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Abstract 

Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily 
captured by short-read sequencing. This study presents a no v el approach for simultaneous profiling of long-range genetic and epigenetic changes 
in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently charac- 
teriz ed b y a 3p deletion and the inactiv ation of the v on Hippel–Lindau ( VHL ) gene. We perf ormed integrated genetic, cytogenetic, and epigenetic 
analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as str uct ural and 
copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a 
significant global reduction in 5hmC le v el in both sample pairs, and a correlation between both epigenetic signals and gene expression was 
observ ed. T he single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, 
including the genes VHL , PRCC , and PBRM1 . Notably, pathw a y s related to metabolism and cancer de v elopment w ere significantly enriched 
among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehen- 
sive characterization of matched tumor and adjacent tissue, unco v ering both established and no v el somatic aberrations. 
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Introduction 

Clear cell renal cell carcinoma (ccRCC) is the most common
type of renal carcinoma, and its incidence has been increas-
ing in recent years. Over 90% of ccRCC cases exhibit alter-
ations affecting the short arm of chromosome 3 (3p), rang-
ing from translocations and deletions to the loss of the en-
tire chromosomal arm. The von Hippel–Lindau ( VHL ) gene,
located on this arm, is mutated in 30%–56% of sporadic
clear cell carcinomas, and is silenced by promoter hyperme-
thylation in up to 19% of cases [ 1 ]. In these cases, the in-
activation of VHL has been identified as the earliest event
driving the disease. VHL loss in ccRCC affects multiple cel-
lular processes as angiogenesis, cell cycle, cell growth, and
metabolism [ 1 , 2 ]. However, biallelic VHL inactivation alone
is not sufficient to induce ccRCC [ 3 , 4 ]. Pathogenic sequence
variants affecting other 3p-residing tumor suppressor genes
are also frequently observed in ccRCC. Genes such as PBRM1 ,
SETD2 , and BAP1 , encode for chromatin and histone mod-
ifiers and are often mutated in ccRCC, suggesting a possible
role of epigenetic dysregulation in ccRCC tumorigenesis [ 5 ].
Additionally, DNA copy number variations (CNVs) affecting
other chromosomes (e.g., a gain of chromosome 5q, loss of
14q, trisomy of chromosome 7, loss of 8p, loss of 6q, loss of
9p, loss of 4p, and loss of chromosome Y in men), are very
common in ccRCC, and some were correlated with prognosis
[ 6–8 ]. 

Epigenetics in ccRCC 

One of the fundamental epigenetic mechanisms directly affect-
ing gene expression is DNA methylation of cytosine (5mC)
in the dinucleotide sequence CpG. Aberrant methylation is
common in ccRCC. Hypermethylation at promoter regions
often results in the silencing or inactivation of tumor sup-
pressor genes [ 9 , 10 ]. RCC tissues often exhibit widespread
DNA hypermethylation in gene bodies and kidney-specific en-
hancer regions. This aberrant hypermethylation has been re-
ported to correlate with stage, grade and aggressiveness of
RCC, with enhancer hypermethylation being particularly pre-
dictive of adverse prognosis [ 9 ,10–12 ]. These and other stud-
ies prompted discovery and application of specific prognos-
tic methylation markers in ccRCC [ 13 , 14 ]. In addition to
cytosine methylation, 5-hydroxymethylcytosine (5hmC), the
oxidation product of 5mC, has gained attention as a modi-
fier of gene regulation, development, and disease. Some sug-
gested mechanisms for the regulatory action of 5hmC include
binding to transcription factors, altering chromatin struc-
ture through association with histone modifications, mod-
ulating alternative splicing via binding to related proteins,
and involvement in miRNA pathways [ 15 ]. 5hmC is glob-
ally reduced in multiple human cancers [ 16 , 17 ], includ-
ing ccRCC [ 18 ], and lower 5hmC levels in ccRCC are re-
portedly associated with poorer prognosis [ 18 , 19 ]. 5hmC
data have only recently become available due to the fact
that popular methods, such as bisulfite sequencing or methy-
lation arrays, do not distinguish between DNA methyla-
tion and hydroxymethylation, and report on their cumu-
lative presence. In order to differentiate these two marks,
Tet-assisted bisulfite sequencing (TAB-seq) [ 20 ], oxidative
bisulfite sequencing (OxBS-seq) [ 21 ], or specific enzymatic
labeling such as presented here [ 17 , 22–25 ] have to be
employed. 
Optical genome mapping— the full picture 

Optical genome mapping (OGM) in nanochannels is a high- 
throughput, single-molecule technique that captures ultra- 
long genomic fragments and may uncover genomic infor- 
mation that is mostly inaccessible by sequencing [ 26 ]. The 
method is based on sequence-specific fluorescent labeling 
of up to mega-base pairs (Mbp) long chromosomal DNA 

molecules. The labeled DNA molecules are linearized and 

stretched in nanochannels, allowing for imaging via fluores- 
cence microscopy. The fluorescent marker patterns on each 

DNA molecule are used to create unique barcodes that iden- 
tify the genomic origin of the molecules, either by alignment 
to a reference map or by their assembly to create long consen- 
sus contiguous maps denovo [ 26 ]. This method enables the 
construction of complex genomes such as those common in 

many cancers [ 26–29 ]. It is used clinically as a modern re- 
placement for traditional cytogenetic testing, and a comple- 
menting method to next-generation sequencing (NGS). Addi- 
tionally, unlike NGS methods, where ensemble averages mask 

cellular variability, OGM provides information at the single 
cell level, as each mapped DNA molecule originates from a 
different cell, allowing a high-throughput characterization of 
cellular heterogeneity [ 26 , 30 ]. Using fluorescence microscopy 
and designated chemistries, OGM can provide multilayered 

information from individual DNA molecules [ 22 , 26 , 27 , 31 ,
32 ]. Fluorescent labeling of different genomic features with 

different colors allows studying multiple epigenetic marks on 

the single-molecule level, creating a hybrid genetic / epigenetic 
map for every DNA molecule. 

Here, we utilize a novel approach to complement single- 
base resolution exome-sequencing with single-molecule op- 
tical genome / epigenome mapping. We comprehensively ana- 
lyze somatic alterations in two matched ccRCC samples (early 
and advanced stage) as a demonstration of the ability to apply 
genome / epigenome mapping to comparative genomics and 

epigenomics studies. 

Materials and methods 

Patient clinically relevant information 

Tumor and normal adjacent tissue were obtained in the course 
of partial nephrectomy performed in a 66-year-old female.
Tumor was diagnosed histologically as ccRCC at pT1a stage 
( < 4 cm in the greatest dimension) with cystic degenerative 
changes (“early stage ccRCC”). Tumor and normal adjacent 
tissue were also obtained in the course of radical nephrec- 
tomy performed in an 82-year-old male. Tumor was diag- 
nosed histologically as ccRCC with morphological features of 
eosinophilic variant at pT3a stage (“advanced stage ccRCC”).
Tissues were stored from the time of surgery to analysis 
at −80 

◦C. 
Samples collection and handling were approved by the insti- 

tutional review board of Sheba Medical Center, Tel Hashomer,
Israel, in accordance with the declaration of Helsinki. 

Extraction of high-molecular weight DNA 

Ultra-high molecular weight (UHMW) DNA was extracted 

using SP Tissue and Tumor DNA Isolation Kit (Bionano 

Genomics), according to the manufacturer’s protocol. High 

molecular weight (HMW) DNA was extracted using Bionano 

Prep Animal Tissue DNA Isolation Kit (Bionano Genomics),
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ccording to Fibrous Tissue Protocol for the tumor and Soft
issue protocol for the normal adjacent tissue. 

hole-exome sequencing and analysis 

xome sequencing was provided as a service (CD Genomics).
00 ng DNA were used for library construction. Sequencing
ibraries were generated using Agilent SureSelect Human All
xon kit (Agilent Technologies) following the manufacturer’s
ecommendations, and index codes were added to attribute
equences to each sample (experimental details provided in
he Supplementary Data). 

Raw sequencing reads were filtered by Trim Galore soft-
are (v0.6.7, 10.5281 / zenodo.5127898) to remove reads

ontaining adapters or reads of low quality, so that down-
tream analyses are based on clean reads. Mapping of paired-
nd clean reads to the human reference genome (hg38)
as performed with Bowtie2 software (v2.2.5, [ 33 ]). Fol-

owing alignment, a pipeline by Genome Analysis Toolkit
GATK, v4.2.2.0, [ 34 ]) was followed, including using Sam-
ools (v0.1.19, [ 35 ]) for sorting and Picard ( https://github.
om/ broadinstitute/ picard/ ) for marking duplicated reads.
ase Quality Recalibration process was applied using stan-
ard hg38 reference variants. For variant calling, the align-
ent files of both samples were first merged for efficient simul-

aneous variant calling. Then, small variants, including single-
ucleotide polymorphisms (SNPs) and insertions / deletions
InDels) located in exon regions, were called by GATK stan-
ard genotype pipeline. The called variants of the different
amples were then separated. SnpSift program (v4.3t, [ 36 ])
as used to add NCBI dbSNP information (v146, [ 37 ]), and

npEff program (v4.3t, [ 36 ]) was used to annotate the vari-
nts and determine the effect of each variant. Full pipeline and
arameters used can be found in the Supplementary Data. 

NA barcoding and staining for optical genome 

apping 

ll samples were labeled by Direct Label and Stain (DLS)
hemistry (DLE-1 enzyme, Bionano Genomics, kit part num-
er: 80005), creating a genetic barcode (CTTAAG motif).
ingle color labeling was created according to a proto-
ol by Bionano Genomics ( https://bionanogenomics.com/
p-content/ uploads/ 2018/ 04/ 30206-Bionano-Prep-Direct- 
abel- and- Stain- DLS- Protocol.pdf). 

ual color labeling for optical epigenome mapping 

amples were subjected to two types of epigenetic labeling
rocedures to generate a comprehensive optical epigenome
ap. In order to distinguish the epigenetic marks from the

reen fluorescent DLE-1 marks, we used the red fluorophore
 TTO643 (A TTO-Tech), which was found to perform well
nder our experimental conditions. Synthetic protocols for the
TTO643 labeling reagents prepared for this study are pre-
ented in the Supplementary Data. 

abeling reduced representation of unmodified cytosines in
pG context 
o create the genetic barcode, 1 μg of U / HMW DNA was
ixed with 5 × DLE-buffer (to a final concentration of 1 ×),
 μl of 20 × DL-Green, and 2 μl of DLE-1 enzyme (Bionano
enomics) in a total reaction volume of 30 μl for 4 h at 37 

◦C,
mmediately followed by heat inactivation at 80 

◦C for 20 min.
Heat inactivation at these conditions degrades over 97% of
the DL-Green cofactor, therefore preventing it from being in-
corporated by M.TaqI in the following reaction, and making
the two reactions orthogonal. Then, unmodified cytosines in
the recognition sequence TCGA were fluorescently labeled to
perform reduced representation optical methylation mapping
(ROM) [ 27 , 38 ]. Two 500 ng reaction tubes of DLE1-labeled
DNA were each mixed with 4 μl of 10 × CutSmart buffer
(New England Biolabs), 60 μM of lab-made synthetic AdoY-
nATTO643 (see synthesis and mass spectrum in the Supple-
mentary Data, Supplementary Figs S1 and S2 ), 1 μl of M.TaqI
(10 units / μl, New England Biolabs), and ultrapure water in a
total volume of 40 μl, and incubated for 5 h at 65 

◦C. Then,
5 μl of Puregene Proteinase K (Qiagen) was added and the
reaction tube was incubated for additional 2 h at 45 

◦C. Af-
ter the Proteinase K treatment, the two 500 ng reaction tubes
were merged and drop-dialyzed as one against 20 ml of 1 ×
TE buffer (pH 8) with 0.1 μm dialysis membrane for a to-
tal of 2 h. Finally, 300 ng recovered dual-color DNA was
stained to visualize DNA backbone by mixing it with 15 μl
of 4 × Flow Buffer (Bionano Genomics), 6 μl of 1 M DTT
(DL-Dithiothreitol; Bionano Genomics), 3 μl of 0.5 M Tris
(pH 8), 3 μl of 0.5 M NaCl, 4.8 μl of DNA stain (Bionano
Genomics), and ultrapure water to a total volume of 60 μl,
and incubated overnight at 4 

◦C. The orthogonality of the two
consecutive reactions was confirmed by no observed increase
in false DLE-1 labels. 

Labeling 5hmC sites 
To create the genetic barcode, 580–750 ng of U / HMW DNA
in two reaction tubes were each mixed with 5 × DLE-buffer
(to a final concentration of 1 ×), 1.5 μl of 20 × DL-Green and
1.5 μl of DLE-1 enzyme (Bionano Genomics) in a total re-
action volume of 30–35 μl. The reaction was incubated for
4 h at 37 

◦C. Then, 5hmC sites were labeled by the enzyme
β-glucosyltransferase from T4 phage (T4-BGT) [ 22 ]. Magne-
sium chloride was added to 30 μl of DLE-labeled DNA to a
final concentration of 9 mM. Then, the DNA was added to
4.5 μl of 10 × NEBuffer 4 (New England Biolabs) and uri-
dine diphosphate-6-azideglucose (UDP-6-N3-Glu, lab-made)
[ 24 ] in a final concentration of 50 μM, 30 units of T4 β-
glucosyltransferase (New England Biolabs), and ultra-pure
water in a final volume of 45 μl. The reaction mixture was
incubated overnight at 37 

◦C. The following day, dibenzocy-
clooctyl (DBCO)-ATTO643 (see synthesis in the Supplemen-
tary Data) was added to a final concentration of 150 μM,
and the reaction was incubated again at 37 

◦C overnight. The
next day, the reaction tubes were added 5 μl of PureGene Pro-
teinase K (Qiagen) and incubated for additional 30 min at
50 

◦C. After the Proteinase K treatment, the two identical re-
action tubes were merged and drop-dialyzed as one against 20
ml of 1 × TE buffer (pH 8) with 0.1 μm dialysis membrane for
a total of 2–2.5 h. Finally, 300 ng recovered dual-color DNA
was stained to visualize DNA backbone, by mixing it with 4 ×
Flow Buffer (Bionano Genomics) to a final concentration of
1 ×, 1 M DTT (Bionano Genomics) to a final concentration
of 0.1 M, Tris (pH 8) to a concentration of 25 mM, NaCl
to a concentration of 25 mM, EDTA to a final concentration
of 0.008–0.01 M, DNA stain (Bionano Genomics) to a final
ratio of 8% (v / v), and ultrapure water. The reaction mixture
was shaken horizontally on a HulaMixer for an hour and then
incubated overnight at 4 

◦C. 

https://github.com/broadinstitute/picard/
https://bionanogenomics.com/wp-content/uploads/2018/04/30206-Bionano-Prep-Direct-Label-and-Stain-DLS-Protocol.pdf
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
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Optical mapping 

Labeled samples were loaded on Saphyr chips (G1.2) and run
on a Saphyr instrument (Bionano Genomics) to generate single
molecule maps. 

Structural variant and copy number variation 

calling 

De novo assemblies of single-color data were generated by
Bionano Access (v1.6.1) with Bionano Solve (v3.6.1). The set
parameters were “haplotype with extend and split” and “cut
CMPR.” The in silico digested human genome GRCh38.p13
( hg38_DLE1_0kb_0labels.cmap ) was used as the reference. 

Structural variants (SVs) were called using variant annota-
tion pipeline (VAP), performed both as single sample analy-
sis and as dual samples analysis (tumor versus matched nor-
mal tissue) in Bionano Access combined with Bionano Tools
(v1.6.1) and Bionano Solve (v3.6.1), with default filters. Only
SVs that are not present in the Bionano controls dataset
were considered. CNV analysis was performed using the same
tools. This analysis allows the detection of large, unbalanced
aberrations based on normalized molecule coverage, and was
performed with default parameters as a part of the de novo
assembly. 

Optical epigenome mapping analysis 

Optical mapping data for each sample were merged to a sin-
gle dataset using Bionano Access (v1.6.1) and Bionano Solve
(v3.6.1). Genetic and epigenetic channels were swapped in
these files with Bionano Solve before the alignment of the
molecules files to the reference, as instructed by the company.
Molecules spanning over 150 kb were then aligned to the in
silico human genome reference GRCh38.p13, based on DLE-
1 recognition sites ( hg38_DLE1_0kb_0labels.cmap ), with de-
fault parameters matching the following combination of argu-
ments: haplotype, human, DLE-1, and Saphyr. Only molecules
with an alignment confidence ≥15 ( P ≤ 10 

−15 ) that at least
60% of their length was aligned to the reference were used
for downstream analysis. Alignment outputs were converted
to global epigenetic profiles (bedgraph files) and to single-
molecule-level epigenetic maps, according to the pipeline de-
scribed by Gabrieli et al. and Sharim et al. [ 22 , 27 ]. For more
information, see ebensteinLab / Irys-data-analysis on Github.
Only regions covered by at least 20 molecules were consid-
ered. The average epigenetic score in each genomic position
was calculated as the number of detected epigenetic labels in
the position divided by the total number of molecules cov-
ering the position. The number of epigenetic labels per 100
kb in an experiment was calculated as the total number of
labels in mapped and filtered reads divided by the total cor-
rected length of the mapped and filtered reads. Average cov-
erage of the hg38 genome was calculated for a genome size of
3.1 Gb. Positions of sequence motifs in the reference were ob-
tained using the R package BSgenome ( https://bioconductor.
org/ packages/ release/ bioc/ html/ BSgenome.html ). 

Definition of annotated genomic regions 

Gene bodies were defined as spanning from the transcription
start site (TSS) to the transcription end site (TES) annotated
by GENCODE (v34, [ 39 ]). Promoters were defined as rang-
ing from 1000 bp upstream to 500 bp downstream from the
GENCODE TSS. General predicted enhancers were mapped
to gene targets by JEME and adapted from Cao et al. [ 40 ].
Genomic coordinates of enhancers were converted from the 
human genome build hg19 to hg38 using UCSC liftOver [ 41 ].
Enhancers overlapping ambiguous genomic regions [ 42 ] were 
discarded, as well as pairs of enhancers and gene targets that 
are overlapping or in close proximity (up to 5 kb). ccRCC- 
related enhancers were adapted from Yao et al. [ 43 ] based 

on differential H3K27ac and H3K4me1 scores not overlap- 
ping with promoters in histone chromatin immunoprecipi- 
tation sequencing (ChIP-seq) of 10 primary tumor / normal 
pairs, 5 patient-matched tumor-derived cell lines, 2 commer- 
cially available ccRCC lines (786-O and A-498), and 2 nor- 
mal kidney cell lines (HK2 and PCS-400). Some of the en- 
hancers were assigned to target genes. We adapted assign- 
ments made by correlations between H3K27ac signals and 

expression of genes within the same topologically associat- 
ing domain (TAD) and by a capture-C experiment in 786-O 

cells. Genomic coordinates of enhancers were converted from 

the human genome build hg19 to hg38 using UCSC liftOver.
ccR CC-related “super-enhancers, ” regions comprising dense 
clusters of enhancers located near known regulators of cell 
identity and disease, were also adapted from Yao et al. and 

converted to hg38 coordinates. Nonoverlapping genomic win- 
dows of 1, 5, and 50 kb of hg38 were generated using Bedtools 
makewindow (v2.26.0, [ 44 ]). 

Epigenetic ideograms 

The weighted mean of epigenetic signals in 50 kb genomic 
windows was calculated using Bedops bedmap (v2.4.35, [ 45 ]).
Ideograms displaying the density of epigenetic labels were cre- 
ated with the R package Rideogram [ 46 ] with a minor mod- 
ification: the values were scaled between 1 and the maximal 
value in the dataset, times 10 000. The darkest color in a pair 
of whole-genome ideograms was determined according to the 
highest value in the adjacent and tumor samples. 

Gene expression data 

Publicly available RNA-seq data of three tumor-matched pairs 
of ccRCC (stage 3) patients (PRJNA396588, GEO accessions: 
pair 1: GSM2723919, GSM2723920; pair 2: GSM2723927,
GSM2723928; pair 3: GSM2723929, GSM2723930; [ 43 ]) 
were aligned to the human genome (hg38) using TopHat 
(v2.1.0, [ 47 ]) with default parameters and library-type and fr- 
firststrand flags, after retrieving the raw files with NCBI SRA 

toolkit [ 48 ]. Only uniquely mapped reads were analyzed (min- 
imal mapping quality of 30). Gene counts were obtained using 
HTSeq (htseq-count, v0.11.3, [ 49 ]) against the GENCODE 

v34 [ 39 ] reference gene models. Transcripts per million (TPM) 
scores were calculated. 

Epigenetic signals along aggregated genes 

Transcription start and end sites (TSS and TES) of protein- 
coding genes were defined according to GENCODE anno- 
tation (v34, [ 39 ]). Protein-coding genes were divided into 

four groups based on their average normalized TPM score in 

the RNA-seq of three tumor / matched ccRCC samples. Un- 
expressed genes were defined as genes with TPM value ≤
0.01 ( ∼3000 genes). The other expression groups are three 
equal quantiles of the expressed protein-coding genes ( ∼6000 

genes per group). Mean epigenetic signals along genes were 
calculated using DeepTools computeMatrix (v3.4.1, [ 50 ]) in 

scale-regions mode, where each gene was scaled to 15 kb and 

https://bioconductor.org/packages/release/bioc/html/BSgenome.html
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ivided into 300 bp bins. Compressed matrix output was sum-
arized by DeepTools plotProfile . 

inding differentially modified regions 

he number of epigenetic labels along annotated genomic re-
ions (gene bodies, promoters, general predicted enhancers,
cRCC-related enhancers, and super-enhancers; see “Defini-
ion of annotated genomic regions” section) and along 1 kb
enomic windows in individual molecules was counted. Only
egions entirely covered by over 20 molecules were regarded.
o identify differentially modified regions, W elch’ s t -test was
pplied to the populations sampled by independent molecules
ully covering the regions from each sample. Regions with a
ero in the t -test’s denominator (when the estimated standard
eviations in both samples were zero) where discarded from
he analysis. 

T region = 

avg 
(
adjacent 

) − avg ( tumor ) √ 

S 2 adjacent 

N adjacent 
+ 

S 2 tumor 
N tumor 

;

d. f = 

(
S 2 adjacent 

N adjacent 
+ 

S 2 tumor 
N tumor 

)2 

( 
S 2 
adjacent 

N adjacent 

) 2 

( N adjacent −1 ) + 

(
S 2 tumor 
N tumor 

)2 

( N tumor −1 ) 

Equation (1): W elch’ s T -statistics and degrees of freedom
d.f). avg (adjacent) and avg (tumor) are the average number
f labels in the region of molecules covering it, in each of the
amples. S adjacent and S tumor are the estimates for the standard
eviations in each sample. N adjacent and N tumor are the number
f molecules covering the region in each of the samples. 
A P -value was then calculated and a Benjamini–Hochberg

alse discovery rate (FDR) [ 51 ] correction was applied. Re-
ions with q-value < 0.1 were considered differentially
odified. 

alculating fold change of epigenetic signals 

etween adjacent and tumor samples 

 continuous genome-wide track of fold change (ratio be-
ween the epigenetic signal in the adjacent tissue and the tu-
or) was calculated as follows: bedgraph files containing epi-

enetic signals in both samples were combined for direct com-
arison using Bedtools unionbedg (v2.26.0, [ 44 ]). A pseudo
ignal of 0.01 was added to each position in either sample to
void division by 0. Then, the signal in the adjacent tissue was
ivided by the signal in the tumor to generate the fold change
rack. 

Fold change in discrete regions was calculated as fol-
ows: the average number of epigenetic labels in molecules
overing the region in each sample was calculated (only re-
ions covered by at least 20 molecules were considered). A
seudo signal of 0.005 was added to each region in either
ample to avoid division by 0. Then, the signal in the adja-
ent tissue was divided by the signal in the tumor. Log 2 of this
atio was then calculated. 

nrichment analysis 

he clusterProfiler R package [ 52 ] was used to find Kyoto En-
yclopedia of Genes and Genomes (KEGG) pathways that are
ignificantly enriched among unique genes associated with the
differentially modified annotated genomic regions (gene bod-
ies, promoters, general predicted enhancers, ccRCC-related
enhancers, and super-enhancers; see “Definition of annotated
genomic regions” section). Unique genes associated with all
elements of the same type covered in the experiment served as
background lists. Pathway enrichment was assessed using the
Benjamini–Hochberg method for p -value adjustment to con-
trol the FDR ( q -value and p -value < 0.05). 

Results 

We present a comprehensive analysis of a human tumor and
a matched tissue by optical genome / epigenome mapping, re-
vealing disease-relevant and differential SVs, CNVs, and epi-
genetic modifications. Pathology-classified ccRCC tumor and
an adjacent normal kidney tissues (Fig. 1 A) were sequenced to
detect genetic disease signatures (Fig. 1 B). OGM of the sam-
ples was then performed on the Bionano Genomics Saphyr
instrument to provide next-generation cytogenetics (Fig. 1 C).
For this purpose, Mbp-long DNA molecules were extracted
from each sample. Subsequently, a methyltransferase enzyme
attached a fluorescent tag to a specific sequence motif (CT-
TAAG), generating unique genetic barcodes. These barcodes
enabled the alignment of molecules to the reference genome
and their assembly into consensus maps, revealing the unique
cytogenetic landscape of each sample. To integrate epigenetic
information, custom labeling chemistries for unmodified cy-
tosines in TCGA motif or for 5hmC were employed on top of
the genetic barcode labels (Fig. 1 D). Labeled DNA molecules
were then confined and stretched within nanochannels and
imaged in three colors: genetic barcode, epigenetic marks,
and molecule contour, enabling optical epigenome mapping
(OEM, Fig. 1 E). The resulting epigenetic maps were analyzed
at the genome-wide, locus-specific, and single-molecule level
(Fig. 1 F). 

Optical genome mapping detects SVs and CNVs of 
ccRCC tumor and adjacent tissue 

Initial exome-sequencing revealed several genetic aberrations
in genes associated with ccRCC [ 9 , 14 , 43 ], including vari-
ants with a well-accepted and proven clinical impact in both
the early and the advanced stage ccRCC tumors. Notewor-
thy are variants in VHL and PBRM1 that are known to be
highly associated with ccRCC [ 9 , 14 , 43 ]. More details about
SNPs and InDels discovered by this analysis can be found in
Supplementary Fig. S3 and in Supplementary Table S1 . 

To further investigate the genetic structure of these ccRCC
samples, next-generation cytogenetics was employed using
OGM. Genetic single-molecule data of early and advanced
stage ccRCC tumors and adjacent tissues were generated. An
average of 744.3 Gb ( ±52.9 Gb) of size-filtered ( > 150 kb)
single-molecule data was generated per sample, with an av-
erage molecule N50 of 270.8 kb ( ±24.5 kb). The single-
molecule data served to construct an annotated and phased
de novo assembly for each sample. The average N50 of con-
tigs in all assemblies was 59.1 Mbp ( ±0.7 Mbp) (full details
can be found in Supplementary Table S2 ). 

Bionano Genomics’ VAP for normal-tumor pairs revealed
5666 SVs in the early stage tumor sample and 5658 SVs in its
adjacent normal tissue, 5842 SVs in the advanced stage tumor,
and 5829 SVs in its adjacent normal tissue. These SVs include
insertions, deletions, inversions, and duplications, and the dis-

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
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Figure 1. Assay workflow. ( A ) Two matched pairs of a ccRCC tumor and a normal adjacent tissue were pathologically classified and isolated. ( B ) 
Whole-e x ome of the tissues was sequenced. ( C ) OGM was applied to detect SVs and CNVs. ( D ) Additional labeling schemes for epigenetic features, 
de v eloped in our lab, were applied to the long DNA molecules. ( E ) Labeled DNA molecules were imaged in three colors (genetic barcode, epigenetic 
marks, and molecule contour) for OEM. ( F ) Multiple levels of epigenetic information were extracted— genome view, chromosome level, locus-specific 
a v erage, and single-molecule le v el, in coding and noncoding genomic regions. 
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tribution between the different types in all samples is similar.
The exception is translocation breakpoints, that were detected
only in the advanced stage ccRCC tumor. Full details are given
in Supplementary Table S3 and Supplementary Fig. S4 . The
detected SVs were compared to Bionano genomics’ healthy
controls database to define rare, possibly pathogenic, SVs. Less
than 1% of SVs were not found in the healthy database and de-
fined as rare variants. Figure 2 A shows the rare SVs detected in
the four samples in chromosomes 3 and 5. Most (60%–70%)
of the rare SVs detected overlap with at least one gene. A sig-
nificantly higher percentage of genes overlapping rare SVs in
the advanced stage pair uniquely overlapped tumor-specific
SVs (63%) compared to the early stage pair (25%) (Fig. 2 B,
Supplementary Data and Supplementary Table S4 ). The VHL
gene locus did not overlap any rare SV in any sample; how-
ever, CNV analysis (Fig. 2 C and Supplementary Fig. S5 ) re-
vealed that one copy of the entire 3p chromosomal arm was
lost in the advanced stage tumor (and not in the normal adja-
cent tissue or the early stage samples). In addition to VHL , this
aneuploidy covers the genes BAP1, PBRM1 , and SETD2 that
are known to be associated with ccRCC [ 5 , 53 ]. Also deleted is
the entire 3p26.3 cytoband, which is known to be associated
with deletions causing the 3p-deletion syndrome (Del3p), typ-
ically characterized by renal and gastrointestinal abnormali-
ties, in addition to growth retardation and developmental de-
lay [ 54 ]. Additional aneuploidies, in chromosomes 9, 14, and
5q were detected in this sample, in line with previously re-
ported data for ccRCC. Jonasch et al. [ 53 ] considered 5q gain
to be an alternative ccRCC tumor initiator. Losses of 9p and
14q are considered lethal events followed by metastases, as
these chromosomal arms involve genes essential for cell cycle
or the metabolism of the VHL product, including CDKN2A
(cyclin-dependent kinase inhibitor 2A) on chromosome 9p
[ 55 ] or HIF1A (hypoxia-inducible factor 1A) on chromosome
14q [ 5 , 53 , 56 ]. Although no such aneuploidies were detected
in the early stage samples, several smaller DNA gains and 

losses were observed, including a DNA gain (segmental du- 
plication) on chromosome 3 spanning the genes LINC01266 

and CNTN6 . Seven other regions, on chromosomes 3, 5, 10,
and X, were found to have DNA gains or losses unique to the 
tumor sample, ranging between 0.5 and 6.9 Mbp in length 

( Supplementary Table S5 ). These CNVs are not known to be 
associated with ccRCC [ 7 , 8 , 53 ]. A CNV on chromosome 
10 overlaps the region encoding microRNA-584, which was 
shown to have significantly lower expression levels in ccRCC 

tumors, as well as lower cell viability and motility, and was 
therefore marked as a tumor suppressor microRNA in ccRCC 

[ 57 ]. A 1.2 Mbp long DNA gain on chromosome 5 with a frac- 
tional CNV of ∼2.4 copies covers the entire FOXD1 gene lo- 
cus. FOXD 1 encodes a forkhead transcription factor belong- 
ing to a family of proteins that act as terminal effectors of 
several key signaling pathways, such as the mitogen-activated 

protein kinase (MAPK) pathway. They contribute to the regu- 
lation of homeostasis, and their misregulation can induce hu- 
man genetic diseases including cancer [ 58 ]. The longest CNV 

in the early stage tumor is a ∼6.9 Mbp DNA loss located on 

chromosome X. It spans several genes, including FMR1 and 

microRNA genes. 
Several putative events of gene fusion, which can poten- 

tially form chimeric genes from the concatenation of inde- 
pendent genes as a byproduct of genomic instability, were de- 
tected in both sample pairs (see Supplementary Data). One 
of them is a fusion of the PCDHA gene cluster, involving 
14 genes ( PCDHA1-13 , PCDHAC1 ), and AC011346 , which 

was caused by an intrachromosomal translocation on chro- 
mosome 5 (Fig. 2 A). 

An important benefit of OGM is the ability to phase struc- 
turally complex regions, such as large repetitive arrays. An ex- 
ample in Fig. 2 D shows allele-specific copy number of a DNA 

repeat array in chromosome 4. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
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Figure 2. Next-generation cytogenetics with OGM. ( A ) Chromosomes 3 and 5 in early and advanced stage ccRCC tumors and normal adjacent tissues. 
Mark ed belo w the cytobands, are rare, possibly pathogenic str uct ural v ariants. ( B ) Venn diagrams depicting genes o v erlapping with rare str uct ural 
v ariations disco v ered in the early and adv anced stage ccR CC tumor and normal adjacent tissues. ( C ) CNV profiles of early and adv anced stage ccR CC 

tumors with a baseline set to two copies. DNA gains are colored in blue, DNA losses are colored in red. Aneuploidies are highlighted with colored bo x es 
in the same color scale as DNA gains and losses. ( D ) An example of a repeat array with a different number of repeats in two alleles, discovered by OGM, 
showing a phased chromosomal segment (Conting IDs: 2281 and 2282). 
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Table 1. Effective genome coverage and N50 of epigenetic experiments 

Sample Modification 

Effective 
genome 
co ver age 

Molecules 
N50* (kb) 

Early-stage tumor 5hmC 73 × 193 
Unmethylation 99 × 231 

Early-stage normal 
adjacent tissue 

5hmC 48 × 187 

Unmethylation 84 × 184 
Advanced-stage tumor 5hmC 106 × 239 

Unmethylation 83 × 206 
Advanced-stage normal 
adjacent tissue 

5hmC 95 × 195 

Unmethylation 53 × 190 

*Molecules N50 is a measure of reads length indicating that half of the 
genetic data recorded came from reads longer or equal to this value. 
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enome-wide and locus-specific epigenetic 

rofiles of unmodified CpGs and 5hmC 

n order to test the added value of epigenetic profiling, two epi-
enetic marks were labeled and optically mapped by OEM.
or 5hmC, we employed an enzymatic method to attach
n azide-modified glucose moiety from a synthetic cofac-
or (UDP-6-N3-Glu) [ 24 , 59 ] (UDP-6-N3-Glu) to the hy-
roxyl group of 5hmC, followed by a click reaction that
inks a fluorophore-bound alkyne to the azide-labeled 5hmC,
s detailed in Gabrieli et al. [ 22 ]. The reproducibility of
he labeling reaction for optical mapping is demonstrated in
upplementary Fig. S6 . Methylation was implied by the com-
lementary labeling of unmodified CpG sites within TCGA
equence motifs. These were specifically labeled using the
ethyltransferase enzyme M.TaqI, which transfers a fluo-

ophore from a synthetic cofactor to the adenine base in
he enzyme’s recognition sequence TCGA. This reaction is
locked if the CpG within this sequence is methylated or mod-
fied, resulting in a reduced representation map of unmodified
pGs (referred to as ’unmethylation’), as detailed in Sharim

t al. [ 27 ]. The reproducibility of this labeling reaction for op-
ical mapping is demonstrated in Supplementary Fig. S7 . Our
roup recently applied engineered CpG methyltransferases to
ddress all unmethylated CpGs [ 31 , 60 ]. However, since these
ethods have not yet been validated for human methylome
rofiling, we opted for the previously validated reduced rep-
esentation approach. Although this map covers only ∼6% of
he total CpGs, it captures most regulatory sites in the genome
nd exhibits a cell-type specific pattern [ 27 , 30 ]. Since most
pG sites in the human genome are methylated [ 61 ], label-
ing the sparser unmodified sites enhances sensitivity in a low-
resolution method as optical mapping. The genomic coverage
of the epigenetic datasets is 48–106 ×, with molecules N50 of
180–240 kb (Table 1 ). 

To evaluate the reproducibility of the inspected epigenetic
signals across kidney samples, we compared the 5hmC sig-
nals in the tumors and normal adjacent tissues of the early
and advanced stage ccR CC patients. W e also compared the
unmethylation signal in these and additional patients (a total
of three normal adjacent tissues and four tumors). These com-
parisons ( Supplementary Figs S8 and S9 ) resulted in high cor-
relation scores (Pearson correlation coefficients: 5hmC: 0.87,

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
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Figure 3. Genome-wide unmethylation and 5hmC profiles. ( A ) Double Ideograms showing the density of unmethylation (top) and 5hmC (bottom) along 
chromosome 3 in the early stage ccRCC tumor and normal adjacent tissue. ( B ) Percentages of detected unmodified CpG sites in TCGA sequence 
context out of all appearances of TCGA sites in hg38, and of 5hmC sites detected out of all CpG sites in hg38, in the early stage ccRCC tumor and the 
normal adjacent tissue. ( C ) An example of a repeat array in chromosome 1, not marked by the genetic barcode, but marked with TCGA sites. The array 
corresponds to RNA5S genes. 
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unmethylation: 0.54–0.68). To further validate our results,
we have measured the advanced sample pair using Oxford
nanopore sequencing (ONT) with direct epigenetic readout
and compared it to the OEM profile. The epigenetic profiles
acquired by the two methods are highly concordant as can
be seen in Supplementary Figs S10 and S11 . A comprehen-
sive comparison between the two methods in characterizing
the structural, copy number and epigenetic landscape in this
sample pair can be found in [ 62 ]. 

Figure 3 and Supplementary Figs S12 and S13 show
a chromosomal distribution and genome-wide global lev-
els of unmethylation and 5hmC for the early (Fig. 3 A
and B, and Supplementary Fig. S12 A and B) and advanced
( Supplementary Figs S12 C and D, and Supplementary Fig.
S13 ) stage ccRCC tumor and the normal adjacent tissues.
Most notably, we observed that the 5hmC profile in both tis-
sue samples is sparse, as expected, and a global reduction is
observed in the tumor sample compared to the normal adja-
cent tissue, in accordance with global 5hmC reduction known
in many types of cancers [ 18 ]. The unmethylation signals are
much denser, and the differences between the tumor and the
normal adjacent tissue are mild at this perspective. 

Epigenetic labeling can also provide complementary genetic
information as it addresses regions where the genetic barcode
is sparse. This combined approach provides basic genetic in-
formation unavailable through other methods, such as repet-
itive regions. Repetitive elements in DNA are further differ-
entiated by the methylation state of the repeat units, which
can affect the function of individual units or even the activ-
ity of the entire array. Methylation levels of known repeat
arrays were shown to correlate with disease [ 63–65 ]. An in-
teresting example is a tandem repeat array in chromosome
1 (1.q42), containing a domain of RNA5S genes, encoding
5S rRNA, composed of 17 units according to the human ref-
erence, but the actual cluster size is known to vary among
individuals [ 66 ]. Since the repetitive region lacks DLE-1 mo-
tif, the optical genome map cannot provide an accurate copy
number of the repeats. Figure 3 C shows that there are 17 

double unmethylation recognition sites (TCGA) throughout 
the array in hg38 and that the presence of these sites in the 
repetitive units allows both counting the copy number and 

assessing the methylation state of each unit, simultaneously.
Supplementary Fig. S14 shows fluorescence microscopy im- 
ages of two representative DNA molecules from the digitized 

pileup shown in Fig. 3 C. 

5hmC and unmethylation levels correlate with gene 

expression 

An attractive feature of epigenetic mapping is the ability to 

relate the epigenetic status of genes to gene expression. To 

examine this aspect, protein-coding genes were divided into 

four groups based on their average TPM value in publicly 
available RNA sequencing of three tumor-matched ccRCC 

pairs by Yao et al. ([ 43 ]; see “Materials and methods” sec- 
tion). The mean unmethylation and 5hmC signals in each 

expression group were plotted against the normalized dis- 
tance from the TSS (early stage pair in Fig. 4 , advanced 

stage pair in Supplementary Fig. S15 ). In all samples, un- 
methylation signal around the TSS increases with gene expres- 
sion (Fig. 4 C and Supplementary Fig. S15 C). In both sam- 
ple pairs, the 5hmC level in gene bodies in all expression 

groups was lower in the tumor than in the adjacent tissue.
This level increased with gene expression in the four sam- 
ples (Fig. 4 F and Supplementary Fig. S15 F). Such correlations 
with gene expression suggest that epigenetic signals on DNA 

may serve as a proxy for gene expression, reducing the need 

to quantify RNA levels. We observed a similar correlation 

between gene expression and unmethylation signal in genes 
for the GM12878 cell line, also supported by whole-genome 
bisulfite sequencing signal ( Supplementary Fig. S16 ). A sim- 
ilar correlation between gene expression and 5hmC signal 
in genes was previously observed in human peripheral blood 

cells [ 22 ]. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data


Optical genome and epigenome mapping of ccRCC 9 

Figure 4. Epigenetic signals along genes as a function of gene expression in the early stage ccRCC sample pair. ( A ) Unmethylation signal in a normal 
adjacent kidney tissue in four gene groups divided according to their expression score in a publicly available RNA-seq experiment of adjacent kidney 
tissues. ( B ) Unmethylation signal in a ccRCC tumor in four gene groups divided according to their expression score in a publicly available RNA-seq 
experiment of ccRCC tumors. ( C ) Average unmethylation signal around the TSS. ( D ) 5hmC signal in a normal adjacent kidney tissue in the four gene 
groups from panel (A). ( E ) 5hmC signal in a ccRCC tumor in the four gene groups from panel (B). ( F ) Average 5hmC signal at gene–body midpoints. 
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ifferentially modified regions 

fter characterizing the epigenetic landscape in the genomes
f the tumors and the adjacent tissues, we aimed to locate dif-
erentially modified regions. Unlike conventional, short-read
ethods, this analysis can inspect full, long, biologically rele-

ant regions (both annotated and unannotated) covered by in-
ividual molecules. We applied differential modification (un-
ethylation or 5hmC) analysis on gene bodies, promoters,

eneral predicted enhancers, ccRCC-related enhancers, and
cRCC-related super-enhancers. Results of these analyses are
isualized as volcano plots in Supplementary Figs S17 –S20 ,
hile detailed lists of differentially modified annotated ele-
ents are provided in Supplementary Tables S6 and S7 . Then,
e focused on identifying pathways affected by these epi-

enetic changes by testing the enrichment of such pathways
mong the genes associated with the differential elements. Ad-
itionally, we analyzed unannotated 1 kb genomic windows,
ith the findings presented in Supplementary Figs S21 –S23 . 
Several ccRCC-related genes or their associated annotated

lements were found to be differentially modified. For exam-
le, gene bodies with differential hydroxymethylation in both
ample pairs include PRCC , BAP1 , and VHL . Gene bodies
ith differential unmethylation signals in the early stage sam-
le pair include PBRM1, TP53 , and KDM5C . General pre-
icted enhancers with differential hydroxymethylation in both
ample pairs target genes including PRCC , VEGFA, SETD2 ,
nd VHL . General predicted enhancers with differential un-
ethylation signals target genes including PRCC (both sam-
ple pairs), VHL , BAP1 , and PBRM1 (early stage sample pair).
VEGFA is targeted by ccRCC-related enhancers and super-
enhancers with differential 5hmC levels in both sample pairs
and by ccRCC-related enhancers with differential unmethyla-
tion levels in the early stage sample pair. Figure 5 A highlights
the 5hmC and unmethylation signals in the early-stage sam-
ple pair along a region in chromosome 3 spanning the VHL
gene and two general predicted enhancers targeting it. Figure
5 B shows the KEGG pathways enriched among genes associ-
ated with differentially modified annotated elements in both
sample pairs, including genes, promoters, general predicted
enhancers, and ccRCC-related enhancers. No pathways were
enriched among genes associated with ccRCC-related super-
enhancers. 

Many of the enrichment tests resulted in pathways related
to metabolism (as metabolic pathways and other pathways).
Alterations in metabolites and dysregulated metabolism are
known hallmarks of cancer, and changes in several groups
of essential metabolites are manifested in ccRCC. One char-
acteristic of ccRCC cells is their morphological burden by
lipid and glycogen, suggesting altered fatty acid and glu-
cose metabolism. Additionally, changes in metabolites are as-
sociated with tumor progression and metastasis [ 67 ]. The
enrichment of “Pathways in cancer” among ccRCC-related
enhancers exhibiting differential unmethylation signals sup-
ports the involvement of mechanisms underlying cancer de-
velopment in the early stage sample pair. The enrichment
of pathways involving chemokines and cytokines among

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcaf008#supplementary-data
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Figure 5. Differentially modified annotated genomic regions. ( A ) Epigenetic signal tracks of unmethylation (violet) and 5hmC (black) signals in the early 
stage sample pair, along a 180 kb region in chromosome 3 that co v ers the VHL gene and two general predicted enhancers targeting it (orange). B elo w is 
a z oomed-in vie w of the VHL gene and the enhancers. The bottom panel sho ws plots displa ying the f old change of the signals, calculated as the signal in 
the normal adjacent tissue divided by the signal in the tumor tissue. ( B ) KEGG pathways enriched ( q -value < 0.05) among genes associated with 
annotated elements that ha v e differential unmethylation and 5hmC signals ( q -value < 0.1). 
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ccRCC-related enhancers with differential unmethylation sig-
nals in the advanced stage sample pair is consistent with the
fact that tumors interact with their environment through the
secretion of these factors. Chemokines are critically involved
in ccRCC progression by modulating immune responses, an-
giogenesis, and metastasis [ 68 ]. 

Discussion 

OGM is a powerful tool that complements DNA sequencing.
While NGS identifies short InDels and SNPs, OGM unrav-
els complex genomic structures including SVs and CNVs of
medium to large sizes. The long reads in OGM enable de novo
construction of a sample’s genomic structure, which can be
particularly complex in cancer. Here, we present a complete 
structural comparison between tumors and matched samples 
in two pairs in different stages of disease. Our analysis re- 
vealed some well-established as well as some novel somatic 
aberrations of ccRCC [ 5 , 53–56 ]. Key genetic alterations iden- 
tified in this study include high-impact InDels in the tumors 
of both pairs (exome-seq), and extensive CNVs detected by 
OGM in the advanced stage tumor, such as the loss of one 
copy of 3p, a gain in 5q, and losses in chromosomes 9 and 14.

Beyond genetic structure, OEM can be obtained simul- 
taneously with OGM at (almost) no extra cost, and adds 
significant information to it. With our epigenetic profiling 
added to commercial OGM, we were able to detect epige- 
netic changes at all resolutions in one experiment, from global,
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hrough locus-specific, and up to single-molecule. This multi-
esolution perspective provides a comprehensive understand-
ng of the epigenetic variation across different scales. On the
lobal level, we observed a significant reduction of 5hmC sig-
al in the tumor sample compared with the matched adjacent
issue in both sample pairs and of unmethylation signal in one
air (early stage). The double reduction in this pair suggests
hat the tumor sample is both hyper-methylated and hypo-
ydroxymethylated, in line with previous studies [ 8 , 15 ]. The
ther pair exhibits very close unmethylation levels in both the
umor and adjacent tissue. At the locus-specific level, we found
 correlation between gene expression and the unmethylation
ignal around TSSs and 5hmC signals in gene bodies. Such
orrelation may imply that gene expression information may
e deduced from the same experiment, reducing the need for
edicated RNA sequencing, and adding additional Omics as-
ects to the same data. OEM provides insights into the epi-
enetic variability at a single-molecule resolution. Previously,
e showed that the simultaneous recording of the methy-

ation status of gene promoters and their distant enhancers
nables generation of epigenetic signatures, and used these
ignatures to de-convolve cell mixtures [ 30 ]. In the current
tudy, we leverage the single-molecule-level methylation and
ydroxymethylation status, captured along full biologically-
elevant genomic regions, to identify regions with significant
ifferences between samples, even when accounting for inter-
ample variation. This analysis identified significantly distinct
egions between tumor and matched tissues. Some of these
egions fall within annotated elements known to be associ-
ted with ccRCC (e.g. PRCC , BAP1, VHL , PBRM1 ; [ 3 , 43 ]),
urther validating the results, and some within coding or non-
oding regions not previously linked to ccRCC. Among anno-
ated differentially modified regions, we found significant en-
ichment of metabolic pathways, and other pathways involv-
ng metabolites. Metabolism plays an important role in renal
ealth and disease, and especially in renal cancers [ 67 ]. Addi-
ional enriched pathways align with cancerous processes (like
athways in cancer and pathways related to chemokines and
ytokines). As seen here, epigenetic dysregulation of ccRCC-
elated genes as well as of other genomic regions is highly dis-
inct and may inspire new studies on the mechanism of the
isease. 
To conclude, this study, using whole-exome sequencing,
GM and OEM, provides a uniquely comprehensive analy-

is of the spectrum of somatic alteration affecting ccRCC, and
emonstrates the potential of combining these methods to un-
erstand carcinogenesis. The methodology can be applied to
ther questions in comparative genomics. Nevertheless, clini-
al insights will require larger cohort studies. 
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