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Figure 1: Schematic example of the efficient sparsification of a simplicial complex K on the level of triangles.

Abstract

Simplicial complexes (SCs), a generalization of graph models for
relational data that account for higher-order relations between data
items, have become a popular abstraction for analyzing complex
data using tools from topological data analysis or topological sig-
nal processing. However, the analysis of many real-world datasets
leads to dense SCs with a large number of higher-order interactions.
Unfortunately, analyzing such large SCs often has a prohibitive cost
in terms of computation time and memory consumption. The spar-
sification of such complexes, i.e., the approximation of an original
SC with a sparser simplicial complex with only a log-linear number
of high-order simplices while maintaining a spectrum close to the
original SC, is of broad interest.

In this work, we develop a novel method for a probabilistic
sparsifaction of SCs. At its core lies the efficient computation of

sparsifying sampling probability through local densities of states as
functional descriptors of the spectral information. To avoid patho-
logical structures in the spectrum of the corresponding Hodge
Laplacian operators, we suggest a “kernel-ignoring” decomposi-
tion for approximating the sampling probability; additionally, we
exploit error estimates to show asymptotically prevailing algorith-
mic complexity of the developed method. The performance of the
framework is demonstrated on the family of Vietoris—Rips filtered
simplicial complexes.
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1 Introduction

Graph models for relational data are ubiquitous, enabling the inte-
gration of structural information into various tasks such as link pre-
diction, node importance ranking, label propagation, and machine
learning algorithms, with numerous applications across disciplines.
At the same time, such models are inherently restricted to pairwise
interactions between agents, [3, 5]. Many natural systems include
polyadic interactions, such as chemical reactions, co-authorship
networks, and social connections. To address this limitation, higher-
order models of relational data have been introduced, including
hypergraphs, motifs, cell and simplicial complexes. Such higher-
order models have been shown to influence a variety of processes,
such as promoting synchronization [13], impacting label spreading
and critical node identification, [26, 36], and supporting higher-
order random walks and trajectory classification [31].

However, as the size of a system grows, the number of interac-
tions scales accordingly, rendering most existing network-based
algorithms computationally prohibitive. The tractability of the sys-
tem and the memory consumption are inevitably affected in the
same way; the transition to higher-order models only accentuates
the problem. As a result, it is natural to posit the question of spar-
sification: for a given high-order model K, can one find a model
L with similar key properties (such as similar topology or com-
parable rates of information propagation) but with asymptotically
significantly fewer order-k interactions?

This idea of the sparsification is closely related to the Lottery
Ticket theorem for the graph neural network (or simplicial complex
neural networks in particular, [11, 38]): the transition to a sparser,
but similar simplicial complex inside the convolutional layer implies
pre-training pruning of connections of each message passing filter.

In the current work, we consider the task of efficient sparsifica-
tion of simplicial complexes at the level of simplices of order k. For
this, the spectral information of the induced higher-order Laplacian
operators Ly is critical, as it describes the topology of the complex,
governs its stability, may be used to define clusters, and affects the
performance of many numerical methods for the analysis of sim-
plicial complexes; consequently, we are computing sparsifiers that
maintain the spectrum or specific spectral properties of the origi-
nal operator Ly (note that the spectral properties of all lower order
Laplacians are unaffected by the sparsification). To be more specific,
each L; operator is composed of down- and up-Laplacian terms,
Ly = L/i + LII; since L]I desribes up-adjacency between simplices of
orders k and k + 1, one uses its spectrum to control the similarity of
the sparsifier. The result by Spielman and Srivastava, [32, 33] and
its more recent generalization to simplicial complexes [25] state
that for any simplicial complex K one can find a spectrally close
sparser complex £ with mg{ (L) = O(my(K) log my. (X)) where
my (%) denotes the number of simplices of order k in the simpli-
cial complex K. The sparsifier £ can be sampled from the original
complex K according to a sampling probability proportional to the
so-called generalized effective resistance (GER) vector r.

Although a variety of methods for the efficient computation of
the GER vector have been proposed for the classical graph case
k =0, [9, 19, 34], this remains a major computational bottleneck
for higher-order cases. In this work, we show that GER vectors can
be directly computed using functional descriptors of the spectral
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information known as the network’s local densities of states (LDoS),
introduced in [10]. Due to the Hodge decomposition, [22, 31], high-
order up-Laplacian operators L]I have high-dimensional kernels
which are detrimental for existing quasi-polynomial methods to
approximate LDoS. To resolve this issue, we suggest a novel method
based on a kernel-ignoring decomposition. Additionally, we pro-
vide error estimates, which allows us to guarantee the method’s

k+1"k
§ controls the approximation error. The performance of the devel-

oped method is illustrated on the family of Vietoris—Rips simplicial
complexes, [17], for various density levels and orders of simplices.

advantageous computational complexity O (5_3m4 m_3) where

Main Contributions . Our main contributions are as follows: (i)
We show that the sparsification measure used for simplicial com-
plexes is directly related to the local densities of states of a higher-

order down-Laplacian Lliﬂ(whose spectrum is inherited from LII,
[16]). This measure has previously been defined in terms of the full
spectrum of the up-Laplacian; the transition to LDoS enables an
efficient approximation. (ii) We develop a novel kernel-ignoring
decomposition (KID) for the efficient approximation of LDoS; the
suggested method avoids pathological spectral structures of the
up-Laplacian, which prevented a successful application of the preex-
isting methods. (iii) Finally, we prove that our method outperforms
previous approaches in terms of algorithmic complexity, bounding
the number of parameters required to obtain a desired approxima-
tion error.

Related work

Simplicial complexes. Simplicial complexes generalize models for
relational data to higher-order interactions, aligning with the intrin-
sic topology of the data [24, 27]. The corresponding higher-order
Hodge Laplacian operators Ly define homology groups which, for
example, describe k-dimensional holes in the complex [22]. In the
thermodynamic limit, key topological features are preserved, as
L;. operators on simplicial complex induced by point clouds on
manifolds converge to their continuous counterparts [6, 7]. The
spectral information of Hodge Laplacians has diverse applications:
it can be used to determine topological stability of the simplicial
complex [16], be exploited for spectral clustering, [12, 15], and tra-
jectory classification through simplicial random walks, [14, 31].
Moreover, L can act as structural shift operators for signal process-
ing, [2], and, thus, injected into graph neural networks to model
higher-order interactions, [11, 28, 38].

Sparsification. Numerous graph sparsification algorithms have
been proposed over the years, each aiming to preserve specific
properties of the original system, such as cut costs, [1, 4], cluster-
ing, [29], or classification scores, [21]. Due to the prevalence of the
graph spectral methods, [32, 33] introduced the concept of spectral
sparsification, which preserves the spectrum of the corresponding
graph Laplacian operator by sampling edges based on their gen-
eralized effective resistance, [35]. This idea was later extended to
simplicial complexes in [25]. Several methods have been proposed
in the classical graph case to efficiently compute (or approximate)
the effective resistance, which is inherently computationally pro-
hibitive as it requires access to the entries of the pseudo-inverse of
the Laplacian [9, 34]. This computational challenge directly links
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the graph and simplicial sparsification problems to efficient solvers
for linear systems involving Ly operators. Unlike the graph case,
available approaches for higher-order Laplacians[8, 20, 30] are ei-
ther uniquely applicable for sparse simplicial complexes or their
performance suffers in the densest cases.

Network density of states. The notion of spectral densities as func-
tional descriptors of the spectral information for various operators
is well-established across various areas of physics, [37]. It was first
introduced in the context of network analysis in [10] where it was
observed the presence of pathological structures in the spectrum of
the graph Laplacian associated with over-represented motifs in the
graph. These structures create potential complications that hinder
the application of the kernel polynomial method [37], the algorithm
of choice when aiming to approximate the spectral density.

Outline. The rest of the paper is organized as follows: Section 2
provides a brief introduction to simplicial complexes. In Section 3,
we present our main sparsification result and its connection to
the local spectral density of states, used as efficiently computable
proxies for spectral information. Section 4 outlines the proposed
novel approach for efficiently computing the sparsifying probability
measure. Finally, numerical experiments are presented in Section 5,
followed by concluding remarks in Section 6.

2 Preliminaries
2.1 Notation

We use o(A) to denote the spectrum of a symmetric operator A.
o4+ (A) denotes the strictly positive part of the spectrum. We say that
two symmetric operators A and B are semi-positive ordered A > B
iff A— B > 0, meaning A — B is a symmetric semi-positive definite
operator. Two operators A and B are spectrally e-close, A ~ Biff

(1-e) B A=< (1+¢)B.

We use O to denote element-wise matrix multiplication. Finally, for
a finite set S, |S| corresponds to its cardinality.

2.2 Simplicial complexes

Classical pairwise graph models consist of two sets, G = { Vo, V1 },
where V) is a set of nodes and YV} is a set of edges between the
nodes. Instead, one may consider the structured generalization,
which includes higher-order interactions between the nodes, known
as simplicial complexes. Let us assume that Vy = {01,02,...0m, };
then each subset o of Vj, 0 = [0;),0;,,...0j; ], is called a simplex of
order k (k-simplex) with its maximal proper subsets of order (k —1)
known as faces of 0.

Definition 2.1 (Simplicial complex, [22]). A collection of simplices
K on the node set V} is a simplicial complex, if each simplex o enters
K with all its faces. Additionally, we say that K = Ugi:éK Vi (K)
where Vi (K) is a set of simplices of order k and dimK is the
maximal order of simplices in K. We provide a small example of a

simplicial complex in Figure 2.

Let us denote the number of k-simplices in K by my, mp =
[Vi (F)|. The sparsity of K at the level of k-simplices is defined by
the relation between my. and my.; we refer to it as the k-sparsity of
the simplicial complex. In particular, the 0-sparsity is given by the
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Vo(K) = [1], [2], [3]. [4], [5]
V(K : [1,2],[1,3],[1,4],
[2,3],13,4],[3,5], [4 5]
Vo (K) : [1,2,3],[1,3,4]
orientation .
. order
g B2[1,2,3] = (+1)[1, 2] +(-1)[1,3] + (+1)[2, 3]
g B2[1,3,4] = (+1)[1,3] +(-1)[1, 4] + (+1)[3, 4]
[ ——
1st in
g order

Figure 2: Example of a simplicial complex with ordering and
orientation: nodes from V; (%) in magenta, triangles from
V(%K) in blue. Orientation of edges and triangles is shown
by arrows; the action of the B; operator is given for both
triangles. Adapted from [30].

relation between the number of nodes mg and the number of edges
m1 and is what usually defines the sparsity of the graph. Note that
the k-sparsity is not on its own indicative of the (k + 1)-sparsity as
the two depend on the intrinsic topology of the simplicial complex.
Consequently, if one aims to find a similar but sparser simplicial
complex, it is natural to consider such a problem for a fixed k rather
than attempting to define a unified notion of sparsifier across all
simplex orders.

We now formalize the concept of closeness between simplicial
complexes, aiming to identify a simplicial complex £ that is k-
sparser than K while still preserving target properties and struc-
tures of the original K. Following [25, 32], we use the notion of
sparsification via the spectral closeness of higher-order Laplacian
operators Ly that naturally describe the topology of the underlying
simplicial complex. For this purpose, the operators L; are formally
defined below.

2.3 Laplacian Operators and Topology

Since each simplex o enters K with all its faces, there exists a map
matching it to its boundary formed by its faces.

In order to formally define such a map, assume that simplices in
Vi (K) have a fixed ordering and chosen orientations as a matter
of bookkeeping (e.g. lexicographically). Then, let us consider linear
spaces Cy of formal sums of simplices in Vi (K); i.e. Cy is the space
of node states, C; the space of edge flows, and so on; note that
each such space is isomorphic to R, C; = R™*, and that it can
be viewed as the space of simplicial flows on V. (K). Then, the
action of the boundary map By on ¢ = [vjy,0;,, ... 05, ] € Vi (K) is
defined as an alternating sum:

k
By :Cx = Cr_y, Bro= Z(—1)107
Jj=0



where o5 denotes the face of o that does not include v;;. Given
a fixed order and orientation, simplices in Vi (K) and Vj_1(K)
form canonical bases in Cy and Ci_; respectively, thus allowing
us to use a matrix representation of the boundary operators. For
simplicity, from now on, we will always assume this is the case.
With a slight abuse of notation, will use the symbol B to denote
the matrix representation of the boundary operator. An example
for a simplicial complex and the action of the boundary operator is
provided in Figure 2.

The alternating sum in the definition of boundary operators
By upholds the fundamental lemma of homology (“a boundary of
a boundary is zero”), BiBg,; = 0, and thus induces the topolog-
ically sound decomposition of simplicial flows known as Hodge
decompositon:

T
ker B,

R™* = im B @ ker (B;Bk + BkHB,IH) ®imBy . (1)

ker By

Definition 2.2 (Hodge Laplacian operator). The operator L =
B[ By + By41 B[, | is known as the Hodge or higher-order Laplacian
operator and has the following properties:

(1) the elements of ker L;. in the Hodge decomposition corre-
spond to the k-dimensional holes in K (connected com-
ponents for k = 0, 1-dimensional holes for k = 1, and so
on);

(2) the first term Li = B;Bk is known as the down-Laplacian
and describes the relation between k- and (k — 1)-simplices.

Fork=1,im Li =im B]: contains so-called gradient flows
on the edges;

(3) the second term LII = Bk+1B]1—+1 is known as the up-Laplacian

and describes the relation between k- and (k + 1)-simplices.

Fork =1,im LII = im By, contains so-called curl flows.

Higher-order Laplacian operators Ly, as well as their down- and
up-terms, are frequently used to describe dynamical processes and
random walks on simplicial complexes, [31], to inject simplicial
structure into graph neural networks, [11]. Moreover, the eigen-
vectors of Hodge Laplacians can be used for spectral clustering,
[12, 15], or to characterize the stability of topological features, [16].

Note that one can generalize boundary and Laplacian opera-
tors to the weighted case without significant difficulty. Let Wy be
a diagonal matrix such that its i-th diagonal entry contains the
weight of the i-th simplex in Vi (K), [Wi]ii = Ywg(0i). Then,
Wk_—ll B W provides a weighted version of By that preserves all
the fundamental topological features of By, and the same is true
for the corresponding weighted higher-order Laplacian [16].

By its definition, the up-Laplacian L]I describes the relationship
between simplicies in Vi (K) and Vi,q (K). At the same time, its
spectrum encodes information about the overall topology of the
simplicial complex. As a result, one may use the operator L to
measure the closeness between simplicial complexes for the task of
k-sparsification, as we describe below.
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3 Sparsification of Simplicial Complexes

We assume from now on that we consider the k-spasification of the
weighted simplicial complex K and will sometimes omit the index
k; to simplify the notations, we assume that Wy _; = I, though every
statement below holds in the general case.

The task of spectral sparsification we are concerned with thus
can be generally described as follows:

PROBLEM 1. For a given weighted simplicial complex K and the
sensitivity level e > 0, find a simplicial complex L such that V;(K) =
Vi(L) foralli=0,....k, Vi1 (L) C Vir (K) withmy (L) <
My41(K), and the corresponding up-Laplacians are spectrally e-close,

Ll(L) > Ll (%0.

The seminal result by Spielman and Srivastava, [32], (with gener-
alization into the simplicial case in [25]) suggests that the sparsifier
L can be randomly sampled from Vj.1 () with a probability mea-
sure defined by the generalized effective resistance r of simplices
in Viyq (K). Specifically,

THEOREM 3.1 (SIMPLICIAL SPARSIFICATION, [25, 32]). For any

£> —= >0, a k-sparse complex L can be sampled as follows:

vy
(1) compute the probability measure p on Vi1 (K) proportional to
the generalized effective resistance (GER) vectorr, p ~ Wk2+1r,

wherer = diag (B]:+1 (LII)TBk+1);

(2) sample q(my.) simplices o; from Vi,1(K) according to the prob-
ability measure p with q(my) = 9C*my log(my./€?), for some
absolute constant C > 0;

(3) form a sparse simplicial complex L with all the sampled (k +

Wit1(03) .
q(mi)p(oi)’
weights of simplices, repeated during sampling, are accumulated.

Then, with probability at least 1/2, the up-Laplacian of the sparsifier
L is spectrally e-close to the original one, LIZ(L) ~ LII(’K).

1)-simplexes (and all their faces) with the weight

The bottleneck in the sparsification by sampling described in The-

orem 3.1 is the computation of the GER vector r = diag (Bll—+1 (LII)TBkH) ,

which requires the pseudo-inverse (L]I)T, a highly computationally

demanding operation with complexity O(mz + 2kmypmyq). This
poses the central problem of the current work:

PROBLEM 2. Find a computationally efficient and arbitrarily close
approximation of the generalized effective resistance vector r for a

given weighted simplicial complex K and simplices of fixed k-th order.

In the rest of the paper, we formulate and discuss a novel method
for approximating the GER vector using efficiently computable

spectral densities of the up-Laplacian operators LII. Note that the
sparsification process described in Theorem 3.1 allows for approxi-
mate sparsifying measures and exhibits low sensitivity to them, as

we discuss below.

Remark 3.2. Since p is a probability measure over Vi (%),

it is natural to measure its perturbations in terms of ﬁ, ie.,
+

‘p(ai) - p((s) (09)| < % (the size of the perturbation is meaning-
ful only in relation to the actual support of the measure). As shown
in Figure 3, random perturbations of p can, on average, slow down
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Figure 3: Convergence of the sampled simplicial complex £
to the original complex K at 0-order in terms of the spectrum
of Ly Laplacian operator. Left pane: convergence rate vs the
number of sampled edges g for various perturbed measures
p(a) .Right pane: convergence rate for chosen values of § in re-
lation to the unperturbed sparsifier. mg = 100, m; = w
All curves are averaged over 25 random perturbations for
VR-complex (see Section 5).

the convergence of the approximately sampled complex £ () to the
original simplicial complex % in terms of the number of sampled
simplices. However, even for moderately high values of &, such as
d = 0.5, the convergence rate remains largely unaffected.

4 Sparsification measure via Kernel Ignoring
Decomposition of Local Densities of States

In the previous sections, we have outlined the importance of the

1

spectral information of L and the way it is exploited to obtain
the sparsifier £ with the computationally demanding GER vector
r. Here we demonstrate that r can be efficiently approximated
via functional descriptors of the up-Laplacian spectrum known
as spectral densities or densities of states pi(A | Lg), [5]; later
we propose a novel method for computing (A | L) that avoids
pathological structures in the up- and down-Laplacians’ spectra.

4.1 Density of States

Definition 4.1 (Density of States). For a given symmetric matrix
A = QAQT with QTQ = I and diagonal A = diag (Ay,...A,), the
spectral density or density of states (DoS) is defined as

pA1A) = - 8-
i=1

where §(1) is a Dirac delta function. Additionally, let q; be a
corresponding unit eigenvector of A (such that Aq; = A;q; and
Q=1(q119qz2|--1|qn)); then one can define a set of local densities
of states (LDoS):

pi(A|A) = zn: ‘ejqir 6 (A—A)
i=1

with e; being the j-th canonical basis vector.

Here, the DoS function p(A | A) contains the overall spectrum
of the operator A while the family of LDoS y1;(A | A) describes the
contribution of the simplex o; € V) (K) to the spectral information.
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Finally, one should note that by definition, DoS and LDoS are
generalized functions; hence, the quality of their computation is
difficult to assess directly. To this end, one can instead consider
their histogram representations:

Xi+Ax . Xit+Ax
= [ haaa W= [T e
Xi Xi

which correspond to the discretized output of the convolution of
spectral densities with a smooth approximation of the identity
function Kpp, [g(A | A) = Kpp].

With the notion of spectral density, we now obtain the following
reformulation of the GER vector r and its computation:

THEOREM 4.2 (GER THROUGH LDOS). For a given simplicial com-

plex K, with k-th order up-Laplacian L/I = Bk+1Wk2+1Bl:+1’ the gen-

eralized effective resistance r can be computed through a family of

local densities of states {p; (A | Liﬂ)} as follows:

= [ 0= L 12, )ia

Theorem 4.2 implies that it is sufficient to obtain the LDoS fam-
ily {pi(A | Ll£+1)} for the next down-Laplacian LI£+1 efficiently in
order to compute the sparsifying probability measure at the level
of k-simplices. At the same time, by its definition, the spectral den-
sity {pi (A | A)} requires the complete spectral information of the
original operator A and, hence, is not immediately computation-
ally beneficial. To avoid this demanding computational overhead,
we leverage the functional nature of the LDoS and obtain an ef-
ficient approximation of {y; (A | Ltﬂ)} via truncated polynomial
expansion.

4.2 Efficient approximation of LDoS

Fast approximations of spectral densities are typically based on
Kernel Polynomial Methods (KPM) that schematically operate as
follows:

(1) shift the operator A — H so that o(H) C [a;b];
(2) consider a polynomial basis T, (x) on [a; b], orthogonal with
respect to the weight function w(x); then it holds

A TH) = dnjw ()T (2)
m=0
where the coefficients d;,; are known as moments. In practice,
one is interested in a truncated decomposition of the form
wi(AH) = ZA”/{:O dmjw(x) T (x) for some M;

(3) the values of dp,; are functions of T;;,(H) and can be efficiently
sampled via Monte-Carlo methods, exploiting the three-term
recurrence of orthogonal polynomial bases, [5]; we review this
step in more detail below.

We point out that typical choices for the shift interval and the
polynomial basis are [—1, 1] and the Chebyshev polynomials of the
first kind, respectively.

The fundamental limitation of KPM is the polynomial nature of
the decomposition, which may require a large number of moments
M for [i;(A | H), in order to produce an accurate approximation
for “pathologic” functions that are far from being polynomials. In
the case of the DoS and LDoS, a particularly pathological setting



is associated with eigenvalues of high multiplicity, which result
in dominating “spikes” in the histogram representations of the
spectral densities. In this case, one would have to approximate an
outlier with a polynomial function. In the case of the classical graph
Laplacian Ly and the adjacency matrix, these spikes may be caused
by over-represented motifs in the graph [5]. However, in this setting,
one knows the closed form of the corresponding eigenspace, and
thus, the over-represented eigenvalues can be explicitly filtered out.
For the general case of up- and down-Laplacians LT and L? of order
k > 0, the eigenspaces with high multiplicity are unavoidable due
to the Hodge decomposition, (1): indeed, since im BZ C ker B];'—H =

ker LII and im By, C ker By = ker Lt, both operators have large
kernels which are detrimental to KPM approximation; moreover,
kernel’s bases depend on the topology of the simplicial complex
and cannot be easily estimated.

Below, we propose a novel modified method for approximating
LDoS that intentionally avoids the spike in the kernel of Lli+1’ with
all the necessary definitions.

4.3 Kernel-ignoring Decomposition

As discussed above, the quality of the KPM approximation of LDoS
{pj(A] Li)} suffers from the large null space of the operator; at the
same time, Theorem 4.2 suggests that the target GER vector ignores
the values of (4 | thﬂ) associated with the kernel due to the (1 -

1o(A)) term. Note that, since (2 | L/t_l) x ZA"/{:O dmjw(A) T (1)
is a functional decomposition, it does not allow local errors; instead,
the approximation error associated with the spike at A = 0 spreads
across the whole domain. For that reason, we suggest a modified
shifting technique that leads to a decomposition that ignores the
singular value of A associated with the operator’s null space.

In pre-existing methods, one sets H = ﬁLi)r L

denotes the largest eigenvalue of Lli+1’ so that o(H) C [-1;1] and

— I where Amax

the null eigenvectors of Lli+1 are shifted to —1 € o(H). Instead, we

set H = %Liﬂ and define a symmetrized version of the LDoS
as:

(A | H), if 1 e (0,1]
(A H) = o, ifA=0 @)
—uj(=A | H), ifA e [~1,0)

Note that the support of the symmetrized /i; (A | H) still falls within
[-1; 1], and the spike associated with the value A = 0 is by design
tied to 0.

The remainder of the approximation approach is essentially
inherited from the KPM method: let us assume that T, (x) are
Chebyhev polynomials of the first kind. Specifically,

To(x) =1 i(x) =x,  Tms1(x) = 2xTn(x) = Tu-1(x)  (3)
which as an orthonormal basis on [—1, 1] (with respect to the weight

. _ 2
function w(x) = (1+50m)7r@)'
Since fij (A | H) is an odd function by design, we decompose

i TH) = dmjw() T () @

m=0
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where d,j = 0 for even m, thus requiring the decomposition by
odd Chebyshev polynomials.

Due to the orthonormality of T, (x) (see the derivation in Ap-
pendix B), we have

dmj = (iij(A | H), T(x)) = 2 Z |e}qi(2Tm(Ai) =2[Tn(H)]j;
Ao (H)\{0} 6
5

thus, dme = 2 diag(T;, (H)). Note that instead of computing T, (H)
one can use Monte-Carlo estimations for the trace and diagonal,
specifically:

diagX =E[z0Xz],  diagX ~ Ni(z oX2)1  (6)

z

where z is a vector of i.i.d. random variables with zero mean and
unit variance, 1 is a vector of ones, and Z is a matrix collecting N,
copies of z column-wise [18, 23].

The MC-sampling reduces diag(7;, (H)) calculations to simple
matvec operations, which can be efficiently updated for the next
order of moments dp4+1,6 due to the recurrent definition of T, (x):
indeed, assume we store the values of T;(H)Z for i = 0...m; then
in order to get Tr+1(H)Z one needs to compute Tpp41(H)Z = 2H -
(Tm(H)Z) = (Tin-1(H)Z) requiring only one additional matvec
operation. As a result, the computational cost of the approximation
is fixed to O (N;M nnz(H)), where O (nnz(H)) is the cost of one
matvec operation for the operator H.

4.4 Error Propagation and the Choice of
Constants

The computational complexity of the KID method described above
does not allow for a straightforward comparison with the direct
GER vector computation via the pseudo-inverse of LII because it
is formulated in terms of the approximation parameters N, and M
rather than the number of simplices my. Nonetheless, this can be
addressed through error estimates for the LDoS approximation, as
we demonstrate below.

Let us consider the histogram representations of the exact sym-
metrized LDoS h(/) = [[1 i (A]A) = KAh] and KPM approximation

Ej(dl') - [(2%:0 dmjw(/l)Tm(/l)) * KAh] where the moments dy,,

are MC-sampled. Using the estimation bound from [5, Thm 4.2],
we obtain:

EHh(j) _ E](VJI)HDO < ﬁ (% . 2”755%00) @

where L is the Lipschitz constant of h/). This estimate is the key
to obtaining the following (proof moved to the appendix):

THEOREM 4.3. For any fixed § > 0, let p and p be the exact and
the KID-approximate sparsifying probability measures for a given
sufficiently dense simplicial complex K. If the approximation P is

2 2
obtained with M > 24L %1 qnd N, > M%, then
Smy T 8%my

lp-plleo <6 ®)

and the computational complexity of the KID approximation is

o (573mi+1m;3) .
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To get a more stream-lined understanding of the overall complex-

e
ity, werecall that my,; = O mll: ka1 ) for a simplicial complex lifted

from a completely connected graph, resulting into the worst-case
. 3 L+ -
complexity of O (5 3mk ket ) In other words, our approximation

is not worse than direct computation for k = 1 (even in the densest
case) and is asymptotically linear in k.

5 Benchmarking

In this section, we show the performance of the KID approximation
for the GER vector r and its computational complexity. In particular,
through our experimental evaluation, we aim to do the following:

(i) support the asymptotic estimate for the approximation error
(7) in terms of the number of moments M and the number
of MC-vectors Ny;

(ii) support the computational complexity of the KID approxi-
mation using the (scaled) oracle choice for the parameters,
Theorem 4.3;

(iii) compare the actual execution time of the approximation to
the direct computation for complexes of different sizes and
densities.

Vietoris—Rips filtration. Theorem 4.3 and Equation (7) describe
the performance of the developed method in terms of the number
of simplices my. In order to appropriately numerically illustrate
these behaviours, one should consider a family of arbitrarily large
and dense simplicial complexes. For this reason, we opt to use
simplicial complexes induced by the filtration procedure on point
clouds. Formally, we proceed as follows:

(1) we consider mg points embedded in R?, sampled randomly in
two clusters, i.e., % points are sampled from N (0,I) and %
points are sampled from N(c1, ), for some ¢ > 0;

(2) then, for a fixed filtration threshold € > 0, a simplex o =
[vi,, ..-vi, ] on these nodes enters the generated complex K if
and only if d »((vi;,v;,) < € for all paris j and k.

This straightforward filtration is known as Vietoris—Rips filtration,

and the corresponding complex K as a VR-complex. An illustrative

example is provided in Figure 4. In the chosen setup, the value
of the filtration parameter € naturally governs the density of the
generated simplicial complexes of every order, as shown by the

right panel in Figure 4: larger values of € define complexes with a

higher number of edges, triangles, tetrahedrons, etc., until every

possible simplex is included in K.

Parameter choice and computational complexity. The error esti-
mate from Equation 7 suggests that the approximation error for
the sparsifying norm p scales as M~! in terms of the number of
moments and as N, 12 in terms of the number of Monte-Carlo
vectors (MC-vectors). To illustrate this behaviour, we fix one of the
parameters (M or N;) to their theoretical estimates provided by
Theorem 4.3 and demonstrate the dynamic of the error ||p — pl|e
as the function of the other parameter. As shown by Figure 5, the
overall scaling law coincides with the estimates of Equation 7 in
the case of 1-sparsification for LI operator. Note that all experi-
ments are conducted in the at least minimally-dense setting, i.e.
mo > mqlnm;y.
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Figure 4: Example of VR-filtration. Left pane: point cloud
with m( = 40 and filtration € = 1.5, inter-cluster distance c = 3.
Right pane: dynamics of the number of simplices of different
orders for varying filtration parameter c.
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Figure 5: Dependence of the approximation error ||p — P[le
on the number of moments M and number of MC vectors
N. Values are tested up to (scaled) theoretical bounds from
Thm 4.3 (in red); line colors correspond to varying my in the
point cloud. Left pane: errors vs the number of moments M
with fixed theoretical N; right pane: errors vs the number of
MC vectors N, with fixed theoretical M. Errors are averaged
over several generated VR-complexes; colored areas corre-
spond to the spread of values.

Here, we explicitly highlight two observations from Figure 5: (1)
larger and denser simplicial complexes tend to exhibit faster con-
vergence in both parameters (especially in the number of moments
M), and (2) Theorem 4.3 provides theoretical (greedy) estimates for
M and N, that are sufficient for achieving the target approxima-
tion quality § and can be interpreted asymptotically. Consequently,
one may choose scaled (and empirically sufficient) values for these
parameters:

2
1 8 m

M= M+ and N, =|— — kel |

Smy 10 72 52’"12<

Given this choice of parameters, in Figure 6 we demonstrate that
My
my
the actual execution time of the KID approximation for varying
filtration parameters € in the cases of 1- and 2-sparsification of

VR-complexes.

the complexity estimate O ) from Theorem 4.3 aligns with
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Figure 6: Execution time of KID approximation for effec-
tive resistance of triangles, V,(K) (left), and tethrahedrons,
V5(K) (right). Line colors correspond to varying my in the
point cloud; theoretical estimation of the computational com-
plexity is given in dash. Execution times are averaged over
several generated VR-complexes; colored areas correspond
to the spread of values.
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Figure 7: Computation time comparison between KID-
approximation p, solid line, and directly computed sparsify-
ing measure p, dashed line (left), and corresponding approx-
imation error ||p — p||e (right). Target approximation error
is given in dotted line (right pane); line colors correspond to
varying my in the point cloud. Execution times are averaged
over several generated VR-complexes.

Comparison with the direct computation. Finally, we compare the
execution time of the KID approximation with that of the direct
computation of the sparsifying measure p for 1-sparsification, using
the approximation parameters mentioned above (see Figure 7). Note

4

that although the densest case complexity estimate (8> m:m)
suggests that the KID method’s execution time might be compara-
ble to direct computation, in practice the developed algorithm is
significantly faster while still maintaining the target approximation
error ||p — Pllee < miz

Additionally, we note that the performance of the direct com-
putation of p for the largest considered point cloud with mg = 125
highlights another important advantage of the KID approxima-
tion: reduced memory consumption. Indeed, whether one uses the

definition of the GER vector

r = diag(BL,, (L)) et )

Preprint — do not distribute.

Savostianov et al. and Francesco Tudisco

or the reformulation in terms of the right singular vector from

Theorem 4.2, a full SVD of Ll is required. In the case of point clouds
with mg = 125, denser VR-complexes lead to real-valued matrices
of size 10* x 10%, resulting in substantial memory demands for the
SVD. By contrast, the KID approximation avoids this decomposition
and restricts the additional memory usage to storing Monte-Carlo
matrices Z and their matvecs of dimension my,; X Nz, which is

comparatively smaller.

6 Discussion

In this work we have proposed a fast method of approximating
generalized effective resistance vector for simplices of an arbitrary
order k inside simplicial complex K with the algorithmic complexity

14+ 4
0|6 3m k+ ket ), Theorem 4.3, allowing for efficient k-sparsification

of K through subsampling, Theorem 3.1. The novel approach is
based on the connection between GER vector r and the family of
local density of states of the corresponding higher-order down-

Laplacian operator Lli+1’ Theorem 4.2. We avoid the pathologic be-
haviour of the pre-existing KPM approximation methods for LDoS
by suggesting a kernel-ignoring decomposition de facto decompos-
ing symmetrized spectral densities via odd Chebyshev polynomials.
Developed approach follows the theoretical estimates, Theorem 4.3
and Equation (7), for the approximation error which allows us to
choose the number of moments M and number of Monte Carlo vec-
tors N controlling the final approximation error which is shown
to be sufficient at a moderate level for a close-to-efficient sparsifi-
cation, Figure 3. Given the fact that the developed method is only

dependent on LII being a Hodge Laplacian, it can also be directly
applied to cell complexes.

Given the sufficient improvement of the asymptotic of the com-
putational complexity of the method for k > 1, the introduction
of the sparsified complex in label spreading, spectral clustering or
generic simplicial complex GNN tasks may sufficiently decrease
priorly prohibitive computational costs, [12, 38]; additionally, the
cost of trajectory classification as well as landmark detection algo-
rithms can be directly scaled down by transitioning to a sparser,
but spectrally similar model, [14]. Separately, one may notice that
the existence of the efficient sparsifier L effectively breaches the
gap between dense complexes and ones for which one can obtain a
preconditioner through the collapsible subcomplex, [30], resulting

into an efficient solver for linear systems Llx = b for arbitrary sim-
plicial complex. Additionally, the developed method admits graph
sparsification as a special case; at the same time, the computational
complexity for k = 0 would clearly exceed the complexity of preex-
isting graph sparsification algorthims. Note that we do not suggest
the application of KID-approximation for the case of the classical
graph, since it is not the focus of the current work.

Finally, one may note, that the approximation quality given in
Theorem 4.3 may still be improved in the pathological scenarios
such as over-represented motifs in the graph (see [10]) through
similar filtration technique. Whilst we avoid explicitly defining a
generalized motif for simplices of the arbitrary order and whether
their detrimental effect of LDoS is generic or non-generic for sim-
plicial complexes, it is promising future venue of research as well
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as other applications of KID-approximated LDoS for simplicial com-
plexes.
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A Proof of Theorem 4.2

PrROOF. Let Biy1Wipq = USVT where S is diagonal and invert-
ible and both U and V are orthogonal (so it is a truncated SVD
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decomposition of By { Wy, matrix with eliminated obsolete ker-
nel). Then:

. i i
WDt = (BenWg, BL,,) = (UstUT) =us2uT ()

r = diag (Wk+1BZ+1 (L,I)TBk+1Wk+1) =

(10)

- diag (VSUTUS‘ZUTUSVT) = diag (VVT)
Asaresult, r; = ||Vi.||? = X loij 2, so the i-th entry of the resistance
is defined by the sum of square of i-th components of eigenvectors

vjof L\ = WiB

Note that

!
X +1Bk+1 Wje41 operator where v; L kerL;

! Mi+1 ) Mp+1 5
WO = Y TP -A) = 3 lauf 6 (- 1)
j=1

=
1y
SO
Mpci1
i=|Vi.|l” = i il 8 (A=Aj)dA=
A Z|v,| /}R\{}Zlqjl )
(12
-[ o HO a2 = Ja=to@ma i,
m}

B Derivation for Equation 5

Let pj(x | A) be a general case for LDoS; then for an arbitrary
polynomial function f(x) and A = QAQT,

(uj(x | A), f(x)) = /ma(x ) f(x)dx =
= Z ‘e qi
Z ‘e,qu‘ f) = Z lgjil” £

i=1 i=1

Since f(A) = Qf(A)QT, we get

s n fwn=

[F(A)]}; =e] QF(A)QT e = q] f(A)q,—Zlqﬂl FO) (14)

The case of symmetrized jij(x | H) is marginally different; in-
deed, since Ty, (x) is odd and T,,,(0) = 0:

(it Cc | H), Tm(0) = D gl (T () =

Tn(—2)) =
A0
=2 Z il Tm () = 22 |gjil” T ()
/1 ;to
(15)
So
dmj =2 Z |qji|2 Tn(Ai) = 2 [Tn(H)]j; (16)
i=1
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C Proof of Theorem 4.3
Before showing the result directly, we briefly show an auxiliary

fact:

LeEmMA C.1. For a given simplicial complex K and GER vector
r it holds that ||r|l1 = my — Zf__l( k1=l (m; — Pi+1) where
Pr = dimker Ly denotes k-th Betti’s number and m_1 = 0.

Proor. Note that by the proof of Theorem 4.2, r; > 0, and
el = > ri = oy 2 (17)
i ij

Since each of the right singular vectors V.; of By Wj; has unit

length, then }}; ; |v,~j|2 = number of columns of V = mp—dim ker L]I
given the truncated SVD. Given Hodge decomposition (1), dim ker le =
dim imBZ + dimker Ly = Zf:__ll(—l)k_l_i(mi — Bis1) due to the
spectral inheritance principle for Hodge Laplacians, [16], yielding
the result. O

Finally, to show the estimate for the approximation of the spar-
sifying norm, we consider the estimate
E ”h(n _ g(j)” <L (6L, 2lKanlle
M |l = Ah \ M VN,
which verbatim translates to the estimate on GER vector r. Given
eachr; > 0, the measure p = ﬁr with its approximation quality

(18)

measured in 1/my, ;. As a result, to get ||p — Pl < 8, it is sufficient
to show: . 1Kl
6 2
— o+ A < —|irlly (19)
M VN, ME4q
by choosing M and Nz such that

oL 2||Knll 4
lIrfl, == < ——Irly (20)

M 2mMypyq TVN, 2mk+

assuming that for a sufficiently dense (namely,

k> my_ 1+ﬂk)
simplicial complex ||r||; = my— 21771( 1)k-1- ’(m, Bis1) = my.
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