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 a b s t r a c t

Droplet deformation in liquid-liquid dense-packed zones (DPZs) significantly impacts the dispersed phase volume 
fraction and droplet coalescence, which is crucial to phase separation processes in various industrial equipment. 
This study introduces a modeling approach to describe droplet deformation into polyhedral shapes in polydisperse 
DPZs. Droplet deformation, characterized by the contact radius 𝑟f, the curvature radius 𝑟a, and the volume ratio 
𝜀𝑖 is modeled using equations based on pressure, geometric, and volumetric relationships for regular polyhedra as 
well as Bond number correlations. Moreover, generalized Bond number correlations are proposed to extend the 
approach to irregular convex polyhedral shapes. Simulations across technical Bond number ranges demonstrate 
that 𝑟f and 𝜀𝑖 increases with the Bond number, while 𝑟a decreases, approaching zero at high Bond numbers. 
The Bond number correlations strongly agree with equation-based solutions, with mean absolute percentage 
errors below 3.0 %. Practical implications include enhanced predictions for DPZ behavior and integration into a 
common coalescence model.

1.  Introduction

The deformation of droplets in liquid-liquid dense-packed zones 
(DPZ) affects the volume fraction of the dispersed phase within the DPZ 
(Henschke, 1995; Lacasse et al., 1996; Abe and Inasawa, 2022; Sibirtsev 
et al., 2025) as well as the droplet coalescence (Henschke, 1995, 2002; 
Chan et al., 2011; Bozzano and Dente, 2010). Both the dispersed phase 
volume fraction and droplet coalescence significantly impact the forma-
tion and dissolution of the DPZ, thereby influencing the phase separation 
behavior of liquid-liquid dispersions (Henschke, 1995, 2002; Thaker and 
Buwa, 2019; Steinhoff et al., 2018).

Since DPZs are encountered in various types of equipment used for 
liquid-liquid phase separation processes - such as batch-settling cells 
(Henschke, 1995; Sibirtsev et al., 2024; Leleu and Pfennig, 2019; Sibirt-
sev et al., 2019), stirred and sieve tray columns (Weber and Jupke, 2020; 
Sovilj et al., 2019; Graham et al., 1979; Mohanty and Vogelpohl, 1997), 
vertical and horizontal gravity settlers (Rommel et al., 1992; Frising 
et al., 2006; Schlieper et al., 2004; Ye et al., 2023b; Steinhoff et al., 
2021), batch stirred tanks (Ye et al., 2023a), and centrifugal extractors 
(Eggert et al., 2019) - an accurate, model-based description of droplet 
deformation, and consequently the DPZ, is essential for the proper de-
sign of such equipment.

Henschke (1995) developed a model to describe droplet deformation 
within the DPZ, which has been successfully applied to batch-settling 
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cells (Henschke, 2002; Leleu and Pfennig, 2019; Eberz et al., 2025), 
horizontal gravity settlers (Henschke, 1995; Schlieper et al., 2004), and 
batch stirred tanks (Ye et al., 2023a). However, this model assumes 
that the DPZ is formed by a monodisperse droplet size distribution 
(Henschke, 1995). This assumption limits the level of detail in the de-
formation modeling, potentially leading to an underestimation of the 
DPZ height (Henschke, 1995), and thus, an increased risk of apparatus
flooding.

In technical applications, the DPZ is typically formed by a polydis-
perse droplet size distribution (Thaker and Buwa, 2019; Thaker et al., 
2018; Raynel et al., 2023). Therefore, improving the accuracy of DPZ 
height predictions requires increasing the level of detail in deformation 
modeling by accounting for polydispersity.

This study introduces a modeling approach for droplet deformation 
into polyhedral shapes, accounting for the polydispersity of the DPZ. 
The approach is based on pressure, geometrical, and volumetric rela-
tionships generally applicable to regular polyhedral shapes: tetrahedron, 
cube, octahedron, dodecahedron, and icosahedron. These polyhedral 
shapes are characteristic for random loose packings of polydisperse, de-
formed droplets (Sibirtsev et al., 2025). Furthermore, generalized semi-
empirical correlations based on the Bond number (𝐵𝑜) are proposed to 
describe the deformation of droplets into both regular and irregular con-
vex polyhedral shapes.
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Nomenclature

𝑎 Edge length of the polyhedron
𝑎0 Initial guess for the edge length
𝑎max Maximum edge length
𝑎min Minimum edge length
𝐴𝑗 Value of the iterative solution
𝐴a Area of the circular segment
𝐴c Channel area
𝐴f Contact area between droplets
𝐴p Polyhedral face area
𝐴s Intersection area
𝐴t Area of an isosceles triangle
𝐵𝑜 Bond number
𝑏 Polyhedron edge
𝐶A Polyhedral shape constant
𝐶cor Correction factor
𝐶rc Polyhedral shape constant
𝐶rm Polyhedral shape constant
𝐶rs Polyhedral shape constant
𝐶V Polyhedral shape constant
𝐶𝑗 Fitting parameter
𝐸L,𝑗 Results of the left hand side equation
𝐸R,𝑗 Results of the right hand side equation
ℎeq Equivalent DPZ height
ℎ𝑖 Height of the DPZ acting on the droplet
MAPE𝑗 Mean absolute percentage error
𝑁c Number of polyhedron corners
𝑁E Number of equations
𝑁e Number of polyhedron edges
𝑁fc Number of polyhedron’s face corners
𝑁p Number of fitted points
𝑁r Number of calculation results
𝑝𝑖 Pressure acting on the droplet 𝑖
𝑝d Excess pressure inside the droplet
𝑝eq Equivalent pressure
𝑝f Pressure acting on the contact area between droplets
𝑝̄f Pressure at all deformation stages
𝑝f,max Maximum pressure acting on the contact area between 

droplets

𝑝f,min Minimum pressure acting on the contact area between 
droplets

𝑝h Hydrostatic pressure
𝑝in Pressure inside the droplet
𝑝out Pressure outside the droplet
𝑝out,c Pressure outside the droplet in the center of the drainage 

film
𝑝out,r Pressure outside the droplet behind the rim
𝑝s Excess pressure within the drainage film
𝑃𝑗 Predicted values by the Bond number correlation
𝑃 Intersecting point
𝑝 Pressure
𝑟a Radius of droplet’s curvature regions
𝑟a,0 Initial guess for the curvature radius
𝑟a,max Maximum curvature radius
𝑟a,min Minimum curvature radius
𝑟c Incircle radius of the polygon representing the polyhe-

dron’s face
𝑟eq Equivalent droplet radius
𝑟f Radius of the contact areas between droplets
𝑟f,0 Initial guess for the contact area radius
𝑟f,max Maximum contact area radius
𝑟f,min Minimum contact area radius
𝑟o Incircle radius of contact area’s polygon
𝑟s Polyhedron’s insphere radius
𝑉c Channel volume
𝑉p Polyhedron volume
𝑉 Droplet’s volume
𝑥 Distance between point 𝑃  and the polygon border
𝑦 Polyhedron edge length
𝛼 Half the angle between two polyhedron faces
𝜀̄p Average volume fraction of the dispersed phase in the 

DPZ
𝜀𝑖,max Maximum volume fraction
𝜀𝑖,min Minimum volume fraction
𝜀𝑖 Volume fraction
𝛿 Triangle angle
Δ𝜌 Density difference between the two liquid phases
𝜎 Interfacial tension
Ψ Substitution

2.  Fundamentals

The degree of droplet deformation within a DPZ is governed by the 
interplay between the buoyancy force exerted by the DPZ and the defor-
mation resistance of the droplets, which is determined by interfacial ten-
sion (Henschke, 1995). Deformation leads to the formation of plane con-
tact areas between droplets and regions of curvature, ultimately shaping 
the droplets into polyhedral structures (Lacasse et al., 1996; Abe and Ina-
sawa, 2022; Thaker and Buwa, 2019; Höhler and Weaire, 2019). While 
the exact deformation shape can be predicted using Morse-Witten the-
ory (Morse and Witten, 1993), this method is computationally intensive 
(Höhler and Weaire, 2019; Dunne et al., 2019).

However, knowledge of the exact deformation shape is not required 
to determine the volume fraction of the dispersed phase or droplet co-
alescence within the DPZ, which is critical for the formation and dis-
solution of the DPZ. To address this, Henschke (1995) proposed a less 
computationally intensive model that assumes a monodisperse droplet 
size distribution forms the DPZ and that the droplets deform into a do-
decahedron shape. The model is based on an equation system involving 
pressure, geometrical, and volumetric relationships and is solved iter-
atively. In Henschke’s model, droplet deformation is characterized by 

two radii: 𝑟f, which represents the radius of the contact areas between 
droplets, and 𝑟a, which describes the radius of droplet’s curvature re-
gions. Moreover, the edge length 𝑎 of the polyhedron is a required pa-
rameter to determine 𝑟f and 𝑟a.

In addition to the equation system, Henschke introduced semi-
empirical 𝐵𝑜 number correlations. During deformation, the gravita-
tional and interfacial tension forces act on the droplet’s interface. While 
the gravitational force favors deformation, the interfacial tension force 
counteracts deformation. The resulting equilibrium of forces determines 
the degree of deformation. The 𝐵𝑜 number represents the ratio of grav-
itational force to interfacial tension force and, thus, is suitable for a 
model-based description of droplet deformation. The 𝐵𝑜 number corre-
lations are fitted to the results of the iterative solution of the equation 
system and, while less computationally intensive, effectively captures 
the dependence of 𝑟f, 𝑟a on the relevant influencing parameters (Hen-
schke, 1995). Furthermore, Henschke proposed a model for calculating 
droplet coalescence within the DPZ based on 𝑟f and 𝑟a (Henschke, 1995, 
2002).

However, the derivation of the deformation model (Henschke, 1995) 
is partially challenging to interpret and limited to the dodecahedron 
shape. Moreover, the source of the derivation is written in German, 
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Fig. 1. Relevant parameters during the droplet deformation of two equal-sized droplets into a cubic shape.

which makes it less internationally accessible. A later publication (Hen-
schke, 2002), written in English, aimed to present the model but in-
troduced equations that conflict with the original source (Henschke, 
1995) and are mathematically inappropriate for describing certain re-
lationships. For example, the equation proposed for the asymptoti-
cally decreasing curve of 𝑟a (Henschke, 2002) fails to accurately reflect 
the mathematical behavior described in the original work (Henschke, 
1995).

In technical applications, the DPZ is typically formed by a polydis-
perse droplet size distribution (Thaker and Buwa, 2019; Thaker et al., 
2018; Raynel et al., 2023). This polydispersity leads to the formation of 
various polyhedral shapes during droplet deformation. The deformation 
shape in a polydisperse DPZ is influenced by the droplet’s contact num-
ber, representing the number of neighboring droplets in contact with a 
given droplet (Sibirtsev et al., 2025; Liu et al., 2019).

Sibirtsev et al. conducted a model-based study on droplet contact 
numbers in liquid-liquid DPZs formed by log-normal and Gaussian 
droplet size distributions (Sibirtsev et al., 2025). Their findings indicate 
that the contact number of droplets can range from 4 to 65, depending 
on the droplet size distribution’s shape and the droplet class’s diameter. 
Additionally, their study identified five regular polyhedral shapes com-
monly occurring in DPZs: tetrahedron, cube, octahedron, dodecahedron, 
and icosahedron.

3.  Modeling

This study aims to develop a modeling approach for droplet de-
formation into polyhedral shapes that accounts for DPZ polydispersity 
and characterizes deformation using 𝑟f, 𝑟a, and the volume ratio 𝜀𝑖 be-
tween the droplet’s volume and the volume of its corresponding poly-
hedral shape. This approach enables the straightforward integration of 
the new deformation model into the droplet coalescence model pro-
posed by Henschke (1995, 2002). The modeling approach is derived 
in a generalized form applicable to all regular polyhedral shapes, build-
ing upon the foundational principles of Henschke’s deformation model
(Henschke, 1995).

Furthermore, generalized semi-empirical correlations based on the 
𝐵𝑜 number are proposed to describe droplet deformation into reg-
ular and irregular convex polyhedral shapes with an uniform edge 
length 𝑎. It is assumed that the deformation behavior of droplets 
into regular and irregular convex polyhedral shapes with an uniform 
edge length 𝑎 is comparable. Consequently, the insights gained from 
modeling droplet deformation into regular polyhedral shapes can be 
applied to the deformation of droplets into these irregular convex
shapes.

In addition, it is assumed that the density difference Δ𝜌 between the 
two liquid phases, the interfacial tension 𝜎, the average volume fraction 
𝜀̄p of the dispersed phase in the DPZ and the height ℎ of the DPZ acting 
on the droplet are known material system and operating parameters, or 
are obtained from established models (Henschke, 1995, 2002; Leleu and 
Pfennig, 2019).

The typical geometric relationships for polyhedra, polygons, and 
spheres used in this study are documented in Bronshtein (2007). The de-
duced geometric and volumetric relationships are generalized for regu-
lar polyhedral shapes by incorporating polyhedral shape-dependent con-
stants 𝐶𝑝, which are listed in the supporting information (SI) Tab. 1 and 
include 𝐶A, 𝐶rc, 𝐶rm, 𝐶V, and 𝐶rs.

According to the droplet deformation model proposed by Henschke 
(1995, 2002), the degree of deformation of a droplet 𝑖 is characterized 
by the radii 𝑟f and 𝑟a as well as the edge length 𝑎. Since 𝑟f, 𝑟a, and 𝑎
are unknown, a system of three equations is required to establish the 
connection between these parameters and the deformation conditions. 
The pressure relationship, geometric relationship, and volumetric rela-
tionship define these equations.

3.1.  Pressure relationship

Fig. 1 illustrates the relevant parameters involved in droplet defor-
mation, exemplified for two equal-sized droplets deformed into a cubic 
shape. Additionally, the contact area 𝐴f between the droplets is high-
lighted in yellow, while the curvature regions are highlighted in violet.

Each droplet 𝑖 within the DPZ experiences a pressure 𝑝, generated 
by the buoyancy force exerted by the DPZ droplets affecting droplet 𝑖. 
This pressure drives the deformation of the droplets and is defined by 
Eq. (1), where 𝑔 is the gravitational constant. 
𝑝 = Δ𝜌𝑔𝜀̄pℎ (1)

Since the droplets deform from a spherical shape into a polyhedral 
shape, 𝑝 acts on each polyhedral face area 𝐴p. The area 𝐴p is dependent 
on the specific polyhedral shape and is generally determine by Eq. (2). 
𝐴p = 𝐶A𝑎

2 (2)

According to Henschke, the contact area 𝐴f does not form a perfect 
circle but rather a polygonal shape corresponding to the polyhedron’s 
face, with rounded corners (Henschke, 1995). However, Henschke’s co-
alescence model employs the radius 𝑟f, which is derived from 𝐴f using 
Eq. (3). Here, 𝑟f represents the radius of a circle with an area equal to 
𝐴f, approximating the polygon. 
𝐴f = 𝜋𝑟2f (3)
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The pressure 𝑝f acting on the contact area 𝐴f is related to the pressure 
𝑝 and the area 𝐴p according to Eq. (4) (Henschke, 1995). 
𝑝f𝐴f = 𝑝𝐴p (4)

The pressure 𝑝f = 𝑝in − 𝑝out arises from the pressure difference be-
tween the pressure inside the droplet 𝑝in = 𝑝h + 𝑝 + 𝑝d and the pressure 
outside the droplet 𝑝out = 𝑝h + 𝑝 + 𝑝s. Here, 𝑝h is the hydrostatic pres-
sure, 𝑝d is the excess pressure inside the droplet relative to its bulk 
phase, as described by the Young-Laplace equation (de Gennes et al., 
2004), and 𝑝s is the excess pressure within the drainage film between 
the droplets, resulting from the droplets being pushed together.

The pressure difference between 𝑝in and 𝑝out drives the formation of 
curvature regions with the radius 𝑟a. Thus, 𝑟a is related to this pressure 
difference by the Young-Laplace equation, as shown in Eq. (5) (Hen-
schke, 1995). 

𝑝f = 𝑝in − 𝑝out =
2𝜎
𝑟a

(5)

Moreover, the pressure outside the droplet, 𝑝out, depends on the lo-
cation considered. Behind the rim of the droplet, 𝑝s = 0, and 𝑝out reaches 
its minimum value, 𝑝out = 𝑝out,r, which is equal to 𝑝out,r = 𝑝h + 𝑝. In the 
center of the film, 𝑝out reaches its maximum value, 𝑝out = 𝑝out,c. The in-
crease in pressure from the rim to the center is approximated according 
to Eq. (6) (Chen et al., 1984). 
𝑝out,c = 𝑝out,r +

𝜎
𝑟a

= 𝑝h + 𝑝 + 𝜎
𝑟a

(6)

Further, Eq. (5) is considered at two boundary deformation stages. 
When the DPZ height affecting the droplet is approaching zero, no de-
formation occurs (𝑝 → 0, 𝑝s → 0) and 𝑝out becomes independent of the 
considered location reaching its minimum value, which is equal to 𝑝h
in this case (Abid and Chesters, 1994). At this deformation stage, the 
radius of the droplet’s curvature regions approaches the droplet’s radius 
with 𝑟a → 𝑟 (Henschke, 1995), and Eq. (5) results in Eq. (7). 

𝑝f,min = 𝑝d = 2𝜎
𝑟a

(7)

When 𝑝 → ∞, maximum deformation is reaching and 𝑝out approaches 
its maximum value of 𝑝out → 𝑝out,c according to Eq. (6). At this defor-
mation stage, the droplet’s volume becomes almost equivalent to the 
polyhedron volume with 𝑟a → 0 (Henschke, 1995), and Eq. (5) results 
in Eq. (8). 
𝑝f,max = 𝑝d −

𝜎
𝑟a

= 𝜎
𝑟a

(8)

To describe the pressure 𝑝f at all deformation stages from 𝑝 → 0 to 
𝑝 → ∞, Henschke proposed Eq. (9). 

𝑝̄f =
2𝜎

𝑟a
(

2 − 𝑟a
𝑟

) (9)

Combining the introduced equations, the pressure relationship is rep-
resented by Eq. (10). Since Δ𝜌, 𝜀̄p, and ℎ are assumed to be known 
parameters, 𝑝 is a known parameter (Eq. (1)). The resulting pressure 
relationship is similar to the one proposed by Henschke (1995) but is 
derived from the participating pressures more precisely in this work. 

𝜋𝑟2f
2𝜎

𝑟a
(

2 − 𝑟a
𝑟

) = 𝐶A𝑎
2𝑝 (10)

3.2.  Geometric relationship

Although 𝑟f, 𝑟a, and 𝑎 are dependent on the specific polyhedral shape, 
a general geometric relationship connects them through the intersection 
area 𝐴s and the polyhedron face area 𝐴p. Fig. 2 illustrates this geomet-
ric relationship, exemplified by the tetrahedron shape, and is used to 
derive the general relationship. In Fig. 2a, the intersection area 𝐴s (in 
blue) is perpendicular to the polyhedron edge 𝑏 and intersects the point 
𝑃  located at the center of 𝑏. Thus, 𝐴s passes through the center of the 

polygon corresponding to the contact areas 𝐴f (in yellow) located at 
the face areas 𝐴p. The shapes of 𝐴s and 𝐴p depend on the polyhedron’s 
shape. However, the location of 𝐴s is defined by the polyhedron edge 𝑏
and point 𝑃  shape-independent. In Fig. 2b and c, the areas 𝐴p and 𝐴s are 
illustrated, respectively. Additionally, all relevant polyhedral shape pa-
rameters involved in droplet deformation and the shape of the deformed 
droplet (in green) are shown.

The area 𝐴f is approximated by a polygon with angular corners 
(Fig. 2b) according to Eq. (11), where 𝑦 is the polygon edge length. 

𝐴f = 𝐶A𝑦
2 (11)

The edge length 𝑦 is related to the incircle radius 𝑟o of this polygon 
according to Eq. (12). 
𝑦 =

𝑟o
𝐶rc

(12)

The relationship in Eqs. (11) and (12) matches the boundary condi-
tion at 𝑝 → ∞, since at this condition 𝑟o → 𝑟c, 𝑦 → 𝑎, and thus, 𝐴f → 𝐴p, 
with 𝑟c as the incircle radius of the polygon representing the polyhe-
dron’s face 𝐴p. Moreover, the boundary condition at 𝑝 → 0 is matched, 
since at this condition 𝑟o → 0, 𝑦 → 0, and thus, 𝐴f → 0.

Furthermore, the radius 𝑟o and the parameters 𝑟a and 𝑎 are geomet-
rically connected through the incircle radius 𝑟c. The radius 𝑟c is deter-
mined according to Eq. (13). 
𝑟c = 𝐶rc𝑎 (13)

In addition, 𝑟c is determined by the degree of deformation and thus 
connected to the radius 𝑟o according to Eq. (14), where 𝑥 is the distance 
between point 𝑃  and the polygon border of the contact area 𝐴f. 
𝑟c = 𝑟o + 𝑥 (14)

The distance 𝑥 is determined according to Eq. (15), where 𝛼 is half 
the angle between two polyhedron faces. 
𝑥 =

𝑟a
tan (𝛼)

(15)

According to Eq. (16), the angle 𝛼 is expressed by the radius 𝑟c
(Eq. (13)) and the polyhedron’s midsphere radius 𝑟m = 𝐶rm𝑎. 

𝛼 = arccos
(

𝑟c
𝑟m

)

= arccos
(

𝐶rc
𝐶rm

)

(16)

Combining the introduced equations the general geometric relation-
ship is represented by Eq. (17). Compared to the geometric relationship 
proposed by Henschke (1995), the presented relationship is explicit and 
requires no correction factors. 
(

𝜋𝐶2
rc

𝐶A

)1∕2

𝑟f +
𝑟a

tan
(

arccos
(

𝐶rc
𝐶rm

)) = 𝐶rc𝑎 (17)

3.3.  Volumetric relationship

Although the volume of the deformed droplet depends on the poly-
hedral shape, it is described by a general volumetric relationship. Fig. 2 
illustrates this volumetric relationship, exemplified by the tetrahedron 
shape, and is used to deduce the general relationship. As proposed by 
Henschke (1995), the volume of the deformed droplet is approximated 
by subtracting the channel volume 𝑉c (in orange) of the curvature region 
from the polyhedron volume 𝑉p. Moreover, due to the conservation of 
mass, the resulting volume of the deformed droplet is equal to the vol-
ume 𝑉  of the undeformed droplet, as given by Eq. (18), where 𝑁e is the 
number of polyhedron edges according to SI Tab. 1. 
𝑉 = 𝑉p −𝑁e𝑉c (18)

The volume of the undeformed droplet is given by 𝑉 = 𝜋
6 𝑑

3, with 
𝑑 = 2𝑟 as the equivalent droplet diameter. The polyhedron volume is 
determined according to Eq. (19). 
𝑉p = 𝐶V𝑎

3 (19)

Chemical Engineering Science 311 (2025) 121575 

4 



Sibirtsev et al.

Fig. 2. Geometric relationship between the contact area radius 𝑟f, the curvature radius 𝑟a and the polyhedron edge length 𝑎, exemplified by the tetrahedron shape.

The channel volume is approximated according to Eq. (20), where 
𝐴c is the channel area and 𝐶cor is a correction factor. 
𝑉c = 𝐶cor𝑎𝐴c (20)

The channel area 𝐴c = 𝐴t − 𝐴a (orange area in Fig. 2c) is the differ-
ence between the area 𝐴t of an isosceles triangle with side length 𝑥 and 
angle 2𝛼, and the area 𝐴a of the circular segment (hashed green area 
in Fig. 2c). The areas 𝐴t and 𝐴a are determined by Eqs. (21) and (22), 
respectively, where 𝛿 is located in the same right-angled triangle as 𝛼
and is determined by 𝛿 = 𝜋∕2 − 𝛼. In Eq. (22), 𝛿 is inserted in radiant. 

𝐴t =
𝑥2 sin(2𝛼)

2
=
(

𝑟a
tan (𝛼)

)2 sin(2𝛼)
2

(21)

𝐴a =
𝑟2a(2𝛿 − sin(2𝛿))

2
(22)

The correction factor 𝐶cor is required because the channels overlap 
(red area in Fig. 2b), leading to an overestimation of the channel vol-
ume by Eq. (20) in the absence of this factor. To determine the cor-
rection factor, Eqs. (18)–(21) are considered at the boundary condi-
tion 𝑝 → 0. At this deformation state, the radius 𝑟 of the undeformed 
droplet approaches the radius 𝑟s = 𝐶rs𝑎 of the polyhedron’s insphere, 
and 𝑟a → 𝑟 = 𝑟s. Therefore, the correction factor 𝐶cor is derived accord-
ing to Eq. (23) with 𝛼 given by Eq. (16). 

𝐶cor =
2
(

𝐶V − 4𝜋
3 𝐶3

rs

)

𝑁e𝐶2
rs

(

sin(2𝛼)
tan2(𝛼)

− (𝜋 − 2𝛼 − sin(2𝛼))
) (23)

Combining the introduced equations the general volumetric relation-
ship is represented by Eq. (24). The resulting volumetric relationship is 
similar to the relationship proposed by Henschke (1995). However, the 
channel area is derived more precisely and the required relationships 
are derived in a general form in this work. 
𝜋
6
𝑑3 = 𝐶V𝑎

3 −
𝐶cor𝑁e

2

(

sin(2𝛼)
tan2(𝛼)

− (𝜋 − 2𝛼 − sin(2𝛼)
)

𝑎𝑟2a (24)

3.4.  Boundary conditions and initial values

Before solving the equation system, boundary conditions for the pa-
rameters 𝑟f, 𝑟a, and 𝑎 are defined. If a boundary condition equals zero, 
10−9 is used instead of 0 to avoid numerical issues.

When the pressure 𝑝 → 0, the radii 𝑟f and 𝑟a approach their boundary 
conditions: 𝑟f,min = 0 and 𝑟a,max = 𝑟. Moreover, the radius of the unde-
formed droplet is equal to the radius 𝑟s of the polyhedron’s insphere at 
this state (𝑟 = 𝑟s = 𝐶rs𝑎), resulting in 𝑎max = 𝑟∕𝐶rs.

When the pressure 𝑝 → ∞, the radius 𝑟a approaches its boundary 
conditions: 𝑟a,min = 0. In addition, at this pressure the area 𝐴f → 𝐴p re-
sulting in 𝑟f,max = 𝑎min

(

𝐶A
𝜋

)1∕2
 (Eq. (3) and Eq. (2)). Moreover, the poly-

hedron volume 𝑉p = 𝐶V𝑎3 is equal to the droplets volume 𝑉 = 4𝜋
3 𝑟 at this 

condition, resulting in 𝑎min =
(

4𝜋
3𝐶V

)1∕3
𝑟.

Based on these considerations the boundary conditions for 𝑟f, 𝑟a, and 
𝑎 are defined according to Eqs. (25), (26), and (27), respectively.

10−9 ≤ 𝑟f ≤
(

𝐶A
𝜋

)1∕2( 4𝜋
3𝐶V

)1∕3
𝑟 (25)
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10−9 ≤ 𝑟a ≤ 𝑟 (26)

(

4𝜋
3𝐶V

)1∕3
𝑟 ≤ 𝑎 ≤ 𝑟

𝐶rs
(27)

The initial guess values are defined according to Eqs. (28)–(30) with 
minimum and maximum values from the boundary conditions according 
to Eqs. (25)–(27).
𝑎0 = 𝑎min + (𝑎max − 𝑎min)∕2 (28)

𝑟a,0 = (𝑟a,max − 𝑟a,min)∕2 (29)

𝑟f,0 = 𝐶rc𝑎0∕2 (30)

3.5.  Volume ratio

The volume ratio between the droplet’s original volume and the vol-
ume of its corresponding polyhedral shape is determined according to 
Eq. (31). 

𝜀𝑖 =
𝑉
𝑉p

= 𝜋
6𝐶V

(𝑑
𝑎

)3
(31)

Considering the boundary conditions introduced in Ch. 3.4, 
𝑎 → 𝑎max = 𝑟∕𝐶rs, when the pressure 𝑝 → 0, resulting in 𝜀𝑖 → 𝜀𝑖,min ac-
cording to Eq. (32). When the pressure 𝑝 → ∞, 𝜀𝑖 → 𝜀𝑖,max = 1. 

𝜀𝑖,min =
4𝜋𝐶3

rs
3𝐶V

(32)

3.6.  Model application to polydisperse systems

The presented modeling approach is derived for a single droplet 𝑖
with radius 𝑟. Therefore, 𝑟f and 𝑟a, as described in Ch. 3.1–3.4, rep-
resent the deformation characteristic radii for this single droplet or a 
monodisperse droplet size distribution. However, to calculate the coa-
lescence between two droplets in a polydisperse droplet size distribution 
using Henschke’s coalescence model (Henschke, 1995, 2002), 𝑟f and 𝑟a
cannot be determined based on 𝑟. Coalescence is a binary phenomenon 
that occurs between a droplet pair, and the droplet radii can differ in 
polydisperse droplet size distributions. Therefore, instead of 𝑟, an equiv-
alent droplet radius 𝑟eq, as given by Eq. (33) (Abid and Chesters, 1994), 
is used to calculate 𝑟f and 𝑟a using the approach presented in this work 
(Ch. 3.1–3.4). In Eq. (33), 𝑟1 and 𝑟2 represent the radii of droplet one 
and droplet two, respectively. 
𝑟eq =

2
1
𝑟1

+ 1
𝑟2

(33)

Moreover, instead of ℎ and 𝑝, ℎeq and 𝑝eq are used as equivalent DPZ 
height and pressure acting on the droplet pair. Therefore, ℎeq and 𝑝eq are 
considered in the center between two droplets instead of at the droplet’s 
center.

In contrast, 𝜀𝑖 is determined for each individual droplet. To explic-
itly distinguish between a droplet pair and an individual droplet in this 
study, 𝑟𝑖, ℎ𝑖, and 𝑝𝑖 are used instead of 𝑟, ℎ, and 𝑝 when referring to an 
individual droplet.

3.7.  Bond number correlation

The iterative solution of the equation system is a time-consuming 
task, especially when used to simulate the droplet deformation in a DPZ 
of thousands of droplets over a long period. Therefore, the 𝐵𝑜 number 
correlations proposed by Henschke (1995) are used as a quick calcula-
tion approach.

The 𝐵𝑜 number is defined by Eq. (34) and the pressure 𝑝 is calculated 
according to Eq. (1) with 𝑝 = 𝑝eq and 𝑑 = 𝑑eq used for determining 𝑟f and 
𝑟a and 𝑝 = 𝑝i and 𝑑 = 𝑑i used for determining 𝜀𝑖. 

𝐵𝑜 =
𝑝𝑑
𝜎

(34)

In contrast to the 𝐵𝑜 number expression proposed by Henschke 
(1995), the pressure in Eq. (34) considers 𝜀̄p (Eq. (1)). This consider-
ation is reasonable because only the dispersed phase within the DPZ is 
responsible for the deformation of the droplets and not the bulk phase 
(Ch. 3.1). The bulk phase only participates in the hydrostatic pressure 
𝑝h. Moreover, since the equation system (Ch. 3.1–3.3) considers the pres-
sure according to Eq. (1), it is logical to include the same pressure for the 
correlation of 𝑟f, 𝑟a, and 𝜀𝑖 by the 𝐵𝑜 number. Furthermore, Henschke 
reported an overestimation due to the 𝐵𝑜 number correlation defined in 
his work (Henschke, 1995). Since the pressure according to Eq. (1) is 
lower than the pressure defined by Henschke (1995), the issue of over-
estimation is also faced by the pressure definition in this work.

Eqs. (35) and (36) (Henschke, 1995) represent the general form of 
the 𝐵𝑜 number correlations for 𝑟f and 𝑟a, respectively, with 𝑑eq = 2𝑟eq
as equivalent droplet diameter and 𝐶𝑗 as fitting parameters determined 
for each polyhedral shape individually. 

2𝑟f
𝑑eq

= 𝐶1

√

1 −
𝐶2

𝐵𝑜 + 𝐶2
(35)

2𝑟a
𝑑eq

= 1 −

√

1 −
𝐶3

𝐵𝑜 + 𝐶3
(36)

The fitting parameter 𝐶1 can be determined by considering the 
boundary conditions (Ch. 3.4) at 𝑝eq → ∞, where 𝐵𝑜 → ∞ and 𝑟f →
(

𝐶A
𝜋

)1∕2( 4𝜋
3𝐶V

)1∕3
𝑟eq (Eq. (25)), resulting in 𝐶1 =

(

𝐶A
𝜋

)1∕2( 4𝜋
3𝐶V

)1∕3
 and 

Eq. (37). The remaining fitting parameters are fitted to the results of the 
iterative solution of the equation system. 

2𝑟f
𝑑eq

=
(

𝐶A
𝜋

)1∕2( 4𝜋
3𝐶V

)1∕3
√

1 −
𝐶2

𝐵𝑜 + 𝐶2
(37)

The 𝐵𝑜 number correlation for 𝜀𝑖 is determined based on the results 
of the iterative solution. Moreover, generalized 𝐵𝑜 number correlations 
with fitting parameters independent of the polyhedral shape are deter-
mined. Assuming the relationship between 𝑟a, 𝑟f, 𝜀𝑖, and the 𝐵𝑜 num-
ber holds for both regular and irregular convex polyhedral shapes with 
uniform 𝑎 (Ch. 3), these correlations can approximate 𝑟a, 𝑟f, and 𝜀𝑖 for 
irregular convex polyhedral shapes.

Since all influencing parameters besides the polyhedral shape pa-
rameters are included in the 𝐵𝑜 number, no dimensional analysis is per-
formed to identify the suitable parameters for the generalization of the 
𝐵𝑜 number correlations. Instead, the values of the fitting parameters are 
compared to the polyhedral shape parameters (SI Tab. 1) and appropri-
ate polyhedral shape parameters for the generalization are identified 
based on their similarities.

In addition, only the following polyhedral shape parameters (SI 
Tab. 1) are considered for the generalization, as these are unambigu-
ously defined: number of polyhedron faces 𝑁f, number of polyhedron 
edges 𝑁e, number of polyhedron corners 𝑁c and number of polyhedron’s 
face corners 𝑁fc. Irregular convex polyhedral shapes with uniform 𝑎 con-
sist of different face shapes. Thus, polyhedral shape parameters such as 
𝐴p or 𝑟o are not considered for the generalization, as these are not unique 
for some polyhedral shapes. The generalized 𝐵𝑜 number correlations are 
fitted to all iterative solution results.

3.8.  Parameter range

The deformation described by the presented model is dependent on 
the parameters 𝑑, 𝜎 and 𝑝, which is further determined by Δ𝜌, 𝜀̄p, and ℎ. 
The value ranges of these parameters are set to match the technical ap-
plications to investigate the model performance in a relevant range. The 
following ranges are identified: 𝑑 = 150–1500 µm (Sibirtsev et al., 2024, 
2025), 𝜎 = 2–50 mN/m (Henschke, 1995), Δ𝜌 = 30–350 kg/m³ (Hen-
schke, 1995), 𝜀̄p = 0.55–1.0 (Henschke, 1995; Sibirtsev et al., 2025), 
ℎ = 1–50 mm (Henschke, 1995), resulting in 𝑝 ≈ 0.2–200 Pa.
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The 𝐵𝑜 number range results in 𝐵𝑜 ≈ 0–150 based on these param-
eter ranges. In technical applications at industrial scale, higher 𝑑 and 
ℎ can occur, resulting in even higher 𝐵𝑜 values. However, it is un-
necessary to consider these high values when investigating the model
since Henschke (1995) showed that at 𝐵𝑜 ≈ 50, the droplet deformation 
almost reaches its final deformation stage. At this stage, 𝑟a and 𝑟f reach 
their limit values, which are 𝑟a → 0 and 𝑟f → 𝑟f,max. Increasing the 𝐵𝑜
number further does not significantly affect 𝑟a and 𝑟f from this deforma-
tion stage onwards.

3.9.  Iterative solution of the equation system and fitting procedure

With Eqs. (10), (17) and (24), the unknown parameters 𝑟f, 𝑟a and 𝑎, 
the set parameters 𝑑, 𝜎, and 𝑝, as well as the polyhedral shape-dependent 
constants 𝐶𝑝 (SI Tab. 1), the equation system is fully defined. A publicly 
accessible Python code (Sibirtsev, 2025) is used to solve the equation 
and to fit the 𝐵𝑜 correlation parameters. The equation system is solved 
within the specified 𝑑, 𝜎, and 𝑝 ranges (Ch. 3.8). Each range is divided 
into ten steps. Thus, the equation system is solved at 1000 points for 
each polyhedral shape, resulting in 5000 simulations. For the solution 
of the equations system, the scipy.optimize.minimize() method (Virtanen 
et al., 2020) is used. Moreover, the Nelder-Mead solver (Virtanen et al., 
2020) is used at 𝐵𝑜 ≤ 1 and the Powell solver (Virtanen et al., 2020) 
at 𝐵𝑜 > 1 , since it delivers the most accurate results in this work. The 
mean absolute percentage error (MAPE) according to Eq. (38) is used 
as minimization function, where 𝐸L,𝑗 and 𝐸R,𝑗 are the results of the left 
and the right hand side of the 𝑁E = 3 equations, Eqs. (10), (17), and
(24). Solutions with a MAPE1 value higher than 1% are excluded from 
further consideration. 

MAPE1 = 100 1
𝑁E

𝑁E
∑

𝑗=1

|

|

|

|

|

𝐸L,𝑗 − 𝐸R,𝑗
𝐸L,𝑗

|

|

|

|

|

(38)

The results of the iterative solution of 𝑟f, 𝑟a and 𝜀 are not equally 
distributed over the 𝐵𝑜 number range. Therefore, the 𝐵𝑜 number val-
ues are transformed into a logarithmic scale to achieve a more even 
distribution of the data. Moreover, equally spaced bins within the trans-
formed 𝐵𝑜 number range are defined, and an equal number of randomly 
chosen iterative solution results within these bins is used to fit the 𝐵𝑜
number correlation parameters. In this manner, a similar accuracy of 
the 𝐵𝑜 number correlation is given over the entire range of the 𝐵𝑜 num-
ber. For the fitting, the Sequential Least Squares Programming (SLSQP)
solver of the scipy.optimize.minimize() method (Virtanen et al., 2020) is 
used since it is a fast solver and provides accurate results in this case. 
The MAPE, according to Eq. (39) is used as a minimization function for 
the fit, where 𝑁p is the number of fitted points, 𝐴𝑗 are the results of 
the iterative solution, and 𝑃𝑗 are the predicted values by the 𝐵𝑜 number 
correlation. In addition, the MAPE3 is considered to make a statement 
about how accurate the fit is across all the simulations performed in this 
work. The MAPE3 is equally defined as MAPE2 (Eq. (39)) but takes all 
the results 𝑁r of the iterative solution into account instead of 𝑁p. 

MAPE2 = 100 1
𝑁p

𝑁p
∑

𝑗=1

|

|

|

|

|

𝐴𝑗 − 𝑃𝑗

𝐴𝑗

|

|

|

|

|

(39)

All simulations are performed on an Intel Core i7-3740QM CPU.

4.  Results & discussion

From 5000 simulations, approx. 29 % solutions of the equation sys-
tem result in an MAPE1 (Eq. (38)) over 1 %, and thus, are excluded 
from further consideration. The most of the results with MAPE1 > 1 %
are achieved at low 𝑝 values. At these conditions, the 𝐵𝑜 number values 
are low, which means that 𝑟f is approaching its limit value of zero. One 
assumption is that it is difficult to achieve convergence in this area due 
to the strong gradient in the courses of 𝑟f and 𝑟a.

Fig. 3. Dependency of the normalized contact area radius 2𝑟f∕𝑑eq on the 𝐵𝑜
number for iterative solution results (points) and 𝐵𝑜 number correlation (solid 
lines).

All equation system solutions with MAPE1 ≤ 1 % are used to inves-
tigate the dependency of 𝑟f, 𝑟a and 𝜀𝑖 on the 𝐵𝑜 number and to fit the 
fitting parameters of the Eqs. (37) and (36). The resulting fitting param-
eters can be found in SI Tab. 2. For clarity, only every 25th point of the 
simulations is shown in the following graphs.

4.1. Contact area radius 𝑟f

Fig. 3 shows the normalized contact area radius 2𝑟f∕𝑑eq in depen-
dence on the 𝐵𝑜 number for iterative solution results (points) and 𝐵𝑜
number correlation Eq. (37) (solid lines). The 2𝑟f∕𝑑eq increases with in-
creasing 𝐵𝑜 number. The slope of the curves is steep at the beginning 
and decreases with an increase in the 𝐵𝑜 number, whereby the course 
approaches a limit value (dotted lines). The observed change in the slope 
is because the contact area 𝐴f is increasing linearly proportional with an 
increase in 𝑝𝑖 or a decrease in 𝜎 (Eqs. (3) and (10)), and thus, an increase 
in the 𝐵𝑜 number (Eq. (34)). Since 𝑟f is proportional to the square root 
of 𝐴f, the course follows a square root function as also shown by Hen-
schke (1995). The correlation Eq. (37) matches this curve progression 
accurately with an MAPE2 of 1.7 % and an MAPE3 of 2.9 % averaged 
over the five polyhedral shapes.

Moreover, the limit value of 2𝑟f∕𝑑eq is dependent on the polyhedral 
shape and decreases with the number of polyhedron faces and edges for 
a constant 𝐵𝑜 number. Since the area potentially available as the droplet 
contact area 𝐴f decreases with the number of faces, and thus, decreasing 
polyhedron face area 𝐴p, the limit value of 2𝑟f∕𝑑eq also decreases. For 
the dodecahedron, a limit value of approx. 0.6 is reached in this work. 
This value is also reached by the deformation modeling performed by 
Henschke (1995).

4.2. Curvature radius 𝑟a

Fig. 4a shows the normalized curvature radius 2𝑟a∕𝑑eq in dependence 
on the 𝐵𝑜 number for iterative solution results (points) and the 𝐵𝑜 num-
ber correlation Eq. (36) (solid lines). The radius 2𝑟a∕𝑑eq decreases with 
an increasing 𝐵𝑜 number. The slope of the curves is steep at the begin-
ning and decreases with the increase in the 𝐵𝑜 number, whereby the 
course approaches a limit value of zero. The observed change in the 
slope is because 𝑟a is decreasing almost linearly anti-proportional with 
an increase in 𝑝𝑖 or a decrease in 𝜎 (Eq. (10)), and thus, an increase in 
the 𝐵𝑜 number.

Moreover, 2𝑟a∕𝑑eq is dependent on the polyhedral shape and in-
creases with the number of polyhedron edges for a constant 𝐵𝑜 num-
ber. One possible explanation is that the total deformation of a droplet 
is distributed over all curvature regions of the polyhedron. The more 
edges a polyhedron has, the higher its number of curvature regions, and 
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Fig. 4. Dependency of the normalized contact area radius 2𝑟a∕𝑑eq on the 𝐵𝑜 number for iterative solution results (points) and 𝐵𝑜 number correlation (solid lines) 
according to (a) Eq. (36) and (b) Eq. (40).

the less the deformation in each curvature region, resulting in higher 𝑟a
values. Therefore, at the same 𝐵𝑜 numbers and thus the same degree of 
deformation, a polyhedral shape with a higher number of edges has a 
higher 2𝑟a∕𝑑eq value than one with a lower number of edges.

Even though the 𝐵𝑜 number correlation Eq. (36) matches the curve 
progression with an MAPE2 of 5.5 % and an MAPE3 of 5.3 % averaged 
over the five polyhedral shapes, it overestimates the 2𝑟a∕𝑑eq values in 
the range of 𝐵𝑜 = 0.2…4.5. This overestimation is also noticed for the 
dodecahedron shape by Henschke (1995). It is assumed that one fitting 
parameter (𝐶3) cannot accurately describe the curve progression by the 
𝐵𝑜 number correlation. Therefore, a second fitting parameter is intro-
duced resulting in Eq. (40), with 𝐶4 and 𝐶5 as the fitting parameters. The 
parameter 𝐶5 is chosen because it allows the adjustment of the slope of 
the asymptotic curve progression.

2𝑟a
𝑑eq

= 1 −

√

1 −
𝐶4

𝐵𝑜𝐶5 + 𝐶4
(40)

Fig. 4b shows the 2𝑟a∕𝑑eq in dependence on the 𝐵𝑜 number according 
to Eq. (40). The correlation Eq. (40) matches the curve progression in the 
range of 𝐵𝑜 = 0.2…4.5 more accurately with an MAPE2 and an MAPE3
of 2.0 % averaged over the five polyhedral shapes.

4.3.  Volume ratio 𝜀𝑖

Fig. 5 shows the volume ratio 𝜀𝑖 in dependence on the 𝐵𝑜 number 
for iterative solution results (points) and 𝐵𝑜 number correlation (solid 
lines). The 𝜀𝑖 increases with increasing 𝐵𝑜 number, starting at 𝜀𝑖(𝐵𝑜 =
0) = 𝜀𝑖,min and asymptotically approaching 𝜀𝑖(𝐵𝑜 → ∞) = 𝜀𝑖,max (Ch. 3.5. 
The slope of the curves is steep at the beginning and decreases with 
an increase in the 𝐵𝑜 number, whereby the course approaches a limit 
value of 𝜀𝑖,max = 1. The observed change in the slope occurs because the 
square of the edge length 𝑎2, increases linearly with an increase in 𝑝𝑖
or a decrease in 𝜎 (Eq. (10)), and thus, an increase in the 𝐵𝑜 number 
(Eq. (34)). As a result, 𝑎 follows a square root dependence on 𝐵𝑜.

Moreover, 𝜀𝑖 depends on the polyhedral shape and increases with the 
number of polyhedron faces and edges for a constant 𝐵𝑜 number. One 
explanation for this observation is that the polyhedral shape approaches 
a spherical shape with an increasing number of faces and edges. By ap-
proaching the spherical shape, the volume in the channels between the 
droplets decreases and the volume ratio 𝜀𝑖 approaches 1.

The observed curve progression can be described by Eq. (41). The 
fitting parameter 𝐶6 can be determined by considering the boundary 
conditions (Ch. 3.4) at 𝑝𝑖 → 0, where 𝐵𝑜 → 0 and 𝜀𝑖 → 𝜀𝑖,min = 4𝜋𝐶3

rs
3𝐶V

(Eq. (32)), resulting in 𝐶6 =
4𝜋𝐶3

rs
3𝐶V

 and Eq. (42). The fitting parameter 

Fig. 5. Dependence of the volume ratio 𝜀𝑖 on the 𝐵𝑜 number for iterative solu-
tion results (points) and 𝐵𝑜 number correlation (solid line).

𝐶7 is fitted to the results of the iterative solution (SI Tab. 2). The corre-
lation Eq. (42) matches the curve progression accurately with an MAPE2
and an MAPE3 of 0.6 % averaged over the five polyhedral shapes. How-
ever, at 𝐵𝑜 > 2 Eq. (41) slightly underestimates 𝜀𝑖.

𝜀𝑖 = 𝐶6 + (1 − 𝐶6)

√

1 −
𝐶7

𝐵𝑜 + 𝐶7
(41)

𝜀𝑖 =
4𝜋𝐶3

rs
3𝐶V

+

(

1 −
4𝜋𝐶3

rs
3𝐶V

)
√

1 −
𝐶7

𝐵𝑜 + 𝐶7
(42)

4.4.  Generalization of the Bond number correlations

After comparing the polyhedral shape dependent fitting parameters 
𝐶𝑗 (SI Tab. 2) with the geometrical parameters of the polyhedral shapes 
(SI Tab. 1), 𝑁f and 𝑁e are chosen to generalize Eqs. (35), (36), and
(41) to (43), (44), and (45) with polyhedral shape independent fitting 
parameters. Since irregular convex polyhedral shapes with uniform 𝑎
consist of different face shapes, 𝑟̄f and 𝑟̄a are considered as the average 
contact area radius and the average radius of droplet’s curvature regions, 
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Fig. 6. Comparison between iterative determined (Eqs. (10), (17) and (24)) and fitted (a) (Eq. (43)) 2𝑟f∕𝑑eq and (b) (Eq. (44)) 2𝑟a∕𝑑eq values.

respectively.

2𝑟̄f
𝑑eq

= 2.65
𝑁0.6
f

√

1 −
5.0∕𝑁0.1

e

𝐵𝑜 + 5.0∕𝑁0.1
e

(43)

2𝑟̄a
𝑑eq

= 1 −

√

√

√

√

√
1 −

1.35𝑁0.3
e

𝐵𝑜
(

0.7𝑁0.1
e

)

+ 1.35𝑁0.3
e

(44)

𝜀𝑖 = Ψ + (1 − Ψ)

√

1 −
1.41𝑁0.1

e

𝐵𝑜 + 1.41𝑁0.1
e

Ψ = −8.13 + (1 + 8.13)

√

1 − 0.714
𝑁f + 0.714

(45)

The choice of 𝑁f in Eq. (43) is based on the consistent opposing be-
havior observed between 𝑁f and 𝐶1 when the polyhedral shape changes 
(Fig. 3). The significant influence of 𝑁f on 𝑟f is logical, as for the same 𝐵𝑜
numbers and 𝑑eq, polyhedra with a higher number of faces have smaller 
contact areas 𝐴f and thus lower 𝑟f values (Ch. 4.1). In contrast, 𝐶2 cor-
relates most accurately with 𝑁e. However, 𝑁e has a smaller influence 
on 𝑟f in Eq. (43) compared to 𝑁f.

The choice of 𝑁e in Eq. (44) is based on the consistent similar be-
havior observed between 𝑁e, 𝐶4, and 𝐶5 when the polyhedral shape 
changes (Fig. 4). The significant influence of 𝑁e on 𝑟a is logical, as for 
the same 𝐵𝑜 numbers and 𝑑eq, a larger curvature radius 𝑟a is expected 
for polyhedra with a higher number of edges (Ch. 4.2).

The choice of 𝑁e and 𝑁f in Eq. (45) is based on the consistent similar 
behavior observed between 𝑁e and 𝐶6, and the opposing behavior ob-
served between 𝑁f and 𝐶7 when the polyhedral shape changes (Fig. 5). 
The influence of 𝑁e and 𝑁f on 𝜀𝑖 is logical, as for the same 𝐵𝑜 num-
bers and 𝑑𝑖, the polyhedral shape approaches a spherical shape with an 
increasing number of faces, leading to an increase in 𝜀𝑖 (Ch. 4.3).

Fig. 6 and SI Fig. 7 show the comparison between iterative deter-
mined (Eqs. (10), (17), (24), and (31)) and fitted (Eqs. (43), (44), and 
Eq. (45)) 2𝑟̄f∕𝑑eq, 2𝑟̄f∕𝑑eq, and 𝜀̄𝑖 values. The generalized 𝐵𝑜 number cor-
relations show high accuracies with MAPE2 of 2.3 %, 2.4 %, and 0.6 % 
and MAPE3 of 2.8 %, 2.4 % and 0.6 % for Eqs. (43), (44), and (45), 
respectively. All 2𝑟f∕𝑑eq, 2𝑟f∕𝑑eq, and 𝜀𝑖 values are located within an in-
terval of ±5 %. Only for the tetrahedron shape 2𝑟f∕𝑑eq falls below the 
interval of ±5 % at 2𝑟f∕𝑑eq < 0.6.

Since Eqs. (43), (44), and (45) incorporate the polyhedral shape pa-
rameters, 𝑁f and 𝑁e, the presented 𝐵𝑜 number correlations can be uti-
lized not only to predict 𝑟f, 𝑟a, 𝜀𝑖 for regular polyhedral shapes but also to 
estimate these parameters for irregular convex polyhedral shapes with 
uniform 𝑎. The specific polyhedral shape adopted by a droplet in the DPZ 
can be determined using the simulation method outlined by Sibirtsev 
et al. (2025). This method calculates the contact number of the droplet 

within the DPZ, identifying 𝑁f as the contact number. The parame-
ter 𝑁e is subsequently determined based on the identified polyhedral
shape.

5.  Conclusion

This study presents a novel modeling approach to characterize 
droplet deformation into polyhedral shapes within liquid-liquid poly-
disperse dense-packed zones (DPZs). The deformation is described by 
two characteristic radii: the contact radius 𝑟f and the curvature radius 
𝑟a, as well as the volume ration 𝜀𝑖. These parameters are determined 
through a system of equations based on pressure, geometric, and vol-
umetric relationships for regular polyhedra. Additionally, generalized 
correlations based on the Bond (𝐵𝑜) number are introduced to pre-
dict droplet deformation for regular polyhedral shapes and to estimate 
droplet deformation for irregular convex polyhedral shapes. The droplet 
deformation is simulated across a 𝐵𝑜 number range relevant to technical
applications.

The simulation results reveal that the contact radius 𝑟f increases with 
increasing 𝐵𝑜 number and decreasing numbers of polyhedron faces and 
edges, approaching a shape-dependent limit. Conversely, the curvature 
radius 𝑟a exhibits the opposite trend, decreasing as 𝐵𝑜 numbers increase 
and approaching a zero-limit at high 𝐵𝑜 number values. The volume 
ratio 𝜀𝑖 increases with increasing 𝐵𝑜 number and numbers of polyhedron 
faces and edges, approaching the limit-value of 1. The generalized 𝐵𝑜
number correlations strongly agree with the equation system solutions, 
achieving mean absolute percentage errors below 3.0 % and an average 
deviation of less than ±5 %.

The findings on droplet deformation into polyhedral shapes provide 
valuable practical implications. These insights can be applied to pre-
dict droplet deformation in liquid-liquid polydisperse DPZs, enhancing 
the utility and relevance of this research. Furthermore, the proposed 
modeling approach facilitates seamless integration into Henschke’s co-
alescence model (Henschke, 1995, 2002), as this model uses the same 
characteristic radii 𝑟f and 𝑟a.

In future work, the deformation model will be implemented in a sim-
ulation environment to simulate the formation and dissolution of DPZs 
during the phase separation of polydisperse liquid-liquid dispersions. 
Furthermore, the validity of the proposed 𝐵𝑜 number correlations for 
irregular convex polyhedral shapes will be verified by adapting and solv-
ing the introduced equation system for such geometries. In addition, the 
presented modeling approach will be validated by experimental inves-
tigations.
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