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ABSTRACT Reconfigurable intelligent surface (RIS) is a key enabling technology for the sixth generation
(6G) of mobile networks. It can focus the signal at an intended location (e.g., a user hotspot) through
dynamically adjusting the phase shifts of its passive reflecting elements, thereby enhancing the signal quality
and network coverage. However, the optimal configuration of the phase shift profile of RIS is challenging
since it requires accurate channel state information (CSI), which is prohibitively expensive to acquire in
practice because the number of reflecting elements in RIS is usually large. To address this limitation, in this
paper, we train and test a fully-connected neural network (FCN) that estimates the optimal phase shift profile
of RIS from noisy CSI measurements. We evaluate the performance of the proposedMachine Learning (ML)
model in terms of different key performance indicators (KPIs), including the system bit error rate (BER)
and throughput, phase shift estimation mean square error (MSE), and the training time of the neural network
itself. Simulation results demonstrate that our proposed technique can significantly improve the performance
in RIS-assisted wireless networks, reducing the gap to the optimal network throughput to below 1%.

INDEX TERMS 6G, reconfigurable intelligent surface (RIS), phase shift optimization, imperfect channel
state information (CSI), bit error rate (BER), machine learning, neural network.

I. INTRODUCTION
Reconfigurable intelligent surface (RIS) has gained consid-
erable traction recently, and it is considered as a promising
technology for the sixth-generation (6G) of mobile networks.
It intelligently manipulates the wireless propagation channel
through adjusting the phase shift of its reflecting elements in
real-time according to the variations of the channel impulse
response [1]. One of the most remarkable use cases of RIS
is to increase the network coverage, which is particularly
interesting for millimeter wave (mmWave) and terahertz
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(THz) indoor/outdoor communication systems, which are
highly susceptible to radio blockages by moving objects [2].

The phase shift of each RIS element can be independently
configured through software so that all reflected signals from
these elements arrive at the receiver with the same phase.
Therefore, they constructively interfere with each other, thus
improving the channel quality between the transmitter (Tx)
and the receiver (Rx). However, configuring RIS phase shift
profile requires an accurate channel state information (CSI),
which is a costly and complex process [3] as we need to
estimate the channel for each RIS element, which involves
a tremendous number of pilot signals and sophisticated
algorithms for channel estimation. Therefore, practical RIS
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channel estimation techniques naturally have to deal with
inherent errors derived from either a reduced number of
pilots per RIS element, a less frequent CSI estimation, or a
quantized CSI feedback. However, the use of this inaccurate
CSI for RIS phase shift configuration can considerably
degrade the system performance [4].

To address this problem, in this paper, we propose a
novel two-stage approach for RIS phase shift optimization.
In the first stage, the RIS channel is roughly estimated
using an affordable technique, e.g., a reduced number of
pilot signals, accurate but less frequent (outdated) CSI
measurements, or naive channel estimation algorithms (e.g.,
Least Squares technique). Then, in the second stage, these
inaccurate CSI measurements are fed into a fully-connected
feed-forward neural network (FCN) to learn from the
channel regularities (i.e., temporal and spatial correlations
in the channel impulse response) to estimate the amount
of phase shift for each RIS element. It is worth noting
that our proposed approach does not require to estimate
the full channel response of the RIS (i.e., both amplitude
and phase response across all subcarriers). Instead, it esti-
mates only a single phase shift value per RIS element.
This significantly reduces the complexity of the employed
FCN model while still considerably improving the system
performance.

In detail, our main contributions can be summarized as
follows:

• We develop an FCN-based technique for predicting
optimal RIS phase shift configurations from imperfect
CSI. Note that we are not introducing a novel tech-
nique for RIS channel estimation, rather our approach
optimizes the RIS phase shift profile leveraging rough
CSI measurements, acquired by less expensive channel
estimation procedures.

• We provide extensive simulation results to evaluate
the system performance of our proposed RIS phase
shift optimization technique in terms of bit error rate
(BER), throughput, channel estimation mean square
error (MSE), and the training time of the neural network.

• We compare the results against three different bench-
marks: 1) using a random phase shift configuration; 2)
directly using the imperfect CSI without any denoising;
and 3) using perfect CSI as an optimum bound. The
results show the strong potential of our proposed
approach.

After this introduction, the paper is structured as follows.
Section II summarizes the related work. Section III defines
our system model. Section IV introduces our proposed
solution, and Section V presents the simulation results.
Finally, Section VI concludes this paper.

II. RELATED WORK
In this work, we address RIS phase shift optimization
from imperfect CSI estimations using a neural network.
Since our proposed solution requires the use of existing
CSI estimation procedures for obtaining the imperfect CSI

measurements, in this section we first review the main
approaches in the literature for RIS channel estimation. Then,
we review the state of the art techniques for RIS phase shift
optimization.

A. CHANNEL ESTIMATION FOR RIS
In order to properly configure RIS phase shift profile, it is
important to have an accurate estimation of the cascaded
channel (i.e., transmitter-RIS-receiver). Two main categories
of techniques exist for RIS CSI acquisition [2]: 1) equipping
RIS with active radio frequency (RF) chains to enable
pilot transmission or processing capabilities at the RIS;
and 2) estimating the cascaded channel at the receiver by
configuring the RIS to given reflection patterns (e.g., enabling
or disabling some RIS elements), transmitting pilot signals
from the transmitter, and estimating the cascaded channel at
the receiver.

The first category of works involves active RF chains
in the RIS, which is costly and unsustainable in terms of
hardware development and energy consumption. Regarding
the second category, early works, e.g., [5], [6], focused
on simply turning on and off the individual RIS elements.
However, this approach is time-consuming and require
a tremendous number of pilot signals since the channel
estimation procedure has to be repeated for every RIS element
one by one. To overcome this limitation, the authors of [7]
propose a protocol to jointly execute channel estimation and
phase shift optimization in passive RIS. The cascaded channel
is estimated at the receiver based on the pilot signals sent
by the transmitter. The optimization is based on aligning the
RIS phase shifts to the tap index with the strongest channel
impulse response (CIR).

Other approaches in this second category involve the use of
a deep learning (DL) framework for RIS channel estimation.
In [8], the authors designed a twin convolutional neural
network (CNN) architecture, using as input the received pilot
signals to estimate the direct and the cascaded channel. Each
user provides its received pilot signals to the deep learning
network, to estimate its own channel. The proposed model
introduces a new DL architecture for channel estimation by
combining both convolutional and fully connected layers
together. In contrast, conventional DL models for channel
estimation in massive MIMO systems have typically relied
on either an FCN [9] or a CNN [10], but not a combination
of both.

Last but not least, unlike the aforementioned RIS channel
estimation techniques, which estimate only the cascaded
channel, the authors in [11] proposed a pilot-assisted
technique to estimate not only the cascaded channel, but also
each of its individual components (i.e., Tx-RIS and RIS-Rx
channels). They formulate the problem as a combined sparse
matrix factorization and matrix completion problem. It is a
two-stage algorithm which includes the bilinear generalized
approximate message passing (BiG-AMP) [12] for sparse
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matrix factorization and the Riemannian manifold gradient-
based algorithm for matrix completion [13].

B. RIS OPTIMIZATION
The optimization of RIS phase shift profile has been
approached in the literature in three different ways: physics-
based models, heuristic algorithms and machine learning
(ML) techniques [14]. The addressed problem relates to
controlling the phase shift of each RIS element in order
to optimize the system performance in terms of a given
KPI, e.g., network sum-rate [15], power consumption [16],
or energy consumption [17]. Physics-based solutions rely
on exact mathematical models governing the radio signal
propagation (e.g., using ray tracing method) [18]. On the
other hand, heuristic approaches aim for fast but approximate
algorithms that can strike a balance between the algorithmic
complexity and the system performance, using e.g., alternat-
ing optimization [19] or greedy algorithms [20]. However,
most of these works focus on deriving a theoretical limit for
the maximum performance and cannot be applied directly
in practical systems (e.g., they assume perfect CSI). On the
other hand, ML-based phase shift optimization algorithms
can operate without the need for an exact mathematical model
of the system or accurate CSI measurements as they can learn
patterns from labeled channel data or from interactions with
the wireless communication environment [21].

ML algorithms have been employed for RIS phase shift
control, including supervised learning [22], unsupervised
learning [23] and reinforcement learning (RL) [24]. The
main challenge of RL approaches is the need for a large
number of training epochs for convergence [14]. Unsu-
pervised approaches seem to be more practical for real-
world applications since they do not require labeled data
to operate, although they still need labeled data for cross-
validation and testing. If we just focus on supervised learning
approaches for sum rate maximization, which is the basis of
our proposal, some solutions leverage user positions as input
data [22], [25], exploit temporal channel correlations [26] or
quantization of the phase shifts to discrete levels (for finite
precision) [27] to reduce the dimension of the ML model.
For example, the authors in [22] rely on accurate positioning
information for mobile terminals as input for their neural
network (NN) model. They also assume that the optimum
phase shifts are available during the training phase (as the
training data).

Overall, all of the aforementionedworks exhibit limitations
for their application in practical scenarios (e.g., they require
perfect CSI or accurate user location information, or they
reveal high computational complexity). In contrast, our
approach has none of these limitations and can be adopted in
practical systems. In particular, we follow a similar approach
as in [22], but we replace the users’ accurate positioning
information with their inaccurate CSI measurements (which
can be obtained from a lower number of pilot signals or from

less frequent CSI estimations), which is more practical in
real-world mobile systems.

III. SYSTEM MODEL
We consider an indoor scenario for data communication
between two single-antenna devices, namely, a transmitter
device which sends data to a receiver device (see Fig. 1).
We consider a mmWave or THz channel in which the direct
channel between the transmitter and the receiver suffers from
blockage due to a high attenuation loss (e.g., caused by an
obstacle). A square-shaped N -element RIS is employed to
enhance the channel between the Tx and Rx. The phase shift
of each reflecting element of the RIS can be individually
configured with infinite resolution in the range [0, 2π ). The
Tx and RIS are statically placed in the scenario, while the Rx
moves through the environment following a randomwaypoint
mobility model [28], starting at a random position of the
environment. Notice that this scenario can reflect the situation
in which the Tx represents a base station while the RX
resembles a UE.

FIGURE 1. System model of our considered scenario.

We use the same cascaded RIS channel model proposed
in [29]. Let h⊺

= {h1, . . . , hN } be the N -element vector
with the Tx-RIS channel coefficients, g = {g1, . . . , gN } the
N -element vector with the RIS-Rx channel coefficients and
d the Tx-Rx direct channel gains. Since we assume that a
blockage occurs in the direct channel, we consider d = 0.
Hence, the received signal y at the receiver is given by

y = (g⊺8h + d)x = (g⊺8h)x, (1)

where x is the transmitted signal and 8 is the N ×N diagonal
matrix containing the RIS elements’ responses, given by

8 =


µ1ejφ1

µ2ejφ2

. . .

µN ejφN

 . (2)

We consider a passive and lossless RIS, i.e., µi = 1, ∀i ∈

{1, . . . ,N }. Therefore, our decision variables are the phase
shifts of the RIS elements (φi ∈ [0, 2π ), ∀i ∈ {1, . . . ,N }).
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If the exact CSI values of both Tx-RIS and RIS-Rx
channels were known for all reflecting elements, the optimum
phase shift configuration of the RIS would be trivial and
given by (3), which ensures that the reflected signals from all
elements are received at the Rx with perfect phase alignment,
so that they constructively interfere with each other.

φi = 2π − ̸ gi − ̸ hi ∀ i. (3)

However, this perfect CSI for the h and g channels cannot
be obtained in practice because, among other factors, the
channel noise variance dictates the Cramer-Rao lower bound
for the estimation error, putting aside the pilot overhead
needed for the channel estimation for every RIS element
during every channel coherence time.

We assume that a lightweight channel estimation procedure
(e.g., using a low density of pilot signals) is employed to
achieve a rough CSI information. Consequently, the obtained
CSI has a certain amount of channel estimation error (CEE).
We denote this imperfect CSI values for each element of the
Tx-RIS and RIS-Rx channel vectors by ĥi = hi + e and ĝi =

gi + e, ∀i ∈ {1, . . . ,N }, respectively, where e ∼ CN (0, σ 2)
is a zero-mean complex Gaussian random variable with
variance σ 2, representing the CEE. This imperfect CSI (i.e.,
ĥi, ĝi, ∀i ∈ {1, . . . ,N }) will constitute the input of the neural
network that we design in this paper for RIS phase shift
optimization.

Our objective is to maximize the system performance by
configuring the phase shift of the RIS elements from imper-
fect CSI estimations. In detail, we aim at maximizing the
system throughput (data rate) and BER for the transmissions
between the Tx and Rx. The data rate is given by (4):

R = B log2 (1 + γ ) , (4)

where B is the system bandwidth and γ is the signal-to-noise
(SNR) ratio given by (5):

γ =
P |(g⊺8h)|2

η2
, (5)

where P represents the transmit power of the Tx and w ∼

CN (0, η2) is a zero-mean complexGaussian randomvariable
with variance η2, which models the additive thermal noise
power at the receiver.

We consider that the system is using a Quadrature Phase
Shift Keying (QPSK) modulation. Hence, the BER is given
by

BER = Q
(√

2γ
)

, (6)

where Q(x) is the standard Q-function defined as:

Q(x) =
1

√
2π

∫
∞

x
exp

(
−
u2

2

)
du. (7)

Table 1 summarizes our assumed CSI in the system.

TABLE 1. Our assumed CSI in the system.

IV. PROPOSED SOLUTION
We propose a novel solution to address RIS phase shift
optimization in two stages. In the first one, we use a
lightweight technique (e.g., less pilot signals, less frequent
CSI measurements or simpler channel estimation algorithms)
for obtaining a rough CSI. In the second stage, these
inaccurate CSI measurements are fed into our proposed
FCN to estimate the optimum phase shift for each RIS
element.

For the second stage, we consider a data-driven approach,
where we can capture data during an offline training phase.
We train a FCN model [30] to predict the optimum phase
shift profile and then we use the trained model to make
predictions during the online inference phase. As previously
stated in Section III, the input data corresponds to the
estimated channel vectors for the Tx-RIS (ĥ) and RIS-Rx
(ĝ) channels obtained through lightweight but error-prone
channel estimation processes. Since the passive RIS does not
alter the amplitude of the signal, we are only interested in
the angle of the matrices, thus we use the values of ̸ ĥi and
̸ ĝi rather than ĥi and ĝi, respectively. The output label of
each training example is the optimal phase shift configuration
for that scenario, denoted by φ∗. In order to properly use
this angular data in the neural network, we encode them by
calculating the sine and cosine to each angular value, to avoid
the issues caused by the circular symmetry of the angles (i.e.,
they have a periodicity of 2π ). In detail, for each individual
input and output angular value (θ ), we use the following
encoding function.

θ → (sin(θ ), cos(θ )) (8)

Correspondingly, the decoding function to recover the
angular value from a pair of encoded values is given by:

(y1, y2) → arctan
(
y1
y2

)
. (9)

Consequently, the input and output variables of the FCN
are shown in Table 2 and Table 3, respectively.

During the offline training phase, we collect samples by
placing the receiver at different positions throughout the
room. The samples contain channel estimations for the Tx-
RIS and RIS-Rx channels, which will be later used as
training examples in the dataset. In a practical scenario,
to generate the output label for each sample, it is not feasible
to obtain the perfect CSI information for each cascaded
channel [3]. However, we may obtain the optimum phase
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TABLE 2. Input variables of our proposed FCN.

TABLE 3. Output variables of our proposed FCN.

shift configuration for the RIS for that receiver location
through an exhaustive search or advanced techniques (e.g.,
alternating optimization [19]). Note that this latter process is
very time-consuming, so it can only be used during the offline
training phase, but not for real-time operation. In the real-time
online inference phase, after the neural network is trained,
we assume that only a lightweight channel estimation process
is triggered for every channel coherence time, and the trained
FCN is used to predict the optimal phase shift profile of the
RIS.

V. RESULTS
A. SCENARIO
For performance evaluation, we consider a scenario with
one base station and one mobile user equipment oper-
ating in downlink in 73 GHz mmWave frequency band.
We used the open source link-level TU Vienna 5G sim-
ulator [31] both for generating a dataset and also for
evaluating the performance of our proposed FCN for RIS
phase shift estimation. We have considered different RIS
sizes N (i.e., the number of RIS reflecting elements)
and introduced an additional path loss in the transmitter-
receiver direct channel to simulate a link blockage (e.g.,
caused by an obstacle). Hence, the communication between
the BS and the UE is possible only through the RIS,
as depicted in Fig. 1.

B. DATASET GENERATION
For the sake of reproducibility of our results, we generated
different datasets using the link-level TU Vienna 5G sim-
ulator. We generated a different dataset for each RIS size
considered in our experiments. Then, we split each dataset
into training, validation and test sets.

For the dataset generation, in each time slot of the
simulation, the TU Vienna 5G simulator generates i.i.d.
channel matrices for the Tx-RIS and RIS-Rx channels. The
phase shifts of these elements have uniform distribution
between −π and π (thus they have zero mean and variance
3.289). For each time slot, we calculate the exact phase
shift of the RIS elements given by (3), which constitute the
output labels in our datasets. Thus, in a real-world setup the
output label represents the optimum phase shift configuration
for a given user location. We denote the total number of
time slots in our simulations (equivalently, the number of
distinguished labels in our datasets) as L. These L time slots
constitute one channel block. Then, to create our datasets,
as depicted in Fig. 2, we sequentially sample each channel
block S times, simulating the lightweight channel estimation
process. In the process, CEE is added to the actual Tx-
RIS and RIS-Rx channel matrices. This CEE has normal
distribution with zero mean and variance σ 2. The outcome
noisy channel matrices are then fed, as input data, to our
proposed FCNmodel. The variance of the CEE represents the
different factors affecting the quality of the lightweight esti-
mation process in a real-world scenario (e.g., noise, fading,
multipath).

FIGURE 2. Dataset generation process.

The dataset is then split in 70−10−20 percent ratios for
training, validation and testing. Inside each set, the samples
are randomly shuffled.
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C. BENCHMARKS
We compare the performance of our proposed FCN-based
RIS phase shift estimation technique (described in Sec. IV)
against the following three benchmark algorithms:

• Random phase shift configuration
• Direct usage of imperfect CSI
• Exact phase shift configuration (assuming perfect CSI)
The random phase shifts considers the random configura-

tion of each phase shift regardless of the CSI. This is the most
basic baseline approach for RIS phase shift optimization,
which is widely used in the related works, e.g., [32], as a
benchmark.

The direct usage of imperfect CSI implies configuring the
phase shifts of the RIS elements directly using the measured
ĝ and ĥ matrices contaminated with CEE (i.e., raw CSI
measurements without any denoising). In detail, the phase
shift of each element is given by (10).

φ̂i = 2π − ̸ ĝi − ̸ ĥi ∀ i. (10)

The exact phase shifts are used to analyze the gap from
other solutions to an idealistic phase shift configuration,
assuming perfect CSI is available.

D. PERFORMANCE EVALUATION METRICS
We use the following metrics for performance evaluation:

• Training time: Measures the amount of time required for
the training of the FCN.

• Number of epochs used for the training of the FCN.
• Phase shift estimation MSE using the FCN approach:
Measures the average of the squares of the prediction
errors. The error is defined as the difference between
the predicted value and the actual one. If we let φ̂ be
the values predicted by the FCN and φ∗ the true values,
we calculate the MSE as follows:

MSE =
1
N

N∑
i=1

(cos(φ̂i) − cos(φ∗
i ))

2

+
1
N

N∑
i=1

(sin(φ̂i) − sin(φ∗
i ))

2. (11)

• BER of the communication system using the data from
the test set, measured using the link-level TU Vienna 5G
simulator.

• Throughput of the communication system using the data
from the test set, measured using the simulator.

Note that the last two metrics (BER and throughput)
measure the RIS-enabled end-to-end communication system
performance. Thus, we will use them for assessing the overall
system performance of our proposed solution and comparing
it with benchmark approaches. In contrast, the first three
metrics above are used to assess the performance of the
FCN model. Therefore, we will use them for tuning the
hyperparameters of our proposed FCN.

E. FCN TRAINING AND HYPERPARAMETER TUNING
For simulations, we used MATLAB on an AMD Ryzen 7
5800H @ 3.20GHz laptop, to process the dataset, train the
FCN and provide the prediction results as output. We made
publicly available the source code for this processing in [33].

The simulation parameters used for the experiments are
detailed in Table 4. We configured the TU Vienna 5G
simulator to use the Two-Wave with Diffuse Power (TWDP)
channel model [34], which generalizes the Rayleigh and
Rician fading models. We set the parameters of the TWDP
model as follows: K = 100 and 1 = 0.

TABLE 4. Simulation parameters used for the experiments.

To analyze the best hyperparameters for our proposed FCN
approach, we studied the performance of the algorithms for
different sets of hyperparameters as presented in Table 5.

Given the complexity of examining every possible com-
bination of parameters, we independently studied the impact
on validation performance of each parameter for fixed values
of the others, considering different RIS sizes (i.e., 4, 16, and
64 elements).

TABLE 5. Value sweep for neural network hyperparameters.

We first selected the training algorithm, comparing the
performance (measured in terms of phase shift estimation
MSE) and training time provided by the Scaled conjugate
gradient (SCG) [35] and Gradient descent with momentum
(GDM) algorithms, for a RIS size of 4 elements, L = 100,
S = 100, σ 2

= 0.5, 1 hidden layer with 100 neurons and
explored a higher maximum number of epochs of 100000 (it
is only relevant for the GDM algorithm, because the SCG
converged in less than 1000 epochs). The results, shown in
Table 6, reveal that the SCG algorithm achieves almost the
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same phase shift estimation MSE as the GDM algorithm,
but with two orders of magnitude less training time. This
confirms the results reported in previous studies (e.g., [36])
indicating that the SCG algorithm outperforms GDM. Note
that we did not explore other training algorithms, since the
SCG is one of the fastest. For the rest of this paper, we only
use the SCG training algorithm.

TABLE 6. Comparison of the training algorithms.

Then, we swept the number of hidden layers of the FCN
to explore the training time and the phase shift estimation
error. We compared the performance in terms of MSE with
the direct usage of imperfect CSI for phase shift configuration
as a baseline.We executed the experiment for L = 100 labels,
S = 1000 samples per label, and CEE variance of σ 2

= 0.5.
The number of hidden layers varied from 1 and 5, while the
number of neurons in each hidden layer varied from 10 to
90 in steps of 20. Fig. 3 shows the phase shift estimation
MSE using the FCN and direct approaches. Fig. 4 shows the
training time for the FCN approach. The results in the figures
show the average of ten independent executions along with
95% confidence intervals. We only depict the results for a
size of N = 16 for the sake of brevity, but the results are
analogous for the other RIS sizes analyzed (i.e., 4 and 16).

FIGURE 3. Phase shift estimation MSE of the FCN and direct approach for
different number of hidden layers and neurons per hidden layer, for a RIS
size of N = 16.

As expected, increasing the number of hidden layers and
the number of neurons per hidden layer reduces the MSE, but
conversely results in a longer training time. For any number
of hidden layers (between 1 and 5), having only 10 neurons
in each hidden layer performs worse than the direct approach.
However, any other configuration outperforms that baseline,
even for a single hidden layer. The high variability in
the training time comes from the early stopping criterion

FIGURE 4. Training time of the FCN for different number of hidden layers
and neurons per hidden layer, for a RIS size of N = 16.

of 10 iterations with increasing validation error (to avoid
overfitting). Based on these results, we can observe that the
impact of the number of hidden layers on the estimation
performance is less than the impact of the number of
neurons per hidden layer (e.g., a single layer with 30 neurons
outperforms 3 hidden layers with 10 neurons). Moreover, the
training time is mostly dependent on the total number of
neurons in the FCN. Thus, for the rest of this work, we opt
for the simplest model of using just a single hidden layer.

In the next experiment, we explored the impact of
the number of neurons in the single hidden layer model.
We measured the phase shift estimationMSE and the training
time of our proposed FCN. We compared these metrics with
the direct approach for different number of neurons, varying
from 100 to 500 in steps of 100. The rest of the parameters
have been set as follows: L = 100, S = 1000, σ 2

= 0.5. The
results for the phase shift estimation MSE and training time
are shown in Fig. 5 and Fig. 6, respectively.

FIGURE 5. Phase shift estimation MSE for the FCN and direct approach
for different number of neurons per hidden layer, for three different RIS
sizes (N = 4, 16, 64).

The phase shift estimation MSE using the FCN-based
approach outperforms the direct approach for every number
of neurons above 100. Above 200 neurons, it seems that
the MSE does not improve, while the training time keeps
increasing with the number of neurons. Thus, we can choose
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FIGURE 6. Training time of the FCN for different number of neurons in the
hidden layer, for three different RIS sizes (N = 4, 16, 64).

200 neurons for the hidden layer as a good trade-off between
performance and model complexity.

Finally, we explored the impact of the number of samples
for each label (i.e., the number of noisy channel acquisitions
for each label) in the prediction quality and training time.
We varied the number of samples (S) from 100 to 1000 in
steps of 100, while setting the rest of the parameters as
follows: L = 100 and σ 2

= 0.5. The results for the MSE
and training time are shown in Fig. 7 and Fig. 8, respectively.

FIGURE 7. Phase shift estimation MSE for the FCN and direct approach
for different number of CSI samples per data label, for three different RIS
sizes (N = 4, 16, 64).

As expected, increasing the number of CSI samples results
in a lower MSE but also an increased training time, since
the size of the dataset increases proportionally. For values
of S below 500 samples, we can observe improvements in
terms of MSE, while above that value, the improvements
are negligible. We conclude that a value of 500 CSI
samples per data label is necessary to get an acceptable
level of performance. Therefore, the proposed FCN-based
channel denoising is practical in static or quasi-static wireless
conditions.

To sum up, after this training process, the final hyper-
parameters chosen for a good performance of the proposed
FCN approach are: SGD training algorithm, a single hidden
layer with 200 neurons and S = 500 CSI samples

FIGURE 8. Training time of the FCN for different number of CSI samples
per data label, for three different RIS sizes (N = 4, 16, 64).

per label. These parameters are chosen for the end-to-end
system performance evaluation described in the following
subsection.

F. END-TO-END SYSTEM PERFORMANCE
After configuring the hyperparameters of the FCN, we per-
formed further experiments to analyze the end-to-end
performance of the communication system, evaluating the
throughput and BER over the test set.

In the first experiment, we evaluated the throughput and
BER of the proposed FCN approach and the benchmark
approaches for different values of the CEE variance (σ 2).
Fig. 9 and Fig. 10 depict the throughput and BER,
respectively, when the number of data labels are fixed at
L = 100 and σ 2 is varied between 0 and 1.
As expected, the maximum throughput is achieved by the

optimum approach (i.e., assuming perfect CSI information
is available), while the random phase shift configuration
attains the lowest BER. Our FCN-based proposal attains
the second best results, outperforming the direct approach
for every value of the RIS size evaluated. Obviously, the
performance of the optimum and random remain constant
regardless of the variance of the CEE since none of them
are affected by the channel estimation process. Our proposal
outperforms the direct approach in terms of throughput for
every value of σ . Interestingly, the performance of our
proposed FCN approach increases with the RIS size. For
example, in the case of the largest RIS size analyzed (i.e.,
N = 64), our proposal achieves an optimum throughput
even for large σ 2 values, in which the communication
becomes unfeasible with both the direct and random
approaches.

In terms of BER, we can observe a similar behavior,
in which the optimum approach obtains the lowest BER,
while the random attains the highest BER, as expected.
In both FCN-based and direct approaches, the BER grows
with σ 2. The FCN-based approach outperforms the direct
usage of imperfect CSI for every configuration, with the
most notable differences observed for larger RIS sizes (e.g.,
N = 64), in which the BER values obtained by the FCN
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FIGURE 9. Throughput of the FCN, random, direct and optimum
approaches when the CEE variance varies between 0 and 1, for three
different RIS sizes (N = 4, 16, 64).

are very close to the optimum, while the direct one quickly
diverges.

Finally, we evaluated the throughput and BER values
obtained for different approaches while varying the number
of labels (L). Fig. 11 and Fig. 12 depict the throughput and
BER, respectively, for different values of L with a fixed value
of σ 2

= 0.5.
The results depict a similar trend, in which our proposal

behaves very close to the optimum, strongly outperforming
the direct and random approaches. For low RIS sizes (e.g.,
N = 4) the performance of our proposal deteriorates
(throughput decreases and BER increases) as the number
of data labels (L) increases. This result is expected since

FIGURE 10. BER of the FCN, random, direct and optimum approaches
when the CEE variance varies between 0 and 1, for three different RIS
sizes (N = 4, 16, 64).

increasing the number of labels complicates the prediction
process of the FCN (it is more difficult to distinguish different
labels). However, even for L = 100, the performance of
our proposal attains a significant improvement compared
to the direct approach, where our proposal attains a BER
of 0.14, which is a 30% improvement compared to the
BER of 0.2 achieved by the direct approach. Interestingly,
for RIS sizes larger than or equal to N = 16, the FCN-
based approach always reaches nearly optimal throughput
and BER irrespective of the number of data labels. These
results confirm the robust performance of our proposal
for non-small RIS sizes, showing a gap to the optimum
lower than 1%, whereas the direct approach introduces a
degradation in throughput higher than 60% and the random
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FIGURE 11. Throughput of the FCN, random, direct and optimum
approaches for different number of channel labels, for three different RIS
sizes (N = 4, 16, 64).

approach cannot provide a throughput higher than 0. Note that
further increasing the number of data labels beyond 100 will
require using a higher number of samples for maintaining the
performance.

Overall, these results show that our proposed FCN-based
approach can be used to reach a close to optimum perfor-
mance, significantly outperforming baseline approaches such
as random phase shifts or direct usage of imperfect CSI.
Our results for RIS sizes of 4, 16 and 64 elements show
that the throughput and BER achieved by the FCN approach
improve when the RIS size increases, at the cost of a longer
training time.

FIGURE 12. BER for the FCN, random, direct and optimum approaches
using different numbers of labels.

VI. CONCLUSION
RIS technology is envisioned to play a pivotal role in future
mobile networks. It can be used to adaptively manipulate
the phase shift of each reflecting element according to
the wireless channel conditions to focus the signal at an
intended location. However, determining the optimal phase
shift configuration for a given scenario is challenging since
an accurate CSI is needed and the number of RIS elements
is typically high. On the other hand, the optimization of
RIS using imperfect CSI has a non-negligible impact in the
achievable performance of the system.

In this paper, we proposed a novel FCN-based approach
for estimating the optimal RIS phase shift configuration
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from imperfect CSI measurements. Our experimental results
demonstrated that our proposed FCN model can close the
gap to the optimum system performance (e.g., BER and
throughput), while baseline approaches (e.g., a random
phase shift configuration or applying directly the noisy CSI
measurements) prove to be insufficient to sustain the system
performance. The proposed solution is robust even for large
CEEs and maintains a nearly optimal performance in terms
of throughput and BER for RIS sizes larger than 16 elements,
with a gap lower than a 1% to the optimum bound. This is
a substantial improvement compared to baseline approaches,
which have a gap to the optimum performance higher than
60%. The performance improvement is however limited in
the case of smaller RIS sizes (e.g., N = 4), where we can
observe a performance degradation up to 15% compared
to the optimum. The computational complexity of the FCN
model grows linearly with the RIS size.
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