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Abstract

Objective. Modern neural devices allow to interact with degenerated tissue in order to restore
sensoric loss function and to suppress symptoms of neurodegenerative diseases using
microelectronic arrays (MEA). They have a bidirectional interface for performing electrical
stimulation to write-in new information and for recording the neural activity to read-out a neural
task, e.g. movement ambitions. For both applications, the electrical impedance of the
electrode-tissue interface (ETI) is crucial. However, the ETI can change during run-time due to
encapsulation effects and changes of the neuronal structures. We investigated if an impedance
spectrum can be reliably extracted from recordings during stimulation with microelectrode arrays.
Approach. We present a measurement method for characterizing the electrical impedance spectrum
during stimulation. We performed charge-controlled stimulation with a penetrating
microelectrode array in an electrolyte solution. From the stimulation recordings, we extracted the
impedance. Furthermore, a numerical model (digital twin) of the stimulation electrodes is
established. Main results. We obtained consistent results for relevant electrochemical using
electrochemical impedance spectroscopy, time-domain analysis and Fourier-transform-based
impedance estimation. Moreover, the numerical simulations confirmed that the measured
microelectrode had the expected properties. Significance. Our results pave the way to enable a live
assessment of the impedance in future MEA-based neural devices. This will enable adaptive
electrical stimulation or (re-)selection of recording electrodes by taking the actual state of the

electrode into account.

1. Introduction

Neurodegenerative  diseases like Retinopathia
Pigmentosa (visual degeneration) [24] or Morbus
Parkinson (movement disorder) [25] and injuries
of the nervous system [20] result in a reduction or
progressive loss of sensory or motor functionalities in
patients. Electrical stimulation is used to write-in new
information to alleviate symptoms as for example

© 2025 The Author(s). Published by IOP Publishing Ltd

in deep brain stimulation (DBS) [12], retinal [15]
or cochlear implants [4]. In the case of DBS, the
electrical stimulation overrides neuronal activity to
suppress Parkinson motor symptoms [12, 28]. While
established clinical routines for electrical stimula-
tion exist, more research is required to increase the
effectiveness and patient-friendly use of these devices
in new therapies [15]. An important aspect for the
next generations of neural implants, brain—computer
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interfaces or stimulation electrodes is to enable
not only the write-in of information but also the
read-out [9].

In this regard, adaptive stimulation or closed-
loop stimulation promises to achieve a long-term reli-
ability of neural devices. The main idea is that the
stimulation parameter will be adapted during run-
time by considering the tissue behaviour from neural
recordings and tissue encoding [32] and by consider-
ing impedance properties due to an internal measure-
ment unit. These systems allow to recover the stimula-
tion efficiency in a patient if the tissue changes due to
neurodegenerative degeneration. Devices with such
functionality have a bidirectional front-end for simul-
taneously enabling electrical stimulation and record-
ing the neural activity [27]. Thanks to their small size
and large number of active channels, microelectrode
arrays have become popular. They enable, among
others, a spatial specificity, which is in particular rel-
evant for retinal implants [15]. However, a major
challenge is the electrode-tissue interface (ETI).
Its impedance affects both stimulation [3] and
recording [19].

The interface impedance usually changes after
implantation over time due to the material-tissue
interaction [38]. The strength of the interaction
depends on the level of the body reaction [18] and
of the electrochemically induced degradation of the
electrode material [13, 23] or through the impact
of electrical stimulation [21]. As a result, the effect-
iveness of the neuronal devices weakens over time
because the stimulation effect decreases and the sens-
ing property for neural recording quality is reduced. A
possible intervention to stabilise the treatment effect
is to tune the stimulation parameters, which can lead
to further adversarial effects.

Before implantation, the impedance spectrum of
electrode arrays is commonly measured over a wide
frequency range (e.g. from the Hz to MHz range) by
electrical impedance spectroscopy (EIS) to assess the
performance of the neural interface [2]. EIS measure-
ments over a broad frequency range have the disad-
vantage of a relatively long measurement time and
may require special hardware to resolve the imped-
ance at various orders of magnitude, which can occur
for example due to capacitive behaviour at low fre-
quencies. Thus, EIS of implanted electrodes can be
straightforwardly conducted only immediately after
implantation and before explantation. Instead, the
impedance magnitude at only one frequency (mostly
at 1 kHz) is measured during chronic stimulation [10,
16, 19, 29, 33, 36]. Measuring at one frequency is
much faster than recording an entire spectrum but
yields a low information gain. For example, record-
ing the impedance magnitude at 1 kHz in rodents
motor cortex over six months [36] has revealed a
100-400 times increased impedance at 1 kHz dur-
ing the first six weeks after implantation, which after-
wards decreased back to the initial value. Modern
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recording probes such as the NeuroPixel 2.0 have
proven to enable stable recording quality an even
longer period of 309 days [35]. However, without
measuring the impedance at multiple frequencies,
the observed impedance change cannot be clearly
attributed to a particular process (e.g. changes of the
electrochemical interface or biological processes such
as scarring).

Using the information of the impedance spec-
trum in particular frequency bands can be used to
disentangle, for example, electrochemical reactions or
changes in the tissue [41]. Thus, a detailed under-
standing of the individual impedances contributing
to the total impedance becomes feasible with record-
ings covering a wide frequency spectrum [18, 21, 23].

For that, ways to estimate the impedance spec-
trum using the response signals from the electrical
stimulation are required to circumvent the need for
special equipment for EIS recordings. Another rel-
evant aspect is that EIS is conducted at low voltage
or current amplitudes to avoid nonlinear effects
while the stimulation amplitudes may be consider-
ably higher [26]. Thus, estimating the impedance dir-
ectly from the stimulation pulses permits to identify
nonlinear effects and corresponding electrochemical
reactions as revealed by previous investigations on
macroscopic Platinum electrodes [1, 42].

Characterising the impedance during the
implantation offers several advantages for neural
devices with multielectrode stimulation and record-
ing front-ends. For example, the strength of the ETI
impedance can be tracked during run-time. Ideally,
also the local tissue conductance can be inferred by
disentangling the ETT and tissue impedances. Hence,
the right channel for electrical stimulation with a low
impedance and thus low energy requirements can be
chosen. In addition, defect channels can be detected
and the stimulation and recording front-end can be
disabled. This approach would thus be relevant for
multiple applications ranging from DBS to retinal or
cochlear implants.

In this work, we present a method that allows
to characterize the electrical impedance behavior by
processing the recorded transients of input voltage
and current. Figure 1 shows a black-box model for
processing the transient current injection Iyec(¢) and
the different electrode voltage AUy (#) in order to
extract the parameters of the corresponding imped-
ance model. For this, we have applied the charge-
controlled stimulation (ChCS) method using micro-
electrode arrays in electrolyte solution.

This paper is structured into three main parts:
First, the used microelectronic array (MEA), its elec-
trochemical characterisation and the ChCS method
are described. Then, we introduce a measurement
method for extracting the resistive and capacitive
load of the stimulation front-end by using the tran-
sient current and voltage input. Finally, we explore
a method for extracting the impedance properties of
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Figure 1. Blackbox model for processing transient signals of the electrical stimulation to extract the parameters of the Randles
model which describe the electrolyte and tissue part between the working and counter electrode (circuit elements: Warburg
impedance Z,,, tissue resistance Ryjs, double-layer capacity Cyj, Faraday resistance R, ).
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Figure 2. Top view of the used microelectrode array (planned for depth-wise stimulation and recording of the retina) which is
conducted in phosphate-buffered saline (PBS) solvent in order to perform electrical stimulation and extract the electrical model

parameters.

the ETI from the transient current and voltage input.
We discuss how this method can be implemented on
real hardware and introduce a link to numerical sim-
ulations, which paves the way towards a digital twin
that enables continuous, location-specific monitor-
ing and control of the stimulation.

2. Methods

2.1. Layout of the microelectrode arrays
Figure 2 shows the experimental setup in which the
active area of the MEA is immersed in a phosphate-
buffered saline (PBS). The MEAs were designed and
fabricated at the Institute of Materials in Electrical
Engineering 1 (IWE1, RWTH Aachen). They have
been used for investigating closed loop retinal stimu-
lation with deep-selective stimulation and recording
capability [27].

The MEAs have four shafts. Each shaft has three
Iridium oxide (IrOx) electrodes with a square area A
of 1600 m? (80 x 20 um?). The distance between the

electrodes on a shank is 20 m in order to get access
to the retinal ganglion, bipolar and amacrine cells.
Each shank has a length of 1 mm and the distance
between each shank is 150 um. The tips of the shafts
have an angle of 30° to facilitate insertion into the tis-
sue [27]. During fabrication, the electrode material
is sputtered on a silicon substrate and the structure
of the probes is etched into the substrate. The probes
are released by using a thinning process after the clean
room fabrication.

2.2. Electrochemical characterisation

After the fabrication process, the electrodes of the
MEA were characterised by EIS in PBS at room tem-
perature (300 K).

For measuring the impedance, we used a two-
electrodes setup with both electrodes being local MEA
electrodes. The results are shown in figure 5, in which
the sweep was done for a frequency range of 1 Hz
and 1 MHz with a peak voltage of 20 mV and a point
repetition of 30.
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Figure 4. Layout of the fabricated ASIC with the presented charge controlled stimulator for high-accuracy applications.

2.3. ChCS front-end

Compared to voltage-controlled stimulation (VCS)
and current-controlled stimulation (CCS), ChCS
enables a high-frequency charge transfer, which com-
bines a high energy efficiency by controlling the injec-
ted charge with clocks [34]. VCS is highly energy-
efficient but it needs more hardware resources and
the injected charge amount is not known without
an additional measurement circuit. CCS in principle
permits to control the injected charge amount but
uncertaincy arises due to clock feedthrough.

The charge transfer in ChCS takes place with a
high number of clock cycles. In each clock cycle a
small charge packet will be generated on the modu-
lator side (end of phase ®;) and transferred to the
metal-tissue-interface (end of ®,). This enables a
stimulation scheme which combines the advantages
of VCS and CCS in order to achieve long-term stable
stimulation.

Figure 3 shows the CMOS circuit of the active
feedback ChCS modulator by using a switched capa-
citor (SC) integrator with the corresponding realisa-
tion in figure 4. To achieve a high gain and a high

output resistance, a cascaded current-mirror OTA
topology was selected for the SC integrator.

The double-layer capacitance of the electrode
interface is used as load capacitance. While imple-
mentations without any feedback structure of the
ChCS with a SC-emulated resistance have been
described [14, 17], it has been shown that these imple-
mentations cannot be used with microelectrodes [8].

The charge amount during each charge transfer
is highly controllable due to the switched-capacitor
principle. Each charge transfer causes an exponen-
tially decreasing current pulse (1) with the tissue-
dependent time constant Tr¢ (2)

Uin (t t
Liec (1) = ﬁ - exp (_E) (1)
1S ar

TRC = (Rtis| ‘Rfar) N (Cdl| |Cm0d) ~ Rtis N Cmod (2)

2
Qmod - Crnod Umod . |:1 — exp (_m>:| (3)

~1

Tcat
Qinj,cat = / IEL (t) dt= Tcat fmod Qmod- (4)
0 N——

Meat
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With the time integration over the active duration
of a modulator clock fi04, (3) yields the amount
of charge transferred for each charge transfer Q045
which depends on the used modulator voltage Uyyoq
and the modulator capacity Cpodq- The total injec-
ted charge amount for the cathodic phase Qjyj,car can
be calculated using (4) and depends on the number
of injected charge transfers #1.,. This is a product of
the chosen modulator frequency fnoq and the cath-
odic phase duration T¢,. For this setup, a fixed Cy,0q
of 10 pF was chosen and hence a maximum mod-
ulator voltage of 1.6 V is available to generate up
to 18.56 pC in each clock. The maximum modulator
clock depends on the time constant 7g¢c which is dom-
inantly impacted by the tissue resistance.

2.4. Stimulation protocol

The working principle of the ChCS frontend was
tested with a stimulation protocol in 0.9% PBS with
the MEA structures. Before and after the stimula-
tion session, EIS was performed. For measuring the
transient signals from the electrical stimulation, the
injected current I and corresponding voltage dif-
ference AU, were captured with the mixed-signal
digital oscilloscope MDO-3034 from Tektronix at a
sampling rate of 25 MSPS and a 10-bit resolution.
The injected current was sensed with a custom-made
measurement board featuring a circuit of a high-
speed shunt-resistive instrumentation amplifier. The
board also captured the differential voltage between
two selected electrode channels.

The ChCS front-end was controlled via an
embedded setup and the settings were prepared in
an additional LabVIEW interface. To determine the
functionality of the ChCS modulator, the phase dur-
ation Ty, was swept from 400 ps to 20 ms in 10 steps.
Each step was repeated 50 times. A biphasic rectan-
gular pattern with an interphase duration of 10% of
the active phase duration was chosen. The injected

charge amount is in all settings at —4nC- 25‘:‘“ by
adapting the modulator frequency fi,0q and the mod-
ulator voltage Upoq. The corresponding parameter
extraction was done with an offline data processing

in MATLAB.

2.5. Numerical model

The microelectrode array, with the structure in
figure 2, is modelled in the FEM modelling software
NGSolve [30], which uses the OpenCascade CAD ker-
nel® and is built on the mesh generator NETGEN [31].
The electrode arrays were immersed in a homo-
geneous medium to model the PBS environment
during electrochemical characterisation experiments.
Dirichlet boundary conditions were applied on the
active contacts according to the experiment and the

8 WWW.O pencascade.com/ .
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impedance was computed (for more details, see [42]).
As PBS is resistive at the considered frequencies, only
the PBS conductivity was considered and the expected
resistance was computed, which should agree with the
measured tissue resistance Ry (see equation (5)). The
numerical model of the electrode predicts the pure
electrode impedance (i.e. without an electrochemical
interface) [42].

3. Results and discussion

3.1. Electrochemical characterisation of the
microelectrode arrays
The impedance magnitude and phase had a char-
acteristic shape (figure 5). The phase of the imped-
ance increases from —55° at 1 Hz to 0° at 355 kHz,
which highlights the transition from capacitive to res-
istive behaviour. At a frequency of 1 kHz, an absolute
impedance of about 54 k(2 was measured.

To gain more insight from the EIS character-
isation, we considered the Randles circuit (see also
figure 1), whose impedance is described by

=Zyye (W)
R o
z =Ry — 5
Zaee (@) = Ris + 1+ jwR«Ca " (jw)'/? ®
The impedance of the Randles model Z,.. comprises

a tissue resistance Ry, a faradaic charge deposition
of the double layer interface Cyj, the charge-transfer
resistance R, and the Warburg impedance Z,,. com-
prising the Warburg coefficient o,.

The parameter fit yielded a tissue resistance Ry
of 9.9k}, a double layer capacity Cq of 113.4 nF,
a charge-transfer resistance R of 2.2 M(), and the
Warburg coefficient of o, of 2.5M€/Hz %,

3.2. Estimation of resistive and capacitive
stimulation load

We devised a method to extract parameters of a
simple stimulation load. This method uses the change
in voltage during the active charge transfer in order
to estimate the resistance and capacitive load dur-
ing stimulation. During stimulation, the correspond-
ing voltage waveform AU, is related to the injec-
ted current I and the electrical properties of the
Randles model of the metal-electrode interface within
the stimulation path as described by (6). Here, a sim-
plified version of the Randles model is used in which
the tissue resistance Rys and double-layer capacit-
ance Cy are connected in series

1
AUelec (t) = lelec (t) “Ryis + Cu /Ielec (t) dr.  (6)
dl

Figure 6 shows the measurement results of the transi-
ent stimulation signals with an additional zoom into
the anodic phase (time-window of 100 us) from the
anodic-first stimulation.
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Figure 5. Bode plot of the impedance of the IrOx MEA between two selected electrode contacts. Electrochemical impedance
spectroscopy (EIS) was conducted at room temperature and the spectra were fitted to the Randles circuit (5). At high frequencies
above 10° Hz, the influence of parasitic impedances is visible, which are not accounted for in the equivalent circuit model.
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Figure 6. Transient measurement results of two stimulation periods with the IrOx electrodes in phosphate-buffered saline (PBS)
solvent: (Top) measured difference electrode voltage A Uge.—(Middle) injected electrode current Ije.—(Bottom) injected charge

quantity Qinj @(Tpn = 1 ms, fear = Mano = 0.48, fnod = 140 kHz, Upyoq = 800 mV).

In total, the triangular shape of the injected charge
amount stems from the rectangular stimulation
waveform on the modulator voltage. During the
interphase, the transferred charge is hold on the capa-
city of the ETI, where a discharge effect is avail-
able. This effect is caused by the polarisation effect
of the IrOx electrodes [5]. After the anodic phase, a
median residual charge amount of 5.32 pC £2.6 pC
remained. Compared to the injected charge amount
of 1 nC, the relative rest charge to the injected charge
amount was 0.482%. Also, the spikes had an effect-
ive time constant Tpc of 207.64 ns, which allowed
us to use a maximum modulator frequency fiod, max
of 481.6 kHz.

The stimulation allows to extract more
information by analysing the charge transfer of each
packet Qpp, the effective double layer Cy o and the
effective tissue resistance Ry off for each charge trans-
fer cycle nT.

The calculation of Qpy, is done by integrating the
electrical current and taking the difference between
two cycles. The parameters of the simple Randles
model were extracted by solving (7)

Qinj " Riis ~ Qinj
ST
Tph,cat Cdl
_ Qu(nT) = Quj((n—1)T)
Ca(nT) = AUgec (nT) — AUgqec (1 —1)T)

A Uelec = (7)

(8)
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Figure 7. Transient measurement results of one stimulation phase with the IrOx electrodes in PBS solvent: (Top) injected charge
quantity per phase—(Middle) effective double layer capacity—(Bottom) effective solvent resistance (Tpn = 1 mS, ficat = Hano =

0.48, foq = 140 kHz, Upoq = 800 mV).

_ peak (AUsec (1)) — AUelec (1 —1) T)
o peak (Ijec (7)) ’
x (n—1)T<7<nT. 9)

Rtis ( n T)

Cq) is done after the complete charge transfer of each
current pulse using (8) by considering the differ-
ence of the effective voltage change AUy, and the
transferred charge AQj,;. Here, the impact of the
resistive component is nearly zero due to the zero-
current. Ry . is extracted using (9) by looking at
the peak of voltage drop and the peak of the charge
current during the charge transfer in which the oft-
set from the previous charge transfer is subtracted. In
addition, an effective double layer capacity during the
interphase was calculated using (7).

Figure 7 shows the extracted parameters from the
measurement example (figure 6). The injected charge
amount per cycle shows a constant behaviour in the
cathodic and anodic phase of the stimulation in PBS
(figure 7, top). During each phase, a charge package
of 8.42 pC (£0.8%) in 168 cycles is generated and
transferred to the interface.

The extracted value of the double layer capacity in
figure 7(middle) shows a strongly charge-dependent
capacity during stimulation which starts at 2.64 nF
and ends at 10.72 nF in the end of the anodic phase.
The same behaviour was observed during the anodic
phase. During the interphase, an effective double
layer capacity of 8.54 nF was estimated. The tissue
resistance had a mean value of 14.18 k{2, which was
nearly constant over the stimulation duration. This
non-linear behaviour of the double layer capacity is

7

coming from the polarisation effect of the electrode
material IrOx in PBS.

3.3. Comparison to EIS

We fitted the full Randles model to the impedance val-
ues obtained by EIS. Then, the parameters of the full
Randles model were reduced to the simplified Randles
model. This simplified model consists on a series con-
nection of the double layer capacity (10) and tissue
resistance (11)

1
_jw Im {Zelec}
Rtis,Z =Re {Zelec} . (11)

Caz = (10)

These parameters were compared with the results
obtained during the stimulation. In particular, the
extracted double layer capacity during the interphase
duration was considered. Figure 8 shows this compar-
ison in which the stimulation period Ty, is sweeped.
The shown frequency is extracted from the zeroth
harmonic of the applied stimulation waveform and
the corresponding frequency of the EIS are used.
The results indicate that the solution resistance
determined from the stimulation is independent of
the frequency and agrees with the parameter from
the EIS with a maximum deviation of 8.25%. The
capacity Cg ¢ decreases with increasing frequency,
which can be explained by the inertia of the dipoles
to the fast polarization orientation. At frequencies
below 500 Hz, this is in agreement with the determ-
ined value from EIS with small variance. It repres-
ents the Helmholtz double-layer capacity and it shows
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Figure 8. Measurement results of the effective double layer capacity Cq ¢ and the effective solvent resistance Ry cfr as obtained by
impedance spectroscopy (broken lines) and the biphasic stimulation using the charge controlled stimulation method.

that no electrochemical reactions are available. These
results are caused by the properties of the electrode
material [11] and not by the applied stimulation
method.

This characteristic has an impact on the selec-
tion of the stimulation parameters and the safety of
the stimulation during run-time, whereby a reduction
in the effective double-layer capacity with increas-
ing frequency causes a simultaneous reduction in the
amount of charge that can be injected until electro-
lysis is triggered. This can lead to damage of the tis-
sue and the electrode, which must be avoided for
long-term operation. Also, it is reccommended that a
charge balancing technique should be applied with
sensing the voltage differences at the stimulation
front-end after stimulation due to the non-linearities
of the metal-electrolyte interface tissue [26].

3.4. Broadband impedance fitting from electrical
stimulation input

Next, we sought to explore if the transient signals of
the performed electrical stimulation can be used to
extract the parameters of the predicted Randles model
during the applied stimulation. The general concept
of our approach is shown in figure 9.

3.4.1. Model prediction

The first goal was to use the transient stimulation
pulses to infer the parameters of the impedance
model (5), which is frequency-dependent. For that,
we Fourier transformed the transient pulses and
estimated the impedance by dividing the voltage by
the current spectrum (more details can be found
in [42]). Then, we fitted the estimated imped-
ance to (5) using ImpedanceFitter [40]. To check
the obtained impedance estimate, we scaled the

Fourier-transformed current with the estimated
impedance based on the previous fit and applied
the inverse Fourier transform. In this way, an estim-
ate of the applied voltage is obtained, which can be
directly compared with the measured stimulation
voltage (figure 10). We observed that both the voltage
obtained from the initial EIS characterization as well
as from the impedance fitted from the stimulation
pulses were in good agreement with the measured
data. This indicates that assuming a linear model for
the impedance is reasonable because strong nonlin-
ear effects would cause a significant deviation of the
expected and measured voltage [1]. Nevertheless, we
had to apply an offset correction because the imped-
ance model (5) diverges at frequencies tending to
0 Hz. For this reason, we set the impedance at 0 Hz
to zero and instead matched the curves after applying
the inverse Fourier transform. We expect non-linear
electrochemical reactions to affect this offset because
we could see that the global offset estimate had to be
adjusted to exactly match a selection of the stimula-
tion pulse (figure 10).

In our approach, the impedance is limited to the
information contained in the frequency spectrum of
the stimulation signal. Here, the minimally resolved
frequency was usually about a few 100 Hz, which is
considerably higher than the 1 Hz used in the EIS.
For that reason, we checked if all parameters could
be inferred. We accepted a parameter fit value if its
uncertainty could be estimated by the fitting routine
conducted in LMFIT and the estimated uncertainty
was not extremely large. We chose an uncertainty
limit of 10 times the fitted value because parameters
that do not impact the fit result usually have uncer-
tainties of more than 100 times the fitted value. When
the fit error was too large or could not be inferred,
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Figure 9. Processing pipeline in two steps. First, a realistic model of the stimulation unit is built and its expected impedance is
computed using the finite-element method. This model is augmented by the electrochemical interface impedance to obtain an
electrical model of the entire stimulation unit (top). Then, the parameters of the electrical model are calibrated using the transient
stimulation signals (current and voltage). A spectral analysis is conducted to obtain the impedance from the stimulation signals in
frequency domain. The impedance is fitted using the electrical model and updated model parameters are obtained.
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Figure 10. Comparison of the measured voltage (see figure 6) to voltages predicted from the initial EIS characterisation and the
impedance model fitted to the stimulation pulses. For this example, an Ry of 8.5 k(2 was fitted while the initial EIS
characterisation yielded 9.9 kQ2. The Warburg coefficient was estimated to be 2.8 M2 /Hz~"- instead of 2.5 M{2/Hz~%>. On the
left, the envelope of the predicted voltages is shown together with the measured data. On the right, the full predicted signal is
shown for a short stimulation period, which is indicated by the black box on the left. The impedance model diverges for
frequencies tending to zero. Thus, an offset value of about 30 mV was fitted to match the predicted and measured curves. In the
right panel, an additional offset of 35 mV was applied. For reference, the placed markers correspond to a sampling frequency of
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we fixed parameter values to the value obtained in
the EIS characterization. We found that the charge-
transfer resistance could not be inferred for all tested
waveforms. Importantly, fixing this parameter does
not impair the prediction of the stimulation pulse
(figure 10) because the shape of the stimulation pulse
is not impacted by it. Similarly, the double-layer
capacitance had little impact and was kept fixed for
many waveforms. To not deteriorate the fit quality
by parasitic impedances at high frequencies (see also
figure 5), we imposed an upper frequency limit of
500 kHz. To further improve our approach, a model

of the parasitic impedances should be added to (5).
This could probably also improve the estimate of the
tissue resistance, which appears to be slightly under-
estimated as indicated by the lower amplitude of the
reconstructed stimulation pulses compared to the ini-
tial EIS estimate, which almost exactly matches the
experimental data (figure 10).

To port the approach to the hardware level, we
explored the dependency of the algorithm on the
sampling frequency. A lower sampling frequency
means fewer data points and is thus more hardware-
friendly. We explored frequencies between 100 kHz

9
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Figure 11. Extracted metric for mean absolute percentage error (MAPE) in dependency of the sampling frequency.

and 25 MHz, which corresponds to the original
sampling rate. The lowest frequency yields a time
step of 10 s, which means that the overall signal is
sampled but fine details are not resolved (compare
also figure 10). We considered the mean absolute per-
centage error (MAPE) as a metric

1 XK - YK
MAPE—N;W. (12)

Here, X is the electrical impedance from EIS, Y is
the electrical impedance obtained from fitting the
Fourier-transformed pulses, k is the index of the spec-
tral frequency from EIS. MAPE is normalized with
respect to the impedance magnitude so that a joint
contribution of the whole impedance spectrum is
considered. Hence, changes in the impedance mag-
nitude do not impact the error metric.

Figure 11 shows the MAPE in dependency of the
sampling rate using the electrical equivalent circuit in
figure 1. With the original sampling rate of 25 MHz,
a MAPE of 0.33 was obtained. The results suggest
a sampling frequency beyond 1 MHz is necessary
because the MAPE at lower frequencies has a higher
variance and the mean MAPE value fluctuates signi-
ficantly. At the frequencies below 1 MHz, the error
comes from undersampling the stimulation signal as
the sampling frequency approaches the modulator
frequency of ChCS. Using lower sampling frequen-
cies, the transient signal from stimulation transforms
from the ChCS to a more smooth shape which is com-
patible with a more CCS.

The required sampling frequency is also reflec-
ted in the extracted parameter values of the full
Randles model (figure 12). At high sampling frequen-
cies above 1 MHz, consistent fitting values have been
obtained. We found mean values for Ry of 8.2k}
(£0.2kQ) and Z,,,, of 2.80 MQ2/Hz % (40.15) for
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the best configuration. Compared to the fitted para-
meters of the initial characterization (section 2.2), the
parameter deviations amounted to a ARy of 1.7 k2
(17%) and a AZ,,. of 0.3MQ/Hz=% (12%). Note
that the EIS measurement was conducted before
the stimulation sweeps and temperature fluctuations
might have caused slight variations in the PBS
conductivity. Depending on the required accuracy,
also smaller sampling frequencies of, for example,
500 kHz could be used. For each application-specific
stimulation waveform and impedance model, the
presented analysis can be straightforwardly repeated
to optimise the hardware settings. The main limit-
ation is that the stimulation signal should cover a
broad frequency range, which is in addition to the
application for retina stimulation presented here, for
example, also the case for conventional DBS stimula-
tion pulses [42].

With the results of the parameter sweep of MAPE
in figure 11 and of the electrical properties in
figure 12, the uncertaincy increases at sampling rates
lower than 1 MHz. The reason is, that the resampling
of the data changes the properties of the transient
signal. In figure 13, the manipulated transient stim-
ulation signal is shown in which the sampling rate
is changed from 25 MHz (from original data, see
figure 6) to 1 MHz (left) and 140 kHz (right). Here,
with decreased sampling rate f;, the transient charac-
teristic of the high-density ChCS is transformed into a
CCS in which only the peaks are visible. In both cases,
the applied charge injection is constant.

3.4.2. Digital twin formalism

After having established an electrochemical model
of the stimulation electrodes and means to update
the model in situ, we want to demonstrate how this
information can be integrated with numerical mod-
elling. For that, we first investigated the agreement
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Figure 12. Electrical parameters of the used Randles model in dependency of the sampling frequency: (i) tissue resistance—(ii)
Warburg impedance—(iii) double layer capacity (please note that a low variability in the box plot indicates that the value was
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Figure 13. Manipulated transient measurement results of figure 6 with changing the sampling rate f;: (Left) fy = 1 MHz—(Right)

fi = 140 kHz.

between a numerical model and the experimental
results.

First, we estimated the unit resistance of the elec-
trode to be about 16.7kQ (ie. at 1Sm™!). The
PBS buffer has a conductivity between 1.5Sm™!
and 2.0Sm~! at room temperature. Thus, the
expected measured resistance should roughly lie
between 8.35k() and 11.13k(2. This value was in
good agreement with the measured value.

As a result, the electric field distribution can be
reliably computed around the electrodes (see figure 9
top). The electrochemical interface impedance can
be straightforwardly integrated and thus updated
during the stimulation [41, 42]. In turn, the local
stimulation pulse can be predicted by the numer-
ical simulation. Hence, a local understanding of the
stimulation is feasible with relatively high accuracy
because the stimulation signal can be sufficiently well
described by a linear model. Nevertheless, long-term
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investigations of the electrochemical interface and
potential non-linear effects should be conducted to
refine the model [3, 22].

Another possibility that arises from the numerical
model is to estimate the induced voltage on the pass-
ive contacts. With that, it can be possible to estimate
the electric field from measurements [41]. When we
applied a voltage of 1 V to the centre contact of the
first electrode and 0 V to the centre contact of the
second electrode, the induced voltage on the other
two contacts of the first electrode was numerically
estimated to be 0.62 V. On the second electrode, a
voltage of 0.38 V was induced, while the other con-
tacts were all at 0.49 V in the numerical simulations.
This suggests that the electric field can probably not
be reliably estimated as there are only two usable data
points at the active electrodes. However, the predicted
symmetry around the center contact can be tested
in situ and the voltage readouts can be used to test
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Figure 14. Result of the 2D parameter sweep by changing the sampling frequency and quantization level of the analog—digital
converter for determining the mean absolute percentage error (MAPE). The LSB voltages was swept logarithmically from 10 1V
to 25.4 mV. No signal reconstruction was feasible at high voltages (yellow squares), which is indicated by a high MAPE. At other
configurations, relatively elevated MAPE values were obtained. Acceptable confiurations are separated by a red line (compare also

figure 11). Optimal configurations are indicated by the green line.

if the stimulation electrode is functional. Thus, it is a
measure to corroborate the results from the estimated
impedance.

An additional perspective is to integrate the
presented approach with electrochemical monitor-
ing [6]. Our approach currently only measures the
impact of electrochemical processes such as charge
transfer, corrosion and pH changes on the imped-
ance [7]. Other approaches can give more insight
into the electrochemical nature of the processes and
could be integrated into our workflow. However, to
our knowledge, validating electrode geometries with
numerical simulations is currently only possible with
the approach presented in this work.

3.4.3. Analysis for using in embedded hardware.

To enable a real-time suitable execution of the sig-
nal processing pipeline for predicting the electrical
parameters on the on-body electronic with an embed-
ded system like a field programmable gate array or
a microcontroller, a more detailed analysis is neces-
sary. Here, we conducted an additional analysis of
the analog—digital converter (ADC) parameters by
sweeping the sampling rate f; and the quantization
level with the voltage value of the least significant
bit Ursg. This directly impacts further signal pro-
cessing stages because less computational resources
are available on embedded hardware compared to
workstations.
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As in the previous section, a MAPE of 0.33
was obtained at high sampling rates with high
quantization levels, which drastically increased with
decreased sampling rate and decreased quantiza-
tion (figure 14). Specially for using this approach in
ChCS, it is recommended to use sampling frequen-
cies higher than 1 MHz and a LSB voltage lower
than 3.16 mV, which represents a 10-bit successive-
approximation ADC at a reference voltage of 2.5 V.
If higher sampling rates and higher bit-resolution are
required, it is recommended to use Pipeline-ADCs,
which achieve 4 GHz at 14-bit [37] for high-speed
applications or 260 MHz at 13-bit [39] for power-
efficient applications. For the use in neural implants
with limited chip area, it is recommended to avoid
additional circuitry if a recording front-end is still
available. Here, the reference voltage during stimu-
lation can be increased in order to apply a higher
voltage range of the ADC.

The presented approach can serve as a tool for
tracking the changes in electrical impedance dur-
ing long-term stimulation. This enables new charac-
terization strategies in which (i) neurons and cells
of interest can be identified by changes in the tis-
sue impedance or (ii) the status of the microelec-
trode array and the tissue due to encapsulation effects
can be diagnosed during run-time. For implement-
ing the parameter prediction processing pipeline
in hardware, optimizations of the used algorithms
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are necessary in future. For example, the Fourier
transformation could be replaced by wavelet trans-
formation. This would reduce the memory require-
ments and the computational effort.

4, Conclusion

We presented two approaches for predicting the elec-
trical parameters of the stimulation path in neuro-
stimulation applications by processing the transient
signals of the electrical stimulation. These approaches
have been tested in PBS by performing the ChCS
method with microelectrode arrays designed for
layer-selective stimulation of retinal structures.

In the first approach, the parameters of the
double-layer capacity and the tissue resistance are
extracted by sensing the voltage responses due to the
ChCS. This enables extracting the non-linearity prop-
erties of the metal-electrolyte interface during the
stimulation in order to identify polarisation effects.
Also, it allows defining design rules for neural stim-
ulation front-ends in which the non-linearity must
be considered in the design phase, in which the
maximum injectable charge quantity depends on the
applied phase duration. In addition, it is recommen-
ded to employ the charge balancing technique based
on sensing the voltage after each stimulation.

In the second approach, the electrical impedance
is fitted based on the Fourier transformation of the
transient signals (current and voltage) during stimu-
lation. From this, the electrical parameters of the full
Randles model are extracted. Compared to the first
approach, long-term changes in electrical impedance
can be determined with an accuracy of 10%-20%.
Moreover, the stimulation pulse can be predicted and
hence the validity of the applied impedance model
can be straightforwardly assessed. Together with the
validated numerical model, this approach can be used
to realise a digital twin and provide a local under-
standing of electrical stimulation for various applica-
tions such as retina stimulation or DBS.
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