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Natural scenes consist of complex feature distributions that shape neural

responses and perception. However, in contrast to single features like stimulus
orientations, the impact of broadband feature distributions remains unclear.
We, therefore, presented visual stimuli with parametrically-controlled band-
widths of orientations and spatial frequencies to awake mice while recording
neural activity in their primary visual cortex (V1). Increasing orientation but not
spatial frequency bandwidth strongly increased the number and response
amplitude of VI neurons. This effect was not explained by single-cell orienta-
tion tuning but rather a broadband-specific relief from center-surround sup-
pression. Moreover, neurons in deeper V1 and the superior colliculus
responded much stronger to broadband stimuli, especially when mixing
orientations and spatial frequencies. Lastly, broadband stimuli increased the
separability of neural responses and improved the performance of mice in a

visual discrimination task. Our results show that surround modulation
increases neural responses to complex natural feature distributions to
enhance sensory perception.

Receptive fields of neurons in the primary visual cortex (V1) are
sparse representations of the visual scenery and selectively respond
to prominent features, such as the orientation of elongated edges.
Yet, edge orientations in natural scenes are conditionally dependent
on each other and appear as specific combinations of common
orientations, especially horizontal and vertical edges*. The visual
system has, therefore, likely evolved to be well-tuned to the statistics
of these features in the natural environment and shows highly vari-
able and non-linear responses to complex visual stimuli**. Natural
scenes have been shown to improve stimulus-specific V1 population
responses’ and have also been used to improve models of visual
motion detectors®’. In fact, even individual V1 neurons respond with
high specificity to different natural images and exhibit complex
tuning properties that go far beyond what could be inferred by their

responses to simple sine-wave gratings or Gabor patches®’. The
conventional approach of studying the neural encoding of visual
information by using a limited set of simple visual stimuli is, there-
fore, inadequate to identify the key properties of neural responses in
the visual system because it only covers a very small range of the
possible visual feature distributions. An alternative approach is to
use natural scenes or images to identify neural response features to
complex stimuli that match the statistics of the environment'*2,
However, since natural images are not parametrically well-
defined”", very large sets of images and complex models are
required to identify meaningful neural response features. Moreover,
the presentation of large sets of images is often prohibited by the
limited number of neural responses that can be obtained for each
stimulus®”",
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Different approaches have been employed to study the neuronal
encoding of complex visual scenes. Quantification of natural images by
using a bank of visual filters allows an analytical description based on
different visual features, such as orientation, spatial frequencies, and
their higher-order correlations'. These filters mimic the tuning prop-
erties and receptive fields of visual cortical neurons so that their out-
puts provide a simple model for cortical responses to natural images.
The outputs from first and higher-order filters can then be used to
synthesize new images with similar features to the original image and
experimentally test neural responses and sensory perception. Experi-
ments in humans”, monkeys'®"?, and mice?® have shown that these
synthesized naturalistic textures can be perceived as similar to their
natural counterpart, in particular when specific higher-order correla-
tions of visual features are preserved. While this approach can break
down natural images into a set of higher-order parameters, the entire
parameter space is too large to be tested systematically and has mostly
been linked to visual processing in higher visual areas (HVAs)***°. How
higher-order parameters affect neural responses to low-level features
in V1, therefore, remains elusive”. In addition, the modulation of neural
responses by stimuli extending to the area surrounding the receptive
field of a visual neuron®? is usually not considered in these
algorithms.

An alternative approach focuses on identifying higher-order pat-
terns in adjacent image pixels* . Studies in humans, monkeys, and
rats have demonstrated perceptual sensitivity for different statistical
orders of these pixel patterns with the psychophysics matching natural
scene statistics**?. Correspondingly, neurons in the primary and
higher visual cortex are more sensitive to cardinal orientations, which
are also overrepresented in natural scenes>**?°. However, local pixel
patterns only represent a limited aspect of natural scenes, and it
remains unknown how responses to these patterns relate to more
global distributions of orientations or spatial frequencies. This is par-
ticularly important in the context of surround modulation, where local
stimuli within the receptive field of cortical neurons are strongly
modulated by the surrounding context, both for simple grating stimuli
but also for more complex natural scenes® . Correspondingly, spatial
correlations have also been shown to play an important role in the
perception of natural scenes'®%,

Several studies also used visual noise stimuli to characterize
neural responses to richer combinations of low-level stimulus
features®*°. Interestingly, such broadband stimuli that contain a
mixture of stimulus features increase neural responses, most likely due
to the recruitment of additional neurons with diverse tuning pre-
ferences for stimulus orientations and spatial frequencies®*****!, This
suggests that broadening the bandwidth of any visual feature with
specific tuning in cortical neurons, such as orientation or spatial fre-
quency, might be beneficial to elicit stronger responses from a diverse
population of visual neurons. Earlier modeling work also suggested
that such a diverse population of responding neurons might provide a
more accurate encoding of natural images and potentially improve
perceptual acuity®’. However, it remains unclear which low-level fea-
tures are most effective in increasing cortical network activity and if
the tuning of individual neurons or other factors, such as surround
modulation, are the most important contributors. Moreover, the
extent to which heightened neural responses to broadband stimuli can
truly enhance visual perception remains an open question.

To assess the impact of broadband stimuli on neural responses
and sensory perception, we therefore performed neural recordings
and psychophysical experiments in mice. We used random phase
textures, so-called motion clouds*, to create broadband visual stimuli
of different orientations or spatial frequency bandwidths. Motion
clouds allow the generation of parametrically well-defined stimulus
sets with specific feature distributions that can approximate the dis-
tributions of natural images. We then used two-photon imaging in
awake mice to measure the responses of VI in layer 2/3, exhibiting

diverse visual tuning properties to visual gratings**. Increasing the
orientation bandwidth activated more V1 neurons and also increased
their neural response amplitude. In contrast, increasing the spatial
frequency bandwidth modulated the activity of individual neurons but
did not increase the overall neural population response. A Gabor filter
model showed that this was not simply explained by the orientation
tuning of individual neurons but also by center-surround suppression.
Follow-up experiments confirmed this prediction, showing a clear
relation between lowered surround suppression and increased
broadband responses across individual neurons. Using high-density
electrophysiology, we also recorded from deeper cortical layers and
the superior colliculus (SC) and found that neurons were strongly
driven by mixed stimuli with large orientation and spatial frequency
bandwidth. Lastly, we trained mice to discriminate either the orienta-
tion or spatial frequency of motion cloud stimuli and found that
expanding the orientation, but not spatial frequency, bandwidth
improved perceptual performance. Our results demonstrate that sur-
round modulation is an important driver of increased neural responses
to complex visual stimuli, suggesting that cortical processing and
visual perception are optimized for visual stimuli that match the sta-
tistics of natural sensory inputs.

Results

Broad orientation bandwidth increases the recruitment and
response amplitude of V1 neurons

Natural scenes contain edges with a broad range of orientations that
can strongly vary in different spatial locations (Fig. 1a). To test how
neurons in the visual cortex respond to different ranges of orientation
distributions (orientation bandwidth), we designed different sets of
motion cloud stimuli to approximate a sensible range of orientation
bandwidths that are also found in natural images****’ (Fig. 1b).
Broadband stimuli had a bandwidth of 45° to match the dominant
orientation bandwidths of natural images (Fig. 1a)* while mid-range
stimuli (25°) were chosen to be between broad- and narrow-range
stimuli with a 5° bandwidth. All motion clouds had a central orientation
of 0° and a central spatial frequency of 0.04 cpd to match the response
tuning of neurons in mouse V1 and HVAs***%*°, We then presented 5-s
long, rightward drifting motion cloud stimuli (1Hz) in a pseudoran-
dom order (with 5-s mean-gray inter-stimulus interval) to awake, head-
fixed mice that were passively sitting in a tube.

Using 2-photon imaging, we then measured the neural responses
of layer 2/3 neurons in V1, ubiquitously expressing the calcium indi-
cator GCaMPéf (Fig. 1c, d). To evaluate the impact of different orien-
tation bandwidths on the number of responding neurons, we first used
a one-sided Mann-Whitney U test (p < 0.05) to identify all neurons with
a significant response for each stimulus condition against baseline.
Where possible, we used a linear mixed effects (LME) model, which
accounts for nested data from multiple animals, to test for significant
differences across conditions. Then, we followed with a Bonferroni
correction for the number of performed tests (see “Methods”).

Further, expanding the orientation bandwidth induced a more
than two-fold increase in the number of visually responsive neurons
across all sessions (Fig. 1e), demonstrating that broader orientation
bandwidth stimuli recruit a much larger population of neurons (nor-
malized responding cell count, both tested against the narrow stimu-
lus: mid range (25°)=1.38+0.09, LME model test against narrow,
T=4.64, p=4.9 x107; broad range (45°) =2.2+0.23, LME model test
against narrow, 7=5.58, p=3.04 x107%; mean =s.e.m, n=18 sessions
from 9 mice. See also per mouse comparison in Supplementary
Fig. Sla. Percentage of visually responsive neurons over total neurons
per session: narrow range=11% + 1%; mid-range =15% +2%; broad
range =21%+2%). In addition to increasing the total number of
responding neurons, expanding the orientation bandwidth also
strongly increased neural responses, which were the largest for
the broad orientation bandwidth (Fig. 1f, AF/Farow =116% + 0.04%;
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Fig. 1| V1 neurons are most responsive to broad orientation bandwidths.

a Mean orientation distribution from natural images (example images adapted
from Tkacik G et al., “Natural images from the birthplace of the human eye “, PLoS
ONE 6: 20409 (2011), n = 1077 images, shading shows s.e.m.). Single-cell selectivity
was tested at specific orientations (dashed lines, Fig. 3, Supplementary Fig. S2).
Regions 1, and 2 show mid-range or narrow orientation bandwidth examples.

b Same as (a) for broadband orientation bandwidth stimuli (5°, 25°, and 45°, n =300
frames each). ¢ Awake, head-fixed mice viewed differing orientation bandwidth
stimuli while 2Photon-imaging V1 neural activity in layer 2/3. d Example session,
showing V1 neural responses to different orientation bandwidths (5°, 25°, 45°, blue
masks show responsive cells, scale bar: 100 um, corresponding stimuli at top left).
Traces show single-trial responses of four example cells with different orientation
bandwidth preferences (scale bar: 1s,20% AF/F). e Counts of responsive neurons to
each orientation bandwidth, normalized by the number of cells responding to the
5° bandwidth (n =18 sessions from 9 mice). f Difference between mean response

45

Orientation Bandwidth (°)

25
Orientation Bandwidth (°)

amplitude versus baseline for each orientation bandwidth. Shown are neurons with
a significant response for at least one condition (1394 out of 4892 neurons,

29% + 2% neurons per session; mean + s.e.m.). The horizontal line shows the median
narrow response amplitude. g Same as () for neurons that consistently responded
to all bandwidths (12% of responding cells per session, 252 total neurons). The
horizontal line shows the median narrow response amplitude. h Same as (f) for
neurons that preferentially responded to narrow-band (left violin plots, 7% of
responding cells per session, 152 in total), or to broadband (right violin plots, 23% of
responding cells per session, 487 neurons in total). Box plots indicate the median
(horizontal line), interquartile range (box bounds: 25th-75th percentiles), and
whiskers (1.5 x interquartile range). The dotted line is the narrow-band median.
Stars mark significant (Bonferroni correction for two tests, a = 0.025) differences
from two-sided tests against narrow condition: LME test (panel e) Wilcoxon signed
rank (panels f, g) Wilcoxon ranked sum (panel h). Panel (c) was created in BioR-
ender. Balla, E. https://BioRender.com/g051789 (2025).

AF/Fia =1.44% + 0.04%, Wilcoxon signed rank test against narrow,
p=521x10"% AF/Fproaq=2.29%+ 0.06%, Wilcoxon signed rank test
against narrow, p=>5.25x10"%, mean +s.e.m., n=1394 neurons from

18 sessions, 9 mice, see also per mouse comparison in Supplementary
Fig. S1b).

Expanding the orientation bandwidth, therefore, increased
both the number and amplitude of stimulus-responsive V1 neu-
rons. Interestingly, this increase in response amplitude was also
seen in neurons that consistently responded to all orientation
bandwidths (Fig. 1g). These common responders significantly
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responded to all bandwidths (one-sided Mann-Whitney U test,
p <0.05) but also strongly increased their response amplitude to
broadband orientation stimuli (Fig. 1g, AF/Farrow = 3.39% + 0.14%;
AF/Fniqa = 3.67% + 0.13%, Wilcoxon signed rank test against narrow,
p=2.6x1073; AF/Fpr0aq = 5.05% + 0.22%, Wilcoxon signed rank test
against narrow, p=2.1x10"%, mean +s.e.m., n=252 neurons from
18 sessions, 9 mice). This indicates that the increase in neural
response amplitude was not solely explained by the recruitment
of additional neurons but rather by a general increase in neural
responsiveness.

To further assess if increased neural responsiveness was due to
the recruitment of broadband-selective neurons, we calculated a
bandwidth selectivity index (calculated as the response difference
between a preferred orientation bandwidth and the mean of the
response to the other two bands, divided by their sum) and identified
bandwidth-selective cells using a shuffle control (see “Methods”). Most
bandwidth-selective neurons preferred broadband stimuli, while a
smaller subpopulation preferred narrowband stimuli (Supplementary
Fig. S1d). This could indicate that additional neurons were recruited
due to their orientation tuning being further away from the narrow 5°
range, while narrowband-selective neurons with close to 5° tuning
would become unresponsive. However, surprisingly few neurons were
significantly bandwidth-selective (n =25, 7, 76 neurons for the narrow,
mid, and broad range, respectively, versus 252 common responders),
suggesting that increased responsiveness to broadband stimuli was
not just driven by broadband-selective neurons.

Lastly, we compared the response amplitude of narrow- versus
broadband-selective neurons to test if higher broadband response
magnitude was driven by stronger responses of broadband-selective
neurons or rather a general increase in responsiveness, as in
the common responders (Fig. 1g). Here, we used a less conservative
approach to identify bandwidth-selective neurons by selecting all
cells that only significantly responded to either the narrow- or
broadband condition (one-sided Mann-Whitney U test, p <0.05). As
expected, each group had their strongest responses to either narrow-
or broadband stimuli but the response amplitudes in their respective
preferred stimulus condition were almost similar (Fig. 1h, maximum
response mean+s.e.m.: AF/Faow 3.36% + 0.28%, n=152 neurons,
AF/Fproad =3.60% + 0.17%, n = 487 neurons; Wilcoxon ranked sum test
for narrow versus broad, p=0.089).

Together, these results show that broadband orientation stimuli
strongly increase the number and amplitude of neural responses.
However, this effect appears to be due to a general increase in neural
responses instead of the recruitment of a broadband-selective sub-
population with a stronger visual response magnitude.

Expanding spatial frequency bandwidth does not increase V1
responses
Similar to stimulus orientations, natural scenes also contain a large
range of spatial frequencies. Spatial frequency distributions in natural
scenes follow a power law, with higher power in the low-frequency
bands for broad image features and lower power in the high-frequency
bands for fine structural details?®*® (Fig. 2a). V1 neurons have also been
characterized for their spatial frequency tuning®*, so we tested if
expanding the spatial frequency bandwidth of visual stimuli would
affect neural responses similarly to orientation bandwidths. We,
therefore, created motion cloud stimuli with different spatial frequency
bandwidths (0.004 cpd, 0.04 cpd, and 0.4 cpd) with a vertical orien-
tation, again approximating the distributions in different natural scenes
(Fig. 2a, b). Visual stimuli were presented pseudo-randomly while
measuring the activity of V1 neurons as described above (Fig. 2¢, d).
In contrast to orientation bandwidth, expanding the spatial fre-
quency bandwidth did not increase the number of visually responsive
neurons across sessions (Fig. 2d, e; normalized responding cell count-
both tested against narrow condition: mid-range (0.04 cpd) =1.03+ 0.1,

LME model test against narrow: 7=0.35, p=0.72; broad range
(0.4 cpd) =1.3 + 0.24, LME model test against narrow, T =143, p=0.16;
n=16 recordings from 9 mice. See also per mouse comparison in
Supplementary Fig. Sle. Percentage of responsive neurons over total
neurons per session: narrow range=7%+1%, mid-range=7% +2%;
broad range = 9% +1%, mean + s.e.m.). Correspondingly, we found no
significant increase in the response amplitude to the broad versus
narrow spatial frequency bandwidth stimuli for all responsive neurons
(Fig. 2f; AF/Fparrow = 1.7% £ 0.1%; AF/F g =1.9% + 0.1%; Wilcoxon signed
rank test against narrow: p=0.09; AF/Fy;02q4=1.9% + 0.1%; Wilcoxon
signed rank test against narrow: p=0.25, meanzts.e.m, n=_888
neurons from 16 sessions, 9 mice, see also per mouse comparison in
Supplementary Fig. Sle). There were also no differences in response
amplitude across stimulus conditions for common responders (Fig. 2g,
AF/Fparrow =4.9% + 0.4%; AF/Fniq = 6% + 0.5%, Wilcoxon signed rank test
against narrow: p = 0.11; AF/Fy,0aq = 4.6% * 0.4%, Wilcoxon signed rank
test against narrow: p =0.71, mean + s.e.m., n = 68 neurons).

A potential reason for the lack of increased responses to broad-
band spatial frequency stimuli could be that V1 neurons already exhibit
broad spatial frequency tuning, resulting in overlapping activation of
these neurons by different spatial frequency bandwidths?’. This should
result in a larger percentage of neurons that consistently respond to all
spatial frequency bandwidth conditions. However, a smaller percen-
tage of all stimulus-responsive neurons were common responders for
broadband spatial frequency versus broadband orientation stimuli
(11.2% versus 18.1%, respectively, Figs. 1g and 2g). Moreover, neurons
that were significantly bandwidth-selective against a shuffle control
were more common for broadband spatial frequency stimuli com-
pared to broadband orientation stimuli (11.1% versus 7.7%, respec-
tively). Lastly, an equally large amount of these bandwidth-selective
neurons preferred either narrow- or broad-range stimuli, whereas mid-
range selective neurons represented a smaller subpopulation (Sup-
plementary Fig. S1h). Broadening spatial frequency bandwidth, there-
fore, induced an equal amount of up and down-modulation of neural
responses in differently tuned neurons, but the total number and
amplitude of responsive neurons remained unchanged. In line
with this finding, we also found a similar response amplitude when
selecting only neurons that significantly responded to either narrow-
or broadband spatial frequency stimuli (Fig. 2h, maximum response
meants.e.m AF/Foarow=4.32% + 033%, n=133 neurons,
AF/Fproad =4.99% + 0.45%, n =132 neurons; Wilcoxon ranked sum test
for narrow versus broad: p=0.52).

To further test if the tuning of individual neurons differed between
orientation and spatial frequency relative to the range that we used in
the motion cloud stimuli, we performed additional recordings and
presented simple gratings with different combinations of orientation
and spatial frequency (Supplementary Fig. S2). We tested the feature
tuning to a range of orientations and spatial frequencies that were most
prominent in natural images and, therefore, used to create our visual
stimuli (dashed lines in Figs. 1a, 2a). While we observed diverse neural
tuning to the presented gratings, the tuning width of responding neu-
rons covered a comparable range of orientations and spatial frequencies
relative to the used orientation or spatial frequency bandwidths. This
further argues against the hypothesis that the lack of increased neural
responses to broadband spatial frequency stimuli was because of par-
ticularly broad spatial frequency tuning that prevented further recruit-
ment of specific subpopulations. Instead, stronger responsiveness to
broader orientation bandwidths appears to be a specific feature of V1
neurons that does not generalize to spatial frequency.

A Gabor filter model with surround suppression accurately
predicts broadband responses

A parsimonious explanation for the increased neural recruitment and
responsiveness to broader orientation bandwidth would be the addi-
tional recruitment of neurons with orientation tuning that is outside of
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images adapted from Tkacik G et al., “Natural images from the birthplace of the
human eye “, PLoS ONE 6: €20409 (2011), n=1077 images, shading shows s.e.m.).
Single-cell selectivity was tested at specific spatial frequencies (dashed lines, Sup-
plementary Fig. S2). b Same as (a) for broadband stimuli with different spatial
frequency distributions (0.004 cpd, 0.04 cpd, and 0.4 cpd, n =300 frames each).
¢ Awake, head-fixed mice viewed differing orientation bandwidth stimuli while
2Photon-imaging V1 neural activity in layer 2/3. d Example session, showing V1
neural responses to different spatial frequency bandwidths (0.004 cpd, 0.04 cpd,
0.4 cpd, purple masks show responsive cells, scale bar: 100 um, corresponding
stimuli at top left). Traces show single-trial responses of 4 example cells with dif-
ferent spatial frequency bandwidth preferences (scale bar:1s, 20% AF/F). e Counts
of responsive neurons to each spatial frequency bandwidth, normalized by the
number of cells responding to 0.004 cpd bandwidth (n =16 sessions). f Difference
between mean response amplitude versus baseline for each orientation bandwidth.
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Shown are neurons with a significant response for at least one condition (603 of
3185 neurons, 19% + 2% neurons per session; mean = s.e.m.). The horizontal line
shows the median narrow response amplitude. g Same as (f) for neurons that
consistently responded to all bandwidths (68 neurons, 9% of responding cells
per session). The horizontal line shows the median narrow response amplitude.
h Same as (f) for neurons that preferentially responded to the narrow-band sti-
mulus (left violin plots, 24% of responding cells per session, 133 in total), or the
broadband stimulus (right violin plots, 26% of responding cells per session, 132
neurons in total). Box plots indicate the median (horizontal line), interquartile
range (box bounds: 25th-75th percentiles), and whiskers (1.5 x interquartile range).
The dotted line is the narrow-band median. No significant (Bonferroni correction
for two tests, a = 0.025) differences from two-sided tests against the narrow con-
dition: LME test (panel e) Wilcoxon signed rank (panels f, g) Wilcoxon ranked sum
(panel h). Panel (c) was created in BioRender. Balla, E. https://BioRender.com/
2051789 (2025).

a narrow orientation bandwidth stimulus. However, our earlier find-
ings, such as the increased response amplitudes in common respon-
ders when expanding the orientation bandwidth (Fig. 1h) and the lack
of a corresponding effect for broadband spatial frequency stimuli,

appeared to be at odds with this hypothesis. To create a theoretical
prediction on the relation between orientation tuning and the corre-
sponding responses to broadband orientation stimuli, we designed a
rich Gabor-filter-based model representing the receptive field
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properties of V1 neurons®*° (Fig. 3a and Supplementary Fig. S3 and see
“Methods”). The Gabor filters covered the same range of orientations
and spatial frequencies contained in our visual stimuli (Supplementary
Fig. S3). In addition, we performed further recordings of responses to
narrow and broad orientation bandwidth stimuli, for which we also
measured the preferred orientation tuning. We then compared
response amplitudes evoked by narrow and broad orientation stimuli,
depending on the preferred orientation of V1 neurons (Fig. 3b, c).

As expected, responses to narrow bandwidth stimuli were related
to orientation tuning, with neurons tuned to the 0° central orientation
responding the strongest. In contrast, no clear tuning dependence was
present for responses to the broadband orientation stimuli (Fig. 3b, c).
The Gabor filter model also reproduced this general dependence of
neural responses on orientation tuning (yellow lines show best-model
fits). However, the simple “tuning only” model predicted a much
stronger orientation dependence of response amplitudes than
experimentally observed, especially for the narrow bandwidth
responses of 0°tuned neurons (Fig. 3b, ¢; R’uning only=—1.266).
Because narrow stimuli have a more regular spatial structure than
broadband orientation stimuli, we hypothesized that this mismatch
could be explained by the surround suppression of neural responses.
We, therefore, added a modulation of the Gabor responses in the
image center by responses of the spatially surrounding Gabors with

the same orientation tuning (Supplementary Fig. S4). This expanded
“suppression” model accurately described the orientation dependence
of neural responses to both narrow and broad orientation bandwidth
stimuli and obtained a much better fit to the measured data (red lines
show best-model fits; R%yppresion = 0.584).

Based on the response amplitudes towards narrow and broad
orientation bandwidth stimuli, we also computed an “orientation
response modulation index” (ORI RMI) as the difference between
narrow and broad orientation bandwidth responses, divided by their
sum. As hypothesized, the increase in ORI RMI was strongest for
neurons with orientation tuning further away from the 0° central
orientation (Fig. 3d, ORI RMl45.=0.12+0.04, T=2.79, p=0.01; ORI
RMl,,5.=0.08 £0.04, T=211, p=0.04; ORI RMlg=-0.03+0.04,
T=-0.90, p=0.37; ORI RMl,, 5»=0.10%0.04, T=2.4, p=0.02; ORI
RMls5-=0.13+0.04, T=3.74, p=107 mean+s.e.m., LME model test
against zero, n =11 recordings from 5 mice).

In agreement with the better fit to response amplitudes (Fig. 3b, c),
only the surround model accurately predicted the broadband mod-
ulation of neural response amplitudes across all orientation tunings
(Fig. 3d, red line, R%yppresion = 0.395). In contrast, the simple tuning-
only model predicted a stronger decrease in neural response ampli-
tude for neurons with 0° tuning that was not seen in the measured
responses (Fig. 3d, yellow line R’wning only = —1.67). Similar to neural
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response modulation, we also observed a clear increase in the
recruitment of neurons with orientation tuning that was further away
from the central 0° orientation (Fig. 3e). To account for this modula-
tion of neural recruitment in the model, we linearly rescaled the model
fit to response modulation, assuming that increased response ampli-
tudes should translate into observing a larger fraction of responding
neurons. Again, the model that included surround suppression
obtained a more accurate fit of the experimental data as the tuning-
only model (R%wning onty = 0.563, R%yppresion = 0.889).

As in our earlier recordings (Fig. 2), expanding the spatial frequency
bandwidth did not have an impact on neuronal response amplitudes,
irrespective of their orientation tuning (Supplementary Fig. S5a,
spatial frequency response modulation index (SF RMI): SF
RMI45.=-0.06 £ 0.06, T=-137, p=0.19; SF RMI 5 5.=-0.06 + 0.05,
T=-138, p=0.18; SF RMlp-=-0.12+0.07, T=-1,37, p=0.08; SF
RMlIy, 5-=-0.03+0.09, T=-0.41, p=0.68; SF RMIlys-=~-0.01 + - 0.06,
T=-0.17, p=0.87, mean t+s.e.m., LME model test against zero, n=11
recordings from 5 mice). Correspondingly, we also found no changes in
the recruitment of visually-responsive neurons or a clear dependence on
their orientation tuning (Supplementary Fig. S5b).

Together, these results suggest that orientation tuning, as well as
surround inhibition, are important factors in understanding broad-
band response modulation in V1. Importantly, the model predicted
that, due to their more consistent spatial structure, surround sup-
pression should be highest for narrow bandwidth stimuli, which could
explain the corresponding increase in neural responses to broadband
orientation stimuli as surround suppression is lifted.

Surround modulation is crucial to predict broadband responses
of individual neurons

To directly test the effect of orientation tuning and surround mod-
ulation on broadband responses of individual neurons, we performed
additional experiments where we presented a set of narrow and
broadband stimuli to awake 2Niell] mice, expressing GCaMP6s in
excitatory neurons (Fig. 4a). All stimuli consisted of motion clouds
with a central spatial frequency of 0.04 cpd and a 0° central orienta-
tion (Supplementary Movies 1-4). The “narrow” condition consisted of
motion clouds with narrow spatial frequency and orientation band-
width (0.004 cpd and 5°, respectively). The “SF” condition consisted of
broad spatial frequency and narrow orientation bandwidth stimuli (0.4
cpd and 5°), while the “ORI” condition consisted of narrow spatial
frequency and broad orientation bandwidth stimuli (0.04 cpd and
45°). Lastly, the “mixed” condition consisted of both broad spatial
frequency and orientation bandwidth (0.4 cpd and 45°) to assess their
combined impact on neural responses (Fig. 4b). These stimuli were
presented either full-field, covering the entire screen, or restricted to
the center of the receptive field location for the majority of recorded
neurons in each session. The size of the center stimulus was 15° to
match the maximally stimulating receptive field size of V1 neurons in
layer 2/3% (see also Supplementary Fig. S6 and “Methods”). The aver-
age RF size of the population across all imaging sessions was
30.45° + 2.04°, ensuring that the center stimulus was placed within the
receptive field of the center-responding cells.

To also identify differences in the higher order features of these
different stimulus conditions, we quantified the salient orientations
and stimulus regularity (linear predictability) in the center relative to
the surround by computing the raw coefficient correlation™ (Fig. 4c).
While expanding the spatial frequency bandwidth still preserved the
elongated structure of the underlying gratings, expanding orientation
bandwidth resulted in the emergence of irregular lattice-like struc-
tures, which were less redundant than coherent elongated edges.
Moreover, combining broad spatial frequency and orientation band-
width in the mixed condition abolished most regular structures,
leading to a strong decrease in stimulus predictability in the center
from the surround. Furthermore, we found a clear reduction in higher-

order image structure, computed as coefficient magnitude statistics'®,
in the mixed condition (Supplementary Fig. S7). Interestingly, higher-
order structures were increased in the ORI condition, potentially
explaining its saliency to the V1 layer 2/3 population.

Similar to our earlier results, neural responses to broadband
orientation, but not spatial frequency, stimuli were larger compared to
the narrow condition. The same effect was seen for the mixed condi-
tion, which elicited similar responses to the ORI condition (Supple-
mentary Fig. S8, all full-field responding neurons). This effect was also
largely independent of the animal’s behavioral state: while running
generally increased visual responses, responses to the ORI condition
remained consistently larger than responses to the narrow condition
during both running and resting trials (Supplementary Fig. S9).

To isolate the impact of surround modulation on single-cell
broadband responses, we selected neurons with a receptive field
center that matched the location of the center stimulus and sig-
nificantly responded to at least one of the center stimulus conditions
(one-sided Mann-Whitney U test, p < 0.05, see “Methods”). In addition,
we used pupil tracking to confirm that mice did not move their eyes,
which could have changed the position of the neural receptive fields
on the screen (Supplementary Fig. S6). For full-field stimuli, these
neurons showed increased response amplitudes for the ORI condition
and a similar trend for the mixed condition (Fig. 4d, AF/
Frarrow = 3.27% + 0.5%; AF/Fsg=2.56% + 0.35%, Wilcoxon signed rank
against narrow, p = 0.11; AF/Fog, = 3. 76% + 0.49, p=5.9 x107%; mixed =
2.98% +0.32, p=0.08; mean +s.e.m., n=378 neurons from 5 mice).
Importantly, this effect was not seen when stimuli were presented only
to the receptive field centers of the recorded neurons without visual
stimulation of the surround. Here, neural responses were similar
between the narrow and ORI conditions, while responses to the SF and
mixed conditions were lower than narrow responses (Fig. 4e, AF/
Frarrow = 4:42% + 0.37%; AF/Fsg=4.39% + 0.52%, Wilcoxon signed rank
against narrow, p=7.8x107 AF/Fop=4.56%+0.45%, p=0.66;
mixed =4.47% + 0.51%, p=0.013; response amplitude mean +s.e.m.,
n =378 neurons from 5 mice). This suggests that broadband stimula-
tion may not primarily increase neural responses by increasing the
feed-forward inputs to diversely tuned neurons but rather through a
reduction of surround inhibition. To estimate the impact of surround
modulation, we computed a surround modulation index (SMI) for each
condition, defined as the difference between the full-field and center
response divided by their sum. The more negative the SMI index, the
stronger the surround inhibition for a given neuron. We found clear
surround inhibition for the narrow stimulus condition that was still
present for broad spatial frequency bandwidth but significantly lower
for the broadband orientation and mixed conditions (Fig. 4f,
SMlparrow = — 0.04 £ 0.01; SMIgg =-0.04 + 0.01, Wilcoxon signed rank
test against narrow, p=0.06; SMlog;=-0.02+0.01, p=2.28x107;
SMlmixed == 0.02+0.01, p=1.42x107, surround modulation index
mean * s.e.m., n =378 neurons from 5 mice). Expanding the orientation
bandwidth, therefore, reduces center-surround inhibition of cortical
neurons, which could be due to the lower predictability of the recep-
tive field center from the surround. The lower center responses for the
SF condition also suggest that broadband spatial frequency stimuli
provide weaker feedforward inputs to V1 neurons than narrow stimuli,
which might also contribute to the lack of increased neural respon-
siveness to full-field SF stimuli.

To assess their respective importance, we then combined sur-
round modulation, orientation tuning, and center responses to predict
the broadband responses of individual neurons. We again used an LME
model to account for mouse identity and included all three factors as
regressors to predict broadband modulation for each stimulus con-
dition (Fig. 4g; see “Methods”). Aside from orientation tuning, for each
neuron, we also used SMl,,rrow to indicate their surround modulation.
To also include changes in feedforward input, we computed the center
response difference between a given modality and the narrow
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Fig. 4 | Broadband visual stimuli modulate neural responses by reducing sur-
round suppression. a Visual stimulation and imaging setup. b Example frames
from each stimulus category. Stimuli had a central spatial frequency of 0.04 cpd
and orientation of 0° and shown full-field or through a 15° circular aperture, cen-
tered on the receptive field of imaged neurons. Frame colors indicate the condition
identity throughout the figure. c Raw coefficient correlations were computed as the
central samples of the spatial auto-correlation of lowpass filtered stimuli. d Mean
response amplitude difference versus baseline for each full-field stimulus condi-
tion. Shown are all neurons with a receptive field at the center stimulus and sig-
nificant responses to any of the center stimulus conditions (378 out of 8210
neurons). The horizontal line shows the median for the narrow stimulus. e Same as
panel (d) but with responses to each center stimulus condition. f Surround mod-
ulation index for individual neurons, calculated as the difference between full-field
responses in (d) minus center stimulus response in (e) divided by their sum. The
horizontal line shows the median for the narrow stimulus condition. g Illustration
of the linear mixed effects (LME) model with multiple regressors. Surround

modulation, orientation tuning, and center responses were used to predict single-
cell broadband modulation for each condition. The model also considers the
mouse identity for each neuron (see “Methods”). h Explained variance of the full
LME model for each stimulus condition and T statistics and p-values for each
regressor. Significant regressors are marked in red. i Polar plot to compare T sta-
tistics results for each stimulus condition. Each color-coded triangle shows the
normalized T-values for each regressor, indicating its respective contribution to the
model prediction. Across all conditions, surround modulation was the most
important predictor. Box plots indicate the median (horizontal line), interquartile
range (box bounds: 25th-75th percentiles), and whiskers (1.5 x interquartile range).
Stars mark significant (Bonferroni correction for three tests, a = 0.0167) differences
from two-sided tests against the narrow condition: Wilcoxon signed rank (panels
d-f), LME test (panel ). For visualization only, outliers were excluded from dis-
tributions. Panels (a and g) were created in BioRender. Balla, E. https://BioRender.
com/g051789 (2025).

condition. The model accurately predicted broadband modulation of
individual neurons in all three conditions (Fig. 4h). While all regressors
made different contributions in each stimulus condition, surround
modulation showed the strongest and most consistent impact for all
broadband stimuli. Orientation tuning had a significant impact on the

orientation bandwidth expansion, whereas the center enrichment had
a smaller but more consistent impact for all conditions (Fig. 4h, i).
Together, these results show that surround modulation strongly
contributes to neural responses to broadband stimuli. A potential
mechanism for the increased responsiveness to broad orientation
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b Widefield responses averaged over the 2 s stimulus period. Mean responses to the
narrow stimulus condition (top left) were subtracted from mean responses to
broadband stimulus conditions. Shown are average response differences for the SF
stimulus condition (top right), ORI stimulus condition (bottom left), and mixed
stimulus condition (bottom right). ¢ Average response differences for the ORI
stimulus condition across different visual cortical areas (n =8 sessions from 4
mice). d Individual trial response amplitudes to each stimulus integrated over the
2 s stimulus period (n =408 trials from 4 mice). e Electrophysiological recordings.
Left: Example brain slice from the V1 center, showing red fluorescence from the
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200 um). Different depths are marked by dashed white lines. Right: LFP responses
to each stimulus condition across different cortical depths. Colors show voltage
changes after stimulus onset relative to baseline. Horizontal white lines show
depth, as in the histology panel on the left. f The difference in LFP responses for
each stimulus condition (SF, purple; ORI, dark blue; mixed, brown) compared to
the LFP response to the narrow stimulus across depths. Error bars show mean and
s.e.m. (n =6 recordings from 3 mice). Box plots indicate the median (horizontal
line), interquartile range (box bounds: 25th-75th percentiles), and whiskers (1.5%
interquartile range). Stars in all panels mark significant differences from a two-sided
LME model test against narrow. The significance threshold was a = 0.0167 after
Bonferroni correction for performing three tests. For visualization only, outliers
were excluded from distributions in panels (c, d). Panel (a) was created in BioR-
ender. Balla, E. https://BioRender.com/g051789 (2025).

bandwidths could, therefore, not only be the recruitment of neurons
with diverse orientation tuning but also a release from surround inhi-
bition due to the reduced predictability of the receptive field center.

Broadband visual stimuli increase neural responses in cortical
and subcortical areas

Earlier work suggested that broadband stimuli have distinct effects on
neural responses in different HVAs*®. We, therefore, used widefield
calcium imaging to measure the impact of narrow, SF, ORI, and mixed
stimuli on different visual areas. We again recorded from awake mice,
head-fixed on a wheel, and presented full-field stimuli while imaging
cortical activity through the cleared intact skull. All data was aligned to
the Allen Common Coordinate Framework®, and we additionally
confirmed the location of V1 and HVAs using visual field sign
mapping**°>* (Fig. 5a). Presentation of the narrow stimulus resulted in
strong activation of V1 and the surrounding HVAs (Fig.5b, top left).
Visual responses were strongest in the left hemisphere, contralateral to
the stimulus presentation, but we also observed some ipsilateral
activity, especially in the binocular region of V1. Another cause for
ipsilateral responses could also be reflections in the setup that reached
the other eye. For our analysis, we focused on the visual areas in the
contralateral hemisphere. Expanding either spatial frequency and/or

orientation bandwidth resulted in increased cortical activity that was
mainly restricted to V1 (Fig. 5b). To verify this, we also computed the
difference between responses towards ORI and narrow stimuli for V1
and the secondary visual areas (Fig. 5¢). Here, V1 displayed the stron-
gest increase in responses for ORI versus narrow stimuli with
0.81% +0.08%, confirming that broadband modulation was more
pronounced in V1 compared to the surrounding HVAs (mean + s.e.m.;
ORI versus narrow: p=0.0048, T=4.34, LME model, n=8 sessions
from 4 mice). In particular, stimuli with broader orientation bandwidth
evoked significantly higher activity in V1 compared to narrow or SF
stimuli (Fig. 5d, mean V1 activity: AF/Fnarrow=1.90% +0.22%; AF/
Fsp=2.24%+0.14%, LME test against narrow: T=1.73, p=0.11; AF/
Fori=2.71% + 0.25%, T=4.34, p=7x10"% AF/Fmixed=2.52%+ 0.17%,
T=2.82, p=0.014, meants.e.m., n=8 recordings from 4 mice).
However, responses to mixed stimuli were not stronger compared to
broad orientation bandwidth alone (LME test for mixed versus ORI,
-0.77, p=0.45).

To further assess how expanding orientation and spatial fre-
quency bandwidth modulate neuronal responses across all cortical
layers, we then performed electrophysiological recordings in V1
using high-density Neuropixels probes® in awake mice (Fig. Se, left).
Mice were again moving on a wheel, and we presented the same
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stimuli as described above. All stimulus conditions induced a clear
modulation of local field potentials (LFPs), with significantly
increased response modulation during broadband stimulation com-
pared to the narrow condition (Fig. Se, right; mean LFP response
difference to narrow across layers: ALFPsg =4.28 pV £1.32uV, T=3.71,
p=1.6x1073 ALFPor=6.44nV+2.82nV, T=291, p=9.5x1073;
ALFPixed=9.720V£2.6 uV, T=3.78, p=13x10"> mean+s.e.m.,
LME model test against zero, n=6 recordings from 3 mice). The
earliest responses occurred in Layer 4 (300-500 um), with the most
pronounced subsequent activation in the deeper cortical layers. In
agreement with our two-photon imaging results in superficial layers,
broadband orientation stimuli induced stronger response modula-
tion compared to broadband spatial frequency stimuli, which was
also consistent across all layers (Fig. 5f). However, surprisingly,
expanding both orientation and spatial frequency bandwidth resul-
ted in much stronger responses in deeper cortical layers.

In agreement with our 2-photon results, we also observed a clear
increase in neuronal responses to broadband orientation stimuli in the
spiking activity of superficial layer 2/3 neurons (Supplementary
Fig. S10a). To compare the spiking response strength across the four
stimulus conditions, we calculated the response area under the
receiver-operator characteristic curve. The AUC is a standardized
measure for the overall separability between the baseline and
stimulus period and, therefore, equally sensitive to more subtle sen-
sory responses in sparsely active neurons. Unresponsive cells are
represented by a value of 0.5, while values closer to 1 or 0 show
reliable enhanced or suppressed responses, respectively. Neural
responses to the ORI condition were significantly stronger than the
narrow condition (Supplementary Fig. S10a, AUCarrow = 0.69 £ 0.01;
AUCsr=0.68+0.01, LME model test against narrow, T=-0.79,
p=043; AUCor=0.73+0.01, T=272, p=7x10% AUCmixed=
0.70£0.01, T=0.57, p=0.57, meants.e.m., n=53 neurons from
3 mice). In agreement with our LFP results, the mixed stimulus con-
dition evoked larger spiking responses in deeper layers (500-1000 um
depth, Fig. 5f) with a corresponding shift in AUC values (Supplemen-
tary Fig. S10b, AUC,arrow = 0.70 + 0.01; AUCsE = 0.68 + 0.01, LME model
test against narrow, T=-277, p=5x1073 AUCor=0.71+0.01,
T=0.94, p=0.34; AUCpixeq =0.73+0.01, T=2.96, p=3x107; mean +
s.e.m., n =200 neurons from 3 mice).

To also capture visual responses beyond the cortex, we further
extended our experiments and recorded spiking activity in the SC,
although we could not map the receptive fields of SC neurons (Sup-
plementary Fig. S11). Interestingly, SC neurons responded much more
strongly to the mixed stimulus condition and a smaller extent to
broadband orientation and spatial frequency stimuli compared to
narrow stimuli (Supplementary Fig. S11d, AUCrow=0.68+0.02;
AUCgr = 0.68 + 0.02, LME model test against narrow, 7=0.11, p=0.91;
AUCogi=0.70+£0.02, T=110, p=0.27; AUCpixeq=0.82+0.02,
T=5.44, p=4.46 x10"%, mean + s.e.m., n =46 neurons from 3 mice).

Together, these results show that increased cortical activation by
broadband visual stimuli is mainly restricted to V1. While superficial
layers show a clear preference for broadband orientation, deeper
layers were also strongly activated by mixed stimuli with broadband
orientation and spatial frequency. Interestingly, this is also the case for
the subcortical superior colliculus, which receives direct input from
the retina but also from deeper layers of V1.

Neural discrimination capability is enhanced by broader orien-
tation bandwidth

We next wondered if expanding orientation bandwidth also improves
the neural representation of sensory information, thus increasing the
discriminability of different broadband stimuli from each other. To
test this hypothesis, we presented stimuli with a different central
orientation (0° or 90°) or central spatial frequency (0.04 cpd or 0.16

cpd) and measured the impact of expanding orientation or spatial
frequency bandwidth on the ability of neurons to discriminate
between the central features, i.e., the spatial frequencies will be dis-
criminated while orientation bandwidth is expanded and vice-versa.
(Fig. 6a, e). To avoid any ambiguity, we did not change the bandwidth
of stimulus orientations or spatial frequency together but instead
compared neural responses to the central feature while changing the
bandwidth of the other. Similar to our previous results, expanding the
orientation bandwidth with a central spatial frequency of 0.16 cpd also
increased the number of visually responsive neurons with a1.36 + 0.14
fold increase compared to the narrow condition (Fig. 6b, T=2.75,
p=9x107 LME test against O; percentage responsive neurons over
total neurons per session: narrow range (5°): 11% + 1%, mid-range (25°):
15% + 2%, broad range (45°): 21% + 2%, meants.e.m, n=18 sessions
from 9 mice). The increase was lower with a central spatial frequency
of 0.16 cpd compared to 0.04 cpd (LME test, T=3.91, p=4.1x107),
potentially because higher spatial frequency stimuli were less efficient
in driving neural responses which may have also reduced the impact of
broadband response modulation (Fig. 4e). The amplitude of neural
responses was also increased, demonstrating that expanding orienta-
tion bandwidth increases neural responsiveness, regardless of the
central spatial frequency (Fig. 6¢; orientation modulation index: ORI
RMIo 04cpa = 0.17 + 0.01, LME test against zero, T=14.3, p=7.27 x10™;
ORI RMlIp16cpa=0.06+0.01, T=4.3, p=1.53x% 10%; mean+s.e.m.,
n=1345 neurons from 18 recordings from 9 mice). Such increased
neural responsiveness to broadband stimuli might enhance the dis-
criminability of different spatial frequencies by driving stronger
responses in a larger population of V1 neurons. Conversely, broadband
stimulation may also drive the same broadband-selective neurons
irrespective of the central stimulus feature. However, neuronal
responses to broadband stimuli with different central orientations or
spatial frequencies were not strongly correlated, suggesting that most
neurons respond differently to broadband stimuli when changing the
central orientation or spatial frequency (Supplementary Fig. S12).

To assess if expanding orientation bandwidth increases the neu-
ronal discriminability between two central spatial frequencies, we
computed a discrimination index (AUC,ps) as the absolute AUC between
neural responses to stimuli with a central spatial frequency of either
0.04 cpd or 0.16 cpd (see also Supplementary Fig. S13). AUC,ps Was
normalized between O and 1, with larger values indicating increased
discriminability of the central spatial frequency and we computed the
discriminability for either narrow or broad orientation bandwidth sti-
muli (Fig. 6d, AUC,ps, 50=0.30+0.01; AUC,ps, 45-=0.36+0.01, LME
model test against narrow condition, T=8.13, p=5.44 x107%; mean+
s.e.m., n=2096 neurons from 18 sessions, 9 mice). The discriminability
between central spatial frequencies was significantly increased with
broader orientation bandwidth, demonstrating that broadband orien-
tation stimuli increase cortical responses, which enhances the neural
representation of other stimulus features.

In contrast, broadening the spatial frequency bandwidth did not
increase the number or magnitude of neural responses to stimuli with
a central orientation of either 0° or 90° (Fig. 6f, number of visually-
responsive neurons compared to the narrow condition: broad SF
bandwidth (90° central orientation)=1.09+0.21, 7=0.42, p=0.67,
LME model test against zero, mean + s.e.m; Fig. 6g, spatial frequency
modulation index: SF RMIlg-=-0.004+0.02, T=-0.17, p=0.86;
SF RMIgp-=0.014+0.02, T=0.6, p=0.53, meants.em. n=16
recordings from 9 mice). Consequently, we found no significant
change in the neural discriminability of stimuli with different central
orientations when expanding spatial frequency bandwidth (Fig. 6h,
orientation discrimination index: AUCgbs, 0.004cpd=0.30%0.01;
AUCqups, 04cpa=0.32£0.01, LME model test against the narrow
condition, T=18, p=0.06, meants.e.m., n=888 neurons
from 9 mice).
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Fig. 6 | Expanding orientation bandwidth improves stimulus discriminability in
V1 neurons. a Example field of view of an experiment with the central spatial
frequency of 0.16 cpd and narrow or broad orientation bandwidth. Stimuli are
shown at the bottom left of the plane, scale bar: 100 um. b Number of responsive
cells to broad orientation bandwidth (45°) with either 0.04 cpd or 0.16 cpd central
spatial frequency, normalized to the respective number of cells responding to the
narrow condition (5°). Data for 0.04 cpd are the same as in Fig. 1 and shown here for
reference in gray. ¢ Orientation modulation index, calculated as mean broad minus
narrow orientation bandwidth responses, divided by their sum. Shown are all
positively narrow and broad responding neurons for each central spatial frequency
(n=1333 responsive neurons for central SF=0.04 cpd in gray, similar to data in
Supplementary Fig. Slc, n =134S5 responsive neurons for central SF=0.16 cpd in
blue. n=4892 neurons in total across 18 sessions from 9 mice). d Discriminability
between neural responses to stimuli with a central spatial frequency of either 0.04
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cpd or 0.16 cpd. Shown is the discrimination index for narrow and broad orienta-
tion bandwidth in light and dark blue, respectively (n=2096 neurons from 18 ses-
sions). Shown are the results for all cells that responded to any of the presented
stimuli. The horizontal black dotted line shows the median discriminability for the
narrow band. e Example field of view of an experiment with 90° central orientation
and narrow or broad frequency bandwidth, scale bar: 100 pm. f-h Same as panels
(b-d) but for narrow and broad frequency bandwidth and 0° and 90° central
orientation. Box plots indicate the median (horizontal line), interquartile range
(box bounds: 25th-75th percentiles), and whiskers (1.5 x interquartile range). Stars
in all panels mark significant (Bonferroni correction for two tests, a = 0.025) dif-
ferences from a two-sided LME test against 1 (panels ¢, g) or the narrow bandwidth
(panels b, d, f, h). For visualization only, outliers were excluded from distributions
in panels (b-d, f-h).

Visual perception is improved by expanded orientation
bandwidth

Our results show that neural responses in V1 are enhanced when
expanding orientation bandwidth, which also increases the neuronal
discriminability of these broadband visual stimuli. To assess if
increased neuronal discriminability also results in enhanced visual
perception, we trained mice to perform a visual discrimination task
while freely moving in a custom-built touchscreen chamber®® (Fig. 7a).
Here, mice had to discriminate between motion clouds by touching
one of the two presented stimuli on a touch-sensitive screen and were
rewarded when choosing the target stimulus. For two groups of mice
(6 mice each), motion clouds either differed in their central spatial
frequency (0.16 cpd target versus 0.04 cpd non-target; Fig. 7b, left,
central orientation was 0° for both) or central orientation (0° target
versus 90° non-target; Fig. 7b, right, central spatial frequency was
0.04cpd for both). In addition, we again varied the orientation or
frequency bandwidth of the presented stimuli to test their impact on
the animals’ discrimination performance. As in our earlier experi-
ments, the bandwidth was only altered for the stimulus parameter that

was not tested in the discrimination task to avoid any ambiguity. In the
orientation discrimination task, we thus varied spatial frequency
bandwidth while varying orientation bandwidth during spatial fre-
quency discrimination (Fig. 7b).

Animals were split into two groups and either trained on orien-
tation or spatial frequency discrimination. Both groups reliably
learned to perform their respective task and achieved comparable
expert discrimination performance. Expanding the orientation band-
width also improved the spatial frequency discrimination perfor-
mance, demonstrating that broadband orientation stimuli not only
improved neural response discriminability but also enhanced spatial
frequency perception (Fig. 7c, percentage of correct trials: narrow
(5°) =77.0% +1.93%; mid-range (25°) = 77.63% + 1.62%, Wilcoxon signed
rank against narrow condition: p =0.92; broad (45°) = 82.77% + 1.41%,
p=4.9x1073, mean +s.e.m., n=46 sessions from 6 mice). Conversely,
expanding spatial frequency bandwidth did not further improve
orientation discrimination performance and even showed a trend
towards reduced performance with higher spatial frequency band-
width (Fig. 7d, percentage of correct trials: narrow (0.004 cpd)=
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a lllustration of the visual discrimination task. The mouse initialized the trial by
triggering the lick detection, followed by a 500 ms long ITI with a gray screen,
followed by a visual cue (white cross) for 700 ms. Two stimuli were then shown next
to each other, and the mouse had to touch one stimulus to report a choice. Mice
then received a water reward at a central lick spout after touching the target sti-
mulus. Triggering the lick detection (even if no reward was given) initiated the next
trial. b Example stimuli for the spatial frequency discrimination task with different
orientation bandwidths (left) and the orientation discrimination task with different
spatial frequency bandwidths (right). ¢ Spatial frequency discrimination perfor-
mance for different orientation bandwidths. Spatial frequency discrimination
performance was significantly higher for larger orientation bandwidth

(n=46 sessions from 6 mice). d Same as in panel c¢) but for the orientation dis-
crimination performance with different spatial frequency bandwidth stimuli.
(n=25,17,19 sessions respectively.) e Psychometric curves for orientation

Orientation difference (°)

SF Bandwidth (cpd)

discrimination performance at different target-distractor orientation differences.
Colors show psychometric curves for different spatial frequency bandwidths.
Expanding the spatial frequency bandwidth did not affect the maximal dis-
crimination performance or discrimination thresholds. The horizontal dashed line
shows the 72.7% discrimination threshold. Error bars are centered at the colored
circles and show standard deviation (n=30,18 and 24 sessions, respectively).

f Discrimination thresholds for the three spatial frequency bandwidths showed no
significant differences (n =30, 18, and 24 sessions, respectively). Box plots indicate
the median (horizontal line), interquartile range (box bounds: 25th-75th percen-
tiles), and whiskers (1.5 x interquartile range). Stars in panels (c, d, and f) show the
significance of a two-sided Wilcoxon signed rank test against the narrow condition.
The significance threshold was a = 0.025 after Bonferroni correction for perform-
ing 2 tests. Panel (a) was created in BioRender. Balla, E. https://BioRender.com/
2051789 (2025).

72.53% +2.85%; mid-range (0.04 cpd)=69.18%+2.12%, Wilcoxon
signed rank test against narrow percentage of correct trials, p =0.79;
broad (0.4 cpd): 65.34% + 3.60%, p = 0.29, mean + s.e.m., n =24, 16 and
18 sessions for each condition from 6 mice).

These findings strongly suggest that the enhanced neural dis-
criminability of V1 responses translates into corresponding changes in
visual perception, with the greatest discrimination performance
observed for broad orientation bandwidths. However, a potential
reason for the unchanged discrimination performance across spatial
frequency bandwidths could be that perceptual changes are only
visible near the frequency discrimination threshold, where even small
perceptual variations can effectively impact behavior. We, therefore,
further tested different spatial frequency bandwidths over a larger
range of orientation differences (Fig. 7e). Using a staircase procedure,
we dynamically changed the orientation difference between target and
non-target stimuli to identify the orientation discrimination threshold
for each mouse within individual sessions. Consistent with our earlier
results, the obtained discrimination thresholds and psychometric
curves were similar across the tested spatial frequency bandwidths,
again arguing against a notable impact of spatial frequency bandwidth
on orientation discrimination (Fig. 7f, discrimination threshold at

72.7% orientation discrimination threshold from staircase procedure:
narrow (0.004 cpd) =46.54° + 2.33°; mid-range (0.04 cpd)=49.93° +
2.53°, Wilcoxon signed rank test against narrow, p = 0.61; broad range
(0.4 cpd)=49.34°+2.24°, p=0.28, meants.e.m, n=18, 23 and
30 sessions respectively). Together, these findings show that broad-
band orientation, but not spatial frequency, stimuli can not only
increase the responsiveness and discriminability of neural responses
but also enhance visual perception.

Discussion

We used motion cloud stimuli with comparable bandwidths as in
natural scenes to test the impact of broad orientation and spatial fre-
quency bandwidth on neural responses and visual perception. Broad-
band stimuli elicited diverse V1 responses in awake mice, but only
expanding orientation bandwidth increased V1 responses, reflected in
more responsive neurons and larger response amplitudes (Figs. 1, 2).
Aside from recruiting additional neurons with diverse orientation
tuning, our modeling and experimental results showed that a key
contributor to this effect is a broadband-specific reduction in surround
inhibition (Figs. 3, 4). Moreover, our electrophysiological recordings
show that mixed stimuli drive particularly strong responses in deeper
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cortical layers and the SC (Fig. 5), potentially due to their lower sti-
mulus predictability. This prominent increase in response strength
could be an adaptive mechanism of the visual system to enhance the
perception of naturalistic broadband stimuli. Indeed, expanding the
orientation bandwidth of visual stimuli also improved the discrimin-
ability of neural responses to visual stimuli with different spatial fre-
quencies (Fig. 6). Lastly, we tested if such improved neural encoding is
translated into enhanced visual perception and found that mice were
more accurate in discriminating visual stimuli with broad compared to
narrow orientation bandwidth (Fig. 7). Together, these results
demonstrate that broadband stimuli engage V1 neurons by reducing
surround inhibition, with orientation broadband stimuli increasing
neural response strength, stimulus discriminability, and visual
perception.

Our results of increased neural responsiveness to broadband
orientation stimuli are in agreement with earlier work, showing that
noise stimuli with broadband spatiotemporal frequencies and orien-
tations can increase V1 responses®**, An intuitive explanation for this
effect is the additional recruitment of orientation-tuned neurons by
stimuli that cover a broader range of orientations. To test this
hypothesis, we used a computational model and found that orienta-
tion tuning is indeed a likely contributor to increased broadband
responses. However, to accurately fit the measured response ampli-
tude of orientation-tuned neurons, we also had to include response
modulation by the stimulus surround. While the suppressive effect of
narrow bandwidth grating stimuli that extend the receptive field size
of cortical neurons has been well described®***"*, we found that
broadband orientation stimuli release neurons from this surround
suppression and thus enhance responses across a large fraction of the
V1 population.

This difference in surround suppression could be due to a reduc-
tion in the predictability of the receptive field center. When presenting
natural images to awake monkeys, center-surround interactions in V1
are sensitive to higher-order structures, such as image contours”. In
contrast, randomizing the phases of the Fourier spectrum of the image
surround diminishes center-surround interaction, depending on the
inferred redundancies in the natural image’®. Similarly, expanding the
orientation bandwidth in random phase motion clouds resulted in
visual stimuli with a low raw coefficient correlation and, therefore, a low
predictability of the stimulus center by its surround®. In line with the
predictive coding theory®, stating that responses in the receptive field
center should be suppressed if they can be predicted by the surround,
we found that such reduced center predictability is indeed related to a
reduction in surround inhibition. Aside from feature tuning of indivi-
dual neurons, center-surround modulation is, therefore, a major driver
of increased neural responses. Moreover, our results suggest that
changes in surround modulation are also likely to promote recently
described response features of V1 neurons, such as preferred responses
to isotropic stimuli with shorter edges*’.

In contrast to orientation bandwidth, expanding the spatial fre-
quency bandwidth had less impact on raw coefficient correlation and
surround suppression. Together with lower center responses, this
difference in stimulus predictability could also explain the selective
increase in neural responses to broadband orientation but not spatial
frequency stimuli. Broader neural tuning to spatial frequencies com-
pared to orientations?**%*° might also result in an unselective activa-
tion of broadly responding neurons with different spatial frequency
bandwidths. If neurons were broadly tuned to spatial frequency, they
would be expected to respond to all spatial frequency bandwidth sti-
muli. However, our data show that they are not tuned broadly relative
to the tested spatial frequencies. When we directly compared the
tuning of V1 neurons to the same range of orientations and spatial
frequencies that we used in our motion cloud stimuli, the responses of
individual neurons covered a largely similar range of stimulus band-
widths for both features (Supplementary Fig. S2). We also observed a

larger proportion of cells responding to all orientation bandwidth
stimuli than to the full range of spatial frequency bandwidth motion
clouds (Figs. 1g, 2g), further suggesting that differences in neural
tuning cannot explain the response preference to broadband orien-
tation stimuli.

Previous studies have shown that HVAs can be tuned to different
spatial frequencies, to different speeds, or show stronger orientation
tuning®*°. Several areas are also more tuned to natural textures than
scrambled images or narrow bandwidth gratings®'s. We, therefore, used
widefield imaging to explore if areas outside of V1 show similar or
stronger tuning to broadband visual stimuli. However, broadband
response modulation was strongest in V1, demonstrating its importance
for processing broadband stimuli. Our electrophysiological measures
from deeper cortical layers and the SC also showed that expanding
orientation and spatial frequency bandwidths together can further
increase neural responses. The lower impact of spatial frequency
bandwidth might, therefore, be specific to the supragranular V1 layers.
The stronger response modulation to the mixed stimulus condition in
the deeper LFP but also the widefield recordings could be explained by
dendritic signals of layer 5 neurons, which also contribute to widefield
signals®. We also found stronger responses to broadband spatial fre-
quency compared to narrow stimuli in the LFP and widefield, which
were not seen in the 2-photon and spiking recordings. A potential rea-
son for this difference could be that LFP and widefield are population
measures that also represent dendritic and axonal signals that may not
be reflected in somatic spiking. It is, therefore, possible that broadband
spatial frequency stimuli have a more subtle impact on V1 inputs that
was not detected in our single-cell measures of V1 neural activity.

Superficial V1 layers have also been implicated with processing
prediction errors during motor-visual mismatch®®, stimulus
sequences®, and between center and surround’****, In contrast to the
preponderance of prediction-error neurons in layer 2/3, the deeper
layer 5 has been implicated with the representation of the internal
predictions®*“¢, Furthermore, V1 neurons have an additional receptive
field in the surround with different visual tuning properties compared
to the center receptive field”. The interaction of center and surround
is thought to be tuned to the characteristics of natural scenes and
might enhance natural pattern completion®’, which could explain the
observed layer-dependence in responses to broadband visual stimuli.
Co-stimulation of the center and the surrounding receptive field also
leads to sparser neuronal responses and increased information
coding®>*¢® due to local network interactions that sharpen recurrent
excitation to produce specific and reliable visual responses®. Toge-
ther, increased neural responses to broadband orientations appear to
be a specific feature of the visual cortex and could be an adaptation to
the orientation distributions in natural scenes.

Superposition of differently oriented gratings can suppress cor-
tical responses in anesthetized cats®*”> and monkeys®, while facili-
tated responses have been reported in awake monkeys and mice*®”*7°,
Surround suppression has been shown to be strongly reduced under
anesthesia®”’; therefore, a release from surround suppression by
broadband visual stimuli might be less effective. The large variety in
cortical responses to multiple superimposed gratings could also be
explained by orientation-specific horizontal interactions within
VI’*7*89 or a thalamocortical feedforward mechanism”’. Furthermore,
motion cloud stimuli have been used in human studies to test how
visual speed processing depends on spatial frequency bandwidth®.
While visuomotor reflexes were enhanced, perceptual speed dis-
crimination was impaired for stimuli with large bandwidths. Since mice
also possess speed-tuned neurons in the visual cortex®*®, it would,
therefore, be interesting to also test speed perception in mice using
different bandwidth-enriched stimuli. Moreover, visual flow patterns
of small moving bars evoke strong cortical responses that are different
from those evoked by gratings and are also evoked at much higher
spatial frequencies®. This suggests an additional mode of perception
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for global motion patterns, which might be related to our observation
of increased responses to broad bandwidth motion clouds®*®,

Theoretical studies using convolutional neural networks (CNNs)
also showed that including surround suppression can considerably
improve both the performance and training speed of traditional CNNs
in visual tasks, showing a superior generalization capability in different
lighting conditions®". Interestingly, we found that broadband orienta-
tion stimuli also improved spatial frequency discrimination, arguing
that lower stimulus predictability can improve the sensory perception
of specific visual features. Heightened sensory perception also
depends on the saliency of a visual stimulus, which can be influenced
by its surroundings, allowing it to merge or pop out from the rest of
the visual scene®***%%7 This pop-out effect is even stronger in the SC*
which is known to encode a saliency map of visual scenes primates®.
Our finding that SC neurons strongly respond to heterogeneous
broadband visual stimuli with low spatial correlations could suggest
that less-predictable stimuli are also of higher saliency and, therefore,
recruit SC circuits more strongly than the visual cortex. An interesting
topic for future studies would, therefore, be a more detailed com-
parison of cortical and subcortical processing of broadband stimuli.

Natural vision is broadband vision, and gratings of a single
orientation and spatial frequency are rarely present in a natural
environment. The visual system is tuned to the statistics of natural
inputs®’, which is represented in the ability of mice and humans to
discriminate fine differences in visual features that are most common
in the environment>**°°, Natural scenes also consist of distributions of
largely overlapping orientations around areas of interest' (Fig. 1a),
leading to complex receptive fields of cortical neurons that respond
more strongly to visual features when they are embedded in natural
scenes instead of random or artificial backgrounds™. Revealing the
computational principles of natural scene processing is therefore
crucial in order to understand visual processing at large. Our results
with broadband orientation motion clouds demonstrate that rich but
parametrically controlled visual stimuli are a promising tool to achieve
this goal and reveal how the visual cortex has evolved to perceive our
natural environment.

Methods

Animals

All experiments were carried out in accordance with the German ani-
mal protection law and local ethics committee (LANUV, NRW) under
the study protocols 84-08.04.2016.A357 and 81-02.04.2021.A021. All
mice (Mus Musculus) were between 14-30 weeks old. For the two-
photon imaging experiments, six male and three female C57BL/6)
(Charles River, Germany) mice (Figs. 1 and 2 show data from the same 9
mice, but each protocol was run separately on different days in ran-
domized order) and five 2Niell/] (B6; DBA-Tg(tetO-GCaMP6s)2Niell/J,
Charles River, Germany) females (Figs. 3 and 4) were used. For the
widefield imaging experiments, two male and two female 2Niell/] mice
were used. For the electrophysiological recordings, three 2Niell) males
were used. For the behavioral discrimination tasks, three female and
three male C57BL/6]J mice were used for the spatial frequency dis-
crimination task; for the orientation discrimination task, six male
C57BL/6 ] mice were used. All mice were kept on a reverse light cycle
(light/dark cycle: 12/12 h) with regulated temperature and humidity
conditions (23 £ 2 °C, 55 + 5 % air humidity). Mice in the behavioral task
were water-restricted throughout the experiments. They received
water ad libitum on the weekend when no experiments were per-
formed and received at least 1.5ml of water on experimental days.
Mice had access to food ad libitum and were weighed and checked for
their health status before the start of each behavioral session.

Surgical procedures
For the cranial window implantation and viral injection, the mice were
weighed and given a subcutaneous injection of Carprofen (4 mg/kg,

Rimadyl, Zoetis GmbH) and Buprenorphine (0.1 mg/kg, Buprenovet
sine, Bayer Vital GMBH) for analgesia, 20 min before the surgical pro-
cedure. They were then anesthetized using (1%-2.5%) isoflurane in
oxygen and placed in a stereotaxic frame with stabilized and mon-
itored body temperature (37 °C). Eye ointment (Bepanthen, Bayer Vital
GmbH) was placed on the ipsilateral eye and ophthalmic gel in the
contralateral to keep them moisturized but also allow intrinsic imaging
to identify the location of V1?3525, Following a local injection of
Bupivacaine (0.08 ml of 0.25% Bucain 7.5mg/ml, Puren Pharma
GmbH), the skin was incised and pushed aside to reach the skull
around the position of V1, based on anatomical coordinates (3.5 mm
posterior and 2.5 mm lateral from bregma). The skull was then care-
fully thinned with a dental drill to gain optical access to the cortex for
intrinsic imaging (see section ‘Intra-surgical intrinsic imaging). A 4-
mm-wide circular craniotomy was then performed over the center of
V1. In the C57BL/6] mice for two-photon imaging, a viral vector
(AAV9.Syn.GCaMP6f.WPRE.SV40; Addgene, viral titer ~10" vg/ml,
diluted 1:10 in phosphate-buffered saline (PBS)) was then injected
through a thin glass pipette with a micropump (UMP-3, World Preci-
sion Instruments). In each mouse, we injected 250 ul at 100 nl/s in two
separate V1 locations (-~ 500 um apart from each other) to obtain an
even expression GCaMPé6f throughout the area (We waited around
three weeks for stable expression before imaging). The dura was kept
moist with PBS solution throughout the injection. After viral injections,
a 4 mm-wide round coverslip was placed inside the craniotomy and
fixed with light-curable dental cement (DE Flowable composite, Nor-
denta). For electrophysiology experiments, we used coverslips with a
small opening (~ 0.2 mm) that was covered with silicon to allow access
of the Neuropixels probes to the cortex. A metal head holder was then
positioned and attached with dental cement to allow subsequent head
fixation and imaging in the two-photon microscope setup. In the
2Niell/J mice for the two-photon experiments, the head-bar placement
followed immediately after the window placement, and the location of
V1 was identified later with widefield field sign mapping (see section
‘Widefield imaging’). The custom stainless steel headbar piece was held
in place with quick adhesive cement (Superbond C&B, Sun Medical
CO., LTD) and fast-curing acrylic resin (Jet Denture repair, Lang Dental
INC). For widefield imaging, 2Niell/J mice were similarly prepared, but
a skull clearing procedure was performed instead of the cranial
window’” the skull was thoroughly cleaned and covered with a thin,
transparent layer of cyanoacrylate (Zap-A-Gap CA +, Pacer technology)
to obtain optical access to the cortical surface’.

After the surgery, all animals received the same injections of
Carpofen and Buprenorphine as in the beginning and were kept over a
heating blanket during their immediate recovery. They also received
Buprenorphine (0.009 mg/ml, Buprenovet sine, Bayer Vital GmbH)
and Enrofloxacin (0.0227 mg/ml, Baytril 5%, Bayer Vital GMBH) in their
drinking water for three days. The recovery time was at least one week
before starting animal handling.

Intra-surgical intrinsic imaging

During cranial window surgeries, retinotopic mapping was performed
using intrinsic signal optical imaging to functionally confirm the
location of V1. Here, we presented continuous periodically drifting
bars with a high contrast flickering checker pattern***2, Stimuli were
created using Psychtoolbox*** in MATLAB (MATLAB R2019b, Math-
Works) and composed of a static checker pattern with a patch size of
20° and contrast reversal at 3 Hz. This pattern was masked and only
visible through a 15°-wide bar aperture, moving over the screen with a
temporal period of 18 s in all four cardinal directions in randomized
order. Stimuli covered roughly 120° horizontally and 80° vertically and
were pre-rendered in advance. A spherical correction was applied to
compensate for distortions due to the presentation on a flat monitor*.
The monitor (BenQ XL2420T) was positioned at an angle of 20° to the
midline and tilted 10° above the animal. The eye was positioned at the
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horizontal center of the monitor, 30 mm above the lower edge of the
monitor, and the stimulus presentation was adjusted accordingly. A
vessel image for alignment was captured under green-light illumina-
tion (peak ~525nm, green power LED, 15506, LUMITRONIX). Hemo-
dynamic signals were acquired under red-light illumination (peak
~630 nm, red power LED, 15607, LUMITRONIX). Images were captured
using a tandem-lens macroscope composed of a 25 mm objective (DO-
2595, Navitar) above the subject and a 50 mm objective in front of a
CMOS camera (acA1920-155um, Basler). In between, a removable
bandpass filter was used to isolate reflected red light (630 nm -
760 nm, G384082035, Qioptiq). Phase maps of horizontal and vertical
retinotopy were generated online using custom software based on
previously published analysis*. Visual field sign maps, delineating the
precise borders of V1 to higher visual areas, were then computed after
imaging was completed®. During intrinsic imaging, anesthesia was
kept light, just above 1% isoflurane in oxygen. Throughout retinotopic
mapping, the state of anesthesia was closely monitored using an
additional camera viewing the animal, as well as screening for global
drifts in the hemodynamic signal.

Two-photon imaging

Two-photonimaging was done in a custom-built setup with a resonant-
scanning two-photon microscope (CRS 8KHz, Cambridge Technology)
and a femtosecond-pulsed TI: Sapphire laser (Mai Tai DeepSee, Spec-
tra-Physics) tuned to 920 nm. Data acquisition and controls were
performed with the MATLAB-based Scanimage package (Scanimage
2015)%. Settings and laser power were kept constant across all mice
and experiments. References from the vessel image, visual field sign
maps, and/or injection site referencing were used to define the center
of the primary visual cortex. Recordings were made from a single plane
inlayer 2/3 of V1 at a depth of 250-300 um below the pial surface with a
frame rate of 30 Hz. We used a 16x, 0.8 NA Nikon objective lens (CFI75
LWD 16X W) at a pixel resolution of 512 x 512 pixels (575 um x 575 pm).
Motion Cloud stimuli from the orientation bandwidth expanding and
the spatial frequency bandwidth expanding protocol (Figs. 1, 2, and 6,
see ‘Visual stimulation’ section below) were presented at 17 cm dis-
tance from the right eye on a gamma-corrected LED-backlit LCD
monitor (BenQ XL2420T, 24", 60 Hz refresh rate, or Viewsonic VX3276-
2K-MHD-2, 32", 60 Hz refresh rate). The larger screen was used to
increase the visual field coverage for center-surround stimuli, where
we also used a sparse noise stimulus® to map the preferred RF loca-
tions of the individual neurons in the field of view of each recording.
Two behavior cameras (Firefly DL Teledyne FLIR) recorded the animal
from different angles throughout the sessions for movement and eye
tracking.

Widefield imaging

Widefield Ca*-imaging was performed using a custom tandem-lens
macroscope”®, consisting of two 85mm objectives (Walimex Pro
85 mm f/1.4 IF; Walimex) using a sCMOS camera (Edge 4.2, PCO)
through the cleared intact skull. Frames were acquired using the
Python-based software package Labcams (Version 0.2 https://github.
com/jcouto/labcams, by Joao Couto) at a framerate of 30 Hz with an
effective resolution of 512x512 pixels with 4 x4 spatial binning.
Frames were acquired under alternating illumination using a blue LED
(470 nm, M470L3, Thorlabs) and a violet LED (405nm, M405L3,
Thorlabs) with a 405 nm excitation filter (#65-133, Edmund optics). The
excitation light was collimated using adjustable collimator lenses
(SM2E, Thorlabs). Using a dichroic mirror (no. 87-063, Edmund
optics), both excitation light paths were merged and then reflected
onto the brain surface using a second dichroic mirror (495 nm long-
pass, T495lpxr, Chroma). GCaMPé6s fluorescence signals were isolated
using a 525 nm emission filter (86-963, Edmund optics) in front of the
camera. Images acquired under violet illumination captured calcium-
independent fluorescence at the isosbestic point of GCaMP®.

Therefore, by subtracting the linearly-rescaled calcium-independent
signal from the calcium-dependent signal acquired under blue illumi-
nation, we could remove the intrinsic signal due to hemodynamic
fluctuations.

Widefield imaging data were motion corrected using a subpixel
image registration routine’®® was performed separately for frames
acquired under blue or violet illumination. Then, a singular value
decomposition (SVD) was used to reduce the dimensionality of the
data and computational cost associated with the analysis'®. All sub-
sequent analysis across time was performed on the 500 components
that described the highest variance in the imaging data. Furthermore, a
zero-phase, second-order Butterworth filter was used to remove slow
signal drifts below 0.1 Hz before performing the hemodynamic cor-
rection. All subsequent analyses were based on this low-dimensional
and hemodynamic-corrected signal.

All recordings were aligned to the Allen CCF based on anatomical
landmarks, and the location of V1 and higher visual areas (HVAs) was
additionally confirmed using retinotopic mapping as described
above***, Due to the faster neural signals with GCaMP-related wide-
field imaging, we used a faster movement of the bar aperture (2s
instead of 18 s per period with 20 repetitions for each direction). The
same retinotopic mapping procedure was also used for mice in the
two-photon and electrophysiology experiments, where the imaging
was done through the cranial window (Supplementary Fig. S14a).

Electrophysiological recordings

Electrophysiological recordings were done with Neuropixels 1.0
Probes™ in head-fixed awake mice freely running on a wheel. For each
mouse, we performed four recordings on subsequent days. To later
recover the probe position in each recording, the probes were painted
with DiD cell labeling solution (Invitrogen V22887) before each
recording. To record neural responses to motion cloud stimuli across
all cortical layers, we targeted the center of V1 (4 mm posterior and
2.5 mm lateral from bregma) and inserted the probe perpendicular to
the cortical surface (6 recordings in 3 mice) to a depth of 2 mm. To
simultaneously record from V1 and SC, the probes were angled to 35°
elevation and inserted to a depth of 3.6 mm. Neuropixels were posi-
tioned with a high-precision micromanipulator (uMp-4, Sensapex) at a
speed of 10 um/s. In each recording, the insertion point was moved by
~100 um in either mediolaterally or rostral-caudal direction from the
target coordinate to ensure that fluorescent electrode tracts could be
later related to the probe position in individual recording sessions
(Supplementary Fig. Slla and S14b). To determine the surface of the
SC, we took advantage of the visible gap in visual responses between
the cortex and SC and determined the SC surface at the depth at which
we could detect visual LFPs after this gap. In agreement with our his-
tological results, this was usually at a depth of 1.63 + 0.16 mm.

All visual stimuli were presented at a 17 cm distance from the right
eye on a gamma-corrected LED-backlit LCD monitor (Viewsonic
VX3276-2K-MHD-2, 32”, 60 Hz refresh rate). Similar to the two-photon
experiments, we then presented visual stimuli from the orientation
band expanding and spatial frequency band expanding protocols (see
‘Visual stimulation’ section below). Data acquisition from the Neuro-
pixels probe was done using SpikeGLX v3.6 (https://github.com/
billkarsh/SpikeGLX, Bill Karsh). High-pass filtered signals were recor-
ded from 384 channels at 30 kHz, and low-pass filtered signals were
recorded at 2.5kHz. The data was then time-shifted and median-
subtracted with CatGT 3.9. Channels that were broken or outside the
brain were detected using Spikelnterface'® and removed from further
analysis. The data was then spike-sorted with Kilosort 2.5 and manually
curated using phy 2.0bl (https://github.com/kwikteam/phy). The cri-
teria for manual curation were consistent spike waveforms across at
least three recording channels, stable spike amplitudes across the
recording, and a visible gap in the center of the auto-correlogram. In
addition, we imposed a cutoff for neurons with inter-spike-violations
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Table 1| Specific Parameters for the orientation and spatial frequency band expanding protocols

Central Orientation (°) Orientation bandwidth (°) Central Spatial Fre- Spatial Frequency band-
quency (cpd) width (cpd)
Orientation band expanding 0 5,25, 45 0.04, 0.16 0.004
Spatial frequency band 0, 90 5 0.04 0.004, 0.04,0.4

expanding

To investigate the effect of the orientation bandwidth band expanding (orientation band enrichment protocol, top row), the central orientation (first column) and spatial frequency bandwidth (last
column) were kept constant (0° and 0.04cpd, respectively), while different combinations of orientation bandwidth (second column: 5°, 25°, 45°) and central spatial frequency (third column: 0.04
cpd and 0.16 cpd) were presented. This resulted in a total of 6 different stimulus parameter combinations. The same principle was used for the spatial frequency band expanding protocol

(bottom row).

above 0.5, using the contamination rate method'®. Sorted data were
analyzed using custom MATLAB code.

After all electrophysiological recordings were complete, the mice
were first perfused with cooled PBS and subsequently with 10% for-
malin. After storing the brains in sucrose solution with increasing
concentration from 10-30%, 50 um-wide brain slices were cut using a
Cryostat (CM3050 S, Leica). Images of the brain slices were made using
a fluorescent microscope (BZ x810, Keyence, Germany).

Visual stimulation

Motion cloud stimuli were generated using the Motion Cloud
Package” and adapted for display via custom MATLAB code
(MATLAB R2019b, MathWorks). The package follows a linear gen-
erative model for creating a dense mixing of localized moving grat-
ings with random positions based on predefined parameters. To
ensure that neural responses were not strongly driven by the indi-
vidual properties of these random phase motion textures, 10 ren-
derings (300 frames each) of each stimulus were generated for each
parameter combination. 20 repetitions of each rendering were then
presented in a pseudorandom sequence movie where stimulus pre-
sentation order was shuffled with a restriction that prevents con-
secutive presentation of the same stimulus category. Motion cloud
stimuli were either enriched in orientation bandwidth (narrow: 5°,
mid: 22.5°, broad: 45°; around a central orientation of 0°; see also
Fig. 1) or in spatial frequency bandwidth (narrow: 0.004 cpd, mid:
0.04 cpd, broad: 0.4 cpd; around a central spatial frequency of 0.04
cpd; see also Fig. 2). To test the discrimination of different central
orientations or spatial frequencies (Figs. 6, 7) the central orientation
was either 0° or 90° and the central spatial frequency either 0.04 cpd
or 0.16 cpd. All motion clouds were presented on the screen, drifting
from nasal to temporal (or orthogonal to the central orientation)
with a temporal frequency of 1Hz. For the orientation and spatial
frequency bandwidth protocols, the stimulus duration was 5 sec-
onds, followed by a 5 s inter-stimulus interval during which a mean
gray screen was shown. An overview of all parameter combinations
and protocols is shown in Table 1. To combine changes in both
orientation and spatial frequency bandwidth (Figs. 4, 5; ‘mixed’
condition), we used motion cloud stimuli with a central spatial fre-
quency of 0.04 cpd, a central orientation of 0° and a temporal fre-
quency of 1Hz, and then increased the bandwidth of either spatial
frequency, orientation or both. The ‘narrow’ case consisted of 0.004
cpd spatial frequency bandwidth and 5° orientation bandwidth and
served as the baseline for the narrow bandwidth of both features. In
the ‘SF’ case, the spatial frequency was increased to 0.4 cpd while the
orientation bandwidth remained at 5°. In the ‘ORI’ case, the spatial
frequency bandwidth remained at 0.004 cpd, and the orientation
bandwidth was increased to 45°. Lastly, in the ‘mixed’ condition,
both spatial frequency and orientation bandwidth were increased to
0.4 cpd and 45°, respectively. For each stimulus condition, we gen-
erated eight separate stimulus renderings to reduce the risk of over-
emphasizing neural responses to complex features that could occur
in a specific rendering. Each rendering had a total of 7 presentations
as full-field stimulus (56 presentations for each full-field stimulus).

To test for the impact of center surround suppression, we first
used sparse noise stimulation to identify the receptive field locations
of the neurons in each recording session. The stimulus in each frame
was composed of four non-adjacent 12° x 12° white squares over a
black background”. The grouping of the squares was pseudo-
randomized to ensure that each location would be presented 20
times in total. Each presentation lasted for 250 ms with an inter-
stimulus interval of 750 ms. For each field of view, we then performed
an imaging session with sparse noise stimuli to identify the receptive
fields (RF) of all imaged neurons (see section ‘Data analysis and sta-
tistics’). After the imaging session, we then created a new stimulus set
where all motion clouds were covered by a gray mask, and a circular,
15° transparent aperture was placed in the center of the mean RF of the
imaged population (Fig. 4b, ‘Center RF, see also Supplementary
Fig. S6). In a second recording session, we then returned to the same
field of view (based on the vessel pattern and visually comparing the
location of the imaged cortical neurons) and repeated the sparse noise
stimulation. Subsequently, we presented the full-field and center RF
stimuli for the narrow, SF, ORI, and mixed conditions, as described
above. For both the full-field and center RF conditions, we presented
56 stimuli, respectively, in pseudo-randomized order. The stimulus
duration was 2s, followed by a 4 s gray screen.

To test for orientation tuning (Fig. 4), we showed full-field drifting
square wave gratings at five different orientations (- 45°, 22.5°,0°, 25°,
45°; 0.04 cpd spatial frequency; 1 Hz temporal frequency) in pseudo-
randomized order. The stimulus duration was 1s, followed by a 2s
inter-stimulus interval where a gray screen was shown, and each sti-
mulus was repeated 20 times.

Touchscreen chamber experiments

Behavioral experiments were performed in a custom-built operant
conditioning touchscreen chamber, using a 10” screen for visual sti-
mulation (Elo Touch 1002 L monitor, running at 60 Hz)’°. All animals
performed the experiments under a water restriction regime and
received at least 1.5 ml of water per day to maintain their general well-
being. They received water ad libitum on the weekends and had access
to food ad libitum throughout the experiment. All mice were weighed
daily and monitored before and during the behavioral experiments. In
the first phases of pre-training, the animals were habituated to the
touch screen chamber and learned to associate a green light with the
availability of a reward. After the animals were able to collect at least
one reward per minute, they proceeded to the next phase, where they
had to first touch the screen to receive a reward, which was still indi-
cated by a green light. Again, after the animals performed the
sequence of touching the screen and collecting a reward at least once a
minute, they were moved to a more specific training regime to perform
either the orientation or spatial frequency discrimination task. All
trained mice passed the initial criteria and could be trained on the
discrimination tasks (see Supplementary Movie 5).

The orientation discrimination task started with the training for
easy discrimination, where the animals had to discriminate a hor-
izontal (target) from a vertical (distractor) sine-wave grating with a
spatial frequency of 0.04 cpd. Each stimulus was shown through a
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circular aperture with a diameter of 7.5 cm, and stimuli were presented
left and right from the screen center, with a distance of 10 cm between
the stimulus and the screen center. After the animals reached a per-
formance of at least 80% correct responses, we proceeded with a
staircase procedure. In this staircase procedure, the difficulty level was
dynamic. Every correct response was followed by a decrease in
orientation difference of 3°, while an incorrect response was followed
by an increase in orientation difference of 8°, leading to a target per-
formance of 72.7%. After the animals could perform the staircase
procedure, we obtained one orientation discrimination threshold
per session, revealing the minimal orientation difference between the
target and distractor stimulus that was required for robust task per-
formance. In randomized sessions, motion clouds with different spa-
tial frequency bandwidths were used. Only one spatial frequency
bandwidth was used per session to test how the discrimination
threshold would be affected by a given spatial frequency bandwidth.
To later compare the perceptual impact of different spatial frequency
bandwidths, all trials with an orientation difference between 40° and
50° were combined and averaged over all sessions.

The spatial frequency discrimination task followed a similar
training regime. After the animals performed sufficiently in the pre-
training (Supplementary Fig. S15), they were trained to discriminate
between two (0° central orientation) motion clouds of different spatial
frequencies. Throughout pre-training, the animals had to discriminate
different spatial frequency pairs (0.04 cpd vs 0.06, 0.12 or 0.16 cpd;
Supplementary Fig. S15). The animals showed a stable discrimination
between 0.04 and 0.16 cpd, after which different orientation band-
widths were introduced. The different orientation bandwidths were
used within the same session because no adaptive staircase procedure
was used in these experiments.

To ensure that animals did not develop an intrinsic side bias
during the discrimination tasks, we used a bias correction routine®. In
the initial ten trials, the position of the correct stimulus was rando-
mized, and the bias correction was subsequently used to correct for
direction and repetition bias. In case a bias was detected, the stimulus
position was chosen to increase the probability of showing the target
stimulus on the non-preferred side. If a repetition bias was detected,
the probability of changing the target stimulus position from one trial
to the next was increased. When no bias was detected, the position of
the target and distractor stimulus was chosen randomly.

Data analysis and statistics
All data analysis was done in MATLAB (MATLAB R2022a, MathWorks).

Widefield. When computing V1 responses in the widefield, we first
determined the 50% region of V1 that responded the strongest across
all presented stimuli per mouse. This was needed to prevent obtaining
artificially lower response magnitudes in V1 due to integrating too
many pixels from medial V1 that showed much weaker visual respon-
ses. For Fig. 5c, V1 activity was averaged over this subregion of V1, and
individual trial responses were pooled across mice.

Electrophysiology. To quantify the electrophysiological spiking
responses of individual neurons to broadband stimulation (Fig. 5f-h),
we computed the area under the receiver-operator characteristic curve
(AUC) between the baseline and the stimulus period. This allows us to
obtain a measure of how reliably a given neuron responded to each
stimulus, regardless of its overall firing rates. As with the two-photon
data, we first computed the mean firing rate during the stimulus and a
1sbaseline period for each stimulus presentation. To identify stimulus-
responsive neurons, we then used a one-sided Mann-Whitney-U test to
assess if the mean firing rate across all stimulus presentations was
significantly larger than zero (p-value<0.05). For all stimulus-
responsive neurons, we then computed the AUC between the base-
line and stimulus periods to quantify how reliably they responded to

each stimulus condition. An AUC of 1 indicates a perfect separation of
the activity in the baseline and the stimulus period, and an AUC of
0.5 suggests complete overlap (see also Supplementary Fig. S8).

Two-photon imaging. After each recording, two-photon imaging
data were motion corrected, and individual neurons were isolated
using the Suite2P package with model-based background
subtraction'*. Suite2p was used to perform rigid motion correction on
the image stack, identify neurons, extract their fluorescence, and
correct for neuropil contamination. AF/F traces for each neuron were
then produced using the method of Jia et al.'®®, skipping the final fil-
tering step. To compute the stimulus-response amplitude (AF/F) of
individual neurons in the two-photon data, we computed the median
across all trials for the difference between the fluorescence during the
first 2-3seconds of the stimulus and a preceding 1s-long baseline
window for each stimulus presentation.

To identify neurons that were responsive to a specific visual sti-
mulus, we used a one-sided Mann-Whitney-U test to assess if AF/F
across all stimulus presentations was significantly larger than baseline
(p-value < 0.05).

To identify the receptive field of neurons from the sparse noise
paradigm, we also computed the AF/F for each neuron to all sparse
noise stimuli that contained a white square in a specific part of the
screen. This resulted in a set of neural responses for each 12° x 12°
square on the screen, and we used a one-sided Mann-Whitney-U test to
identify significant responses to visual stimulation on a specific part of
the screen. For significantly responding neurons, we then inferred the
center of the receptive field as the stimulus location that resulted in the
strongest neural responses.

We used DeepLabCut'® V2.3.9 to analyze the pupil position (see
Supplementary Fig. S6). Eight reference points around the lids and
one pint at the center of the pupil were labeled and tracked. We binned
the pupil movement range area (4 pixels/bin) and then calculated the
mean frequency at which the center was located within a bin during
the stimulus period.

To compute the orientation tuning for different neurons, we
computed the AF/F in response to different grating orientations and
used a one-sided Mann-Whitney-U test to identify neurons that sig-
nificantly responded to any grating stimulus. Besides this, we did a
linear interpolation of the tuning curves and inferred the preferred
grating orientation of responsive neurons as the orientation that
induced the strongest neural response. Only neurons with a clear
orientation tuning, i.e., a difference between peaks and troughs above
the median of the peak and trough distribution of the whole popula-
tion, were selected for the multiple regressor model (Fig. 4h, i).

Statistics. Throughout the results section, we have reported mean +
s.e.m. When reporting the normalized responding cell count for each
stimulus per session, we normalized the cell count per session by the
number of neurons that responded to the lowest respective band-
width. We then pooled the cell counts from all recordings to test for
significant differences in the number of responsive cells for different
feature bandwidths. Since recordings from the same animals are not
fully independent variables, we used a linear mixed-effects (LME)
model (using the fitime function in MATLAB) to determine significant
differences between groups wherever possible (normally distributed
data). Here, we included the stimulus and animal identity for the fixed
and random effect coefficients, respectively. This allowed us to test if
the stimulus identity significantly explains differences between two
stimulus conditions while controlling for potential differences
between animals. To test for significance, we performed a likelihood
ratio test between a mixed-effects model that only contained animal
identity versus a full mixed-effect model that contained both stimulus
and animal identity. The reported p values and T statistics, therefore,
indicate whether the addition of the stimulus regressor added sig-
nificant information beyond the animal identity to explain differences
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between the tested conditions. We used this approach to test for sig-
nificant differences whenever samples (individual neurons or record-
ings) were pooled across multiple animals (Figs. le,
2e, 3b-e, 5c-h, 6b-d, f-h). In addition, for testing the effect of orien-
tation tuning versus surround modulation in Fig. 4g-i, we upgraded
the model to a multiple-regressor linear mixed effect model, whereby
the orientation tuning, the center response, and the surround mod-
ulation effect were used as regressors to determine the impact of each
regressor on the resulting changes.
The LME model formula was:

Rmjj = B0 + B1Smij + 2 Otij + B3 Crij + uj + €ij €))

where Rmy; is the response modulation for the ith observation within
the jth animal, B, is the fixed intercept (the total mean response
modulation across all animals and conditions), 8; B, and f; are the
fixed effect coefficients for the predictors: Sm (Surround modulation),
Ot (Orientation tuning) and Cr (Center response). u; is the random
intercept for the jth animal, accounting for the variation between dif-
ferent animals, and €; is the residual error term for the ith observation
within the jth animal, which accounts for the variability not explained
by the fixed effects or the random intercepts.

In cases where using the LME model for statistics was not possible
due to the data being not normally distributed, such as for AF/F
amplitudes of pooled cells (Figs. 1f-h, 2f-h, 4d-f, 7c-f), we used a
Wilcoxon signed rank test and additionally did a mouse-wise com-
parison in Supplementary Fig. S1.

If multiple comparisons were performed, for example, when
comparing the number of responsive cells in the mid and broad-
bandwidth to the narrow-band condition (Fig. 1e), we performed a
Bonferroni-correction for the number of performed tests to adjust for
a multiple-comparison bias. Here, we adjusted the o level to reach
significance to a=0.05 / n, where n was the number of performed
tests. In the above example, two tests were performed, so a significant
difference required a p-value below & =0.05/ n=0.025.

To further test if individual neurons selectively responded to the
narrow-, mid-, or broad-range of either the orientation or spatial fre-
quency bandwidth (Supplementary Fig. Sld, h), we computed a
bandwidth selectivity index BW_SI that was computed as the response
difference to a given bandwidth (e.g., narrow-range, Rn) and the mean
of the other two (e.g., mid- and broad-range, Rm and Rb), normalized
by their sum.

Rn — mean(Rm, Rb)

BW SI= Rn +mean(Rm, Rb)

2

The BW_Slis bounded between -1 and 1, with values > O indicating
selectivity for a given bandwidth, such as the narrow range, while
negative values indicate selectively weaker responses to that band-
width. To test if the BW_SI for a given neuron could not be observed by
chance, we performed a shuffle control. Here, we shuffled the labels for
three bandwidth conditions and then re-computed the BW _SI to obtain
a measure of possible BW_SI values that can occur due to random
response fluctuations. For each neuron, we computed 1000 shuffled
BW Sis to obtain a random distribution and then tested if the real BW-
SI was above the 95th percentile of the shuffle distribution. Neurons
for which this was the case were counted as selectively responding to
narrow, mid, or broad-range stimuli (outer paddle of the Euler dia-
grams in Supplementary Fig. S1d, h). Neurons with negative BW_SI
below the 5th percentile were counted as being mixed selective for the
two bandwidths aside from the non-preferred bandwidth. For exam-
ple, a neuron with a negative BW_SI below the shuffle control for the
narrow-range bandwidth was counted as being selective for both the
mid- and broad-range bandwidths (overlapping paddles of the Euler
diagrams in Fig. 1d, h). Lastly, neurons without any selectivity beyond

the shuffle control were counted as non-bandwidth-selective (the
center region of the Euler diagrams in Supplementary Fig. S1d, h).

Using the same approach, we computed an orientation modula-
tion index OMI to quantify the difference in neural responses to broad
versus narrow feature bandwidth (Fig. 6¢, g).

OMI = I;braad :[l;narmw (3)
broad narrow

where Rpoaq and R 4.0 are mean responses to broad- and narrowband
stimuli, respectively. The OMI is bounded between -1 and 1, with
positive values indicating increased responses to broadband stimula-
tion and negative values indicating reduced responses to broadband
stimulation.

To determine the ability of each neuron to discriminate between
the two different central spatial frequencies or between two central
orientations, we also computed the AUC between these stimulus
conditions (Fig. 6¢c, g). We computed the median response amplitude
to all stimulus presentations for a given central feature (0.04 versus
0.16 cpd for spatial frequency and 0° versus 90° for orientation) and
computed the AUC as a normalized measure of response discrimin-
ability. Here, we used the absolute AUC as a measure of discrimin-
ability, regardless of the response preference for a given stimulus
feature for a given neuron. This was done by computing the absolute
AUC as

AUC 3 = JAUC — 0.5[2 4)

AUC,s is bound between 0 and 1, with positive values indicating
increased discriminability of neural responses between the two sti-
mulus conditions. This is referred to as spatial frequency or orientation
discrimination index in the Results section.

Visualization

All data figures were generated in MATLAB (MATLAB R2022a, Math-
Works). Raincloud plots were generated with the Raincloud tool'”, and
figures (Figs. 1c, 2¢, 3a, 44, d, 5a, 7a, Supplementary Figs. S4c, d, g, h,
S9a) were created in BioRender'®®. For better visualization of the
raincloud plots, outlier elements above or below3 median absolute
deviations were excluded from the plots using the rmoutliers function
in MATLAB. All values were included in the statistical analyses. Stars
mark p-value ranges, whereby one to three stars respectively signify
p-values smaller than 0.05, 0.01, and 0.001. If multiple tests were
performed, significance thresholds were corrected for the number of
comparisons (e.g., 0.05/n for one star).

Statistical analysis of natural images and motion cloud stimuli
Orientation distribution analysis. The Image)'”” Directionality"® plu-
gin was used on a library*” of nature photos (Fig. 1a, n =1077 images) or
a complete rendering of the motion cloud stimuli (Fig. 1b, n=300
frames) to derive the distribution of directional changes in color
intensity within a local gradient (5x5 Sobel filter is applied). Each
image was loaded individually, and 180 bins of 1° each (range 1° - 180°)
were selected. For each image, a data table of measured orientation
contents in the given bin of orientations was saved. Finally, we calcu-
lated the mean and s.e.m. across all the individual images and plotted
the respective curves (a light Gaussian fit, 0 = 2 was applied) via custom
MATLAB (MATLAB R2022a, MathWorks) scripts.

Spatial frequency spectrum analysis. We analyzed the distribution of
spatial frequencies for a set of images from either a library of nature
photos*’ (Fig. 2a, n=1077 images) or a complete rendering of the
motion cloud stimuli (Fig. 2b, n =300 frames). Here, we computed the
2D FFT spectrum for each image individually. To describe the spatial
frequency content of images independent of their orientation, we
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shifted the zero-frequency component to the center and averaged
energies in the frequency domain depending on their Euclidian dis-
tance to the zero frequency. Units of the spatial frequency spectra
were converted from cycles per image to cpd based on their pre-
sentation or acquisition. For motion cloud stimuli, we computed their
angular size based on their presentation:

, monitor width
angular size = 2x arctan

2 x distance to the eye ©

For the natural images, the angular size was derived based on the
individual camera field angle of view of each album:

(6)

sensor dimension
FOV = 2xarctan< >

2xcrop factor xfocal length

Finally, we calculated the mean and s.e.m. across all individual
images and plotted the respective spectra.

Stimulus predictability analysis. Spatial autocorrelations were com-
puted for individual stimulus frames using the analysis provided by
(Portilla and Simoncelli, 2000)*°. For the use of the Portilla-Simoncelli
(PS) analysis, stimulus frames were cropped to a size of 256 by 512
pixels and spatially down-sampled by a factor of 2. Raw coefficient
correlations presented in Fig. 4c were computed as the central sample
of the real autocorrelation for a spatial neighborhood of 51 pixels.
Maps of spatial autocorrelations were averaged over all frames in the
stimulus library of a given condition and presented with the corre-
sponding colormaps.

Stimulus separability. To estimate how variable different realizations
of the same stimulus condition are, we performed a principal com-
ponent analysis across all texture parameters generated by the PS
analysis (including pixelStats, pixelLPStats, autoCorrReal, auto-
CorrMag, magMeans, cousinMagCorr, parentMagCorr, cou-
sinRealCorr, parentRealCorr, varianceHPR). We computed the
principal components for individual frames and then averaged coef-
ficients across frames within individual stimulus realizations. This
resulted in average coefficients for each of the eight realizations per
stimulus condition, of which we present a projection onto the first two
principal components (Supplementary Fig. S7a).

Coefficient magnitude statistics. We investigated if expanding
orientation- and SF bandwidths result in the emergence of higher-
order structures in the stimuli by computing the cross-orientation- and
cross-scale energies'®'® (Supplementary Fig. S7b, c). For this purpose,
we computed the PS analysis using four orientations over six spatial
scales for the steerable image pyramid decomposition. Cross-
orientation energies are based on the “cousinMagCorr” parameter of
the PS analysis, representing the correlations between sub-band
magnitudes of different orientations within the same spatial scale'.
Here, we computed the average cross-orientation energy on the
coarsest spatial scale between the 0° and the +45° sub-band magni-
tudes, as these represent the dominant features in our stimuli. Cross-
scale energies, given by the “parentMagCorr” parameter of the PS
analysis, represent correlations of sub-band magnitudes with those of
all orientations at the next coarser spatial scale'®. Here, we focused on
the cross-scale energy of the 0° magnitude sub-band of the steerable
image pyramid between the two coarsest spatial scales. For both cross-
energy measures, we tested for statistical differences between the
stimulus conditions, using pair-wise Wilcoxon-Mann-Whitney U tests
with subsequent Bonferroni correction, comparing energies across
stimulus realizations. For this, we averaged cross energies over frames
belonging to the same stimulus realization. For visualization purposes,
we displayed the cross energies of individual stimulus frames after
removing outliers.

Model for neural responses of V1 neurons

To explore if the increased neural responses and recruitment for
larger orientation bandwidth stimuli can be explained by different
orientation tuning of V1 neurons, we created a simple bank of Gabor
filters model. To predict neuronal responses, we compute the
response magnitude of individual Gabor filters using the imgaborfilt-
function in MATLAB (MATLAB R2022a, MathWorks). The response
magnitude of complex Gabor filter kernels represents the response
of an ideal-phase filter; the model, therefore, assumes a uniform
distribution of phase representation in V1. We also designed the bank
of Gabors to match the known tuning properties of mouse V1. For
this, all Gabor filters were generated with a spatial frequency band-
width of 2.38 octaves, matching previous reports®®**°. Further, we
adjusted the spatial aspect ratio of the Gabor filters, determining the
envelope ellipticity of the filter kernels, thereby affecting the
orientation tuning width of a given filter. We estimated this para-
meter for Gabor filters with a spatial frequency of 0.04 cpd, pre-
sented with a corresponding full contrast, 0.04 cpd sine wave
grating. To match the tuning width of ~ 22° half-width half-maximum
previously reported for mouse V1 neurons***°, we used Gabor filters
with a spatial aspect ratio of 0.55 (Supplementary Fig. S3b). This
represents an elongation of the supporting envelope in the direction
of the parallel stripes of the filter. Furthermore, to capture a broad
range of responses, we used Gabor filters tuned to 5 different spatial
frequencies (0.01 cpd, 0.02 cpd, 0.04 cpd, 0.06 cpd, 0.08 cpd;
Supplementary Fig. S3c) within the predominantly represented
range of spatial frequencies of mouse V12, For each spatial frequency,
we used filter kernels with 180 different orientations in 1° incre-
ments, resulting in a bank of 900 individual complex Gabor filter
kernels that covered the full range of orientations. To compare and
combine responses across Gabor filters with different spatial fre-
quencies, we normalized Gabor filter responses to their optimal
stimulus (a full contrast sine-wave grating of matching spatial fre-
quency and orientation).

We then simulated V1 population responses to our motion cloud
stimuli. To reduce the computational cost, we spatially downsampled
stimulus frames by a factor of 4 and computed Gabor filter responses
for each individual “location” within the central 30° by 30° patch
(Supplementary Fig. S4) around the stimulus center (37 x 37 sites in
total) in the following denoted as such:

m(o,f,b,x,y)locO,f eF,beBxeXyeY

0= ({—45° —22.5°,0°,22.5°45°;n,=5)

F=({0.01cpd,0.02cpd,0.04cpd,0.06 cpd,0.08 cpd}; n:=5)

B= ({narrow orientation bandwidth, broad orientation bandwidth};nz=2)

X=Y={1,2,...,37) %)

Here, m represents the response magnitude of a Gabor filter with
orientation tuning o and spatial frequency tuning f in response to a
stimulus with orientation bandwidth b at the location (x, y) within the
center of the stimulus frame. x and y denote indices of the 37 x 37 grid
of locations corresponding to the 30° x 30° patch around the stimulus
center. Subsequent model fits were generated based on the response
at the stimulus center, either on its own or modulated by the average
surrounding filter responses (Fig. 3 and Supplementary Figs. S3, and
S4). The Gabor responses at the stimulus center were obtained using
the center position and averaging over the 5 Gabors with different
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spatial frequency tuning:

1 &
C(O, b) = n—FZ m(O,f, b,xc,yc) (8)
feF

To translate these normalized Gabor filter response magni-
tudes into AF/F values that matched the measured neuronal
response amplitudes, we computed a scaling factor w, (Supple-
mentary Fig. S4). To determine this factor, we first measured the
median responses of V1 neurons with different orientation tuning
to narrow and ORI stimuli (- 45 °, - 22.5°, 0°, 22.5°, 45°; Fig. 3b, ¢)
and then calculated the mean across all bins to equally weigh
responses from differently tuned neurons. The average neural
response amplitude was 1.622% AF/F. Second, we selected
response magnitudes from Gabor filters with matching orienta-
tion tuning contained in set O and averaged responses across
filters with these five orientation tunings, five spatial frequencies,
and across stimulus conditions. This yielded an average normal-
ized Gabor response magnitude of 0.1627 arbitrary units. From
these two measures, we then derived the scaling factor:

ng no b
P o 2o 400 ) _ O016224F/F _ (07 o)
Nolg 37" 5 (X020 €(0, b))

0.1627 AU.

Here, w, represents the scaling factor from Gabor response magni-
tudes to match the measured neural responses to different stimulus
conditions based on their orientation tuning (a (o, b); analogous to c
(o, b)) in units of AF/F (Fig. 3b, c). We termed these scaled Gabor
responses the “Tuning only model” as they are solely based on the
scaled, orientation-dependent Gabor filter responses at the central
stimulus location (Fig. 3b, ¢ and Supplementary Fig. S4). The tuning-
only model responses were computed as follows:

tuning only responses(o, b)=w;, x c(o, b) (10)

The “Tuning only model” fit showed the strongest deviation
from the experimental data in the narrow condition. Since narrow
stimuli also have a more regular spatial structure compared to ORI
stimuli (Fig. 4c), we hypothesized that the difference between the
modeled and experimental data could be explained by surround
modulation. We, therefore, included an additional interaction
between the center and spatially surrounding Gabor responses
within the 30° by 30° patch into the model. This “Suppression
model” used divisive surround suppression to normalize center
responses:

ne
suppression model responses(o, b) = ni Z
FfeF

wex m(o,f, b'xc'yc)
1+w,x max(0,s(o,f,b)+¢)

an

Here, w¢, ws, and t represent fitted model parameters, and s was
defined as the average response magnitude of Gabor filters with the
same orientation and spatial frequency tuning as in the center but
from the surround region.

n=|P|

1
s©.f,b)= 5 > m(o.f,b,x,y) 12)
X, yeP
With:
P={(x,y)|x € X,y € Y and d(x,y)>limand d(x,y)<lim,}
)=/ (x—x) '+ (y—y.)? (13)

Here, P defines the set of “valid” 2D (x,y) coordinates within the 37 x 37
grid of Gabor responses that define the surround region. |P| denotes
the cardinality of the set P. P depends on the model parameters lim;
and lim,, which define the minimum and maximum distance from the
center Gabor response to qualify as part of the surround (converted
from degrees to corresponding units).

We then fitted the suppression model using these five para-
meters: the minimum and maximum distance from the center at
which responses were considered as contributing to the surround
modulation (lim;, lim,), the weight of the center and surround
responses (W, Ws) and the surround response threshold (t). This
surround suppression acted on the level of individual frame
responses and was fit to the response over the entire stimulus
dataset using the fminsearchbnd-function (John D’Errico, 2006;
Matlab file-exchange). This allowed us to limit the surround
region from 7.5° to 15° displacement from the central Gabor, as
well as limit w. and ws to positive values. For the presented
model, we used the parameters of the best fit over 100 individual
model fits with random parameter initializations. The presented,
best fitting model used the following parameters: lim;=11.19°,
limy, =12.19°, w. =11.9, wg =1295.1 and ¢ =- 0.2 arbitrary units. The
resulting orientation-tuning dependent fit is shown in Fig. 3b, c.
From these fitted narrow and ORI responses, we then derived the
“response modulation” shown in Fig. 3d.

To generate a fit for the expected recruitment, based on the
“tuning only model” as well as the “suppression model”, we used a
simple linear regression without an intercept term to translate
the fitted ORI response modulation to orientation-dependent
neuronal recruitment (Fig. 3e). Our underlying assumption was
that a higher response amplitude should be reflected in a higher
fraction of neurons reaching the response criterion, resulting in
larger recruitment. The fitted recruitment is derived from the
Gabor response magnitude:

recruitment modulation(o) = x response modulation(o)  (14)

The fit for translating response to recruitment modulation was
Bruning only model = 0.134 for the Tuning only model and PBg,ppression
model = 1.141 for the Suppression model. Lastly, we computed the mean-
corrected coefficient of determination (R?) to evaluate how well our
models described orientation-dependent differences in the observed
broadband response and recruitment modulation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed data have been deposited in Zenodo [https://doi.org/
10.5281/zenodo.14605878]. The natural image library*” used for nat-
ural feature distribution analysis is accessible at [http://tofu.psych.
upenn.edu/~upennidb]. Source data are provided in this paper.

Code availability

Image analysis, data analysis as well as the Gabor filter bank models can
be found in GitHub [https://github.com/AachenBrainLab/Eyes Wide_
Bandwidth].
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