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Human-AI Teaming in a Digital 
Twin Model for Virtual Product 
Development

Digital Twin Models (DTMs) are key to Industry 4.0, improving manu-
facturing and product development through AI. They enable real-time 
monitoring, predictive maintenance, and optimization across the prod-
uct lifecycle. However, none human-comprehensible AI algorithms, 
especially deep neural networks, present challenges. In this regard, 
this study explores human-AI collaboration to create an AI-driven DTM 
for virtual product development. We propose a DTM that combines AI 
and expert knowledge to enable informed decision-making for product 
design optimization. For this, the architecture and functionality of the 
developed model will be first outlined, and further, the application of 
the model will be demonstrated in analyzing LiDAR systems.
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Introduction

The concept of Digital Twin Models 
(DTMs) has significantly developed in re-
cent years, especially with the advances 
in the Internet of Things (IoT) and the 
rise of Industry 4.0. The model mirrors the 
attributes, states, and behaviors of the in-
vestigated physical entities in the virtual 
space [1–3]. Intuitively, DTMs allow for ef-
ficient storage and analysis of product-re-
lated data throughout the entire Product 

tigated DT (A) data from previous genera-
tions is utilized to identify product faults 
and integrate market preferences, shap-
ing the new generation of the product. 
This involves analyzing vast volumes of 
data aggregated from earlier DTs, encom-
passing horizontal and vertical data re-
lated to the product in previous genera-
tions [6–8]. (B) The data obtained during 
the new generation of the product is used 
to evaluate the system’s configuration for 
further product development. This data 
may include simulated data or real data 
collected from product prototypes. In this 
regard, well-established models assess 
the behaviors of the system based on the 
design expectations and objectives and 
identify the different positive and nega-
tive behaviors, specifically the Unpredict-
ed Undesirables (UUs) [9], to make an 
informed decision. In fact, through itera-
tive simulations and analysis, the num-
ber of errors should be decreased to opti-
mize and refine the virtual product and 
its prototype.

Nonetheless, despite the pivotal role of 
the product development phase, most ex-
isting studies on DTs have focused pre-

Lifecycle (PLC), from the early design con-
ceptualization stage to further use and re-
cycling. Among these, the product devel-
opment stage is crucial in the product and 
the DT lifecycles. In fact, during the con-
ceptualization and development phases, 
what is known as the ‘digital prototype’ or 
‘digital model’ (e. g., [1, 4, 5]) of a product 
is created, which sets the foundation of the 
considered DTM.

During the development phase of PLC 
and the early stage of building the inves-
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to the virtual space, enabling continuous 
processing and extraction of critical in-
sights. The obtained information is then 
transferred back to the real space to opti-
mize real-world operations. This ongoing 
exchange of data and information forms a 
digital thread throughout the PLC, which 
supports seamless decision-making and 
operational enhancements (see, e. g., [19–
21] for a complete discussion).

Recent work by Stark, Anderl et al. [4], 
conducted under the Wissenschaftlichen 
Gesellschaft für Produktentwicklung 
(WiGeP) association in Germany, catego-
rizes DTs (the corresponding part of the 
virtual space) into two distinct parts of 
Digital Master (DM) and Digital Shadow 
(DS), where each part relates to different 
attributes of the framework (see Figure 1 
which will be discussed further below). 
The DM encompasses meta-data, design 
parameters, and simulation data and 
models for product development, primar-
ily generated during the early stages. On 
the other hand, the DS includes the data 
and all the related processing and is con-
tinuously updated with data collected 
from the physical object throughout the 
operation or maintenance phase of the 
lifecycle [22, 23]. The studies emphasize 
that a DT will be completed after the actu-
al production of the product, where the 
corresponding DSs are established.

Furthermore, the communication be-
tween DM and DS is likewise established 
using different tools, such as Simulation 
Data Management Digital Twin (SDM-
DT) [24–25], and Virtual Part Inspection 
(VPI) [26], discussed in previous related 
studies. Data collection enables DS to 
provide up-to-date information that en-
hances simulation models, monitoring, 
and predictive analysis.

resolution, and explore how a human-AI 
teaming can consider design precision 
and optimize the system’s performance 
(for the specific tasks of object detection). 
Finally, Section 5 concludes the paper 
with a short discussion on future work.

Related Work

Our work at the Institute of Product De-
velopment and Equipment Construction 
(IPeG) at Leibniz University Hannover fo-
cuses on product development. It investi-
gates how AI models can assist engineers 
during this process. Previous work in-
cludes the concept of design for additive 
manufacturing [13–15] and in conjunc-
tion with technical inheritance [8, 16], as 
well as DTM for distributed systems [17]. 
In the following, we discuss the state-of-
the-art DTMs, DT throughout the PLC, 
and AI’s role in DTMs.

Digital Twin Models
The concept of the DTMs was first intro-
duced by Grieves [1–3] within the context 
of product lifecycle management in engi-
neering. In general, a standard DTM con-
sists of three key components: (A) the real 
space, which consists of the actual or in-
tended physical entity, also known as the 
Physical Twin (PT); (B) the virtual space 
that hosts the corresponding digital coun-
terparts, referred to as Digital Twins 
(DTs), (C) the digital thread, which bridg-
es the physical and virtual spaces by es-
tablishing a communication between and 
within the two spaces [1, 4, 5, 18].

A distinguishing characteristic of DTMs 
is their ability to establish bidirectional 
communication between and within phys-
ical and virtual spaces [1, 19]. In a DTM, 
data flows from the physical environment 

dominantly on the manufacturing pro-
cess and the post-production phase of the 
products [10, 11]. Consequently, the role 
of product development within this con-
text of DTM and, importantly, how cur-
rent Artificial Intelligence (AI) methods 
can be exploited in the process remain 
underexplored. Thus, in contrast to previ-
ous studies that have mainly focused on 
the capabilities of DTMs at the actual pro-
duction stage, we here investigate the 
product As-Designed.

To this end, the current work focuses 
on the initiation and modeling phases of 
the DT lifecycle corresponding to the 
product development phase of the PLC 
(see, e. g., [12] for a comparison). The aim 
is to enhance virtual product develop-
ment as the basis for building an AI-
based DTM by using an AI and human 
experts teaming (referred to as human-AI 
teaming). Such a human-in-the-loop pro-
cedure can utilize the power of both as-
pects and enhance the design and other 
conceptual stages of product develop-
ment. This can effectively minimize the 
expensive costs of trial and error with 
physical product developments by detect-
ing potential sources of defects and vali-
dating the design parameters for product 
quality assurance.

The paper is organized as follows: Sec-
tion 2 discusses the general specification 
of the DTMs and how AI models have 
been explored in related work. Later, Sec-
tion 3 discusses the investigated AI-driv-
en DTM. Moreover, Section 4 is devoted 
to the investigated use case, where we 
demonstrate the applicability of the pro-
posed approach using an ongoing project 
on Light Detection and Ranging (LiDAR) 
systems. For this, we assess the perfor-
mance of LiDAR, focusing on its angular 

Figure 1. The investigat-
ed DTM
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during the “as-designed” and “proto-
type-twin-phase” in both product and DT 
lifecycles, respectively.

Later, in 2023, Grieves [1] completed 
his definition in [28] by defining a new 
type of DT named Digital Twin Aggregat-
ed (DTA), corresponding to the disposal 
phase in PLC. DTAs are longitudinal and 
latitudinal representations of product be-
havior from individual DTIs to predict fu-
ture behaviors such as product failures. 
The definition further closes the loop be-
tween product design and real-world 
product behavior to prevent recurring 
flaws in future product generations. Ad-
ditionally, Anderl et al. [7] provided a 
similar concept by discussing the vertical 
and horizontal product data obtained 
throughout the PLC. Earlier, Lachmayer 
and Mozgova [8] presented the idea of 
Technical Inheritance by leveraging life 
cycle data from previous product genera-
tions to shape new product development. 
This approach incorporates systematic 
data collection, monitoring, and analysis 
to facilitate continuous improvement and 
prevent design flaws across generations.

In our contribution here, the main fo-
cus is on product development using the 
DT concept. Based on the discussion 
above, product development and creating 
the digital twin prototype shape the DTs’ 
foundation. Compared to the other phases 
of the PLC and the DT lifecycle, the initial 
development and design processes and 
the DM have received comparatively little 
attention from researchers and engineers. 
This is important when we realize virtual 
prototyping significantly reduces physical 
prototyping costs and time. In this regard, 
there is still a gap in how advanced AI and 
ML algorithms can be exploited to opti-
mize the virtual product design of a de-
sired product within the DTM.

AI in Engineering and Manufacturing
Recent advancements in data science and 
AI have significantly broadened the capa-
bilities of DTs. In this regard, integrating 
AI into DTs has become essential to en-
hance their accuracy, predictive power, 
and decision-making functionality [18, 
31, 32]. Standard AI models utilize potent 
algorithms to solve complex prediction 
tasks, which have been of great interest 
in promoting innovative and AI-based 
product development processes [33, 34]. 

The concept of “digital twin lifecycle” 
was further discussed by Schützer et al. 
[29] in 2019. The work aimed to create a 
DT that integrates both the product and 
its development process, follows a lifecy-
cle approach from design to manufactur-
ing and usage. Based on their definition, 
the DT is first conceived within the Cre-
ation phase and will be completed and 
implemented at the end of the Production 
phase as the virtual and physical systems 
are functional and linked. The work also 
enhanced the DT by integrating AI, turn-
ing it into a “Smart Digital Twin” to im-
prove its capabilities further.

In another line of research in 2019, 
Stark and Damerau [30] investigated and 
analyzed various aspects of developing 
and operating DTs and provided a new 
definition of DT lifecycle based on the con-
cept of DM and DS. Correspondingly, they 
considered four phases for the DT lifecycle 
of “Initiation”, “Modeling”, “Enrichment 
and Utilization”, and “Reuse”. “Initiation” 
encompasses tasks such as market re-
search and defining the requirements for 
the operational needs and potential oppor-
tunities. During this phase, DM is estab-
lished by integrating input parameters, 
requirements, and architectures. More-
over, “Modeling” corresponds to the de-
sign phase of the PLC. In this phase, DM 
will be completed by models and simula-
tions of the product in the virtual space. 
“Enrichment and Utilization” further 
aligns with production planning, produc-
tion, and the Operation phase of the PLC, 
where DT evolves by utilizing data collect-
ed from the DS. This phase overlaps with 
the “Modeling” phase, taking the model-
ing and fundamental information from 
that phase and ensuring that the DT is ac-
tively utilized to enhance the product‘s 
performance and user experience. Finally, 
the “Reuse” phase corresponds to the end-
of-life stage of the PLC. In this phase, 
knowledge and outputs from the existing 
DT are leveraged to create and improve the 
next generation of the product.

In [5], Eigner et al. considered the 
three phases of “prototype-twin-phase”, 
“production-twin- phase”, and “service-
twin-phase-as-maintained” for a DT life-
cycle corresponding to “Design”, “Pro-
duction”, and “Maintenance” phases of 
PLC.They explained that the product will 
be developed first as a “digital model” 

In another study, Eigner et al. [19] dis-
cussed the concepts of digital models and 
digital twins in DTMs (also see [20, 27]). 
The digital model counts as the basis for 
implementing DTs, which will be defined 
during the early “Concept and Design” 
phase of the PLC and further updated 
and enriched throughout the PLC. The 
digital twins are later defined as the in-
stances from the digital model that occur 
in the production phase.

DT Throughout the Product Lifecycle
A DT’s lifecycle is tied to its physical 
counterpart’s product lifecycle [2, 25], 
and the connection has been discussed in 
previous works based on a specific defi-
nition of the DT. In this regard, Grieves 
and Vickers [28] in 2017 classified DTs 
into two types: Digital Twin Prototype 
(DTP) and Digital Twin Instance (DTI). 
The former corresponds to the creation 
and sharing of detailed system designs, 
enabling simulations and assessments 
(sometimes even without the need for 
costly physical prototypes), while the lat-
ter represents a physical product virtual-
ly and remains linked to it throughout its 
lifecycle. The two types of DT are further 
discussed in connection to the four PLC 
phases of “Creation”, “Production”, “Op-
eration”, and “Disposal”.

Based on this definition and in the Cre-
ation phase, the physical product does not 
yet exist. It takes shape in virtual space as 
a DTP by analyzing and defining system 
requirements, characteristics, and param-
eters. Iterative simulations are performed 
to predict desirable and undesirable be-
haviors while minimizing unforeseen ad-
verse outcomes. The Production phase in-
volves implementing the physical system 
and its synchronization with the virtual 
system, creating a bidirectional data flow 
that links the physical and virtual compo-
nents. During the Operation phase, re-
al-time data exchange supports predictive 
maintenance and performance optimiza-
tion by correlating state changes with po-
tential failures. Finally, the Disposal phase 
leverages data from previous system gen-
erations to prevent recurring issues and 
optimize future systems while addressing 
environmental concerns. This systematic 
approach enables the DT to evolve as a 
complex system and highlights its signifi-
cance in Industry 4.0.
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They enable more dynamic and effective 
DTs throughout the entire PLC.

In general, vast volumes of usually het-
erogeneous data are generated by the 
manufacturing processes. In general, such 
AI systems investigate the key questions 
of “What happened?”, “Why did it hap-
pen?”, “What will happen in the future?”, 
“What action should be taken?” through-
out the PLC [35]. To address these ques-
tions, data analytics approaches, includ-
ing descriptive, diagnostic, predictive, and 
prescriptive analytics, are respectively ex-
plored in the literature [22, 36].

While managing and analyzing such 
volumes of data offers the opportunity to 
extract valuable information and knowl-
edge, it also significantly increases the 
complexity of the corresponding data 
analysis methods. Recent advancements 
in AI and ML, particularly in deep learn-
ing algorithms [37, 38], generative mod-
els [39], Large Language Models (LLMs), 
and foundation models [40, 41, 42], have 
facilitated this process by improving 
methods for handling such data, allowing 
for the extraction of more accurate and 
meaningful information.

Nevertheless, many of the previously es-
tablished AI systems operate as black-box-
es, meaning their decision processes are 
opaque and difficult for users or develop-
ers to interpret. Such a black-box nature 
poses challenges, especially:
	■ if developers want to improve the AI 

system to fix identified errors and
	■ if they‘re going to understand the de-

cision process of the AI system to en-
hance their mental model or to enable 
an efficient decision.

To address these challenges, researchers 
are developing post-processing methods to 
make black-box AI systems more interpre-
table, known as eXplainable AI (XAI) sys-
tems [43]. However, these post-hoc expla-
nation methods can only approximate the 
actual reasoning process of the AI model, 
meaning that the explanations provided 
may not always be entirely accurate. Op-
posed to black-box models are white-box AI 
systems (e. g., prototype-based learning 
systems [44]), methods that are inherent-
ly interpretable and understandable to 
humans.

While the AI community continues to 
discuss and define contexts in which 

sign is finalized, it is transferred to the 
real space for manufacturing, represent-
ed as a PT in Figure 1. The DT entirely 
takes shape at the end of this phase, 
when the physical product is manufac-
tured, and data from the physical product 
is fed back into the virtual space.

Throughout the DTM, particularly during 
the operational phase of the product, vast 
amounts of data are generated from vari-
ous sources based on the product’s perfor-
mance in the market. This data is continu-
ously sampled from the real space and 
transferred to the virtual space. The data 
is processed in DS(s), and as the physical 
and virtual systems are twinned, changes 
such as part replacements or state transi-
tions can occur in both systems. Informa-
tion is often transferred back to the physi-
cal space through actuators (e. g., [9]). 
Ultimately, the collected data, aggregated 
throughout the entire PLC, is utilized in 
the Disposal phase, e. g., failure prediction 
using AI and ML models.

In virtual product development, three 
main components are involved: Design op-
timization, Product Data Management 
(PDM), and Simulation Data Management 
(SDM). The former focuses on the require-
ments of each iteration step to achieve the 
optimal product design, while the latter 
two components are responsible for man-
aging simulated data. In this framework, 
advancements in ML algorithms can facil-
itate the process by reducing iteration cy-
cles, enhancing the creativity of design 
engineers, and improving accuracy. For 
example, generative models can be uti-
lized to create new CAD models [46], thus 
opening new possibilities for design inno-
vation and creativity.

Besides, simulation techniques are com-
monly used to predict the expected behav-
iors of the PT. By simulating system behav-
ior, design engineers can access valuable 
data sets that are further leveraged by ana-
lytical AI-based approaches for evaluating 
the model (e. g., by exploiting optimization 
methods). Such approaches focus on dis-
covering new insights, patterns, relation-
ships, or dependencies in data to support 
data-driven decision-making.

Figure 2 details the structure of the op-
timization cycle for virtual product devel-
opment. In this procedure, the engineers 
will realize the first concept and defini-
tion of the product and later use them for 

black-box or white-box models are most 
appropriate [45], XAI provides opportu-
nities that should be considered to un-
lock the full potential of AI systems. The 
choice also depends on the specifics of 
the considered use case. It is increasingly 
shaped by regulations like the EU AI Act, 
which requires transparency for specific 
AI systems based on risk categories. 
While AI systems used in production and 
engineering (where the AI is not directly 
part of the product) generally fall outside 
the EU AI Act’s scope, XAI offers new 
possibilities.

The Investigated AI-Driven DTM

As discussed, our primary focus is to en-
hance product design and development 
within the context of DTMs. We build upon 
the model proposed by Stark, Anderl et al. 
[4] and assume a model encompassing 
DM and different DS(s) in the virtual 
space. Importantly, we exploit AI algo-
rithms to enable optimal product design 
and shorter development cycles to ex-
pand the creative work of the engineer. 
To ensure such a process, an efficient hu-
man-AI teaming is investigated. AI and 
advanced ML algorithms provide solu-
tions or recommendations, and later, the 
engineer realizes and executes validation 
and design decisions. The engineer can 
extend and build on the proposed deci-
sions by the model. If such a teaming is 
efficient, humans and AI will comple-
ment each other as, for instance, the AI 
can quickly process huge databases on a 
scale, and humans can understand com-
mon sense. The teaming is, therefore, 
based on a mutual understanding, which 
further promotes XAI.

The structure of the investigated DTM 
is illustrated in Figure 1. To explain the 
details of the model, we begin with the 
product development phase in the virtual 
space. In this phase, the DT is conceptu-
alized, even before the physical product 
exists or when it is based on a previous 
generation model. Thus, the new genera-
tion of the product evolves from an initial 
concept to an optimized design before ac-
tual manufacturing begins. This phase is 
characterized by gathering information 
and requirements for virtual product de-
velopment, as assigned to the DM (see, 
e. g., [26]). Once the virtual product de-
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co-occur, such as different reflection pat-
terns of light sources on the product’s 
surface. A change in the illumination 
conditions could lead to significant er-
rors in this case, which is usually not in-
tended; XAI could help identify such is-
sues efficiently.

The Investigated Use Case

The following use case details the under-
lying concept of building a DTM for Li-
DAR systems, emphasizing how hu-
man-AI teaming can be integrated into 
the process. LiDAR is an advanced sens-
ing technology that employs modulated 
lasers to measure the distance by calcu-
lating the laser’s Time of Flight (TOF). 
This enables the creation of detailed 3D 
point cloud maps of the surroundings. 
Currently, the resolution requirements 
for LiDAR systems remain unstandard-
ized. On the one hand, low point cloud 
density may lack the necessary detail to 
capture key object characteristics, poten-
tially leading to detection failures. On the 
other hand, increasing point cloud densi-
ty requires higher resolution detectors or 
sampling frequencies, which raises sys-
tem costs and can introduce unnecessary 
redundancy.

For this use case, we are interested in 
assessing how a specific point cloud den-
sity, defined by a particular angular reso-
lution and generated by the LiDAR sen-
sor, affects object detection performance. 
This enables us to modify this parameter 
and find an optimal configuration that 
leads to systems with higher object detec-
tion accuracies. Intuitively, we aim to 
build the corresponding DTM of the new 
generation of LiDAR systems by initiating 
virtual product development and enhanc-
ing the product’s design. This corre-
sponds to the ‘Initiation’ and ‘Modeling’ 
phases of the DT lifecycle [12], i. e., the 
creation of the corresponding DM of the 
model. To this end, the main point that 
will be discussed in the following is how 
the proposed human-AI teaming will be 
applied.As the first step, data from the 
product’s (in this case, LiDAR systems) 
previous generation should be collected 
and assessed. As mentioned, this denotes 
the horizontal and vertical data acquired 
by the aggregated DTs of the earlier gen-
erations. The corresponding DMs of the 

en benchmark metric values, and poten-
tial suggestions for design optimization 
will be obtained. Such analysis will be 
conducted by the human-AI teaming, 
where the design engineer can decide on 
further post-processing methods and 
modification of the design parameters for 
the desired product. Given the new pa-
rameters, a product redesign will be con-
ducted, which is usually an enhanced 
version of the previous step. The loop will 
continue till the desired design is 
achieved. In the next section, we show-
case this procedure using our use case of 
LiDAR systems.

The above procedure demonstrates the 
use of AI in product design. Applying 
such teaming can lead to an XAI, which 
provides several uncovered opportunities 
in production and engineering. For in-
stance, an AI system is used to enhance 
the design process by analyzing a data-
base of existing products. In this scenar-
io, the final product will still be devel-
oped by an engineer, but as discussed, 
the process will be enhanced by AI.

Another example where XAI can be 
beneficial is the analysis of prediction er-
rors of AI systems when applied, e. g., to 
monitor a manufacturing system. XAI 
can uncover spurious correlations picked 
up during the training of the AI system 
[49]. This means that an AI system might 
never have learned what a damaged prod-
uct looks like but picked up features that 

simulation. If a previous generation of 
the product exists, then all the relevant 
data (from the aggregated DTs of the pre-
vious generations) will be exploited to es-
tablish the new model. In the next step, 
simulation techniques and tools (such as 
CAD, CARLA, etc.) will be utilized to gen-
erate data corresponding to the product’s 
current stage. The data will be further 
processed and used by the investigated 
human-AI teaming.

Here, we exploit deep learning algo-
rithms to leverage their hierarchical learn-
ing representation capabilities and extract 
the desired features from the data. The 
choice of the corresponding ML algorithm 
depends on the details of the product, the 
acquired data, and the task we are investi-
gating. It could be in the form of deep 
probabilistic models such as Variational 
Autoencoders (VAEs) [47] or conventional 
deep neural networks such as Convolu-
tional Neural Networks (CNNs) [48]. For 
our use case in this study, a novel version 
of the CNNs is employed, which will be 
discussed further in the next section. The 
analysis part outlined in Figure 2 demon-
strates the steps the investigated hu-
man-AI teaming takes to transform raw 
data into valuable knowledge. We exem-
plified the steps based on the considered 
use case and the methods that were ap-
plied for object detection.

After training, the corresponding re-
sults will be assessed and evaluated giv-

Figure 2: The diagram demonstrates the virtual product development process from design and 
simulation to validation and design optimization.
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previous generations facilitate the prod-
uct‘s modeling, and DSs allow for detect-
ing possible points of enhancement, un-
predicted undesirable behaviors, and 
optimizing the product’s next-generation 
design. Nonetheless, real data obtained 
from DSs often lacks insights into entire-
ly new product designs, underscoring the 
importance of simulated data. While re-
al-world data provides a valuable founda-
tion for market research, defect diagno-
sis, and predictive analysis, its utilization 
is constrained by the high costs associat-
ed with physical prototyping during the 
product development phase.

We used CARLA [50], an open-source 
simulator that provides a controlled envi-
ronment for research on autonomous 
driving. CARLA efficiently simulates the 
system and field environments based on 
different degrees of complexity. It further 
allows for data annotation by generating 
ground-truth bounding boxes.

The LiDAR configuration used in CAR-
LA features a vertical Field of View (FOV) 
ranging from -30 ° to 10 °, along with a 
horizontal FOV of 360 °. It has a detec-
tion range of up to 150 meters and oper-
ates at a rotation frequency of 10 Hz. Fur-
thermore, the number of channels and 
points per second can be adjusted to mod-
ify the angular resolution. The generated 
LiDAR data ranges from an angular reso-
lution of 0.1 °x0.1 ° to 1.0 °x1.0 °. Each 
data set at the specified angular resolu-
tion has a 3-minute recording in a small-
town scene, totaling 3000 frames of Li-
DAR point clouds, with 1600 frames used 
as the training set, 400 as the validation 
set, and 1000 as the test set [1].

The scene includes 30 vehicles (ex-
cluding the ego-vehicle), their speeds dy-

ing the inherent challenges in detecting 
objects within point cloud data. Grid-
based methods are generally more com-
putationally efficient but suffer from in-
evitable information loss. In contrast, 
while computationally more expensive, 
point-based methods can achieve superi-
or spatial resolution and a larger recep-
tive field through point set abstraction 
[42]. By integrating these two methods, 
PV-RCNN effectively balances computa-
tional efficiency and localization accura-
cy, resulting in improved performance for 
3D object detection tasks.

The results are evaluated in terms of 
mean Average Precision (mAP) with 40 re-
call positions on test data and are further 
summarized in Table 1. In addition, Fig-
ures 4 and 5 provide the results across dif-
ferent angular resolutions and for the 
three distinct objects. We first match the 
predicted bounding boxes to their corre-
sponding ground truth to calculate the 
corresponding values using a metric such 
as Intersection over Union (IoU). Predic-
tions with an IoU above a predefined 
threshold are classified as true positives, 
while the remaining predictions are false 
positives. Precision and recall are then 
computed, where precision represents 
the proportion of correctly predicted 
bounding boxes among all predictions, 
and recall measures the proportion of 
ground truth instances successfully de-
tected. To compute the Average Precision 
(AP) for a given class, precision values 
are averaged at 40 evenly spaced recall 
points. The mAP is then derived by aver-
aging the AP values across all object 
classes, providing an overall perfor-
mance metric for the detection model 
(i. e., the PV-RCNN model). Moreover, Fig-

namically adjusted according to the ar-
ea‘s speed limits, 13 bicycles moving at a 
constant speed of 4 m/s, and 40 pedestri-
ans at 1 m/s. Given the data, we trained 
the considered algorithm (PV-RCNN dis-
cussed further below) with training times 
varying depending on the complexity of 
point cloud data, from 31 hours at 
0.1 °x0.1 ° to 9 hours at 1.0 °x1.0 °. The ex-
periments are conducted on a system 
equipped with one NVIDIA RTX 3060 GPU, 
12 GB. Figure 3 illustrates a generated 
frame used for training, together with the 
corresponding point clouds.

PV-RCNN for LiDAR Systems
Developing an initial concept for an opti-
mized product requires robust methods 
for data analysis and evaluation. This 
plays a pivotal role in assessing system’s 
performance, identifying potential de-
fects, and ultimately optimizing product 
design. We here employed Deep Neural 
Networks (DNNs) to learn and predict the 
performance of the considered LiDAR sys-
tem with a specific angular resolution. 
This allows us to evaluate the potential 
functionality of the model by testing and 
analyzing device performance (for the 
task of object detection). Nevertheless, 
the model exploits a black-box approach 
that further requires expert knowledge 
(throughout the entire process) for in-
formed decision-making, forming the dis-
cussed human-AI teaming.

We employed the PointVoxel-RCNN (PV-
RCNN) model, introduced by Shi et al. in 
[41], demonstrating state-of-the-art per-
formance in 3D object detection for point 
cloud data. This model combines grid-
based and point-based methods to lever-
age each approach’s advantages, address-

Figure 3. A considered environment in CARLA, used for collecting point cloud data (left); The object detection using the trained PV-RCNN model.  
The figures correspond to the angular resolution 0.1 °x 0.1 ° (right)
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ures 4 and 5 present the average confi-
dence scores as an additional metric for 
analyzing the considered use case. These 
values were computed by segmenting the 
point cloud data into different density in-
tervals. The confidence scores assigned 
by the PV-RCNN model to the predicted 
bounding boxes within each interval 
were then averaged. As observed, an in-

crease in point cloud density generally 
leads to higher confidence scores, which 
highlights the impact of density thresh-
olds on enhancing detection capabilities.

Conclusion and Future Work

Integrating DTMs with advances in AI 
and ML transforms product development 

and manufacturing by enabling the pro-
cessing and analysis of vast, heteroge-
neous data from diverse sources. AI-driv-
en DTMs provide sophisticated diagnostic 
and decision-making support in this con-
text, enhancing product quality and pro-
duction efficiency. These technologies 
make it possible to address core manu-
facturing challenges, such as maintain-
ing high product quality and boosting 
customer satisfaction.

In this paper, we investigated virtual 
product development as the basis for build-
ing an AI-driven DTM, utilizing human-AI 
teaming to leverage the distinct strengths 
of both the AI model and the design engi-
neer. This approach allows for optimized 
design processes and more informed deci-
sion-making. We further demonstrated the 
framework’s capabilities by thoroughly ex-
amining LiDAR systems.

Future work includes expanding the 
framework’s application to various use cas-
es, further developing its versatility and 
utility. Additionally, exploring other deep 
learning algorithms, especially generative 
models capable of extracting structural in-
formation, holds promise for improving 
model performance in product design 
tasks. These enhancements could be partic-
ularly impactful for tasks in image analysis, 
such as those involved in CAD designs.
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Abstract
Mensch-KI-Zusammenarbeit in einem Digitalen 
Zwillingsmodell für die virtuelle Produktent-
wicklung.. Digitale Zwillingsmodelle (DTM; von 
Digital Twin Model) sind ein wichtiger Bestand-
teil von Industrie 4.0 und verbessern die Ferti-
gung und Produktentwicklung durch KI. Sie 
ermöglichen Echtzeitüberwachung, voraus-
schauende Wartung und Optimierung über  
den gesamten Produktlebenszyklus. Für den 
Menschen unverständliche KI-Algorithmen,  
insbesondere tiefe neuronale Netze, stellen  
jedoch eine Herausforderung dar. In dieser  

Studie wird daher die Zusammenarbeit zwischen 
Mensch und KI untersucht, um einen KI-gestützten 
DTM für die virtuelle Produktentwicklung zu  
entwickeln. Wir schlagen einen DTM vor, der KI 
und Expertenwissen kombiniert, um fundierte 
Entscheidungen für die Optimierung des Pro-
duktdesigns zu ermöglichen. Zu diesem Zweck 
werden zunächst die Architektur und die Funk-
tionalität des entwickelten Modells skizziert. 
Anschließend wird die Anwendung des Modells 
bei der Analyse von LiDAR-Systemen demonstriert.
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