≤ ‖f‖‖k(·, x)‖k = ‖f‖k
√
k(x, x ≤ ‖f‖k‖k‖∞.

Properties of loss functions and their risks Next, we present two technical
results on loss functions and their associated risks. These results are essentially
known (cf. Chapter 2 in [189]), however, we formulate them in greater generality
using comparison functions.

Lemma A.5.2 (Condition for P -integrable Nemitskii loss). Let ` : X×Y×R→ R≥0

be a loss function such that there exists B` ∈ R≥0 with `(x, y, 0) ≤ B` for all x ∈
X , y ∈ Y, and a nondecreasing family (α`,B)B∈R>0 ⊆ K with |`(x, y, t1)−`(x, y, t2)| ≤
α`,B(|t1 − t2|) for all x ∈ X , y ∈ Y and t1, t2 ∈ R with |t1|, |t2| ≤ B, then ` is a P -
integrable Nemitskii loss for all distributions P on X × Y.

In particular, this result applies to locally Lipschitz continuous functions, where
α`,B(t) = |`|1,|t||t|.

Proof. Let x ∈ X , y ∈ Y, t ∈ R be arbitrary, then we have

`(x, y, t) ≤ `(x, y, 0) + |`(x, y, t)− `(x, y, 0)|

≤ B` + α`,|t|(|t|)
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Since
∫
B`dP = B` < ∞ and t 7→ α`,|t|(|t|) is nondecreasing, the statement follows.

Lemma A.5.3 (Continuity of risk from continuity of loss function). Let ` : X ×
Y × R → R≥0 be a loss function such that there exists a nondecreasing family
(α`,B)B∈R>0 ⊆ K with |`(x, y, t1) − `(x, y, t2)| ≤ α`,B(|t1 − t2|) for all x ∈ X , y ∈ Y
and t1, t2 ∈ R with |t1|, |t2| ≤ B. Let P be a distribution such that ` is a P -integrable
Nemitskii loss.

1. For all B ∈ R>0 and all measurable and bounded7 f, g with ‖f‖∞, ‖g‖∞ ≤ B,
we have

|R`,P (f)−R`,P (g)| ≤ α`,B(‖f − g‖∞). (A.11)

2. Let k be a measurable and bounded kernel on X . For all B ∈ R>0 and
f, g ∈ Hk with ‖f‖k, ‖g‖k ≤ B, we have

|R`,P (f)−R`,P (g)| ≤ α`,‖k‖∞·B(‖f − g‖k‖k‖∞). (A.12)

Proof. For the first claim, let B ∈ R>0 and f, g be measurable functions with
‖f‖∞, ‖g‖∞ ≤ B. We then have

|R`,P (f)−R`,P (g)| ≤
∫
|`(x, y, f(x))− `(x, y, g(x))|dP (x, y)

≤
∫
α`,B(|f(x)− g(x)|)dP (x, y)

≤
∫
α`,B(‖f − g‖∞)dP (x, y)

= α`,B(‖f − g‖∞),

where we used the triangle inequality in the first step, the existence of (α`,B)B in
the second step, the fact that α`,B is increasing in the third step, and finally that P
is a probability distribution.
For the second claim, let B ∈ R>0 and f, g ∈ Hk with ‖f‖k, ‖g‖k ≤ B. Since k is

measurable and bounded, also f, g are measurable and bounded. From Lemma A.5.1
we get ‖f‖∞ ≤ ‖f‖k‖k‖∞ ≤ B‖k‖∞, and similarly for g, as well as ‖f − g‖∞ ≤
‖f − g‖k‖k‖∞. The result now follows from the first claim.

7Measurably essentially bounded would be enough.
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Bound on norm of regularized risks minimizers Finally, we recall a well-
known result providing a bound on the norm of minimizers of regularized risks
minimization problems, cf. the beginning of Section 5.1 in [189].

Lemma A.5.4 (Regularized risk minimization over RKHSs). Let ` : X ×Y ×R→
R≥0 be a convex, locally Lipschitz continuous loss function, such that there exists
B` ∈ R≥0 with `(x, y, 0) ≤ B` for all x ∈ X , y ∈ Y. Let k be a kernel on X that is
measurable, bounded, and with separable Hk. For all distributions P on X ×Y and
all λ ∈ R>0, there exists a unique solution fP,λ of

min
f∈Hk

R`,P (f) + λ‖f‖2k,

and ‖fP,λ‖k ≤
√

B`
λ .

Proof. Lemma A.5.2 ensures that ` is a P -integrable Nemitskii loss, so Lemma 5.1
and Theorem 5.2 from [189] are applicable and ensure that a unique solution fP,λ
exists.
Additionally, we have

λ‖fP,λ‖2k ≤ R`,P (fP,λ) + λ‖fP,λ‖2k = R`,P,λ(fP,λ)

≤ R`,P,λ(0) = R`,P (0) + λ‖0‖2k

=
∫
`(x, y, 0)dP (x, y)

≤ B`,

where we first used the nonnegativity of ` (and monotonicity of the integral) in the
first step, followed by the definition of fP,λ, and finally the boundedness assumption
of ` in zero. Rearranging shows that indeed ‖fP,λ‖k ≤

√
B`
λ .

Kernel mean embeddings

Proof of Proposition A.2.4. The first statement is contained in Theorem 2 and Propo-
sition 2 in [188], and the discussion following it.
The second statement follows from Theorem 1 in [123], by two minor modifica-

tions. First, applying Lemma A.5.1 to f ∈ Hκ with ‖f‖κ ≤ 1 leads to |f(s)| ≤
‖f‖κ‖κ‖∞ ≤ ‖κ‖∞ for all s ∈ S, which shows that the constant of the bounded
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difference property in the proof of Theorem 1 in [123] needs to be set to 2‖κ‖∞/M .
Second, we use

∫
κ(s, s)dQ(s) ≤

∫
‖κ‖2∞dQ(s) ≤ ‖κ‖2∞ for all Q ∈M1(S).

The third statement is shown in Section A.1.1 in [195].

Sliced Wasserstein distances Let S = Rd and denote byW2(µ, ν) the sliced 2-
Wasserstein distance, cf. equation (13) in [137]. It has been shown in Proposition 5 in
the same reference that there exists a Hilbert spaceH2 and a map Π2 :M1(S)→ H2

such that W2(µ, ν) = ‖Π2µ − Π2ν‖H2 . Setting Π̂2S = Π2µ̂[S] for all S ∈ SM

and M ∈ N+, where µ̂[S] = 1
M

∑M
m=1 δSm is the empirical measure having the

components of S as atoms, and assuming that Assumption A.2.1 is fulfilled, our main
results Theorems A.3.1, A.3.4 and A.4.2 apply to the case of sliced 2-Wasserstein-
based Hilbertian embeddings. For more details, as well as the case of sliced 1-
Wasserstein-based Hilbertian embeddings, and concrete constructions of suitable
kernels k on H2, we refer to [137].

A.6. Additional Material on the Oracle Inequalities

In this section, we present the proofs of our oracle inequalities Theorem A.3.1 and
Theorem A.3.4. Furthermore, we state and prove specializations to the case of sliced
2-Wasserstein embeddings, analogous to the results for KMEs, cf. Corollary A.3.3
and Corollary A.3.6.

A.6.1. Sliced Wasserstein Distances

Our specialization of the oracle inequalities to sliced 2-Wasserstein embeddings are
based on the following error bound, which might be of independent interest.

Proposition A.6.1. Let P be a distribution on M1(Rd) × Y and (Q, y) ∼ P .
Assume that P -a.s. Q is a log-concave distribution, and denote its (P -a.s. defined)
covariance matrix by ΣQ. Furthermore, assume that there exists ρΣ ∈ L such that
for all t ∈ R≥0, P[‖ΣQ‖ ≥ t] ≤ ρΣ(t) P -a.s. Let M ∈ N+ and S ∼ Q⊗M , then for all
0 < δ < min{1/4, 2ρΣ(1/C̃d)}, we have

P
[
W2(Q, µ̂[S]) ≥ ρ−1

Σ (δ/2)√
M

(
Cd

√
ln(M) + C̃d ln(4/δ)

)]
≤ δ,
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where Cd and C̃d are universal constants that only depend on d.

To simplify the notation in the following proof, we define a ∧ b = min{a, b} for
a, b ∈ R.

Proof. As shown in the proof of Proposition 7 in [147], there exists a universal
constant cd ∈ R>0, depending only on d ∈ N+, such that 1

Pµ
≥ 1

cd‖Σµ‖ for all log-
concave distributions µ on Rd, where Pµ is the Poincare constant of µ. Furthermore,
according to Theorem 1 (choosing p = 2 there) in the same reference, there exists a
universal constant Cd ∈ R>0, depending only on d, such that

E[W2(µ, µ̂[X])] ≤

√
‖Σµ‖ ln(M)

M
(A.13)

for all log-concave distributions µ on Rd and X ∼ µ⊗M .
Let 0 < δ < min{1/4, 2ρΣ(1/C̃d)} be arbitrary, and x, t ∈ R>0 two constants to

be chosen later. We start with

P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t


= P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t, ‖ΣQ‖ ≤ x ∧
√
x


+ P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t, ‖ΣQ‖ > x ∧
√
x


≤ P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t | ‖ΣQ‖ ≤ x ∧
√
x

P[‖ΣQ‖ ≤ x ∧
√
x]

+ P[‖ΣQ‖ > x ∧
√
x]

≤ P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t | ‖ΣQ‖ ≤ x ∧
√
x

+ ρΣ(x ∧
√
x),

where we used in the last step that probabilities are always from [0, 1], and the
assumption on ‖ΣQ‖.
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We continue with the first term,

P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t

∣∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x


≤ P

W2(Q, µ̂[S]) ≥ Cd

√
x ln(M)
M

+ t

∣∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x


≤ P

W2(Q, µ̂[S]) ≥ Cd

√
‖ΣQ‖ ln(M)

M
+ t

∣∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x


≤ P

[
W2(Q, µ̂[S]) ≥ E[W2(Q, µ̂[S])] + t

∣∣ ‖ΣQ‖ ≤ x ∧
√
x
]

≤ P
[
|W2(Q, µ̂[S])− E[W2(Q, µ̂[S])]| ≥ t

∣∣ ‖ΣQ‖ ≤ x ∧
√
x
]

≤ E
[
2 exp

(
−

√
Mt ∧Mt2

min{2
√
PQ, 6e5PQ}

) ∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x

]
,

where we used Theorem 3.8 from [119], as used in the proof of Proposition 7 in [147],
and the last equality holds almost surely.

Conditional on ‖ΣQ‖ ≤ x ∧
√
x, we get that

1
min{2

√
PQ, 6e5PQ}

= max
{

1
2
√
PQ

,
1

6e5PQ

}

≥ 1
6e5 max

{
1√
PQ

,
1
PQ

}

≥ 1
6e5 max

 1√
cd‖ΣQ‖

,
1

cd‖ΣQ‖


≥ 1

6e5 max{√cd, cd}
max

 1√
‖ΣQ‖

,
1
‖ΣQ‖


= 1

6e5 max{√cd, cd}
1

min{
√
‖ΣQ‖, ‖ΣQ‖}

≤ 1
6e5 max{√cd, cd}

1
x ∧
√
x

= 1
C̃d(x ∧

√
x)
.
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In the last inequality we used that

min{
√
‖ΣQ‖, ‖ΣQ‖} ≤ min{

√
x ∧
√
x, x ∧

√
x} ≤ x ∧

√
x,

and in the last step we defined C̃d = 6e5 max{√cd, cd}.
We therefore get (again almost surely) that

P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t

∣∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x


≤ E

[
2 exp

(
−

√
Mt ∧Mt2

min{2
√
PQ, 6e5PQ}

) ∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x

]

≤ E
[
2 exp

(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

) ∣∣∣∣∣ ‖ΣQ‖ ≤ x ∧
√
x

]

= 2 exp
(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

)
.

Observe now that

2 exp
(
−
√
Mt2 ∧Mt2

C̃d(x ∧
√
x)

)
= δ

2 ⇔ x ∧
√
x =

√
Mt ∧Mt2

C̃d ln(4/δ)

and since
√
Mt∧Mt2

C̃d ln(4/δ) > 0 (recall that we restricted δ to (0, 1/4)), we can choose
x ∈ R>0 such that the last display holds.
With this choice of x, we are now at

P

W2(Q, µ̂[S]) ≥
√
Mt ∧Mt2

C̃d ln(4/δ)
Cd

√
ln(M)
M

+ t


= P

W2(Q, µ̂[S]) ≥ (x ∧
√
x)Cd

√
ln(M)
M

+ t


≤ 2 exp

(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

)
+ ρΣ

(
x ∧
√
x
)

≤ δ

2 + ρΣ

(√
Mt ∧Mt2

C̃d ln(4/δ)

)
.

Note that this holds since the above computation works for any version of the con-
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ditional expectation.
Next, let s > 1 and set t = ln(4/δ)√

M
s, then

P

W2(Q, µ̂[S]) ≥ sCd
C̃d

√
ln(M)
M

+ ln(4/δ)√
M

s


= P

W2(Q, µ̂[S]) ≥ ln(4/δ)s ∧ ln(4/δ)2s2

C̃d ln(4/δ)
Cd

√
ln(M)
M

+ ln(4/δ)√
M

s


= P

W2(Q, µ̂[S]) ≥
√
Mt ∧Mt2

C̃d ln(4/δ)
Cd

√
ln(M)
M

+ t


≤ δ

2 + ρΣ

(√
Mt ∧Mt2

C̃d ln(4/δ)

)

= δ

2 + ρΣ

(
s

C̃d

)
,

where we used that ln(4/δ)s ∧ ln(4/δ)2s2 = ln(4/δ)s since ln(4/δ), s > 1.
The condition P[‖ΣQ‖ ≥ x] ≤ ρΣ(x) for all x ∈ R≥0 implies that ρΣ([0,∞)) =

(0, 1], so we have
ρΣ

(
s

C̃d

)
= δ

2 ⇔ s = C̃dρ
−1
Σ (δ/2)

and since
s > 1 ⇔ C̃dρ

−1
Σ (δ/2) > 1 ⇔ δ < 2ρΣ(1/C̃d),

our requirements on δ ensures that we can set s = C̃dρ
−1
Σ (δ/2). Altogether, we

arrived at

P

W2(Q, µ̂[S]) ≥ C̃dρ−1
Σ (δ/2)Cd

C̃d

√
ln(M)
M

+ ln(4/δ)√
M

C̃dρ
−1
Σ (δ/2)


= P

W2(Q, µ̂[S]) ≥ sCd
C̃d

√
ln(M)
M

+ ln(4/δ)√
M

s

 ≤ δ

2 + ρΣ

(
s

C̃d

)
= δ

We can now formulate and prove the announced specializations of the oracle in-
equalities.
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Corollary A.6.2. Consider the situation of Theorem A.3.1. Let S = Rd, set
H = H2, Π = Π2, and Π̂ = Π̂2, and assume that Assumption A.2.1 holds in
this case. Furthermore, for (Q, y) ∼ P , assume that P -a.s. Q is a log-concave
distribution, and denote its (P -a.s. defined) covariance matrix by ΣQ. Assume that
` is convex, differentiable, `′ is locally Lipschitz continuous, and that there exists
B`, B

′
` ∈ R≥0 such that `(x, y, 0) ≤ B` and |`′(x, y, 0)| ≤ B′` for all x ∈ X , y ∈ Y. Let

k be a kernel on H that is measurable and bounded, and that there exists αk ∈ K
such that ‖Φk(x1) − Φk(x2)‖k ≤ αk(‖x1 − x2‖). We then have for all λ ∈ R>0 and
δ ∈ (0, 1) that with probability at least 1− δ

R`,P,λ(fDΠ̂,λ
)−R∗`,P ≤ A

(2)
`,P (λ)

+
2
√
λB` + |`|1,Bf ‖k‖∞

N

N∑
n=1

αλ

ρ−1
Σ

(
δ

2(N+|F|)

)
√
M

(
Cd
√

ln(M) + C̃d ln
(

4(N + |F|)
δ

))
+ 2|`|1,Bf ‖k‖∞

(
B′` + γ3,Bf (Bf )

)(√2 ln(2N/δ)
N

+
√

1/N + 4 ln(2N/δ)
3N

)
,

with Bf and αλ as in Theorem A.3.1, and Cd and C̃d are universal constants that
only depend on d.

Proof. The result follows immediately by combining Theorem A.3.1 with Proposi-
tion A.6.1.

Corollary A.6.3. Consider the situation of Theorem A.3.1. Let S = Rd, set
H = H2, Π = Π2, and Π̂ = Π̂2, and assume that Assumption A.2.1 holds in this case.
Furthermore, for (Q, y) ∼ P , assume that P -a.s. Q is a log-concave distribution,
and denote its (P -a.s. defined) covariance matrix by ΣQ. Finally, assume that there
exists ρΣ ∈ L such that for all t ∈ R≥0, P[‖ΣQ‖ ≥ t] ≤ ρΣ(t) P -a.s. We then have
for all 0 < δ < min{1/4, 2ρΣ(1/C̃d)} that with probability at least 1−δ it holds that

R`,P,λ(fD,λ)−RHk∗`,P ≤ A
(2)
`,P (λ) + 2

(
B` + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

+ 4γ3,B̃f (ε)

+ 2
N

N∑
n=1

αλ

ρ−1
Σ

(
δ

2(N+|F|)

)
√
M

(
Cd

√
ln(M) + C̃d ln

(4(N + |F|)
δ

)) ,
where we defined B̃f = ‖k‖∞

√
B`
λ + ε, αλ = γ1 + γ

3,‖k‖∞
√

B`
λ

◦ α
f,

√
B`
λ

, and Cd and
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C̃d are universal constants that only depend on d.

Proof. The result follows immediately by combining Theorem A.3.4 with Proposi-
tion A.6.1.

A.6.2. Proof of the Oracle Inequalities

We will need the following result, which is derived at the beginning of Section 5.2
in [189], but not stated as a theorem there. For convenience, we repeat it here.

Proposition A.6.4. Let X and Y be measurable spaces, ` : X ×Y×R→ R≥0 a loss
function that is convex, differentiable, and define `′ = d

dt`. Let k be a kernel on X
that is measurable, bounded, and has a separable RKHS Hk. For all P ∈M1(X×Y)
such that ` and |`′| are P -integrable Nemitskii losses, and for all λ ∈ R>0, there exists
a unique solution fP,λ of

min
f∈Hk

R`,P (f) + λ‖f‖2k, (A.14)

and this solution fulfills the equation

fP,λ = − 1
2λ

∫
X×Y

`′(x, y, fP,λ(x))Φk(x)dP (x, y). (A.15)

Note that in (A.15) a Bochner integral appears.

Proof of Theorem A.3.1. Let λ ∈ R>0 be arbitrary and define D̄ = ((Qn, yn))n∈[N ].
We then have

R`,P,λ(fDΠ̂,λ
)−RHk∗`,P,λ = R`,P,λ(fDΠ̂,λ

)−R`,P,λ(fP,λ)

= R`,P (fDΠ̂,λ
) + λ‖fDΠ̂,λ

‖2k +R`,P (fD̄Π,λ
)−R`,P (fD̄Π,λ

)

+R`,D̄Π
(fD̄Π,λ

)−R`,D̄Π
(fD̄Π,λ

) +R`,D̄Π
(fP,λ)−R`,D̄Π

(fP,λ)

−R`,P (fP,λ)− λ‖fP,λ‖2k + λ‖fD̄Π,λ
‖2k − λ‖fD̄Π,λ

‖2k
= R`,P (fDΠ̂,λ

)−R`,P (fD̄Π,λ
)︸ ︷︷ ︸

I

+R`,P (fD̄Π,λ
)−R`,P (fP,λ)︸ ︷︷ ︸
II

+R`,D̄Π
(fD̄Π,λ

) + λ‖fD̄Π,λ
‖2k − (R`,D̄Π

(fP,λ) + λ‖fP,λ‖2k)︸ ︷︷ ︸
=III

+R`,D̄Π
(fP,λ)−R`,D̄Π

(fD̄Π,λ
)︸ ︷︷ ︸

=IV

+λ‖fDΠ̂,λ
‖2k − λ‖fD̄Π,λ

‖2k︸ ︷︷ ︸
=V
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We now upper bound terms I to V. First, by definition of fD̄Π,λ
, term III is nonpos-

itive, and hence can be discarded.

In order to bound the remaining terms, we need some preparations. Lemma A.5.2
ensures that for all distributions Q on X × Y, ` is a Q-integrable Nemitskii loss.
Furthermore, repeating the proof of Lemma A.5.2 on `′ shows that also |`′| is a
Q-integrable Nemitskii loss. Altogether, we can apply Proposition A.6.4 to ` for any
distribution Q on X ×Y. An inspection of the proof of Theorem 5.9 in [189] reveals
that (5.14) in this reference applies to the present situation, so for all distributions
Q, Q̃ on X × Y, unique SVM solutions fQ,λ and fQ̃,λ exist, and we have

‖fQ,λ − fQ̃,λ‖k ≤
1
λ

∥∥∥∥∫ hQ(x, y)Φk(x)dQ(x, y)−
∫
hQ(x, y)Φk(x)dQ̃(x, y)

∥∥∥∥
k
,

(A.16)
where we defined hQ(x, y) = `′(x, y, fQ,λ(x)).

Bounding I Using Lemma A.5.4, we have ‖fDΠ̂,λ
‖k, ‖fD̄Π,λ

‖k ≤
√

B`
λ , hence we

get from Lemma A.5.1 that |fDΠ̂,λ
(x)|, |fD̄Π,λ

(x)| ≤ ‖k‖∞
√

B`
λ =: Bf . Define now

for brevity L` := |`|1,Bf , then we get∣∣∣R`,P (fDΠ̂,λ
)−R`,P (fD̄Π,λ

)
∣∣∣ ≤ L`‖k‖∞‖fDΠ̂,λ

− fD̄Π,λ
‖k

≤ L`‖k‖∞
λ

∥∥∥∥∥ 1
N

N∑
n=1

hDΠ̂
(Π̂S(n), yn)Φk(Π̂S(n))− 1

N

N∑
n=1

hDΠ̂
(ΠQn, yn)Φk(ΠQn)

∥∥∥∥∥
k

≤ L`‖k‖∞
λ

1
N

N∑
n=1

∥∥∥hDΠ̂
(Π̂S(n), yn)Φk(Π̂S(n))− hDΠ̂

(ΠQn, yn)Φk(ΠQn)
∥∥∥
k

≤ L`‖k‖∞
λ

1
N

N∑
n=1
|hDΠ̂

(Π̂S(n), yn)− hDΠ̂
(ΠQn, yn)|‖Φk(Π̂S(n))‖k

+ |hDΠ̂
(ΠQn, yn)|‖Φk(Π̂S(n))− Φk(ΠQn)‖k

where we used Lemma A.5.3 in the first inequality, in the second step the bound
(A.16), followed by using the triangle inequality twice. For each n = 1, . . . , N , we
have

|hDΠ̂
(Π̂S(n), yn)− hDΠ̂

(ΠQn, yn)| = |`′(Π̂S(n), yn, fDΠ̂,λ
(Π̂S(n)))− `′(ΠQn, yn, fDΠ̂,λ

(ΠQn))|
≤ γ1(‖Π̂S(n) −ΠQn‖H) + γ3,Bf (|fDΠ̂,λ

(Π̂S(n))− fDΠ̂,λ
(ΠQn)|)

≤
(
γ1 + γ3,Bf ◦

(√
B`/λ · αk

))
(‖Π̂S(n) −ΠQn‖H),

334



A.6. Additional Material on the Oracle Inequalities

where we used the definition of hDΠ̂
in the first step, and in the following inequality

we used the assumed continuity property of `′ (together with the previously derived
bound Bf on the values of fDΠ̂,λ

and fDΠ̂,λ
). In the last inequality we used that for

all f ∈ Hk and x1, x2 ∈ X ,

|f(x1)− f(x2)| = |〈f,Φk(x1)− Φk(x2)〉k| ≤ ‖f‖k‖Φk(x1)− Φk(x2)‖k ≤ ‖f‖kαk(‖x1 − x2‖H).

Furthermore, we also have ‖Φk(Π̂S(n)) − Φk(ΠQn)‖k ≤ αk(‖Π̂S(n) − ΠQn‖H) and
‖Φk(Π̂S(n))‖k ≤ ‖k‖∞. Finally,

|hDΠ̂
(ΠQn, yn)| = |`′(ΠQn, yn, fDΠ̂,λ

(ΠQn))|

≤ |`′(ΠQn, yn, 0)|+ |`′(ΠQn, yn, fDΠ̂,λ
(ΠQn))− `′(ΠQn, yn, 0)|

≤ B′` + γ3,Bf (|fDΠ̂,λ
(ΠQn)|)

≤ B′` + γ3,Bf (Bf ).

Altogether, we can continue with∣∣R`,P (fDΠ̂,λ
)−R`,P (fD̄Π,λ

)
∣∣

≤ L`‖k‖∞
λ

1
N

N∑
n=1
|hDΠ̂

(Π̂S(n), yn)− hDΠ̂
(ΠQn, yn)|‖Φk(Π̂S(n))‖k

+ |hDΠ̂
(ΠQn, yn)|‖Φk(Π̂S(n))− Φk(ΠQn)‖k

≤ L`‖k‖∞
λ

1
N

N∑
n=1
‖k‖∞

(
γ1 + γ3,Bf ◦

(√
B`/λ · αk

))
(‖Π̂S(n) −ΠQn‖H)

+
(
B′` + γ3,Bf (Bf )

)
αk(‖Π̂S(n) −ΠQn)‖H)

≤ L`‖k‖∞
λ

1
N

N∑
n=1

(
‖k‖∞

(
γ1 + γ3,Bf ◦

(√
B`/λ · αk

))
+
(
B′` + γ3,Bf (Bf )

)
αk
)

(‖Π̂S(n) −ΠQn‖H)

Defining αλ = ‖k‖∞(γ1 + γ3,Bf ◦
(√

B`/λαk
)
) +

(
B′` + γ3,Bf (Bf )

)
αk and using a

union bound, we finally get with probability at least 1− δ/2 that

∣∣∣R`,P (fDΠ̂,λ
)−R`,P (fD̄Π,λ

)
∣∣∣ ≤ L`‖k‖∞

λ

1
N

N∑
n=1

αλ(Bn(δ/(2N))).
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Bounding II and IV Let Q = P or D̄Π. We have

R`,Q(fD̄Π,λ
)−R`,Q(fP,λ) ≤ L`‖k‖∞‖fD̄Π,λ

− fP,λ‖k

≤ L`‖k‖∞
λ

∥∥∥∥∥ 1
N

N∑
n=1

hD̄Π
(ΠQn, yn)Φk(ΠQn)−

∫
hD̄Π

(x, y)Φk(x)dP (x, y)
∥∥∥∥∥
k

= L`‖k‖∞
λ

∥∥∥∥∥ 1
N

N∑
n=1

ξn − E[ξn]
∥∥∥∥∥
k

where the first two steps are similar as in bounding I, and in the last step we defined
ξn = hD̄Π

(ΠQn, yn)Φk(ΠQn). Since (Q1, y1) . . . , (QN , yN ) i.i.d.∼ P , also ξ1, . . . , ξN are
i.i.d. Furthermore,

‖ξn‖k = ‖hDΠ̂
(ΠQn, yn)Φk(ΠQn)‖k = |hDΠ̂

(ΠQn, yn)|‖Φk(ΠQn)‖k
≤ |`′(ΠQn, yn, fD̄Π,λ

(ΠQn))|‖k‖∞
≤
(
B′` + γ3,Bf (Bf )

)
‖k‖∞,

so ξ1, . . . , ξN areHk-valued i.i.d. random variables bounded byBξ :=
(
B′` + γ3,Bf (Bf )

)
‖k‖∞.

Hoeffding’s inequality for random variables in a separable Hilbert space, cf. Corol-
lary 6.15 in [189], now ensures that with probability at least 1− δ/2

∥∥∥∥∥ 1
N

N∑
n=1

ξn − E[ξn]
∥∥∥∥∥
k

≤ Bξ

√2 ln(2/δ)
N

+
√

1/N + 4 ln(2/δ)
3N

 .
This implies that with probability at least 1− δ/2

R`,Q(fD̄Π,λ
)−R`,Q(fP,λ) ≤ L`‖k‖∞

λ
Bξ

√2 ln(2/δ)
N

+
√

1/N + 4 ln(2/δ)
3N

 ,
so with same probability the bound

II + IV ≤ 2L`‖k‖∞
λ

Bξ

√2 ln(2/δ)
N

+
√

1/N + 4 ln(2/δ)
3N


holds.
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Bounding V Using elementary computations, we get

λ‖fDΠ̂,λ
‖2k − λ‖fD̄Π,λ

‖2k = λ
(
‖fDΠ̂,λ

‖2k − ‖fD̄Π,λ
‖2k
)

= λ
(
‖fDΠ̂,λ

‖k + ‖fD̄Π,λ
‖k
) (
‖fDΠ̂,λ

‖k − ‖fD̄Π,λ
‖k
)

≤ λ
(
‖fDΠ̂,λ

‖k + ‖fD̄Π,λ
‖k
)
‖fDΠ̂,λ

− fD̄Π,λ
‖k

≤ 2λ
√
B`
λ
‖fDΠ̂,λ

− fD̄Π,λ
‖k

≤ 2
√
B`
λ

1
N

N∑
n=1

αλ(‖Π̂S(n) −ΠQn‖H),

where we used Lemma A.5.4 in the second to last step, and the bound on ‖fDΠ̂,λ
−

fD̄Π,λ
‖k from bounding I. In particular, with probability at least 1− δ/2 we get that

λ‖fDΠ̂,λ
‖2k − λ‖fD̄Π,λ

‖2k ≤ 2
√
B`
λ

1
N

N∑
n=1

αλ(Bn(δ/(2N))).

Finishing Using again a union bound, we finally get that with probability at least
1− δ we have

R`,P,λ(fDΠ̂,λ
)−RHk∗`,P,λ ≤

L`‖k‖∞
λ

1
N

N∑
n=1

αλ(Bn(δ/(2N)))︸ ︷︷ ︸
from I

+ 2L`‖k‖∞
λ

Bξ

√2 ln(2/δ)
N

+
√

1/N + 4 ln(2/δ)
3N


︸ ︷︷ ︸

from II and IV

+ 2
√
B`
λ

1
N

N∑
n=1

αλ(Bn(δ/(2N)))︸ ︷︷ ︸
from V

=

2
√
B`
λ

+ L`‖k‖∞
λ

 1
N

N∑
n=1

αλ(Bn(δ/(2N)))

+ 2L`‖k‖∞
λ

Bξ

√2 ln(2/δ)
N

+
√

1/N + 4 ln(2/δ)
3N


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The result now follows from the definition of A(2)
`,P (λ).

Proof of Corollary A.3.3. Since S is compact, it is in particular separable, so Propo-
sition A.2.4 ensures that Πk is (M1(S),B(τw))-(Hκ,B(Hκ))-measurable. Further-
more, since S is a compact metric space,M1(S) with the topology of weak conver-
gence is compact. Since κ is universal, Πk is continuous, and hence X = Πk(M1(S))
is a compact metric space. In particular, it is closed, and hence X ∈ B(Hκ), and it
is also separable. By definition, for all M ∈ N+ and S ∈ SM , Π̂M (S) = Π̂k(S) =
1
M

∑M
m=1 k(·, Sm), and hence measurable. Altogether, Assumption A.2.1 is fulfilled.

Next, for all x1, x2 ∈ X we have ‖Φk(x1) − Φk(x2)‖k ≤ αk(‖x1 − x2‖H), which
shows that Φk is continuous, so according to Lemma 4.29 in [189] also k is continuous.
Since X is separable, this shows that also Hk is separable.

Using the KME estimation bound from Proposition A.2.4 to find appropriate Bn,
all assumptions of Theorem A.3.1 are fulfilled, and we get

R`,P,λ(fDΠ̂,λ
)−RHk∗`,P,λ ≤ (2

√
λB` + L`‖k‖∞) 1

N

N∑
n=1

αλ

2

√
‖k‖2∞
Mn

+

√
2‖κ‖∞ ln(2N/δ)

Mn


+ 2L`‖k‖∞

(
B′` + L′`‖k‖∞

√
B`
λ

)(√
2 ln(2N/δ)

N
+
√

1/N + 4 ln(2N/δ)
3N

)
,

where we defined

αλ = ‖k‖∞L′`α
f,

√
B`
λ

+

B′` + L′`‖k‖∞

√
B`
λ

αk.
Finally, since ` is locally Lipschitz continuous, it is in particular continuous, and

as shown by Lemma A.5.2, it is also a P -integrable Nemitskii loss. Together with
the fact that X is a compact metric space and k is universal, Corollary 5.29 in [189]
shows that RHk∗`,P,λ = R∗`,P , and the result follows.

The strategy of the following proof follows the one for Theorem 6.25 in [189],
however, several adaptions are necessary to deal with the two-stage sampling.
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Proof of Theorem A.3.4. Let λ ∈ R>0 be arbitrary. We start with

R`,P,λ(fDΠ̂,λ
)−R`,P,λ(fP,λ) = R`,P (fDΠ̂,λ

)−R`,DΠ̂
(fDΠ̂,λ

) +R`,DΠ̂
(fDΠ̂,λ

) + λ‖fDΠ̂,λ
‖2k

−
(
R`,DΠ̂

(fP,λ) + λ‖fP,λ‖2k
)

+R`,DΠ̂
(fP,λ)−R`,P (fP,λ)

≤ 2 sup
f∈Hk

‖f‖k≤
√

B`
λ

∣∣R`,DΠ̂
(f)−R`,P (f)

∣∣ ,
where we used in the last step that R`,DΠ̂,λ

(fDΠ̂,λ
) ≤ R`,DΠ̂,λ

(fP,λ) by definition of
fDΠ̂,λ

, and we applied Lemma A.5.4 to fDΠ̂,λ
and fP,λ.

Let f ∈ Hk with ‖f‖k ≤
√

B`
λ , and choose f̃ ∈ F such that ‖f − f̃‖k ≤ ε. Observe

that |f̃(x)| ≤ |f(x)|+ |f̃(x)− f(x)| ≤ ‖k‖∞
√

B`
λ + ε = B̃f , where we used the choice

of f̃ together with (the proof of) Lemma A.5.2. We then have∣∣∣R`,DΠ̂
(f)−R`,P (f)

∣∣∣ ≤ ∣∣∣R`,DΠ̂
(f)−R`,D̄Π

(f)
∣∣∣+ ∣∣∣R`,D̄Π

(f)−R`,D̄Π
(f̃)
∣∣∣

+
∣∣∣R`,D̄Π

(f̃)−R`,P (f̃)
∣∣∣+ ∣∣∣R`,P (f̃)−R`,P (f)

∣∣∣
≤
∣∣∣R`,DΠ̂

(f)−R`,D̄Π
(f)
∣∣∣+ ∣∣∣R`,D̄Π

(f̃)−R`,P (f̃)
∣∣∣+ 2γ3,B̃f (ε),

where we used (a modified variant of) Lemma A.5.3 in the last step together with
|f(x)|, |f̃(x)| ≤ B̃f .
We now bound the first two terms. First,

∣∣R`,DΠ̂
(f)−R`,D̄Π

(f)
∣∣ ≤ 1

N

N∑
n=1
|`(Π̂S(n), yn, f(Π̂S(n)))− `(ΠQn, yn, f(ΠQn))|

≤ 1
N

N∑
n=1

γ1(‖Π̂S(n) −ΠQn‖H) + γ
3,‖k‖∞

√
B`
λ

(
|f(Π̂S(n))− f(ΠQn)|

)
≤ 1
N

N∑
n=1

(
γ1 + γ

3,‖k‖∞

√
B`
λ

◦ α
f,
√

B`
λ

)
(‖Π̂S(n) −ΠQn‖H),

where we used the triangle inequality, then the continuity property of `, and then
the continuity property of f .

Second,

∣∣∣R`,D̄(f̃)−R`,P (f̃)
∣∣∣ =

∣∣∣∣∣ 1
N

N∑
n=1

`(ΠQn, yn, f̃(ΠQn))−
∫
`(ΠQ, y, f̃(ΠQ))dP (Q, y)

∣∣∣∣∣ ,
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`(ΠQ1, y1, f̃(ΠQ1)), . . . , `(ΠQN , yN , f̃(ΠQN )) are i.i.d. random variables (since the
(Qn, yn) are i.i.d.), and for all n = 1, . . . , N we have |`(ΠQn, yn, f̃(ΠQn))| ≤ B` +
γ3,B̃f (B̃f ) = Bξ according to (the proof of) Lemma A.5.2. All of this means that we
can use Hoeffding’s inequality to bound this term.

Third, we can combine the previous two bounds. Using the union bound we have

P

[
max

n=1,...,N
‖Π̂S(n) −ΠQn‖H > Bn(δ/(N + |F|)) or max

g̃∈F

∣∣R`,D̄(g̃)−R`,P (g̃)
∣∣ > Bξ

√
2 ln((N + |F|)/δ)

N

]

≤
N∑
n=1

P
[
‖Π̂S(n) −ΠQn‖H > Bn(δ/(N + |F|)

]
+
∑
g̃∈F

P

[∣∣R`,D̄(g̃)−R`,P (g̃)
∣∣ > Bξ

√
2 ln((N + |F|)/δ)

N

]
≤ N

δ

N + |F|
+ |F|

δ

N + |F|
= δ

Together with our previous two bounds this implies that with probability at least
1− δ,∣∣∣R`,D(f)−R`,D̄(f)

∣∣∣+ ∣∣∣R`,D̄(f̃)−R`,P (f̃)
∣∣∣

≤ 1
N

N∑
n=1

γ1 + γ
3,‖k‖∞

√
B`
λ

◦ α
f,

√
B`
λ

 (‖Π̂S(n) −ΠQn‖H) +
∣∣∣R`,D̄(f̃)−R`,P (f̃)

∣∣∣
≤ 1
N

N∑
n=1

γ1 + γ
3,‖k‖∞

√
B`
λ

◦ α
f,

√
B`
λ

Bn(δ/(N + |F|)) +Bξ

√
2 ln((N + |F|)/δ)

N
.

This also implies that with probability at least 1− δ,

|R`,D(f)−R`,P (f)| ≤
∣∣∣R`,D(f)−R`,D̄(f)

∣∣∣+ ∣∣∣R`,D̄(f̃)−R`,P (f̃)
∣∣∣+ 2|`|1,B̃f ε

≤ 1
N

N∑
n=1

γ1 + γ
3,‖k‖∞

√
B`
λ

◦ α
f,

√
B`
λ

 (Bn(δ/(N + |F|))

+Bξ

√
2 ln((N + |F|)/δ)

N
+ 2|`|1,B̃f ε,

340



A.7. Additional Material on Generalization via Algorithmic Stability

and since f ∈ Hk with ‖f‖k ≤
√

B`
λ was arbitrary, this in turn implies that

sup
f∈Hk

‖f‖k≤
√

B`
λ

|R`,D(f)−R`,P (f)| ≤ 1
N

N∑
n=1

(
γ1 + γ

3,‖k‖∞

√
B`
λ

◦ α
f,
√

B`
λ

)
(Bn(δ/(N + |F|))

+Bξ

√
2 ln((N + |F|)/δ)

N
+ 2γ3,B̃f (ε),

with probability at least 1− δ, and the result follows.

A.7. Additional Material on Generalization via Algorithmic
Stability

A.7.1. Sliced Wasserstein

Corollary A.7.1. Consider the situation of Theorem A.4.2. Additionally, assume
S = Rd, let (H,Π) be the sliced 2-Wasserstein embedding, and assume that the
support of πS]P 8 is contained in the set of log-concave distributions, and for (Q, y) ∼
P , denote by ΣQ the (a.s.) defined covariance matrix of Q. We then have for all
δ ∈ (0, 1), with probability at least 1− δ, that

R`,P (f`,DΠ̂
λ) ≤ R`,DΠ̂

(f`,DΠ̂
λ) + αλ

CdE
√‖ΣQ‖ ln(M)

M


+
(2|`|21,Bf ‖k‖

2
∞

λ
+B` + |`|1,BfBf

)√
ln(1/δ)

2N +
|`|21,Bf ‖k‖

2
∞

λN
,

where we defined Bf = ‖k‖∞
√

B`
λ , and Cd ∈ R>0 is a universal constant that

depends only on d.

Proof. Let Q ∈M1(S) and M ∈ N+. According to Theorem 1 in [147], we have

ES∼Q⊗M [W2(Q, µ̂[S])] ≤ Cd

√
‖ΣQ‖ ln(M)

M
,

8πS is the usual coordinate projection onto S.
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where Cd ∈ R>0 is a universal constant that depends only on d. This implies that

αλ
(
E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

])
= αλ

(
E(Q,S,y)∼P̄ [W2(Q, µ̂[S])]

)
≤ αλ

E
Cd

√
‖ΣQ‖ ln(M)

M

 ,
with αλ defined in Theorem A.4.2. This result now establishes the claim.

A.7.2. Proof of the general result

Our proof follows the one of Theorem 14.2 in [141], adapted to the present distribu-
tional setting.

Proof of Theorem A.4.1. Define F : (X×Y)N → R by F (D) = R`,P (LD)−R`,D(LD).
Let N ∈ N+, D ∈ (X × Y)N , 1 ≤ i ≤ N and (x̃, ỹ) ∈ X × Y be arbitrary. Define
D̃ ∈ (X × Y)N by

D̃n =

Dn if n 6= i

(x̃, ỹ) if n = i

and for all 1 ≤ n ≤ N , define also (x̃n, ỹn) = Dn. We then have

|F (D)− F (D̃)| =
∣∣∣R`,P (LD)−R`,D(LD)−

(
R`,P (LD̃)−R`,D̃(LD̃)

)∣∣∣
≤ |R`,P (LD)−R`,P (LD̃)|+

∣∣∣∣∣ 1
N

N∑
n=1

`(xn, yn,LD(xn))− 1
N

N∑
n=1

`(x̃n, ỹn,LD̃(x̃n)
∣∣∣∣∣

≤
∫
|`(ΠQ, y,LD(ΠQ))− `(ΠQ, y,LD̃(ΠQ))|dP (Q, y)

+ 1
N

∣∣∣∣∣∣∣`(xi, yi,LD(xi))− `(x̃i, ỹi,LD̃(x̃i)) +
N∑
n=1
n 6=i

`(xn, yn,LD(xn))− `(x̃n, ỹn,LD̃(x̃n))

∣∣∣∣∣∣∣
≤ βN + 1

N
|`(xi, yi,LD(xi))− `(x̃, ỹ,LD̃(x̃))|+ 1

N

N∑
n=1
n 6=i

|`(xn, yn,LD(xn))− `(xn, yn,LD̃(xn))|

≤ βN + B

N
+ N − 1

N
βN =

(
1 + N − 1

N

)
βN + B

N
= C.

McDiarmid’s bounded difference inequality then shows that for all δ ∈ (0, 1), we
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have with probability at least 1− δ that

R`,P (LD̂Π̂
)−R`,D̂Π̂

(LD̂Π̂
) ≤ E

[
R`,P (LD̂Π̂

)−R`,D̂Π̂
(LD̂Π̂

)
]

+ C

√
N ln(1/δ)

2

We now bound upper bound the expectation in the preceding display. We have

E
[
R`,P (LD̂Π̂

)−R`,D̂Π̂
(LD̂Π̂

)
]

= E
[
R`,P (LD̂Π̂

)− E(Q,S,y)∼P̄

[
`(Π̂S, y,LD̂Π̂

(Π̂S))
]]

︸ ︷︷ ︸
=I

+ E
[
E(Q,S,y)∼P̄

[
`(Π̂S, y,LD̂Π̂

(Π̂S))
]
−R`,D̂Π̂

(LD̂Π̂
)
]

︸ ︷︷ ︸
=II

and bound the two terms separately. Observe that

R`,P (LD̂Π̂
) = E(Q,y)∼P

[
`(ΠQ, y,LD̂Π̂

(ΠQ))
]

= E(Q,S,y)∼P̄

[
`(ΠQ, y,LD̂Π̂

(ΠQ))
]
,

so we have

I = E
[
E(Q,S,y)∼P̄

[
`(ΠQ, y,LD̂Π̂

(ΠQ))− `(Π̂S, y,LD̂Π̂
(Π̂S))

]]
≤ E

[
E(Q,S,y)∼P̄

[
|`(ΠQ, y,LD̂Π̂

(ΠQ))− `(Π̂S, y,LD̂Π̂
(Π̂S))|

]]
≤ E

[
E(Q,S,y)∼P̄

[
α(‖ΠQ− Π̂S‖H)

]]
≤ α

(
E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

])
,

where we used Jensen’s inequality together with the concavity of α in the last step.

We turn to term II. Let (S(N+1), yN+1) ∼ P̃ such that (S(1), y1), . . . , (S(N+1), yN+1)
are i.i.d., and define D̃ = ((S(2), y2), . . . , (S(N+1), yN+1). Note that D and D̃ have
the same distribution. We then have

ED∼P̃⊗N
[
R`,DΠ̂

(LDΠ̂
)
]

= ED∼P̃⊗N

[
1
N

N∑
n=1

`(Π̂S(n), yn,LDΠ̂
(Π̂S(n)))

]

= 1
N

N∑
n=1

ED∼P̃⊗N
[
`(Π̂S(n), yn,LDΠ̂

(Π̂S(n)))
]

= ED∼P̃⊗N
[
`(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))
]

= E
(S(n),yn)
n=1,...,N

[
`(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))
]
,
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which we can upper bound by

E
(S(n),yn)
n=1,...,N

[
`(Π̂S(1), y1,LD̃Π̂

(Π̂S(1)))
]

+ E
(S(n),yn)
n=1,...,N

[
|`(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))− `(Π̂S(1), y1,LD̃Π̂
(Π̂S(1)))|

]
≤ E

(S(n),yn)
n=1,...,N

[
`(Π̂S(1), y1,LD̃Π̂

(Π̂S(1)))
]

+ βN

= E
D,(S,y)

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]

+ βN .

Furthermore, observe that

E(Q,S,y)∼P̄

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]

= E(S,y)∼P̃

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]
.

We now get

II = ED∼P̃⊗N

[
E(Q,S,y)∼P̄

[
`(Π̂S, y,LD̂Π̂

(Π̂S))
]
− 1
N

N∑
n=1

`(Π̂S(n), yn,LD̂Π̂
(Π̂S(n)))

]
= ED∼P̃⊗N

[
E(S,y)∼P̃

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]]
− ED∼P̃⊗N

[
R`,DΠ̂

(LDΠ̂
)
]

≤ ED∼P̃⊗N
[
E(S,y)∼P̃

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]]
− E
D,(S,y)

[
`(Π̂S, y,LDΠ̂

(Π̂S))
]

+ βN

= ED,(S,y)
[
`(Π̂S, y,LDΠ̂

(Π̂S))− `(Π̂S, y,LDΠ̂
(Π̂S))

]
+ βN

= βN .

Altogether we have

E
[
R`,P (LD̂Π̂

)−R`,D̂Π̂
(LD̂Π̂

)
]
≤ α

(
E(Q,S,y)∼P̄

[
‖ΠQ− Π̂S‖H

])
+ βN ,

and the result follows.

A.8. Conclusion

We continued the investigation of kernel-based statistical learning with distributional
inputs from the perspective of modern statistical learning theory. To the best of our
knowledge, we provided the first general oracle inequalities in this setting, comple-
menting the existing excess risk bounds for distributional regression using kernel
ridge regression. In particular, our analysis covers rather general loss functions en-
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coding a multitude of learning scenarios. Additionally, we provided generalization
bounds based on algorithmic stability, a result and setting which has not been an-
alyzed at all in the distributional learning literature. We formulated all of this in a
very general setup based on Hilbertian embeddings of probability distributions. On
the one hand, in this manner the kernel construction approach from [137] is appli-
cable, and on the other hand, our main results apply directly to any existing and
future embedding approach. For example, if appropriate estimation tools become
available, our results will be directly applicable to the recently introduced kernel
cumulant embeddings [37]. Finally, we provided specializations of our results to the
important cases of KMEs as well as the recent sliced 2-Wasserstein distances.
Many relevant questions are still open, and our results form the starting point

for a multitude of future investigations. First, while oracle inequalities can be used
to derive consistency results, in order to guarantee learning rates, one needs suit-
able assumptions to derive bounds on the approximation error function. Finding
such conditions in the present setting is an important open problem. Second, while
the setting of our main results is rather general, we need various boundedness as-
sumptions on the loss functions. Removing these assumptions, or replacing them by
clippability (cf. Chapters 2 and 9 in [189]), is another interesting problem. Third,
both of our oracle inequalities are based on classic arguments, and it is known, cf.
Chapter 7 in [189], that using more advanced tools from empirical process theory,
one can derive sharper oracle inequalities, which eventually can lead to better learn-
ing rates. We expect that this applies also in the distributional setting, and that the
resulting analysis approach for kernel ridge regression from [190] then provides an
alternative to the integral operator technique from [48], which so far was the main
focus in the distributional regression literature.

A.9. Comments

This chapter is taken mostly verbatim from [CF7]. This work arose from discussions
of the author with P.-F. Massiani in the context of a biomedical applications. Most
of the theoretical results have been developed by the author, with help from P.-F.
Massiani.
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Acronyms

BO Bayesian Optimization

GP Gaussian Process

HSKM Hard Shape Constrained Kernel Machine

i.i.d. Independent and identically distributed
IPS Interacting Particle System
IQC Integral Quadratic Constraint

KRR Kernel Ridge Regression

LFR Linear Fractional Representation
LMI Linear Matrix Inequality
LS Least-Squares

MAS Multiagent System
MPC Model Predictive Control

RKHS Reproducing Kernel Hilbert Space
RL Reinforcement learning

SVM Support Vector Machine
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List of Mathematical Symbols

X ∼ P X is distributed according to P .

E[X] Expectation of random variable X

GPX (m, k) Gaussian process on X with mean function m, co-
variance function k

I Identity matrix. If necessary, IN makes dimension
N explicit.

id Identity map. If necessary, idX makes the under-
lying set X explicit.

YX Set of all maps f : X → Y

N (µ,Σ) Normal distribution with mean µ, covariance ma-
trix Σ

A � B Positive semidefinite ordering for self-adjoint ma-
trices or linear operators, i.e., B − A is positive
semidefinite

R Real numbers
R≥0 Nonnegative real numbers
R>0 Positive real numbers
(Hk, 〈·, ·〉k) RKHS with reproducing kernel k
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List of Mathematical Symbols

Var[X] Variance of random variable X
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