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I Introduction

The concept of Digital Twin Models
(DTMs) has significantly developed in re-
cent years, especially with the advances
in the Internet of Things (IoT) and the
rise of Industry 4.0. The model mirrors the
attributes, states, and behaviors of the in-
vestigated physical entities in the virtual
space [1-3]. Intuitively, DTMs allow for ef-
ficient storage and analysis of product-re-
lated data throughout the entire Product

Digital Twin Models (DTMs) are key to Industry 4.0, improving manu-
facturing and product development through Al. They enable real-time
monitoring, predictive maintenance, and optimization across the prod-
uct lifecycle. However, none human-comprehensible Al algorithms,
especially deep neural networks, present challenges. In this regard,
this study explores human-Al collaboration to create an Al-driven DTM
for virtual product development. We propose a DTM that combines Al
and expert knowledge to enable informed decision-making for product
design optimization. For this, the architecture and functionality of the
developed model will be first outlined, and further, the application of

the model will be demonstrated in analyzing LiDAR systems.

Lifecycle (PLC), from the early design con-
ceptualization stage to further use and re-
cycling. Among these, the product devel-
opment stage is crucial in the product and
the DT lifecycles. In fact, during the con-
ceptualization and development phases,
what is known as the ‘digital prototype’ or
‘digital model’ (e.g., [1, 4, 5]) of a product
is created, which sets the foundation of the
considered DTM.

During the development phase of PLC
and the early stage of building the inves-

* Corresponding Author

Dr. Atefeh Gooran Orimi; Leibniz University Hannover, Institute of Product Development (IPeG);
An der Universitdt 1, 30823 Garbsen; Phone: +49 (0) 511 762 4338, E-Mail: gooran-orimi@ipeg.

uni-hannover.de

Co-authors

Dr. rer. nat. Dr-Ing. Sascha Saralajew; NEC Laboratories Europe GmbH, Heidelberg
Jiatai Feng, M. Sc.; IPeG at Leibniz University Hannover

Zhuoqun Dai, M. Sc.; 1PeG at Leibniz University Hannover

Rayen Hamlaoui, M. Sc.; IPeG at Leibniz University Hannover

Timo Strauss, M. Sc.; IPeG at Leibniz University Hannover

Prof. Dr.-Ing. Roland Lachmayer; IPeG at Leibniz University Hannover

Note

This article is peer reviewed by the members of the ZWF Special Issue Advisory Board.

tigated DT (A) data from previous genera-
tions is utilized to identify product faults
and integrate market preferences, shap-
ing the new generation of the product.
This involves analyzing vast volumes of
data aggregated from earlier DTs, encom-
passing horizontal and vertical data re-
lated to the product in previous genera-
tions [6-8]. (B) The data obtained during
the new generation of the product is used
to evaluate the system’s configuration for
further product development. This data
may include simulated data or real data
collected from product prototypes. In this
regard, well-established models assess
the behaviors of the system based on the
design expectations and objectives and
identify the different positive and nega-
tive behaviors, specifically the Unpredict-
ed Undesirables (UUs) [9], to make an
informed decision. In fact, through itera-
tive simulations and analysis, the num-
ber of errors should be decreased to opti-
mize and refine the virtual product and
its prototype.

Nonetheless, despite the pivotal role of
the product development phase, most ex-
isting studies on DTs have focused pre-
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dominantly on the manufacturing pro-
cess and the post-production phase of the
products [10, 11]. Consequently, the role
of product development within this con-
text of DTM and, importantly, how cur-
rent Artificial Intelligence (AI) methods
can be exploited in the process remain
underexplored. Thus, in contrast to previ-
ous studies that have mainly focused on
the capabilities of DTMs at the actual pro-
duction stage, we here investigate the
product As-Designed.

To this end, the current work focuses
on the initiation and modeling phases of
the DT lifecycle corresponding to the
product development phase of the PLC
(see, e.g., [12] for a comparison). The aim
is to enhance virtual product develop-
ment as the basis for building an Al-
based DTM by using an Al and human
experts teaming (referred to as human-Al
teaming). Such a human-in-the-loop pro-
cedure can utilize the power of both as-
pects and enhance the design and other
conceptual stages of product develop-
ment. This can effectively minimize the
expensive costs of trial and error with
physical product developments by detect-
ing potential sources of defects and vali-
dating the design parameters for product
quality assurance.

The paper is organized as follows: Sec-
tion 2 discusses the general specification
of the DTMs and how AI models have
been explored in related work. Later, Sec-
tion 3 discusses the investigated Al-driv-
en DTM. Moreover, Section 4 is devoted
to the investigated use case, where we
demonstrate the applicability of the pro-
posed approach using an ongoing project
on Light Detection and Ranging (LiDAR)
systems. For this, we assess the perfor-
mance of LiDAR, focusing on its angular
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resolution, and explore how a human-Al
teaming can consider design precision
and optimize the system’s performance
(for the specific tasks of object detection).
Finally, Section 5 concludes the paper
with a short discussion on future work.

I Related Work

Our work at the Institute of Product De-
velopment and Equipment Construction
(IPeG) at Leibniz University Hannover fo-
cuses on product development. It investi-
gates how Al models can assist engineers
during this process. Previous work in-
cludes the concept of design for additive
manufacturing [13-15] and in conjunc-
tion with technical inheritance [8, 16], as
well as DTM for distributed systems [17].
In the following, we discuss the state-of-
the-art DTMs, DT throughout the PLC,
and Al’s role in DTMs.

Digital Twin Models

The concept of the DTMs was first intro-
duced by Grieves [1-3] within the context
of product lifecycle management in engi-
neering. In general, a standard DTM con-
sists of three key components: (A) the real
space, which consists of the actual or in-
tended physical entity, also known as the
Physical Twin (PT); (B) the virtual space
that hosts the corresponding digital coun-
terparts, referred to as Digital Twins
(DTs), (C) the digital thread, which bridg-
es the physical and virtual spaces by es-
tablishing a communication between and
within the two spaces [1, 4, 5, 18].

A distinguishing characteristic of DTMs
is their ability to establish bidirectional
communication between and within phys-
ical and virtual spaces [1, 19]. In a DTM,
data flows from the physical environment
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Physical Twin

to the virtual space, enabling continuous
processing and extraction of critical in-
sights. The obtained information is then
transferred back to the real space to opti-
mize real-world operations. This ongoing
exchange of data and information forms a
digital thread throughout the PLC, which
supports seamless decision-making and
operational enhancements (see, e.g., [19-
21] for a complete discussion).

Recent work by Stark, Anderl et al. [4],
conducted under the Wissenschaftlichen
Gesellschaft fiir Produktentwicklung
(WiGeP) association in Germany, catego-
rizes DTs (the corresponding part of the
virtual space) into two distinct parts of
Digital Master (DM) and Digital Shadow
(DS), where each part relates to different
attributes of the framework (see Figure 1
which will be discussed further below).
The DM encompasses meta-data, design
parameters, and simulation data and
models for product development, primar-
ily generated during the early stages. On
the other hand, the DS includes the data
and all the related processing and is con-
tinuously updated with data collected
from the physical object throughout the
operation or maintenance phase of the
lifecycle [22, 23]. The studies emphasize
that a DT will be completed after the actu-
al production of the product, where the
corresponding DSs are established.

Furthermore, the communication be-
tween DM and DS is likewise established
using different tools, such as Simulation
Data Management Digital Twin (SDM-
DT) [24-25], and Virtual Part Inspection
(VPI) [26], discussed in previous related
studies. Data collection enables DS to
provide up-to-date information that en-
hances simulation models, monitoring,
and predictive analysis.
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In another study, Eigner et al. [19] dis-
cussed the concepts of digital models and
digital twins in DTMs (also see [20, 27]).
The digital model counts as the basis for
implementing DTs, which will be defined
during the early “Concept and Design”
phase of the PLC and further updated
and enriched throughout the PLC. The
digital twins are later defined as the in-
stances from the digital model that occur
in the production phase.

DT Throughout the Product Lifecycle
A DT’s lifecycle is tied to its physical
counterpart’s product lifecycle [2, 25],
and the connection has been discussed in
previous works based on a specific defi-
nition of the DT. In this regard, Grieves
and Vickers [28] in 2017 classified DTs
into two types: Digital Twin Prototype
(DTP) and Digital Twin Instance (DTI).
The former corresponds to the creation
and sharing of detailed system designs,
enabling simulations and assessments
(sometimes even without the need for
costly physical prototypes), while the lat-
ter represents a physical product virtual-
ly and remains linked to it throughout its
lifecycle. The two types of DT are further
discussed in connection to the four PLC
phases of “Creation”, “Production”, “Op-
eration”, and “Disposal”.

Based on this definition and in the Cre-
ation phase, the physical product does not
yet exist. It takes shape in virtual space as
a DTP by analyzing and defining system
requirements, characteristics, and param-
eters. Iterative simulations are performed
to predict desirable and undesirable be-
haviors while minimizing unforeseen ad-
verse outcomes. The Production phase in-
volves implementing the physical system
and its synchronization with the virtual
system, creating a bidirectional data flow
that links the physical and virtual compo-
nents. During the Operation phase, re-
al-time data exchange supports predictive
maintenance and performance optimiza-
tion by correlating state changes with po-
tential failures. Finally, the Disposal phase
leverages data from previous system gen-
erations to prevent recurring issues and
optimize future systems while addressing
environmental concerns. This systematic
approach enables the DT to evolve as a
complex system and highlights its signifi-
cance in Industry 4.0.

The concept of “digital twin lifecycle”
was further discussed by Schiitzer et al.
[29] in 2019. The work aimed to create a
DT that integrates both the product and
its development process, follows a lifecy-
cle approach from design to manufactur-
ing and usage. Based on their definition,
the DT is first conceived within the Cre-
ation phase and will be completed and
implemented at the end of the Production
phase as the virtual and physical systems
are functional and linked. The work also
enhanced the DT by integrating Al, turn-
ing it into a “Smart Digital Twin” to im-
prove its capabilities further.

In another line of research in 2019,
Stark and Damerau [30] investigated and
analyzed various aspects of developing
and operating DTs and provided a new
definition of DT lifecycle based on the con-
cept of DM and DS. Correspondingly, they
considered four phases for the DT lifecycle
of “Initiation”, “Modeling”, “Enrichment
and Utilization”, and “Reuse”. “Initiation”
encompasses tasks such as market re-
search and defining the requirements for
the operational needs and potential oppor-
tunities. During this phase, DM is estab-
lished by integrating input parameters,
requirements, and architectures. More-
over, “Modeling” corresponds to the de-
sign phase of the PLC. In this phase, DM
will be completed by models and simula-
tions of the product in the virtual space.
“Enrichment and Utilization” further
aligns with production planning, produc-
tion, and the Operation phase of the PLC,
where DT evolves by utilizing data collect-
ed from the DS. This phase overlaps with
the “Modeling” phase, taking the model-
ing and fundamental information from
that phase and ensuring that the DT is ac-
tively utilized to enhance the product's
performance and user experience. Finally,
the “Reuse” phase corresponds to the end-
of-life stage of the PLC. In this phase,
knowledge and outputs from the existing
DT are leveraged to create and improve the
next generation of the product.

In [5], Eigneretal considered the
three phases of “prototype-twin-phase”,
“production-twin- phase”, and “service-
twin-phase-as-maintained” for a DT life-
cycle corresponding to “Design”, “Pro-
duction”, and “Maintenance” phases of
PLC.They explained that the product will
be developed first as a “digital model”

Jahrg. 120 (2025) Special Issue

during the “as-designed” and “proto-
type-twin-phase” in both product and DT
lifecycles, respectively.

Later, in 2023, Grieves [1] completed
his definition in [28] by defining a new
type of DT named Digital Twin Aggregat-
ed (DTA), corresponding to the disposal
phase in PLC. DTAs are longitudinal and
latitudinal representations of product be-
havior from individual DTIs to predict fu-
ture behaviors such as product failures.
The definition further closes the loop be-
tween product design and real-world
product behavior to prevent recurring
flaws in future product generations. Ad-
ditionally, Anderletal. [7] provided a
similar concept by discussing the vertical
and horizontal product data obtained
throughout the PLC. Earlier, Lachmayer
and Mozgova [8] presented the idea of
Technical Inheritance by leveraging life
cycle data from previous product genera-
tions to shape new product development.
This approach incorporates systematic
data collection, monitoring, and analysis
to facilitate continuous improvement and
prevent design flaws across generations.

In our contribution here, the main fo-
cus is on product development using the
DT concept. Based on the discussion
above, product development and creating
the digital twin prototype shape the DTs’
foundation. Compared to the other phases
of the PLC and the DT lifecycle, the initial
development and design processes and
the DM have received comparatively little
attention from researchers and engineers.
This is important when we realize virtual
prototyping significantly reduces physical
prototyping costs and time. In this regard,
there is still a gap in how advanced Al and
ML algorithms can be exploited to opti-
mize the virtual product design of a de-
sired product within the DTM.

Al in Engineering and Manufacturing
Recent advancements in data science and
Al have significantly broadened the capa-
bilities of DTs. In this regard, integrating
Al into DTs has become essential to en-
hance their accuracy, predictive power,
and decision-making functionality [18,
31, 32]. Standard Al models utilize potent
algorithms to solve complex prediction
tasks, which have been of great interest
in promoting innovative and Al-based
product development processes [33, 34].
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They enable more dynamic and effective
DTs throughout the entire PLC.

In general, vast volumes of usually het-
erogeneous data are generated by the
manufacturing processes. In general, such
Al systems investigate the key questions
of “What happened?”, “Why did it hap-
pen?”; “What will happen in the future?”,
“What action should be taken?” through-
out the PLC [35]. To address these ques-
tions, data analytics approaches, includ-
ing descriptive, diagnostic, predictive, and
prescriptive analytics, are respectively ex-
plored in the literature [22, 36].

While managing and analyzing such
volumes of data offers the opportunity to
extract valuable information and knowl-
edge, it also significantly increases the
complexity of the corresponding data
analysis methods. Recent advancements
in Al and ML, particularly in deep learn-
ing algorithms [37, 38], generative mod-
els [39], Large Language Models (LLMs),
and foundation models [40, 41, 42], have
facilitated this process by improving
methods for handling such data, allowing
for the extraction of more accurate and
meaningful information.

Nevertheless, many of the previously es-
tablished Al systems operate as black-box-
es, meaning their decision processes are
opaque and difficult for users or develop-
ers to interpret. Such a black-box nature
poses challenges, especially:

m if developers want to improve the Al
system to fix identified errors and

m if they‘re going to understand the de-
cision process of the Al system to en-
hance their mental model or to enable
an efficient decision.

To address these challenges, researchers
are developing post-processing methods to
make black-box Al systems more interpre-
table, known as eXplainable Al (XAI) sys-
tems [43]. However, these post-hoc expla-
nation methods can only approximate the
actual reasoning process of the Al model,
meaning that the explanations provided
may not always be entirely accurate. Op-
posed to black-box models are white-box Al
systems (e.g., prototype-based learning
systems [44]), methods that are inherent-
ly interpretable and understandable to
humans.

While the Al community continues to
discuss and define contexts in which
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black-box or white-box models are most
appropriate [45], XAl provides opportu-
nities that should be considered to un-
lock the full potential of Al systems. The
choice also depends on the specifics of
the considered use case. It is increasingly
shaped by regulations like the EU Al Act,
which requires transparency for specific
Al systems based on risk categories.
While Al systems used in production and
engineering (where the Al is not directly
part of the product) generally fall outside
the EU Al Act’s scope, XAl offers new
possibilities.

I The Investigated Al-Driven DTM

As discussed, our primary focus is to en-
hance product design and development
within the context of DTMs. We build upon
the model proposed by Stark, Anderl et al.
[4] and assume a model encompassing
DM and different DS(s) in the virtual
space. Importantly, we exploit Al algo-
rithms to enable optimal product design
and shorter development cycles to ex-
pand the creative work of the engineer.
To ensure such a process, an efficient hu-
man-Al teaming is investigated. Al and
advanced ML algorithms provide solu-
tions or recommendations, and later, the
engineer realizes and executes validation
and design decisions. The engineer can
extend and build on the proposed deci-
sions by the model. If such a teaming is
efficient, humans and AI will comple-
ment each other as, for instance, the Al
can quickly process huge databases on a
scale, and humans can understand com-
mon sense. The teaming is, therefore,
based on a mutual understanding, which
further promotes XAI

The structure of the investigated DTM
is illustrated in Figure 1. To explain the
details of the model, we begin with the
product development phase in the virtual
space. In this phase, the DT is conceptu-
alized, even before the physical product
exists or when it is based on a previous
generation model. Thus, the new genera-
tion of the product evolves from an initial
concept to an optimized design before ac-
tual manufacturing begins. This phase is
characterized by gathering information
and requirements for virtual product de-
velopment, as assigned to the DM (see,
e.g., [26]). Once the virtual product de-
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sign is finalized, it is transferred to the
real space for manufacturing, represent-
ed as a PT in Figure 1. The DT entirely
takes shape at the end of this phase,
when the physical product is manufac-
tured, and data from the physical product
is fed back into the virtual space.

Throughout the DTM, particularly during
the operational phase of the product, vast
amounts of data are generated from vari-
ous sources based on the product’s perfor-
mance in the market. This data is continu-
ously sampled from the real space and
transferred to the virtual space. The data
is processed in DS(s), and as the physical
and virtual systems are twinned, changes
such as part replacements or state transi-
tions can occur in both systems. Informa-
tion is often transferred back to the physi-
cal space through actuators (e.g., [9]).
Ultimately, the collected data, aggregated
throughout the entire PLC, is utilized in
the Disposal phase, e. g., failure prediction
using Al and ML models.

In virtual product development, three
main components are involved: Design op-
timization, Product Data Management
(PDM), and Simulation Data Management
(SDM). The former focuses on the require-
ments of each iteration step to achieve the
optimal product design, while the latter
two components are responsible for man-
aging simulated data. In this framework,
advancements in ML algorithms can facil-
itate the process by reducing iteration cy-
cles, enhancing the creativity of design
engineers, and improving accuracy. For
example, generative models can be uti-
lized to create new CAD models [46], thus
opening new possibilities for design inno-
vation and creativity.

Besides, simulation techniques are com-
monly used to predict the expected behav-
iors of the PT. By simulating system behav-
ior, design engineers can access valuable
data sets that are further leveraged by ana-
lytical Al-based approaches for evaluating
the model (e.g., by exploiting optimization
methods). Such approaches focus on dis-
covering new insights, patterns, relation-
ships, or dependencies in data to support
data-driven decision-making.

Figure 2 details the structure of the op-
timization cycle for virtual product devel-
opment. In this procedure, the engineers
will realize the first concept and defini-
tion of the product and later use them for
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Figure 2: The diagram demonstrates the virtual product development process from design and

simulation to validation and design optimization.

simulation. If a previous generation of
the product exists, then all the relevant
data (from the aggregated DTs of the pre-
vious generations) will be exploited to es-
tablish the new model. In the next step,
simulation techniques and tools (such as
CAD, CARLA, etc.) will be utilized to gen-
erate data corresponding to the product’s
current stage. The data will be further
processed and used by the investigated
human-Al teaming.

Here, we exploit deep learning algo-
rithms to leverage their hierarchical learn-
ing representation capabilities and extract
the desired features from the data. The
choice of the corresponding ML algorithm
depends on the details of the product, the
acquired data, and the task we are investi-
gating. It could be in the form of deep
probabilistic models such as Variational
Autoencoders (VAEs) [47] or conventional
deep neural networks such as Convolu-
tional Neural Networks (CNNs) [48]. For
our use case in this study, a novel version
of the CNNs is employed, which will be
discussed further in the next section. The
analysis part outlined in Figure 2 demon-
strates the steps the investigated hu-
man-Al teaming takes to transform raw
data into valuable knowledge. We exem-
plified the steps based on the considered
use case and the methods that were ap-
plied for object detection.

After training, the corresponding re-
sults will be assessed and evaluated giv-

en benchmark metric values, and poten-
tial suggestions for design optimization
will be obtained. Such analysis will be
conducted by the human-Al teaming,
where the design engineer can decide on
further post-processing methods and
modification of the design parameters for
the desired product. Given the new pa-
rameters, a product redesign will be con-
ducted, which is usually an enhanced
version of the previous step. The loop will
continue till the desired design is
achieved. In the next section, we show-
case this procedure using our use case of
LiDAR systems.

The above procedure demonstrates the
use of Al in product design. Applying
such teaming can lead to an XAI, which
provides several uncovered opportunities
in production and engineering. For in-
stance, an Al system is used to enhance
the design process by analyzing a data-
base of existing products. In this scenar-
io, the final product will still be devel-
oped by an engineer, but as discussed,
the process will be enhanced by Al

Another example where XAI can be
beneficial is the analysis of prediction er-
rors of Al systems when applied, e.g., to
monitor a manufacturing system. XAI
can uncover spurious correlations picked
up during the training of the AI system
[49]. This means that an Al system might
never have learned what a damaged prod-
uct looks like but picked up features that
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co-occur, such as different reflection pat-
terns of light sources on the product’s
surface. A change in the illumination
conditions could lead to significant er-
rors in this case, which is usually not in-
tended; XAl could help identify such is-
sues efficiently.

I The Investigated Use Case

The following use case details the under-
lying concept of building a DTM for Li-
DAR systems, emphasizing how hu-
man-Al teaming can be integrated into
the process. LiDAR is an advanced sens-
ing technology that employs modulated
lasers to measure the distance by calcu-
lating the laser’s Time of Flight (TOF).
This enables the creation of detailed 3D
point cloud maps of the surroundings.
Currently, the resolution requirements
for LiDAR systems remain unstandard-
ized. On the one hand, low point cloud
density may lack the necessary detail to
capture key object characteristics, poten-
tially leading to detection failures. On the
other hand, increasing point cloud densi-
ty requires higher resolution detectors or
sampling frequencies, which raises sys-
tem costs and can introduce unnecessary
redundancy.

For this use case, we are interested in
assessing how a specific point cloud den-
sity, defined by a particular angular reso-
lution and generated by the LiDAR sen-
sor, affects object detection performance.
This enables us to modify this parameter
and find an optimal configuration that
leads to systems with higher object detec-
tion accuracies. Intuitively, we aim to
build the corresponding DTM of the new
generation of LiDAR systems by initiating
virtual product development and enhanc-
ing the product’s design. This corre-
sponds to the ‘Initiation” and ‘Modeling’
phases of the DT lifecycle [12], i.e., the
creation of the corresponding DM of the
model. To this end, the main point that
will be discussed in the following is how
the proposed human-Al teaming will be
applied.As the first step, data from the
product’s (in this case, LIDAR systems)
previous generation should be collected
and assessed. As mentioned, this denotes
the horizontal and vertical data acquired
by the aggregated DTs of the earlier gen-
erations. The corresponding DMs of the
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Figure 3. A considered environment in CARLA, used for collecting point cloud data (left); The object detection using the trained PV-RCNN model.

The figures correspond to the angular resolution 0.1 °x 0.1 ° (right)

previous generations facilitate the prod-
uct‘s modeling, and DSs allow for detect-
ing possible points of enhancement, un-
predicted undesirable behaviors, and
optimizing the product’s next-generation
design. Nonetheless, real data obtained
from DSs often lacks insights into entire-
ly new product designs, underscoring the
importance of simulated data. While re-
al-world data provides a valuable founda-
tion for market research, defect diagno-
sis, and predictive analysis, its utilization
is constrained by the high costs associat-
ed with physical prototyping during the
product development phase.

We used CARLA [50], an open-source
simulator that provides a controlled envi-
ronment for research on autonomous
driving. CARLA efficiently simulates the
system and field environments based on
different degrees of complexity. It further
allows for data annotation by generating
ground-truth bounding boxes.

The LiDAR configuration used in CAR-
LA features a vertical Field of View (FOV)
ranging from -30 ° to 10 °, along with a
horizontal FOV of 360 °. It has a detec-
tion range of up to 150 meters and oper-
ates at a rotation frequency of 10 Hz. Fur-
thermore, the number of channels and
points per second can be adjusted to mod-
ify the angular resolution. The generated
LiDAR data ranges from an angular reso-
lution of 0.1 °x0.1 ° to 1.0 °x1.0 °. Each
data set at the specified angular resolu-
tion has a 3-minute recording in a small-
town scene, totaling 3000 frames of Li-
DAR point clouds, with 1600 frames used
as the training set, 400 as the validation
set, and 1000 as the test set [1].

The scene includes 30 vehicles (ex-
cluding the ego-vehicle), their speeds dy-
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namically adjusted according to the ar-
ea‘s speed limits, 13 bicycles moving at a
constant speed of 4 m/s, and 40 pedestri-
ans at 1 m/s. Given the data, we trained
the considered algorithm (PV-RCNN dis-
cussed further below) with training times
varying depending on the complexity of
point cloud data, from 31 hours at
0.1 °x0.1 ° to 9 hours at 1.0 °x1.0 °. The ex-
periments are conducted on a system
equipped with one NVIDIA RTX 3060 GPU,
12 GB. Figure 3 illustrates a generated
frame used for training, together with the
corresponding point clouds.

PV-RCNN for LiDAR Systems
Developing an initial concept for an opti-
mized product requires robust methods
for data analysis and evaluation. This
plays a pivotal role in assessing system’s
performance, identifying potential de-
fects, and ultimately optimizing product
design. We here employed Deep Neural
Networks (DNNs) to learn and predict the
performance of the considered LiDAR sys-
tem with a specific angular resolution.
This allows us to evaluate the potential
functionality of the model by testing and
analyzing device performance (for the
task of object detection). Nevertheless,
the model exploits a black-box approach
that further requires expert knowledge
(throughout the entire process) for in-
formed decision-making, forming the dis-
cussed human-Al teaming.

We employed the PointVoxel-RCNN (PV-
RCNN) model, introduced by Shi et al. in
[41], demonstrating state-of-the-art per-
formance in 3D object detection for point
cloud data. This model combines grid-
based and point-based methods to lever-
age each approach’s advantages, address-
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ing the inherent challenges in detecting
objects within point cloud data. Grid-
based methods are generally more com-
putationally efficient but suffer from in-
evitable information loss. In contrast,
while computationally more expensive,
point-based methods can achieve superi-
or spatial resolution and a larger recep-
tive field through point set abstraction
[42]. By integrating these two methods,
PV-RCNN effectively balances computa-
tional efficiency and localization accura-
cy, resulting in improved performance for
3D object detection tasks.

The results are evaluated in terms of
mean Average Precision (mAP) with 40 re-
call positions on test data and are further
summarized in Table 1. In addition, Fig-
ures 4 and 5 provide the results across dif-
ferent angular resolutions and for the
three distinct objects. We first match the
predicted bounding boxes to their corre-
sponding ground truth to calculate the
corresponding values using a metric such
as Intersection over Union (IoU). Predic-
tions with an IoU above a predefined
threshold are classified as true positives,
while the remaining predictions are false
positives. Precision and recall are then
computed, where precision represents
the proportion of correctly predicted
bounding boxes among all predictions,
and recall measures the proportion of
ground truth instances successfully de-
tected. To compute the Average Precision
(AP) for a given class, precision values
are averaged at 40 evenly spaced recall
points. The mAP is then derived by aver-
aging the AP values across all object
classes, providing an overall perfor-
mance metric for the detection model
(i.e., the PV-RCNN model). Moreover, Fig-
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AP@R40 Car Pedestrian Cyclist mAP

BBox 88.36 84.69 87.56 86.87
BEV 82.97 74.09 77.76 78.27
3D 83.23 79.07 81.33 81.21
AOS 79.10 70.07 76.46 75.21

Table 1. The corresponding mean average precision values with 40 recall positions obtained
using the PV-RCNN model. Here ‘BBox’ denotes Bounding Box, ‘BEV’ denotes Bird’s Eye View, and
‘A0S’ denotes Average Orientation Similarity. The results correspond to the angular resolution
0.1°x0.1°. We used a threshold of 0.7 for cars and 0.5 for both pedestrians and cyclists
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Figure 4. Illustration of the average confidence scores for detecting three different objects using
PV-RCNN trained on data with an angular resolution of 0.1 °x 0.1 °
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Figure 5. Illustration of the average confidence scores for detecting cyclists using PV-RCNN

trained on data at various angular resolutions.

ures 4 and 5 present the average confi-
dence scores as an additional metric for
analyzing the considered use case. These
values were computed by segmenting the
point cloud data into different density in-
tervals. The confidence scores assigned
by the PV-RCNN model to the predicted
bounding boxes within each interval
were then averaged. As observed, an in-

crease in point cloud density generally
leads to higher confidence scores, which
highlights the impact of density thresh-
olds on enhancing detection capabilities.

I Conclusion and Future Work

Integrating DTMs with advances in Al
and ML transforms product development

Jahrg. 120 (2025) Special Issue

and manufacturing by enabling the pro-
cessing and analysis of vast, heteroge-
neous data from diverse sources. Al-driv-
en DTMs provide sophisticated diagnostic
and decision-making support in this con-
text, enhancing product quality and pro-
duction efficiency. These technologies
make it possible to address core manu-
facturing challenges, such as maintain-
ing high product quality and boosting
customer satisfaction.

In this paper, we investigated virtual
product development as the basis for build-
ing an Al-driven DTM, utilizing human-Al
teaming to leverage the distinct strengths
of both the Al model and the design engi-
neer. This approach allows for optimized
design processes and more informed deci-
sion-making. We further demonstrated the
framework’s capabilities by thoroughly ex-
amining LiDAR systems.

Future work includes expanding the
framework’s application to various use cas-
es, further developing its versatility and
utility. Additionally, exploring other deep
learning algorithms, especially generative
models capable of extracting structural in-
formation, holds promise for improving
model performance in product design
tasks. These enhancements could be partic-
ularly impactful for tasks in image analysis,
such as those involved in CAD designs.

I Literature

1. Grieves, M. W.: Digital Twins: Past, Present,
and Future. In: Crespi, N.; Drobot, A.T;
Minerva, R. (eds.): The Digital Twin. Springer,
Cham 2023, pp. 97-121
DOI:10.1007/978-3-031-21343-4_4

2. Grieves, M.: Intelligent Digital Twins and
the Development and Management of
Complex Systems. digitaltwin 2 (2022) 8
DOI:10.12688/digitaltwin.17574.1

3. Grieves, M.; Vickers, J.: Digital Twin:
Mitigating Unpredictable, Undesirable
Emergent Behavior in Complex Systems. In:
Kahlen, F-J.; Flumerfelt, S.; Alves, A. (eds.):
Transdisciplinary Perspectives on Complex
Systems: New Findings and Approaches.
Springer, Cham 2017, pp. 85-113
DOI:10.1007/978-3-319-38756-7_4

4. Stark, R.; Anderl, R.; Thoben, K.-D.; Wartzack,
S.: WiGeP-Positionspapier: ,Digitaler
Zwilling“. Zeitschrift fiir wirtschaftlichen
Fabrikbetrieb ZWF 115 (2020) 1, pp. 47-50
DOI:10.3139/104.112311

5. Eigner, M.; Detzner, A.; Schmidt, P. H.;
Tharma, R.: Holistic Definition of the Digital
Twin. International Journal of Product
Lifecycle Management 13 (2021) 4,

DE GRUYTER



pp. 343-357
DOI:10.1504/1JPLM.2021.119527

6. Barricelli, B. R.; Casiraghi, E.; Fogli, D.:
A Survey on Digital Twin: Definitions,
Characteristics, Applications, and Design
Implications. IEEE Access (2019)
DOI:10.1109/ACCESS.2019.2953499

7. Anderl, R;; Haag, S.; Schiitzer, K.; Zancul, E.:
Digital Twin Technology - an Approach for
Industry 4.0 Vertical and Horizontal Lifecycle
Integration. it - Information Technology 60
(2018) 3, pp. 125-132
DOI:10.1515/itit-2017-0038

8. Lachmayer, R.; Mozgova, I.: Technical
Inheritance as an Approach to Data-Driven
Product Development. In: Krause, D.;
Heyden, E. (eds.): Design Methodology for
Future Products: Data Driven, Agile and
Flexible. Springer, Cham 2022, pp. 47-64
DOI:10.1007/978-3-030-78368-6_3

9. Schiitzer, K.; Andrade Bertazzi, J. de; Sallati,
C. et al.: Contribution to the Development of
a Digital Twin Based on Product Lifecycle to
Support the Manufacturing Process. Procedia
CIRP 84 (2919), pp. 82-87
DOI:10.1016/j.procir.2019.03.212

10.Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C.:
Digital Twin in Industry: State-of-the-Art.
IEEE Transactions on Industrial Informatics
15(2019) 4, pp. 2405-2415
DOI:10.1109/TI1.2018.2873186

11.Liu, M.; Fang, S.; Dong, H.; Xu, C.: Review of
Digital Twin about Concepts, Technologies,
and Industrial Applications. Journal of
Manufacturing Systems 58 (2021),
pp. 346-361
DOI:10.1016/§.jmsy.2020.06.017

12. Stark, R.; Damerau, T.: Digital Twin. In: CIRP
Encyclopedia of Production Engineering.
Springer, Berlin, Heidelberg 2019
DOI:10.1007/978-3-642-35950- 7_16870-1

13.Lachmayer, R.; Ehlers, T.; Lippert, R. B.:
Design for Additive Manufacturing.
Springer, Berlin, Heidelberg 2024
DOI:10.1007/978-3-662-68463-4

14.Lachmayer, R.; Ehlers, T.; Lippert, R. B.:
Is Additive Manufacturing Worth It? In:
Lachmayer, R.; Ehlers, T.; Lippert, R.B.
(eds.): Design for Additive Manufacturing.
Spirnger, Berlin, Heidelberg 2024,
pp. 215-232
DOI:10.1007/978-3-662-68463- 4_10

15. Lachmayer, R.; Gembarski, P.C.; Gottwald, P;
Lippert, R.B.: The Potential of Product
Customization Using Technologies of Additive
Manufacturing. In: Bellemare, J.; Carrier, S.;
Nielsen, K.; Piller, F.T. (eds.): Managing
Complexity. Springer, Cham 2017, pp. 71-81
DOI:10.1007/978-3-319-29058-4_6

16. Lachmayer, R.; Mozgova, 1.; Reimche, W. et al.:
Technical Inheritance: A Concept to Adapt
the Evolution of Nature to Product Engi-
neering. Procedia Technology 15 (2014),
pp. 178-187
DOI:10.1016/j.protcy.2014.09.070

17.Dierend, H.; Altun, O.; Mozgova, 1.;
Lachmayer, R.: Management of Research
Field Data Within the Concept of Digital
Twin. In: Valle, M.; Lehmhus, D.; Gianoglio,
C. et al. (eds.): Advances in System-Integrated
Intelligence. Springer, Cham 2023,
pp. 205-214
DOI:10.1007/978-3-031-16281-7_20

18.Rathore, M. M.; Shah, S. A.; Shukla, D. et al.:
The Role of Al, Machine Learning, and
Big Data in Digital Twinning: A Systematic
Literature Review, Challenges, and Oppor-
tunities. IEEE Access 9 (2021)
DOI:10.1109/ACCESS.2021.3060863

19. Eigner, M.; Detzner, A.; Schmidt, P.; Tharma,
R.: Holistic Definition of the Digital Twin.
International Journal of Product Lifecycle
Management 13 (2021) 4
DOI:10.1504/JPLM.2021.119527

20.Eigner, M.: System Lifecycle Management:

Engineering Digitalization (Engineering 4.0).

Springer, Berlin, Heidelberg 2021
DOI:10.1007/978-3-662-62183-7
.Fett, M.; Macko, S.; Wilking, F. et al.: Retro-
fitting Digital Twins of Existing Systems.
In: 2024 IEEE International Symposium on
Systems Engineering (ISSE), Oct. 2024,
pp. 1-8
DOI:10.1109/1SSE63315.2024.10741101
22.R6hm, B.; Anderl, R.: Concept of a System
Architecture for a Simulation Data Manage-
ment in the Digital Twin. In: ASME 2021,
30t Conference on Information Storage and
Processing Systems, American Society of
Mechanical Engineers Digital Collection,
(2021)
DOI:10.1115/1SPS2021-65300
23. Stark, R.; Kind, S.; Neumeyer, S.: Innovations
in Digital Modelling for Next Generation
Manufacturing System Design. CIRP
Annals 66 (2017) 1, pp. 169-172
DOI:10.1016/j.cirp.2017.04.045
24.Roehm, B.; Anderl, R.; Schleich, B.: Develop-
ment of an Information Model for Simulation
Data Management in the Digital Twin.
Procedia CIRP 119 (2023), pp. 681-686
DOI:10.1016/j.procir.2023.03.120
25.R6hm, B.; Anderl, R.: Simulation Data
Management in the Digital Twin (SDM-DT) -
Evolution of Simulation Data Management
along the Product Life Cycle. Procedia CIRP
105 (2022), pp. 847-850
DOI:10.1016/j.procir.2022.02.140
26.Kriickemeier, S.; Anderl, R.: Concept for
Digital Twin Based Virtual Part Inspection
for Additive Manufacturing. Procedia CIRP
107 (2022), pp. 458-462
DOI:10.1016/j.procir.2022.05.008
27.Kasper, N.; Pfenning, M.; Eigner, M.: The
Digital Thread for System Lifecycle Man-
agement with a Native Graph Database in a
Polyglot Architecture. Proceedings of the
Design Society 4 (2024), pp. 2079-2088
DOI:10.1017/pds.2024.210

2

—_

DE GRUYTER  Jahrg. 120 (2025) Special Issue

KI IN ENGINEERING

28.Grieves, M.; Vickers, J.: Digital Twin:
Mitigating Unpredictable, Undesirable

Emergent Behavior in Complex Systems. In:

Kahlen, F-J.; Flumerfelt, S.; Alves, A. (eds.)

Transdisciplinary Perspectives on Complex
Systems. Springer, Cham 2017, pp. 85-113

DOI:10.1007/978-3-319-38756-7_4

29. Schiitzer, K.; Bertazzi, J. de A.; Sallati, C. et al.:
Contribution to the Development of a Digital
Twin Based on Product Lifecycle to Support

the Manufacturing Process. Procedia CIRP
84 (2019), pp. 82-87
DOI:10.1016/j.procir.2019.03.212

30. Stark, R.; Damerau, T.: Digital Twin. IN:
CIRP Encyclopedia of Production Engineer-
ing. Springer, Berlin, Heidelberg 2019
DOI:10.1007/978-3-642-35950-7_16870-1

31.Bariah, L.; Debbah, M.: The Interplay of Al

—_

and Digital Twin: Bridging the Gap between
Data-Driven and Model-Driven Approaches.

IEEE Wireless Communications 31 (2024)
3, pp. 219-225
DOI:10.1109/MWC.133.2200447

32.Emmert-Streib, F.: What Is the Role of Al for

Digital Twins? Al 4 (2023) 3, pp. 721-728
DOI:10.3390/ai4030038

33. Mitschke, F.; Metternich, J.: Prozessiiber-
wachung durch bildverarbeitende KI.
Zeitschrift fiir wirtschaftlichen Fabrik-
betrieb ZWF 119 (2024) 10, pp. 768-771
DOI:10.1515/zwf-2024-1132

34. Redlich, T.; Mariscal-Melgar, J. C.; Moritz, M.;

Ingrassia, D.: AI Meets Distributed Manu-
facturing: Wie KI die Verbreitung digitaler

Fertigung fordert. Zeitschrift fiir wirtschaft-

lichen Fabrikbetrieb ZWF 119 (2024) 10,
pp. 772-779
DOI:10.1515/zwf-2024-1144

35. Sarker, I. H.: Data Science and Analytics: an
Overview from Data-Driven Smart Computing,
Decision-Making and Applications Perspec-

tive. SN Computer Science 2 (2021) 5
DOI:10.1007/542979-021-00765-8
36.Sarker, . H.: AI-Based Modeling: Tech-
niques, Applications and Research Issues
towards Automation, Intelligent and Smart
Systems. SN Computer Science3 (2022) 2
DOI:10.1007/s42979-022-01043-x
37. Goodfellow, L; Bengio, Y.; Codevilla, A. et al.:
Deep Learning: Adaptive Computation and
Machine Learning. MIT Press 2017
38.LeCun, Y.; Bengio, Y.; Hinton, G.: Deep
Learning. Nature 521 (2015) 7553,
pp. 436-444
DOI:10.1038/nature14539

39. Goodfellow, Pouget-Abadie, J; Mirza, M. et al.:

Generative Adversarial Nets. Advances in
Neural Information Processing Systems 3
(2014) 11

DOI:10.1145/3422622

40. Bommasani, R.; Hudson, D.R.; Adeli. E. et al.:

On the Opportunities and Risks of Founda-
tion Models. 2021
DOI:10.48550/arXiv.2108.07258

IWF

83



ZIWF

84

KI IN ENGINEERING

41.Devlin, J.; Chang, M.-W,; Lee, K.; Toutanova,
K.: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.
2018
DOI:10.48550/arXiv.1810.04805

42.0penAl et al. (eds.): GPT-4 Technical
Report. Mar. 04, 2024
DOI:10.48550/arXiv.2303.08774

43.Mohseni, S.; Zarei, N.; Ragan, E.D.: A Multi-
disciplinary Survey and Framework for
Design and Evaluation of Explainable Al
Systems. The ACM Transactions on Interac-
tive Intelligent Systems 11 (2021) 3-4,
pp. 1-45
DOI:10.1145/3387166

44.Biehl, M.; Hammer, B.; Villmann, T.: Proto-
type-based Models in Machine Learning.
WIREs Cognitive Science 7 (2016) 2,
pp- 92-111
DOI:10.1002/wcs.1378

45.Rudin, C.: Stop Explaining Black Box
Machine Learning Models for High Stakes
Decisions and Use Interpretable Models
Instead. Nature Machine Intelligence 1
(2019) 5, pp. 206-215
DOI:10.1038/542256-019-0048-x

46.Koch, S.; Matveeyv, A.; Jiang, Z. et al.: ABC: a
Big CAD Model Dataset for Geometric Deep
Learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 2019
DOI:10.1109/CVPR.2019.00983

47.Kingma, D.P,; Welling, M.: Auto-Encoding
Variational Bayes. 2022
DOI:10.48550/arXiv.1312.6114

48.LeCun, Y.; Bengio, Y.: Convolutional Net-
works for Images, Speech, and Time-Series.
In: Arbib, M. A. (ed.): The Handbook of
Brain Theory and Neural Networks. MIT
Press, Cambridge, MA 1998, pp. 255-258

49.Ribeiro, M. T,; Singh, S.; Guestrin, C.: Why
Should I Trust You? Explaining the Predic-
tions of Any Classifier. In: Proceedings of the
22" ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.
Association for Computing Machinery
(2016), pp. 1135-1144
DOI:10.1145/2939672.2939778

50. Dosovitskiy, A.; Ros, G.; Codevilla, F. et al.:
CARLA: An Open Urban Driving Simulator.
Proceedings of the 15 Annual Conference
on Robot Learning, PMLR 78 (2017) 1,
pp. 1-16
DOI:10.48550/arXiv.1711.03938

I Authors

Dr. Atefeh Gooran Orimi received her Ph.D. in
Applied Mathematics from Ferdowsi University
of Mashhad, Iran. She joined IPeG in 2023 as a
postdoctoral researcher, specializing in data
management, analytics, and Al

Dr. rer. nat. Dr.-Ing. Sascha Saralajew studied
Mechanical Engineering and Mathematics at
UAS Mittweida. He completed his doctorate in
both fields at Leibniz University Hannover and
University Bielefeld, respectively. He is currently
a senior research scientist at NEC Laboratories
Europe GmbH in the human-centric Al group.

Jiatai Feng, M. Sc., studied Optical Technologies
and completed his M.Sc. degree at IPeG in 2025.

Zhuoqun Dai is a dedicated research assistant
at IPeG, where he has been contributing since
2020. Specializing in optical design and LiDAR
technology, his work focuses on advancing cut-
ting-edge solutions for precision measurement
and sensing applications.

Rayen Hamlaoui, M. Sc., has been a research
associate at IPeG since 2023. He studied
Mechatronics at Leibniz University Hannover.

Timo Stauss, M. Sc., studied Mechanical and
Biomedical Engineering at Leibniz University
Hannover. Since 2023, he is working at IPeG as
a research assistant.

Prof. Dr.-Ing. Roland Lachmayer is the Found-
ing Director and the Head of IPeG. He is the
senator of Leibniz University Hannover, a
speaker of the graduate school “Tailored Light,”
a member of the scientific directorate of the
Laser Zentrum Hannover, the Managing Director
of the WiGeP, and has been a speaker of the
EFRE-funded research network GROTESK,
since 2018. Since 2019, he has led the task
group Additive Manufacturing of the cluster of
excellence PhoenixD.

| Abstract

Mensch-KI-Zusammenarbeit in einem Digitalen
Zwillingsmodell fiir die virtuelle Produktent-
wicklung.. Digitale Zwillingsmodelle (DTM; von
Digital Twin Model) sind ein wichtiger Bestand-
teil von Industrie 4.0 und verbessern die Ferti-
gung und Produktentwicklung durch KI. Sie
ermoglichen Echtzeitiiberwachung, voraus-
schauende Wartung und Optimierung iiber
den gesamten Produktlebenszyklus. Fiir den
Menschen unverstiandliche KI-Algorithmen,
insbesondere tiefe neuronale Netze, stellen
jedoch eine Herausforderung dar. In dieser

Jahrg. 120 (2025) Special Issue

Studie wird daher die Zusammenarbeit zwischen
Mensch und KI untersucht, um einen Kl-gestiitzten
DTM fiir die virtuelle Produktentwicklung zu
entwickeln. Wir schlagen einen DTM vor, der KI
und Expertenwissen kombiniert, um fundierte
Entscheidungen fiir die Optimierung des Pro-
duktdesigns zu ermoglichen. Zu diesem Zweck
werden zunéchst die Architektur und die Funk-
tionalitdt des entwickelten Modells skizziert.
AnschlieBend wird die Anwendung des Modells
bei der Analyse von LiDAR-Systemen demonstriert.
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