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Abstract

Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily
captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes
in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently charac-
terized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic
analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and
copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a
significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was
observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis,
including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched
among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehen-
sive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
type of renal carcinoma, and its incidence has been increas-
ing in recent years. Over 90% of ccRCC cases exhibit alter-
ations affecting the short arm of chromosome 3 (3p), rang-
ing from translocations and deletions to the loss of the en-
tire chromosomal arm. The von Hippel-Lindau (VHL) gene,
located on this arm, is mutated in 30%-56% of sporadic
clear cell carcinomas, and is silenced by promoter hyperme-
thylation in up to 19% of cases [1]. In these cases, the in-
activation of VHL has been identified as the earliest event
driving the disease. VHL loss in ccRCC affects multiple cel-
lular processes as angiogenesis, cell cycle, cell growth, and
metabolism [1, 2]. However, biallelic VHL inactivation alone
is not sufficient to induce ccRCC [3, 4]. Pathogenic sequence
variants affecting other 3p-residing tumor suppressor genes
are also frequently observed in ccRCC. Genes such as PBRM1,
SETD2, and BAP1, encode for chromatin and histone mod-
ifiers and are often mutated in ccRCC, suggesting a possible
role of epigenetic dysregulation in ccRCC tumorigenesis [5].
Additionally, DNA copy number variations (CNVs) affecting
other chromosomes (e.g., a gain of chromosome 5q, loss of
14q, trisomy of chromosome 7, loss of 8p, loss of 6q, loss of
9p, loss of 4p, and loss of chromosome Y in men), are very
common in ccRCC, and some were correlated with prognosis

[6-8].

Epigenetics in ccRCC

One of the fundamental epigenetic mechanisms directly affect-
ing gene expression is DNA methylation of cytosine (SmC)
in the dinucleotide sequence CpG. Aberrant methylation is
common in ¢ccRCC. Hypermethylation at promoter regions
often results in the silencing or inactivation of tumor sup-
pressor genes [9, 10]. RCC tissues often exhibit widespread
DNA hypermethylation in gene bodies and kidney-specific en-
hancer regions. This aberrant hypermethylation has been re-
ported to correlate with stage, grade and aggressiveness of
RCC, with enhancer hypermethylation being particularly pre-
dictive of adverse prognosis [9,10-12]. These and other stud-
ies prompted discovery and application of specific prognos-
tic methylation markers in ¢ccRCC [13, 14]. In addition to
cytosine methylation, 5-hydroxymethylcytosine (ShmC), the
oxidation product of SmC, has gained attention as a modi-
fier of gene regulation, development, and disease. Some sug-
gested mechanisms for the regulatory action of ShmC include
binding to transcription factors, altering chromatin struc-
ture through association with histone modifications, mod-
ulating alternative splicing via binding to related proteins,
and involvement in miRNA pathways [15]. ShmC is glob-
ally reduced in multiple human cancers [16, 17], includ-
ing ccRCC [18], and lower ShmC levels in ¢cRCC are re-
portedly associated with poorer prognosis [18, 19]. ShmC
data have only recently become available due to the fact
that popular methods, such as bisulfite sequencing or methy-
lation arrays, do not distinguish between DNA methyla-
tion and hydroxymethylation, and report on their cumu-
lative presence. In order to differentiate these two marks,
Tet-assisted bisulfite sequencing (TAB-seq) [20], oxidative
bisulfite sequencing (OxBS-seq) [21], or specific enzymatic
labeling such as presented here [17, 22-25] have to be
employed.

Optical genome mapping— the full picture

Optical genome mapping (OGM) in nanochannels is a high-
throughput, single-molecule technique that captures ultra-
long genomic fragments and may uncover genomic infor-
mation that is mostly inaccessible by sequencing [26]. The
method is based on sequence-specific fluorescent labeling
of up to mega-base pairs (Mbp) long chromosomal DNA
molecules. The labeled DNA molecules are linearized and
stretched in nanochannels, allowing for imaging via fluores-
cence microscopy. The fluorescent marker patterns on each
DNA molecule are used to create unique barcodes that iden-
tify the genomic origin of the molecules, either by alignment
to a reference map or by their assembly to create long consen-
sus contiguous maps denovo [26]. This method enables the
construction of complex genomes such as those common in
many cancers [26-29]. It is used clinically as a modern re-
placement for traditional cytogenetic testing, and a comple-
menting method to next-generation sequencing (NGS). Addi-
tionally, unlike NGS methods, where ensemble averages mask
cellular variability, OGM provides information at the single
cell level, as each mapped DNA molecule originates from a
different cell, allowing a high-throughput characterization of
cellular heterogeneity [26, 30]. Using fluorescence microscopy
and designated chemistries, OGM can provide multilayered
information from individual DNA molecules [22, 26, 27, 31,
32]. Fluorescent labeling of different genomic features with
different colors allows studying multiple epigenetic marks on
the single-molecule level, creating a hybrid genetic/epigenetic
map for every DNA molecule.

Here, we utilize a novel approach to complement single-
base resolution exome-sequencing with single-molecule op-
tical genome/epigenome mapping. We comprehensively ana-
lyze somatic alterations in two matched ccRCC samples (early
and advanced stage) as a demonstration of the ability to apply
genome/epigenome mapping to comparative genomics and
epigenomics studies.

Materials and methods

Patient clinically relevant information
Tumor and normal adjacent tissue were obtained in the course
of partial nephrectomy performed in a 66-year-old female.
Tumor was diagnosed histologically as ccRCC at pT1a stage
(<4 cm in the greatest dimension) with cystic degenerative
changes (“early stage ccRCC”). Tumor and normal adjacent
tissue were also obtained in the course of radical nephrec-
tomy performed in an 82-year-old male. Tumor was diag-
nosed histologically as ccRCC with morphological features of
eosinophilic variant at pT3a stage (“advanced stage ccRCC”).
Tissues were stored from the time of surgery to analysis
at —80°C.

Samples collection and handling were approved by the insti-
tutional review board of Sheba Medical Center, Tel Hashomer,
Israel, in accordance with the declaration of Helsinki.

Extraction of high-molecular weight DNA

Ultra-high molecular weight (UHMW) DNA was extracted
using SP Tissue and Tumor DNA Isolation Kit (Bionano
Genomics), according to the manufacturer’s protocol. High
molecular weight (HMW) DNA was extracted using Bionano
Prep Animal Tissue DNA Isolation Kit (Bionano Genomics),
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according to Fibrous Tissue Protocol for the tumor and Soft
Tissue protocol for the normal adjacent tissue.

Whole-exome sequencing and analysis

Exome sequencing was provided as a service (CD Genomics).
500 ng DNA were used for library construction. Sequencing
libraries were generated using Agilent SureSelect Human All
Exon kit (Agilent Technologies) following the manufacturer’s
recommendations, and index codes were added to attribute
sequences to each sample (experimental details provided in
the Supplementary Data).

Raw sequencing reads were filtered by Trim Galore soft-
ware (v0.6.7, 10.5281/zenodo0.5127898) to remove reads
containing adapters or reads of low quality, so that down-
stream analyses are based on clean reads. Mapping of paired-
end clean reads to the human reference genome (hg38)
was performed with Bowtie2 software (v2.2.5, [33]). Fol-
lowing alignment, a pipeline by Genome Analysis Toolkit
(GATK, v4.2.2.0, [34]) was followed, including using Sam-
tools (v0.1.19, [35]) for sorting and Picard (https://github.
com/broadinstitute/picard/) for marking duplicated reads.
Base Quality Recalibration process was applied using stan-
dard hg38 reference variants. For variant calling, the align-
ment files of both samples were first merged for efficient simul-
taneous variant calling. Then, small variants, including single-
nucleotide polymorphisms (SNPs) and insertions/deletions
(InDels) located in exon regions, were called by GATK stan-
dard genotype pipeline. The called variants of the different
samples were then separated. SnpSift program (v4.3t, [36])
was used to add NCBI dbSNP information (v146, [37]), and
SnpEff program (v4.3t, [36]) was used to annotate the vari-
ants and determine the effect of each variant. Full pipeline and
parameters used can be found in the Supplementary Data.

DNA barcoding and staining for optical genome
mapping

All samples were labeled by Direct Label and Stain (DLS)
chemistry (DLE-1 enzyme, Bionano Genomics, kit part num-
ber: 80005), creating a genetic barcode (CTTAAG motif).
Single color labeling was created according to a proto-
col by Bionano Genomics (https:/bionanogenomics.com/
wp-content/uploads/2018/04/30206-Bionano-Prep-Direct-
Label-and-Stain-DLS-Protocol.pdf).

Dual color labeling for optical epigenome mapping
Samples were subjected to two types of epigenetic labeling
procedures to generate a comprehensive optical epigenome
map. In order to distinguish the epigenetic marks from the
green fluorescent DLE-1 marks, we used the red fluorophore
ATTO643 (ATTO-Tech), which was found to perform well
under our experimental conditions. Synthetic protocols for the
ATTOG643 labeling reagents prepared for this study are pre-
sented in the Supplementary Data.

Labeling reduced representation of unmodified cytosines in
CpG context

To create the genetic barcode, 1 ug of U/HMW DNA was
mixed with 5x DLE-buffer (to a final concentration of 1x),
2 ul of 20x DL-Green, and 2 ul of DLE-1 enzyme (Bionano
Genomics) in a total reaction volume of 30 ul for 4 h at 37°C,
immediately followed by heat inactivation at 80°C for 20 min.

Optical genome and epigenome mapping of ccRCC 3

Heat inactivation at these conditions degrades over 97% of
the DL-Green cofactor, therefore preventing it from being in-
corporated by M.Taql in the following reaction, and making
the two reactions orthogonal. Then, unmodified cytosines in
the recognition sequence TCGA were fluorescently labeled to
perform reduced representation optical methylation mapping
(ROM) [27, 38]. Two 500 ng reaction tubes of DLE1-labeled
DNA were each mixed with 4 pl of 10x CutSmart buffer
(New England Biolabs), 60 uM of lab-made synthetic AdoY-
nATTO643 (see synthesis and mass spectrum in the Supple-
mentary Data, Supplementary Figs S1 and S2), 1 ul of M. Taql
(10 units/pl, New England Biolabs), and ultrapure water in a
total volume of 40 ul, and incubated for 5 h at 65°C. Then,
5 ul of Puregene Proteinase K (Qiagen) was added and the
reaction tube was incubated for additional 2 h at 45°C. Af-
ter the Proteinase K treatment, the two 500 ng reaction tubes
were merged and drop-dialyzed as one against 20 ml of 1x
TE buffer (pH 8) with 0.1 um dialysis membrane for a to-
tal of 2 h. Finally, 300 ng recovered dual-color DNA was
stained to visualize DNA backbone by mixing it with 15 ul
of 4x Flow Buffer (Bionano Genomics), 6 ul of 1 M DTT
(DL-Dithiothreitol; Bionano Genomics), 3 ul of 0.5 M Tris
(pH 8), 3 ul of 0.5 M NaCl, 4.8 ul of DNA stain (Bionano
Genomics), and ultrapure water to a total volume of 60 pl,
and incubated overnight at 4°C. The orthogonality of the two
consecutive reactions was confirmed by no observed increase
in false DLE-1 labels.

Labeling 5ShmC sites

To create the genetic barcode, 580-750 ng of U/HMW DNA
in two reaction tubes were each mixed with 5§x DLE-buffer
(to a final concentration of 1x), 1.5 ul of 20x DL-Green and
1.5 ul of DLE-1 enzyme (Bionano Genomics) in a total re-
action volume of 30-35 ul. The reaction was incubated for
4 h at 37°C. Then, ShmC sites were labeled by the enzyme
B-glucosyltransferase from T4 phage (T4-BGT) [22]. Magne-
sium chloride was added to 30 ul of DLE-labeled DNA to a
final concentration of 9 mM. Then, the DNA was added to
4.5 ul of 10x NEBuffer 4 (New England Biolabs) and uri-
dine diphosphate-6-azideglucose (UDP-6-N3-Glu, lab-made)
[24] in a final concentration of 50 uM, 30 units of T4 -
glucosyltransferase (New England Biolabs), and ultra-pure
water in a final volume of 45 ul. The reaction mixture was
incubated overnight at 37°C. The following day, dibenzocy-
clooctyl (DBCO)-ATTO643 (see synthesis in the Supplemen-
tary Data) was added to a final concentration of 150 uM,
and the reaction was incubated again at 37°C overnight. The
next day, the reaction tubes were added 5 pl of PureGene Pro-
teinase K (Qiagen) and incubated for additional 30 min at
50°C. After the Proteinase K treatment, the two identical re-
action tubes were merged and drop-dialyzed as one against 20
ml of 1x TE buffer (pH 8) with 0.1 pm dialysis membrane for
a total of 2-2.5 h. Finally, 300 ng recovered dual-color DNA
was stained to visualize DNA backbone, by mixing it with 4 x
Flow Buffer (Bionano Genomics) to a final concentration of
1x, 1 M DTT (Bionano Genomics) to a final concentration
of 0.1 M, Tris (pH 8) to a concentration of 25 mM, NaCl
to a concentration of 25 mM, EDTA to a final concentration
of 0.008-0.01 M, DNA stain (Bionano Genomics) to a final
ratio of 8% (v/v), and ultrapure water. The reaction mixture
was shaken horizontally on a HulaMixer for an hour and then
incubated overnight at 4°C.
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Optical mapping

Labeled samples were loaded on Saphyr chips (G1.2) and run
on a Saphyr instrument (Bionano Genomics) to generate single
molecule maps.

Structural variant and copy number variation
calling

De novo assemblies of single-color data were generated by
Bionano Access (v1.6.1) with Bionano Solve (v3.6.1). The set
parameters were “haplotype with extend and split” and “cut
CMPR.” The in silico digested human genome GRCh38.p13
(hg38_DLE1_0kb_Olabels.cmap) was used as the reference.

Structural variants (SVs) were called using variant annota-
tion pipeline (VAP), performed both as single sample analy-
sis and as dual samples analysis (tumor versus matched nor-
mal tissue) in Bionano Access combined with Bionano Tools
(v1.6.1) and Bionano Solve (v3.6.1), with default filters. Only
SVs that are not present in the Bionano controls dataset
were considered. CNV analysis was performed using the same
tools. This analysis allows the detection of large, unbalanced
aberrations based on normalized molecule coverage, and was
performed with default parameters as a part of the de novo
assembly.

Optical epigenome mapping analysis

Optical mapping data for each sample were merged to a sin-
gle dataset using Bionano Access (v1.6.1) and Bionano Solve
(v3.6.1). Genetic and epigenetic channels were swapped in
these files with Bionano Solve before the alignment of the
molecules files to the reference, as instructed by the company.
Molecules spanning over 150 kb were then aligned to the in
silico human genome reference GRCh38.p13, based on DLE-
1 recognition sites (hg38_DLE1_0kb_Olabels.cmap), with de-
fault parameters matching the following combination of argu-
ments: haplotype, human, DLE-1, and Saphyr. Only molecules
with an alignment confidence >15 (P < 10~13) that at least
60% of their length was aligned to the reference were used
for downstream analysis. Alignment outputs were converted
to global epigenetic profiles (bedgraph files) and to single-
molecule-level epigenetic maps, according to the pipeline de-
scribed by Gabrieli et al. and Sharim et al. [22, 27]. For more
information, see ebensteinLab/Irys-data-analysis on Github.
Only regions covered by at least 20 molecules were consid-
ered. The average epigenetic score in each genomic position
was calculated as the number of detected epigenetic labels in
the position divided by the total number of molecules cov-
ering the position. The number of epigenetic labels per 100
kb in an experiment was calculated as the total number of
labels in mapped and filtered reads divided by the total cor-
rected length of the mapped and filtered reads. Average cov-
erage of the hg38 genome was calculated for a genome size of
3.1 Gb. Positions of sequence motifs in the reference were ob-
tained using the R package BSgenome (https://bioconductor.
org/packages/release/bioc/html/BSgenome.html).

Definition of annotated genomic regions

Gene bodies were defined as spanning from the transcription
start site (TSS) to the transcription end site (TES) annotated
by GENCODE (v34, [39]). Promoters were defined as rang-
ing from 1000 bp upstream to 500 bp downstream from the
GENCODE TSS. General predicted enhancers were mapped

to gene targets by JEME and adapted from Cao et al. [40].
Genomic coordinates of enhancers were converted from the
human genome build hg19 to hg38 using UCSC liftOver [41].
Enhancers overlapping ambiguous genomic regions [42] were
discarded, as well as pairs of enhancers and gene targets that
are overlapping or in close proximity (up to 5 kb). ccRCC-
related enhancers were adapted from Yao et al. [43] based
on differential H3K27ac and H3K4me1 scores not overlap-
ping with promoters in histone chromatin immunoprecipi-
tation sequencing (ChIP-seq) of 10 primary tumor/normal
pairs, 5 patient-matched tumor-derived cell lines, 2 commer-
cially available ccRCC lines (786-O and A-498), and 2 nor-
mal kidney cell lines (HK2 and PCS-400). Some of the en-
hancers were assigned to target genes. We adapted assign-
ments made by correlations between H3K27ac signals and
expression of genes within the same topologically associat-
ing domain (TAD) and by a capture-C experiment in 786-O
cells. Genomic coordinates of enhancers were converted from
the human genome build hg19 to hg38 using UCSC liftOver.
ccRCC-related “super-enhancers,” regions comprising dense
clusters of enhancers located near known regulators of cell
identity and disease, were also adapted from Yao et al. and
converted to hg38 coordinates. Nonoverlapping genomic win-
dows of 1, 5,and 50 kb of hg38 were generated using Bedtools
makewindow (v2.26.0, [44]).

Epigenetic ideograms

The weighted mean of epigenetic signals in 50 kb genomic
windows was calculated using Bedops bedmap (v2.4.35,[45]).
Ideograms displaying the density of epigenetic labels were cre-
ated with the R package Rideogram [46] with a minor mod-
ification: the values were scaled between 1 and the maximal
value in the dataset, times 10 000. The darkest color in a pair
of whole-genome ideograms was determined according to the
highest value in the adjacent and tumor samples.

Gene expression data

Publicly available RNA-seq data of three tumor-matched pairs
of ccRCC (stage 3) patients (PRJNA396588, GEO accessions:
pair 1: GSM2723919, GSM2723920; pair 2: GSM2723927,
GSM2723928; pair 3: GSM2723929, GSM2723930; [43])
were aligned to the human genome (hg38) using TopHat
(v2.1.0, [47]) with default parameters and library-type and fr-
firststrand flags, after retrieving the raw files with NCBI SRA
toolkit [48]. Only uniquely mapped reads were analyzed (min-
imal mapping quality of 30). Gene counts were obtained using
HTSeq (htseq-count, v0.11.3, [49]) against the GENCODE
v34 [39] reference gene models. Transcripts per million (TPM)
scores were calculated.

Epigenetic signals along aggregated genes

Transcription start and end sites (TSS and TES) of protein-
coding genes were defined according to GENCODE anno-
tation (v34, [39]). Protein-coding genes were divided into
four groups based on their average normalized TPM score in
the RNA-seq of three tumor/matched ccRCC samples. Un-
expressed genes were defined as genes with TPM value <
0.01 (~3000 genes). The other expression groups are three
equal quantiles of the expressed protein-coding genes (~6000
genes per group). Mean epigenetic signals along genes were
calculated using DeepTools computeMatrix (v3.4.1, [50]) in
scale-regions mode, where each gene was scaled to 15 kb and
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divided into 300 bp bins. Compressed matrix output was sum-
marized by DeepTools plotProfile.

Finding differentially modified regions

The number of epigenetic labels along annotated genomic re-
gions (gene bodies, promoters, general predicted enhancers,
ccRCC-related enhancers, and super-enhancers; see “Defini-
tion of annotated genomic regions” section) and along 1 kb
genomic windows in individual molecules was counted. Only
regions entirely covered by over 20 molecules were regarded.
To identify differentially modified regions, Welch’s ¢-test was
applied to the populations sampled by independent molecules
fully covering the regions from each sample. Regions with a
zero in the #-test’s denominator (when the estimated standard
deviations in both samples were zero) where discarded from
the analysis.

avg (adjacent) — avg (tumor)
’Tregion = ;

2
Sadiaccm + Stzumor
Nadiaccm Niumor

2
§? 2
adjacent 4 Stumor
d f N;\d]:\cem Nmmor

52 > 2
adjacent 52

N tumor.

Nadjacent Ntumor

(Nadjacene —1) (Neumor —1)

Equation (1): Welch’s T-statistics and degrees of freedom
(d.f). avg (adjacent) and avg (tumor) are the average number
of labels in the region of molecules covering it, in each of the
samples. S, djacent aNd Stumor are the estimates for the standard
deviations in each sample. Nygizcene and Neymor are the number
of molecules covering the region in each of the samples.

A P-value was then calculated and a Benjamini-Hochberg
false discovery rate (FDR) [51] correction was applied. Re-
gions with g-value < 0.1 were considered differentially

modified.

Calculating fold change of epigenetic signals
between adjacent and tumor samples

A continuous genome-wide track of fold change (ratio be-
tween the epigenetic signal in the adjacent tissue and the tu-
mor) was calculated as follows: bedgraph files containing epi-
genetic signals in both samples were combined for direct com-
parison using Bedtools unionbedg (v2.26.0, [44]). A pseudo
signal of 0.01 was added to each position in either sample to
avoid division by 0. Then, the signal in the adjacent tissue was
divided by the signal in the tumor to generate the fold change
track.

Fold change in discrete regions was calculated as fol-
lows: the average number of epigenetic labels in molecules
covering the region in each sample was calculated (only re-
gions covered by at least 20 molecules were considered). A
pseudo signal of 0.005 was added to each region in either
sample to avoid division by 0. Then, the signal in the adja-
cent tissue was divided by the signal in the tumor. Log; of this
ratio was then calculated.

Enrichment analysis

The clusterProfiler R package [52] was used to find Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways that are
significantly enriched among unique genes associated with the
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differentially modified annotated genomic regions (gene bod-
ies, promoters, general predicted enhancers, ccRCC-related
enhancers, and super-enhancers; see “Definition of annotated
genomic regions” section). Unique genes associated with all
elements of the same type covered in the experiment served as
background lists. Pathway enrichment was assessed using the
Benjamini—-Hochberg method for p-value adjustment to con-
trol the FDR (g-value and p-value < 0.05).

Results

We present a comprehensive analysis of a human tumor and
a matched tissue by optical genome/epigenome mapping, re-
vealing disease-relevant and differential SVs, CNVs, and epi-
genetic modifications. Pathology-classified ccRCC tumor and
an adjacent normal kidney tissues (Fig. 1A) were sequenced to
detect genetic disease signatures (Fig. 1B). OGM of the sam-
ples was then performed on the Bionano Genomics Saphyr
instrument to provide next-generation cytogenetics (Fig. 1C).
For this purpose, Mbp-long DNA molecules were extracted
from each sample. Subsequently, a methyltransferase enzyme
attached a fluorescent tag to a specific sequence motif (CT-
TAAG), generating unique genetic barcodes. These barcodes
enabled the alignment of molecules to the reference genome
and their assembly into consensus maps, revealing the unique
cytogenetic landscape of each sample. To integrate epigenetic
information, custom labeling chemistries for unmodified cy-
tosines in TCGA motif or for ShmC were employed on top of
the genetic barcode labels (Fig. 1D). Labeled DNA molecules
were then confined and stretched within nanochannels and
imaged in three colors: genetic barcode, epigenetic marks,
and molecule contour, enabling optical epigenome mapping
(OEM, Fig. 1E). The resulting epigenetic maps were analyzed
at the genome-wide, locus-specific, and single-molecule level
(Fig. 1F).

Optical genome mapping detects SVs and CNVs of
ccRCC tumor and adjacent tissue

Initial exome-sequencing revealed several genetic aberrations
in genes associated with ccRCC [9, 14, 43], including vari-
ants with a well-accepted and proven clinical impact in both
the early and the advanced stage ccRCC tumors. Notewor-
thy are variants in VHL and PBRM1 that are known to be
highly associated with ccRCC [9, 14, 43]. More details about
SNPs and InDels discovered by this analysis can be found in
Supplementary Fig. S3 and in Supplementary Table S1.

To further investigate the genetic structure of these ccRCC
samples, next-generation cytogenetics was employed using
OGM. Genetic single-molecule data of early and advanced
stage ccRCC tumors and adjacent tissues were generated. An
average of 744.3 Gb (£52.9 Gb) of size-filtered (>150 kb)
single-molecule data was generated per sample, with an av-
erage molecule N50 of 270.8 kb (£24.5 kb). The single-
molecule data served to construct an annotated and phased
de novo assembly for each sample. The average N50 of con-
tigs in all assemblies was 59.1 Mbp (£0.7 Mbp) (full details
can be found in Supplementary Table S2).

Bionano Genomics’ VAP for normal-tumor pairs revealed
5666 SVs in the early stage tumor sample and 5658 SVs in its
adjacent normal tissue, 5842 SVs in the advanced stage tumor,
and 5829 SVs in its adjacent normal tissue. These SVs include
insertions, deletions, inversions, and duplications, and the dis-

G20z Jequieoaq €0 UO Jasn usyory H1MY Ad 29Z£908/8004e92/1///3101e/l8ouedleu/woo dno olwspese//:sdny wol) papeojumoq


https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data

6  Margalit et al.

Pathology Sequencing validation

Optical epigenome mapping

Labeling chemistries for
epigenetic marks

Ly 'sjl‘ll
EaE S HII |

Multiple levels of epigeneticinformation

Figure 1. Assay workflow. (A) Two matched pairs of a ccRCC tumor and a normal adjacent tissue were pathologically classified and isolated. (B)
Whole-exome of the tissues was sequenced. (C) OGM was applied to detect SVs and CNVs. (D) Additional labeling schemes for epigenetic features,
developed in our lab, were applied to the long DNA molecules. (E) Labeled DNA molecules were imaged in three colors (genetic barcode, epigenetic
marks, and molecule contour) for OEM. (F) Multiple levels of epigenetic information were extracted— genome view, chromosome level, locus-specific

average, and single-molecule level, in coding and noncoding genomic regions.

tribution between the different types in all samples is similar.
The exception is translocation breakpoints, that were detected
only in the advanced stage ccRCC tumor. Full details are given
in Supplementary Table S3 and Supplementary Fig. S4. The
detected SVs were compared to Bionano genomics’ healthy
controls database to define rare, possibly pathogenic, SVs. Less
than 1% of SVs were not found in the healthy database and de-
fined as rare variants. Figure 2A shows the rare SVs detected in
the four samples in chromosomes 3 and 5. Most (60%-70%)
of the rare SVs detected overlap with at least one gene. A sig-
nificantly higher percentage of genes overlapping rare SVs in
the advanced stage pair uniquely overlapped tumor-specific
SVs (63%) compared to the early stage pair (25%) (Fig. 2B,
Supplementary Data and Supplementary Table S4). The VHL
gene locus did not overlap any rare SV in any sample; how-
ever, CNV analysis (Fig. 2C and Supplementary Fig. S5) re-
vealed that one copy of the entire 3p chromosomal arm was
lost in the advanced stage tumor (and not in the normal adja-
cent tissue or the early stage samples). In addition to VHL, this
aneuploidy covers the genes BAP1, PBRM1, and SETD2 that
are known to be associated with ccRCC [35, 53]. Also deleted is
the entire 3p26.3 cytoband, which is known to be associated
with deletions causing the 3p-deletion syndrome (Del3p), typ-
ically characterized by renal and gastrointestinal abnormali-
ties, in addition to growth retardation and developmental de-
lay [54]. Additional aneuploidies, in chromosomes 9, 14, and
5q were detected in this sample, in line with previously re-
ported data for ccRCC. Jonasch et al. [53] considered 5q gain
to be an alternative ccRCC tumor initiator. Losses of 9p and
14q are considered lethal events followed by metastases, as
these chromosomal arms involve genes essential for cell cycle
or the metabolism of the VHL product, including CDKN2A
(cyclin-dependent kinase inhibitor 2A) on chromosome 9p
[55] or HIF1A (hypoxia-inducible factor 1A) on chromosome
14q [5, 53, 56]. Although no such aneuploidies were detected

in the early stage samples, several smaller DNA gains and
losses were observed, including a DNA gain (segmental du-
plication) on chromosome 3 spanning the genes LINC01266
and CNTNG6. Seven other regions, on chromosomes 3, 5, 10,
and X, were found to have DNA gains or losses unique to the
tumor sample, ranging between 0.5 and 6.9 Mbp in length
(Supplementary Table S5). These CNVs are not known to be
associated with ccRCC [7, 8, 53]. A CNV on chromosome
10 overlaps the region encoding microRNA-584, which was
shown to have significantly lower expression levels in ccRCC
tumors, as well as lower cell viability and motility, and was
therefore marked as a tumor suppressor microRNA in ccRCC
[57]. A 1.2 Mbp long DNA gain on chromosome 5 with a frac-
tional CNV of ~2.4 copies covers the entire FOXD1 gene lo-
cus. FOXD1 encodes a forkhead transcription factor belong-
ing to a family of proteins that act as terminal effectors of
several key signaling pathways, such as the mitogen-activated
protein kinase (MAPK) pathway. They contribute to the regu-
lation of homeostasis, and their misregulation can induce hu-
man genetic diseases including cancer [58]. The longest CNV
in the early stage tumor is a ~6.9 Mbp DNA loss located on
chromosome X. It spans several genes, including FMR1 and
microRNA genes.

Several putative events of gene fusion, which can poten-
tially form chimeric genes from the concatenation of inde-
pendent genes as a byproduct of genomic instability, were de-
tected in both sample pairs (see Supplementary Data). One
of them is a fusion of the PCDHA gene cluster, involving
14 genes (PCDHA1-13, PCDHACT), and AC011346, which
was caused by an intrachromosomal translocation on chro-
mosome 5 (Fig. 2A).

An important benefit of OGM is the ability to phase struc-
turally complex regions, such as large repetitive arrays. An ex-
ample in Fig. 2D shows allele-specific copy number of a DNA
repeat array in chromosome 4.

G20z Jequieoaq €0 UO Jasn usyory H1MY Ad 29Z£908/8004e92/1///3101e/l8ouedleu/woo dno olwspese//:sdny wol) papeojumoq


https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data

A Rarestructural variations
Early stage ccRCC
Chr3 Chr5

Cytobands (NN ll"ﬂl]ll':lllllll [ ,’il}‘{ I

Adjacent tissue |

Tumor | N | _—

| buplications | Deletions | Insertions | Translocations ~ DNAgains  DNAlosses

Optical genome and epigenome mapping of ccRCC 7

Advanced stage ccRCC
Chr3 Chr5
(1) ]“)"ﬂlll[ill["[l 1 iHH NN nee
] N D G | I

\/

B Genesoverlapping with rare SVs C Early stage
Early stage
b4
Adjacent Tumor g'
4 26 10 i
5}
@
o
E
=
=
Advanced stage
Adjacent Tumor
s ' 9
Chromosomes
3 36 67 D
Chrumosomed Qs" oot @ 16units g% ot .
allele1 [ e ﬂll [N IIIIIII (e IIII[[IJJIIIIIIH!'II IIT [ III]'II =
Qg, o> deletion &
allele 2 L nhfﬂﬂl_nﬂnmn 1l nmnnm: e |||f11 1
gumts

Figure 2. Next-generation cytogenetics with OGM. (A) Chromosomes 3 and 5 in early and advanced stage ccRCC tumors and normal adjacent tissues.
Marked below the cytobands, are rare, possibly pathogenic structural variants. (B) Venn diagrams depicting genes overlapping with rare structural
variations discovered in the early and advanced stage ccRCC tumor and normal adjacent tissues. (C) CNV profiles of early and advanced stage ccRCC
tumors with a baseline set to two copies. DNA gains are colored in blue, DNA losses are colored in red. Aneuploidies are highlighted with colored boxes
in the same color scale as DNA gains and losses. (D) An example of a repeat array with a different number of repeats in two alleles, discovered by OGM,

showing a phased chromosomal segment (Conting IDs: 2281 and 2282).

Genome-wide and locus-specific epigenetic
profiles of unmodified CpGs and 5hmC

In order to test the added value of epigenetic profiling, two epi-
genetic marks were labeled and optically mapped by OEM.
For ShmC, we employed an enzymatic method to attach
an azide-modified glucose moiety from a synthetic cofac-
tor (UDP-6-N3-Glu) [24, 59] (UDP-6-N3-Glu) to the hy-
droxyl group of ShmC, followed by a click reaction that
links a fluorophore-bound alkyne to the azide-labeled ShmC,
as detailed in Gabrieli et al. [22]. The reproducibility of
the labeling reaction for optical mapping is demonstrated in
Supplementary Fig. S6. Methylation was implied by the com-
plementary labeling of unmodified CpG sites within TCGA
sequence motifs. These were specifically labeled using the
methyltransferase enzyme M.Taql, which transfers a fluo-
rophore from a synthetic cofactor to the adenine base in
the enzyme’s recognition sequence TCGA. This reaction is
blocked if the CpG within this sequence is methylated or mod-
ified, resulting in a reduced representation map of unmodified
CpGs (referred to as unmethylation’), as detailed in Sharim
et al. [27]. The reproducibility of this labeling reaction for op-
tical mapping is demonstrated in Supplementary Fig. S7. Our
group recently applied engineered CpG methyltransferases to
address all unmethylated CpGs [31, 60]. However, since these
methods have not yet been validated for human methylome
profiling, we opted for the previously validated reduced rep-
resentation approach. Although this map covers only ~6% of
the total CpGs, it captures most regulatory sites in the genome
and exhibits a cell-type specific pattern [27, 30]. Since most
CpG sites in the human genome are methylated [61], label-

Table 1. Effective genome coverage and N50 of epigenetic experiments

Effective
genome  Molecules
Sample Modification coverage  N50* (kb)
Early-stage tumor ShmC 73 % 193
Unmethylation 99 x 231
Early-stage normal ShmC 48x 187
adjacent tissue
Unmethylation 84 x 184
Advanced-stage tumor  ShmC 106 x 239
Unmethylation 83 x 206
Advanced-stage normal  ShmC 95 x 195
adjacent tissue
Unmethylation 53x% 190

*Molecules N50 is a measure of reads length indicating that half of the
genetic data recorded came from reads longer or equal to this value.

ing the sparser unmodified sites enhances sensitivity in a low-
resolution method as optical mapping. The genomic coverage
of the epigenetic datasets is 48-106 x, with molecules N50 of
180-240 kb (Table 1).

To evaluate the reproducibility of the inspected epigenetic
signals across kidney samples, we compared the ShmC sig-
nals in the tumors and normal adjacent tissues of the early
and advanced stage ccRCC patients. We also compared the
unmethylation signal in these and additional patients (a total
of three normal adjacent tissues and four tumors). These com-
parisons (Supplementary Figs S8 and S9) resulted in high cor-
relation scores (Pearson correlation coefficients: ShmC: 0.87,
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Figure 3. Genome-wide unmethylation and 5hmC profiles. (A) Double Ideograms showing the density of unmethylation (top) and 5hmC (bottom) along
chromosome 3 in the early stage ccRCC tumor and normal adjacent tissue. (B) Percentages of detected unmodified CpG sites in TCGA sequence

context out of all appearances of TCGA sites in hg38, and of 5hmC sites detected out of all CpG sites in hg38, in the early stage ccRCC tumor and the
normal adjacent tissue. (C) An example of a repeat array in chromosome 1, not marked by the genetic barcode, but marked with TCGA sites. The array

corresponds to RNABSS genes.

unmethylation: 0.54-0.68). To further validate our results,
we have measured the advanced sample pair using Oxford
nanopore sequencing (ONT) with direct epigenetic readout
and compared it to the OEM profile. The epigenetic profiles
acquired by the two methods are highly concordant as can
be seen in Supplementary Figs S10 and S11. A comprehen-
sive comparison between the two methods in characterizing
the structural, copy number and epigenetic landscape in this
sample pair can be found in [62].

Figure 3 and Supplementary Figs S12 and S13 show
a chromosomal distribution and genome-wide global lev-
els of unmethylation and ShmC for the early (Fig. 3A
and B, and Supplementary Fig. S12A and B) and advanced
(Supplementary Figs S12C and D, and Supplementary Fig.
S13) stage ccRCC tumor and the normal adjacent tissues.
Most notably, we observed that the ShmC profile in both tis-
sue samples is sparse, as expected, and a global reduction is
observed in the tumor sample compared to the normal adja-
cent tissue, in accordance with global ShmC reduction known
in many types of cancers [18]. The unmethylation signals are
much denser, and the differences between the tumor and the
normal adjacent tissue are mild at this perspective.

Epigenetic labeling can also provide complementary genetic
information as it addresses regions where the genetic barcode
is sparse. This combined approach provides basic genetic in-
formation unavailable through other methods, such as repet-
itive regions. Repetitive elements in DNA are further differ-
entiated by the methylation state of the repeat units, which
can affect the function of individual units or even the activ-
ity of the entire array. Methylation levels of known repeat
arrays were shown to correlate with disease [63-65]. An in-
teresting example is a tandem repeat array in chromosome
1 (1.q42), containing a domain of RNASS genes, encoding
5S rRNA, composed of 17 units according to the human ref-
erence, but the actual cluster size is known to vary among
individuals [66]. Since the repetitive region lacks DLE-1 mo-
tif, the optical genome map cannot provide an accurate copy

number of the repeats. Figure 3C shows that there are 17
double unmethylation recognition sites (TCGA) throughout
the array in hg38 and that the presence of these sites in the
repetitive units allows both counting the copy number and
assessing the methylation state of each unit, simultaneously.
Supplementary Fig. S14 shows fluorescence microscopy im-
ages of two representative DNA molecules from the digitized
pileup shown in Fig. 3C.

5hmC and unmethylation levels correlate with gene
expression

An attractive feature of epigenetic mapping is the ability to
relate the epigenetic status of genes to gene expression. To
examine this aspect, protein-coding genes were divided into
four groups based on their average TPM value in publicly
available RNA sequencing of three tumor-matched ccRCC
pairs by Yao et al. ([43]; see “Materials and methods” sec-
tion). The mean unmethylation and ShmC signals in each
expression group were plotted against the normalized dis-
tance from the TSS (early stage pair in Fig. 4, advanced
stage pair in Supplementary Fig. S15). In all samples, un-
methylation signal around the TSS increases with gene expres-
sion (Fig. 4C and Supplementary Fig. S15C). In both sam-
ple pairs, the ShmC level in gene bodies in all expression
groups was lower in the tumor than in the adjacent tissue.
This level increased with gene expression in the four sam-
ples (Fig. 4F and Supplementary Fig. S15F). Such correlations
with gene expression suggest that epigenetic signals on DNA
may serve as a proxy for gene expression, reducing the need
to quantify RNA levels. We observed a similar correlation
between gene expression and unmethylation signal in genes
for the GM12878 cell line, also supported by whole-genome
bisulfite sequencing signal (Supplementary Fig. S16). A sim-
ilar correlation between gene expression and ShmC signal
in genes was previously observed in human peripheral blood

cells [22].
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Figure 4. Epigenetic signals along genes as a function of gene expression in the early stage ccRCC sample pair. (A) Unmethylation signal in a normal
adjacent kidney tissue in four gene groups divided according to their expression score in a publicly available RNA-seq experiment of adjacent kidney
tissues. (B) Unmethylation signal in a ccRCC tumor in four gene groups divided according to their expression score in a publicly available RNA-seq
experiment of ccRCC tumors. (C) Average unmethylation signal around the TSS. (D) 5hmC signal in a normal adjacent kidney tissue in the four gene
groups from panel (A). (E) 5hmC signal in a ccRCC tumor in the four gene groups from panel (B). (F) Average 5hmC signal at gene-body midpoints.

Differentially modified regions

After characterizing the epigenetic landscape in the genomes
of the tumors and the adjacent tissues, we aimed to locate dif-
ferentially modified regions. Unlike conventional, short-read
methods, this analysis can inspect full, long, biologically rele-
vant regions (both annotated and unannotated) covered by in-
dividual molecules. We applied differential modification (un-
methylation or ShmC) analysis on gene bodies, promoters,
general predicted enhancers, ccRCC-related enhancers, and
ccRCC-related super-enhancers. Results of these analyses are
visualized as volcano plots in Supplementary Figs S17-S20,
while detailed lists of differentially modified annotated ele-
ments are provided in Supplementary Tables S6 and S7. Then,
we focused on identifying pathways affected by these epi-
genetic changes by testing the enrichment of such pathways
among the genes associated with the differential elements. Ad-
ditionally, we analyzed unannotated 1 kb genomic windows,
with the findings presented in Supplementary Figs S21-S23.
Several ccRCC-related genes or their associated annotated
elements were found to be differentially modified. For exam-
ple, gene bodies with differential hydroxymethylation in both
sample pairs include PRCC, BAP1, and VHL. Gene bodies
with differential unmethylation signals in the early stage sam-
ple pair include PBRM1, TP53, and KDMS5C. General pre-
dicted enhancers with differential hydroxymethylation in both
sample pairs target genes including PRCC, VEGFA, SETD2,
and VHL. General predicted enhancers with differential un-
methylation signals target genes including PRCC (both sam-

ple pairs), VHL, BAP1,and PBRM1 (early stage sample pair).
VEGFA is targeted by ccRCC-related enhancers and super-
enhancers with differential ShmC levels in both sample pairs
and by ccRCC-related enhancers with differential unmethyla-
tion levels in the early stage sample pair. Figure 5A highlights
the ShmC and unmethylation signals in the early-stage sam-
ple pair along a region in chromosome 3 spanning the VHL
gene and two general predicted enhancers targeting it. Figure
5B shows the KEGG pathways enriched among genes associ-
ated with differentially modified annotated elements in both
sample pairs, including genes, promoters, general predicted
enhancers, and ccRCC-related enhancers. No pathways were
enriched among genes associated with ccRCC-related super-
enhancers.

Many of the enrichment tests resulted in pathways related
to metabolism (as metabolic pathways and other pathways).
Alterations in metabolites and dysregulated metabolism are
known hallmarks of cancer, and changes in several groups
of essential metabolites are manifested in ccRCC. One char-
acteristic of ccRCC cells is their morphological burden by
lipid and glycogen, suggesting altered fatty acid and glu-
cose metabolism. Additionally, changes in metabolites are as-
sociated with tumor progression and metastasis [67]. The
enrichment of “Pathways in cancer” among ccRCC-related
enhancers exhibiting differential unmethylation signals sup-
ports the involvement of mechanisms underlying cancer de-
velopment in the early stage sample pair. The enrichment
of pathways involving chemokines and cytokines among
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Figure 5. Differentially modified annotated genomic regions. (A) Epigenetic signal tracks of unmethylation (violet) and 5hmC (black) signals in the early
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the normal adjacent tissue divided by the signal in the tumor tissue. (B) KEGG pathways enriched (g-value < 0.05) among genes associated with
annotated elements that have differential unmethylation and 5hmC signals (g-value < 0.1).

ccRCC-related enhancers with differential unmethylation sig-
nals in the advanced stage sample pair is consistent with the
fact that tumors interact with their environment through the
secretion of these factors. Chemokines are critically involved
in ccRCC progression by modulating immune responses, an-
giogenesis, and metastasis [68].

Discussion

OGM is a powerful tool that complements DNA sequencing.
While NGS identifies short InDels and SNPs, OGM unrav-
els complex genomic structures including SVs and CNVs of
medium to large sizes. The long reads in OGM enable de novo
construction of a sample’s genomic structure, which can be

particularly complex in cancer. Here, we present a complete
structural comparison between tumors and matched samples
in two pairs in different stages of disease. Our analysis re-
vealed some well-established as well as some novel somatic
aberrations of ccRCC [3, 53-56]. Key genetic alterations iden-
tified in this study include high-impact InDels in the tumors
of both pairs (exome-seq), and extensive CNVs detected by
OGM in the advanced stage tumor, such as the loss of one
copy of 3p, a gain in 5q, and losses in chromosomes 9 and 14.

Beyond genetic structure, OEM can be obtained simul-
taneously with OGM at (almost) no extra cost, and adds
significant information to it. With our epigenetic profiling
added to commercial OGM, we were able to detect epige-
netic changes at all resolutions in one experiment, from global,
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through locus-specific, and up to single-molecule. This multi-
resolution perspective provides a comprehensive understand-
ing of the epigenetic variation across different scales. On the
global level, we observed a significant reduction of ShmC sig-
nal in the tumor sample compared with the matched adjacent
tissue in both sample pairs and of unmethylation signal in one
pair (early stage). The double reduction in this pair suggests
that the tumor sample is both hyper-methylated and hypo-
hydroxymethylated, in line with previous studies [8, 15]. The
other pair exhibits very close unmethylation levels in both the
tumor and adjacent tissue. At the locus-specific level, we found
a correlation between gene expression and the unmethylation
signal around TSSs and 5hmC signals in gene bodies. Such
correlation may imply that gene expression information may
be deduced from the same experiment, reducing the need for
dedicated RNA sequencing, and adding additional Omics as-
pects to the same data. OEM provides insights into the epi-
genetic variability at a single-molecule resolution. Previously,
we showed that the simultaneous recording of the methy-
lation status of gene promoters and their distant enhancers
enables generation of epigenetic signatures, and used these
signatures to de-convolve cell mixtures [30]. In the current
study, we leverage the single-molecule-level methylation and
hydroxymethylation status, captured along full biologically-
relevant genomic regions, to identify regions with significant
differences between samples, even when accounting for inter-
sample variation. This analysis identified significantly distinct
regions between tumor and matched tissues. Some of these
regions fall within annotated elements known to be associ-
ated with ccRCC (e.g. PRCC, BAP1, VHL, PBRM; [3, 43]),
further validating the results, and some within coding or non-
coding regions not previously linked to ccRCC. Among anno-
tated differentially modified regions, we found significant en-
richment of metabolic pathways, and other pathways involv-
ing metabolites. Metabolism plays an important role in renal
health and disease, and especially in renal cancers [67]. Addi-
tional enriched pathways align with cancerous processes (like
pathways in cancer and pathways related to chemokines and
cytokines). As seen here, epigenetic dysregulation of ccRCC-
related genes as well as of other genomic regions is highly dis-
tinct and may inspire new studies on the mechanism of the
disease.

To conclude, this study, using whole-exome sequencing,
OGM and OEM, provides a uniquely comprehensive analy-
sis of the spectrum of somatic alteration affecting ccRCC, and
demonstrates the potential of combining these methods to un-
derstand carcinogenesis. The methodology can be applied to
other questions in comparative genomics. Nevertheless, clini-
cal insights will require larger cohort studies.

Acknowledgements

Author contributions: S.M.: Investigation, Formal analysis,
Software, Methodology, Writing—Original draft; Z.T.: Inves-
tigation, Formal analysis, Methodology; Y.M., T.D.Z., ].D.,
S.L.Z., G.N., A.G,, Y.S., L.S., E.W.: Investigation; Y.G., D.O.,
B.D: Resources; E.E.: Writing—review & editing; Y.E.: Con-
ceptualization, Funding acquisition, Writing—original draft.

Supplementary data

Supplementary data is available at NAR Cancer online.

Optical genome and epigenome mapping of ccRCC 11

Conflict of interest

None declared.

Funding

This work was supported by the European Research Coun-
cil consolidator [grant number 817811] to Y.E; Israel Science
Foundation [grant number 771/21] to Y.E; the National In-
stitute of Health/The National Human Genome Research In-
stitute (NIH/NHGRI) [grant number ROIHG009190] to Y.E;
and Israel Innovation Authority and German Federal Ministry
of Education and Research [NATI 61976 and 13GW0282B]
to Y.E and E.W.

Data availability

OGM and OEM data generated in this study are
available in Zenodo, with digital object identifiers:
10.5281/zenodo.14760958 for OGM and early-stage sample
OEM, and 10.5281/zenodo.14266624 for advanced-stage
sample OEM. The exome-seq data generated in this study
were deposited to the NCBI Sequence Read Archive (SRA,
https://www.ncbi.nlm.nih.gov/sra) under accession number
PRJNA1215807.

References

1. Lopez JI. Renal tumors with clear cells. A review. Pathology
2013;209:137-46. https://doi.org/10.1016/j.prp.2013.01.007

2. Bacigalupa ZA, Rathmell WK. Beyond glycolysis: hypoxia
signaling as a master regulator of alternative metabolic pathways
and the implications in clear cell renal cell carcinoma. Cancer Lett
2020;489:19-28. https://doi.org/10.1016/j.canlet.2020.05.034

3. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour
suppressor gene. Nat Rev Cancer 2015;15:55-64.
https://doi.org/10.1038/nrc3844

4. Duns G, Hofstra RMW, Sietzema JG et al. Targeted exome
sequencing in clear cell renal cell carcinoma tumors suggests
aberrant chromatin regulation as a crucial step in ccRCC
development. Hum Mutat 2012;33:1059-62.
https://doi.org/10.1002/humu.22090

5. Le VH, Hsieh JJ. Genomics and genetics of clear cell renal cell
carcinoma: a mini-review. JTGG 2018;2:17.
https://doi.org/10.20517/jtgg.2018.28

6. Moore LE, Jaeger E, Nickerson ML et al. Genomic copy number
alterations in clear cell renal carcinoma: associations with case
characteristics and mechanisms of VHL gene inactivation.
Omncogenesis 2012;1:e14. https://doi.org/10.1038/oncsis.2012.14

7. Quddus M, Pratt N, Nabi G. Chromosomal aberrations in renal
cell carcinoma: an overview with implications for clinical practice.
Urol Ann 2019;11:6-14.

8. Klatte T, Rao PN, De Martino M et al. Cytogenetic profile predicts
prognosis of patients with clear cell renal cell carcinoma. JCO
2009;27:746-53. https://doi.org/10.1200/JC0O.2007.15.8345

9. Shenoy N, Vallumsetla N, Zou Y et al. Role of DNA methylation
in renal cell carcinoma. | Hematol Oncol 2015;8:88.
https://doi.org/10.1186/s13045-015-0180-y

10. Hu CY, Mohtat D, Yu Y et al. Kidney cancer is characterized by
aberrant methylation of tissue-specific enhancers that are
prognostic for overall survival. Clin Cancer Res 2014;20:4349-60.
https://doi.org/10.1158/1078-0432.CCR-14-0494

11. Arai E, Chiku S, Mori T et al. Single-CpG-resolution methylome
analysis identifies clinicopathologically aggressive CpG island
methylator phenotype clear cell renal cell carcinomas.
Carcinogenesis 2012;33:1487-93.
https://doi.org/10.1093/carcin/bgs177

G20z Jequieoaq €0 UO Jasn usyory H1MY Ad 29Z£908/8004e92/1///3101e/l8ouedleu/woo dno olwspese//:sdny wol) papeojumoq


https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.1016/j.prp.2013.01.007
https://doi.org/10.1016/j.canlet.2020.05.034
https://doi.org/10.1038/nrc3844
https://doi.org/10.1002/humu.22090
https://doi.org/10.20517/jtgg.2018.28
https://doi.org/10.1038/oncsis.2012.14
https://doi.org/10.1200/JCO.2007.15.8345
https://doi.org/10.1186/s13045-015-0180-y
https://doi.org/10.1158/1078-0432.CCR-14-0494
https://doi.org/10.1093/carcin/bgs177

12

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Margalit et al.

Lasseigne BN, Brooks JD. The role of DNA methylation in renal
cell carcinoma. Mol Diagn Ther 2018;22:431-42.
https://doi.org/10.1007/s40291-018-0337-9

Joosten SC, Odeh SNO, Koch A et al. Development of a
prognostic risk model for clear cell renal cell carcinoma by
systematic evaluation of DNA methylation markers. Clin Epigenet
2021;13:103. https://doi.org/10.1186/s13148-021-01084-8
Wang J, Zhang Q, Zhu Q e al. Identification of
methylation-driven genes related to prognosis in clear-cell renal
cell carcinoma. J Cell Physiol 2020;235:1296-308.
https:/doi.org/10.1002/jcp.29046

Shi DQ, Ali I, Tang ] et al. New insights into ShmC DNA
modification: generation, distribution and function. Front Genet
2017;8:100. https://doi.org/10.3389/fgene.2017.00100

Jin SG, Jiang Y, Qiu R et al. 5-hydroxymethylcytosine is strongly
depleted in human cancers but its levels do not correlate with
IDH1 mutations. Cancer Res 2011;71:7360-5.
https://doi.org/10.1158/0008-5472.CAN-11-2023

Margalit S, Avraham S, Shahal T et al. 5-Hydroxymethylcytosine
as a clinical biomarker: fluorescence-based assay for
high-throughput epigenetic quantification in human tissues. Intl |
Cancer 2020;146:115-22. https://doi.org/10.1002/ijc.32519
Chen K, Zhang ], Guo Z et al. Loss of 5-hydroxymethylcytosine is
linked to gene body hypermethylation in kidney cancer. Cell Res
2016;26:103-18. https://doi.org/10.1038/cr.2015.150

Chen S, Zhou Q, Liu T ef al. Prognostic value of downregulated
5-hydroxymethyl-cytosine expression in renal cell carcinoma: a 10
year follow-up retrospective study. | Cancer 2020;11:1212-22.
https://doi.org/10.7150/jca.38283

Yu M, Han D, Hon GC et al. Tet-assisted bisulfite sequencing
(TAB-seq). Methods Mol Biol 2018;1708:645-63.
https://doi.org/10.1007/978-1-4939-7481-8_33

Booth MJ, Ost TWB, Beraldi D et al. Oxidative bisulfite
sequencing of S-methylcytosine and 5-hydroxymethylcytosine. Nat
Protoc 2013;8:1841-51. https://doi.org/10.1038/nprot.2013.115
Gabrieli T, Sharim H, Nifker G et al. Epigenetic optical mapping
of 5-hydroxymethylcytosine in nanochannel arrays. ACS Nano
2018;12:7148-58. https://doi.org/10.1021/acsnano.8b03023
Michaeli Y, Shahal T, Torchinsky D ez al. Optical detection of
epigenetic marks: sensitive quantification and direct imaging of
individual hydroxymethylcytosine bases. Chem Commun
2013;49:8599-601. https://doi.org/10.1039/c3cc42543f

Nifker G, Levy-Sakin M, Berkov-Zrihen Y et al. One-pot
chemoenzymatic cascade for labeling of the epigenetic marker
5-hydroxymethylcytosine. ChemBioChem 2015;16:1857-60.
https://doi.org/10.1002/cbic.201500329

Shahal T, Gilat N, Michaeli Y et al. Spectroscopic quantification
of 5-hydroxymethylcytosine in genomic DNA. Anal Chemn
2014;86:8231-7. https://doi.org/10.1021/ac501609d

Jeffet ], Margalit S, Michaeli Y et al. Single-molecule optical
genome mapping in nanochannels: multidisciplinarity at the
nanoscale Jonathan. Essays Biochem 2021;65:51-66.
https://doi.org/10.1042/EBC20200021

Sharim H, Grunwald A, Gabrieli T et al. Long-read
single-molecule maps of the functional methylome. Genome Res
2019;29:646-56. https://doi.org/10.1101/gr.240739.118

Mak ACY, Lai YYY, Lam ET et al. Genome-wide structural
variation detection by genome mapping on nanochannel arrays.
Genetics 2016;202:351-62.
https://doi.org/10.1534/genetics.115.183483

Detinis ZurT, Margalit S, Jeffet J et al. Single-molecule
toxicogenomics: optical genome mapping of DNA-damage in
nanochannel arrays. DNA Repair 2025;146:103808.
https://doi.org/10.1016/j.dnarep.2025.103808

Margalit S, Abramson Y, Sharim H et al. Long reads capture
simultaneous enhancer-promoter methylation status for cell-type
deconvolution. Bioinformatics 2021;37:1327-33.
https://doi.org/10.1093/bioinformatics/btab306

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

Gabrieli T, Michaeli Y, Avraham S et al. Chemoenzymatic labeling
of DNA methylation patterns for single-molecule epigenetic
mapping. Nucleic Acids Res 2022;50:¢92.
https://doi.org/10.1093/nar/gkac460

Uppuluri L, Jadhav T, Wang Y et al. Multicolor whole-genome
mapping in nanochannels for genetic analysis. Anal Chem
2021;93:9808-16. https://doi.org/10.1021/acs.analchem.1c01373
Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9:357-9.
https://doi.org/10.1038/nmeth.1923

Van der Auwera GA, O’connor BD. Genomiics in the Cloud: Using
Docker, GATK, and WDL in Terra (1st Edition) O’Reilly Media.
2020.

Danecek P, Bonfield JK, Liddle J et al. Twelve years of SAMtools
and BCFtools. Gigascience 2021;10:giab008.
https://doi.org/10.1093/gigascience/giab008

Cingolani P, Platts A, Wang LL et al. A program for annotating
and predicting the effects of single nucleotide polymorphisms,
SnpEff. Fly 2012;6:80-92. https://doi.org/10.4161/fly.19695
Sherry ST, Ward MH, Kholodov M et al. DbSNP: the NCBI
database of genetic variation. Nucleic Acids Res 2001;29:308-11.
https://doi.org/10.1093/nar/29.1.308

Grunwald A, Dahan M, Giesbertz A et al. Bacteriophage strain
typing by rapid single molecule analysis. Nucleic Acids Res
2015;43:e117. https://doi.org/10.1093/nar/gkv563

Frankish A, Diekhans M, Ferreira AM et al. GENCODE reference
annotation for the human and mouse genomes. Nucleic Acids Res
2019;47:D766-73. https://doi.org/10.1093/nar/gky955

Cao Q, Anyansi C, Hu X et al. Reconstruction of enhancer-target
networks in 935 samples of human primary cells, tissues and cell
lines. Nat Genet 2017;49:1428-36.
https://doi.org/10.1038/ng.3950

Haeussler M, Zweig AS, Tyner C et al. The UCSC Genome
Browser database: 2019 update. Nucleic Acids Res
2019;47:D853-8. https://doi.org/10.1093/nar/gky1095

Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist:
identification of problematic regions of the genome. Sci Rep
2019;9:9354. https://doi.org/10.1038/s41598-019-45839-z

Yao X, Tan J, Lim KJ ez al. VHL deficiency drives enhancer
activation of oncogenes in clear cell renal cell carcinoma. Cancer
Discov 2017;7:1284-305.
https://doi.org/10.1158/2159-8290.CD-17-0375

Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26:841-2.
https://doi.org/10.1093/bioinformatics/btq033

Neph S, Kuehn MS, Reynolds AP et al. BEDOPS:
high-performance genomic feature operations. Bioinformatics
2012;28:1919-20. https://doi.org/10.1093/bioinformatics/bts277
Hao Z,Lv D, Ge Y et al. RIdeogram: drawing SVG graphics to
visualize and map genome-wide data on the idiograms. Peer]
Comput Sci 2020;6:e251. https://doi.org/10.7717/peerj-cs.251
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics 2009;25:1105-11.
https://doi.org/10.1093/bioinformatics/btp120

Leinonen R, Sugawara H, Shumway M. The sequence read
archive. Nucleic Acids Res 2011;39:D19-21.
https://doi.org/10.1093/nar/gkq1019

Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work
with high-throughput sequencing data. Bioinformatics
2015;31:166-9. https://doi.org/10.1093/bioinformatics/btu638
Ramirez F, Diindar F, Diehl S ez al. DeepTools: a flexible platform
for exploring deep-sequencing data. Nucleic Acids Res
2014;42:W187-91. https://doi.org/10.1093/nar/gku365
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. ] R Stat Soc
1995;57:289-300.
https://doi.org/10.1111/].2517-6161.1995.tb02031.x

G20z Jequieoaq €0 UO Jasn usyory H1MY Ad 29Z£908/8004e92/1///3101e/l8ouedleu/woo dno olwspese//:sdny wol) papeojumoq


https://doi.org/10.1007/s40291-018-0337-9
https://doi.org/10.1186/s13148-021-01084-8
https://doi.org/10.1002/jcp.29046
https://doi.org/10.3389/fgene.2017.00100
https://doi.org/10.1158/0008-5472.CAN-11-2023
https://doi.org/10.1002/ijc.32519
https://doi.org/10.1038/cr.2015.150
https://doi.org/10.7150/jca.38283
https://doi.org/10.1007/978-1-4939-7481-8_33
https://doi.org/10.1038/nprot.2013.115
https://doi.org/10.1021/acsnano.8b03023
https://doi.org/10.1039/c3cc42543f
https://doi.org/10.1002/cbic.201500329
https://doi.org/10.1021/ac501609d
https://doi.org/10.1042/EBC20200021
https://doi.org/10.1101/gr.240739.118
https://doi.org/10.1534/genetics.115.183483
https://doi.org/10.1016/j.dnarep.2025.103808
https://doi.org/10.1093/bioinformatics/btab306
https://doi.org/10.1093/nar/gkac460
https://doi.org/10.1021/acs.analchem.1c01373
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1093/nar/gkv563
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1038/ng.3950
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1038/s41598-019-45839-z
https://doi.org/10.1158/2159-8290.CD-17-0375
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/bts277
https://doi.org/10.7717/peerj-cs.251
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/nar/gku365
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

52.

53.

54.

5S.

S6.

57.

58.

59.

60.

Yu G, Wang LG, Han Y et al. ClusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS
2012;16:284-7. https://doi.org/10.1089/0mi.2011.0118

Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell
carcinoma ontogeny and mechanisms of lethality. Nat Rev
Nephrol 2021;17:245-61.
https://doi.org/10.1038/s41581-020-00359-2

Gandawijaya J, Bamford RA, Burbach JPH et al. Cell adhesion
molecules involved in neurodevelopmental pathways implicated in
3p-deletion syndrome and autism spectrum disorder. Front Cell
Neurosci 2021;14:611379.
https://doi.org/10.3389/fncel.2020.611379

Di Nunno V, Mollica V, Brunelli M et al. A meta-analysis
evaluating clinical outcomes of patients with renal cell carcinoma
harboring chromosome 9P loss. Mol Diagn Ther 2019;23:569-77.
https://doi.org/10.1007/s40291-019-00414-0

Monzon FA, Alvarez K, Peterson L et al. Chromosome 14q loss
defines a molecular subtype of clear-cell renal cell carcinoma
associated with poor prognosis. Mod Pathol 2011;24:1470-9.
https://doi.org/10.1038/modpathol.2011.107

Ueno K, Hirata H, Shahryari V et al. Tumour suppressor
microRNA-584 directly targets oncogene Rock-1 and decreases
invasion ability in human clear cell renal cell carcinoma. Br |
Cancer 2011;104:308-135. https://doi.org/10.1038/sj.bjc.6606028
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription
factors: key players in health and disease. Trends Genet
2011;27:224-32. https://doi.org/10.1016/j.tig.2011.03.003

Song C-X, Szulwach KE, Fu Y e al. Selective chemical labeling
reveals the genome-wide distribution of 5-hydroxymethylcytosine.
Nat Biotechnol 2011;29:68-72. https://doi.org/10.1038/nbt.1732
Avraham S, Schiitz L, Kaver L et al. Chemo-enzymatic fluorescence
labeling of genomic DNA for simultaneous detection of global

61.

62.

63.

64.

65.

66.

67.

68.

Optical genome and epigenome mapping of ccRCC 13

S-methylcytosine and 5-hydroxymethylcytosine. ChemBioChem
2023;24:202300400. https://doi.org/10.1002/cbic.202300400
Uroshlev LA, Abdullaev ET, Umarova IR et al. A method for
identification of the methylation level of CpG islands from NGS
data. Sci Rep 2020;10:8635.
https://doi.org/10.1038/s41598-020-65406-1

Margalit S, Tulpovd Z, Zur TD et al. Long-read structural and
epigenetic profiling of a kidney tumor-matched sample with
nanopore sequencing and optical genome mapping. NAR
Genomics Bioinform 2025;7:1qae190.
https://doi.org/10.1093/nargab/lqae190

Balog J, Miller D, Sanchez-Curtailles E et al. Epigenetic regulation
of the X-chromosomal macrosatellite repeat encoding for the
cancer/testis gene CT47. Eur | Hum Genet 2012;20:185-91.
https:/doi.org/10.1038/ejhg.2011.150

Pook MA. DNA methylation and trinucleotide repeat expansion
diseases. In: DNA Methylation - From Genomics to Technology.
InTech, 2012, 193-208.

Hansen KD, Timp W, Bravo HC et al. Increased methylation
variation in epigenetic domains across cancer types. Nat Genet
2011;43:768-75. https://doi.org/10.1038/ng.865

Stults DM, Killen MW, Pierce HH et al. Genomic architecture and
inheritance of human ribosomal RNA gene clusters. Genome Res
2008;18:13-8. https://doi.org/10.1101/gr.6858507

Hakimi AA, Reznik E, Lee C-H et al. An integrated metabolic atlas
of clear cell renal cell carcinoma. Cancer Cell 2016;29:104-16.
https://doi.org/10.1016/j.ccell.2015.12.004

Monjaras-Avila CU, Lorenzo-Leal AC, Luque-Badillo AC et al.
The tumor immune microenvironment in clear cell renal cell
carcinoma. Int | Mol Sci 2023;24:7946.
https://doi.org/10.3390/ijms24097946

Received: September 12, 2024. Revised: February 18, 2025. Editorial Decision: February 20, 2025. Accepted: March 5, 2025
© The Author(s) 2025. Published by Oxford University Press on behalf of NAR Cancer.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and
translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact
journals.permissions@oup.com.

G20z Jequieoaq €0 UO Jasn usyory H1MY Ad 29Z£908/8004e92/1///3101e/l8ouedleu/woo dno olwspese//:sdny wol) papeojumoq


https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41581-020-00359-2
https://doi.org/10.3389/fncel.2020.611379
https://doi.org/10.1007/s40291-019-00414-0
https://doi.org/10.1038/modpathol.2011.107
https://doi.org/10.1038/sj.bjc.6606028
https://doi.org/10.1016/j.tig.2011.03.003
https://doi.org/10.1038/nbt.1732
https://doi.org/10.1002/cbic.202300400
https://doi.org/10.1038/s41598-020-65406-1
https://doi.org/10.1093/nargab/lqae190
https://doi.org/10.1038/ejhg.2011.150
https://doi.org/10.1038/ng.865
https://doi.org/10.1101/gr.6858507
https://doi.org/10.1016/j.ccell.2015.12.004
https://doi.org/10.3390/ijms24097946

	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

